1.4 COMPONENT FACILITIES

1.4.1 PRIMARY CLARIFIERS

Primary clarifiers specifications are calculated by the following equation.

200,000 m³/day Average daily flow, Qad 235,000 m³/day Maximum daily flow, Qmd 285.000 m³/day Maximum hourly flow, Omh 570,000 m³/day Wet weather glow Oww = 35 m³/m² day Hydraulic surface load rate Totally 4 clusters, each consisting of 2 tanks, total number of basins is \div 8 = 29.375 m³/day/basin Hydraulic load on each basin is 235,000 Required surface area of each basin $29.375 \div 35 = 839 \,\mathrm{m}^2$

(1) Tank Geometry (In accordance with the Romanian Standards),

Internal diameter 35 m
Effective depth 2.0 m
Number of basins 8 basins
Surface area of a basin 843 ×

Surface area of a basin $843 \times 8 = 6,744 \text{ m}^2$ Hydraulic capacity of a basin $6,744 \times 2 = 13,488 \text{ m}^3$ Check for hydraulic conditions of basins under the different flow rates.

Retention time

Qmd 13,488 × 24/235,000 = 1.38 hours 2Qmh 13,488 × 24/570,000 = 0.57 hours > 0.5

Surface load rate

Qmd 235,000 / 6,744 = $34.8 \text{ m}^3/\text{m}^2.\text{day} < 35$ 2Qmh 570,000 / 6,744 = $84.5 \text{ m}^3/\text{m}^2.\text{day} < 96$

(2) Raw Sludge Pumping Equipment

The pumps will handle the mixture of primary and excess sludge having solids concentration of 2%.

(李) (11) (11) (12) (13) (14) (14)

Sludge solids 46.44 t/day, Solids concentration 2 %
Sludge volume 2,322 m³/day = 1.61 m³/min.

Pump type: Centrifugal screw pump

Pump type: Centritugal screw pump
Pump bore size: 100 mm

Delivering capacity: 1 m³/min.

Total dynamic head: 10 m

Number of pumps: 3 Units (including 1 standby)

1.4.2 REACTOR TANKS

Reactor tanks specifications are calculated by the following equation.

Design flow, Qmd = $235,000 \text{ m}^3/\text{day}$

BOD – SS load 0.30 kgBOD/kg SS day MLSS 1,667 mg/L

Return sludge solids concentration 5,000 mg/L

Sludge return ratio = $1,667 \div (5,000 - 1,667) = 0.50$

Inflow BOD to reactors 235,000 \times 170 \times 10⁻³ kg BOD/day \times (1 = 0.3)

= 27,965 kg BOD/day

Reactor tanks SS = $V \times 1,667 \times 10^{-3}$ kgMLSS

Required tank capacity = $27,965 \div 1.667 \div 0.30 = 55,919 \text{ m}^3$

Aeration time = $55,919 \times 24 \div 235,000 = 5.7$ hours

At Qmd, aeration time of 6 hours or more is secured.

Required tank capacity = $6 \times 235,000 \div 24.00 = 58,750 \,\mathrm{m}^3$ Tank geometry

Width = 5.5 m

Effective depth = 5.5 mCross sectional area = $5.5 \times 5.5 - 1/2 \times 1.0^2 \times 2 - 1/2 \times 0.6^2 \times 2$

 $= 29 \text{ m}^2$

Number of tanks = 8 tanks 4 clusters 32 tanks Capacity of one tank = $55,919 \div 32 = 1,747 \text{ m}^3$ Tank length = $1,747 \div 29 = 60.26 \text{ use } 67 \text{ m}$

Tank geor	netry		
W	5.5 m	×	32 Tanks
L	67 m		
H	5.5 m		1 .

Check of aeration time

Tank capacity = $29 \times 67 \times 32 = 62,176 \,\mathrm{m}^3$

Aeration time = $62,176 \times 24/235,000 = 6.3$ hours

Check for additional tank requirement to upgrade the process

Additional tank capacity required for the advanced treatment process will be provided by adding tanks to the conventional activated sludge aeration tanks. The wastewater inflow will be distributed both to the existing and additional tanks. The wastewater will be distributed in proportion to the treatment capacity of both trains.

The total detention time will be 13.2 hours.

As the detention time in the conventional treatment process is 6.3 hours, the required retention time for additional tanks is

$$13.2 - 6.3 = 6.90 \text{ hours}$$

Check capacity and wastewater distribution ratio

Existing tanks 6.3/13.2 = 0.48

Additional tanks 6.9/13.2 = 0.52

Wastewater flow distribution rates

Existing tanks $235,000 \times 0.48 = 113,047 \,\text{m}^3/\text{day}$

Additional tanks $235,000 \times 0.52 = 122,841 \text{ m}^3/\text{day}$

Additional Reactor Tanks

Required tank capacity = $235,000 \times 6.9 \div 24 = 67,563 \text{ m}^3$

Number of tanks = 8 tanks 4 clusters 32 tanks Tank capacity = $67,563 \div 32 = 2,111 \text{ m}^3$

Tank length = $2,111 \div 29.00 = 72.8$ use 73 m

Tank geometry

W 5.5 m × 32 Tanks

L 73 m

H 5.5 m

Check retention time

Tank capacity = $29 \times 73 \times 32 = 67,744 \text{ m}^3$

Retention time = $67,744 \times 24/235,000 = 6.9$ hours

1.4.3 FINAL CLARIFIERS

Final clarifiers specifications are calculated by the following equation.

Design flow QD = $235,000 \text{ m}^3/\text{day}$ Surface load rate = $25 \text{ m}^3/\text{m}^2 \cdot \text{day}$

4 clusters each consisting of 2 tanks, total tank number is: 8 tanks Influent to each tank = $235,000 \div 8 = 29,375 \text{ m}^3/\text{day/tank}$ Required surface area of each tank = $29,375 \div 25 = 1,175 \text{ m}^2$

(1) Check by the Romanian Standards

Internal diameter 45 m Effective depth 3.5 m Tank numbers 8 units

Surface area $1,424 \times 8 = 11,392 \text{ m}^2$ Capacity $11,392 \times 3.5 = 39,872 \text{ m}^3$ Surface load rate $21 \text{ m}^3/\text{m}^2 \text{ day}$

Surface load rate 2
Retention time

At Qmd $39,872 \times 24/235,000 = 4.07$ hours

Qv=Qmh + Qrmax = $285,000 + 117,500 = 402,500 \text{ m}^3/\text{day}$ $39,872 \times 24/402,500 = 2.38 > 2.0$

Surface load rate

At Qmd 235,000 / 11,392 = $21 \text{ m}^3/\text{m}^2 \text{ day} < 25$ At Qv 402,500 / 11,392 = $35.3 \text{ m}^3/\text{m}^2 \text{ day} < 52.8$

Weir loading

Weir length $L = \pi \times 42.7 \times 8 = 1,073 \text{ m}$

At Qmd 235,000 / 1,073 = $219 \text{ m}^3/\text{m} \cdot \text{day}$ At Qv 402,500 / 1,073 = $375 \text{ m}^3/\text{m} \cdot \text{day}$

As compared with the Japanese Standards, the weir loading appears to be high side. The weir length may be increased in detailed design.

(2) Check for Advanced Treatment

The advanced treatment will be performed through two trains, existing and advanced treatment process trains.

The wastewater will be distributed to each train in proportion to the reactor tanks hydraulic retention time.

Wastewater distribution

Existing train 113,047 m³/day Additional train 122,841 m³/day

Check for additional tanks

Surface load rate 15 m³/m² day or lower

Cluster 4 with 2 tanks, then total tank number is 8 units

Flow rate to each tank $122,841 \div 8 = 15,355 \text{ m}^3/\text{day.tank}$ Required surface area of each tank $= 15,355 \div 15 = 1,024 \text{ m}^2$

D = 40 - 2.3 = 37.7 m

According to Romanian Standards $A = 0.785 \times (D^2 - 3^2) = 1,109 \text{ m}^2$

Diameter 40 m Effective depth 3.5 m Number of tanks 8 units

Water surface area $1,109 \times 8 = 8,869 \text{ m}^2$ Capacity $8,869 \times 3.5 = 31,042 \text{ m}^3$

Overflow rate 13.9 m³/m²/day
Check the existing tank surface load rate

 $122,841 / 11,392 = 10.8 \text{ m}^3/\text{m}^2/\text{day} < 15$

Return Sludge Pumps (3)

Return sludge pumps are specified as follows,

Average 50 % sludge return rate is considered, but pump capacity 100 % return rate is provided to prevent and restore sludge bulking.

Return sludge volume = 117,500 m³/day 82 m³/min.

60 % and 40 % of sludge will be transported by 4 and 2 pumps respectively, through double pipelines.

Pump capacity $41 \times 0.2 = 8.16$ use $8.2 \,\mathrm{m}^3/\mathrm{minute/unit}$

 $41 \times 0.15 = 6.12$ use $6.2 \text{ m}^3/\text{minute/unit}$

By operating above pumps, the return sludge rates can be adjusted at the order of 5% to 15 %.

No.1 Screw centrifugal Pump type No.2 Screw centrifugal Diameter 250 mm 250 mm Capacity $6.2 \text{ m}^3/\text{min.}$ 8.2 m³/min. TDH 10 10 m m 8 Number of pumps units 4 units Motor output 22 kW kW 30

Excess Sludge Pumps

Excess sludge pumps are specified as follows.

 $= 5.904 \text{ m}^3/\text{day} = 4.1 \text{ m}^3/\text{min}$ Excess sludge volume

Two lines will be provided, then the capacity of a pump 1.02 m³/min

Type of pump No.1 Screw centrifugal pump

Diameter 250 mm Capacity 1.1 m³/min

TDH 10 m

Number of pumps 6 units (2-standby)

Motor output 22 kW

Chlorine Contact Tanks

Chlorine contact tanks specifications are calculated by the following equation.

Design flow rate 235,000 m³/day Chlorine contact time 15 minutes

Required tank capacity: $235,000 \div 1,440 \times 15$

Channel width: 4.0 m

Effective depth: 3.0 m

Tank length: 2447.9 ÷

 $204.0 \text{ m} \rightarrow$

Number of tanks 1 unit

> Chlorine contact tank geometry W 4 m H 4.0 m 1 Tanks x 204 m

ANAEROBIC SLUDGE DIGESTER

1.5.1 SLUDGE THICKENERS

(1) **Hydraulic Capacity of Tanks**

Hydraulic capacity of tanks are specified as follows.

Solids input = 46.44 t/day Input sludge volume = 6,750 m³/day Output sludge volume = 1,061 m³/day Floor loading = 60 kg/m²/day Required surface area = 774 m²

Tank geometry Circular radial flow type

Internal diameter = 16 m Effective depth = 4 m Number of tanks = 4 units

Water surface area $3.14/4 \times 16^2 \times 4 = 804 \text{ m}^2$

(2) Sludge Withdrawal Pumps

Sludge withdrawal pumps are specified as follows.

The pumps will have capacities that can send thickened sludge in around 8 hours.

Pump capacity $Q = 1061 \times 1/8 \times 1/60 = 2.21 \text{m}^3/\text{min.}$

Pump Sludge pump
Diameter 100 mm
Discharge capacity 1.20 m³/min.
TDH 20 m
Motor output 15 kW

Number of pumps 3 units(including one standby)

(3) Sludge Screens

Sludge screens are specified as follows.

Type Rotary drum screen
Screen opening 4 mm

Capacity 2 m³/min.

Motor output 0.4 kW

Number of screens 1 unit

Screen capacity is so determined that the sludge quantity being sent concomitantly from 2 raw sludge pumps (each $q = 1.0 \text{ m}^3/\text{min.}$) can be screened.

1.5.2 ANAEROBIC SLUDGE DIGESTION TANKS

(1) Hydraulic Capacity of Tanks

Hydraulic capacity of tanks are specified as follows.

Sludge solids input = 37.15 t/day
Input sludge = 1,061 m³/day
Retention time 20 days
Tank temperature 35 °c

Required tank capacity $1,061 \times 20 = 21,230 \,\mathrm{m}^3$

(2) Tank Geometry

Type Single stage digestion

Internal diameter 17.5 m Effective tank depth 31 m

Number of tanks $2 \text{ clusters} \times 2 \text{ tanks}$

Capacity 5,580 m³/tank, 22,321 m³ total tank capacity

principal de Balancia, gallo del Marabarde di Hestoria.

1.5.3 GAS STORAGE TANKS

(1) Capacity of Tanks

Capacity of tanks are calculated by the following equation.

Total solids input to digesters = 37.15 t/day

Assuming that 70 % of the input sludge solids are volatile, and 1 kg of which produce 0.425 m³ gas, the total gas production can be estimated as follows:

Total gas production = $37.15 \times 0.7 \times 10^3 \times 0.425 = 11,053 \text{ m}^3/\text{day}$

Storage time 8 hours

Tank storage capacity = $11,053 \times 8/24 = 3,684 \text{ m}^3/\text{day}$

(2) Tank Geometry

Type Dry-seal type steel tanks

Number of tanks

Diameter

Effective height

Storage capacity

2 units

16 m

17 m

2,000 m³

1.5.4 Mechanical Sludge Dewatering

(1) Filter Capacity

Filter capacity is calculated by the following equation.

Solids input = 24.15 t/day, Input sludge volume $805 \text{ m}^3/\text{day}$

Belt press filter

Yields per unit length 130 kg/m/hr

Filter width 3 m
Daily operation time 6 hr

Working days/week 5 day Solids loads per hour = $24.15 \times 7/5 \times 10^3/6 = 5,635$ kg/hr

Required number of belt press

= 5.635/130/3 = 14 use $\rightarrow 14$ units

Type : Belt filter press

Filter loading rate : 130 kg/m/hr

Filter width : 3 m

Number of filters : 14 unit

1.6 CHLORINE REQUIREMENTS

Required quantity of hypochlorite solution can be calculated by multiplying the dosing rate by the wastewater flow rate as shown in the following equation:

$$VR = Q \times R \times (100/C) \times (1/d) \times 10^{-3}$$

where

VR Required hypochlorite solution (L/hr.)

