#### 3.7 LAYOUT OF FACILITIES

Main structures of the WWTP, such as primary sedimentation tank, aeration tank, final sedimentation tank, sludge thickener, sludge digester, grit chamber and oil separator, chlorination chamber, and effluent pumping station are shown in *Figure All.3.1* to *All.3.8*. The structures and the layout of facilities is designed based on the design basis described above and the actual site conditions.

## 4. ELECTRICAL, INSTRUMENTATION AND CONTROL FACILITIES

This section describes the purpose, functions and outline of the major electrical equipment, instrumentation and control works. The numbers, shapes, sizes, and brief specifications of the equipment described here are for the preliminary engineering purpose, and may be subject to minor changes at the detailed design stage.

#### 4.1 GENERAL

The basic requirements for the electrical, instrumentation and control equipment at the wastewater treatment plant are adequacy, reliability and safety. Adequacy of the major equipment such as circuit breakers, power transformers and the motor control centers are determined largely by the continuous current requirements of the treatment plant loads and the available short-circuit capability of the power supply.

The reliability of the equipment concerns the capacity of the electrical system to deliver power when and where it is required under abnormal, as well as normal, conditions.

Safety involves the protection of plant personnel as well as the safeguarding of equipment under all conditions of operation and maintenance.

The electrical system should be designed with enough flexibility to permit one or more compounds to be taken out of service at any time without interrupting the operation of the plant.

The generation of power from wastewater gas production will be economical if the power is effectively utilized for the plant operation or other purposes.

The design of the wastewater treatment plant electrical system must conform with the applicable local codes and regulations.

## 4.2 ELECTRIC POWER FACILITY

#### 4.2.1 General

The basic power distribution system can best be described as a secondary single selective system. One electric power line shall be received at the main substation. Another separated line should be planned as a stand-by use in the future.

The received power will be stepped down by the two main transformers and connected to the 380 V bus line. Each transformer shall have a capacity for all loads in the treatment plant by the year 2010.

The 380 V will be stepped down to auxiliary power distribution voltage (lighting and receptacles, etc.) by transformers that are installed at required locations.

The protective relay system shall be considered for proper protection of the electrical equipment in adequate/proper manner. Extensive zone protection will be considered for the parallel operation of the generator with utility power.

Specifications of the electric power facility, current-capacity, short-circuit-capacity, etc., shall be designed taking into consideration any future expansion.

#### 4.2.2 Power Requirements of the WWTP

As described in some detail in *Table AII.3.1 "Tulcea WWTP, List of Mechanical Equipment,* the WWTP mechanical equipment require the maximum electric power supply of 685 kW, excluding standby equipment. The electric power requirements by the process are as summarized in the following:

| No. | Process                  | Equipment                                                                                                       | Motor<br>outputs (kW) | Remarks              |
|-----|--------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|
| 1.  | Screens                  | Mechanical screens/auxiliary equipment                                                                          | 10.8                  | Standbys<br>excluded |
| 2.  | Grit chambers            | Blowers                                                                                                         | 39.8                  | Ditto                |
| 3.  | Effluent pumps           | Pumps, valves                                                                                                   | 71.0                  | Ditto                |
| 4   | Primary clarifiers       | Scrapers, sludge pumps                                                                                          | 7.5                   | Ditto                |
| 5.  | Aeration tank blowers    | Blower, filters, cranes,                                                                                        | 202.0                 | Ditto                |
| 6.  | Final clarifiers         | Scrapers, sludge pumps,                                                                                         | 119.5                 | Ditto                |
| 7.  | Chlorine contact tanks   | Chemical supply pumps                                                                                           | 0.8                   | Ditto                |
| 8.  | Sludge thickeners        | Scrapers, sludge pumps, valves, screen                                                                          | 17.0                  | Ditto                |
| 9.  | Sludge digestion tanks   | Mixers, pumps, valves, heaters, fans, blowers                                                                   | 116.2                 | Ditto                |
| 10. | Sludge dewatering        | Belt filters, conveyors, pumps, hoists, auxiliaries                                                             | 100.3                 | Ditto                |
|     | Total power requirements | and the second secon | 685.0                 | kW 👘                 |

#### 4.2.3 Power Generator

An emergency electric power generator of minimum 200 kW capacity should be provided. The generator is driven by a diesel engine and will be used as the minimum plant electric power source when the power supply is suspended. In order to attain the intent of the above design concept, the generator power line should be connected to the 380 V bus line which is charged by the utility supplied power.

#### 4.2.4 D.C. Power Supply

Uninterruptable D.C. power is supplied to breaker control circuit and an emergency lighting facility. Consequently, uniterruptable A.C. power supply for instrumentation and PC system is converted from D.C. by means of an inverted unit.

A sealed lead-acid stationary battery set shall be selected for this purpose due to its excellent quality features. The capacity of the battery set shall be designed by the required current and 30 minutes discharge time.

Each building within the plant will have its own independent uninterruptable power source unit for better and more effective utilization of the filtered/undistorted power source.

#### 4.2.5 Motor Control Facility

Power feeder to the motors and wiring to the controlling equipment is accomplished through motor control center and relay cubicles. The motor control center and the relay cubicles are divided into individual facility center and relay cubicles such as one set for clarifiers and another for seum screen area. Each motor must be operated manually from the control station to be located adjacent to the equipment. The control panel will be equipped with switches for operation status indication and meters as required.

Major control sequence is to be accomplished through the relay cubicle as required for each mechanical equipment.

The sub-monitoring panel is to be provided in the room for the purpose of detailed monitoring and back-up operation.

Type of cables/wiring to be utilized, conductor sizes, cable routing/layout and arrangement methods, etc. shall be determined appropriately throughout the detailed design stage of this project.

#### 4.3 INSTRUMENTATION

#### 4.3.1 Design Basis

Instrumentation is an important tool of the wastewater treatment plant because it insures an easy and proper operation and maintenance of such facilities.

The equipment should be selected carefully considering its purpose, reliability, locations and costs. They should meet the specific functional needs of the particular equipment with special attention directed toward operation requirements.

#### 4.3.2 Major Monitoring Instrument

Major monitoring equipment to be installed are summarized below. Each equipment has an indication meter, an alarm, etc.

| Water level in entrance chamber                               | Suspended type level meter |
|---------------------------------------------------------------|----------------------------|
| Grit chambers                                                 | Parshall flume             |
| Primary settling tank, incoming flow                          | Ultrasonic flow meter      |
| Primary sludge flow                                           | Electromagnetic flow meter |
| Receiving water level at plant effluent gate box              | Suspended type level meter |
| Effluent pump wells                                           | Suspended type level meter |
| Dissolved oxygen at aeration tanks                            | DO meters, air flow meters |
| Secondary sludge flow                                         | Electromagnetic flow meter |
| Return and excess sludge flows                                | Electromagnetic flow meter |
| Digestion tank temperature                                    | Thermo-coil                |
| Digester outlet gas flow                                      | Orifice flow meter         |
| Heater gas flow                                               | Orifice flow meter         |
| Digested sludge flow                                          | Electromagnetic flow meter |
| Feed sludge/polymer dosage flow                               | Electromagnetic            |
| Sludge tank/dosage tank level                                 | Bubble tube level meter    |
| Thickened sludge flow to digesters                            | Electromagnetic flow meter |
| Temperature, digester return water basin temperature and hot  | Thermocoil                 |
| water basin temperature (outlet water from engine generators) |                            |

#### 4.3.3 Supervisory Control and Data Acquisition System

The system can best be described as a local, independent, process control network with supervisory, central, monitoring station consisting of hard graphic indication (MIMIC) panels and soft monitoring/control station consisting of graphic screens, keyboards, printers, etc. The

basic design of the system will be classified as follows:

- Local instrumentation/control station;
- Local process control units (Programmable logic controllers);
- Hard graphic/MIMIC panel;
- Redundant data highway;
- Host computer system and real time data storage;
- Historical data retrieval
- Workstations

#### 4.3.4 Local Instrumentation/Control Station

The local instrumentation/control station will provide a monitoring/control point for each process equipment in the event of computer failure, data highway failure, etc. These will be four local instrumentation/control panels, one for each of the following areas

- Preliminary treatment facility;
- Primary treatment facility;
- Secondary treatment facility;
- Sludge digestion facility;
- Sludge dewatering facility; and
  - Power generating facility.

Equipment control, status indication, alarm conditions, indication of measured quantities of process variables, equipment runtime, etc. will be hand wired to the aforementioned local panels as back-up plant operating and monitoring station. Instrumentation/control panels will be located in the electrical room of the respective plant process control building.

The electrical rooms will be environmentally controlled for equipment protection. Local instrumentation/control cabinet will also house the individual instrument loop power supply unit.

## 4.3.5 Local Process Control Units (Programmable Logic Controllers)

Programmable Logic Controllers, hereinafter named as PLC, will be utilized as the interfacing/control means with field equipment. The PLC technology is adopted for several logical reasons, one of which is the minimum amount of closed loop control required for this plant as well as the rapid development /enhancements made to today's PLC's in comparison to the distributed process controller technology.

Each PLC with its respective I/O's, power supply, etc. will be housed in a separate cabinet independent of any other local control and/or local instrument panel. The design concept derives the installation of one PLC unit or PLC with hot back-up (as applicable) in the following areas:

- Primary treatment facility (single PLC unit);
- Secondary treatment (single PLC unit);
- Sludge digestion facility (single PLC unit);
- Sludge dewatering facility (single PLC unit);
- On-site power generating facility (single PLC unit); and
- Central control room in administration building (PLC unit with hot back-up).

#### 4.3.6 MIMIC Panels (Hard Graphics)

MIMIC panels will be installation (Digital meters) of selected measured process variables (crucial variables) as depicted by the process and/or process design engineers. The foregoing indicating devices/instruments, etc. will be driven by the I/O modules of the PLC installed in the administration building. However, each MIMIC panel will be interfaced with its own utility (one panel).

Adequate speed is necessary to improve and insure proper response time, rapid overall dynamic data update, avoid network crashes, adequate service of host computer to each local processing unit, considerable reduction of CPU halt-time and interrupts of the host computer thereby utilizing execution time of the utility in terms of length of runs (Considerably less restriction associated with length of highway), higher communication speed, lower in cost including cost impact on PLC's and installation cost relative to any other highway.

#### 4.3.7 Historical Data Retrieval

Utilizing historical data retrieval unit will assist plant engineers, laboratory personnel, operating/ maintenance personnel considerably. Row and/or manipulated data will be automatically transferred from the hand disc to the historical data retrieval unit.

Additionally, automatic filing system will be adopted. Actual size of this unit will be determined based on real time capacity required by the system with consideration given to additional space for crunched data, manually entered data, etc.

#### 4.3.8 Work Stations

A single engineering/report generating station will also be installed in the Central Control Room. The operator's workstation will mainly be utilized for plant graphics, equipment control, a point of monitoring live/dynamic/station data, alarms, etc. All events historical data retrieval unit and the hard disc drives.

Equipment will be installed on computer grade furniture. The engineering workstations will mainly be used for reports, trending, manual data entry, engineering computations, etc. The third engineering/report generating workstation will be installed in the plant's superintendent's office.

Emergency lighting will consist of emergency lighting for the required minimum illumination and the guiding lamps. Battery supplied D.C. power is suitable for the power source until the plant gas generator is on.

The motor control center and the relay cubicles are divided into individual facility center and relay cubicles such as one set for clarifiers and another for scum screen area. Each motor must be operated manually from the control station located adjacent to the equipment. The control panel will be equipped with switches for operation.

## 5. MAJOR PLANT BUILDINGS AND UTILITY SERVICES

#### 5.1 GENERAL LAYOUT

Administrative building will consist of several main areas comprising the control room, laboratory, conference room, administrative personnel area, etc.

The garden with vegetation, which along with the shape of the administrative building,

contributes to the control of odors coming from the processes buildings.

All the buildings will be of one story type but some of them have double height ceiling as required for the functional and mechanical needs included in that building.

The workers area should include workshop, storage rooms, restrooms, and a cafeteria for workers. The workshop should be related directly to the service road of the lot to permit easy transport of materials and machinery to be repaired.

The service road will be joined through a gate to the entrance for visitors and parking area that may be open for emergency purposes. Only authorized personnel may visit the plant. For vchicles of inspection or visits to the plant, a parking area with the fiberglass type will be provided.

#### 5.2 ARCHITECTURAL WORKS

The uncovered preliminary facilities could be a source of odors, and as such, trees should be planted alongside the plant fence to help minimize odors. A landscape design is conceived for the whole lot. There should be trees and grasses wherever they do not disturb wastewater treatment processes.

The workers and administrative buildings are to be separated from other buildings, surrounded by roads and communicated with the outside by an entrance. Shrubs and trees should be planted in front of these buildings to help control odor dispersion.

Administrative Building: The largest areas may be covered with concrete slabs. All the areas may have brick walls, natural light and air conditioning. The floor level of this building is raised more than 30 cm from the ground to protect it from flooding.

Office room may have the capacity of twenty (20) persons with air conditioning system, lighting from 300 to 400 lx. With necessary lockers, desks and chairs.

In addition to the space for laboratory, this area may also include restroom and storage room, with air conditioning, natural and artificial light, and necessary desks and water analysis equipment.

Control and electrical equipment room may have air conditioning and ventilation system. Lighting from 400 to 600 Lx, including electric room which is separated by a partition.

Workers Room: This area consists of restroom for operation and maintenance workers with showers and lockers. This room is also raised 30 cm from the ground level.

**Depot/Workshop:** This room will be for small and big parts of the plant equipment, roof with metallic structure, brick walls, natural light and fans for ventilation. Lighting is 200 Lx. Rooms separated by partitions for tools storage, welding works, electric works, etc.

Generator Room: Main electrical building shall have a floor level raised 30-cm from the planned ground elevation to avoid possible flooding. The building should face a road to permit the flow of machinery. Noise and vibration prevention measures shall be considered. Mechanical ventilation system shall be provided.





#### 5.3 GENERAL CRITERIA FOR THE STRUCTURAL DESIGN

Foundations: The soil study performed under the feasibility study includes a sub-surface survey of the plant site and surrounding areas. A total of four soil test borings, each 30 m deep, were performed within the site in addition to the neighboring area.

All the collected soil samples were tested in the field and laboratory to determine the characteristics of the soils, classify them, analyze their behavior during construction or under constant.

Such recommendations refer to excavation systems, control of groundwater, foundation levels, inclination of slope, coefficient of lateral pressure, bearing capacity, expected settlements, and all aspects that should be considered in the design and construction of the treatment plant facilities.

The floor levels of the various component buildings of the plant will be installed at a minimum level of 30 cm above the site finished mean grade level of 4.7 m above the mean Black Sea water level (M.W.L).

Structures: The main structures of the plant are cylindrical and rectangular tanks in shape; pipes with large diameters; pumping facilities, and buildings for the administration, operation and maintenance purposes.

The detail design of all the structures shall be performed in light of obtaining security, cost savings, water tightness, durability, and easy to construct.

Cement, aggregates, reinforcement steel bars, and concrete mix designs shall be in accordance with the requirements of relevant Romanian Standards or equivalent international standards.

Loads: The following loads shall be considered for the structural design, if applicable:

Subpressure of groundwater level.

- Lateral earth pressure.
- Hydrostatic lateral pressure.
- Seismic loads winds.
- Forces due to temperature.
- Forces due to differential in humidity.
- Curing.
- Differential settlements.
- Dead loads.
- Live loads.
- Movable equipment.
- Stationary equipment.

The area is located in a zone of seismic risk. According to the Regulation P100/1992, the area is located in a D-degree seismic area. Determination of seismic loads shall be in accordance with the Regulations, local codes or other accepted standards. Each type and size of structures shall be individually designed depending on its own conditions assigning the factors of security established by the standards.

