2.3.2 IMPACTS ON NATURAL CONDITIONS

(1) Topography and Geology

No significant changing of the existing topographic condition in/around the WWTP site is identified. Based on the results of geological survey, soil in the WWTP site may be considered to be soft at some extent for supporting the structures, thus appropriate types of foundation should be considered for the structural plan.

(2) Groundwater

Because it was not possible to take groundwater samples in/around the SWDS, the situation of groundwater quality is not clear. However, from the results of groundwater and leachate survey in Braila, Galati and Constanta, the groundwater in these cities has been polluted at some extent, especially for the Coliform Group. Considering the facts that the concentrations of BOD5, COD_{Mn}, NII₄-N and oil etc. in the leachate from the SWDS of Tulcea exceeded the standard of NTPA 002/1997 substantially, it is conjectural that the groundwater is polluted at some extent similar to Braila, Galati and Constanta. Hence, some countermeasures are considered to be necessary.

(3) Hydrological Situation

According to F/S Study the flow rate (0.614 m³/s, maximum hourly flow) of effluent from WWTP is insignificant comparing with the flow rate of the Danube River (1,580 m³/s, drought-period flow). The effects of treated wastewater on hydrological situation of Danube River are negligible.

In addition, based on the design effluent flow in F/S Study, the pollutant diffusion and dilution characteristics are analyzed by using "MIKE 11" model, created by Danish Hydraulic Institute-November 1992, Version 3.01. The calculation results indicated that complete mixing is achieved at a distance of 2,2 km downstream of WWTP outfall in all cases studied here.

(4) Fauna and Flora

The results of fauna and flora survey shown that there are no unique species of fauna and flora in/around the plant site. Faunas inhabiting around the site are domesticated animals such as dogs, cats, fowls, etc. In addition, aquatic life conditions will be improved by reducing the pollutant load as mentioned in following section.

2.3.3 Environmental Pollution

(1) Water Pollution

The results (Annex 8) of industrial wastewater survey revealed that the concentrations of toxic materials, which may effect biological process for wastewater treatment, are under the standard of NTPA 002/1997. This can leads the conclusion that industrial wastewater will don't contribute a significant impact on WWTP influent characteristics.

Environmental Impact during Construction Period

During construction period the sanitary wastewater generated from site administration house may affect environment temporarily. Therefore, this part of wastewater should be collected and treated by some appropriate.

During the construction stage, every precaution shall be taken to prevent the spillage of waste form construction sites to the nearby waterways. There will be no major facility applied during construction that may affect the surface or the ground water. Routes, directions and hydraulic conditions of the streams and stormwater drains, presently discharging water to the Danube River, need not to be changed due to the construction works. The construction of all the different elements of the interceptor sewers has no direct impact on the quality of the surface water. There will be no major construction activities in streams or drains, except outfall structures. Although the works in the streams or drains could be minimized to the extent practicable, unavoidable activity may take place in the riverbed during the low-flow season.

The effluent outfall structure should be of such that can divert and disperse surface water flows to prevent erosion and to protect slopes of the riverbank. The structure should be lined and provided with energy dissipaters at discharge points to avoid erosion.

Storm water runoffs from the construction site should be collected and drained through properly designed drainage ditches to the nearby streams or other waterways.

Overall, during the construction period no appreciable adverse impacts to the surface water or ground water in/around the construction site are identified.

Environmental Impact during Operation Period

The quantities of pollutant load reduction by the project implementation are estimated in Table All.7.10 based on the F/S Study. From this table, 1,513 tons of BOD₅ and 1,621 tons of SS per year (in target year, 2010) will be no more discharged into Danube River, so the impacts on the water quality during WWTP operation will be a positive one.

Effluent Characteristics	Without Project	With Project	Reduction
Average Flow Rate (m ³ /d)	37,000	37,000	0
BOD Concentration (mg/l)	130	18	112
BOD Load (ton/year)	1,756	243	1,513
SS Concentration (mg/l)	140	20	120
SS Load (ton/year)	1,891	270	1,621

Table All.7.10 Estimated pollutant load generation and reduction (2010)

Moreover, 243 tons of BOD5 and 270 tons of SS per year (2010) will be discharged into the Danube River with WWTP effluent. In order to assess the impacts of effluent on the receiving water – the Danube River, pollutant concentrations in the mixture formed by the Danube River and WWTP Effluent have been simulated, taking into account river self-purification process and especially phenomena like pollutant diffusion, dilution and dispersion that contribute to this process. The results of simulation are presented in the Table AII.7.11, which shown that the maximum concentrations of BOD5 and SS at downstream of complete mixing section (about 2.2 km downstream from the outfall of proposed WWTP) will be under the Maximum Allowable Concentration (MAC) of second quality category in STAS 4706/1998 (surface water quality).

Receive Flow	(m ³ /s)	Q _{min} =1,580		Qavg=6,400	
Effluent Flow	(m ³ /s)	Q _d avg=0.428	Q _h max=0.613	Q _d avg=0.428	Q _h
ltem	MAC for II - Category	Maximum co	ncentration on the	e complete mix	ing section (2.2
BOD (mg/l)	7	6.84	6.85	6.80	6.81
SS (mg/l)	60	60	60	60	60
NH4 (mg/l)	3	2.752	2.790	2.222	2.250

Table All.7.11 Maximum concentration of pollutant in the mixture

It should be pointed that the total nitrogen and phosphorous concentrations of the effluent exceed the MAVs mentioned in NTPA 001 as shown in Table AII.7.1. There are three aspects which must be considered:

- 1) The Danube River has a high capacity of uptaking these elements by dilution (in this case the dilution factor is more then 3,000:1), so the change of water quality is an out of the question issue.
- 2) Dilution principle is accepted in special courses (GD 730/1997, Art.4, para.7)
- 3) Providing denitrification and phosphorous removal unit operations in the treatment process appears to be unrealistic to the following reasons:
- The investment cost will be almost doubled for achieving negligible results as for as
 environmental protection is concerned;
- Risks to get bad effects on environmental due to complicated operation of denitrification process, and
- The implementation of denitrification and phosphorous removal processes looks too
 ambitious for not stringent requirements (there is no denitrification process applied in any
 WWTP in the country, nor in the other riparian countries).

Nevertheless, these steps of treatment are to be considered in the next stage of design.

In conclusion the impact on the water environmental during WWTP operation will be a positive one, if the plant will operate on the designed conditions.

(2) Soil Pollution

To estimate the concentrations of typical heavy metals in excess sludge from proposed WWTP and to evaluate the concentrations of heavy metals in the soil in/around the WWTP site and sludge disposal site, a survey on soil and sludge from existing WWTP of Roman and Constanta is carried out. The results are summarized in Table AII.7.12

La Desagn Carlos

eleration product and the linear transfer of the production of the

Table All.7.12 Summary of heavy metals in soil (Tulcea) and sludge (Roman and Constanta)

	Soil (Tul	cea)	2		Sludge	in existi	ng WWTI)
Item	WWTP	Sludge Disposal site (Inside)	Sludge Disposal site (outside)	Max. Desirable - Max. Permissible	Min.	Max.	Averag e	Max. Permissible Values of Standard
C_d (mg/l)	0	1.75	0	1-5	0	0	0	10
C _r (mg/l)	13	65	12.5	30-300	0	0	0	500
C _u (mg/l)	0	40.25	3.5	20-250	28	137	66	500
M _a (mg/l)	365	400	280	900-2,000	•	-	-	-
N _i (mg/l)	8.25	21.75	15.25	20-200	0	0	0	100
P _b (mg/l)	21.25	79	20.95	20-250	8	102	53	300
Z_n (mg/l)	205	465	312	100-700	243	1,600	645	2,000

The analysis results indicated that the concentrations of heavy metals in the soil (WWTP site, solid waste disposal site and agricultural field) and sludge generated in existing WWTP of Roman and Constanta are under the Romania Standard. This creates a possibility to utilize digested and dewatered sludge in agriculture. In present there are not standards concerning the quality of the sludge that could be deposited on the agricultural field as fertilizer, but there is a proposal that will be approved in the near future. The proposal has been taken into consideration the present study, and all the results obtained from the sludge analysis are compared with the values from the proposal (the proposal is based on EU regulations).

(3) Offensive Odor

According to the results of measurements for odor in/around the WWTP site as shown in Table All.7.3, the concentrations of H₂S (0 mg/m³), NH₃ (0.115 mg/m³) and odor level (Level 1) on the WWTP boundary fence are under Romania Standard 12574/1987 (H₂S: 0.015 mg/m³, NH₃: 0.3 mg/m³ and odor level: Level 5). These results show that hydrogen sulfide and ammonia concentrations as well as the odor level in/around the WWTP site are keeping at a relatively low level.

In WWTP the odor may be emitted from wastewater treatment units, but the majority of it comes from the sludge handling system such as digesters, sludge gas facilities and dewatering equipment. At this stage it is difficult to predict exactly the odor levels in/around Tulcea WWTP site, however, the survey of odor levels from existing WWTP site in other cities may deserve reference. Table AII.7.13 presented the results of measurements for odor in/around existing WWTP site.

Table All.7.13 Analysis results of odor in existing WWTP site (July 1999)

City	Parameter	Boundary fence	50m from boundary fence	150 m from boundary fence	Limits for 30 minutes sampling period according to RS 12574/1987
	H ₂ S (mg/m ³)	0.45	0.48	0.42	0.015
Roman	NH ₃ (mg/m ³)	0.33	0.35	0.35	0.3
	Odor Level	4	4	4	5
	H ₂ S (mg/m ³)	0.35	0.05	0.033	0.015
Constant a	NH3 (mg/m ³)	0.3	0.11	0.10	0.3
	Odor Level	4	3	3	5 (4) (1) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

Source: ICIM

The values in Roman WWTP exceed the Romania Standard and that not only due to the sludge treatment in the plant but also to the activity of a carcass animal disposal factory (animal feeding meal) located near the plant. While there are not other odor sources around Constanta WWTP. Therefore, it is feasible to assess and predict the impacts of odor in Tulcea WWTP using the results of Constanta WWTP.

According to Table AII.7.13, although the concentrations of H₂S (0.35 mg/m³), NH₃ (0.3 mg/m³) and odor level (Level 4) on Constanta WWTP boundary fence exceed the Romania Standard, the odor levels at 150 m from boundary fence would generally be within acceptable levels. In addition, considering the facts that the distance from Tulcea WWTP site to the housing areas is more than 300 m, there are no inhabitants on the leeward of WWTP site, and following countermeasures will be taken, therefore no serious impacts are identified.

- 1) A particular attention will be given to prevent emission of such odors from dewatering equipment rooms by providing efficient forced ventilation system, and to ensure against the escape of sludge gas from digesters.
- 2) Appropriate type of scrubbers will be provided for the removal of hydrogen sulfide from the digester gas. In addition, a waste gas burner for the digester gas control system will prevent any direct emission of sludge gas into the atmosphere. All the waste gas will be burned.

2.4 RECOMMENDATIONS FOR MITIGATING ACTIONS AND MONITORING PLAN

2.4.1 Noise, Vibration and Traffic

- The use of such heavy construction equipment as bulldozers, power shovels, pile drivers, etc.
 will be prohibited in early morning or late night. Construction works will be prohibited on
 Sundays and holidays.
- 2) Installation of acoustic walls and plant buffer zones around construction site.
- 3) It is recommended to use low noise and low Vibration equipment as possible during

construction.

- 4) Dump trucks and other heavy vehicles should also be operated at reasonably low speed so as to prevent unnecessary vibration along the routes.
- 5) During construction works, noise and vibration levels should be checked at least once a month at fixed observation points along the site boundary.
- 6) Before construction the Contractor shall prepare the detail plan to mitigate impacts on noise, vibration and traffic, then submit the plan to the Municipality.