Q Wastewater flow rate (m³/hr)

R Chlorine dosing rate(mg/L)

C Effective chlorine concentration in chemical (%)

d Specific gravity of hypochlorite solution (at the effective concentration of C%)

At the maximum daily flow rate, the required hypochlorite solution is:

At the wet weather flow (maximum hydraulic rate)

```
Qww = 570,000 \text{ m}^3/\text{day} = 23,750 \text{ m}^3/\text{hr}.

R = 8 \text{ mg/L}

VR = 0.012 \times 8 \times \text{Qww} = 2,280 \text{ L/hr} = 38 \text{ L/minute}
```

(1) Hypochlorite Solution Storage Tanks

8 days storage capacity for the maximum daily flow rate. Then, the capacity is:

(2) Dosing Pumps Specification

	(No.1)	(No.2)
Туре	Diaphragm	Diaphragm
Diameter	20 mm	20 mm
Discharge	6 L/min.	13 L/min.
Motor output	0.2 kW	0.4 kW
No. of unit	2 units	3 units(including 1 standby)

1.7 DIGESTER HEATING SYSTEM

1.7.1 TEMPERATURE

Lowest daily average temp	erature		0 °c
Soil temperature		1	15 ℃
Input sludge temperature			10 °c
Digester tank temperature	300		35 °c

1.7.2 REQUIRED CALORIES FOR SLUDGE HEATING SPECIFIC HEAT 1.0 KCAL/KG \cdot $^{\circ}$ C

Required calories for sludge heating system is calculated by the following equation.

$$Q = 1,061 \times (35-10) \times 103 \times 1.0 = 26,537,073 \text{ Keal/d}$$

1.7.3 HEAT LOSSES TANK INTERNAL DIAMETER 17.5 M

(1) Surface Area of the Digestion Tank

		Internal diameter	17.5	m side side
		r	R	h h
Top slab (gas portion)		1.00	3.00	2.0
* · ·	Al	1 1	38.7	m²
Top slab(liquid portion)		3.00	8.75	5.75
	A2	: 12 - 2	300.0	m²
Side wall(above ground)		8.75	8.75	13.05
(down to 1m below ground)	A3		717.1	m²
Side wall(underground)		8.75	8.75	4.45
(up to 1m from surface)	`A4		244.5	m²
Bottom slab		1.00	8.75	7.75
	A5		338.7	m²

$$A1 = 35.5$$
(side) + 3.14(top, r) = 38.67
 $A2 = 300.0$, $A3 = 717.7$, $A4 = 244.5$, $A5 = 335.5 + 3.14 = 338.7$

(2) Overall Thermal Conductivity Coefficient (kcal/m², °C/hr)

	RC thicknes s (m)	Water proof motor	Insulation (polyureth ane foam)	Concret e block	Spray concrete	Gas portion	Internal α I (thermal conductivity)	External α 2(thermal conductivity)	K
	(λ=1.4)	(λ=1.2)	(λ=0.22)	(λ=1.0)	(λ=1.4)	(λ=0.48)		1000	
Roof slab(gas portion)	0.3	0.03	0.04	1:1:1:			20	20	0.461k1
Roof slab(liquid portion)	0.3	0.03	0.04				300	20	0.474k2
Upper side walls (1m underground or higher)	0.3		0.04	0.15		0.26	300	20	0.360k3
Lower sidewalls (1m underground or lower)	0.3						300	5 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	2.395k4
Bottom slab	0.8				0.1		300	5	1.182k5

The overall thermal conductivity coefficient can be calculated by the following equation:

(3) Overall Heat Losses

Portion of tank	Heat transfer	Thermal conductivity	Number of tanks	Difference of temperature	Total heat losses
	area	coefficient			
	٠.			jo fratski k	
	(m²)	(Kcal/m²/°c/hr)	(unit)	(°c)	
Roof slab(gas portion)	38.67	0.464	4	35	2,509
Roof slab(liquid portion)	300.0	0.474	4	35	19,899
Upper sidewalls(Im under ground above)	717.1	0.360	4	35	36,146
Lower sidewalls (up to 1m below ground surface)	244.5	2,395	4	35	81,974
Bottom slab	338.7	1.182	4	35	56,035
	<u> </u>	1		Total	196,562

Overall heat losses

196,562 Kcal / hr

1.7.4 HEATING SYSTEM

24 hours continuous heating. A total of 20 % heat losses from pipes are considered.

26,537,073 / 24 + 196,562 × 1.2 = 1,341,586 Kcal / hour

Efficiency of water heater 0.9

1,341,586/0.9 = 1,490,651 Kcal/hour

Water heater

800,000 Kcal/hr × 3 units (including 1 standby)

1.8 ANAEROBIC SLUDGE DIGESTION SYSTEM

1.8.1 DIGESTION TANK

Hydraulic capacity of tanks are specified as follows.

Solids input = $1,061 \text{ m}^3/\text{day}$

Retention time 20 days Temperature 35 °c

Required tank capacity $1,061 \times 20 = 21,230 \,\mathrm{m}^3$

1.8.2 TANK GEOMETRY

Tank geometry is specified as follows.

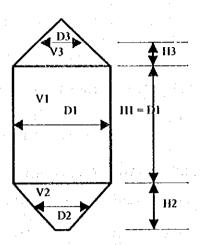
Number of tanks

Type single stage tank

Internal diameter 17.5 m Effective tank depth 31 m

5,580 m³/tank D1 = 17.5 m

2 clusters


 $(5,307 \text{ m}^3/\text{tank or larger})$ D2 = 2 m

4 tanks

1.8.3 TANK CAPACITY

Tank capacity is calculated by the following equation.

Effecti	ve depth	17.5 m	Portion V1
11		7.75 m	Portion V2
u '		5.75 m	Portion V3
Total		31m	
VI	=	$\pi/4 \times D1^2 \times D1$	
	=	$\pi/4 \times D1^3$ =	4,207 m³
V2	ΞΞ .	$\pi / 4 \times D1^2 \times (D/2)$	2)/3 :
		$-\pi/4 \times D2^2 \times$	(D2/2)/3
	=	$\pi/4/6 \text{ (D}^3-1$)2³)
	=	700 m ³	
V3	=	$\pi/4/6$ (D1 ³ –	D3 ³)
	==	673 m ³	
		V total 5,58	30 m³

1.9 REQUIRED OXYGEN

Required oxygen is calculated by the following equation.

Required $O_2: OD = OD_1 + OD_2 + OD_3$

where

OD: : Oxygen required for BOD oxygenation (cell synthesis)

OD, : Oxygen required for endogenous respiration

OD: : Oxygen to be utilized for maintaining required dissolved oxygen level

1.9.1 REQUIRED OXYGEN FOR BOD OXIDATION (CELL SYNTHESIS) : OD, (KGO, DAY)

 $OD_1 = A(kgO_2/kgBOD) \times BOD removed (kg BOD/day)$ where

A: kg oxygen required to remove kg BOD (kgO $_7$ kgBOD), 0.5 \sim 0.7 \rightarrow 0.6

 $Q = 235,000 \text{ m}^3/\text{day}$

 $OD_1 = 0.6 \times Q \times 101.2 \times 10^{-3} = 0.0607 Q \text{ kgO}_2/\text{day}$

Influent BOD = 119 - 18 = 101.2 mg/l

1.9.2 OXYGEN REQUIRED FOR ENDOGENOUS RESPIRATIONOD2(KGO2/DAY)

 $OD_2 = B(kgO_2/kgMLVSS \cdot day) \times VA(m^3) \times MLVSS(kgMLVSS/m^3)$ where

B: Oxygen consumption due to endogenous respiration per unit MLVSS 0.05~0.15 (kgO₂/kgMLVSS·day) 0.05

VA: Capacity of aerobic portion of reactor(m³) Q \times 6 ÷ 24 = 0.25 Q

MLVSS/MLSS = 0.8

OD, = $0.05 \times 0.25 \times Q \times 1,500 \times 10^{-3} \times 0.8$

 $= 0.0150 \, Q \, kgO_2 / day$

1.9.3 REQUIRED OXYGEN TO MAINTAIN DISSOLVED OXYGEN LEVEL: OD3 (KGO)/DAY)

 10^{-3} $OD_1 =$ $COA \times Q \times$

COA: Aeration tank dissolved oxygen 1.5 mg/l concentration where

 $OD_3 =$ $1.5 \times Q \times 10^{-3}$

0.0015 Q kg O2/day

1.9.4 TOTAL OXYGEN REQUIREMENTS

OD =
$$OD_1$$
 + OD_2 + OD_3
= $0.0607 \, \text{Q}$ + $0.015 \, \text{Q}$ + $0.0015 \, \text{Q}$ = $0.0772 \, \text{Q} \, (\text{kgO})/\text{day}$

1.9.5 AERATION EQUIPMENT (DIFFUSERS, FINE BUBLES, SPIRAL FLOW)

Aeration equipment is calculated by the following equation.

EA = 7.5, $\rho = 1.293$, Qw = 0.233

Air volume (Nm³/day)

(Required oxygen (kgO₂)) / (EA(%) × 10^{-2} × ρ (air/Nm³) × Qw(kgO₂/kg air))

 $(0.0772 \,\mathrm{Q})/(7.5 \,\times\, 0.01 \,\times\, 1.293 \,\times\, 0.233)$

3.42 Q = 1802,811 (Nm³/day) = 1558 (Nm³/min.) of the hand part by

Install one blower for each train

 $558 \div 4 = 139 \,\mathrm{m}^3/\mathrm{tank} \cdot \mathrm{unit}$ Required blower capacity

Blower spec. Cast-iron made multi-stage turbo blower

Inlet/outlet diameters 4350/4300 Capacity 140 m³/min.

190 kW Motor output 5 units (including 1 standby) Number of units

1.10 SCREENS AND PUMPING STATION

1.10.1 FLOW RATE

Flow rate is determined as follows.

200,000 m³/day Oad 2,315 L/s 235,000 m³/day 2,720 L/s Omd 285,000 m³/day 3,299 L/s Omh 570,000 m³/day Qww 6,597 L/s

1.10.2 Incoming Sewer

Incoming sewer is specified as follows.

Friction formula Manning (n= 0.013)

φ 2,200 mm Size of incoming sewer

Sewer slope 1.2 %

deut (AAP tan in in miss

Incoming sewer invert elevation

Full flow rate of incoming sewer

Full flow velocity in incoming sewer

1.2 %

-3.699 m above M.W.L.

6.597 m³/sec

1.789 m/sec

Item	Waster rates	water flow (m³/s)	Flow velocity (m/sec)	Water depth (m)	Water surface elevation at entrance (m)	Head loss ahead of chamber	Gate chamber water elevation (m)
Average		2.315	1.617	0.884	-2.815	0.133	-2.948
daily	0.340		0.904	0.402			* * * * * .
Maximum daily	0.440	2.720		0.981 0.446	-2.718	0.146	-2.863
Maximum hourly	0.485	3.299	7 7 7 7 7	1.080 0.491	-2.619	0.161	-2.779
Wet weather flow	0.970	6.597		1.747 0.794	-1.952	0.212	-2.164

Note: Ratio of flow to full Ratio to Ratio to full

full velocity sewer depth flow

From tables

1.10.3 INFLUENT GATE

Influent gate is specified as follows.

Elevation of gate bottom

-3.85 M.W.L. square 1.2 m

Gate type and size

Items	.1.,	Average daily flow	Max. daily flow	Max. hourly flow	Wet weather flow	Remarks
Wastewater Inflow rates (Q)	m³/s	2.315	2.720	3.299	6.597	
No. of gates operated (n)	Unit	2	2	3	4	
Wastewater inflow to each gate	m³/s/gate	1.157	1.360	1.100	1.649	Q/n
Wastewater elevation ahead of gate	M.W.L.	-2.948	-2.863	-2.779	-2.164	
Wastewater depth at gate (H)	ın	0.902	0.987	1.071	1.686	g store
Wastewater flow area at gate (A)	m²	1.082	1.184	1.285	1.44	1.2×H
Flow velocity through gate(V)	m/s	1.069	1.149	0.856	1.145	Q/nA
Head losses at gate(Δh)	m	0.087	0.101	0.056	0.100	
Water elevation after gate	M	-3.036	-2.964	-2.836	-2.264	

Total head losses at gate (Δh) 1.5 x $v^2/2g$ =

1.10.4 COARSE SCREEN

Coarse screen is specified as follows.

Channel invert elevation

-3.85 m M.W.L.

Channel width

1.6 m 100 mm

Screen clear opening

No. of screens

Slope of screens

60 degrees from horizontal

Items		Average	Maximum	Maximum	Wet	Remarks
		1.75			weather	
		daily flow	daily flow	hourly flow	flow	
Wastewater inflow rates (Q)	m³/s	2.315	2.720	3.299	6.597	
No. of channels used (n)		2	2	3	4	
Wastewater inflow to each channel	m³/s	1.157	1.360	1.100	1.649	Q/n
Wastewater elevation ahead of screen	m M.W.L.	-3.036	-2.964	-2.836	-2.264	
Wastewater depth ahead of screen	m	0.814	0.886	1.014	1.586	
Flow area in channel(A)	m	1.303	1.417	1.278	2.537	1.6×11
Approaching flow velocity to screen	m/s	0.888	0.960	0.860	0.650	Q/nA
Flow velocity in screen(V2)	m/s	0.941	1.017	0.912	0.689	
Head loss in screen(Ah1)	m	0.002	0.003	0.002	0.001	
Actual head loss in screen(Δh2)	m	0.007	0.008	0.006	0.004	3×Δh1
Allowable head loss at screens (Δh3)	m	0.100	0.100	0.100	0.100	Δh3>h2
Wastewater elevation after screen	m M.W.L	-3.136	-3.064	2.936	-2.364	Δh3

$$\delta h = \beta \times (s/d)^{4/3} \times \sin \alpha = 0.0492268$$

 $\beta = 2.42$, $d = 150 \text{ mm}$, $s = 9 \text{ mm}$, $\alpha = 60^{\circ}$, $\sin 60 = 0.866$
Loss by screen $= \delta h \times v^2 / 2g = 0.04923 \times v^2 / 2g$ (hw)
Flow velocity through screen V1 × (s+d) / d = 1.06 V1

1.10.5 FINE SCREEN

Fine screen is specified as follows.

Channel invert elevation

-4.0 M.W.L.