The circumstances shall be evaluated and considered in the plant structural design. Any stationary equipment shall be taken as dead load except for the torque, impact and vibrations

AII-3-24

that might occur when rotary equipment is involved.

**Design:** The basic material for the construction of the plant structures will be the conventional reinforced concrete structures. Long span beams may be applied to the structures, which may be of post-tensioned with high resistance-cables.

The structure design shall follow the Romanian National Standards STAS 4273/83 or equivalent international standards and publications.

**Materials:** All materials to be considered for the structural and architectural designs shall be subject to the relevant in the Romanian Standards, or other equivalent international specifications.

#### 5.4 PRINCIPAL PLANT FACILITIES

#### 5.4.1 Storm Drainage System

The planned site elevation is 4.7 m above M.W.L. and the site is not subject to 100-year flooding. The only inundation within the site might be of stagnated stormwater. Hence, an appropriate drainage facility should be provided to handle the stormwater runoffs. Surface drainage may be of open channels or conduits installed along the edge of roads and then discharge the stormwater into nearby drains.

#### 5.4.2 Water Supply System

The public water supply distribution system is available for the treatment plant water system. However, to secure stable clean water supply to be used for the process a supplemental new well may be dug.

#### 5.4.3 Sanitary System

Wastewater resulting from public health water usage will be drained into the sewer located within the plant site.

#### 5.4.4 Site Roads and Parking Areas

Roads and parking areas must be paved with the pavement consisting of granular sub-base and base course materials with an asphalt surface.

#### 5.4.5 Grading and Landscaping

Grading will slope away from structures to the open channels or box culverts. Landscaping includes grass for the area around the roads, structures and buildings. Trees and shrubs will be all along the fence of the site limits.

Shallow rooted small shrubs should be planted at areas where pipe systems exist, to avoid possible damages. This will eliminate clogging and damaging of the pipes.

The use of small trees around roads and buildings help to give a human scale to the project because structures are usually high.

#### 5.4.6 Site Security

The site must be closed with a chain link fence or other appropriate means. The entrances will have a gate with hardware locks to have them closed when necessary.

#### 5.4.7 Safety

**Guardrails:** For walkways located in hazardous areas of the structures, guardrails must be used. Guardrails shall be painted with safety colors of yellow and black.

Lighting: There shall be exterior lighting all-over the site, along roads, near the structures and along the edge of the surrounding of fence.

Lifesavers: There shall be one lifesaver at each deep and uncovered structure such as clarifiers and anaerobic ponds.

Site Signs: A sign identifying the project and the owner should be put at the entrances of the site. A sign system for orientation within the plant, as well as a color code for elements of the buildings will be provided

#### 5.5 **BUILDING UTILITIES**

#### 5.5.1 General Requirements

Systems to be considered for the buildings are:

- Ventilation systems to ensure personnel comfort and control of odors;
- Air-conditioning systems to maintain personnel comfort and the best conditions for the electrical and electronic equipment;

化合成 化建制空间输出 法公司部

1. STA

1 Same

1.725

化结核 医结子 化进行工程工程法

11. L I

3. . .

- Sanitary and drainage systems;
- Potable water supply system and hot water;
- Storm drainage systems from roof areas;
- Fire protection systems; and
- Ventilation systems to maintain the best conditions of the mechanical rooms.

#### 5.5.2 Design Basis and Criteria

**Indoor Design Parameters:** 

Offices, Control and Electrical Room

| Temperature |       |     | · | 20~25 °C |
|-------------|-------|-----|---|----------|
| Humidity    | · · · | ÷., | 2 | 50~55 %  |

Machine Rooms

Maximum temperature 35℃ Ventilation.

Air Changes:

| Machine rooms                  | 4 to 6 changes/hour  |
|--------------------------------|----------------------|
| Work shops                     | 5 to 10 changes/hour |
| Store rooms                    | 4 to 6 "             |
| Rest rooms and blower building | 3 to 6 "             |

**Outdoor Design Parameters:** 

Temperature

| Maximum temperature | 39    |
|---------------------|-------|
| Minimum temperature | -28.0 |
| Average temperature | 11    |

Precipitation

426 mm/year (average) 48 mm/month for summer time (July)

#### 5.5.3 Specific Building Systems

**Office Building:** Air conditioning may be provided through a central air handling unit. Wash room area may have exhaust fans. Plumbing systems shall include domestic water supply and sanitary systems.

 $^{\circ}\mathrm{C}$ 

Roof drainage should be connected to the surface drainage system which discharges flows into the drainage system in the plant site.

**Maintenance and Storage Building:** This building will have exhaust fans for ventilation. The maximum allowable indoor temperature may be  $35^{\circ}$ C.

Sanitary drainage system and potable water supply system shall be provided. Roof drainage is also connected to the surface drainage system.

Portable fire extinguishers are provided for fire protection.

Power Substation: Stormwater drainage system for the floor shall be provided.

Generator Building: Roof and sanitary drainage systems should be provided. Forced inlet air and forced air exhaust systems should used for this building.

Sludge Pumping Station: Roof and sanitary drainage systems and potable water supply system shall be provided. Portable hand extinguishers for fire protection are to be provided. Forced exhaust air shall be provided at this building.

Aerated Grit Chamber Blower Room: Roof and sanitary drainage and potable water supply systems shall be provided. Portable hand extinguishers for fire protection will be provided. Natural ventilation shall be used.

Water Supply Pump Room: Roof drainage system shall be provided. Portable hand fire extinguishers may be provided. Forced (fan) air exhaust should be installed at this room.

#### 5.5.4 Natural Conditions

**Temperature:** Highest, minimum and average temperatures in Tulcea City area are as follows:

| Highest monthly average temperature (July)   | 24.0 <sup>°</sup> | č  |
|----------------------------------------------|-------------------|----|
| Lowest monthly average temperature (January) | 3.1               | "  |
| Annual average temperature                   | 11.0              | "" |
| Lowest recorded temperature                  | -26.8             | ** |

Humidity: Average humidity in Tulcea in summer is 10 to 20 %, and 45 to 50 % in winter.

Wind: Predominant local wind direction is northeast to the southwest. The wind speeds are in the range between 3 and 4.8 m/sec, generally higher in winter and spring.

۰.

and a ward at an

Robert Collected at an area

 $\cdot$ 

de la Meri

a an 11 a

, i

Provident References in

化晶晶体 企业人民 使多效的

## Table All.3.1 Lists of Mechanical Equipment of Tulcea WWTP (1/6)

| No. | Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Туре                         | Size and                                                                                                        | Qt'y  | Output  | Total out- | Remarks               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|---------|------------|-----------------------|
|     | and a star from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | Specifications                                                                                                  |       | kW/unit | put(kW)    | :                     |
| Ĩ   | Screen channel influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cast iron made, manually     | 1200W x 1200H                                                                                                   | 2     |         |            |                       |
|     | gates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | operated sluice gate         |                                                                                                                 |       |         |            |                       |
| 2   | Coarse screens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Manually screened            | Clear opening 100 mm,                                                                                           | 2     |         |            |                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (removable type)             | 1.6mW x 3.3mH, 60°                                                                                              |       |         |            |                       |
| 3   | Fine screens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mechanically-cleaned,        | Clear opening 20 mm,                                                                                            | 2     | 0.75    | 1.5        |                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (intermittently operated)    | 1.6mW x 3.3mH                                                                                                   |       |         |            |                       |
| 4   | Grit chamber effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cast iron made, manually     | 1.2mW x 1.2mH                                                                                                   | 2     |         |            |                       |
|     | gates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | operated sluice gate         |                                                                                                                 |       | 1       |            |                       |
| 5   | Gate for pump well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cast iron made, manually     | 0.8mW x 0.8mH                                                                                                   | 1     |         |            |                       |
|     | influent channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | operated sluice gate         | Design depth 5.0 m                                                                                              |       |         |            |                       |
| 6   | Screenings conveyors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trough belt conveyor         | 0.5 m W x 6 mL                                                                                                  | ··· 2 | 1.5     | 3          | 5 - S                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | e de la destructura de la composición d |       | 4 1     |            | a state of the second |
| 7   | Screenings skip hoist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wire rope operated           | 0.3m³ x 20mH                                                                                                    | · 1   | · 2.2   | 2.2        |                       |
| •   | and the set of the set |                              |                                                                                                                 |       |         |            |                       |
| 8   | Screenings hopper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Steel made, motor            | 5m³                                                                                                             | 1     | 1.5     | 1.5        |                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | operated                     |                                                                                                                 |       |         | 1.1.1      | a a ser ser e la      |
| 9   | Screening hoist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Motor operated hoist         | 1t x 6m H x 23mL                                                                                                | 1     | 2.6     | 2.6        | 1                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with trolley                 |                                                                                                                 |       |         | •          |                       |
|     | Total motor outputs of (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | an an an an an Arthreas an a |                                                                                                                 |       |         | 10.8       | kW                    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                                                                                 |       |         |            |                       |

## (1) Screening System Equipment

(2) Grit Chamber, Oil Separator, Flow Measurement Equipment

| No. | Equipment                                  | Туре                                          | Size and<br>Specifications                       | Qťy |     | Totəl out-<br>put (kW) | Remarks          |
|-----|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|-----|-----|------------------------|------------------|
|     | Aeration channel Influent gates            | Manually operated, cast iron made sluice gate | 800mm W x 800mmH<br>Design hydraulic depth; 2 m  | 2   |     | <b>P</b> ()            |                  |
| 2   | Blowers                                    | Turbo blower                                  | $\phi$ 80mm x 5m <sup>3</sup> /min.              | 3   | 15  | 30                     | Standby excluded |
| 3   | Grit collectors                            | Trolley with a grit lifting<br>pump           |                                                  | 2   | 3.8 | 7.6                    |                  |
| 4   | Screw conveyors                            | Lifting of grit from channe<br>to grit hopper |                                                  | 1   | 2.2 | 2.2                    |                  |
|     | Aeration chamber effluent<br>channel gates | Manually operated, cast iron made sluice gate | 600mm W x 600mm H<br>Design hydraulic depth; 2 m | 2   | l   |                        |                  |
| 6   | Flow measurement equipm                    | Parshall flume                                | 7-ft. type                                       | 1   |     |                        |                  |
|     | Total motor outputs of (2)                 |                                               |                                                  |     |     | 39.8                   | kW               |

All-3-29

## Table All.3.1 Tuicea WWTP, List of Mechanical Equipment (2/6)

# (3) Pumping Equipment (Effluent Pumping Station)

| No. | Equipment                  | Туре                           | Size and Specifications                                                                                                                                                                                                            | Qťy        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otal out<br>put(kW) | Remarks          |
|-----|----------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| )   | Pumps                      | Vertical centrifugal mixed     | 400mm@ x 15m³/min. x 5.5                                                                                                                                                                                                           | 4          | ( •··••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | Effluent pumps   |
|     |                            | pump                           | a de la constante de la constan<br>Constante de la constante de la | (1)        | 1. a. a. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |
| 2   | Electric motors for pumps  | Vertical squirrel cage, water  | 21kW                                                                                                                                                                                                                               | 4          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63                  | Standby excluded |
|     |                            | proof type                     |                                                                                                                                                                                                                                    | (1)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |
| 3   | Suction valves             | Manually-operated sluice       | 400mmΦ                                                                                                                                                                                                                             | 4          | · · _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                  |
|     |                            | valve                          |                                                                                                                                                                                                                                    | 1          | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 | :                   |                  |
| 4   | Check valves               | Slow-closing check valve       | 400mmΦ                                                                                                                                                                                                                             | 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |
|     |                            |                                |                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |
| 5   | Discharge valves           | Motor-operated butterfly valve | 400mmΦ                                                                                                                                                                                                                             | 4          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6                 | Standby excluded |
|     |                            |                                |                                                                                                                                                                                                                                    | (1)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |
| 6   | Crane for pumps            | Manually-operated crane        | 3.2 t x 25mH x 7mW x 19mL                                                                                                                                                                                                          | <b>- 1</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Trolley rails by |
|     |                            | with chain block               |                                                                                                                                                                                                                                    | 3.4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |
| 7   | Main pumps sealing water   | Unit of water supply pump      | 40mmΦ x 0.1m³/min. x 35m                                                                                                                                                                                                           | 1          | , 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2                 | With control     |
|     | supply unit                | with pressure tank             |                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |
| 8   | Pump room floor drain      | Submersible pump               | 65mmФ x 0.3m³/min. x 25m                                                                                                                                                                                                           | 2          | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7                 | Standby excluded |
|     | pumps                      |                                |                                                                                                                                                                                                                                    | (1)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |
| 9   | Floor drain pumps          | Submersible pump               | 65mm\$ * 0.3rn*/min. x 10m                                                                                                                                                                                                         | . 2        | .= 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                 | Standby excluded |
| ·   |                            |                                |                                                                                                                                                                                                                                    | (1)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |
|     | Total motor outputs of (3) |                                |                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71.0                | kW               |

All-3-30

## Table All.3.1 Tulcea WWTP, List of Mechanical Equipment (3/6)

## (4) Primary Clarifiers (4 units)

| No. | Equipment                  | Туре                                                       | Specifications                            | Qťy      | Output | Total | Remarks           |
|-----|----------------------------|------------------------------------------------------------|-------------------------------------------|----------|--------|-------|-------------------|
|     | • •                        |                                                            |                                           |          | kW/uni | ouput |                   |
| 1   | Inlet gates                | Sluice gate, manual operation, cast iron, circular         | ø 1,000. Design<br>hydraulic depth, 3m    | 4        |        |       |                   |
| 2   | Sludge collectors          | Rotating type scraper, center column supported             | 25mΦ x 2.4mH                              | 4        | 0.75   | 3     |                   |
| 4   | Sludge draw-off valves     | Motor operated eccentric valve                             | 200mm Φ                                   | - 4      | 0.2    | 0.8   |                   |
| -3  | Raw sludge pumps           | Non-clog centrifugal pumps                                 | 100mmΦ x 1m7min. x 10                     | 2<br>(1) | 3.7    | 3.7   | Standby excluded  |
| 6   | Bypass gates               | Manually operated, cast iron<br>made, circular sluice gate | Ø2,000mm. Design<br>hydraulic depth, 1.5m | 1        | 1      |       |                   |
| 7   | Raw sludge flow meter      | Electro-magnetic flow meter                                | 100mmΦ                                    | 1        |        |       |                   |
| 8   | Raw sludge densitomete     | Ultra-sonic type                                           |                                           | 1        |        |       | In electric works |
|     | Total motor outputs of (4) |                                                            |                                           |          |        | 7.5   | kW                |

## (5) Aeration Tanks (8 tanks)

| No. | Equipment                                   | Туре                                           | Size and<br>Specifications                  | Qťy | Output<br>kW/uni |   | Remarks                                |
|-----|---------------------------------------------|------------------------------------------------|---------------------------------------------|-----|------------------|---|----------------------------------------|
| 1   | Inflow control weirs                        | Manually-operated adjustable weirs             | 400W x 600H Design<br>hydraulic depth 1.1 m | 8   |                  |   |                                        |
|     | Movable weirs for<br>control of step inflow | Cast iron made, movable weir<br>weirs          | 400mmW x 600mmH<br>design depth, 1.1m       | 24  |                  |   |                                        |
| 3   | Return sludge inflow<br>control weirs       | Cast iron made, movable<br>(separate type)     | 600mmW x 600mmH<br>design depth 1.1m        | 8   | 1                |   |                                        |
| 4   | Aeration diffusers                          | Ceramic made diffuser<br>(fine bubble, 300 µ ) | 0.82m³/min.<br>8plates/holder header        | 68  | 1                |   | Holder headers<br>& butterfly valves   |
| 5   | Air control valves                          | Air operated butterfly valve                   | 250mmΦ                                      | 32  |                  |   | Electro-magnetic bo:                   |
| 6   | Froth spray nozzles                         | Cast iron made movable<br>type                 | 15mmФx 8 1/min.<br>x 1 kg/cm²               | 262 |                  |   | 1.5 m interval<br>49/1.5=33 units/tanl |
| 7   | Air flow meters                             | Oriffice                                       | 250mmΦ                                      | 8   |                  |   | Included in electric<br>works          |
|     | Total motor output of (5)                   |                                                |                                             |     |                  | 0 | kW                                     |