2.4.2 GROUNDWATER AND WASTE

- 1) Groundwater insulation-type landfill disposal plant is recommended to protect groundwater from polluting. In this case it is recommended to install the leachate collecting system and to discharge leachate after to be treated, especially disinfection treatment.
- 2) The groundwater quality (at least Cl⁻, COD_{Mn}, Coliform Group and typical heavy metals) should be checked 2 to 4 times per year in order to understand the change of groundwater quality.
- 3) With the background that an increase in agricultural utilization and incineration and a reduction of landfill for sewage sludge is forecast, it will be recommended to consider incineration or the utilization of sewage sludge in agriculture. In this case the load limiting values of EU Sewage Sludge Directive can be applied as alternative to sewage sludge limiting values in order to maintain the soil limiting values of heavy metals.
- 4) The characteristics (Cd, Cr, Cu, Pb, Hg, Ni and Zn) of dewatered sludge from WWTP should be checked at least 4 times per year.

2.4.3 Water Pollution and public health condition

- 1) It is recommended to establish a monitoring system to check the water quality of Danube River at main swimming area, intake for water supply as well as the downstream and upstream reaches of WWTP outfall.
- 2) The detail plan (such as monitoring point, analysis items and sampling frequency etc.) should be made in cooperation with the Tulcea Municipality.

3. ANNEXES

3.1 REFERENCIES

- [1] EPA Tulcea, Report on the State of Environment in the County of Tulcea, 1995
- [2] SETA, Geological Survey of the location of WWTP of Tulcea, 1999
- [3] CNAR, Water Quality Synthesis, 1995
- [4] DSP of the County of Tulcea, Analysis Bulletins in 1997, 1998, 1999
- [5] CNAR, Water Quality Synthesis, 1996
- [6] ICIM, The State of Environment in Romania, 1993
- [7] CNAR, Water Users of the Danube River, vol.III, 1995

- [8] JICA Study Team, Planning Basis for WWTP Tulcea, August 1999
- [9] Jorgensen, S.E, "Lake Management", Pergamon Press, 1980
- [10] Babitt, H.E., Baumann, E.R., "Sewerage and Sewage Treatment", New York John Wiley and Sons Inc., 1958
- [11] EEA, CORINAIR "Default Emissions Factors Handbook", 1998
- [12] Tebbut, T.H.Y., "Principles of Water Quality Control", The Commonwealth and International Library, Pergammon Press, 1973
- [13] Voinescu, V at all "Indrumatorul Instalatorului", Ed. Tehnica, 1964
- [14] Romanian Academy, "Geographical Encyclopedia", 1974

3.2 ABBERVIATIONS

AF = Average Flow

APM = Agentia de Protectia Mediului

BOD = Biochemical Oxygen Demand

CNAR = Compania Nationala "Apele Romane" (National Company "Romania

Waters")

DAF = Daily Average Flow

DMF = Daily Maximum Flow

DSP = Directia de Sanatate Publica (Public Health Directorate)

EEA = European Environment Agency

EPA = Environmental Protection Agency

GD = Government Decision and an additional decision and additional decision an

ICIM = Institutul National de Cercetare Dezvoltare pentru Protectia Mediului

Bucuresti (Research and Development National Institute for Environmental

Correlation

Protection)

JICA = Japan International Cooperation Agency

MAC = Maximum Allowable Concentration

MAF = Multi-annual Average Flow

MAV = Maximum Allowable Value

MO = Ministerial Order

MWFEP = Ministry of Water Forest and Environmental Protection

NCS = National Commission for Statistics

NMVOC = NON Methane Volatile Organic Compound

NTPA = Norme tehnice pentru protectia apei

SA = Societate pe Actiuni (Economic Unit by Shares)

SC = Societate Comerciala (Commercial Unit)

SC ACET SA = Societatea Comerciala Apa Canal Tulcea

SS = Suspended Solids

Part All/Tulcea: Appendix-7 Environmental Impact Assessment Survey

STP = Standard Temperature Pressure

SWDS = Solid Waste Disposal Site

T-N = Total Nitrogen

TNWP = Technical works for Water Protection)

T-P = Total Phosphorous

VOC = Volatile Organic Compound WWTP = Wastewater Treatment Plant

3.3 RESULTS OF SURVEY

Results of EIA survey, such as soil, sludge, groundwater, leachate from existing solid disposal site, industrial wastewater and air, are summarized in Table AII.7.14 to AII.7.19.

Max. Desirable (MD) - Max. Permissible (MP) 100-1,000 900 - 2,000 20 - 250 20 - 200 100 - 700 30 - 300 20 - 250 1-5 Average 0.65 323 355 407 7 3 8 53 3 429.20 134.25 34.25 500 Max. 8,49 3.25 475 180 580 40 7.5 7.42 43 155 4. S 205 Xin. 2 o 0 Tulcea Sludge Disposal Site (Outside) 20.95 15.25 312 12.5 355 280 . 8 \$ 0 Tulcea Studge Disposal Site (Inside) 40.25 21.75 168.8 1.75 7.89 548 8 26 જ 4 Tulcea WWTP 21.25 7.94 8.25 143 365 205 <u>...</u> == 0 Galati Sludge Disposal Site (Outside) 8.18 16.5 230 155 4.9 290 16.4 Galati Sludge Disposal Site (Inside) 134.25 34.25 429.2 8.42 1500 3.25 5 280 8 280 Galati Galati WWTP Galati WWTP
No.1 (Free Pumping Station
Zone) No.3 Area 14.25 10.21 8,02 13.8 17.5 208 254 380 % % 0 11,48 11.5 29.5 7.42 8 12.5 210 415 3.5 Summary of Analysis Results for Soil Braila Sludge Disposal Site (Outside) 8.01 7.5 10,4 5 7.4 380 4.5 210 0 0 Braila Sludge Disposal Site Braila (Inside) 8.49 40.75 24.75 4 82.6 1.5 475 420 480 8.9 Braila 21.18 5.75 8.26 246 270 435 00 13 7 0 R.S. 7184/13-79 R.S. 718477-87 Analysis Method AAS Method AAS Method AAS Method AAS Method AAS Method AAS Method R.S. 7877/87 AAS Method Total hydrocarbons in oil (ppm) Electrical Conductivity (µS/cm) Parameters Manganese - Mn (ppm) Chromium - Cr (ppm) Cadmium - Cd (ppm) Copper - Cu (ppm) Nickel - Ni (ppm) cad - Pb (ppm) Zinc - Zn (ppm)

Table All.7.14

Table All.7.15 Summary of Analysis Results for Sludge from Existing WWTPs

					'							
and the execution of the property and the execution of th	_	Roman Wastewater Treatment Plant	ment Plant	A Committee of the control of	Const	Constanta Wastewater Treatment Plant	atment Plant					
Parameters	Crude Sludge from Mechanical System	Crude Sludge from Biological System (Activited Sludge)	Digested	Dewatered Sludge	Crude Sludge from Mechanical System	Crude Sludge from Biological System (Activited Sludge)	Digested Sludge	Dewatered Sludge	Min.	Max.	Average	Max. Permissible Values Proposed in Romania Standard 1988 (MP)
	6.22	6.41	6.67	6.75	6.8	6.5	7.5	6.99	6.22	7.5	6.73	ı
Total Nitrogen % of weight rel. to TS)	2.68	2.41	1.71	1.52	5.73	4.93	2.29	2.18	1.52	5.73	2.93	1
Total Phosphorus % of weight rel. to TS)		1.06	0.51	0.36	2.03	1.33	0.67	0.58	0.36	2.03	0.95	
Water content (105 C) % of weight)	91.25	55.66	95.24	74.24	89.2	95.53	68.66	58,48	58.48	68.66	87.92	1
Solids TS (% of weight)	8.75	0.45	4.76	25.76	10.8	4.47	0.11	41.52	0.11	41.52	12.08	
Organic-Substances (550 C)	64.96	65.27	55.96	25.73	72.47	70.52	48,66	21.26	21.26	72.47	53.10	•
Mineral Substances (550 C) % of weight rel. to TS)	35.04	34.73	44.04	74.27	27.53	29.48	51.34	78.74	27.53	78.74	46.90	•
Cadmium - Cd (mg/kg TS)	0	0	0	0	0	0	. 0	0	0	0	0	01.
Chromium - Cr (mg/kg TS)	0	0	0	0	0	0	0	0	0	0	0	200
Copper - Cu (ms/kg TS)	60.37	28.09	32.24	88.05	137.41	58.34	48.18	71.42	28	137	. 99	200
Nickel - Ni (mg/kg TS)	0	0	0	0	0	0	0	0	0	0	0	100
Lead - Pb (mg/kg TS)	48.45	12.7	8.45	80.82	93.31	43.31	38.54	101.52	∞	102	53	300
Zinc - Zn (mg/kg TS)	666.75	243.4	247.2	1.157.23	1007.64	307.69	294.64	1,600.35	243	1.600	645	2,000
Calorific Value (kJ/g TS)	17.2	16.8	16.2	•	18.7	19.2	17.3		16	19	18	

r Groundwater	
õ	
Results	
<u>Si</u>	
Analysi	
Ž	
र् ठ	
Summary	
16	
1.7.16	
₹	
Table	