Channel width

1.6 m

Bar screen clear opening

 $20\;\mathrm{mm}$

Thickness of screen bars

8 mm :

No. of units

4 units

Slope of screen

75 degrees to horizontal

Items		Average daily	Maximum daily	Maximum	Wet weather	Remarks
	1 TA	flow	flow	hourly flow	flow	
Wastewater Inflow rate (Q)	m³/s	2.315	2.720	3.299	6.597	At a Sta
No. of channels in use (n)		2	2	3	35 - 75 - 4	F. P. 941. 4
Flow rate in each channel	m³/s	1.157	1.360	1.100	1.619	Q/n
Water elevation ahead of screen	M.W.L.	-3.136	-3.064	1	-2.364	1
Water depth ahead of screen (H)	m	0.864	0.936	1.064	1.636	20 ER 2
Sectional area of flow in channel	m²	1.383	1.497	1.341	2.617	1.6×H
Approaching velocity to screen(V1)	m/s	0.837	0.908	0.820	0.630	Q/nA
Flow velocity through screen(V2)	m/s	1.171	1.272	1.148	0.882	1.842
Head loss through screen(Δh1)	m inter	0.048	0.057	0.016	,0.027	
Actual head loss in screen(Δh2)	m	0.145	0.171	0.139	0.082	3×∆h1
Allowable maximum loss(Δh3)	m	0.100	0.100	0.100	0.100	∆h3 <h2< td=""></h2<>
Water surface elevation after screen	M.W.L.	-3.236	-3.164	-3.036	-2.464	∆h2

$$\delta h = \beta \times (s/d)^{4/3} \times \sin \alpha = 0.688907$$

 $\beta = 2.42$, $d = 20 \text{ mm}$, $s = 8 \text{ mm}$, $\alpha = 75^{\circ}$, $\sin 75 = 0.9659$
Loss by screen $= \delta h \times v^2 / 2g = 0.68891 \times v^2 / 2g$ (hw)
Flow velocity through screen $V1 \times (s+d) / d = 1.400 V1$

1.10.6 PUMPING EQUIPMENT

(1) Design Flow Rate

Flow rate is determined as follows.

Qad	 200,000 m³/day 	139 m³/minute
Qmd	235,000 m ³ /day	163 m³/minute
Qmh	285,000 m ³ /day	198 m³/minute
Qww	570,000 m³/day	396 m³/minute

(2) Wastewater Pumps

4 units (including 1 standby), mixed flow centrifugal type driven by electric motor. Storm water pumps: 4 units (including 1 standby), mixed flow centrifugal type, smaller pumps—driven by motor, and large pumps driven by diesel engine. Pump operation schedule is as follows:

	A. S. 1884 C. S.	ek je	Pump di	scharges	.a. ta a.i.		l'otal pump
Wastewater	Wastewater inflow rates	Wastewa	ter pumps	Storm water	er pumps		discharge
inflows	(m³/minute)	50	100	50	100	m³/min/unit	(m³/minute)
		2	2(1)	2	2(1)	No. of units	
Qad	139	50	100		***		150
Qmd	163	100	100	11 11 11			200
Qmh	198	100	100				200
Qww	396	100	100	100	100		400

(3) Pump Size:

No.1 Pumps
$$Q = 50 \text{ m}^3/\text{minute}$$

 $D = 146(Q/V)^{0.5}$ $V = 5 \text{ m/sec}$
 $= 653 \text{ mm} \text{ use} \rightarrow 600 \text{ mm}$
No.2 Pumps $Q = 100 \text{ m}^3/\text{minute}$
 $D = 146(Q/V)^{0.5}$
 $= 923 \text{ mm} \text{ use} \rightarrow 900 \text{ mm}$

(4) Wastewater Surface Elevations:

Suction water levels at inflow of

Qad -3.236 M.W.L.

Qmd -3.164 M.W.L.

Qmh -3.036 M.W.L.

Qww -2.464 M.W.L.

Suction water levels at outflow of

 Qad
 11.100
 M.W.L.

 Qmd
 11.100
 M.W.L.

 Qmh
 11.100
 M.W.L.

 Qww
 11.100
 M.W.L.

(5) Actual Head

Qad	11.100	- · ·	(-3.236)	==	14.336 m
Qmd	11.100		(-3.164)	=	14.264 m
Qmh	11.100	-	(-3.036)	=	14.136 m
Qww	11.100		(-2.464)	≓	13.564 m

(6) Total Head Losses at Pump Equipment:

Pump size	ф600	ф900
Pump bore(m)	0.6	0.9
Pump discharge(m³/min)	. : -50	100
Pump discharge(m³/sec)	0.833	1.667
Delivery bore sectional area (m ²)	0.283	0.636
Pump velocity(m/s)	2.949	2.621

(7) Loss Coefficients

Inlet	± 0.15 → ± = ∴	0.15
Sluice valve	0 144	10 - 1 to 10 s
Check valve		1.0
Outlet	1.0	1.0
Bend	0.25	0.25
Friction loss PxL/D	0.781	0.514
Total	3.181	2.914 F

(8) Head Losses

```
\phi 600 = 1.411 \text{ m} \quad F \times V^2/2g
\phi 900 = 1.021 \text{ m}
Pipe length L = 15 \text{ m}
Friction loss by Darcy-Wiseback Formula
hf = f \times L/D \times V^2/2g
f = 0.02 + 1/(2000 \times D)
(New cast iron pipe)
For old cast_iron pipes multiply the f by 1.5
```

	 600	φ900
D(m)	0.6	0,9
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.021	0.021
$f = 1.5 \times f$	0.031	0.031

(9) Total Head Required

	Qad	14.336 +	1.411 (φ600)) =	15.747 m
			1.021 (φ900) =	15.357 m
	Qmd	14.264 +	0.000	= 3	14.264 m
	Qmh	14.136 +	0.000	=	14.136 m
	Qww	13.564 +	1.021 (\$900) =	14.586 m
The requ	ired total pum	p head is then	16.0 m		

(10) Shaft Power of Mixed Flow Centrifugal Pumps

$$L = k \times \gamma \times Q \times H / \mu$$
where

Shaft power of pump L

k 0.163 kW or 0.222 PS

Q Pump discharge (m³/min)

Н Pump total dynamic head (m)

Specific gravity of water $(\gamma = 1)$ γ

Pump efficiency μ

Calculations for shaft power requirements

Items	ф600	ф900	φ900 Engine	
Pump discharge(Q)	m³/min	50	100	100
TDH (H)	m	16.0	16.0	16.0
Pump efficiency (μ)		0.78	0.81	0.81
Shaft power	kW	167	322	439

(11) **Outputs of Pump Drives**

 $L(1+\alpha)/\mu G$

where

Pump power (kW)

Pump shaft power (kW) L

Allowance for motor 0.15 α Allowance for engine

0.2

μG Transmission efficiency (1.0 for direct connection)

Items	φ600	φ900	φ900
			Engine
Shaft power (L)	167	322	439
Allowance (a)	1.15	1.15	1.20
Efficiency of transmission (μG)	1.00	1.00	0.95
Pump drive output (P) kW	192	370	554

(12) Pump Specifications

Items		Vertical mix	ed flow cer	trifugal pumps
Pump bore	mm .	600	900	900
Pump discharge	m³/min.	50	100	100
Total dynamic head	m	16	16	16
Motor/engine outputs	kW	192	370	554
Pump drive		Motor	Motor	Engine

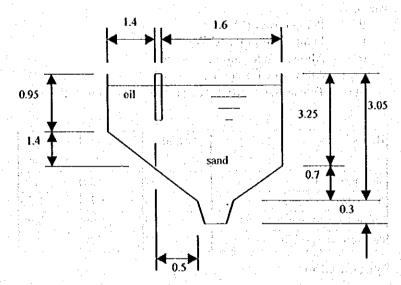
1.11 GRIT, OIL/GREASE REMOVAL EQUIPMENT

1.11.1 Design Wastewater Flow Rates

Design wastewater flow rates are determined as follows.

Qad

200,000 m³/day


2,315 L/s

Qmd .	235,000 m³/day		2,720 L/s
Qmh	285,000 m ³ /day	,	3,299 L/s
Qww	570,000 m³/day		6,597 L/s

1.11.2 GRIT, OIL/GREASE SEPARATION

Grit, oil/grease separation is specified as follows.

```
4 trains
           2 channels each, then totally
                                                8 channels
                 570,000 m<sup>3</sup>/day
Qww
                                            6,597 L/sec
Flow to each channel 71,250 m<sup>3</sup>/day
                                            = 825 L/sec
                           3 minutes
Retention time
                 570,000 \times 3 \div 1,440 =
Capacity
                                                    1,187.5 m<sup>3</sup>
                     6.8 \text{ m}^2
Section area
Length
                     22 m
Capacity
                     6.8 × 22 ×
                                               1.196.8 m<sup>3</sup>
(check for flows)
At maximum daily flow
                                        235,000 m<sup>3</sup>/day
                              Qmd
                                   1440) / 235,000
Retention
                   (1187.5 \times
Time =
             7.3 min.
```


Chamber cross sectional area

Air supply volume

Romanian Standards
$$Q = 0.3 \text{ m}^3 \text{ air} / \text{m}^3 \text{ water}$$

= $0.3 \times 23,750 = 7,125 \text{ m}^3/\text{hour}$
= $119 \text{ m}^3/\text{min}$

Japanese Standards $Q = 0.01 \text{ m}^3/\text{sec} \cdot \text{m} \times \text{channel length/m} (0.005 \sim 0.013)$

=
$$0.01 \times 22 \times 8$$

= $1.746 \text{ m}^3/\text{sec} = 105 \text{ m}^3/\text{min}$

6.8

Then, the total air is

119 m³/min

Blower equipment

1 unit each for 1 train

then. I blower capacity =

 $119 \div 4 = 29.7 \text{ use} \rightarrow 30 \text{ m}^3/\text{min}$

Air blower specifications

Roots blower 5

5 units (including 1 standby)

♦ 200mm → **30 m³/min**

Grit volume from combined sewage: 0.001~0.02m³ grit/1000m³ sewage

Then, grit volume = $0.02 / 1000 \times 570,000 = 11.4 \text{ m}^3/\text{day}$

1.11.3 GRIT PUMPS

Grit pumps are calculated as follows.

Pump capacity is to remove the grit in 20 minutes. As allowances the capacity is Two times of the grit quantity. Then, the pump capacity is

 $11.4 \text{ m}^3/\text{day} \times 2/8 \text{ units} \times 20 \text{ minutes} = 0.14 \text{ m}^3/\text{min.}$

Assuming the grit content in the withdrawn wastewater at 10 %, the required pump capacity is;

 $0.14 \times (100/10) = 1.4 \,\mathrm{m}^3/\mathrm{min}$

Assume the pump velocity to be 2.5 m/sec, the pump diameter will be

 $146 \times (1.4/2.5)^{0.5} = 109$ use 100 mm

1.11.4 FLOW MEASUREMENT

Use two units of Parshall flume

Flow per each unit(Q/2)

Oad $200.000 \text{ m}^3/\text{day} = 8.333 \text{ m}^3/\text{hour}$

4,167 m³/hour

Qmh 285,000 m³/day

11,875 m³/hour 5,938 m³/hour

Qww 570,00 m³/day = Select 7 ft flume, range of flow

23,750 m³/hour 11,875 m³/hour

 $306 \sim 12,380 \text{ m}^3/\text{hour}$ use 2 units

1.12 SLUDGE DIGESTER EQUIPMENT

1.12.1 MIXERS

(1) Specifications

Type Up/down flow screw mixers (with a draft tube, from manufacturer's catalog)

Capacity

2.300 m3/hour

Draft tube diameter

500 mm

Motor output

22 kW

Quantity

4 units

(2) Sludge Mixing Capacity

Sludge turn over rate (mixing the whole sludge volume 8 ~ 12 times/day)

$$Q = (8-12) \times 5,580 \text{ (Tank volume } = 5,580\text{m}^3\text{)/}24$$

$$1,860 \sim 2,790 \,\text{m}^3/\text{hour} \text{ use } \rightarrow 2,300 \,\text{m}^3/\text{hour}$$

1.12.2 TANK APPARATUS (ON ROOF TOP)

Tank apparatus are specified as follows.

Gas collectors(steel made) \$\qquad \phi600 \text{ mm} \times 1 \text{ unit}\$

Gas relief valve (wet type) \$\phi 20

 ϕ 200 mm × 1 unit

Gas relief valve (dry type) ϕ 200 mm × 1 unit (including valve and flame arrester) Quantity units Total

1.12.3 WATER HEATERS

(1) **Specifications**

Type Vacuum type water heater Heater capacity 800,000 Kcal/hr. 17.5 m² Heater transfer area

Fuel Sludge gas and oil

Electric motors Burner motor 3.7 kW

> Oil pump 0.4 kW Oil heater 2.0 kW 3 2.2 kW Fan

> > Charles by the highest to

3 units (1standby) Quantity

Nominal Heat Output (2)

= 1,341,586 Keal/hr Total required heat

Nominal heater capacity $Q = (1,341,586)/(2 \times 0.9)$

= $335,397 \text{ Keal / hr} \rightarrow 800,000 \text{ Keal / hr}$ (Heater efficiency 0.9) (No. of units:2)

Sing and March Street

Para abere in the Hamanak atter (2.81).

form they bet I will be her

医动脉组织 医多种多种的现在分词

医克里氏氏试验检检试剂 成体电话

1.12.4 OIL SERVICE TANKS

(1) **Specifications**

Type Steel made rectangular tank
Tank capacity 300 L
Quantity 1 unit

(2) Tank Capacity

Store oil of more than one hour consumption

 $q = (800,000 \times 2)/(10,200 \times 0.85) = 185 L/hr. use \rightarrow$ β: Heating value of A-diesel oil 10,200 kcal / kg 0.85 kg/L (1.18 for 1999) γ: Specific gravity of A-diesel oil

1.12.5 OIL PUMPS

Specifications (1)

Type Gear pump Size ф 15 mm Discharge 10 L/min. Discharge pressure 3 kg/cm² 0.4 kW Electric motor

2 units (including 1 standby) Quantity

(2) **Pump Discharge**

Capable of supplying a 300-liter capacity tank within 30 minutes 300/30 = 10 L/minute in which a facilities of a large and a large and

1.12.6 OIL STORAGE TANK

(1) **Specifications**

Type

Underground cylinder type

Storage capacity Quantity

15,000 L 1 unit

(2) **Tank Capacity**

Store more than 3-day oil consumption.

 $V = 185 \times 24 \times 3 = 13.287 L$ use 15,000 L

1.12.7 GAS BOOSTER FANS

(1) **Specifications**

Type

Turbo fan

Capacity

145.5 m³/hr.

Pressure (static pressure in water column) 500 mm Aq

Electric motor

1.5 kW

Quantity

2 units (including 1 standby)

(2) Capacity

Sludge gas consumption

q = 800,000 / 5,500 =

145.5 m³/hr.

(Sludge gas heat value 5,500 Kcal/m³)

Check for gas consumption

Required energy	Kcal/day	32,198,064
Heater operation time	Hour	20.1
Gas production	m³/day	11,053
Gas consumption	m³/day	2,927

Required heat energy

1.341.586 Kcal/hr.

Heater output

800,000 Kcal/hr.

No. of units

2 units

1.12.8 HEAT EXCHANGE

(1) **Specifications**

Type

Spiral type heat exchanger

Heat transfer area

 25 m^2

Water temperature

Inlet

70 °c, 60 °c Outlet

Quantity

4 units Total Nos.

(2) **Energy Transfer**

Provide an exchanger to each digester

Required energy per unit, $M = 32,198,064 \times 1/4$ 8,049,516 Kcal/day 335,397 Kcal/hr.