## Table All.3.1 Tulcea WWTP, List of Mechanical Equipment (4/6)

## (6) Final Clarifiers (4 tanks)

|                           |                        |                                                                                                                                                                                                                                   | •<br>•  |         |        |                                                                                                                |
|---------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------|----------------------------------------------------------------------------------------------------------------|
| No. Equipment             | Туре                   | Size and                                                                                                                                                                                                                          | Qt'y    | Output  | Total  | Remarks                                                                                                        |
|                           |                        | Specifications                                                                                                                                                                                                                    | · .     | kW/unit | output |                                                                                                                |
| 1 Intet gates             | Sluice gate, manual    | Circular, 1000mm Φ                                                                                                                                                                                                                | 4       | -       |        |                                                                                                                |
| · · ·                     | operation, cast iron   | Design hydraulic depth 1.5m                                                                                                                                                                                                       |         |         |        |                                                                                                                |
| 2 Sludge collectors       | Rotating scraper,      | 30mΦ x 3.5 m deep                                                                                                                                                                                                                 | 4       | 0.75    | 3      |                                                                                                                |
|                           | central column support |                                                                                                                                                                                                                                   | [ • • • | 1.1     |        |                                                                                                                |
| 3 Sludge draw-off         | Motor-operated         | 200mmΦ                                                                                                                                                                                                                            | 4       | 0.2     | 0.8    | · · · · · · · · · · · · · · · · · · ·                                                                          |
| valves                    | eccentric valve        | a da bara da la calanda da<br>Calanda da la calanda da la |         | 1.1     |        | and a second |
| 4 Return sludge pumps     | Non-clog centrifugal   | 150mmΦx 2.3m <sup>3</sup> /min. x 10m                                                                                                                                                                                             | - 4     | 7.5     | 30     |                                                                                                                |
|                           |                        |                                                                                                                                                                                                                                   |         |         |        |                                                                                                                |
| 5 "                       | И                      | 150mmΦx 3.0m <sup>3</sup> /min. x 10m                                                                                                                                                                                             | 2       | 11      | 22     | · · · · · · · · · · · · · · · · · · ·                                                                          |
|                           |                        |                                                                                                                                                                                                                                   |         |         |        |                                                                                                                |
| 6 "                       | n                      | 250mmΦx 8.0m³/min. x 10m                                                                                                                                                                                                          | 2       | 30      | 60     |                                                                                                                |
| 7                         |                        |                                                                                                                                                                                                                                   |         | 14. A   |        |                                                                                                                |
| 7 Excess sludge pumps     |                        | 100mmΦx 1.0m <sup>3</sup> /min. x 10m                                                                                                                                                                                             | 2       | 3.7     | 3.7    | Standby excluded                                                                                               |
|                           |                        |                                                                                                                                                                                                                                   | (1)     |         |        | an share a sta                                                                                                 |
| 8 Return sludge flow      | Electronic-magnetic    | 250mmΦ                                                                                                                                                                                                                            | 2       | -       |        | Included in electric                                                                                           |
| meters                    | flow meter             | 200mmФ                                                                                                                                                                                                                            | 2       | -       |        | works                                                                                                          |
| 9 Excess sludge flow      | Electronic-magnetic    | 100mmΦ                                                                                                                                                                                                                            | 2       |         | 12.5   | ante de Pereza                                                                                                 |
| meters                    | flow meter             |                                                                                                                                                                                                                                   |         |         |        |                                                                                                                |
| 10 Return studge          | Ultra-sonic type       | 250mmΦ                                                                                                                                                                                                                            | 2       | - 1     |        | <b>#</b>                                                                                                       |
| densitometers             |                        |                                                                                                                                                                                                                                   |         |         |        |                                                                                                                |
| Total motor output of (6) |                        |                                                                                                                                                                                                                                   |         | 1.1     | 119.5  | kW                                                                                                             |
|                           |                        |                                                                                                                                                                                                                                   |         |         |        |                                                                                                                |

## (7) Chlorine Contact Tank (Itank)

| ()  | Chlorine Contact                        | lank (Itank)                              |                                                    |       | - 11              |                 |                  |
|-----|-----------------------------------------|-------------------------------------------|----------------------------------------------------|-------|-------------------|-----------------|------------------|
| No. | Equipment                               | Туре                                      | Size and<br>Specifications                         | Qty   | Output<br>kW/unit | Total<br>output | Remarks          |
| 1   | Influent gates                          | Manually operated, cast fron, square type | 2,000mmW x 2,000mmH<br>design hydraulic depth, 2 m | 1     |                   |                 |                  |
|     | Bypass gates                            | Manually operated, cast iron, square type | 600mmW x 600mmH<br>design hydrautic depth, 1.5m    | 1     | : —               | - 12<br>        |                  |
| 4   | Hypochlorite supply pump                | Diaphragm pump                            | Discharge 0.5/min.<br>20mmΦ                        | 3 (1) | 0.4               | 0.8             | Standby excluded |
| 5   | Hypochlorite storage<br>and supply tank | FRP made                                  | 12.4m <sup>3</sup><br>Ø 1.4m x 2.0m H              | 2     |                   |                 |                  |
|     | Total motor output of (7)               |                                           |                                                    |       |                   | 0.8             | k₩               |

## Table All.3.1 Tulcea WWTP, List of Mechanical Equipment (5/6)

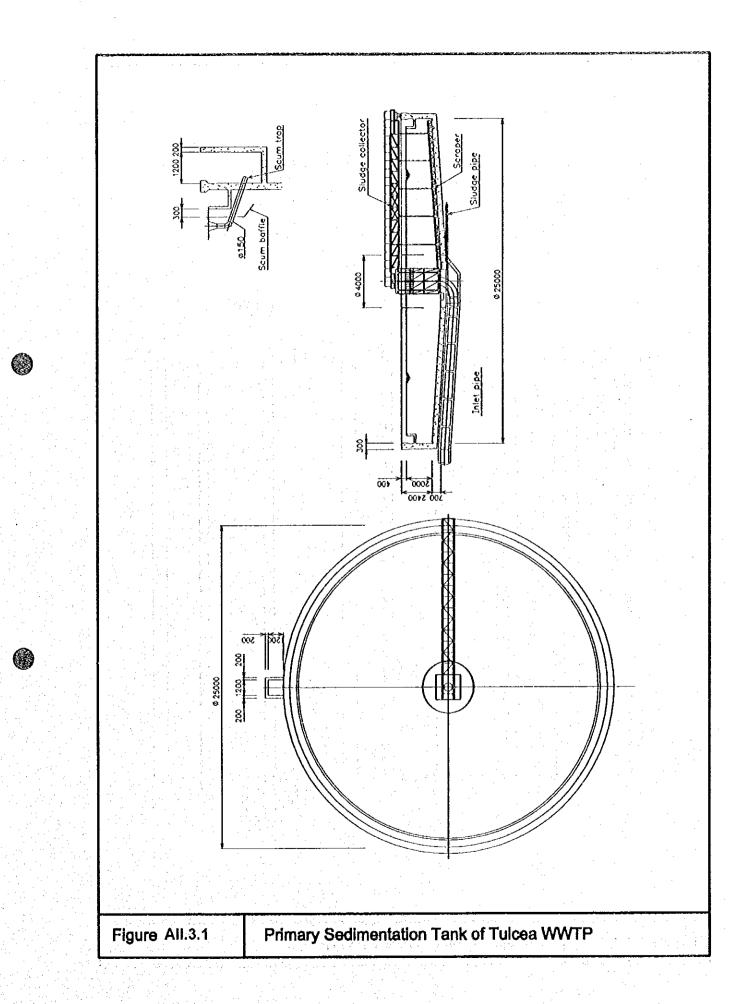
## (8) Sludge Thickeners (2 tanks)

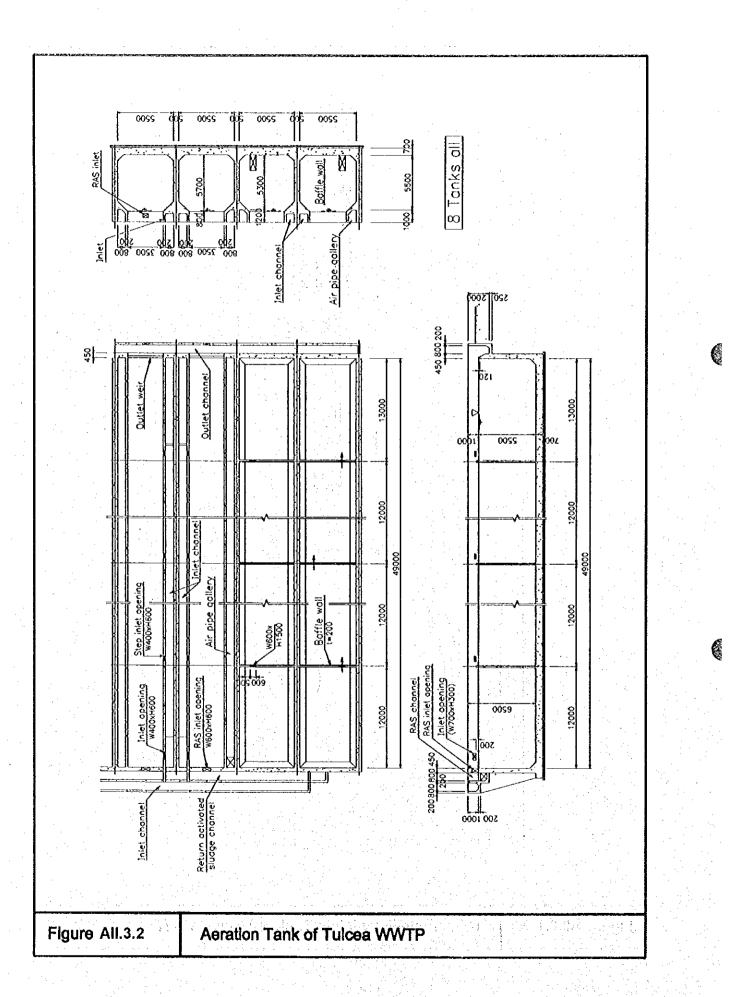
| No. | Equipment                           | Туре                                 | Size and<br>Specifications | Qi'y | Ouput<br>kW/unit |      | Remarks          |
|-----|-------------------------------------|--------------------------------------|----------------------------|------|------------------|------|------------------|
|     | Sludge thickeners                   | Rotating scraper,<br>with pickets    | 122mΦ x 4.0mH              | 2    | 0.4              |      |                  |
|     | Distribution tank,<br>movable weirs | Manually operated, cast<br>iron weir | 300mmW                     | 2    |                  |      | · · · · ·        |
| 3   | Studge draw-off pump                | Non-clog centrifugal<br>pump         | 100mmΦx 0.4m3/min x 20m    | (1)  | 13               | 13   | Standby excluded |
| 4   | Sludge draw-off valves              | Air operated eccentric<br>valve      | 100mmΦ                     | 4    | 0.2              | 0.8  |                  |
| - 5 | Sludge screen                       | Drum screen, self<br>cleaning type   | 2m3/min.                   |      | 0.4              | 0.4  |                  |
|     | Total of motor outputs of (         | 8)                                   |                            |      | ·                | 17.0 | kW               |