ייייי אייייייייייייייייייייייייייייייי	Summer y of	ol Alialysis Nesults	O INCOUR	2	O Cal rawate	 							
			Rmile					Galafi			C	ัดทะเลทเล	
Parameters	WWTP Upstream	WWTP	Studge Durporal and Upatream	Sludge Duponal site Downstraum 1	Studge Durponal . nie Downstream 2	ууутр Оригеви	WWTP Downstream	Studge Disposal site Upstream	Sludge Disposal all de Dosposal also Downstream i mto Downstream i	Sludge Disposal ate Downstream 2	Controlled Landfill Upstream	Controlled Landfill Downstream	Max. Destrable (MD) - Max. Permissable (MP)
Aspect	Clear experiment, high country of sediment	Clear experiment, high Clear experiment, high soundity of sediment	Clear supernatant	Clear supernatant	Сем зиретвали	Turbid supernature, yellow ared	Turbid supernatural, yellow -red	Clear supernatunt	Opalescent	Opaleseent	Clear	Clear supernaunt; yellow -red sedunent	
Colour	7	0.8		**	**	48.25	S SQ	1.95	94	987	6.0	er	2-2
Turbidity (grade SiO ₂)	٠		1-1	10		*21.5	C		28.08		٠		2-2
Sumpended solids (mg/dm ³).	151,560	11,540	34.55	66	115.15	118,55	121	12.05	183	16.2	33	332	
PH at 20°C (unuts)	6.93	7.2X	7.34	7.8	7.28	7.42	7.53	7.72	7.9	7.7	7.68	7.75	6.5~7.4.X.5
Conductivity (u S/cm)	2,306	1,802	XR6.6	1,369.50	1,250.10	1207.14	1,225.36	×05.6	814.5	1,253	74]	¥7.7	1000 - 3000
Total ratphides - agitaled sample (se H ₁ S) (mg/dm ³)	7 136.32 / 0 *	25.0	•	•	•	0.04	90.0	•	•	•	•	3, %	0-0.1
Carbon Dioxide (mg/dm²)	23.6	10.25	2.45	379	2,64	17.72	17.6	2.24	2.2	1.76	9%	2.95	
Temperature (C)	16	16	12	16	17	18	**	17 }	16	16	1,2		22/normal
CATIONS													
Calcium – Ca (mg/dm²)	57.2	157.11	1.04	76.15	79.61	X5.26	88.17	47.45	4X.1	60.12	20.02	100.2	190 - 180
Magnesium - Mg(mg/dm)	•		X		¥	65,25	63.0	C P	*		10.23	26.73	8
Sodium and Potassium - Na + K (mg/dm.)	262.1	209.12	169.2	202.K	169.7	149.3	149.3	67.2	8	538	165.2	170.46	
Iren - Pe (mg/dm²)	. 3. (0. to 0. to	*15°9' 40°	0,3%	633	90	ş	š	80.0	60.0	0.0x	8.0	28	0.1 - 0.1
Manganese - Mn (mg/dm³)	2400 0 T2-	1,792 / 0,144	0.105	0.176	0.144	2	F	0.025	0.036	0.026	0.04X	1.2	0.05 - 0.3
Ahminum - Al (mg/dm²)	1.072 / 0.04 =	0.792 / 0.152 -	0.064	0,096	0.096	0.233	12	×0.0	0.12	жо:о	0.0%4	0.76	0.05 - 0.2
Copper - Cu (mg/dm²)	1.759 / 0-	0.325/0-	0	0.003	0	0	O	0	0	٥	0	2/5	0.05 - 0.1
Chromium - Cr (mg/dm²)	0.14K/0*	0.045/0	0	0.005	900'0	0.001	0.002	0,002	0.002	600.0	0	+33-e	0.05
Zino – Zn (mg/dm²)	0.320 / 0.192 =	°	0.352	0.488	0.8	0.457	0,469	0.5	0.52	0.67	0.084	0.712	5-7
Nickel - Ni (mg/dm²)	0.764 / 0.032 *		0	0.022	٥	0	ó	0.003	0.003	0.004	0	¥.	0.1
Cadmium - Cd (mg/dm²)	# 9000 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٥	0	0,004	0.003	0.002	0,004	0.002	0.002	0.000K	0	2005	0.005
Lend - Pb (mg/dm²)	- (-d/0/b4/0	0.451/0=	0.02	0.025	0.035	1,420	0,062	0.024	0.046	0.014	0	6860	0.05
Ammonia – NH, (mg/dm²)	.ee0	*	0:07	0.13	0.16	4.52	ť?	0.01	10.0	0.3%	0.45	1.65	0.0.5
AMONS and OTHER TTEMS													
Nitrites - NO ₂ (mg/dm ²)	0.00%	0.1	0.04	0.1	0.04	٥	0	0.005	0.00%	0.05	0.03	0.037	0-03
Nitratex - NO, (mg/dm²)	5.37		1.72	5.3	1.74	1.44	1.84	4.15	3.07	31.16	1.32	98:1	45
Chlondes - Cl. (mg/dm²)	205.6	150.7	5K.5	166.62	5X:5	163	163.07	76.83	28	110	76.2	76.22	250 - 400
Bioarbonates - HCO ₁ (mg/dm ²)	1,5%6.50	793.26	625.45	707.K	628.5	738.34	764.44	512.57	518.67	\$49.1x	417.99	427.14	
Carbonates - CO2, (mp/dm²)	0	0	0	0	٥	0	٥	0	0	0	0	o	
Sulphates - SO2 (mg/dm)	116.25	48000	10K.35	161.43	109.1	9.25	6	57.75	57.R	385	90.05	90.05	200 - 400
Total phesphates - PO', (mp/dm")	0,347 0,005	3.147.0.46	0.03	0.185	0.04	0.0K	0.09R	0.08	0.0%	X60.0	0.005	0.18	0.1 - 0.5
Cyanide - CN (mg/dm²)	٥	0	٥	0	٥	0	0	0	0	0	0	0	0.01
Organio Substances - KMnO, (mg/dm.)	20028	3.00	10.12		1500	44.2		3.05	4.12	6.23	3.8	34.95	10-12
Oil and grease (mg/dm?)	4.87	4.05	1.05	선	-61	1.93	2.93	1.72	8.84	2.0x	0.67	10.3	
Phenois (mg/dm²) and an area area area and a second	5	43.0	0	0	0	0		0	Ō	0	•	2100	₹100-0
Alkalinity- permanent "p" (mval/dm")	0	0	0	٥	0	0	0	0	0	0	0	0	
Alkalinity - total "m" (mval/dm")	550 / 26	13	10.25	11.6	10.3	12.1	12.2	8.4	8.5	6	6.85	t-	
Acidity (myal/dm)	0	0	0	0	0	0	0	0	0	0	0		
Dissolved solids at 105 °C (mg/dm²)	05.5641	D- 645.)	761.3	1,056.45	866	861,57	198	8.009	209	1,192.50	590.12	593.16	min, 1007man, 800 - mm.
Hardness - total (German degrees)	- 20e	36.25	19.04	36.5	30.55	26.95	27.44	25.1	25.2	28.6	8.96	18.2	20 - 30
BACTERIA						-							
Total number of bacteria at 37°C UFC / cm3	Offic above	30£.20m	S. P.	600 Mag	100 100	20,6 25,000		tok sara	204 344	00t Inv	200, 2010	200-200-	under 300
Probable number of coliform bacteria /100 cm	676.900	£	8	24.000	e.	14.090	98007	66	36,090	0071	1.686	54,250	under 10
Probable number of coliform-thermotolerabil bacteria (fecal coliforms) / 100 cm	ă ă	44	Я	D	ı.	240	92	ž	2007	3	220	2,000	under 2
Probable number of feed streptococcus/100 cm2	◆200	34,466	100000	æ				ě	P	r	S.	00001	under 2

", Agnated Stample/Supernaturi of Sample.

Exemple : Inserts the parameters analysed not respect the Romanan Standard 1342/1991 - "Drinking Water"

Groundwater
lysis Results for
Summary of Analy
Table All.7.16

			Penja	**************				Cialah			-[- myanta	
Sarameters	WWTP Upstein	WWTP	Sludge Disposal	Shodge Drepoval Studge Drepoval	Studge Disposal site Downstream 2	WWTP Upgreum	WWFP Downstream		Shirke Disposal Shirke Disposal Shirke Lieposal site Upstream (site Downstream), site Downstream (Sludze Fueposul site Downstream 2.	Controlled Laudith	Compolled Landfill Lownstream	Max Demissible (Mp)
Aspect	Clear supernatons, high	Tew supernateal, high Plear supernetath high sustains of selections.	(?lear	· Clear supernation	ear supernatant Clear supernation	Turbid supernwaue, yelllow-red	Turbid superiwant, yelliow -red	Clear	Opidescent	Opdeven	Linguages	ritear supernaturi, yellow -red sediment	
Colour		**	F4	16	***	\$4.88	45.35	\$7	2.43	*.	70	c,	
Turbidity (grade SiO.)	,		1.5.3	61	182	*D1C	22	4.7	28-08	. 94		,	2.5
Suspended solids (myydm.)	151,560	085.1;	34,55	47	11515	118.55	121	12.05	[×3	15.2	2	3.6	
pH at 20% (muts)	150	XZ -	7.345	×	72X	742	13.4	2.42	0.1	+ •	* v.N	122	65~74.85
Conductory (12 Nem)	2,300	1.802	XXco	1,349.50	01.025,1	1207 14	1,225,36	×05 6	×1.1×	1,25%	7.	XCC	1600 - 3000
Total milphides - agained sample (as H ₂ N) (mg/dm ²)	-0.20.00(1 (;	86			,	0.04	\$0.0				,	76%	0.01
Carbon Dioxide (my/dm/)	23.6	10.25	2.45	30	2.04	17.32	921	2.24	55	176	3.0	٠6٠٢	
Temperahire (°C.)	16	16	r:	36	1.7	18	×		10	ln	-:-		22:nommd
CATIONS													
Caleuun - Ca (mg/dm.)	311142 311142	18731	70 l	70.15	19.6	X5.26	. XX	47.45	1X	51.04	20.04	130.1	100 - 1×0
Magnesum - Mg(mg/dm²)		2\$	54 bX	£2.3%	K43.7	65.23	0,0	£673	20%	₹ 5 ≯	1023	20.73	\$0 · XQ
Sodnim and Potassum - Na + K (mg/dm.)	262.1	209.12	2 691	202 K	169	146.3	1493	67.2	Nο	927	1652	vt 021	
$tron = Pe_{\tau}(mg/dm^2)$	3.504.102.0.90		X2 0	മാ	39.	2.65	95.2	0 0X	~00	NO 0	ે 58 છ	(3) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	01.03
Manganese - Mn (mg/dm²)	24:00 / 0/32 -	1 792 - 0 144	6 105	0.176	0.144	0.3%	0.073	5000	0 036	0.024	0.048	či	001-03
Alongonom - Al (mg/dm³)	1,072 / 6 04 =	0 792 / 6 152	0.054	960.0	960 0	0.233	2.79	0.0x	0.12	0.38X	0.084	0.76	005-02
Copper - Ch (mg/dm²)	-076523	032870	0	600.0	0	0	0	0	6	Ð	0	CVFC .	0.05-51
Chromum - Cr (my/dm²)	0.1487.0	-0/500	0	400.0	0 906	0 001	200.0	0000	200'0	0.000		100	200
Zure – Zu (ms/dm.)	0,720 / 0,192 =	0.256 / 0.154 =	285.0	0.488	χO	7550	0.469	50	0.52	543	0.08.1	0.712	
Nickel N. (mg/dm.)	0.76470032	0.724/0	O	0.022	·	0	0	0000	0.003	0.004	3	0.72	0.1
Cadmum - Cd (mg/dm²)	0.0377.0 ONE	l°	٥	0 004	0000	0.002	0.004	2000	200 0	N000 0	0	C.03.5	2000
Lead - Ph (mg/dm²)	. 140°0 56" 0	0.45170	200	0.02.5	\$60.0	220	0.062	0 024	0.046	0.01.1	٥	0.540	904
Annomia = VB, (mg/dm)	0		50.0	610	910	*52	2.3	100	100	XE 0	\$7.0		0.04
ANIONS and OTHER ITEMS													
Nimtes - NO (my/dm ')	0.00%	10	0.0%	0.1	0.04	0	Q	0 00%	0 1:08	0.05	1,00	0.037	0.03
(Nittates - NO, (my/dm))	53.5	0	1.72	63	174	1.44	1,84	415	10.5	31.16	X :	- 36	25
Chlondes - (!! (mg/thn!)	30%	1.50.7	58.1	100.02	585	163	163.07	70 KS	7.	110	e e	£ .	250 - 400
Buarbonates - HCO', (my'dm')	1,58h 50	703.26	625.45	707.8	628.5	73x.34	744.44	512.43	NING	81 505	na - p	427 4	
Carbonates + CO ² , (my/dm ³)	O	0	Φ.	0	0	0	0	0	0	0	0	0	
Sulphates - SO ² , (mg/dan.)	110.24	*60%	10K 35	161-43	1041	520	6	82.58	X.5	385	×0.0%	v0 06	200 - 400
Total phosphates - PO'; (me/dm')	0.3470.005	3 14 / 0 40	0.03	9810	0.04	0.0N	1 Kn00	N O CN	. NO 0	0 09X	400 0	0.1%	01.04
Cyande - CN (mg/dm.)	0	0	0	0	٥	0	0	0	9	ŋ	0	0	0.01
Organic Substances - KMnO, (mg/dm)	7.602 (2.00.7	******	21 01	13.63	\$0.5	4:3	21.5	3.05	C15	0.23	3.8	25/25	2: 0:
Od and grease (my/dm)	480	4.04	1.05	1.2	1.9	1.93	2.03	1.72	X, Kri	3 CX	0.00	163	
Phenois (my/dm)	8.3	0.33	0	0	0	0	0	0	9	0	0	\$100	0.001*
Akkainaty- teermanent "p" (menkdan")	Q	0	0	0	0	0	0	0	0	3	0	0	
Alkahuty - total "m" (nwal/dm")	5507.26=	- 61	10.25	110	103	12.1	12.2	X.4	2.8	,	53.0		
Andry (myal/dm.)	0	0	0	٥	0	0	0	0	0	0	0		
Dissolved solids at 105 T. (mg/dm.)	1,2%5.20	1523.50	761.3	1,056.45	Xôn	55 [68	Xe3	N.00n	204	1,192 50	24,004	403.16	min. 1055man. 853 - min.
Hardness - total (German durrees)	್ಷಾಂಡ್ರ್ಯಾಕ್ಟ್ರೀಯ್ ಕ್ರಾಂಡ್ಸ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್ಯಾಕ್ಟ್ರ್	378 GP	1004	343	30 64	20.05	27.44	25.1	242	28 to	N 96	: X:	20 . 10
BACTERIA					-								
Total minber of bacteria at 37°C DRC / cm	ONE PART	Over 300	OVE: 70.0	6,000.306	cover 305	\$02 #300	ዓያኒ ነቀኝ።	DOM: Jamo	305 PWG	Control of D	(a)	(NOE (PAS)	under 500
Probable number of coliforn bacteria /100 cm.		trt.	1,000	24,000	\$ 223		000/301	076	186,000	1,000		005/05	under 10
Probable number of coliform-themicolembil bacteria (fecal coliforms) / 100 cm	00.75 		n	DS.	···	246	3.00 E	ä	70°-1	**************************************	g	399,1	Tapsin
Probable number of feed streptococcus/100 cm ³		T4.907			***************************************	***************************************	\$ 00 00 V 00 00 00	S V	e	1	C#\$	1000 100000000000000000000000000000000	under 2
* Austated Namoles Supergraphent of Samule								***************************************					