(3) Required Heat Transfer Area

$$A = (M \times 1.2)/(K \times \Delta tm) = (335,397 \times 1.2)/(600 \times 27.4)$$

24.5 m² use $25 \,\mathrm{m}^2$ M = Heat transfer 335,397 Kcal/hr. K = Overall heat transfer coefficient 600 Kcal/m² hr.ºc Logarithmic average of temperature difference = $(\Delta t1 - \Delta t2)/(\ln \Delta t1/\Delta t2)$ $(30-25)/(\ln(30/25)$ 27.4 °c 70 -40 = 30 °c Δ2 60 -35 = 25°c

(4) Sludge Recirculation

Q 1 = M/(C × Δt × γ × 60) = 335397 / (1 × 5 × 1,000 × 60) = 1.12 m³/min. C Sludge specific heat 1 Kcal/kg.°c Δt Temperature difference between inlet and outlet sludge 40 - 35 = 5 °c γ Unit weight of sludge 1,000 kg/m³

(5) Water Recirculation

Q 2 = $335,397/(1 \times 10 \times 1,000 \times 60)$ = 0.56 m³/min. Δt Difference of temperature between inlet and outlet 70 - 60 = 10 °c

1.12.9 SLUDGE CIRCULATION PUMPS

(1) Specifications

Type Sludge pump with suction screw
Size 100 mm
Discharge 1.4 m³/min.
TDH 15 m
Motor output 5.5 kW
No. of units 4 units

(2) Capacity

Sludge circulation rate $Q = 1.12 \text{ m}^3/\text{min.}$ use $\rightarrow 1.4 \text{ m}^3/\text{min.}$

(3) Head

Total head = Actual head + pipe losses + losses in heat exchanger (10m) = 15 m

(4) Motor Output

 $P_m = 0.163 \times 0.7 \times 15 \times (1 + 0.2) / 0.4 = 5.13 \text{ kW} \text{ use } \rightarrow 5.5 \text{ kW}$

1.12.10 HOT WATER CIRCULATION PUMPS

(1) Specifications

Type Line pump
Size 65 mm
Capacity 0.6 m³/min.
TDH 25 m
Motor output 3.7 kW
Quantity 4 units

(2) Capacity

Return from exchanger, $Q = 0.56 \text{ m}^3/\text{min}$.

(3) Head

Total heads = Actual head + pipe losses + losses in heat exchanger (20m) = use 25 m

(4) Motor Output

 $P_{m} = 0.163 \times 0.4 \times 25 \times (1 + 0.2) / 0.6$ = 3.26 kW use \rightarrow 3.7 kW

1.12.11 GAS HOLDER

(1) Specifications

Type Steel made dry seal type Capacity 2000 m^3 Size $15.5 \text{ m} \phi \times 16.8 \text{mH}$ No. of tanks 2 units

(2) Capacity

Gas generation 11,053 m³/day
Retention time 8 hr.
Storage capacity 11,053 \times 8/24/2 = 1,842 m³ use \rightarrow 2000 m³

1.12.12 GAS SCRUBBERS

(1) Specifications

Type Dry type (intermittent) scrubbers

Capacity 150 m³/hr.

Size 1,800 mm \times 4,200 m H \times 2 units

No. of units $2 \times 1,800$ mm \times 4,200 m H \times 2 units 4 units

(2) Capacity

Treat all the gas produced $Q = 11,053 \times 1/24/4 = 115 \text{ m}^3/\text{hr.} \quad \text{use} \rightarrow 150 \text{ m}^3/\text{hr.}$

(3) Diameter of Towers

Velocity of gas flow 1 m/min. $D = (4 \times 150/60/3.14/1)^{0.5} = 1.785 \text{ m}\phi$, use \rightarrow 1800 mm ϕ

有一种 建化二苯甲

(4) Chemical Consumption Supplies to the second supplies to the second supplies the se

Inflow and outflow gas H₂S concentrations are 100 ppm and 10 ppm, respectively.

V1 = $0.235 \times 10^{-3} \times Q \times \mu$ = $0.235 \times 10^{-3} \times 150 \times 24 \times 0.9 = 0.761 \text{ L/day}$ (μ Removal efficiency = 90%) V0 = V1/(C0×0.8) = 0.761/(100/1,000) × 0.8 = 9.5 L/day

C0: Chemical requirements to absorb 100 kg hydrogen sulifide= 1000 kg

γ: Nominal specific gravity of chemical 0.8

(5) Life of Chemical

T =
$$(V \times 10^3) / V0$$
 = $(5 \times 10^3) / 9.5$ = 525 days
V = Volume 5 m³

1.12.13 Waste Gas Burners

(1) Specifications

Type In furnace
Capacity 500 m³/hr.
Size 2,000 mm D × 10,200 mm H
Motor Cooling fan
" Gas blower
No. of units 2 units

(2) Treatment Capacity

Capacity: all produced gas $Q = 11,053 \times 1/24 \times 2.0 \times 1/2$ $= 461 \text{ m}^3/\text{hr. use} \rightarrow 500 \text{ m}^3/\text{hr.}$

1.12.14 SEED SLUDGE PUMPS(SLUDGE WITHDRAW)

(1) Specifications

Type Sludge pumps with suction screw Size 100 mm
Capacity 1 m³/min.
T.H.L 15 m
Motor output 7.5 kW
No. of units 2 units

(2) Capacity

 $Q = 1 \text{ m}^3/\text{min}$.

(3) Total Dynamic head

 $H = 15 \,\mathrm{m}$

(4) Motor Output

Pm =
$$0.163 \times 1 \times 15 \times (1 + 0.2) / 0.4$$

= $7.34 \text{ kW} \text{ use } \rightarrow 7.5 \text{ kW}$

1.13 APPARATUS FOR SLUDGE DEWATERING EQUIPMENT

1.13.1 SLUDGE STORAGE TANK MIXER (1) (1)

(1) Specifications

Type Shape Approximately 7,000mm ×11,500mm × 2,500mmH Capacity 200 m³

Blade size 2000 mm \$\phi\$ Motor output 7.5 kW No. of units 4 units

(2) Tank Capacity

Store average one-day studge production $V = 805 \times 1/4 = 201 \,\mathrm{m}^3$ use $200 \,\mathrm{m}^3$

1.13.2 SLUDGE SUPPLY POMP

(1) Specifications

Type Single-axis screw pump
Size \$\oplus 100 \text{ mm}\$
Capacity 20 m³/hour
TDH 20 m
Motor output 5.5 kW
No. of units 2 units

(2) Discharge Capacity

One pump to each dewater equipment (one-standby pump for all dewatering Equipment)

Q1 = $130 \times 3 \times 10^{-3} \times 100 / (3 \times 1.5)$ = $19.5 \text{ m}^3/\text{hour use} \rightarrow 20 \text{ m}^3/\text{hour} = 0.33 \text{ m}^3/\text{minute}$ Filter velocity $130 \text{ kg/m} \cdot \text{hr}$.

Filter width 3 m
Sludge solid concentration 3 %
Allowance 1.5

(3) Electric Motor Output

Pm = $0.163 \times 20 \times 0.33 \times (1+0.3) / 0.3$ = $4.71 \text{ kW} \text{ use } \rightarrow 5.5 \text{ kW}$

1.13.3 CHEMICAL FEED PUMP

(1) Specifications

Type Single-axis screw pump

 $\begin{array}{lll} Size & & \varphi \ 50 \ mm \\ Capacity & 3 \ m^3/hour \\ TDH & 20 \ m \\ Motor output & 1.5 \ kW \end{array}$

No. of units 15 units (including one standby)

(2) Discharge Capacity

A pump to each dewater equipment (one standby pump for all dewatering Equipment)

Light Committee of the Control

Q1 = $130 \times 3 \times 10^{-3} \times 0.01 \times 100 / 0.2 \times 1.5$

= $2.925 \text{ m}^3/\text{hour} \rightarrow 3 \text{ m}^3/\text{hour} \quad 0.05 \text{ m}^3/\text{min}.$

Filter velocity 130 kg/m·hr.

Filter width 3 m Solid concentration of sludge 0.2 % Allowance

1.5

(3) Electric Motor Output

 $P_{m} = 0.163 \times 20 \times 0.05 \times (1+0.3) / 0.25$ = 0.85 kW use \rightarrow 1.5 kW

1.13.4 CHEMICAL SOLUTION TANKS

(1) Specifications

Tank type Steel made cylinder type

Tank capacity 15 m³

Approx. size 2,900 mm $\phi \times 3,000$ mmH Electric motor output 7.5 kW (for mixer)

No. of tanks 3 units

(2) Sludge Storage Tank Capacity

Dosing rate $24.15 \times 10^3 \times 0.008 \times 7/5 = 270.47 \text{ kg/day}$

Dewatered solids 24.15 t/day
Chemical dosing rate (Polymer) 0.8 %/kg·ds

(5 days/week operation)

Storage capacity. 2 hours of design sludge volume

3 tanks (alternately used)

manage Colored

Chemistry for Survey 17 1 (6)

 $V = (270 \times 100)/(0.2 \times 2/6/3)$ = 15,026 L use \rightarrow 15,000 L

Chemical solution concentration
Operation time a day
Retention time
2 hours

1.13.5 CHEMICAL FEEDERS

(1) Specifications

Type Chemical pump
Supply rate 4 L/min.
Electric motor output 0.4 kW
Ouantity 3 units

(2) Supply Rate

One feeder is attached to each solution tank, supplying chemical in 15 to 20 minutes.

 $Q = 15,000 \times 10^{3} \times 0.2 / 100 \times 1 / (15 \sim 20) \times 1 / 0.5$

 $= 4.0 \sim 3.0 \rightarrow 4 \text{ L/min.}$

Apparent specific gravity of polymer 0.5

1.13.6 CHEMICAL CONTAINERS

(1) Specifications as per part to a reacting the partner of

Type Stainless steel made, cylinder container

Effective capacity 700 L

Quantity 2 units

(2) Capacity

Provide 2 tanks (alternately used), with capacity of 7-day chemical consumption.

$$V = 270.47 \times 7/5 \times 0.5 \times 7 \times 1/2$$

= 663 L use \rightarrow 700 L

1.13.7 FILTER CLOTH WASHING PUMPS

(1) Specifications

Type Multi-stage centrifugal pump

Size φ 50 mm
Discharge 0.3 m³/min.
Total head 60 m
Electric motor output 7.5 kW

Quantity 15 units (including 1 standby)

(2) Discharge

One pump to each dewatering machine, and one standby pump for all equipment.

Q = $100 \times 3 = 300 \text{ L/min.}$ use $\rightarrow 0.3 \text{ m}^3/\text{min.}$ Then, the pump discharge per 1 m cloth is 100 L/min. Total dynamic head 60 m

Electric motor output

 $Pm = 0.163 \times 60 \times 0.30 \times (1+0.2)/0.5$ = 7.04 kW \rightarrow 7.5 kW

1.14 EFFLUENT PUMPING STATION

1.14.1 FLOW RATE

Flow rate is determined as follows.

Qad	200,000 m³/day	2,315 L/s
Qmd	235,000 m ³ /day	2,720 L/s
Qmh 🕟	285,000 m ³ /day	3,299 L/s
Qww	570,000 m ³ /day	6,597 L/s

1.14.2 PUMPING EQUIPMENT

(1) Design Flow Rates:

Qad	200,000 m³/day	139 m³/minute
Qmd	235,000 m ³ /day	163 m³/minute
Qmh :	285,000 m ³ /day	198 m³/minute
Qww	570,000 m³/day	396 m³/minute

(2) Wastewater Pumps

4 units (including 1 standby), mixed flow centrifugal type driven by electric motor.

(3) Storm Water Pumps

4 units(including 1 standby), mixed flow centrifugal type, smaller pumps driven by motor, and large pumps driven by diesel engine. Pump operation schedule is as follows.

			Pump discharges				
Wastewater	Wastewater inflow	Wastewa	ter pumps	Storm water	er pumps		discharge
inflows	rates	50	100	50	100	(m³/min/unit)	(m³/minute)
	(m³/minute)	2	2(1)	2	2(1)	No. of units	ek i i
Qad	139	50	100				150
Qmd	163	100	100				200
Qmh	198	100	100				200
Qww	396	100	100	100	100		400

(4) Pump Size

No.1 Pumps $Q = 50 \text{ m}^3/\text{minute}$

 $D = 146(Q/V)^{0.5} V = 2.5 \text{ m/sec}$

= 653 mm use → 600 mm

No.2 Pumps $Q = 100 \text{ m}^3/\text{minute}$

 $D = 146(Q/V)^{0.5}$

= 923 mm use \rightarrow 900 mm

(5) Wastewater Surface Elevations:

Suction water levels at inflow of

Qad 7.100 M.W.L.

Qmd 7.100 M.W.L.

Qmh 7.100 M.W.L.

Oww 7.100 M.W.L.

Suction water levels at outflow of

Qad 9.100 M.W.L.

Qmd 9.100 M.W.L.

Qmh 9.100 M.W.L.

Qww 9.100 M.W.L.