## (9) Sludge Digestion Facilities (2 tanks)

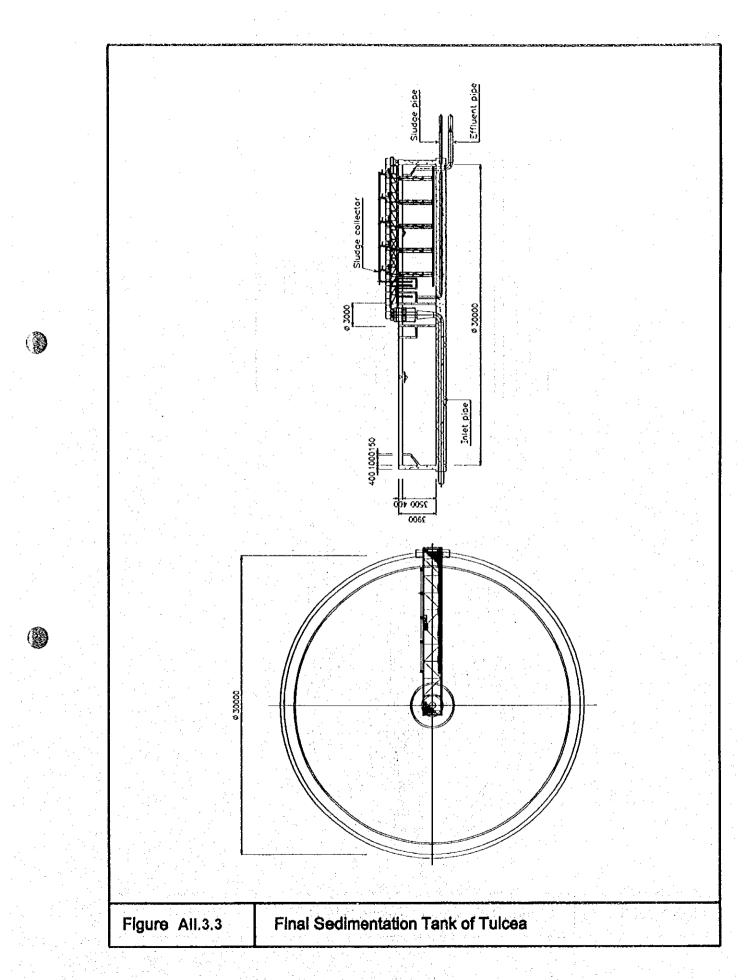
| No.      | Equipment                  | Туре                                                                                                                   | Size and Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qîy                                      | Output<br>kW/unit | Total<br>output                           | Remarks                                                                                                          |
|----------|----------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1        | Sludge mixer               | Draft tube type                                                                                                        | Mixing 2,300 m <sup>3</sup> /hr or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                        | 22                | 44                                        | Draft tube                                                                                                       |
| :        |                            |                                                                                                                        | more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ·                                      |                   | 1.11                                      | 500mmΦ                                                                                                           |
| 2        | Gas collectors             | 600mmΦ steel constructed                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                        |                   |                                           |                                                                                                                  |
| 1        |                            | dome, dry and wet seels                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                   |                                           | and the second second                                                                                            |
| 3        | Sludge feed pump valves    | Motor operated eccentric                                                                                               | 150mmΦ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                        | 0.2               | 0.4                                       |                                                                                                                  |
| <u>,</u> |                            | valve.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   |                                           |                                                                                                                  |
| 4        | Scum draw-off valves       | Motor operated eccentric                                                                                               | 300mmΦ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                        | 0.4               | 0.8                                       |                                                                                                                  |
| 1        |                            | valve.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   |                                           | in the second                                                                                                    |
| 5        | Digested sludge draw       | Motor operated                                                                                                         | 200mmΦ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                        | 0.4               | 0.8                                       |                                                                                                                  |
|          | off telescope valves       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   |                                           |                                                                                                                  |
|          | Sludge circulation draw    | Motor operated eccentric                                                                                               | 200mmΦ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                        | 0.2               | 0.4                                       |                                                                                                                  |
|          | offvalves                  | valve.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   | · · ·                                     |                                                                                                                  |
|          | Digested sludge draw       | Motor operated eccentric                                                                                               | 200mmΦ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                        | 0.4               | 0.8                                       |                                                                                                                  |
|          | off valves                 | valve.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. A.                                    |                   | 1.1                                       |                                                                                                                  |
|          | Thickened sludge           | Motor operated eccentric                                                                                               | 150mmΦ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                        | 2.2               | 13.2                                      |                                                                                                                  |
|          | pipe control valves        | valve.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(1,1)^{(n-1)} \in \mathbb{R}$           | 1.1.1.1.1         |                                           |                                                                                                                  |
| 9        | Seed sludge pipe control   | Non-clog sludge pump                                                                                                   | 100mmΦx 1m7min x 15m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                        | 7.5               | 15                                        |                                                                                                                  |
| ÷        | valves                     |                                                                                                                        | $(M_{1,N}) = (M_{1,N})^{\frac{1}{2}} (M_{1,N})^{\frac$ | 1.11                                     |                   |                                           |                                                                                                                  |
| 10       | Sludge circulation         | Non-clog sludge pump                                                                                                   | 100mmΦx 1.4m <sup>2</sup> /min x 15m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 3                                      | 5.5               | 16.5                                      |                                                                                                                  |
|          | pumps                      |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | 1.14              | 1. A. |                                                                                                                  |
| ŢIJ      | Sludge heat exchangers     | Spriral type                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                        |                   |                                           |                                                                                                                  |
| 4        |                            | and the second second second                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)                                      |                   |                                           |                                                                                                                  |
| 12       | Water circulation pump     | Line pump                                                                                                              | $65 \text{mm} \Phi \ge 0.6 \text{m}^3 / \text{min}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                        | 3.7               | 7.4                                       |                                                                                                                  |
|          |                            |                                                                                                                        | x 25 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                   |                                           |                                                                                                                  |
| 13       | Water heater               | Vacuum type                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                        | 8.3               | 8,3                                       | Standby exclud                                                                                                   |
| !        |                            |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)                                      |                   |                                           |                                                                                                                  |
| 14       | Gas booster fans           | Turbo fan                                                                                                              | 150m /hr x 500mmq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                        | 1.3               | 1.5                                       | Standby exclud                                                                                                   |
| Ĩ        |                            |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)                                      |                   |                                           |                                                                                                                  |
| 12       | Oil service tank           | Steel construction                                                                                                     | 300 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                   |                                           |                                                                                                                  |
|          | ~                          | <u>i de la seconda en el compositor en el comp</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   |                                           | a tala a                                                                                                         |
| 16       | Oil pumps                  | Gear pump                                                                                                              | 15mmΦ x 10L/min. x 3kg/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                        | 0.4               | 0.4                                       | Standby exclud                                                                                                   |
| 1        | ×                          |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)                                      |                   |                                           |                                                                                                                  |
| 17       | Oil storage tank           | Underground cylinder type                                                                                              | 15,000 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $  _{\mathbb{R}^{2}} \leq 1$             | · -               |                                           |                                                                                                                  |
| 1        |                            |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | ·                 |                                           |                                                                                                                  |
| 18       | Desulfide Gas scrubbers    | Dry type                                                                                                               | 500m <sup>7</sup> /hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                        |                   |                                           |                                                                                                                  |
|          |                            |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   | <u>.</u>                                  |                                                                                                                  |
| 19       | Gas holders                | Dry seal (membrane),                                                                                                   | 2,000m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                        |                   |                                           |                                                                                                                  |
|          |                            | steel construction                                                                                                     | 200m <sup>3</sup> /hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                   |                                           |                                                                                                                  |
| 20       | Waste gas burners          | Forced air combustion type                                                                                             | 200m /hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 1.5               |                                           | Cooling fan                                                                                                      |
|          |                            |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                        | 2.2               | 2.2                                       | blower                                                                                                           |
| 21       | Floor drain pumps          | Submersible pump                                                                                                       | 65mmΦ x 0.3m³/min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                        | · 1.5             | 3                                         |                                                                                                                  |
| 2        | Chain block                | Geared trolley                                                                                                         | x 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                   |                                           |                                                                                                                  |
|          | L bain block               | Il seated trolley                                                                                                      | lton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i. 1                                     |                   |                                           | and the second |
|          | Total motor outputs of (9) | Ocared abiley                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                   | 116.2                                     | · · · · · · · · · · · · · · · · · · ·                                                                            |

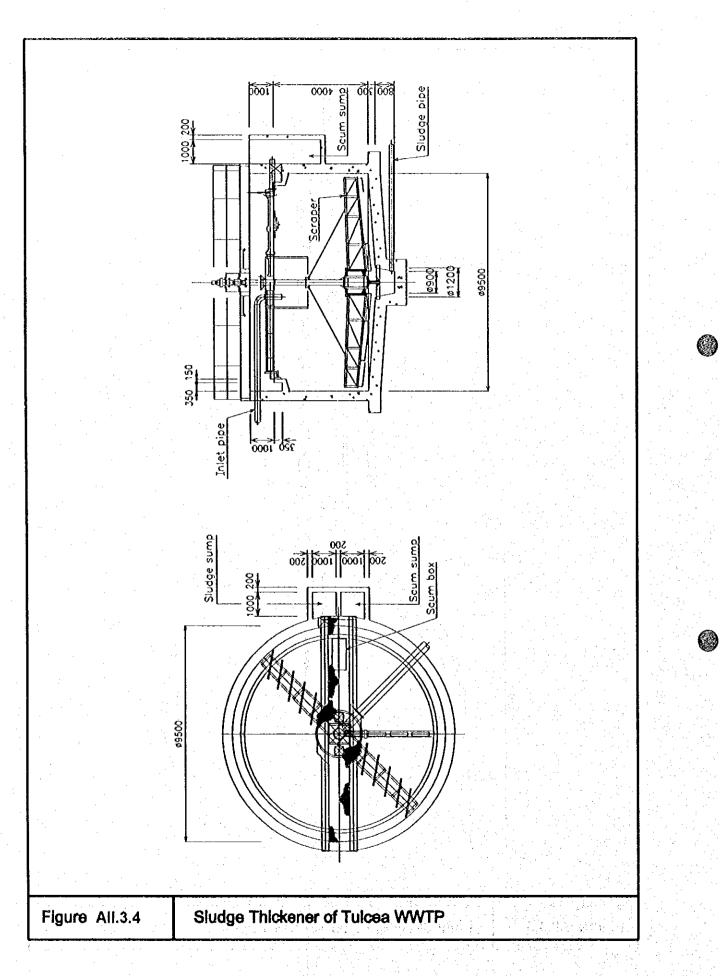




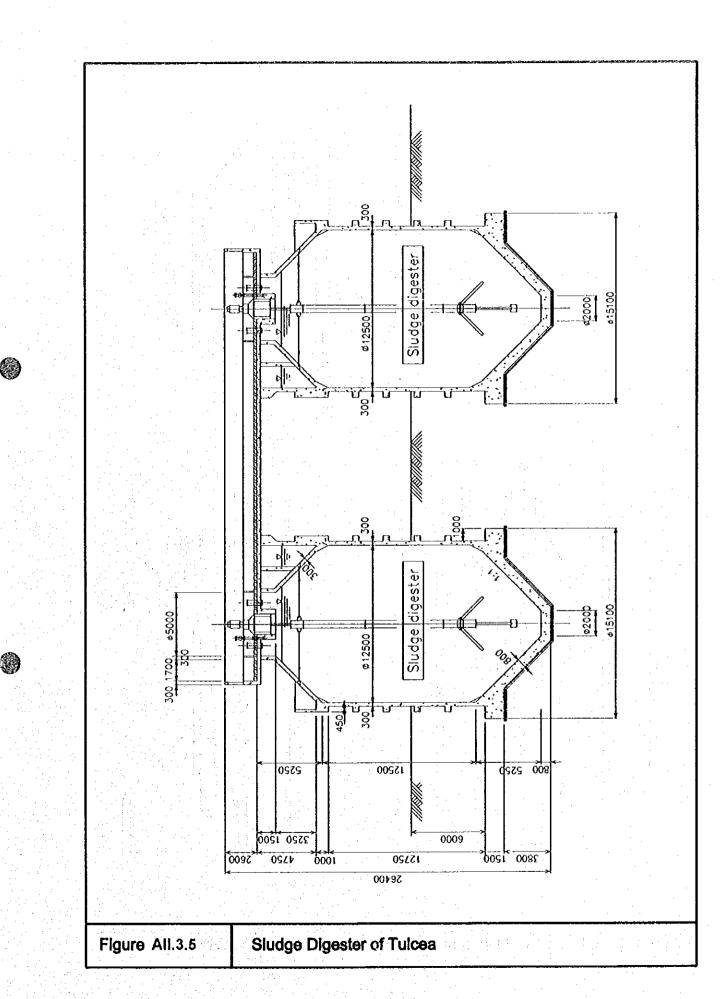


## (10) Sludge Dewatering Equipment

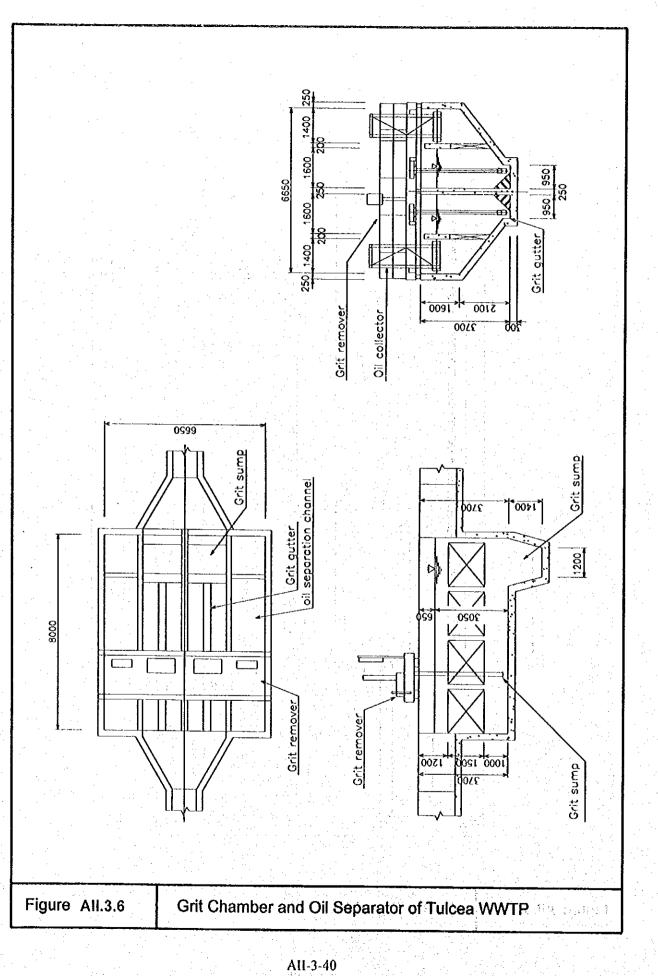
| No.  | Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Туре                | Size and                         | Qťy            | Output  | Total          | Remarks              |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|----------------|---------|----------------|----------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | Specifications                   | м <sup>1</sup> | kW/unit | output         |                      |
| 1    | Sludge storage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vertical paddle     | 1,500mmΦ                         | 2              | 7.5     | 15             |                      |
|      | mixers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | type                |                                  | 1              |         |                |                      |
| 2    | Sludge feed pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Positive displace-  | 100mmΦ x 20m³/hr. x 20m          | - 5            | 5.5     | 22             | Standby excluded     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ment pump           |                                  | (1)            |         | 1.1            |                      |
| 3    | Sludge filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Belt filter press   | 2 m effective belt width, 130kg/ | . 4            | 2.2     | 8.8            |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | per hour load in dry solid basis |                |         |                |                      |
| 4    | No.1Cake conveyor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trough belt         | 600mmW x 8,500mmL                | 4              | 1.5     | 6              |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                  | 1.1            |         |                |                      |
| - 5  | No.2 Cake conveyors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Horizontal trough   | 600w * 5500L                     | 2              | 1.5     | . 3            |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | belt conveyor       |                                  |                |         | and the        |                      |
| 6    | Cake hoppers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Motor operated      | 10m²                             | 2              | 3.7     | 7.4            |                      |
|      | and the second sec |                     |                                  |                |         |                |                      |
| 7    | Chemical containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cylinder type       | 150 L                            | 2              |         |                | and the first of the |
| . *  | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                  |                |         |                |                      |
| 8    | Chemical feeders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volumetric dry      | 1 L/min.                         | 2              | 0.4     | 0.8            |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | feeder              |                                  |                |         |                |                      |
| - 9  | Chemical dosage tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cylinder type       | 15m <sup>3</sup> capacity        | 2              | 2.2     | 4.4            |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | with mixer                       |                |         |                |                      |
| . 10 | Chemical feed pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Positive displace-  | 50mmΦ x 3m³/hr x 20m             | 5              | 1.5     | . 6            | Standby excluded     |
| 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ment pump           |                                  | (I)            |         |                | 가슴은 가는 것이            |
| : 11 | Chemical container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Motor operated      | 1 ton                            | l              | 1.5     | 1.5            |                      |
| 4    | hoists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                  | 1              | 0.4     | 0.4            |                      |
| 12   | Pumps for belt filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Centrifugal pump    | 50mmΦ x 0.3 m³/min.              | 5              | 5.5     | 22             | Standby excluded     |
|      | cleaning water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | x 60 m                           | . (1)          |         |                |                      |
| . 13 | Maintenance crane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Suspension type     | 2 ton State Association          | 1              |         | 201            | a the star           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                  |                |         |                |                      |
| 14   | Chain block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Geared trolley type | 2 ton                            | 1              |         |                |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                  |                |         |                |                      |
| 15   | Floor drain pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Submersible non-    | 65mmΦ x 0.3m³/min.               | 2              | 1.5     | 3              |                      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | clog pump           | x 10 m                           |                |         | and the second |                      |
|      | Total motor outputs of (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                  |                |         | 100.3          | kW                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                  |                |         |                |                      |