*: Agated Sample/Supernstant of Sample Contained Standard 1342/1991 - "Drinking Water"

Table All.7.17 Summary of Analysis Results for Leachate from Existing Solid Disposal Site

001102107	Usai Site				:
Parameters	Braila Solid Waste Disposal Site	Galati Solid Waste Disposal Site	Tulcea Solid Waste Disposal Site	Constanta Solid Waste Disposal Site	NTPA 002
pH at 20℃ (units)	8.22	8.3	8.18	8.12	6.5 - 8.5
BOD ₅ (mg/dm³)	3,824	4,135	3,465	2,988	300
COD _{Cr} (mg/dm3)	7,742	8,780	7,440	6,770	500
Chlorides (Cl') (mg/dm³)	4,220	4,608	3,162	2,020	_
SS (mg/dm³)	684	768	625	468	300
(NH ₄ - N) (mg/dm³)	592	635	590	548	30
Total Nitrogen (mg/dm³)	7.36	756	722	677	
Total Phosphorus (mg/dm³)	4.3	5	4.25	3.8	5.0
H ₂ S + S ⁻² (mg/dm ³)	18.8	22.4	16,3	11.08	0.5
Sulphates (SO ₄ ²) (mg/dm ³)	20.6	31	28	24	400
Total Coliform Group (no./100 ml)	3.48×10 ⁸	3.48×10^{8}	5.42×10 ⁸	3.48×10^6	
Fecal Coliform Bacteria (no./100 ml)	1.41×10 ⁸	1.72×10 ⁸	1.75×10 ⁸	1.61×10 ⁵	
Fecal Streptococcus Group (no./100 ml)	1.61×10 ⁶	1.75×10 ⁶	1.41×10 ⁶	5.42×10 ⁵	
Arsenic (As) (mg/dm³)	0	0	0	0	<u>-</u>
Lead (Pb) (mg/dm³)	0.265	0.322	0.135	0.085	0.5
Cadmium (Cd) (mg/dm³)	0.042	0.047	0.042	0.033	0.1
Total Chromium (mg/dm³)	0	0.075	0	0	Cr ³⁺ 1.0/Cr ⁶⁺ 0.1
Copper (Cu) (mg/dm³)	0.142	0.185	0.022	0.014	0.1
Nickel (Ni) (mg/dm³)	0.136	0.149	0.013	0.11	1
Zinc (Zn) (mg/dm³)	0.41	0.5	0.316	0.225	i
Manganese (Mn) (mg/dm³)	0.14	0.18	0.08	0.06	1
Cyanide (mg/dm³)	0	0	0	0	0.5
Oil and Grease (mg/dm3)	528	580	462	278	20
Phenois (mg/dm³)	1.32	1.48	1.16	0.88	30
	4 2 2 5		A STATE OF THE STATE OF	ere de la companya d	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

: means the parameters analyzed not respect the Romanian Standard NTPA 002/1997-Quality Indicators of Waste Water Discharged into Municipal Sewage Systems

Table All.7.17 Summary of Analysis Results for Leachate from Existing Solid Disposal Site

	osai Site	TANK THE PARTY OF STAR STORY			
Parameters	Braila Solid Waste Disposal Site	Galati Solid Waste Disposal Site	Tulcea Solid Waste Disposal Site	Constanta Solid Waste Disposal Site	NTPA 002
pH at 20°C (units)	8.22	8,3	8.18	8.12	6,5 - 8,5
BOD ₅ (mg/dm³)	3,824	4,135	3,465	2,988	300
COD _{cr} (mg/dm3)	7,742	8,780	7,440	6,770	500
Chlorides (Cl') (mg/dm³)	4,220	4,608	3,162	2,020	-
SS (mg/dm³)	684	768	625	468	300
(NH ₄ N) (mg/dm ³)	592	635	590	\$48	3()
Total Nitrogen (mg/dm³)	7,36	756	722	677	•
Total Phosphorus (mg/dm³)	4.3	5	4.25	3.8	5.0
$H_2S + S^{-2} \text{ (mg/dm}^3\text{)}$	18.8	22.4	16.3	11.08	0.5
Sulphates (SO ₄ ²) (mg/dm ³)	20.6	31	28	24	400
Total Coliform Group (no./100 ml)	3.48×10^8	3.48×10^8	5.42×10 ⁸	3.48×10^6	-
Fecal Coliform Bacteria (no./100 ml)	1.41×10 ⁸	1.72×10 ⁸	1.75×10 ⁸	1.61×10 ⁵	-
Fecal Streptococcus Group (no./100 ml)	1.61×10 ⁶	1.75×10 ⁶	1.41×10 ⁶	5.42×10 ⁵	-
Arsenic (As) (mg/dm³)	0	0	0	0	
Lead (Pb) (mg/dm³)	0.265	0.322	0.135	0,085	0.5
Cadmium (Cd) (mg/dm³)	0.042	0.047	0.042	0.033	0.1
Total Chromium (mg/dm³)	0	0.075	0	0	Cr ^{3·} 1.0/Cr ^{6·} 0.1
Copper (Cu) (mg/dm³)	0.142	0.185	0.022	0.014	0.1
Nickel (Ni) (mg/dm³)	0.136	0.149	0.013	0.11	1
Zinc (Zn) (mg/dm³)	0.41	0.5	0.316	0,225	l
Manganese (Mn) (mg/dm³)	0.14	0,18	0.08	0.06	l
Cyanide (mg/dm³)	0	0	0	()	0.5
Oil and Grease (mg/dm3)	528	580	462	278	20
Phenols (mg/dm³)	1.32	1.48	1.16	0,88	30)

: means the parameters analyzed not respect the Romanian Standard NTPA 002/1997-Quality Indicators of Waste Water Discharged into Municipal Sewage Systems

	ea	
	er in Tulcea	
	ewater i	-
	aste	
	ıstrial	
	ts for Industrial W	
	Summary of Analysis Results f	
	sis Re	
;	f Analy	
	nary of	
	Sum	
	7.18	
	Table All.7.18	
	Tai	1

ומטוכ אווייום	January of Ameryon												
Parimeters	-	Municipal Hospital	78	S.C. DELT	S.C. DELTA LACT S.A. (Milk Factory)	filk Factory)	S.C. TA	S.C. TABCO S.A. (Meat Factory)	Factory)				NTPA 002
	99/7/15 9:00	99/7/15 12:00	99/7/15 15:00	99/7/15 9:00	99/7/15 12:00	99/7/15 15:00	99/7/15 9:00	99/7/15 12:00	99/7/15 15:00	Min.	Max.	Average	
Water Temperature (*C)	25	1	<u> </u>	22	26	25	27	24	24	22	27	24	40
pH at 20°C (units)	7.54	6.82	2. L'L	6,62	6.64	9.9	28	6.71	7.2	9,9	7.8	7.1	6.5 - 8.5
BOD, (mv/dm²)	235.6	112.8	178.4	299	265	264	119	2,380	392	112.8	2380	999	300
COD~ (ms/dm3)	401	220	346	055-1	432	467.7	823	4276	765	220	4,276	1.015	200
COD _M (mg/dm3)	278	124	195.2	896	288	294	506.6	2522	428	124	2.522	623	,
Chlorides (CI) (ms/dm)	70.9	81.6	81.6	829	638	673.7	117	163	99.4	70.9	674	285	•
SS (mc/dm ²)	248	126	7.5	209	174	188	78	104.6	176.4	75	602	197	300
(NH, - N) (mg/dm ³)	3.6	2.78	3.14	11.6	3	4	1.5	2	0.2	0.2	11.6	4	30
Total Nitrosen (mv/dm3)	22.4	13.44	14.8	28.4	18.2	22.68	7.56	28	19,32	7.56	28.4	19	-
Total Phosphorus (mg/dm²)	4.33	т.	0.7	3.3	2.37	1.77	2.23	6.35	1.5	0.7	6.33	ю	5
H ₂ S + S ⁻² (mg/dm ³)	0	0	0	0	0	0	0	0.12	0	0	0,12	0	0.5
Sulphates (SO ₄ ²) (mg/dm ³)	62.4	62.4	64.6	06	64.6	64.6	51.5	09	09	51.5	06	49	400
Total Coliform Group	3.5×107	5.4×10,	5.4×10 ⁷	5.4×10°	3.5×10*	1.6×107	1.6×10*	1.6×10*	9.2×10 ⁷	5.4×10 ⁶	3.5×10*	1.2×10*	
Fecal Coliform Bacteria (no./100 ml)	1.6×107		3.5×10 ⁷	3.5×10°	1.6×10*	9.2×10 ⁶	9.2×10 ⁷	5.4×107	3.5×10 ⁷	1.6×10 ⁴	1.6×10*	5.4×107	
Fecal Streptococcus Group	1.6×10 ⁴	. **	1,6×10⁴	2.4×10	5,4×10°	9.2×10 ⁴	4.6×10³	3.5×10	1.4×10 ⁴	2.4×10³	9.2 × 10⁴	2.7×10 ⁴	
Arsenic (As) (ms/dm ³)	0	0	0	0	0	0	0	0	0	0	0	0.00	
Lead (Pb) (ms/dm ³)	0	0	0	0.004	0.005	0.008	0.02	0.029	0.016	0	0.029	0.01	C.5
Cadmium (Cd) (mg/dm ²)	0	0	0	0	0	0	. 0	0	0	0	0	0.00	0.1
Total Chromium (mg/dm³)	0	0	0	0	0	0	0	0	0	0	0	0.00	Cr**1.0/Cr**0.1
Copper (Cu) (mg/dm³)	0.004	0:004	0.004	0.011	0.012	0.015	0.002	0.006	0.03	0.002	0.03	0.0	0.1
Nickel (Ni) (mg/dm ³)	0	0	0	. 0	0	0	. 0	0	0	0	0	0	-
$(Zinc(Zn)(me/dm^3)$	0.32	0.29	.03	0.57	0.61	0.31	0.48	0.5	0.43	0.29	0.61	0.42	1
Manganese (Mn) (mg/dm³)	0.01	0.01	10.0	0.03	80.0	0.02	0.03	0.03	0,04	10.0	0.0%	0.03	~
Cyanide (mx/dm³)	0	0	0.5	0	0	0	0	0	0	0	0 2 2	0	0.5
Phenois (ms/dm³)	0,	0	0	. 0	0	0	0.03	0,01	0.1	0	0.1	0.02	30
Oil and Grease (mg/dm³)	1.2	8:0	.0.8	#	12.8	14.2	36.4	\$2.8	43.6	9.0	\$2.8	23.4	20
Detergents (mg/dm ³)	0.76	0.62	0.44	0.01	0	0.5	0.17	2.2	2.6	3	2.6	8.0	30
: means the parameters analyzed not respect the Romanian Standard NTPA 002/1997. Quality Indicators of Waste Water Discharged into Municipal Sewage Systems	analyzed not re	spect the Romani	an Standard NT	PA 002/1997-	Quality Indicator	rs of Waste Wate	r Discharged in	nto Municipal S	ewage Systems	-			

ricea
C.
.E3
t)
Š
é
Š
ž
ল
75
S
ğ
<u> </u>
Ç
ts 1
F
es
Results
v
20
of Analysi
ã
Ö
حَ
लू
Ë
S
ഗ
8 Summary o
e All.7.18
7
3
ø