(6) Actual Head:

Outlet

Qad 9.100 - (7.100) = $2.000 \,\mathrm{m}_{\odot c}$

Qmd $9.100 - (7.100) = 2.000 \,\mathrm{m}$

Qmh $9.100 - (7.100) = 2.000 \,\mathrm{m}$

Qww $9.100 - (7.100) = 2.000 \,\mathrm{m}$

Total head losses at pump equipment:

Pump size	φ600	φ900
Pump bore(m)	0.6	0.9
Pump discharge(m³/min)	50	100
Pump discharge(m³/sec)	0.833	1.667
Delivery bore sectional area (m²)	0.283	0.636
Pump velocity(m/s)	2.949	2.621
Loss coefficients		. N 6414
Inlet	0.15	0.15
Sluice valve	0	0
Check valve	1.0	1.0

1.0

1.0

Bend		0.25	0.25	
Friction loss	f × L/D	0.781	0.514	
	Total	3.181	2.914 F	

(7) Head Losses

 $\phi600 = 1.411 \text{ m} \quad F \times V^2/2g$ $\phi900 = 1.021 \text{ m}$ Pipe length L = 15 mFriction loss by Darcy-Wiseback Formula $hf = f \times L/D \times V^2/2g$ $f = 0.02 + 1/(2000 \times D)$ (New cast iron pipe) For old cast-iron pipes multiply the 'f by 1.5

	φ600	φ900
D(m)	0.6	0.9
f	0.021	0.021
$f = 1.5 \times f$	0.031	0.031

(8) Total Head Required

Qad 2.000 1.411 (6600) 3.411 m 1.021 (φ900) 3.021 m Qmd 2.000 0.000 2.000 m Qmħ 2.000 0.000 2.000 m 2.000 Qww 1.021 (გ900⁾ 3.021 m The required total pump head is then 5.0 m

(9) Shaft Power of Mixed Flow Centrifugal Pumps

 $L = k \times \gamma \times Q \times H/\mu$ where L Shaft power of pump k 0.163 kW or 0.222 PS Q Pump discharge (m³ / min) H Pump total dynamic head (m) γ Specific gravity of water($\gamma = 1$) μ Pump efficiency

Calculations for shaft power requirements

Items		φ600	φ900	φ900 Engine
Pump discharge(Q)	m³/min	50	100	100
TDH (H)	m	5.0	5.0	5.0
Pump efficiency(μ)		0.78	0.81	0.81
Shaft power	kW	52	101	137

(10) Outputs of Pump Drives

 $P = L(1+\alpha)/\mu \times G$ where P Pump power (kW) L Pump shaft power (kW) α

Allowance for motor

0.15

Allowance for engine

0.2

μG

Transmission efficiency (1.0 for direct connection)

	φ600	φ900	ф900
			Engine
Shaft power (L)	52	101	. 137
Allowance (α)	1.15	1.15	1.20
Efficiency of transmission (μG)	1.00	1.00	0.95
Pump drive output (P) kW	60	116	173

(11) Pump Specifications

		Vertical mixed flow centrifugal pumps				
Pump bore	mm	600	900	900		
Pump discharge	m³/min.	50	100	100		
Total dynamic head	m	5	5	. 5		
Motor/engine output	kW	60	116	173		
Pump drive		Motor	Motor	Engine		

2. RECIRCURATION PROCESS

2.1 DESIGN BASIS

2.1.1 Design Wastewater Inflow Rates

Design wastewater inflow rates are determined as follows.

Average daily flow 200,000 m3/day, Qad 2,315 L/s Maximum daily flow Qmd 235,000 m3/day 2,720 L/s Maximum hourly flow 285,000 m3/day Qmh 3,299 L/s Wet weather flow 570,000 m3/day Oww 6,597 L/s

2.1.2 DESIGN WASTEWATER QUALITY

Design wastewater quality is determined as follows.

BOD = 130 mg/L SS = 150 mg/L T-N = 20 mg/L T-P = 3 mg/L

2.1.3 DESIGN WASTEWATER QUALITY (INCLUDING SIDESTREAM WASTE LOADS)

Design wastewater quality (including sidestream waste loads) calculated as follows.

BOD = 170 mg/L SS = 180 mg/L T-N = 25 mg/L T-P = 4.5 mg/L

7 t s	Removal Efficiency(%)			Wastewater Quality (mg/L)				
Parameter	Primary treatment	Secondary treatment	Overall removal rate	Raw waste- water	Primary effluent	Secondary effluent		
BOD	30	91	93.7	150	105	9		
SS	40	93	95.8	180	108	8		
T-N	10	60	64.0	25	22,5	9		
T-P	10	78	80.2	4.5	4.05	0.9		

2.1.4 POLLUTANT DISCHARGE LIMITS BY NTPA 001

Pollutant discharge limits by NTPA 001 is regulated as follows.

BOD5 < 20 mg/L SS < 60 mg/L T-N < 10 mg/L T-P < 1.0 mg/L

2.2 CALCULATIONS OF SIDESTREAM POLLUTANT LOADS

2.2.1 RAW SLUDGE VOLUME

Raw sludge production volume is calculated by the following equation.

Solid production (t/day) = $235,000 \times 150 \times 10^{-6} \times 0.4$ = 14.1 t/daySludge concentration 2.0 %Sludge volume $14.1 \times 100 \div 2.0 = 705 \text{ m}^3/\text{day}$

2.2.2 WASTE SLUDGE VOLUME

Parameter Influent quality		Reaction tank influent	Primary clarifiers removal	
	(mg/L)	quality (mg/L)	Efficiency(%)	
BOD	130	. 104.65 m 91 (4) m	30	
SS	150	90	40 A	

Employ considerable of all

Assuming that the reactor influent S-BOD is 66.7% of the total BOD; then Scc is 60.7 mg/L Waste sludge production volume can be calculated by the following equation:

 $Qw \times Xw = (a \times Scs + b \times Sss - c \times \theta \times XA)Q$ where. Ow Volume of waste sludge (m³/day) XwAverage SS concentration of waste sludge (mg/L) Influent volume to reactors (m³/day) 235,000 \mathbf{Q}^{\perp} XA MLSS concentration in reactors (mg/L) 3,000 Influent soluble-BOD concentration to reactors (mg/L) Scs 60.7 90 Sss Influent SS concentration to reactors (mg/L) Sludge yield coefficient of S-BOD (mg MLSS/mgSS) 0.4~0.6 0.5 a Sludge yield coefficient of SS (mg MLSS/mgSS) 0.9~1.00. þ 0.95 Coefficient of SS reduction due to indigeneous respiration of c activated sludge micro-organisms (1/day) 0.04

0 HRT in reactor basins (day)

13.2 / 24 = 0.55

therefore,

Qw × Xw =
$$(0.5 \times 60.7 + 0.95 \times 90 - 0.04 \times 0.5510621 \times 3,000) \times Q \times 10^{-6}$$

= $49.72 \times Q \times 10^{-6} = 11.68 \text{ t/day}$
Solid production = 11.68 t/day
Sludge concentration = 0.9%
Sludge production = $11.68 \times 100 \div 0.9 = 1.298 \text{ m}^3/\text{day}$

2.2.3 THICKENED SLUDGE

Thickened sludge production volume is calculated by the following equation.

```
14.1 + 11.68 = 25.78 \text{ t/day}
Sludge solids
              Primary sludge Excess sludge
Sludge volume =
                     705
                                  1.298
                                                  2,003 m<sup>3</sup>/day
                    (2.0\%)
                                  (0.9\%)
Solids
                = 25.78 \times
                                   0.85
                                                  21.92 Vday
Assuming sludge concentration is
                                    3.5 %
Sludge volume = 21.92 \times 100 \div 3.5 =
                                                    626 m<sup>3</sup>/day
```

2.2.4 SLUDGE SUPERNATANT OF THICKENERS

Sludge supernatant of thickeners weight is calculated by the following equation.

```
Liquor volume = 2,003 - 626 = 1.377 \,\text{m}^3/\text{day}
                 = 25.78 \times 0.15 = 3.87 \text{ t/day}
Solids weight
                 = 1.377 \times 2000 \times 10^{-6} = 2.75 t/day
BOD
BOD is assumed to be of
                               2,000
T-N
                     1.377 \times 700 \times 10^{-6} = 0.96 \text{ t/day}
T-N is assumed to be of
                                 700
                                       \times 10^{-6}
                      1.377 \times
                                180
T-P is assumed to be of
                                 180
                                       mg/L
```

2.2.5 DIGESTED SLUDGE

Digested sludge production volume is calculated by the following equation.

```
Digested sludge solids = 21.92 \times (1 - 0.7 \times 0.5) = 14.25 \text{ t/day}

Digested sludge volume 3.0 %

Sludge volume = 14.25 \times 100 / 3.0 = 475 \text{ m}^3/\text{day}
```

and the result in the relationship to the first the relation to the relation to the second the seco

2.2.6 DEWATERED SLUDGE(SLUDGE CAKE)

Dewatered sludge production volume is calculated by the following equation.

```
Solids = 14.25 \times 100 / 0.9 = 12.82 \text{ t/day}

(Assuming 20.0 % solids concentration)

Cake volume = 12.82 \times 100 / 20.0 = 64 \text{ m}^3/\text{day}
```

2.2.7 DIGESTED SLUDGE FILTRATE

Digested sludge filtrated weight is calculated by the following equation.

Filtrate volume =
$$475 - 64 = 411 \text{ m}^3/\text{day}$$

Dry solids weight =
$$14.25 \times 0.10 = 1.42 \text{ t/day}$$

BOD = $411 \times 1,500 \times 10^{-6} = 0.62 \text{ t/day}$
(Assumed BOD concentration = $1,500 \text{ mg/L}$)
T-N = $411 \times 150 \times 10^{-6} = 0.06 \text{ t/day}$
(Assumed BOD concentration = 150 mg/L)
T-P = $411 \times 80 \times 10^{-6} = 0.03 \text{ t/day}$
(Assumed BOD concentration = 80 mg/L)

2.2.8 SIDESTREAM VOLUME AND WASTE LOAD

Sidestream volume and waste load is calculated by the following equation.

7	Fhickene	r superna	tants	Sludg	e filtr	ate
Liquor volume	=	1,377	+	411	=	1,788 m³/day
Dry solids	=	3.87	+	1.42	=	5.29 t/day
BOD	=	2.75	+	0.62	=	3.37 t/day
T-N	=	0.96	+	0.06	=	1.03 t/day
T-P	· =	0.25	+	0.03	=	0.28 t/day

2.2.9 WASTEWATER QUALITY (INCLUDING ALL SIDESTREAMS)

Wastewater quality (including all sidestreams) is calculated by the following equation.

Overall wastewater flow = Influent + Sidestreams

Maximum daily flow = 235,000 + 1,788 = 236,788 m³/day

Then, the design wastewater flow characteristics are;

BOD =
$$(235,000 \times 130 \times 10^{-6} + 3.37)/236,788$$
= $0.000143252 \times 10^{6} = 143 \rightarrow 150 \text{ mg/L}$

SS = $(235,000 \times 150 \times 10^{-6} + 7.64)/236,788$
= $0.000171218 \times 10^{6} = 171 \rightarrow 180 \text{ mg/L}$

T-N = $(235,000 \times 20 \times 10^{-6} + 1.03)/236,788$
= $0.000024180 \times 10^{6} = 24.2 \rightarrow 25 \text{ mg/L}$

SS = $(235,000 \times 3 \times 10^{-6} + 0.28)/236,788$
= $0.000004163 \times 10^{6} = 4.2 \rightarrow 4.5 \text{ mg/L}$

2.3 SLUDGE PRODUCTIONS

2.3.1 RAW SLUDGE

Raw sludge production volume is calculated by the following equation.

Solid production (t/day) =
$$235,000 \times 180 \times 10^{-6} \times 0.4$$

= 16.92 t/day
Sludge concentration 2.0%
Sludge volume $16.92 \times 100 \div 2.0 = 846 \text{ m}^3/\text{day}$

2.3.2 Waste Sludge Volume

Parameter	Influent quality	Reaction tank influent	Primary clarifiers removal	
(mg/L)		quality (mg/L)	Efficiency(%)	
BOD	170	119	30	
SS	180	108	40	

Assuming that influent S-BOD to reactor basins is 66.7 % of the raw wastewater BOD, S-BOD 70.04 mg/L concentration is estimated to be:

Waste sludge production volume is calculated by the following equation.

```
Ow \times Xw = (a \times Scs + b \times Sss - c \times 0 \times XA) Q
where.
           Volume of excess sludge (m³/day)
    Ow
           Average SS concentration of waste sludge (mg/L)
    Xw
           Influent volume to reactors (m³/day)
                                                                          235,000
    0
           MLSS concentration in reactors (mg/L)
    XΑ
                                                                            3,000
           Influent soluble-BOD concentration to reactors (mg/L)
                                                                            70.04
    Scs
    Sss
           Influent SS concentration to reactors (mg/l)
                                                                              108
           Sludge yield coefficient of S-BOD (mg MLSS/mgSS) 0.4~0.6
                                                                              0.5
    a
           Sludge yield coefficient of SS (mg MLSS/mgSS) 0.9~1.00.
                                                                             0.95
    b
           Coefficient of SS reduction due to indigeneous respiration of
           activated sludge micro-organisms (1/day)
                                                            0.03~0.05
                                                                             0.04
           HRT in reactor basins (day)
                                                          13.2 / 24 =
    0
                                                                        0.551062
                Described the construction of the first of
```

therefore,

Qw × Xw =
$$(0.5 \times 70.04 + 0.95 \times 108 - 0.04 \times 0.551 \times 3,000) \times Q \times 10^{-6}$$

= $71.49 \times Q \times 10^{-6} = 16.80 \text{ t/day}$
Solid production = 16.80 t/day
Sludge concentration = 0.9%
Sludge production = $16.80 \times 100 \div 0.9 = 1,867 \text{ m}^3/\text{day}$
= $1.30 \text{ m}^3/\text{min}$.

2.3.3 RETURN SLUDGE

Return sludge volume is calculated by the following equation.

```
50 %
Sludge return ratio
Return sludge volume = 235,000
                                          × 0.5
                                                    = 117.500 \,\mathrm{m}^3/\mathrm{day}
                                                     = 81.6 m<sup>3</sup>/min.
```

2.3.4 GRAVITY SLUDGE THICKENERS

Gravity thickened sludge production volume is calculated by the following equation.

```
Solids inflow
                     16.92 + 16.80 = 33.72 \text{ t/day}
               Primary sludge Excess sludge
                = 846 + 1,867 = 2,713 m<sup>3</sup>/day
Sludge inflow
Thickened sludge solids = 33.72 \times 0.8 = 26.98 \text{ t/day}
     Assume solids content to be 3.5 %
Thickened sludge volume = 26.98 \times 100/3.5 = 771 \,\mathrm{m}^3/\mathrm{day}
```

2.3.5 ANAEROBIC SLUDGE DIGESTERS

Anaerobic digested sludge production volume is calculated by the following equation.

```
Input solids
                          26.98 t/day
Input sludge volume =
                          771 m<sup>3</sup>/day
          Volatile solids content of sludge 70 %
          Solids destruction rate
                                            50 %
                                         (1-0.7\times0.5) = 17.53 t/day
Digested sludge solids =
                            26.98 ×
```

Assume solids concentration is 3.0%Digested sludge volume = $17.53 \times 100/3.0 = 584 \text{ m}^3/\text{day}$

2.3.6 SLUDGE DEWATERING

Dewatered sludge production volume is calculated by the following equation.

Input solids = 17.53 t/day

Recovered solids (90%) = 17.53 × 0.9 = 15.78 t/day

Assuming solids concentration as 20.0 %

Sludge cake volume = 15.78 × 100 / 20.0 = 79 m³/day

2.4 COMPONENT FACILITIES

2.4.1 DESIGN BASIS

Design wastewater inflow rate is determined as follows.

Average daily flow Qin = 200,000 m³/d (Maximum daily flow in winter season)

Maximum daily flow Qin max = 235,000 m³/d

There is no result at 15th of Leading

Design wastewater quality:

Influent wastewater quality to reactor tank is calculated as follows.

BOD	105 mg/L	(S-BOD is	71.4 mg/l)	68 %
SS	108 mg/L	1	Commence of the second	(SBOD/BOD)
T-N	22.5 mg/L	1		

Design discharge wastewater quality:

Design effluent wastewater quality from final sedimentation tank (average quality) is determined as follows.