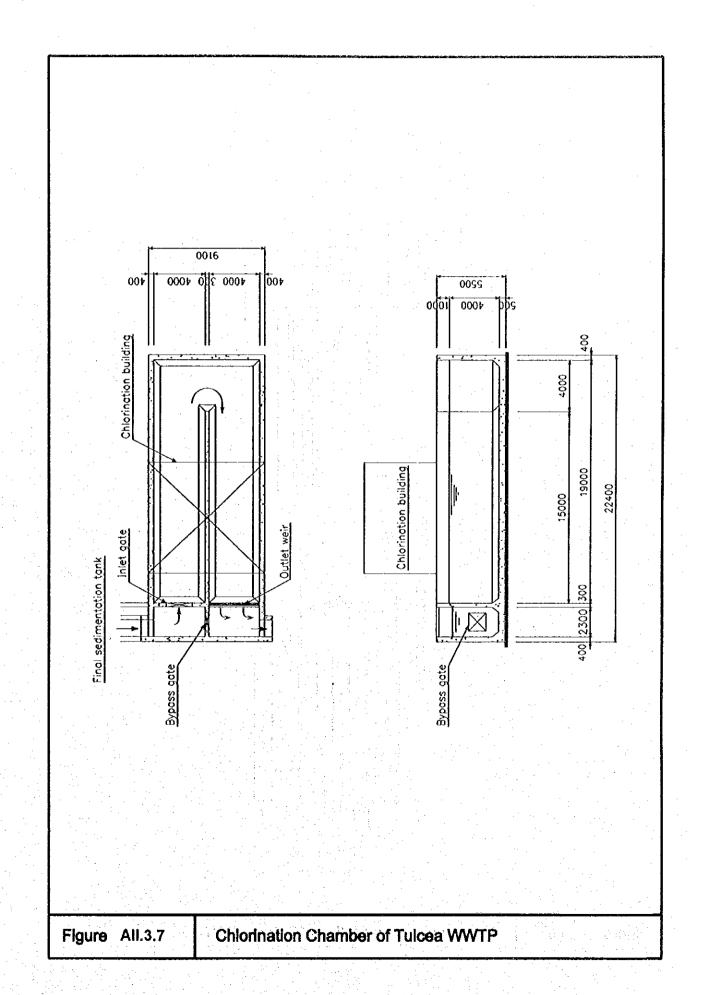

## (11) Aeration Tank Blower System


| No. | Equipment                           | Туре                                     | Size and<br>Specifications     | Qťy      | Output<br>kW/unit | Total<br>output | Remarks          |
|-----|-------------------------------------|------------------------------------------|--------------------------------|----------|-------------------|-----------------|------------------|
| 1   | No.1 Blowers                        | Steel made, multi-<br>stage turbo blower | ф 350mm/ ф 300mm<br>140m³/min. | 3 (1)    |                   |                 |                  |
|     | Electric motors for<br>No.1 blowers | Horizontal squirrel<br>cage, water proof |                                | 3<br>(1) | 100               | 200             | Standby excluded |
| 3   | No.1 blower valves                  | Electric-operated valve                  | ¢250mm                         | 3 (1)    | 0.4               | 0.8             | Standby exclude  |
| - 4 | Dry type air filters                | Self cleaning type                       | 150m³/min.                     | 3        | 0.2               | 0.6             |                  |
| - 5 | Wet type air filters                | Auto rolling type                        | 150m³/min.                     | 3        | 0.2               | 0.6             |                  |
| 6   | Maintenance crane                   | Geared trolley type                      | 3 tons                         | 1        |                   |                 |                  |
|     | Total motor outputs of (11)         |                                          |                                |          | 3<br>1            | 202             | kW               |
| : - | Grand Total of Motor                | r Outputs                                |                                | 11.11    |                   | 685             | kW               |



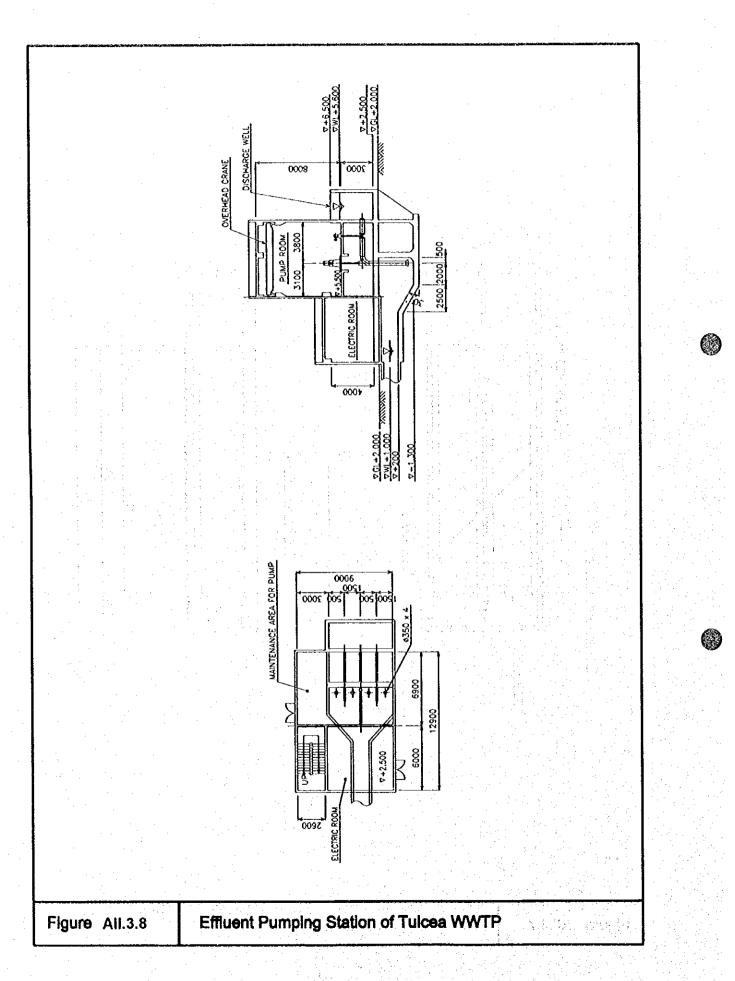




All-3-36






AII-3-38



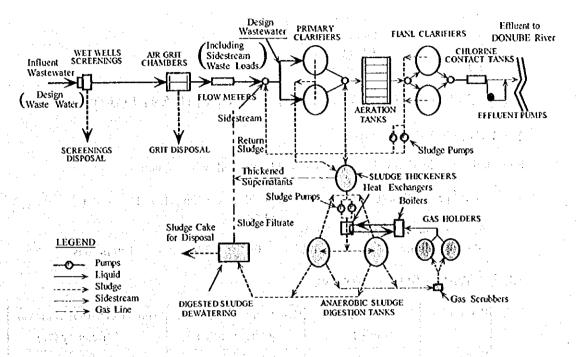





۲

R




## APPENDIX-4 DESIGN CALCULATIONS OF TULCEA WWTP

## 1. CONVENTIONAL ACTIVATED SLUDGE PROCESS

## 1.1 DESIGN BASIS

## 1.1.1 SCHEMATIC OF THE CONVENTIONAL ACTIVATED SLUDGE PROCESS

Schematic of the conventional activated sludge process is shown as follows.



#### **1.1.2 DESIGN WASTEWATER INFLOW RATES**

Design wastewater inflow rates are determined as follows.

| Average daily flow  | Qad | 37,000 m³/day | 428 L/s |
|---------------------|-----|---------------|---------|
| Maximum daily flow  | Qmd | 43,000 m³/day | 498 L/s |
| Maximum hourly flow | Qmh | 53,000 m³/day | 613 L/s |

#### **1.1.3 DESIGN WASTEWATER QUALITY**

Design wastewater quality is determined as follows.

| ŀ | BOD  | · == ' |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130 | mg/L |
|---|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| è | SS 🗄 | = :    | 1997 - 1997<br>1997 - 1997<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 | 140 | mg/L |

## 1.1.4 DESIGN WASTEWATER QUALITY (INCLUDING SIDESTREAM WASTE LOADS)

Design wastewater quality (including sidestream wastewater loads) is calculated as follows.

| i.<br>N | BOD                            |       | 170 mg/L |  |
|---------|--------------------------------|-------|----------|--|
|         | $\boldsymbol{SS}_{i} \geq_{i}$ | 문 북 한 | 170 mg/L |  |

|           | Rem                  | oval Efficie           | ency (%)                | Wastewa             | ter Quality (     | mg/L)                 |
|-----------|----------------------|------------------------|-------------------------|---------------------|-------------------|-----------------------|
| Parameter | Primary<br>treatment | Secondary<br>treatment | Overall<br>removal rate | Raw waste-<br>water | Primary<br>eMuent | Secondary<br>effluent |
| BOD       | 30                   | 85                     | 89.5                    | 170                 | 119               | 18                    |
| SS        | 40                   | 80                     | 88.0                    | 170                 | 102               | 20                    |

#### 1.1.5 POLLUTANT DISCHARGE LIMITS BY NTPA 001

Pollutant discharge limits by NTPA 001 is regulated as follows.

| BOD                   | < '   | 20 mg/L  |
|-----------------------|-------|----------|
| SS                    | <     | 60 mg/L  |
| T-N                   | <     | 10 mg/L  |
| ТР                    | <     | 1.0 mg/L |
| and the second second | 1 A 4 |          |

## 1.2 CALCULATIONS OF SIDESTREAM POLLUTANT LOADS

## 1.2.1 RAW SLUDGE VOLUME

Raw sludge production volume is calculated by the following equation.

| Solid production (t/day) | = $43,000 \text{ m}^3/\text{day} \times 140 \text{ mg/L} \times 10^{-6} \times 0.4$ |  |
|--------------------------|-------------------------------------------------------------------------------------|--|
| ~                        | = 2.408 t/day                                                                       |  |
| Sludge concentration     | 2.0 %                                                                               |  |
| Sludge volume            | $2.408 \times 100 \div 2.0\% = 120 \text{ m}^3/\text{day}$                          |  |

### 1.2.2 WASTE SLUDGE VOLUME

| Parameter | Influent quality | Reaction tank influent | Primary clarifiers removal |  |  |
|-----------|------------------|------------------------|----------------------------|--|--|
|           | (mg/L)           | quality (mg/L)         | Efficiency (%)             |  |  |
| BOD       | 130              | 91                     | 30                         |  |  |
| SS        | 140              | 84                     | 40                         |  |  |

Assuming that the reactor influent S-BOD is 66.7% of the total BOD; then Scs is 60.7 mg/L Waste sludge production volume is calculated by the following equation:

 $Qw \times Xw = (a \times Scs + b \times Sss - c \times \theta \times XA)Q$ 

where,

| ÷, •,      |                                                                  |                                           |
|------------|------------------------------------------------------------------|-------------------------------------------|
| Qw         | Volume of waste sludge (m <sup>3</sup> /day)                     |                                           |
| Xw         | Average SS concentration of waste sludge (mg/L)                  |                                           |
| Q          | Influent volume to reactors (m <sup>3</sup> /day)                | 43,000                                    |
| XA         | MLSS concentration in reactors (mg/L)                            | 1,660                                     |
| Scs        | Influent soluble-BOD concentration to reactors (mg/L)            | 60.7                                      |
| Sss        | Influent SS concentration to reactors (mg/L)                     | 84                                        |
| a          | Sludge yield coefficient of S-BOD(mg MLSS/mgSS) 0.4~0.6          | 0.5                                       |
| b          | Sludge yield coefficient of SS(mg MLSS/mgSS) 0.9~1.00.           | 0.95                                      |
| c          | Coefficient of SS reduction due to indigenous respiration of     |                                           |
|            | activated sludge micro-organisms (L/day) 0.03~0.05               | 0.04                                      |
| . <b>0</b> | HRT in reactor basins (day) 6.5/24                               | = 0.27                                    |
| -          | 고 있는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 많이 많이 많이 많이 많이 많이 많이 했다. | 1. A. |

## therefore,

\_

 $Qw \times Xw = (0.5 \times 60.7 + 0.95 \times 84 - 0.04 \times 0.27 \times 1660) \times Q \times 10^{-6}$ 

 $92.17 \times Q \times 10^{-6} = 3.96 \text{ t/day}$ 

| Solid production     | = | 3.9  | 5 t/ | day |   | · · . | N |           |    |
|----------------------|---|------|------|-----|---|-------|---|-----------|----|
| Sludge concentration | = | 0.5  | %    | •   |   | ÷.,   |   |           |    |
| Sludge production    | = | 3.96 | ×    | 100 | ÷ | 0.5   | = | 793 m³/da | ıy |

### **1.2.3 THICKENED SLUDGE**

Thickened sludge production volume is calculated by the following equation.

Sludge solids 2.408 + 3.96 = 6.37 t/day = Primary sludge Excess sludge Sludge volume = 120 793 = 913 m<sup>3</sup>/day (0.5%) (2.0%) Solids 6.37 0.85 =5.42 t/day х Assuming sludge concentration is 3.5% Sludge volume = 5.42 100 ÷  $3.5 = 155 \text{ m}^3/\text{day}$ ×

#### 1.2.4 SLUDGE SUPERNATANT OF THICKENERS

Sludge supernatant of thickeners is calculated by the following equation.

758 m<sup>3</sup>/day Liquor volume = **913** 155 0.15 0.96 t/day Solids weight 6.37 х 10 - = BOD 2000 758 x x 1.52 t/day BOD is assumed to be of 2,000 mg/L

## 1.2.5 DIGESTED SLUDGE

Digested sludge production volume is calculated by the following equation.

Digested sludge solids =  $5.42 \times (1-0.7 \times 0.5) = 3.52 \text{ t/day}$ Digested sludge volume 3.0 % =  $3.52 \times 100/3.0 = 117 \text{ m}^3/\text{day}$ 

#### **1.2.6 DEWATERED SLUDGE(SLUDGE CAKE)**

Dewatered sludge production volume is calculated by the following equation.

Solids =  $3.52 \times 100/0.9 = 3.17$  t/day (Assuming 20.0 % solids concentration) Cake volume =  $3.17 \times 100/20.0 = 16$  m<sup>3</sup>/day

#### 1.2.7 DIGESTED SLUDGE FILTRATE

Digested sludge filtrated weight is calculated by the following equation.

Filtrate volume =  $155 - 16 = 139 \text{ m}^3/\text{day}$ Dry solids weight =  $3.52 \times 0.10 = 0.35 \text{ t/day}$ BOD =  $139 \times 1,500 \times 10^{-6} = 0.21 \text{ t/day}$ (Assumed BOD concentration = 1,500 mg/L)

### 1.2.8 SIDESTREAM VOLUME AND WASTE LOAD

Sidestream volume and waste load is calculated by the following equation.

Thickener supernatants Sludge filtrate Liquor volume =  $758 + 139 = 897 \text{ m}^3/\text{day}$ 

| Dry solids | = | 0.96 | + | 0.35 | = | 1.31 t/day |
|------------|---|------|---|------|---|------------|
| BOD        | = | 1.52 | Ŧ | 0.21 | = | 1.72 t/day |

#### 1.2.9 WASTEWATER QUALITY (INCLUDING ALL SIDESTREAMS)

Wastewater quality (including all sidestreams) is calculated by the following equation.

Overall wastewater flow = Influent + Sidestreams Maximum daily flow = = 43,000 + 897 = 43,897 m<sup>3</sup>/day Then, the design wastewater flow characteristics are;  $(43,000 \times 130 \times 10^{-6} + 1.72)/43,897$ BOD = $0.0001666 \times 10^{-6} = 167 \rightarrow 170 \text{ mg/L}$ ==  $(43,000 \times 140 \times 10^{-6} + 1.31)/43.897$ SS =  $0.0001669 \times 10^{-6} = 167 \rightarrow 170 \text{ mg/L}$ ----

#### **1.3 SLUDGE PRODUCTIONS**

#### 1.3.1 RAW SLUDGE

Raw sludge production volume is calculated by the following equation.

| Solid production (t/day) |       |       | x I   |     | ×   | 10      | -6 ×  | <sup>6,5</sup> 0.4 |
|--------------------------|-------|-------|-------|-----|-----|---------|-------|--------------------|
|                          | = 2   | 2.924 | t/day | · • |     |         |       |                    |
| Sludge concentration     | 2.0 % |       |       |     | · . | 114 - A |       |                    |
| Sludge volume            | 2.924 | ×     | 100   | ÷   | 2.0 | =       | 146 m | <sup>3</sup> /day  |

9.25.5

1.3.2 WASTE SLUDGE VOLUME

| Parameter | Influent quality | Reaction tank influent | Primary clarifiers removal |  |  |
|-----------|------------------|------------------------|----------------------------|--|--|
|           | (mg/L)           | quality (mg/L)         | Efficiency(%)              |  |  |
| BOD       | 170              | 119                    | 30                         |  |  |
| SS        | 170              | 102                    | 40                         |  |  |

e territori de la secola d

Assuming that influent S-BOD to reactor basins is 66.7% of the raw wastewater BOD,S-BOD concentration is estimated to be; 79.4 mg/L

Waste sludge production volume is calculated by the following equation.

| Qw×Xw≕ | (a × | Scs | + b × \$ | Sss – c | ×0×  | XA | )Q   |  |
|--------|------|-----|----------|---------|------|----|------|--|
| where  | ÷    |     |          |         | 12.1 | 11 | 1. A |  |

| Qw  | Volume of excess sludge (m <sup>3</sup> /day)                |
|-----|--------------------------------------------------------------|
| Xw  | Average SS concentration of waste sludge (mg/L)              |
| Q   | Influent volume to reactors (m <sup>3</sup> /day) 43,000     |
| XA  | MLSS concentration in reactors (mg/L)                        |
| Scs | Influent soluble-BOD concentration to reactors (mg/L) 79.4   |
| Sss | Influent SS concentration to reactors (mg/L) 102             |
| a   | Sludge yield coefficient of S-BOD (mg MLSS/mgSS) 0.4~0.6 0.5 |
| b   | Sludge yield coefficient of SS (mg MLSS/mgSS) 0.9~1.00. 0.95 |
| c   | Coefficient of SS reduction due to indigenous respiration of |
| · . | activated sludge micro-organisms (L/day) 0.03~0.05 0.04      |
| 0   | HRT in reactor basins (day) $6.3/24 = 0.26$                  |

therefore,

 $Q_W \times X_W = (0.5 \times 79.4 + 0.95 \times 102 - 0.04 \times 0.26 \times 1667) \times Q \times 10^{-6}$ 

23.2

=  $118.95 \times Q \times 10^{-6}$  = 5.11 t/day Solid production = 5.11 t/day Sludge concentration = 0.5 % Sludge production = 5.11 × 100 ÷ 0.5 = 1,023 m<sup>3</sup>/day= 0.7 m<sup>3</sup>/min.