,		Municipal Hospital	72	S.C. DELT	C. DELLA LACT S.A. (Maik Pactory)	THE PACTORY		Street Library Street Control Street					700 V.I.V.
Parameters	00-215-0-00	00-013610-00	007.1515.00	00/2/15 0/00	99/7-15 12:00	00/21 \$ 15/00	00:6 \$ 1:2:66	00/2/15/1/2/06	00:51:51:266	NI.	Max.	Average	
Waster Tampanana (C)	25 Sum				56	٨.	27	24	, 1	22	27	4,5	7()
pH at 20°C (units)	7.54	6.82	7.7	6.62	6.64	9.9	7.8	6.71	7.2	6.6	7.8	7.1	6.5 8.5
BOD, (my/dm ³)	235.6	N.211	178.4	280	265	264	413	2,386	262	112.8	2380	569	300
CODe (me dm3)	104	220	346	1.550	432	467.7	673	276	294	220	4,276	1,015	200
CODy, (mg/dm3)	278	124	195.2	896	288	294	\$06.6	2522	42×	421	2.522	623	
Chlorides (CI) (mg/dm²)	70.9	91.18	81.6	889	889	673.7	117	163	99.4	70.9	674	285	
SS (mg/dm²)	348	126	7.5	20 9	174	188	8,5	104.6	176.4	7.5	209	197	300
(NH ₄ - N) (mg/dm ³)	3.6	2.78	3.14	11.6	3	7	1.5	2	0.2	0.2	11.6	7	30
Total Nitrogen (mg/dm ³)	22.4	13.44	14.8	28.4	18.2	22.68	7.56	28	19.32	7.56	2N.4	61	,
Total Phosphorus (mw/dm²)	4.33	۳.	6.7	3.3	2.37	1.77	2.23	6.33	1.5	0.7	6.33	8	۷.
H-S S ² (mg/dm²)	0	0	0	0	0	0	0	0.12	0	٥	0.12	0	0.5
Sulphates (SO ₄ ²) (mg/dm ³)	62.4	62.4	64.6	06	64.6	64.6	51.5	99	09	51.5	90	6.4	400
Total Coliform Group (no /100 ml)	3.5×10	\ \	5,4×10°	\$,4×10"	3.5×10*	.01×9.1	1.6×10*	*01×9.1	9.2×10	5,4×10"	3.5×108	1.2×10*	
Feeal Coliform Bacteria (no.7100 ml)	1.6×10	 	3.5×10	3.5×10°	1.6×10*	9.2×10*	9.2×10 ⁷	5.4×10°	3.5×107	1.6×10"	1.6×10*	5.4×10	4
Feed Streptococcus Croup	1.6×10 ⁴		1.6×10"	2.4×10	5,4×10³	9.2×10*	4.6×10³	3.5×104	1,4×10⁴	2.4×10³	9.2 × 10 ⁴	2.7 × 104	à
Arsenis (As) (me/dm ³)	0	0	0	0	0	D	0	0	0	0	0	0.00	
Lead (Pb) (me/dm ³)	0	0	Q	0.00	\$00.0	800.0	0.02	0.029	0.016	Ð	0.020	0.01	\$70
Cadmium (Cd) (maz/dm ³)	0	0	0	0	0	0	0	0	0	С	0	0.00	0.1
Tatal Chromium (me/dm³)	0	0	0	. 0	0	0	0	0	0	5	0	0.00	Cr''1.0.Cr"0.1
Copper (Cu) (mg/dm³)	0.004	0.004	0.004	0.011	0.012	0.015	0.002	0,006	0.03	0.002	0.03	0.0	1,0
Nickel (Ni) (mg/dm²)	0	٥	0	0	0	0	0	0	0	0	0	0	
Zinc (Zn) (mg/dm³)	0.32	0.29	6,0	0.57	0.61	0.31	0.4N	0.5	0.43	0.29	0.61	0.42	_
Manganese (Mn) (mg/dm³)	0.01	0.01	0.01	0.03	80.0	0.02	0.03	0.03	0.04	0.01	80.0	0.03	
Cvanide (mg/dm³)	0	0	0	0	0	0	0	0	0	٥	0	0	5.0
Phenols (mg/dm³)	0	0	0	0	0	0	0.03	0.01	0.1	٥	0.1	0.02	30
Oil and Grease (mg/dm³)	1.2	0.8	8.0	48,4	12.8	14.2	46,4	8.25	43.6	×.:0	S2.8	33.4	20
A. C) ()	290	0.4.1	0	c	č	214	ç	,	-	ć	3	Űę

emeans the parameters analyzed not respect the Romanian Standard NTPA 002/1997. Quality Indica

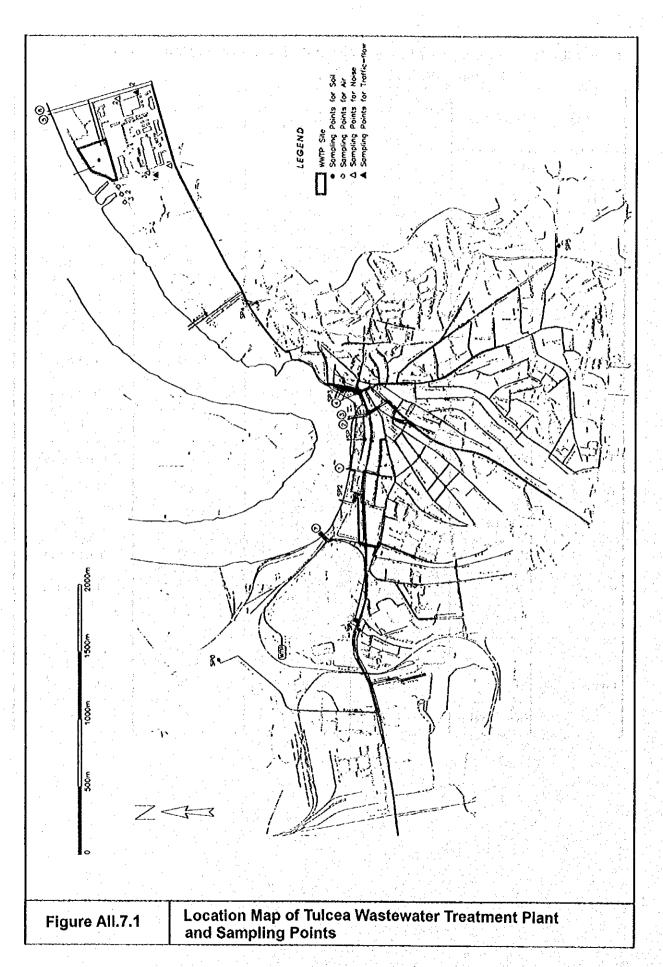

(i)

Table All.7.19 Summary of Analysis Results for the Air in Braila, Galati, Tulcea, Roman and Constanta WWTPs

City	Parameters	0 m from WWTP Boundary	50 m from WWTP Boundary	150 m from WWIP Boundary	Limits for 30 Minutes Sampling Period (R.S. 12574/1987)
	H ₂ S	0	0	0	0.015 mg/m ³
Braila	NH ₃	0.105	0.105	0.105	0.3 mg/m ³
	Odor Level	1	1	1	1 - 5
Galati	H ₂ S	0	0	0	0.015 mg/m ³
Free Zone Area	NH ₃	0.08	0.05	0.02	0.3 mg/m ³
	Odor Level	1	1	l	1 - 5
Galati	H ₂ S	0.0006	0.0004	0.0003	0.015 mg/m³
Pumping Station	NH ₃	0.018	0.012	0.01	0.3 mg/m ³
No.3 Area	Odor Level		1	1	1 - 5
	H ₂ S	0	0	0	0.015 mg/m ³
Tulcea	NH ₃	0.115	0.105	0.095	0.3 mg/m³
	Odor Level	1	1	1	1 - 5
	H ₂ S	0.45	0.48	0.42	0.015 mg/m³
Roman	NH ₃	0.33	0.35	0.35	0.3 mg/m ³
	Odor Level	4	4	4	1-5
	H ₂ S	0.35	0.05	0.033	0,015 mg/m³
Constanta	NH ₃	0.30	0.11	0.10	0.3 mg/m³
	Odor Level	4	3	3	1 - 5

Table All.7.19 Summary of Analysis Results for the Air in Braila, Gaiati, Tulcea, Roman and Constanta WWTPs

		AN ARROTTON A TRANSPORTER TO THE ARROTTON TO T	CONTRACTOR OF THE PROPERTY OF	CONTRACTOR OF STATE O	CONTRACTOR CONTRACTOR SERVICE CONTRACTOR CON
City	Parameters	0 m from WWTP Boundary	50 m from WWTP Boundary	150 m from WWTP Boundary	Limits for 30 Minutes Sampling Period (R.S. 12574/1987)
	H ₂ S	()	()		0.015 mg/m ³
Braila	NH ₃	0,105	0.105	0.105	0.3 mg/m³
	Odor Level	1	1	l	1 - 5
Galati	H ₂ S	()	()	()	0.015 mg/m ³
Free Zone Area	NH ₃	0.08	0,05	0.02	0,3 mg/m ³
	Odor Level	1	1	1	1 - 5
Galati	H ₂ S	0,0006	0.0004	0,0003	0.015 mg/m ³
Pumping Station	NH ₃	0.018	0.012	0.01	0.3 mg/m ³
No.3 Area	Odor Level	1	1	1	1 - 5
	H ₂ S	0	0	()	0.015 mg/m³
Tulcea	NH ₃	0.115	0.105	0,095	0.3 mg/m ³
	Odor Level	l	1	l	1 - 5
Margadi dipergenta dan dan dan dan dan dan dan dan dan da	H ₂ S	0.45	0.48	0.42	0.015 mg/m ³
Roman	NH ₃	0.33	0.35	0.35	0,3 mg/m³
	Odor Level	1	4	-1	1-5
ergali se daga pengapan dan sebagai se sa	H ₂ S	0.35	0.05	0.033	0.015 mg/m ³
Constanta	NH ₃	0.30	0.11	0.10	0,3 mg/m ³
	Odor Level	4	3	3	1 - 5

AII-7-32

APPENDIX-8 GEOLOGICAL SURVEY

A geological survey was conducted to prepare basic information on the soil conditions, which are necessary to investigate the type of foundation and temporally work for planning of wastewater treatment plant.