Removal efficiency

BOD	9	mg/L	91.4	%	96
SS	8	mg/L	92.6	%	100
T-N	- 10	mg/L	55.6	%	12.5

T-N condition of Treated water is NOT-N 8.3 mg/L Removal efficiency K-N 1.7 (T-N)60~70%

Design water temperature 10 °c

2.4.2 DESIGN CALCULATION

(1) Recircuration Ratio(R)

Recircuration ratio (R) is calculated by the following equation.

Influent concentration of T-N to reactor tank CTN. in = 22.5 mg/L (effluent water quality from final sedimentation tank) NOT-N concentration, Cnox-eff = 8.3 mg/L, Assuming that nitrogen ratio which concerned about nitrification in CTN-in is $\alpha = 0.7$, recircuration ratio R is $R = \alpha \times \text{CTN-in} / \text{CNOX-eff} - 1$

$$R = 0.7 \times 22.5 / 8.3 - 1 = 1.90 - 1 = 0.90 \rightarrow 1$$

(2) MLSS Concentration

MLSS concentration is calculated by the following equation.

Assuming that MLSS concentration at reactor tank 3,000 mg/L (2,000~3,000MLSS) and return sludge concentration 9,000 mg/l, so that return sludge ratio R r is

$$9000 Rr = 3000 \times (1 + Rr)$$

$$Rr = (3,000)/(9,000 - 3,000) = 0.5$$

Recircuration flow Qc and return sludge flow Qr are respectively

$$R - Rr = 1 - 0.5 = 0.5$$

$$Qr = Qin \times 0.5 = 100,000 \text{ m}^3/\text{day}$$

$$Qc = Qin \times 0.5 = 100,000 \text{ m}^3/\text{day}$$

(3) A -SRT

Retention time at aerobic tank is calculated by the following equation.

Assuming that complete nitrification, and to consider daily and seasonally change of water quantity and quality, A-SRT(d) is

$$\delta = 1.5 \text{ (Assuming)}$$

 $T = 10 \text{ °c (Assuming)}$
 $\theta XA = \delta \times 20.6 \times \exp(-0.0627 \times T) - 0.627$
 $= 1.5 \times 20.6 \times 0.534192 = 16.5 \text{ day}$

(4) Aerobic Tank Capacity VA(m³)

$$VA = (Q \text{ in} \times \theta XA \times (a \times C_s - BOD \cdot \text{in} + b \times SS \cdot \text{in})) / (1 + c \times \theta XA) \times X$$

Cs-BOD = Dissolved BOD concentration of influent flow

71.4 mg/L

C = Autolysis coefficient of sludge (0.025~0.035) 0.03 L/d

X = MLSS concentration 3,000 mg/L

 $VA = 200,000 \times 16.51 \times 142/4486 = 104,414 \text{ m}^3$

 $A \times C_s$ -BOD·in + b × SS·in = 0.55 × 71.4 + 0.95 × 108

$$(1+c\times 0XA)\times X = (1 + 0.03 \times 16.5) \times 3,000 = 4,486$$

(5) Biological Reaction Tank Capacity V(m³)

Biological reaction tank capacity is calculated by the following equation.

Assuming BOD-SS load(LBOD/x) is 0.06 kgBOD/kgMLSS/day (0.05-0.1)

$$V = (BOD in \times Qin) / (LBOD/x \times X)$$

 $= (105 \times 200,000) / (0.06 \times 3,000) = 116,667 \text{ m}^3$

(6) Anoxic Tank Capacity VDN (m3)

Anoxic tank capacity VDN m³ is calculated by the following equation.

$$VDN = V - VA = 116,667 - 104,414 = 12,253 \text{ m}^3$$

(7) Capacity Ratio of Anoxic Tank and Aerobic Tank

$$VDN: VA = 12,253 : 116,667 = 1 : 9.5$$

(8)Speed Constant of Denitrification KDN (mgN/g MLSS/h)

Speed constant of denitrification KDN is calculated by the following equation.

KDN =
$$(LNOX.DN \times 10^3)/(24 \text{ VDN} \times X)$$

Here
 $CNOX.A = \alpha \cdot CTN \cdot in \times 1/(1+R)$
= $(0.7 \times 22.5 \times 1)/(1+1) = 7.9 \text{ mg/L}$
 $LNOX.DN = CNOX.A \times (Qr + Qc) \times 10^{-3}$
= $7.9 \times (100,000 + 100,000) \times 10^{-3} = 1,575 \text{ kg/d}$
 $KDN = (1,575 \times 10^3)/(24 \times 12,253 \times 3)$
= $1.785 \text{ (mgN/gMLSS/h)} > 0.872 \text{ OK}$
Check of denitrification speed

Less than(y') is NO
$$y' = 6.2 \times 0.06 + 0.5 = 0.872$$

More than (y') is OK

Calculate Vdn =	:	1,	575	×	103		
back	:	24	×	0.872	×	3	
					*.	_ =	 25,086 m ³

$$VD: VA = 1 : 4.16$$

 $V = 25,086 + 104,414 = 129,500 \text{ m}^3$

(9)**Biological Reaction Tank Capacity and Retention Time**

Biological reaction tank capacity and retention time is calculated by the following equation.

Retention time at biological reaction tank in winter season, t(h) is

$$t = (24 \times 129,500)/200,000 = 15.5 h$$

Retention time at aerobic tank in winter season, tA(h)is

$$t = (24 \times 104,414)/200,000 = 12.5 h$$

Retention time for daily maximum flow at biological reaction tank in winter season, t(h) is $(24 \times 129,500)/235,000 = 13.2 h$

(10) Necessary Oxygen Demand ΣD (kg/d)

Necessary oxygen demands is calculated by considering of oxidation of carbonic organic matter, necessary oxygen for endogenous respiration and nitrification reaction of microorganisms in activated sludge, and necessary oxygen for maintain a dissolved oxygen.

OD1 = A(kgO₂/kgBOD) × (Removal BOD(kgBOD/day) - Denitrification volume

 $(kgN/day) \times K (kgBOD/kgN)$

Here A: Necessary oxygen for removal of BOD (0.5~0.7)

K: BOD consumption for denitrification (2.86)

 $OD2 = B(kgO_1/kgMLVSS \cdot day) \times VA(m^3) \times MLVSS(kgMLVSS/m^3)$

Here B: Oxygen consumption by endogenous respiration at MLSS unit

 $(0.05 \sim 0.15)$

VA: Reaction tank capacity at aerobic part

 $OD3 = C (kgO_1/kgN) \times Nitrificated Kj-N volume(kgN/day)$

Here C: Nitrificated oxygen at nitrification reaction (4.57)

Nitrificated KJ-N (Inflow Kj-N) - (Outflow Kj - N volume)

- (Removal volume of Kj -N by excess sludge)

Read to the date of the American Arabi Anthropic Arabide shall

Volta in it is a month of the contract of the

า เกาะได้เกาะได้ เกาะได้ เกาะทำระหาวิทยาที่ (การแกรม) ได้เกาะได้ เกาะได้เกาะได้ เกาะได้ เกาะได้ เกาะได้ เกาะได เกาะได้ เกาะได

电多次形式设置的 机自动轮轮 计正式设备 医电子反射

were the perfect of the project of the first

 $OD4 = O \times DO$ concentration of reaction tank

Here DO: Dissolved oxygen concentration at end point of aerobic tank 1.5mg/L

(Design flow = $200,000 \text{ m}^3/\text{day}$)

BODin = 105 mg/L, T-N = 22.5 mg/L

BODout = 9 mg/L, VA = $104,414 \text{ m}^3$

hat of the appropriate of the proof.

and recover the darkers are recovered staging

and the later than the expension of the

The results of calculation is shown in table below.

	i i i i i i i i i i i i i i i i i i i	unit		note
Necessary oxygen	(1) Q	m'/day 2	200,000	ور المراجعة
demands for oxidation	(2) BODin	mg/L	105	
of BOD (OD1)	(3) BODout	mg/L	9	
	(4) $\{(2)-(3)\}\times(1)\times10^{-3}$	kg/day	19,200	
	(5) ΔDN (denitrification volume)	kg/day	1,575	
	(6) k × (5)	kg/day	4,505	k = 2.86
	OD1= $A \times \{(4) - (6)\}$	kg/day	882	A = 0.06
Necessary oxygen				
demands for endogenous		mg/L	3,000	
respiration (OD2)	(2) VA	5 5 5 6	104,414	
	(3) $(1) \times (2) \times 10^{-3}$		313,241	$\mathbf{B} = 0.1$
	$OD2 = B \times (3)$	kg/day	31,324	$\mathbf{B} = 0.1$
Necessary oxygen	(1) α(nitrification ratio)		0.7	
demands for nitrification		mg/L	22.5	,
reaction (OD3)	(3) Q		200,000	
	$OD3 = 4.57 \times (1) \times (2) \times (3)$	kg/day	14,396	C= 4.57
	× 10 ⁻³			
Necessary oxygen	(1) DO concentration	mg/L	1.5	
demands for maintain	at reaction tank	ling/D	,1.5	
dissolved oxygen (OD4)	(2) Q	m³/day 2	200,000	
	(3) Qr+Qc	m³/day	300,000	1.5
	(4) {(2)+(3)}	m³/day :	500,000	
	$OD4 = (1) \times (4) \times 10^{-3}$	kg/day	750	
Necessary oxygen(OD)	OD= OD1+OD2+OD3+OD4	kg/day	47,351	
demands	001100210031004		0.237	Q

Design of air diffuser (Assuming that diffused air aeration, fine bubble, spiral flow)

EA =
$$7.5$$
, ρ = 1.293

$$Qw = 0.233$$
 (Assuming)

Supplied air $(N m^3/day) =$

(Necessary oxygen demands (kgO_2)) / $E\Lambda(\%) \times 10^{-2} \times \rho$ (Air/Nm3) × Ow $(kgO_2/kgAir)$

 $= (0.237 \times Q)/(7.5 \times 0.01 \times 1.293 \times 0.233)$

= $10.48 \,\mathrm{Q}$ = $2,095,638 \,\mathrm{(N \, m^3/day)}$ = $1,455 \,\mathrm{(N m^3/min)}$

2.4.3 MEASURE FOR ADVANCED TREATMENT

Way of thinking

Changing from conventional activated sludge process to advanced treatment process (T-N,T-P removal)

	cessary treatment capacit	y of advanced treatment process.	ess and evaluate a capacity
Extend a nece	ssary ponds and equipme	nt in the future.	
	Necessary treatment capacity of advanced treatment process	Treatment capacity of conventional activated sludge process	Extend or remodeling of treatment about shortage of capacity
Explanation (of measures for advance	ed treatment	
Here showing	a treatment capacity of t	wo processes in table below.	el e la vista de del arcolo El como la comercia de la como de la
	* Conventional activated * Advanced treatment p	d sludge process rocess(Recircuration process	
	新见了。 机运动。		
and the second s			
			र्जु । १८ ४० १८ १८ १८ १५ १५ १५ १५ १५ १५ १५ १५ १५ १५ १५ १५ १५
•			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ing the state of t		
		and the state of t	
		Programme and the Company of the Com	Agricker kom British in 1997. Tall the State of States in 1997. In
· .			

Explanation of Measures for Advanced Treatment

unit Necessary Facility and equipment for advanced treatment								
•	unit		Conventional activated					
•			sludge process	shortage of capacity				
D		cupacity	sitinge process	Shortage of Capacity				
*Primary sedimentation tank surface load	3/2/.1	26	26					
tank surface load	m³/m²/day	35	35					
Facility shape			φ35m × 4 tanks					
·Reaction tank		•	1. d. f					
	hour	13.2	i .	13.2				
Distribution ratio of	%	A is	6.1/13.2×100= 46	100 - 46 = 54				
water	1 - 1 - 1 - 1 - 1		. ~	Build an extend tank				
	111 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		reaction					
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		tank, and divided an	for reaction tank				
	·		anoxic zone and					
transition along			aerobic zone	316 6 175 6				
Facility shape			W5.5m × H5.5m	W5.5m × H5.5m				
			× L64m × 32 tanks	× L73m × 32 tanks				
• Final sedimentation	2. 2.							
tank surface load	m³/m²/day	15	9.5	13.9				
			p					
				New ponds				
Facility shape			φ45m × 8 tanks	φ40m × 8 tanks				
•Return sludge flow	%	Usually 50%	Same to the left	Same to the left				
		(Sludge	· ·	(New pumps are				
		pump		(11011 pumps are				
		Capacity		Necessary)				
		100%)	0.00	,				
· Recircuration flow of	%		Provide a recircuration	Same to the left				
nitrificated water		•	pumps at the outflow					
			point of reaction tank(
			aerobic tank)					
·Supplied air flow	m³/min	1,455	558	897				
				Extend capacity				
· Waste sludge volume	t/day	33.72	46.44	Not necessary a				
(Inflow sludge solids			(Sludge products from	extend of capacity				
of thickener)			Conventional activated	•				
(exclude T-P removal)			sludge process)					
(include T-P removal)		37.86		Not necessary a				
				extend of capacity				
• T-P removal by		New	Same to the left	Same to the left				
addition		equipment						
of coagulant		is necessary						
			<u> </u>					

Waste sludge volume produced from T-P removal
Waste sludge production volume by addition of coagulant
Influent T-P concentration of reaction tank
4.05 mg/L

Additional concentration of aluminum suliface CA(mg/L) is calculated by following equation

CAL = $Csp in \times m \times AL/P$

Here

Csp in Influent dissolved T-N concentration(mg/l)

Valence of phosphorus

31 27 AL Valence of aluminum

Additional molality ratio 1 (assuming)

 $= (4.05 \times 27 \times 1)/(31) = 3.5 \text{ mg/L}$

Assuming that waste sludge production volume by addition of coagulant is 5 times as Additional phosphorus volume

 $QD \times 5 \times CAL \times 10^{-6}$ Waste sludge volume by addition of coagulant =

 $235,000 \times 5 \times 3.5 \times 10^{-6} = 4.14 \text{ t/day}$

Waste sludge volume in case of removal of T-N and T-P simultaneously

33.72 + 4.14 = 37.86 t/day

સફોનો કે કું કિલ્લામાં તું, અને કર્યો નવું કર્યો કું કર છે છે

APPENDIX-6 CONSTRUCTION PLAN AND COST ESTIMATE

1. CONSTRUCTION PLAN

1.1 GENERAL

Construction works for the project includes earth work, concrete work, pipe work, mechanical/electrical work, architectural work and miscellaneous work. These works, in general, will be executed by ordinary construction methods using construction equipment readily available in Galati. Major works are planned to be carried out with mechanical equipment for smooth and economical performance.