#### 1.3.3 RETURN SLUDGE

Return sludge volume is calculated by the following equation.

Sludge return ratio 50%Return sludge volume = 43,000 × 0.5 = 21,500 m<sup>3</sup>/day = 14.9 m<sup>3</sup>/min.

#### 1.3.4 GRAVITY SLUDGE THICKENERS

Gravity thickened sludge production volume is calculated by the following equation.

8.04 t/day 2.924 + 5.11 = Solids inflow ----Primary sludge Excess sludge 146 1,023 = 1,169 m<sup>3</sup>/day ÷ + Sludge inflow = Thickened sludge solids = 8.04 × 0.8 = 6.43 t/day 3.5 % Assume solids content to be Thickened sludge volume = 6.43 × 100/3.5 184 m<sup>3</sup>/day

#### 1.3.5 ANAEROBIC SLUDGE DIGESTERS

Anaerobic digested sludge production volume is calculated by the following equation.

| Input solids = 6.43 t/day                                   | an an taon an t |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Input sludge volume = 184 m <sup>3</sup> /day               |                                                                                                                 |
| Volatile solids content of sludge 70 %                      |                                                                                                                 |
| Solids destruction rate 50 %                                |                                                                                                                 |
| Digested sludge solids = $6.43 \times (1 - 0.7 \times 0.5)$ | = 4.18 t/day                                                                                                    |
| Assume solids concentration is 3.0 %                        |                                                                                                                 |
| Digested sludge volume = $4.18 \times 100/3.0 =$            | = 139 m <sup>3</sup> /day                                                                                       |

#### 1.3.6 SLUDGE DEWATERING

Dewatered sludge production volume is calculated by the following equation.

Input solids = 4.18 t/dayRecovered solids (90%) =  $4.18 \times 0.9 = 3.76 \text{ t/day}$ Assuming solids concentration as 20.0 % Sludge cake volume =  $3.76 \times 100 / 20.0 = 19 \text{ m}^3/\text{day}$ 

#### 1.4 COMPONENT OF FACILITIES

#### 1.4.1 PRIMARY CLARIFIERS

Primary clarifiers specifications are calculated by the following equation.

|   | Average daily flow, Qad = $37,000 \text{ m}^3/\text{day}$                         |
|---|-----------------------------------------------------------------------------------|
| ļ | Maximum daily flow, Qmd = $43,000 \text{ m}^3/\text{day}$                         |
|   | Maximum hourly flow, $Qmh = 53,000 \text{ m}^3/\text{day}$                        |
|   | Hydraulic surface load rate = $35 \text{ m}^3/\text{m}^2 \cdot \text{day}$        |
|   | Totally 2 clusters, each consisting of 2 tanks, total number of basins is 4 units |



Hydraulic load on each basin is  $43,000 \div 4 = 10,750 \text{ m}^3/\text{day/basin}$ Required surface area of each basin =  $10,750 \div 35 = 307 \text{ m}^2$ 

## (1) Tank Geometry (In accordance with the Romanian Standards),

Internal diameter 25 m Effective depth 2.0 m Number of basins 4 basins 423 x Surface area of a basin 4 1,692 m<sup>2</sup> \_ Hydraulic capacity of a basin 1.692 x 2 = 3.384 m<sup>3</sup> Check for hydraulic conditions of basins under the different flow rates. **Retention time**  $3,384 \times 24/43,000$ = 1.89 hours > 1.5 Surface load rate 43,000 / 1,692 = 25.4 m<sup>3</sup>/m<sup>2</sup>·day < 35

#### (2) Raw Sludge Pumping Equipment

The pumps will handle the mixture of primary and excess sludge having solids concentration of 2%.

Sludge solids8.04 t/day,Solids concentration2 %Sludge volume402 m³/day=0.28 m³/min.Pump type:Centrifugal screw pumpPump bore size:100 mmDelivering capacity:1 m³/min.Total dynamic head:10 mNumber of pumps:3 Units (including 1 standby)

## 1.4.2 REACTOR TANKS

Reactor tanks specifications are calculated by the following equation

| Design flow, Qmd $=$ 43,000 m <sup>3</sup> /day $>$ 1 and 1 and 2 m and |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOD-SS load 0.30 kgBOD/kg SS day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MLSS 1,667 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Return sludge solids concentration 5,000 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sludge return ratio = $1,667 \div (5,000 - 1,667) = 0.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Inflow BOD to reactors 43,000 $\times$ 170 $\times$ 10 <sup>-3</sup> kg BOD/day $\times$ (1 - 0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| = 5,117 kg BOD/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reactor tanks SS = $V \times 1,667 \times 10^{-3}$ kgMLSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Required tank capacity = $5,117 \div 1.667 \div 0.30 = 11,371 \text{ m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aeration time = $11,371 \times 24 \div 43,000 = 6.3$ hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| At Qmd, aeration time of 6 hours or more is secured.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Required tank capacity = $6 \times 43,000 \div 24.00 = 10,750 \text{ m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tank geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Width $= 5.5 \mathrm{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Effective depth $=$ 5.5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cross sectional area = $5.5 \times 5.5 - 1/2 \times 1.0^2 \times 2 - 1/2 \times 0.6^2 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| . The state of the state $=$ of $29~{ m m}^2$ , state equation ( ) we state of ${ m s}^2$ , and ${ m s}^2$ , state of the           |
| Number of tanks = 4 tanks 2 clusters 8 tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Capacity of one tank = $11,371 + 8 = 1,421 \text{ m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tank length = $1,421 \div 29 = 49.01$ use $49 \text{ m}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

ŧ -

All-4-6

hand to al

۲

| Tank ge | ometry |   |         |
|---------|--------|---|---------|
| W       | 5.5 m  | x | 8 Tanks |
| L       | 49 m   |   |         |
| Н       | 5.5 m  |   |         |

Check of aeration time Tank capacity =  $29 \times 49 \times 8 = 11,368 \text{ m}^3$ Aeration time =  $111,368 \times 24/43,000 = 6.3$  hours

Check for additional tank requirement to upgrade the process

Additional tank capacity required for the advanced treatment process will be provided by adding tanks to the conventional activated sludge aeration tanks. The wastewater inflow will be distributed both to the existing and additional tanks. The wastewater will be distributed in proportion to the treatment capacity of both trains. The total detention time will be 12.3 hours.

As the detention time in the conventional treatment process is 6.3 hours, the required retention time for additional tanks is

| o for additional tanks is                                              |                                                                                                                                |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 12.3 - 6.3 = 6.0 hours                                                 | e der                                                                                                                          |
| Check capacity and wastewater distribution ratio                       | •                                                                                                                              |
| Existing tanks $6.3 / 12.3 = 0.516$                                    |                                                                                                                                |
| Additional tanks $6.0 / 12.3 = 0.484$                                  |                                                                                                                                |
| Wastewater flow distribution rates                                     | 1. 1.1                                                                                                                         |
| Existing tanks $43,000 \times 0.516 = 22,181 \text{ m}^3/\text{day}$   |                                                                                                                                |
| Additional tanks $43,000 \times 0.484 = 20,819 \text{ m}^3/\text{day}$ | inter<br>Alteria                                                                                                               |
| Additional Reactor Tanks                                               |                                                                                                                                |
| Required tank capacity = $43,000 \times 6.0 \div 24 = 10,67$           | 0 m <sup>3</sup>                                                                                                               |
| Number of tanks = 4 tanks 2 clusters 8 tanks                           | 1997 - 1997<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| Tank capacity = $10,670 \div 8 = 1,334 \text{ m}^3$                    |                                                                                                                                |
|                                                                        | 16 m                                                                                                                           |
|                                                                        |                                                                                                                                |

| Tank  | geometry  | ,   | an af an Arazz |
|-------|-----------|-----|----------------|
| 1 🕴 V | V 👘 5.5 r | n x | 8 Tanks        |
| Ĺ     | . 46 m    | 1   |                |
| 1 1   | l 5.5 n   | n · |                |

| Check retention time |                           |                       |
|----------------------|---------------------------|-----------------------|
| Tank capacity =      | $29 \times 46 \times 8 =$ | 10,672 m <sup>3</sup> |
| Retention time =     | 10,072 × 24 / 43,000      | = 6.0 hours           |

#### 1.4.3 FINAL CLARIFIERS

Final clarifieres specifications are calculated by the following equation.

Design flow QD =  $43,000 \text{ m}^3/\text{day}$ Surface load rate =  $25 \text{ m}^3/\text{m}^2 \cdot \text{day}$ 2 clusters each consisting of 2 tanks, total tank number is : 4 tanks Influent to each tank =  $43,000 \div 4 = 10,750 \text{ m}^3/\text{day/tank}$ Required surface area of each tank =  $10,750 \div 25 = 430 \text{ m}^2$ 

## (1) Check by the Romanian Standards

Internal diameter 30 m

Part I/Tulcea: Appendix-4 Design Calculation of Tulcea WWTP

| Effective depth   | 3.5 m                   | a<br>a<br>a start a start a start                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tank numbers      | 4 basins                |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surface area      | $616 \times 4 =$        | 2,464 m <sup>2</sup>                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Capacity          | 2,464 × 3.5 =           | 8,624 m <sup>3</sup>                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surface load rate | 17 m³/m²·day            |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Retention time    |                         |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| At Qmd 8          | 3,624 × 24/43,00        | 00 = 4.81 hours                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Qv=Qmh + Q        | 2rmax = 53,000          | + 21,500 = 7                                                                                                                                               | 4,500 m³/day<br>2.78 > 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Surface load rate | 0,024                   | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                    | 2,10 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| At Qmd            | 43,000 / 2,464 =        | 17 m³/m²·day < 25                                                                                                                                          | a the state of the |
|                   | 74,500/2,464 =          |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Weir loading      | gendere Geregen         | en en participation de la competencia.<br>As desentas a trabanas de la competencia |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                         |                                                                                                                                                            | $\mathbf{m}$ , the latter set of the polya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                         |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| At Qv             | 74,500/295 = 252        | m³/m·day - to the sela                                                                                                                                     | when the second and the start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| As compared wit   | h the Japanese Standard | ls, the weir loading ap                                                                                                                                    | pears to be high side. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                         | · · ·                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

weir length may be increased in detailed design.

#### (2) Check for Advanced Treatment

The advanced treatment will be performed through two trains, existing and advanced treatment process trains.

The wastewater will be distributed to each train in proportion to the reactor tanks hydraulic retention time.

Wastewater distribution 22,181 m<sup>3</sup>/day Existing train 20,819 m<sup>3</sup>/day Additional train Check for additional tanks Surface load rate 15 m<sup>3</sup>/m<sup>2</sup> day or lower with 2 tanks, then total tank number is 4 units Cluster 2 Flow rate to each tank  $20.819 \div 4 =$ 5,205 m<sup>3</sup>/day.tank  $5,205 \div 15 = 347 \text{ m}^2$ Required surface area of each tank \_\_\_\_ D 30 – 2.3 *⇒* 27.7 m =  $A = 0.785 \times (D^2 - 3^2)$ 595 m<sup>2</sup> According to Romanian Standards == Diameter 30 m Effective depth 3.5 m Number of tanks 4 units Water surface area 616 × 4 2,454 m<sup>2</sup> = 8.624 m<sup>3</sup> Capacity  $2,464 \times 3.5 =$ 8.4 m<sup>3</sup>/m<sup>2</sup>/day Overflow rate • • • • Check the existing tank overflow rate 20.819/2,464 =  $8.4 \text{ m}^3/\text{m}^2/\text{day} < 15$ 

#### (3) Return Sludge Pumps

Return sludge pumps are specified as follows.

Average 50 % sludge return rate is considered, but pump capacity 100 % return rate is provided to prevent and restore sludge bulking.

Return sludge volume =  $21,500 \text{ m}^3/\text{day} = 15 \text{ m}^3/\text{min}$ . 60% and 40% of sludge will be transported by 4 and 2 pumps respectively, through double pipelines.

Pump capacity  $7.5 \times 0.25 = 1.87$  use  $1.9 \text{ m}^3/\text{minute/unit}$ 

"  $7.5 \times 0.50 = 3.73$  use  $3.8 \text{ m}^3$ /minute/unit By operating above pumps, the return sludge rates can be adjusted at the order of 5% to 15%.

| Pump type | e No    | .1 Scre | ew centrifugal | N   | lo.2 Sc | rew | centrifugal |
|-----------|---------|---------|----------------|-----|---------|-----|-------------|
| Diameter  | · .     | 150     | mm             | 1.1 |         | 200 | mm 👘 👘      |
| Capacity  |         | 1.9     | m³/min.        |     |         | 3.8 | m³/min.     |
| Трн       | ÷       | 10      | m              |     |         | 10  | m           |
| Number o  | f pumps | - 4     | units          |     |         | 2   | units       |
| Motor out | put     | 7.5     | kW             |     | .1      | 11  | kW          |

#### (4) Excess Sludge Pumps

Excess sludge pumps are specified as follows.

| Excess sludge volume<br>Two lines will be prov |                  |        | nin<br>= 1.02 | m³/min    |
|------------------------------------------------|------------------|--------|---------------|-----------|
| Type of pump                                   | centrifugal slud |        |               |           |
| Diameter                                       | 100 mm           |        |               | station - |
| Capacity                                       | 1.0 m³/min       | ·      |               |           |
| TDH                                            | 10 m             |        | Salata an     | 1.1.1.1.1 |
| Number of pumps                                | 2 units (1-st    | andby) |               | ÷ .       |

3.7 kW

#### (5) Chlorine Contact Tanks

Motor output

Chlorine contact tanks specifications are calculated by the following equation.