The geological survey consists of borings at the potential sites of the proposed wastewater treatment plant, and in-situ test and laboratory test to examine the soil characteristics. Contents of the survey are as follows:

3 sites

Boring (depth: 20m)

Boring (depth: 30m) 1 site

Standard Penetration Test 4 boring sites

Physical Test at Laboratory (Specific gravity, Liquid/Plastic Limit and Grain Size)

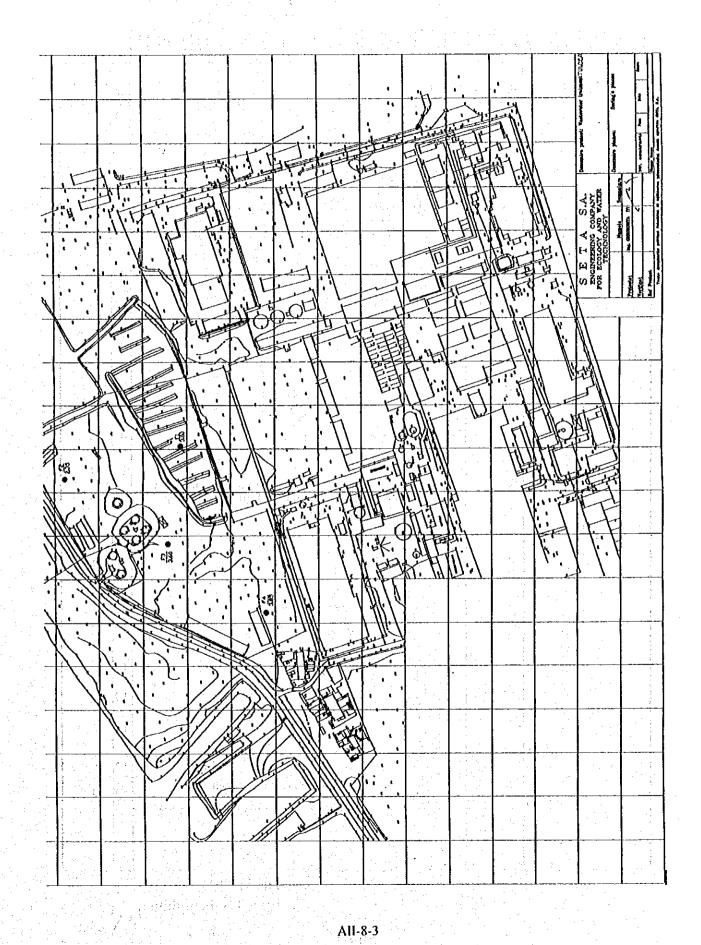
4 samples

Unconfined compression test at Lab. 4 samples

Consolidation test at Lab. 4 samples

A report of the geological survey, which was prepared by the contractor "SETA S.A.", is attached hereinafter, and the contents of the report consists of a location map of samping points, geological results, dynamic penetration test, analytical results of laboratory and result of consolidation test.

SIZITA S.A. SOCIETATE DE ECOLOGIE ²I TEHNOLOGIE A APEI


SEDIUL: str. Tudor Arghezi, nr.21 Sector 2, 70132, Bucure¿ti - J 40/4771/1995 - Cod fiscal R 7470611 Tel/fax: 211.32.20; 211.41.77; E-mail: Error! Reference source not found.

GEOLOGICAL SURVEY

: THE FEASIBILITY STUDY ON Subject WASTEWATER TREATMENT

Locality: TULCEA

: JAPAN INTERNATIONAL To **COOPERATION AGENCY**

Comanda:Wasterwater treatment

Working place: Tulcea Date: July 1999 GEOTEHNICAL RESULTS BOREHOLE Nr. F1 - 3.00 rBS

Mark of the underground water	Marks to 0.00 borehole		Layers structure	THE NAME OF LAYER	Depth	Dynamic penetration SPT
m	m	m			m	shocks
,	0.70	0.70	A JAA	Unhomogeneous filling	1	
NH: 1.80	2.00	1.30		Yellow, consistent plastic sand clayish silt, with limestony concretions	2	28
	2.80	0.80		Medium - fine, yellow, sand	3	16
			• • • •		3	
					4	24
					5	20
					6	20
					7	19
	1				8	30
					9	20
					H	
			in si	Gray fine-medium sand with broken snails and shells. Between 10.50 11.20 m depth thin	10	
	*.	1 de 1		black peat interlayers	11	
7.3					12	27
	:		- 11:		13	41
÷	:				14	42
					15	43
	:				16	50
8 4 5 6 7 6 7 1					17	50
					18	26
	18.70	15.90			19	7 (14.5 (14.5)
	20.00	1.30		Gray, soft plastic clay with broken shells	20	100
	20.00	1.30			120	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				_	
	4.75			[1] [1] [2] [2] [3] [4] [4] [4] [4] [4] [4] [4] [4]	<u>L</u>	

DRAFTED:

Comanda: Wasterwater treatment

Working place: Tulcea Date: July 1999 GEOTEHNICAL RESULTS BOREHOLE Nr. F2 - 2.35 rBS

Mark of the underground water	Marks to 0.00 borehole		Layers structure	THE NAME OF LAYER		Dynamic penetration SPT
m	m	nì			m	shocks
NH: 0.60	0.70	0.70	PAK	Unhomogeneous filling	1	9
: .		tage to the		Yellow sandy silt, consistent plastic immerged	2	19
	2.50	1.80			3	19
			4.		4	18
					5	17
					6	8
			00	e liktorio e e Portugalista		
			, (Gray fine-medium sand with broken snails and shells. Between 6.20 6.35 m depth, grey	7	19
				clayish peat lenses. Between 11.50 12.50 m	8	22
				depth, black peat with preserved plants.	9	23
					10	46
					11	29
					12	28
					13	31
					14	50
	14.50	12.00			-	
					15	7
					16	11
					17	9
				Gray, soft plastic clay with slightly sandy interlayers		
					18	8
		1			19	11
	20.00	5.50			20	15
					1	
		<u> </u>	<u></u>			

DRAFTED:

Comanda:Wasterwater treatment Working place: Tulcea Date: July 1999 GEOTEHNICAL RESULTS BOREHOLE Nr. F3 - 3.60 rBS

Mark of the underground water			Layers structure	THE NAME OF LAYER	Ш	Dynamic penetration SPT
m .	m	m			m	shocks
NH: 0.90	+ + +		4 4		1	
 .			. 4		-	
			4	Unhomogeneous filling	2	
ent ent			* *		3	19
	3.40	3.40	4			
			11/1/		4	2
			147.5		5	10
y high				Gray silty sand alternating with clayish sandy silt		
			7777	Sitt.	6	21
	7.00	3.60	(1777		7	17
	7.00	3.00	7.7,			
					8	24
					9	30
					10	34
			معن مست		10	34
					11	36
					12	38
				Gray fine-medium sand with broken shells.	-	
			- 1	Between 10.40 10.80 m depth thin black peat interlayers	13	26
					14	37
			6-163		15	42
			1.		16	41
					-	
	17.40	10.40			17	50
	17.40	10.40			18	17
				计连续通过电路 海巴克	1.0	20
					19	20
			11/10/20	Gray, soft plastic clay with slightly sandy interlayers. Gaseous emanations.	20	16
					21	20
	1 :				21	- 20
			5.1 (2.)		22	24

DRAFTED:

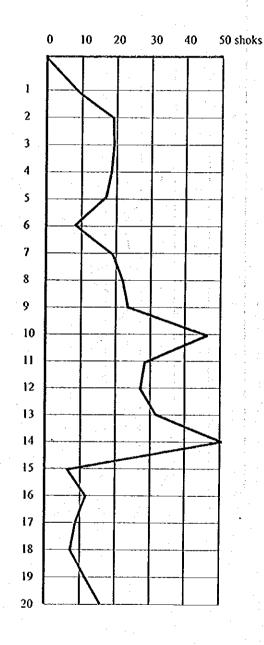
Comanda:Wasterwater treatment Working place: Tulcea Date: July 1999 GEOTEHNICAL RESULTS BOREHOLE Nr. F3

Mark of the underground water	Marks to 0.00 borehole		Layers structure	THE NAME OF LAYER	Dep	Dynamic penetration SPT
m	m	m			m	shocks
			; ; ; ; ; ;		23	29
					24	23
					25	25
/				Grey, soft plastic clay with slightly sandy interlayers. Gaseous emanations.	26	19
					27	
					28 29	
	30.00	12.60			30	
	14 14				· 	
						. : -
					-	
		1				20 20 30

DRAFTED:

Comanda; Wasterwater treatment Working place: Tulcea Date: July 1999 GEOTEHNICAL RESULTS BOREHOLE Nr. F 4 - 3.85 rBS

Mark of the underground water	0.00 borehole	the layer	Layers structure	THE NAME OF LAYER	Dep	3r i
m	m	m			m	snocks
	2		∜ A ·	Unhomogeneous filling	1	36
NH: 2.20	2.00	2.00	7///		2	7
	i i				3	16
					4	9
				Gray sandy clayish silt consistent plastic	5	22
	·				6	3
	7.00	6.00			7	7
	7.90	5.90	77777		8	22
					9	29
		• •			10	34
			dis		11	33
				Gray fine-average sand with snails and shells.	12	46
e e				At 11 m depth, thin peat interlayers (cm)	13	32
					14	39
					15	48
					16	43
	17.60	9.70			17	4 - 1
			\$120 12 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Gray, soft plastic clay with shells and thin sandy	\vdash	18
				lensses	-	20
	20.00	2.40			20	24

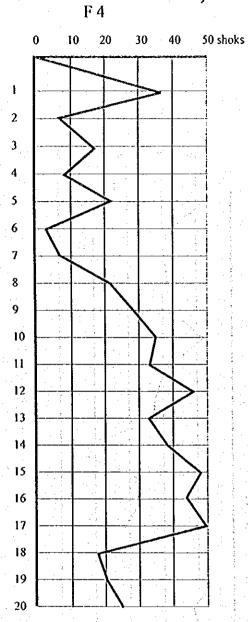

DRAFTED:

Comand: Wastewater treatment Working place: Tulcea Date: July 1999

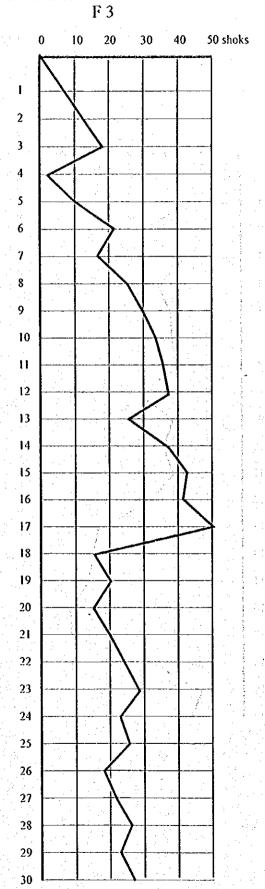
Dynamic penetration test

F 1

F 2

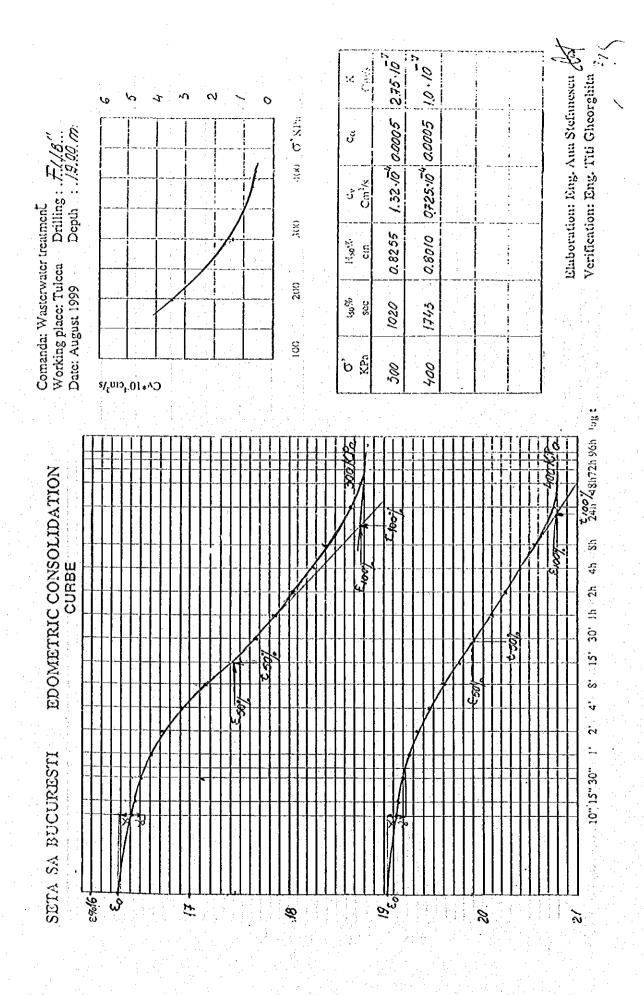


DRAFTED:


Comand: Wastewater treatment

Working place: Tulcea Date: July 1999

Dynamic penetration test


DRAFTED: Eng., T. Gheorghita

į.	Ī	<u>3</u>	noisedo	o g	33	T	t's		
يبا		nesistance to cutting	elgns noissids Isnielni		7		9	1	
atmen	İ	LSO	Specific compresion	ж. 6/ г. s/mp	2.75		5.0		
r trea	١		eniqmsb yd noissatqmoo	< 0			<u> </u>		
wate		tion	Specilic supplementary	ა " -	20005 20005 20005		0,000/	i i	
Vaster	200	Consolidation	Primary consolidation Primary consolidation	, c, t, f, mo	3.48 a.002 1.32 0.0005 0.725 0.0005		4,0	3	
Comanda: Wasterwater treatment Working place: Tulcea	Augus	ઠ	Primary consolidation		424	 	349		
Vorki Vorki	aie:		Pressure		200 /		00 00 00	3	
USU	1		Specific weigh	r KN/m³ KPa	26.3		26.3 3	<u> </u>	$ \dot{\lambda} $
		:	Humidity level	ο̈́	262				u V
			xebni əroq	•	.26		7.26		rghit
			Voiceity	c %	55.8		557 1.26 0.98		Titi Gheorghita
			Dry volume weigh	p. (W/M	9//		1.6		iğ.
<u>%</u>			Volume weigh	۲ ۲ ۲ ۲ ۲ XN/m			O'E!		Eng.
ATC			Xəbni yənələlənoO		£9/ £4:0 704		0.38		
LABORATORY	[իսանննչ	≥ %	704		28.6 25/ 44.2 0.38		Verification:
		- 1 - 1	Plasticity index	ō %	37.2		25,		V.
Q F		Plasticity limits	knead 'limit	× %	23.8 3./2		28.6		
RESULTS		되 합 근	Jimit wol-		550		53.7	1. 1	12
ESL		ဋ	bnes lesta	0.5 - 2.00]
		Granulometric components (d in mm)	Medium sand	0.25-0.5					
YSIS		anulon mpone in mm	bnes eni3	92.0 - 60.0	77		97		
	ŀ	ទី ខ្លី ១		900 - 900 0	94	<u>.</u>	20		
ANA			Clay	500.0>	24	: N :	2,		1
		Bottle Sleeve Monolith	Оеріћ		061		150 43		
		8888	No. samples						escn
SETA SA BUCURESTI	A STATE OF THE STA		Name of layer	Drilling - no: F1/8"	Grey, soft plastic sitty alay	Drilling no: F2/8"	Grey, saft plostic		Elaboration: Eng. Ana Stefanescu
) BU	* 1		Underground water depth	e	161616161		WWWWWW.		Ü
SA				· · · · ·					
SET/	311		Drilling level 0.00 Layer thickness	E				11.	
100			On O Testal politing	l					

			-		·		<u> </u>	1
	9000	noisedoO	o A	24		53		
날	Resistance to cutting	elgns noizarda lanıətni	°9.	6/		8/		
satme		Specific compresion	K_7 /0	5.8 7.3		19.3 9.4 3.2		
er tre		compression by damping				2/00'C		
wate licea	tion	Specific supplementary	ပံံ	5/00.0 5/00.0				
Waster	Consolidation	Primary consolidation coelicient	c. 10-4 cm²/s	2.18 1.04 0.51		3.37 2.25 1.15		
Comanda: Wasterwater treatment Working place: Tulcea Date: August 1999	ပိ	noitebilo ano y namit emit	, o s	200 677 300 1239 400 2453		467 6 26 1124		
Nort Nate		Pressure	с КРа	200 300 400		100 200 300		
		Specific welgh	γ. KN/m ³	26.3		263		
		Humidity level	<i>ග</i> ්					7
		xebni eroq	•	558 1.26 0.95		760 007		Eng. Titi Gheorghita
		Рогоѕйу	с %	558		±'817		ghec (
		Ory volume weigh	γ ^α KN/m³	11.6	1 24	13.2		E
ğ		Volume weigh	لا برساع KN/m ^a KN/m ^a			ťž!		Eng
LABORATORY		Consistency index	91	59/ 45:0 665		0.22		ë Ö
BOR		Humidity	% M	599	The second	120 34.8 0.22		Verification:
		Plasticity index	₽ %	359				align*
o R	Plasticity limits	fimit baenX	Š %	24.0		25.4		
RESULTS	Pias Iir	Flow limit	≅ %	529		37.4		
l SE	ပ္	bnss fs910	0.5 + 2.00					1
	metr ents	Medium sand	0.25-0.5					
LYSIS	Granulometric components (d in mm)	bnss ani T	0.05 - 0.25	h . 1		305		
5	2 2 2	IsuO	50.0 - 800.0	54		9		
ANA		Clay	900.0>	87		75.52	2	人科
	Bottle Sleeve	Оер≀ћ	ε	185	7	4.50		1
	Bottle Sleeve	No. samples						nose
		ayer	. 8	stent	F4/8.	Sou		na Stefane
E		Name of layer	Drilling - no: F3/8	Grey, consisteni plastic clay	Brilling no. F4/8.	y, runnag ush sandy sitt		Elaboration: Eng. Ana Stefanescu
SETA SA BUCURESTI			1	(&) d	35.76	6 9		aboration
BU	-	Layers				SWANNY 1/2	}	👸
SA	 	Underground water depth						.
ñΤÄ	-	rayer thickness	ļ				1	
[N		00.0 level gnilling	1 2 2 2				<u> </u>	

0.8656 3.48.10-4 0.0020 10.9.10-3 Bir 400 G KPa Verification: Eng. Titi Gheorghita Elaboration: Eng. Ana Stefanescu ű Ç. Cın'' 8 Hag. **300** 140% NO.C 424 š ົນ ຊື້ 200 Cv*104cm3/s 24h 48h72h 96h logt EDOMETRIC CONSOLIDATION CURBE 4h: 8h **7** 30° 1h .5 ॐ ;, ---SETA SA BUCURESTI 10., 15., 30. 200 3 9 %3 Ç 7.

Elaboration: Eng. Ana Stefanescu Jul Comanda: Wasterwater treatment
Working place: Tulcea Drilling: .F2./.8.".
Date: August 1999 Depth : .(5.0.m... 0.8459 4.0.104 0.0019 8 Cm²/s 8 H₅₀% 8 tso% 348 8 g g 200 Cv*10 cni2/s EDOMETRIC CONSOLIDATION CURBE SETA SA BUCURESTI

κ΄ Cπ/s

ď

Verification: Eng. Titi Gheorghita

24h 48h72h96h logt

85

4'n 5

30° Ih

S óo 4 N

10" 15" 30"