Construction site for the proposed facilities are located in the north-eastern part of Galati City. There would be no difficulty to transport materials and equipment because the area has adequately provided road networks. There is neither difficulty in obtaining water nor electricity for construction.

1.2 Construction Method

Major construction works are construction of WWTP, installation of wastewater pumps, installation of sewer pipes and construction of CSO regulators.

1.2.1 CONSTRUCTION OF WWTP

The major construction works of WWTP are construction of primary and final sedimentation tank, aeration tank, influent pumping station, sludge treatment facilities and administration building.

No special construction method will be applied for the construction of WWTP except placing of Pre-stressed concrete for sludge digester tank. Since there are many experiences to construct pre-stressed concrete structure by Romanian contractors, there would not be any difficulty to construct this kind of structures.

1.2.2 INSTALLATION OF SEWER PIPES

Open trench method would be adopted for installation of sewer pipes in principal. However, application of shield tunneling method and pipe jacking method would be considered in the part where pipe crosses the railway and will be installed in deeper depth.

1.2.3 Construction of CSO Regulator

The CSO regulator is a underground reinforced concrete structure with a excavation depth of 3 to 5 m. Therefore, only ordinary construction methods are used for the construction.

1.3 CONSTRUCTION SCHEDULE

1.3.1 Working Days

Annual working days are estimated to be 225 days based on the following assumptions:

Winter season idle period: 3 month (from Dec.15 to Mar. 15)
Workable period: 275 days

- Sundays in workable period: 9 month x 4 days = 36 days

National holidays in workable period: 1 day

Rainy days in workable period: 10 days

(more than 10 mm/day, ave. last 5 years)

Total work suspension days in workable period: 47 days

Working days: 275 days - 47 days = 228 days: 225 days

1.3.2 WORK TIME

All the construction works will be done during day time in principle. The working time is eight (8) hours per day

1.3.3 REQUIRED CONSTRUCTION PERIOD AND SEQUENCE OF WORKS

Required construction periods are estimated based on the construction volume and the above mentioned working days and work time assumptions by each construction works/structures by ordinary scale of inputs.

Construction plan for the Galati project is presented below.

	Period (Year)	l st year 2000	2 nd year 2001	3 rd year 2002	4 th year 2003	5 th year 2004
Wastewater Treatment Plant Influent Pumping Station	1.5	77 m	l North Stay			man galaci
Wastewater Treatment Process	2.5		14.681.000.4A			
Sludge Treatment Process	2					<u> </u>
Discharge Pumping Station	1.5			!	9388	
Power Receiving Facility	1 1		1 Tr. 7 W	1000		22.84.000174
Administration Building	1		li et et ege		Program	
Interceptor	2					

Construction Plan and Sequence of Works for the Galati Project

2. COST ESTIMATE

2.1 Basis of Cost Estimate

The project cost consists of I) construction cost, II) equipment cost, III) engineering service cost, IV) government administration cost and V) physical contingency, as shown below.

Structure of Project Cost

	Item to the second second	Remarks (1945)
1	Construction Cost	
11	Engineering Service Cost	10% of (I)
Ш	Government Administration Cost	2% of (I)
lV	Contingency	10% of (1+11+111)
v	Project Cost	I+II+III+IV

The project cost is estimated under the following conditions.

- All base costs are expressed under the economic conditions that prevailed in June 1999.

avallamina Willer

- The exchange rates of currencies are US\$1 = ROL15,756 = \$122.
- Only equipment cost is classified into foreign and local currency portions and their rate is
 FC: LC = 70%: 30%, because all construction works are done by local products and equipment.

- Engineering service cost is including all services for detailed design, tendering assistance and construction supervision. The cost is assumed at 10% of the construction cost.
- Government administration cost is costs that should be prepared by government and/or executing agency (e.g. cost for personnel and organization for the project management, cost for commission for external loan, etc.). The cost is assumed at 2 % of the construction cost.
- All percentages mentioned above are assumed from former example of the same kind of projects.
- Price escalation is not counted.

2.2 Construction Cost

The construction cost consists of 1) mobilization and demobilization cost, 2) cost for preparatory works, 3) cost for main works, and 4) cost for miscellaneous works.

2.2.1 MOBILIZATION AND DEMOBILIZATION COST

Mobilization and demobilization cost is assumed at five (5) percent of the cost for main works.

2.2.2 PREPARATORY WORKS

Cost for preparatory works is assumed at five (5) percent of the cost for main works.

2.2.3 Cost for Main Works

The direct cost for main works (cost for civil work, mechanical/electrical equipment cost, mechanical/electrical equipment installation cost, and construction cost for administration building) will be estimated based on the results of preliminary engineering design. Indirect costs such as site expenses and overhead and profit are estimated by percentage.

- The site expense is estimated to be ten (10) percent of the direct cost of main works.
- The overhead and profit are estimated to be ten (10) percent of the direct cost of main works.
- The cost for the miscellaneous works is estimated to be ten (10) percent of the cost for main works.

Structure of Construction Cost

7.	Item	Remarks
]	Construction Cost	Total of I-1 to I-6
1-1	Mobilization and demobilization	5 % of 1-3
1-2	Preparatory works	5 % of 1-3
I-3	Main works	Total of I-3-1 to I-3-4
1-3-1	Civil work	
1-3-2	2 Mechanical/electrical equipment	
1-3-3	Mechanical/electrical equipment installation	
1-3-4	Administration building	
1-4	Miscellaneous works	10 % of I-3
1-5	Site expenses	10 % of 1-3
I-6	Overhead and profit	10 % of 1-3

(1) Cost for Civil and Architectural Work

The cost for civil and architectural work is estimated by multiplying the quantity of works by unit construction costs. The unit construction costs are estimated by unit prices of labor, construction materials and equipment.

The unit prices of personnel, material and equipment operation are estimated based on prevailing market prices referring the data collected from MPWTP and other organizations concerned. The unit prices that are used in the study are shown in the following tables.

Unit Costs of Personnel

4.5	
lei/month	lei/day
3,500,000	140,000
2,600,000	104,000
2,200,000	88,000
1,600,000	64,000
2,200,000	88,000
2,000,000	80,000
1,800,000	72,000
3,000,000	120,000
	3,500,000 2,600,000 2,200,000 1,600,000 2,200,000 2,000,000 1,800,000

Unit Price of Material

Item	Unit	Price (Lei)
Sand	m3	100,000
Sóil	m3	100,000
Crushed stone	m3	200,000
Asphalt	ton	800,000
Tack coat	1	15,000
Reinforcing bar	ton	5,000,000
Wooden material	m3	700,000
Ready mix concrete B50	m3	500,000
B200		700,000
${f B250}$	ari en de Albara	900,000
RC pipe Dia200 mm		100,000
Dia300 mr	n (1997), Hagisə	150,000
Dia400 mr	n	175,000
Dia500 mr	n - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	215,000
Dia600 mr	n	250,000
Dia700 mr	n	350,000
Dia800 mr	n	450,000
Dia1000 n		750,000
Dia1500 m	າກາ	2,000,000
Dia1650 m	ım	2,350,000
Dia2000 n		3,500,000
Dia2200 n		4,500,000
Dia2800 m		7,000,000
Dia3400 m		12,000,000
Steel Pipe Dia400 mr		500,000

Unit Price of Equipment Operation

Item		Price (Lei/day)
Dunp Truck Truck	10t	800,000 800,000
Concrete Transporter Concrete Pumping Car		1,200,000 1,200,000
Bulldozer Backhoe	11t 0.6m3	1,200,000 1,000,000
Crawler Crane Truck Crane	20t 20t	1,800,000 1,800,000
Pile Dirving Machine		2,500,000
Tire Roller Vibration Roller Compactor		800,000 400,000 200,000

(2) Cost for Mechanical/Electrical Equipment and Installation

Since there are no published standard market price list for mechanical/electrical equipment for wastewater treatment, the cost for mechanical/electrical equipment will be obtained from manufacturer that have experience in Romania and/or neighboring countries based on the specifications resulting from preliminary engineering design.

The appropriate cost decided based on the obtained quotation would be used for the mechanical/electrical equipment cost for the project.

(3) Direct Cost for Main Works

The direct cost for main works are estimated for WWTP and interceptor separately as shown in Tables All.6.1 and All.6.2.

2.3 PROJECT COST

Estimated total project cost is about ROL 1,684,237 million, and its breakdown is shown below. Of the total project cost, ROL 504,061 million or 30% is foreign currency portion, and remaining ROL 1,180,176 million or 70% is local currency portion.

Project Cost (Galati Project)

Item	Cost (million Lei)	FC (million Lei)	LC (million Lei)
I Construction Cost	1,367,075	435,707	931,368
Mobilization and Demobilization	48,824	0	48,824
Preparatory Works	48,824	0.1	48,824
Main Works	976,482	435,707	540,775
Wastewater Treatment Plant	906,417	435,707	470,710
Influent Pumping Station	89,076	47,677	41,399
Wastewater Treatment Process	387,738	193,589	194,149
Sludge Treatment Process	257,540	146,238	111,302
Discharge Pumping Station	113,202	47,678	65,524
Site Finalization	42,789	0	42,789
Power Receiving Facility	8,592	0	8,592
Administration Building	7,479	525	6,954
Interceptor	70,066	0	70,066
Miscellaneous Works	97,648	0	97,648
Site Expenses	97,648	0	97,648
Overhead and Profit	97,648	0	97,648
II Engineering Service Cost	136,708	68,354	68,354
III Government Administration Cost	27,342	0	27,342
IV Contingency	153,112	0	153,112
V Project Cost	1,684,237	504,061	1,180,176

2.4 OPERATION AND MAINTENANCE (O/M) COST

Major portions of O/M cost of the WWTP are electric power charge for the equipment and cost for personnel. The O/M cost for the Galati project is estimated at ROL 16,518 million as shown in the following table.

Operation and Maintenance Cost for Galati Project

Item	unit	unit price	Q'ty	Total
Personnel	lei/month/person (average)	2,000,000	55	1,320
Electricity	lei/kwh	500	2,134	9,217
Chemical	lei/kg	5,000	1,822,000	911
Excess Sludge Disposal	m³	20,000	553,578	2,768
Repairing	0.5% of Mechan	nical cost	40,000	800
ohters	10% of ab	ove		1,502
Total				16,518
	e e e e e e e e e e e e e e e e e e e		(unit	: million lei)

3. IMPLEMENTATION PROGRAM

3.1 IMPLEMENTATION SCHEDULE

The project will be completed within five (5) years from 2000. Pre-construction stage of one (1) year is assumed for the detailed design period and tender process followed by four (4) years' construction works.

Proposed implementation schedule is presented below.

	Period	1 st year	, 2 nd year	3 rd year	4th year	5 th year
	(Year)	2000	2001	2002	2003	2004
Detailed Design	1	الاستان	: !			1
Construction	4					
Wastewater Treatment Plant						
Influent Pumping Station	1.5	1	: 	t - 4 h 1	:	
Wastewater Treatment Process	2.5	•	\$75.5735.53.50E	i Attacles	: 8-2 3-2 5	1
Sludge Treatment Process	2		:	- Control	ers de la constant d	! (\$412.855)
Discharge Pumping Station	1.5	!	:		- GRAN	<u> </u>
Power Receiving Facility	1		!			(NS) PARIS SON
Administration Building	ı	•				CONTRACTOR STATES
Interceptor	2		!		E-AVENTES	े इस्तास स्टब्स्टर

Implementation Schedule (Galati Project)

3.2 DISBURSEMENT SCHEDULE

Proposed annual cost disbursement schedule of the Galati project for entire project life is shown in Table AII.6.3.

Table All.6.1 Direct Construction Cost of WWTP (Galati)

lter.	m	Unit	Quantity	Unit Price (Lei)	Amount (million Lei)	FC (million Lei)	LC (million L
Influent Pumping Station							
1-1 Civil Work			+ 147 + +			•	
1) Earth Work		11.			100		
Excavation		m3	17,842	5,000	89	. 0	1
Backfill			11,942	22,000	263	0	2
2) RC Concrete			7 · .				:
RC Concrete I	Floorborad	m3	330	1,543,000	509	0	5
RC Concrete II	Wall	∵ m3	1,168	1,771,000	2,069	0	2,0
3) Pile Work (ave.L≃t	(Orn, incl. driving work)	pcs	119	4,810,000	572	. 0	
1-2 Architectural Work		w2	745	4,000,000	2,980	0	2,9
1-3 Mechanical	And the second second	1.0					
1) Equipment		. Is	1	68,110,400,000	68,110	47,677	20,4
2) Installation		*	15		10,217	0	
1-4 Electorical		ls	1	4,267,089,000	4,267	0	4,3
					100		1.1
Wastewater Treatment Pro							
2-1 Preliminary Treatmen	t Process						
(1) Civil Work				44 ⁵ 1 (4)			
1) RC Concrete					0	0	
RC Concrete I	Floorborad	m3	4,192	1,543,000	6.468		
RC Concrete II	Wall	m3	1,803	1,771,000	3,202	0	
	10m, incl. driving work)	pcs	388	4,810,000	1,866	. 0	1.
(2) Mechanical				er de de la company	A 1 - 1 - 1 - 1 - 1	** ** *	
1) Equipment		İs	1	52,822,400,000	52,822		
2) Installation	化抗性性化剂 人名英英迪托勒	r Da 🅉 ti da	15	A Property of the	7,923	_	
(3) Electorical		ls	. 1	167,805,000	168	0	
2-2 Secondary Treatment	t Process				٠.		
(1) Civil Work		Established to		4.5			
1) Earth Work				4 34 4 4 522		1.0	:
Excavation		m3	30,860	5,000	154	0	
Backfill		m3	3,385	22,000	74	0	
2) RC Concrete		1.0					
RC Concrete I	Floorborad	m3	17,147	1,543,000	26,458		
RC Concrete II	Wa!l	m3	14,834	1,771,000	26,271	0	
	10m, incl. driving work)	pcs	24	4,810,000	115		
(2) Architectural Work		m2	338	4,000,000	1,352	0	- 1.
(3) Mechanical				040 507 500 000	040507	440 403	
1) Equipment		ls		213,567,200,000	213,567		
2) Installation (4) Electorical		*	15	000 010 100	32,035		
2-3 Final Treatment Proc	111	ls		996,812,400	997	0	
(1) Civil Work	.622				* -		4.5
1) Earth Work				A			
Excavation		2	2,745	5,000	14	0	
Backfill		m3 m3	2,145 795	22,000	17		
2) RC Concrete		nio.	155	22,000	17		
RG Concrete I	Floorborad	m3	517	1,543,000	798	0	
RC Concrete II	Wall	m3	778	1,771,000	1,378	_	
(2) Architectural Work	Tron	m2	90	4,000,000	360		
(3) Mechanical		1712	30	4,000,000	300	•	·
1) Equipment		!s	1	10,166,400,000	10,166	7,116	3,
2) Installation		*	15	10,100,100,000	1,525		-
(4) Electorical		ls	13	6,102,000			
(I) Electorical				0,102,000	•		
Sludge Treatment Process	•						1 -
3-1 Civil Work							
1) Earth Work		1514 113			11 A A		
Excavation		m3	17,378	5,000	87	0	
Backfill		m3	8,929	22,000			
2) RC Concrete			0,020	22,000			
RC Concrete I	Floorborad	m3	2,642	1,543,000	4,077	0	1 4,
RC Concrete II	Wall	m3	431	1,771,000			
3) PC Concrete	Sludge digestion tan	m3	1,707	3,010,700			
	10m, incl. driving work)	ocs	219	4,810,000			
3-2 Architectural Work	The state of the s	m2	1,120	4,000,000			
3-3 Mechanical			1,120	4,000,000	7,700		7
1) Equipment		İs		208,911,200,000	208,911	146,238	62
2) Installation	es el como la califeración de	, is	15	270,711,200,000	31,337		
3-4 Electorical		İs	1	1,498,345,800			
	the state of the s				1,730		