43,000 m<sup>3</sup>/day Design flow rate = 15 minutes Chlorine contact time = 448 m<sup>3</sup> Required tank capacity:  $43,000 \div 1,440 \times 15 =$ Channel width: 4.0 m Effective depth: 3.0 m 447.9 Tank length: 3.0 . 37.3 m \_→ 4.0 = - 38 m ÷ ÷ Number of tanks 1 unit

```
Chlorine contact tank geometry
W4m × H4m × 1 Tank
L38 m
```

#### 1.5 ANAEROBIC SLUDGE DIGESTERS

## 1.5.1 SLUDGE THICKENERS

#### (1) Hydraulic Capacity of Tanks

Hydraulic capacity of tanks are specified as follows.

| Solids input          | er e 🚊 i       | 8.04 t/day         |
|-----------------------|----------------|--------------------|
| Input sludge volume   | =              | 1,169 m³/day       |
| Output sludge volume  |                | 184 m³/day         |
| Floor loading         |                | 60 kg/m²/day       |
| Required surface area | =              | 134 m <sup>2</sup> |
| Tank geometry         | Circular       | radial flow type   |
| Internal diameter     | 1 . <b>-</b> 1 | 9.5 m              |

Part II/Tulcea: Appendix-4 Design Calculation of Tulcea WWTP

| Effective depth    |           | 4 m 👘            | at sector |                    |
|--------------------|-----------|------------------|-----------|--------------------|
| Number of tanks    | <b>22</b> |                  |           |                    |
| Water surface area | 3.14/4 ×  | 9.5 <sup>2</sup> | × 2 =     | 142 m <sup>2</sup> |

## (2) Sludge Withdrawal Pumps

Sludge withdrawal pumps are specified as follows.

| The pumps will hav | e capacities that can send thickened sludge in around 8 hours.                                                       |
|--------------------|----------------------------------------------------------------------------------------------------------------------|
| Pump capacity      | $Q = 184 \times 1/8 \times 1/60 = 0.38 \text{m}^3/\text{min}.$                                                       |
| Pump               | Sludge pump with suction screw                                                                                       |
| Diameter           | 100 mm                                                                                                               |
| Discharge capacity | 1.20 m³/min.                                                                                                         |
| TDH                | 20 m                                                                                                                 |
| Motor output       | ine <b>15 kW</b> (constitution of a constitution of a second second second second second second second second second |
| Number of pumps    | 2 units(including one standby)                                                                                       |

## (3) Sludge Screens

Sludge screens are specified as follows.

| Туре                 | Rotary drum screen                                                  |
|----------------------|---------------------------------------------------------------------|
| Screen opening       | <b>4 mm</b>                                                         |
| Capacity             | 2 m <sup>3</sup> /min.                                              |
| Motor output         | 0.4 kW                                                              |
| Number of screens    |                                                                     |
| Screen capacity is s | o determined that the sludge quantity being sent concomitantly from |
| 2 raw sludge pumps   | (each $q = 1.0 \text{ m}^3/\text{min.}$ ) can be screened.          |

## 1.5.2 ANAEROBIC SLUDGE DIGESTION TANKS

## (1) Hydraulic Capacity of Tanks

Hydraulic capacity of tanks are specified as follows.

| Sludge solids input    | = . | 6.43 t/day                          |
|------------------------|-----|-------------------------------------|
| Input sludge           | -   | 184 m³/day                          |
| Detention time         | ÷.  | 20 days                             |
| Tank temperature       | • • | 35 °c                               |
| Required tank capacity |     | $184 \times 20 = 3,675 \text{ m}^3$ |

## (2) Tank Geometry

Tank geometry is specified as follows.

| Туре                 | Single stage digestion                                                |
|----------------------|-----------------------------------------------------------------------|
| Internal diameter    | 12.5 m                                                                |
| Effective tank depth | 21 m                                                                  |
| Number of tanks      | 1 clusters × 2 tanks                                                  |
| Capacity             | 2,015 m <sup>3</sup> /tank , 4,030 m <sup>3</sup> total tank capacity |

All-4-10

## 1.5.3 GAS STORAGE TANKS

#### (1) Capacity of Tanks

Capacity of tanks are calculated by the following equation.

Total solids input to digesters = 6.43 t/dayAssuming that 70 % of the input sludge solids are volatile, and 1 kg of which produce  $0.425 \text{ m}^3$  gas, the total gas production can be estimated as follows: Total gas production =  $6.43 \times 0.7 \times 10^3 \times 0.425 = 1,913 \text{ m}^3/\text{day}$ Storage time 8 hours Tank storage capacity =  $1,913 \times 8/24 = 638 \text{ m}^3/\text{day}$ 

## (2) Tank Geometry

Tank geometry is specified as follows.

| Туре             | Dry-seal type steel tanks |
|------------------|---------------------------|
| Number of tanks  | 2 units                   |
| Diameter         | 11.6 m                    |
| Effective height | 9.2 m                     |
| Storage capacity | 1,000 m <sup>3</sup>      |

### 1.5.4 MECHANICAL SLUDGE DEWATERING

#### (1) Filter Capacity

Filter capacity is calculated by the following equation.

| Solids input =         | 4.18 t/day ,    | Input sludge volume         | 139 m³/day    |
|------------------------|-----------------|-----------------------------|---------------|
| Belt press filter      |                 | •                           |               |
| Yields per unit length | 130 kg/         | m/hr                        |               |
| Filter width           | 2 m             |                             |               |
| Daily operation time   | 6 hr            |                             |               |
| Working days/week      | 5 day           |                             | an en gara in |
| Solids loads per hour  | = 4.18 ×        | $7/5 \times 10^{3}/6 =$     |               |
| Required number of     |                 |                             |               |
| belt press =           | 975 / 130 / 2 = | 4 use $\rightarrow$ 4 units |               |

| Туре                | : B         | elt filter press                 |
|---------------------|-------------|----------------------------------|
| Filter loading rate | •           | 130 kg/m/hr                      |
| Filter width        | :           | 2 m                              |
| Number of filters   | <b>:</b> 11 | or van <b>4 unit</b> in Gelanden |

## **1.6 CHLORINE REQUIREMENTS**

Required quantity of hypochlorite solution is calculated by multiplying the dosing rate by the wastewater flow rate as shown in the following equation:

$$VR = Q \times R \times (100 / C) \times (1 / d) \times 10^{-3}$$

where

| VR              | Required hypochlorite solution (L / hr.)                                  |          |
|-----------------|---------------------------------------------------------------------------|----------|
| $\mathbf{Q}$ is | Wastewater flow rate (m <sup>3</sup> / hr)                                |          |
| R               | Chlorine dosing rate (mg / L)                                             |          |
| C               | Effective chlorine concentration in chemical (%)                          |          |
| d i             | Specific gravity of hypochlorite solution (at the effective concentration | n ofC %) |

e ser la sue su concest

At the maximum daily flow rate, the required hypochlorite solution is:

43.000 m³/day - $= 1.792 \text{ m}^{3}/\text{hr}$ Q = R 3 mg/L == С = 10 % d == 1.2 VR 3  $(100/10) \times (1/1.2) \times 10^{-3}$ 0 х == x 0.036 65 L/hr. = 1 L/minutex 0 . ==

#### (1) Hypochlorite Solution Storage Tanks

Hypochlorite solution storage tanks are specified as follows.

8 days storage capacity for the maximum daily flow rate. Then, the capacity is:  $V = 0.065 \text{ m}^3/\text{h} \times 24 \times 8 = 12.4 \text{ m}^3$ Tank specifications Type FRP made cylinder type Internal diameter 1.8 m Height 2.9 m Capacity 6 m<sup>3</sup> Number of tanks 2 units

#### (2) Dosing Pumps

| Туре         | Diaphragm                     |
|--------------|-------------------------------|
| Diameter     | 20 mm                         |
| Discharge    | 0.5 L/min                     |
| Motor output | 0.4 kw                        |
| No. of unit  | 3 units (including 1 standby) |
|              |                               |

## 1.7 DIGESTER HEATING SYSTEM

#### 1.7.1 TEMPERATURE

| Lowest daily average temperature | 0 °c  |
|----------------------------------|-------|
| Soil temperature                 | 15 °c |
| Input sludge temperature         | 10 °c |
| Digester tank temperature        | 35 ℃  |

#### 1.7.2 REQUIRED CALORIES FOR SLUDGE HEATING SPECIFIC HEAT 1.0 KCAL/KG+°C

Required calories for sludge heating specific is calculated by the following equation.

 $Q = 184 \times (35 - 10) \times 103 \times 1.0 = 4,593,711 \text{ kcal/d}$ 

## 1.1.6 1.7.3 HEAT LOSSES TANK INTERNAL DIAMETER 12.5 M

(1) Surface Area of the Digestion Tank

· . . . .

e de la dista eta est

|                              | Internal diameter | 12.5  | m              |
|------------------------------|-------------------|-------|----------------|
|                              | Г                 | R     | h              |
| Top slab (gas portion)       | 1.00              | 3.00  | 2.0            |
| Α1                           |                   | 38.7  | m <sup>2</sup> |
| Top slab(liquid portion)     | 3.00              | 6.25  | 5.75           |
| Λ2                           |                   | 133.5 | m²             |
| Side wall(above ground)      | 6.25              | 6.25  | 9.50           |
| (down to 1m below ground) A3 |                   | 372.9 | m²             |
| Side wall(underground)       | 6.25              | 6.25  | 2.50           |
| (up to 1m from surface) A4   |                   | 98.1  | m <sup>2</sup> |
| Bottom slab                  | 1.00              | 6.25  | 7.75           |
| AS                           |                   | 172.2 | m <sup>2</sup> |

A1 = 35.5(side) + 3.14(top, r) = 38.67

A2 = 133.5, A3 = 372.9, A4 = 98.1, A5 = 169.0 + 3.14 = 172.2

#### Overall Thermal Conductivity Coefficient (kcal/m<sup>2</sup>, <sup>o</sup>c /hr) (2)

|                                                       | RC<br>thicknes<br>s (m) | Water<br>proof<br>motor | Insulation<br>(polyureth<br>ane foam) | Concret<br>e block | Spray<br>concrete | Gas<br>portion        | Internal or<br>I(thermal<br>conductivity) | External α<br>2(thermal<br>conductivity)           | ĸ       |
|-------------------------------------------------------|-------------------------|-------------------------|---------------------------------------|--------------------|-------------------|-----------------------|-------------------------------------------|----------------------------------------------------|---------|
|                                                       | ().=1.4)                | (λ=1.2)                 | (λ=0.22)                              | (λ=1.0)            | (λ=1.4)           | ( <del>)</del> =0.48) |                                           |                                                    |         |
| Roof slab(gas portion)                                | 0.3                     | 0.03                    | 0.04                                  | · · · · ·          |                   |                       | 20                                        | 20                                                 | 0.464k1 |
| Roof<br>słab(liquid<br>portion)                       | 0.3                     | 0.03                    | 0.01                                  |                    |                   |                       | 300                                       | 20                                                 | 0.474k2 |
| Upper side<br>walls (1m<br>underground<br>or higher)  | 0.3                     |                         | 0.04                                  | 0.15               |                   | 0.26                  | <b>300</b>                                | 20                                                 | 0.360k3 |
| Lower<br>sidewalls<br>(Im<br>underground<br>or lower) | 0.3                     |                         |                                       |                    |                   |                       | 300                                       | <b>5</b><br>1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 2.395k4 |
| Bottom slab                                           | 0.8                     |                         |                                       |                    | Û. <b>1</b>       |                       | 300                                       | 5 S                                                | 1.182k5 |

The overall thermal conductivity coefficient can be calculated by the following equation:

$$1/K = 1/\alpha_1 \times \delta_1/\lambda_1 + \delta_2/\lambda_2 + 1/\alpha_2$$

where

2

KOverall thermal conductivity coefficient (kcal/m² °c·hr.)
$$\alpha_1$$
Thermal conductivity coefficient of gas or sludge (kcal/m² °c·hr.) $1/k1 = 2.16$  $k1 = 0.464$  $\alpha_2$ Thermal conductivity coefficient of air or ground (kcall/m² °c·hr.) $1/k2 = 2.11$  $k2 = 0.474$  $\lambda_1, \lambda_2$ Thermal conductivity coefficient of insulation material (kcall/m² °c·hr.) $1/k3 = 2.78$  $k3 = 0.360$  $\delta_1, \delta_2$ Thickness of insulators (m) $1/k5 = 0.85$  $k5 = 1.182$ 

1.11

#### Portion of tank Heat Thermal Number of Difference of Total heat transfer conductivity tanks temperature losses area coefficient (Kcal/m²/°c/hr) $(m^2)$ (unit) (°c) Roof slab(gas portion) 38.67 0.464 4 35 2,509 Roof slab(liquid portion) 133.5 0.474 4 35 8.854 Upper sidewalls(1m 372.9 0.360 4 35 18.795 under ground above) Lower sidewalls (up to 98.1 2,395 4 35 32,895 1m below ground surface) Bottom slab 172.2 1.182 4 35 28,484 Total 91.537

#### (3) **Overall Heat Losses**

Overall heat losses · ----91,537 Kcal / hr

#### 1.7.4 HEATING SYSTEM Charles and the Product of the Produ

24 hours continuous heating. A total of 20 % heat losses from pipes are considered.  $4,593,711/24 + 91,537 \times 1.2 =$ 301,249 Kcal / hour Efficiency of water heater 0.9

品語語のない

121.4

301,249/0.9 = 334,721 Kcal/hour

Water heater

450,000 Kcal / hr × 2 units (including 1 standby)

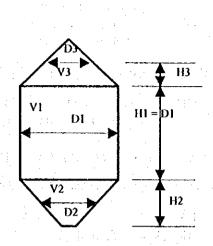
# **1.8 ANAEROBIC SLUDGE DIGESTION SYSTEM**

#### 1.8.1 **DIGESTION TANK**

Hydraulic capacity of tanks are specified as follows.

| Detention time 20 days     |   | ئىرىيە<br>قىرىمى قىلار | 1.1               |                      |
|----------------------------|---|------------------------|-------------------|----------------------|
| Temperature 35 °c          |   |                        | $\frac{1}{2} = 0$ |                      |
| Required tank capacity 184 | x | 20                     | =                 | 3,675 m <sup>3</sup> |

#### 1.8.2 **TANK GEOMETRY**


Tank geometry is specified as follows.

| Туре                 | single stage tank                                              |
|----------------------|----------------------------------------------------------------|
| Internal diameter    | 12.5 m removal to the presents for a state of the              |
| Effective tank depth | <ul> <li>21 m and the data of the data state of the</li> </ul> |
| Number of tanks      | 2 clusters                                                     |
|                      | $2,015 \text{ m}^3/\text{tank}$ D1 = 12.5 m                    |
| . · · ·              | $(1,837 \text{ m}^3/ \text{tank or larger})$ D2 = 2 m          |
|                      | $\mathbf{D3}$ = 6 m                                            |

#### 1.8.3 TANK CAPACITY

Tank capacity is calculated by the following equation.

| Effect | ive depth | 12.5 m                         | Portion V1             |
|--------|-----------|--------------------------------|------------------------|
| n      | •         | 5.25 m                         | Portion V2             |
| n      |           | 3.25 m                         | Portion V3             |
| Total  |           | 21m                            |                        |
| V1     | = '       | $\pi/4 \times D^2 \times D^2$  | D                      |
|        | ==        | $\pi/4 \times D^3 =$           | = 1,533 m <sup>3</sup> |
| V2     | =         | $\pi / 4 \times D^2 \times (I$ | 0/2)/3                 |
|        |           | $-\pi/4 \times D2^2$           | × (D2/2)/3             |
|        | i = , (   | $\pi/4/6$ (D <sup>3</sup>      | - D2 <sup>3</sup> )    |
|        | · _ ·     | 254 m <sup>3</sup>             |                        |
| ¥3     | . = :     | $\pi/4/6$ (D <sup>3</sup>      | - D3 <sup>3</sup> )    |
|        | =         | 227 m <sup>3</sup>             |                        |
|        | 1.        | V total                        | 2,015 m <sup>3</sup>   |



## 1.9 REQUIRED OXYGEN

Required oxygen is calculated by the following equation.