Ś

Ø

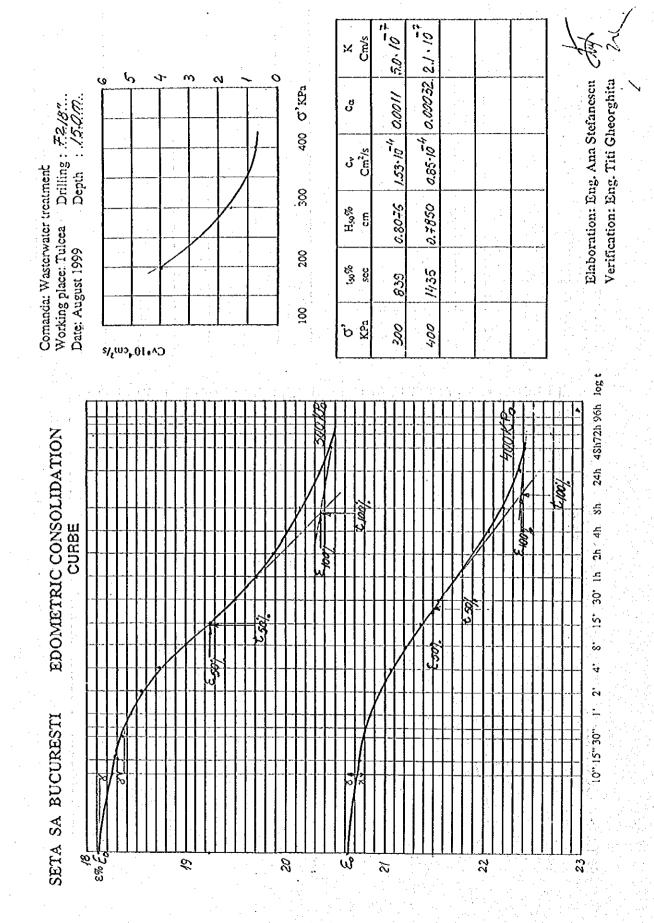
7

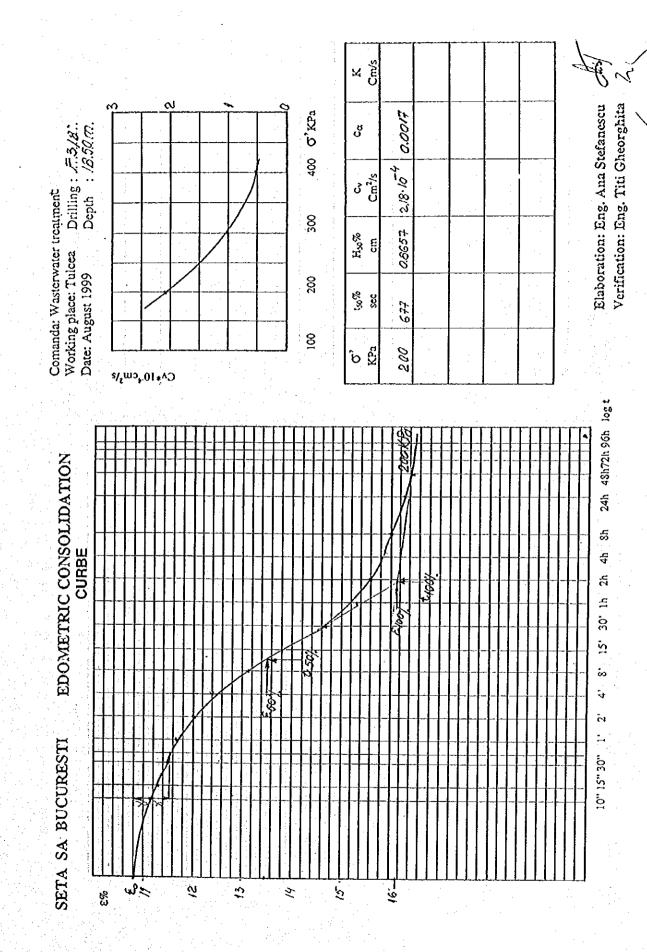
5.03

14

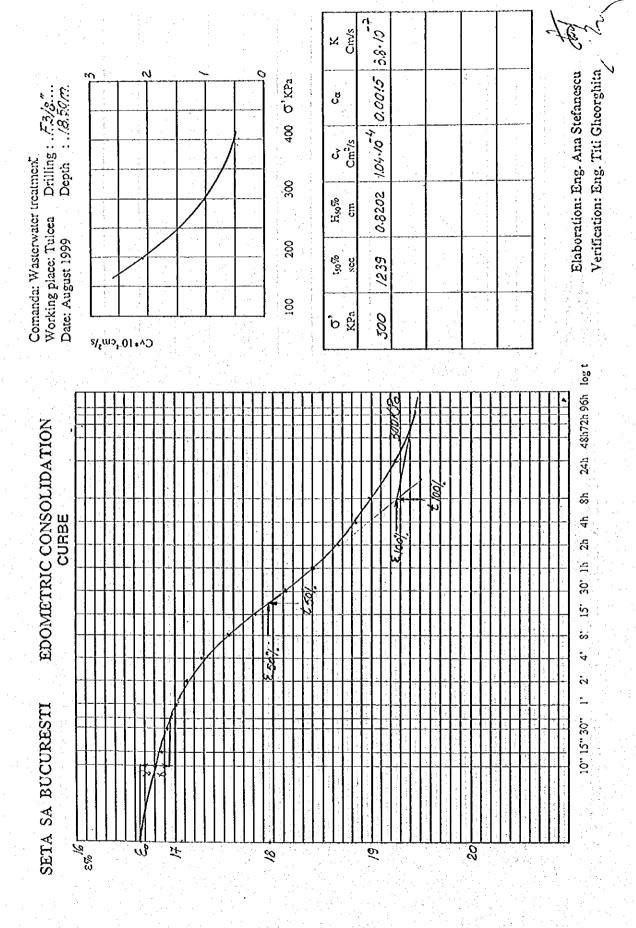
Ś

\$

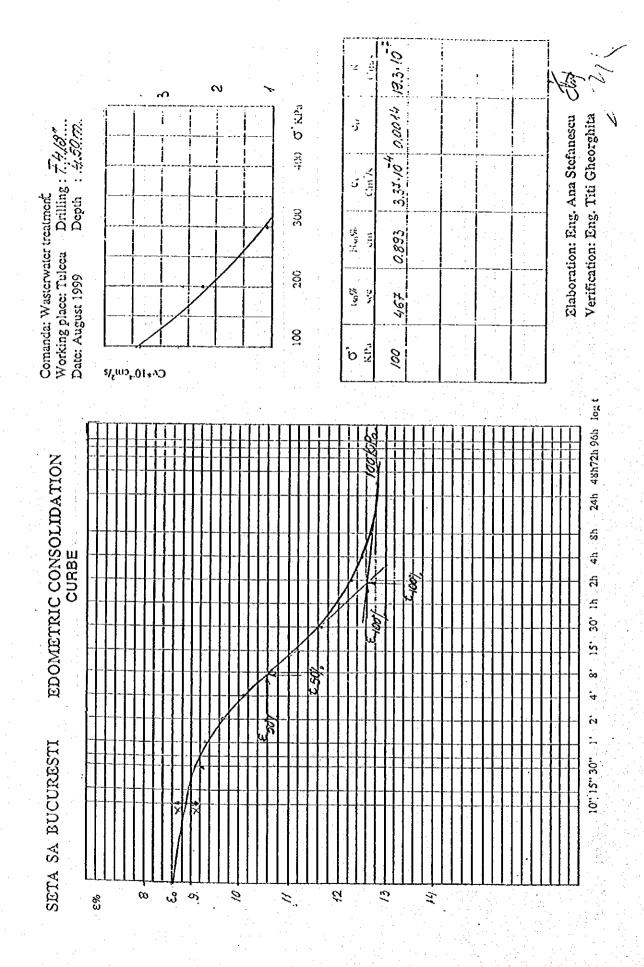

M

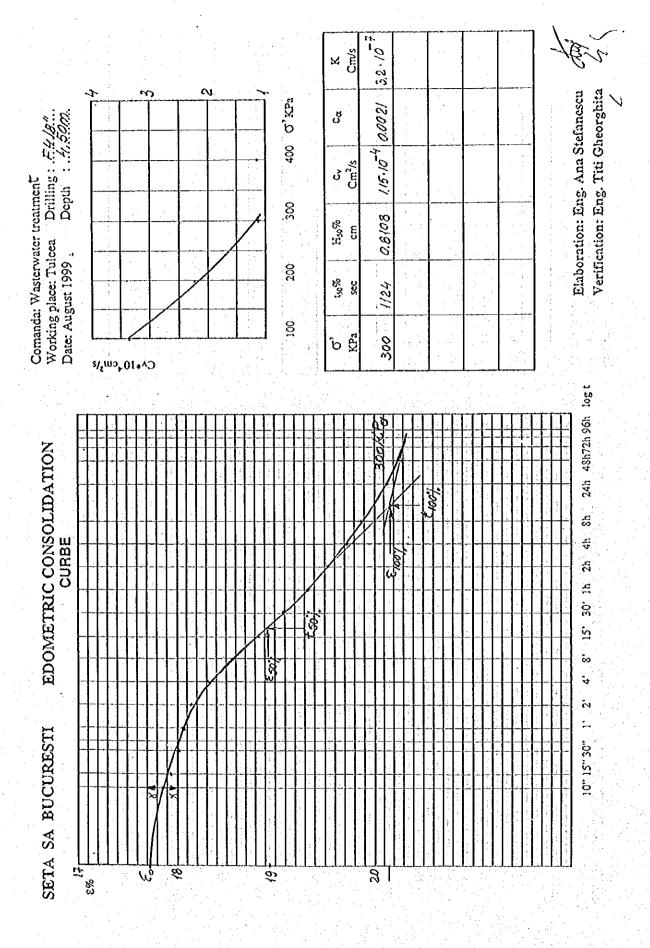

Ŋ

0


g'KPa

14




)

0.7962. 0.51.104 0.00016 1.3.10-7 Cnv/s Elaboration: Eng. Ana Stefanescu Verification: Eng. Titi Gheorghita 400 G'KPa Drilling: .63/8''... Depth : /8,50.m. ğ c_v . Cm²/s Comanda: Wasterwater treatment Working place: Tulcea Drilling Date: August 1999 Depth 8, H_{so}% cm 8 2453 150% 8 κ P_D 004 C^*104cm3/s 24h 48h72h96h logt EDOMETRIC CONSOLIDATION \approx CURBE 뜌 ន = ခွဲ 5 --SETA SA BUCURESTI 10" 15" 30" %3 Ñ

8.4.10 K Cm/s Verification: Eng. Titi Gheorghita Elaboration: Eng. Ana Stefanescu ኅባ Q, KP_a 0,8458 2,25.104 0,0012. Drilling: £4/8... Depth : 4,50.m. Ç 8 Cm²∕s Comanda: Wasterwater treatment Working place: Tulcea Drilling Date: August 1999 Depth 8, H₂₀% 8 Sec 3 626 8 200 ဦးတိ Cv*10 cm³/s 24h 48h72h96h log t EDOMETRIC CONSOLIDATION S . 47 CURBE ä 30. ś ó 4 -SETA SA BUCURESTI 10" 15" 30" %3

PART All-2: FEASIBILITY STUDY FOR GALATI WWTP PROJECT

APPENDIX-1

PLANNING BASIS

1. PROCESS TO DETERMINE THE DESIGN BASIS

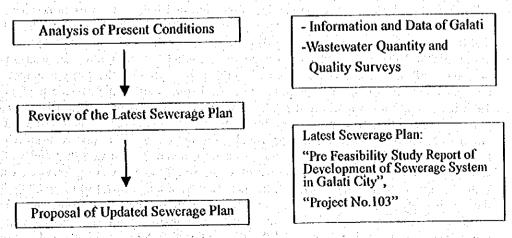
The following design basis for the Galati WWTP will be reviewed and updated:

- Population

Total Administrative Population

Service Population of Public Water Supply and Sewerage System

- Design Flow


Wastewater Generation, Average Daily Flow, Maximum Daily Flow, Maximum Hourly Flow, and Wet Weather Flow

- Wastewater Characteristics

Wastewater Pollution Loads Estimates

Design Influent Quality for the proposed WWTP

The design basis will be reviewed and updated by the following process as shown in Figure 1. First, the present conditions concernig design basis are analyzed based on the data and information provided by the Galati city, the public water company "APATERM" S.A. Galati, and related organizations. The survey results of wastewater quantity and quality are also used to understand the present conditions of wastewater generation and pollution loads. Second, the design basis proposed in the latest sewerage plan will be reviewed. The latest plan is "Pre Feasibility Study Report of Development of Sewerage System of Galati City, Project No.103", prepared by PROED in September 1992, hereinafter referred as "the 1992 Pre F/S". Finally, the design basis for this F/S will be updated and proposed.

Process to update the Design Basis

2 POPULATION

2.1 ADMINISTRATIVE POPULATION

The administrative population of Galati city is 330,276 at the end of December 1998, based on the data available from the bureau of statistics in Galati. Figure 2 shows the population data from 1982 to 1999 obtained from the bureau of statistics in Galati. It indicates that there are two growth patterns before and after the year of 1991. Before 1991, the population was increased with high annual growth rate at 1.67%, but after 1991, the population was nearly constant at about 324,000 to 330,000.

According to the 1992 Pre F/S prepared by PROED, the future population was projected 360,000 in the year 2000 and 382,000 in the year 2010. These projections are based on the population data of 324,000 in the year 1991, with the annual growth rate of 1.18% (from 1991 to 2000) and 0.59% (from 2000 to 2010), respectively. The population data in the year 1991 was confirmed and authorized by the police of Galati.

The bureau of statistics in Galati comments that the projected population of 382,000 in 2010 by the 1992 Pre F/S is appropriate, taking into account that the present population of 335,962 on June 25, 1999 can be increased by an annual growth rate of 1.2%. The latest present population of 335,962 is confirmed by the police of Galati.

When it is assumed that the high annual growth rate of 1.67%, recorded during 1982 to 1991, can be expected after 1999, the population can be increased to about 403,000 in 2010. While it is assumed the nearly constant growth rate of 0.08%, recorded during 1991 to 1999, the population will be about 339,100 in 2010. The projected population of 382,000 in 2010 by the 1992 Pre F/S is positioned at a mean value of the above projections based on the two distinctive population growth patterns as shown in Figure AII.1.1.

As a result of brief review of the administrative population of the Galati city, the projected population of 382,000 in the year 2010 is appropriate and can be used for the planning basis of the F/S to be conducted by JICA Study Team.

2.2 SERVICE POPULATION

At present the "APATERM" S.A. Galati provides the water supply and sewerage services. The following table shows the present service population in 1999. The present service population is compared with the proposed service population in 2010 by the 1992 Pre F/S. It indicates that the present population of category 1, provided water through communal taps, is only about 100, while the 1992 Pre F/S planned it population would be about 6,500. It means that the user of communal tap is already very limited. Taken into account the present number users of communal and yard taps, it is proposed to amend some part of the service population in the 1992 Pre F/S as shown in Table All.1.1. The number of users of communal taps, category 1, will be zero, and that of taps, category 2, will be reduced 33% from about 7,450 to 5,000. The number of beneficiaries of water supply and sewerage service equipped with individual water heating system, category 4, will be decreased from about 21,000 to 8,000 and shifted to the Category 5. The number of beneficiries of water supply and sewerage services with central water heating system, category 5, will be increased from about 307,130 to 369,000. Therefore, the number of beneficiaries of sewerage service will be increased from about 328,095 to 377,000 with the increment of about 48,900. Compared with the service population of sewerage system proposed in the 1992 Pre F/S, additionally 8,000 residents will be provided the sewerage service as shown in the Table All.1.