Table All.6.1 Direct Construction Cost of WWTP (Galati)

Item		Unit		Quantity	Unit Price (Lei)	Amount (million Lei)	FC (million Lei)	LC (million Lei)
1) Earth Work								:
Excavation		m3		1.514	5,000	- 8	0	8
Backfill		m3		682	22,000	15	0	15
2) RC Concrete							11 12	
RC Concrete I Floorborad	*	m3	1.	156	1,543,000	241	0	241
RC Concrete II Wall		m3		654	1,771,000	1,158	. 0	1,158
4-2 Architectural Work		m2		416	4,000,000	1,664	0	1,664
4-3 Mechanical					er i jako e			
1) Equipment	1.5	· Is		1	68,111,200,000	68,111	47,678	20,433
2) Installation		5		15		10,217	. 0	10,217
4-4 Electorical	1.0	ls.		1	274,996,800	275	. 0	275
4-5 Discharge Sewer dia 2800 mm,	EC=2m	m		3,200	9,848,000	31,514	0	31,514
5 Site Finalization 5-1 Civil Work 1) Embankment by Excavated soil 2) Embankment by Purchased soil		m3 m3		44,606 326,620	22,000 128,000	981 41,807	0	
6 Power Receiving Facility		ls		1	8,592,315,600	8,592	0	8,592
7 Administration Building							e Santa de la composição	
7-1 Architectural Work	1.0			1.500	4.000.000	6.000	0	6.000
1) Architectural Work		m2	1	1,500 104	4,810,000			498
2) Pile Work (ave.L=10m, incl. driving work	0	pcs	100	104	4,010,000	450		450
7-2 Labo, and Office Equipment		ls	Table 1		750,000,000	750	525	225
Labo, and Office Equipment Installation		1S %		,	1,000,000	0		220
7–3 Electorical		ls	. ":"	1	231,600,000	-		232
TOTAL					· · · · · · · · · · · · · · · · · · ·	906,417	435,707	470,710

701,846

Table All.6.2 Direct Construction Cost of Interceptor (Galati)

	ltem .		Unit		Quantity	Unit Price (Lei)	Amount (million Lei)	FC (million Lei)	LC (million Lei
i	Pipe, Manhole and CSO					•			:
1-1	Installation of interceptor pipe (F	(C pipe)		- 1		٠.			
	1) RC pipe 300 mm	earth coverage 1 to 3 m	m		20	914,000	18.3	0	18
	2) RC pipe 400 mm	earth coverage 1 to 3 m	m		40	989.000	39.6		4
:	3) RC pipe 500 mm	earth coverage 1 to 3 m	m		40	1.109.000	44.4	0	4
	4) RC pipe 700 mm	earth coverage 1 to 3 m	m		300	1.459.000	437.7	Ò	43
	5) RC pipe 800 mm	earth coverage 1 to 3 m	m		20	1,750,000		Ō	3
	7) RC pips 1500 mm	earth coverage 1 to 3 m	m		282	3,871,000	1,091,6	Ö	1,09
	8) RC pipe 1500 mm	earth coverage 3 to 5 m	m		14	4,155,000	58.2	0	5
	9) RC pipe 2000 mm	earth coverage 1 to 3 m	m		2,258	5,881,000	13,279,3	0	13,27
	10) RC pipe 2200 mm	earth coverage 1 to 3 m	m		517	7,113,000	3,677.4	0	3,67
	11) RC pipe 2200 mm	earth coverage 3 to 5 m	m		1,957	7,543,000	14,761.7	0	14.76
	12) RC pipe 2200 mm (with sup	earth coverage 3 to 5 m	· m		20	9,805,900	196.1	0	19
1-2	Sewer construction by shelld tur	neling method						100	
	1) Dia 2200 mm sewer	shelld tunneling method	m	•	2,734	12,950,000	35,405.3	0	35,40
 1-3	Installation of CSO								
	1) CSO type I	small type	place	٠.	1	22,906,000	22.9	0	4 4 4 2
	2) CSO type II	large type	place		4	92,960,000	371.8	Ŏ	37
1-4	Installation of Manhole								
•	1) Manhole	d=1500mm, EC=2m	place		3	14.370.000	43.1		4
	2) Manhole	d=2000mm, EC=2m	place		10	19,811,000	198.1	0	19
	3) Manhole	d=2200mm, EC=2m	place place	- 1	4	22.253.000	89.0	0	8
	4) Manhole	d=2200mm, EC=4m	place		9	25,945,000	233.5	Ó	23
	5) Manhole	d=2200mm, EC=6m	place		1	29.572.000	29.6	, ,	3
	6) Manhole	d=2200mm, EC=8m	place		i	33,199,000	33.2	ŏ	3
			2.500		•	00,.00,000	00.2	v	٠
	Total			. :			70,065.7	, 0	70.06

54,252

15,636 15 8 15,636 402,638 0 367,000 15,638 15,638 2 23 15,638 2 15,638 8 15,638 ĸ 7 ន Ħ 8 2 Table All.6.3 Disbursement Schedule of Galati Project 2 2 1,220,187 | 75,189 288,241 400,786 494,246 423,674 15,638 15,638 15,638 15,638 15,638 42,238 15,638 ع 2 2 2 덛 Ξ 2 • 7255 240,235 340,454 423,751 362,635 ٠ : 26,213 36,435 44,931 38,598 0 35,000 80,260 109,861 6,4.75 88,266 109,861 2,000 14,00 8 9 8 'n 24,412 55,054 7,088 44,58 44,54 60 28,354 24,177 24,177 6,835 24,177 24,177 367,075 48,824 85.4 ¥ 27,342 1,551,950 70,066 341,769 0 341,769 8 န္တီပူမှ ႜၟႄၙၯႜၟၟႝၯႜၟၟၯၛၟၯၛၯႜၟၯၟၛၟၯၟၛၟၯၛၟၯၛၟၯၛၟၯ 363 ទីខិតិ Mobilization and Demobilization Sludge Treatment Proces Total Disbursement FC LC

人名英格兰 化二氯甲基基甲基酚 医二氏性 医电影 医电影 医电影 医电影 医二氏管 医二氏管 医二氏管 医二氏管 医二氏管 医二氏管 医二氏管 医二氏管	
。1915年,第二届新的基础的1915年,第二十二日,由于1916年,1916年,1916年,1916年	
그는 그 그는 그들도 보는 것이 생각하다 그들은 화면 없는 사람들이 되었다.	
그는 그들은 문화를 하는 학급을 맞추고 한 기가유요한 환기는 다음이	
	高峰 建二甲二甲基二甲烷二甲烷
化分分分 医电视电子 医乳质皮肤溶解的 医髓管管 医髓管管	法制度的 是一个人的工作。
	* for the second second
化乙烷二 的复数人名美国内蒙克德 医电影 机多色 化氯甲基基苯酚	
	医抗基甲基酚 化二二十分配

APPENDIX-7 FINANCIAL AND ECONOMIC ANALYSIS

1 FINANCIAL ANALYSIS

1.1 Major Preconditions and Assumptions

Following preconditions and assumptions were applied in the financial plan.

- The financial plan deals with only the cost and the revenue accrued by the project.
- Currency unit is ROL and the value of ROL is expressed as the June 1999 prices.
- Projection period is 30 years since the start of project implementation.
- Target year is 2010. From 2010 on the values of variables related to revenues and O & M cost are assumed to keep the 2010 level.
- Implementation period is 5 years from 2000 to 2004.
- 38 % of profit before tax is levied as a corporate tax.

Depreciation period is assumed as follows.

Depreciation Period

Item	Mechanical equipment	Civil works and sewer pipes
Depreciation period	8 years	40 years

1.2 TERMS AND CONDITIONS OF EXTERNAL FINANCIAL SOURCES

Conditions of possible external financial sources are assumed as shown in the table below.

Assumed Financing Terms for Possible External Financial Sources

Financial Organs	Financing Ratio (%)	Loan/Grant	Interest Rate (%)	Repayment Period (Years)	Grace Period (Years)
JBIC	70	Loan	2.7	30	10
EBRD	70	I.oan	6.5	15	[14] an 3 44 [1] 4]
ISPA	75	Grant		<u>-</u>	

It should be noted that they are nothing other than an example or assumption. In the case of EBRD, financing ratio depends on the circumstances and interest rate fluctuates in parallel with LIBOR (London Inter-bank Offered Rate).

1.3 BACKGROUND DATA FOR FINANCIAL PLAN

1.3.1 SERVED POPULATION

The sewerage served population in 2010 was estimated 377,000. It was assumed that the present population increases linearly until 2010 and ever since remains 377,000. In addition, the household size was assumed to be constant at present value of 3.1 persons/household.

The numbers of served population and served household were estimated as follows.

Number of Served Population and Household

Year	2005	2006	2007	2008	2009	2010	from 2011
Served population	356,625	360,700	364,775	368,850	372,925	377,000	377,000
Served household	115,040	116,355	117,669	118,984	120,298	121,613	121,613

1.3.2 QUANTITY OF WASTEWATER

Similar to the served population, the quantity of wastewater was assumed to increase linearly from the present value to the estimated value in 2010, and since ever to remain at the level in 2010. Non-domestic wastewater is composed of commercial, institutional and industrial ones.

The estimated quantities of domestic and non-domestic wastewater are as follows.

Quantity of Domestic and Non-domestic Wastewater

(Unit: 1,000 m³/year)

Year	2005	2006	2007	2008	2009	2010	from 2011
Domestic	34,919	35,354	35,790	36,226	36,664	37,102	37,102
Non-domestic	31,824	32,641	33,455	34,269	35,083	35,898	35,898

The coefficient b, the ratio of non-domestic sewerage charge to domestic one, was estimated 3.38 based on the values in 1998 and 1999.

1.3.3 HOUSEHOLD INCOME

The average monthly household income was estimated at ROL 3,063,748 in 1999 based on the result of the people's awareness survey conducted in this study. It was assumed to grow 3 % per year until 2010, and to remain the level of 2010 whereafter. The annual household income was calculated by multiplying the monthly value with 12.

The estimated average annual household income is as follows.

Average Annual Household Income

(Unit: 1,000 ROL/year)

Year	2005	2006	2007	2008	2009	2010	from 2011
Annual Household Income	43,899	45,216	46,573	47,970	49,409	50,891	50,891

1.3.4 COLLECTION RATE

The charge collection rate was assumed to linearly increase from 72 % in 1999 to 95% in 2010, then remain 95% ever since.

The collection rate of sewerage charge was estimated as follows.

Sewerage Charge Collection Rate

		•		· · · · · · · · · · · · · · · · · · ·		かけ ほどむ さんれい	January Communication of the C
Year	2005	2006	2007	2008	2009	2010	from 2011
Collection Rate	84.5 %	86.6 %	88.7 %	90.8 %	92.9 %	95.0 %	95.0 %

1.4 FINANCIAL STATEMENTS FOR PROPOSED FINANCIAL PLANS

The financial statements for the proposed financial plans are shown in Tables All.7.1 to All.7.4.

The structure of applied financial statements is as follows.

Structure of Applied Financial Statements

S.C. APATERM S.A. account	
Revenue	٨
Operation and maintenance cost	В
Lease fee	C
Profit before tax	D = A - B - C
Corporate tax	$E = D \times 0.38$
Profit after tax	F = D - E
Working capital	G = F
Cumulative working capital	$H = \Sigma G$
City's sewerage service account	_
Revenue from lease fee	I=C
Depreciation	J
Payment of interest	K
Profit	L=1-J-K
Loan	М
Subsidy from general budget	N
Depreciation	I = O
Sources	P = L+M+N+O
Investment cost	Q
Payment of principal	R No Levil
Applications	S = Q + R
Working capital	T = P - S
Cumulative working capital	U = Σ T
City's general account	
City general revenue	V
Corporate tax from S.C. APATERM S.A.	M = E
Revenue from lease fee	X = I
Total current revenue	Y = V + W + X
Subsidy	Z = N
Subsidy ratio	AA = Z/Y
Repayment ratio	AB = (K + R)/Y

It is noted that leveled allocation of lease fee was applied for EBRD cases, taking into consideration of quite intense repayment schedule for relative short period under EBRD conditions.

2 ECONOMIC ANALYSIS

Based on the economic benefit of the project estimated by the people's awareness survey conducted in this study and the project cost, an economic analysis was conducted.

Applied preconditions and assumptions are as follows:

- Currency unit is ROL and the value of ROL is a constant one expressed at the June 1999 prices.
- Project Life: 30 years since the start of project implementation.

- Target Year: 2010. From 2010 on the values of O & M cost variables are assumed to keep the 2010 level.
- Implementation Period: 5 years 2000 to 2004.
- OCC (Opportunity Cost of Capital): 10%.
- Conversion factor: 98.4% to capital cost (initial and replacement cost) taking account of customs duty for foreign components.

The cost benefit stream of the project, which calculates the EIRR (Economic Internal Rate of Return), NPV (Net Present Value), and B/C (Ratio of Benefit to Cost), is shown in *Table AII.7.5*.

Obtained EIRR, NPV, and B/C are as below:

NPV (ROL 1,000,000)	B/C	EIRR (%)
111,708	1.07	13.1

Results of the sensitivity analysis are as shown below:

Conditions	EIRR (%)	NPV (million Lei)	B/C
Cost: +20%	NA	- 210,418	0.89
Cost: +10%, Benefits: -10%	NΛ	221,589	0.87
Benefits: -20%	NA	- 232,760	0.86