Required $O_2: OD = OD_1 + OD_2 + OD_3$ where $OD_1$  $OD_2$  $OD_2$  $OD_3$  $OD_3$  $OD_3$  $OD_3$  $OD_3$ 

### 1.9.1 REQUIRED OXYGEN FOR BOD OXIDATION(CELL SYNTHESIS) : OD1(KG0,/DAY)

OD1 = A(kgO<sub>2</sub>/kgBOD) × BOD removed (kg BOD/day) where A : kg oxygen required to remove kg BOD (kgO<sub>2</sub>/kgBOD), 0.5~0.7  $\rightarrow$  0.6 Q = 43,000 m<sup>3</sup>/day OD<sub>1</sub> = 0.6 × Q × 101.2 × 10<sup>-3</sup> = 0.0607 Q kgO<sub>2</sub>/day Influent BOD = 119 - 18 = 101.2 mg/l

#### 1.9.2 OXYGEN REQUIRED FOR ENDOGENOUS RESPIRATIONOD<sub>2</sub>(KGO<sub>2</sub>/DAY)

## 1.9.3 REQUIRE OXYGEN TO MAINTAIN DISSOLVED OXYGEN LEVEL: OD3(KGO<sub>2</sub>/DAY)

- $OD_3 = COA \times Q \times 10^{-3}$
- where COA : Aeration tank dissolved oxygen 1.5 mg/l concentration Return sludge ratio R = 0.5
- $OD_{3} = 1.5 \times (1+0.5) Q \times 10^{-3}$ = 0.00225 Q kg O<sub>2</sub>/day

#### 1.9.4 TOTAL OXYGEN REQUIREMENTS

 $OD = OD_1 + OD_2 + OD_3$ = 0.0607 Q + 0.015 Q + 0.00225 Q = 0.0779 Q (kgO<sub>2</sub>/day)

#### **1.9.5** AERATION EQUIPMENT (DIFFUSERS, FINE BUBBLES, SPIRAL FLOW)

Aeration equipment is calculated by the following equation.

$$EA = 7.5$$
,  $\rho = 1.293$ ,  $Qw = 0.233$ 

Air volume (N m<sup>3</sup>/day)

= (Required oxygen(KgO<sub>2</sub>)) / (EA(%) ×  $10^{-2}$  ×p(air/Nm<sup>3</sup>) × Qw(kgO<sub>2</sub>/kg air)) = (0.0779 Q) / (7.5 × 0.01 × 1.293 × 0.233)

=  $3.45 \text{ Q} = 148,325 \text{ (Nm}^3/\text{day)} = 103 \text{ (Nm}^3/\text{min.)}$ Install one blower for each train Required blower capacity  $103 \div 2 = 52 \text{ m}^3/\text{tank-unit}$ 

Required blower capacity1032232 m Hank unitBlower spec.Cast-iron made multi-stage turbo blowerInlet/outlet diameters $\phi 200 / \phi 200$ Capacity $50 \text{ m}^3/\text{min.}$ Motor output37.5 kWNumber of units3 units (including 1 standby)

그는 말에 물을 물을 가지 않는 것을 수 있다.

NUMBER OF STREET

#### **1.10 SCREENS AND PUMPING STATION**

9 . . ž.

#### 1.10.1 FLOW RATE

Flow rate is determined as follows.

|                                |         | 1. S. |           | <u>н н</u>         |           |
|--------------------------------|---------|-------------------------------------------|-----------|--------------------|-----------|
| Qad 37,000 m <sup>3</sup> /day | 428 L/s | · · · · ,                                 |           |                    | ale to la |
| Qmd 43,000 m³/day              | 498 L/s |                                           |           | e dae<br>Alexandre |           |
| Qmh 53,000 m³/day              | 613 L/s |                                           | , et et a |                    |           |

#### 1.10.2 Incoming Sewer

Incoming sewer is specified as follows.

|     | Friction formula                     | Manning (n=0.013)         |
|-----|--------------------------------------|---------------------------|
|     | Size of incoming sewer               | φ <b>1,000</b> mm         |
| •   | Sewer slope                          | 1.2 %                     |
|     | Incoming sewer invert elevation      | 4.316 m above M.W.L.      |
|     | Full flow rate of incoming sewer     | 0.613 m <sup>3</sup> /sec |
| • • | Full flow velocity in incoming sewer | 0.781 m/sec               |

| Item              | Wastewater flow<br>rates (m³/s) | Flow<br>velocity<br>(m/sec) | Water depth<br>(m) | Water surface<br>elevation at<br>entrance (m) | Head loss<br>ahead of<br>chamber | Gate chamber<br>water elevation<br>(m) |
|-------------------|---------------------------------|-----------------------------|--------------------|-----------------------------------------------|----------------------------------|----------------------------------------|
| Average           | 0.428                           |                             |                    | 4.932                                         | 0.036                            | 4.896                                  |
| daily             | 0.699                           | 1.082                       | 0.616              |                                               | ·                                |                                        |
| Maximum<br>daily  | 0.498<br>0.812                  |                             | 0.684<br>0.684     | 5.000                                         | 0.039                            | 4.961                                  |
| Maximum<br>hourly | 0.613                           | 0.781<br>1.000              | 1.000<br>1.000     | 5.316                                         | 0.031                            | 5.285                                  |

flow full velocity sewer depth

#### From tables

## 1.10.3 INFLUENT GATE

Influent gate is specified as follows.

Elevation of gate bottom 4.300 M.W.L. square 1.2 m Gate type and size

| Itėms                              |           | Average<br>daily flow | Max.<br>daily<br>flow | Max.<br>hourly<br>flow | Wet<br>weather<br>flow | Remarks |
|------------------------------------|-----------|-----------------------|-----------------------|------------------------|------------------------|---------|
| Wastewater Inflow rates (Q)        | m³/s      | 0.428                 | 0.498                 | 0.613                  |                        |         |
| No. of gates operated (n)          | Unit      | 2                     | 2                     | 3                      |                        |         |
| Wastewater inflow to each gate     | m³/s/gate | 0.214                 | 0.249                 | 0.204                  |                        | Q/n     |
| Wastewater elevation ahead of gate | M.W.L.    | 4.896                 | 4.961                 | 5.285                  | NT personal T          | 1.141.1 |
| Wastewater depth at gate (11)      | m         | 0.596                 | 0.661                 | 0.985                  |                        |         |
| Wastewater flow area at gate (A)   | m²        | 0.715                 | 0.794                 | 1.182                  |                        | 1.2×H   |
| Flow velocity through gate(V)      | m/s       | 0.300                 | 0.314                 | 0.173                  | The state of the state | Q/nA    |
| Head losses at gate(Ah)            | m         | 0.007                 | 0.008                 | 0.002                  |                        |         |
| Water elevation after gate         | M         | 4.889                 | 4.954                 | 5.283                  | 1 - N - 11             |         |

Total head losses at gate( $\Delta h$ )  $1.5 \times v^2/2g$  $0.0765 \times v^2$ =

## 1.10.4 COARSE SCREEN

Coarse screen is specified as follows.

| Channel invert elevation |           | 4.30 m M.W.L.     |                                     |
|--------------------------|-----------|-------------------|-------------------------------------|
| Channel width            | 1.1       | 1.6 m             |                                     |
| Screen clear opening     | 1.<br>. 1 | 100 mm            | · · · ·                             |
| No. of screens           | t i s     | 2                 | $\{ y_i, y_j \} \in \mathbb{R}^{d}$ |
| Slope of screens         |           | 60 degrees from h | orizontal                           |



| Items                                   |             | Average<br>daily flow |       | Maximum<br>hourly flow | Wet<br>weather<br>flow | Remarks               |
|-----------------------------------------|-------------|-----------------------|-------|------------------------|------------------------|-----------------------|
| Wastewater inflow rates (Q)             | m³/s        | 0.428                 | 0.498 | 0.613                  |                        |                       |
| No. of channels used                    | · · ·       | 2                     | 2     | 3                      |                        |                       |
| Wastewater inflow to each channel       | m³/s        | 0.214                 | 0.249 | 0.204                  |                        | Q/n                   |
| Wastewater elevation ahead of screen    | m<br>M.W.L. | 4.889                 | 4.954 | 5.283                  |                        |                       |
| Wastewater depth ahead of screen        | m           | 0.589                 | 0.654 | 0.983                  |                        |                       |
| Flow area in channel(A)                 | m           | 0.942                 | 1.046 | 1.238                  |                        | 1.6 × 11              |
| Approaching flow velocity to screen     | m/s         | 0.227                 | 0.238 | 0.165                  |                        | Q/nA                  |
| Flow velocity in screen(V2)             | m/s         | 0.241                 | 0.252 | 0.175                  |                        |                       |
| llead loss in screen(Δh1)               | នា          | 0.000                 | 0.000 | 0.000                  |                        |                       |
| Actual head loss in screen(Ah2)         | m           | 0.000                 | 0.000 | 0.000                  |                        | $3 \times \Delta h 1$ |
| Allowable head loss at screens<br>(Δh3) | m           | 0.100                 | 0.100 | 0.100                  | 3<br>                  | ∆h3>h2                |
| Wastewater elevation after screen       | m<br>M.W.L  | 4.789                 | 4.854 | 5.183                  |                        | Δh3                   |

 $\delta h = \beta \times (s/d)^{4/3} \times \sin \alpha = 0.0492268$ 

|    | $\beta = 2.42$ , $d = 150$ mm, $s = 9$        | mm ; | $\alpha = 60^{\circ}$ , | sin 60 = (      | 0.866 |
|----|-----------------------------------------------|------|-------------------------|-----------------|-------|
| v. | Loss by screen = $\delta h \times v^2 / 2g =$ |      | 0.04923                 | $\times v^2/2g$ | (hw)  |
| ۰. | Flow velocity through screen                  | VI × | < (s+d ) /              | d = 1.06        | Vl    |

us És

1.100

មិតម្លាំ ។

1111

的复数运行机

# 1.10.5 FINE SCREEN

Fine screen is specified as follows.

| Channel invert elevation |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.900 M.W.L.     |             |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| Channel width            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6 m            |             |
| Bar screen clear opening | in in the second s | 20 mm            |             |
| Thickness of screen bars |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 mm             |             |
| No. of units             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 units          | 1. 人口的人名英格兰 |
| Slope of screen          | ana<br>An An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75 degrees to he | orizontal   |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>-</b>         |             |

AII-4-18

 $\{ j \} = \{$ 

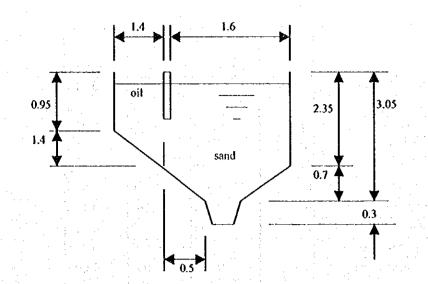
Ç3

| Items                                |        | Average daily | Maximum<br>daily | Maximum     | Wet weather | Remarks               |
|--------------------------------------|--------|---------------|------------------|-------------|-------------|-----------------------|
|                                      |        | flow          | flow             | hourly flow | flow        |                       |
| Wastewater Inflow rate (Q)           | m³/s   | 0.428         | 0.498            | 0.613       |             |                       |
| No. of channels in use (n)           | ·      | 2             | 2                | 3           |             |                       |
| Flow rate in each channel            | m³/s   | 0.214         | 0.249            | 0.204       |             | Q/n                   |
| Water elevation ahead of screen      | M.W.L. | 4.789         | 4.854            | 5.183       |             |                       |
| Water depth ahead of screen (H)      | m      | 0.889         | 0.954            | 1.283       |             |                       |
| Sectional area of flow in channel    | m²     | 1.422         | 1.526            | 1.616       |             | 1.6 × H               |
| Approaching velocity to screen (V1)  | m/s    | 0.151         | 0.163            | 0.127       | · · ·       | Q/nA                  |
| Flow velocity through screen(V2)     | m/s    | 0.211         | 0.228            | 0.177       |             |                       |
| Head loss through screen(Ah1)        | m      | 0.002         | 0.002            | 0.001       |             |                       |
| Actual head loss in screen(Ah2)      | m      | 0.005         | 0.005            | 0.003       | hana        | 3 × Ah1               |
| Allowable maximum loss (Ah3)         | m      | 0.100         | 0.100            | 0.100       |             | Δh3 <h2< td=""></h2<> |
| Water surface elevation after screen | M.W.L. | 4.689         | 4.754            | 5.083       | · ·         | ∆h2                   |

## 1.11 GRIT, OIL/GREASE REMOVAL EQUIPMENT

#### 1.11.1 DESIGN WASTEWATER FLOW RATES

Design wastewater flow rates are determined as follows.


| Qad | 37,000 | m³/day | 428 | L/s |
|-----|--------|--------|-----|-----|
| Qmd | 43,000 | m³/day | 498 | L/s |
| Qmh | 53,000 | m³/day | 613 | L/s |

## 1.11.2 GRIT, OIL/GREASE SEPARATION

Grit, oil/grease separation is specified as follows.

2 trains 1 channels each, then totally 2 channels  $53,000 \text{ m}^3/\text{day} = 613 \text{ L/sec}$ Qww -Flow to each channel  $26,500 \text{ m}^3/\text{day} = 307 \text{ L/sec}$ Retention time 3 minutes  $53,000 \times 3 \div 1,440 = 110.4 \text{ m}^3$ Capacity Section area 6.8 m<sup>2</sup> Length 8.1 m Capacity  $6.8 \times 8 \times 2 = 110.4 \,\mathrm{m}^3$ (check for flows) At maximum daily flow Qmd 43,000 m<sup>3</sup>/day Retention Time  $(110.4 \times 1,440)/43,000 = 3.7 \text{ min.}$ 

All-4-19



#### Chamber cross sectional area 1.4 х 0.95 1.33 1/2 1.4<sup>2</sup> 0.98 x == 1.6 3.05 4.88 х == -1/2 × $0.5^{2}$ -0.13= $0.7^{2}$ -1/2 × -0.25 == use $\rightarrow 6.8 \text{ m}^2$ Total 6.82 m<sup>2</sup> Air supply volume **Romanian Standards** Q = $0.3 \text{ m}^3 \text{ air} / \text{m}^3 \text{ water}$ $0.3 \times 2,208 =$ 663 m<sup>3</sup>/hour = 11 m<sup>3</sup>/min Japanese Standards 0.01 m<sup>3</sup>/sec·m × channel length/m (0.005~ **O** = 0.013) = $0.01 \times 8 \times 2$ $= 0.162 \text{ m}^3/\text{sec} =$ 10 m³/min Then, the total air is 11 m<sup>3</sup>/min Blower equipment 2 unit I unit each for I train then, 1 blower capacity = $11 \div 2 = 5.5$ use $\rightarrow 6 \text{ m}^3/\text{min}$ Air blower specifications Roots blower 3 units (including 1 standby) $\phi$ 80mm × 6 m<sup>3</sup>/min Grit volume from combined sewage: 0.001~0.02m<sup>3</sup> grit/1,000m<sup>3</sup> sewage Then, grit volume = $0.02 / 1000 \times 53,000 = 1.06 \text{ m}^3/\text{day}$

# 1.11.3 GRIT PUMPS

Grit pumps are calculated as follows.

Pump capacity is to remove the grit in 20 minutes. As allowances the capacity is two times of the grit

quantity. Then, the pump capacity is:

 $(1.06 \text{ m}^3/\text{day} \times 2)/(4 \text{ units} \times 2 \text{ minutes}) = 0.0265 \text{ m}^3/\text{min}$ Assuming the grit content in the withdrawn wastewater at 10 %, the required pump

alean staid

capacity is:

 $0.0265 \times 100 / 10 = 0.265 \text{ m}^3/\text{min.}$ 

Assume the pump velocity to be 2.5 m/sec, the pump diameter will be:

 $146 \times (1.4/2.5)^{0.5} = 48 \text{ mm}$  use 75 mm

#### 1.11.4 FLOW MEASUREMENT

Use two units of Parshall flume

|             |                                       |     |                            | Frow per each $unit(Q / 2)$ |
|-------------|---------------------------------------|-----|----------------------------|-----------------------------|
| Qad         | 37,000 m³/day                         | =   | 1,542 m <sup>3</sup> /hour | 771 m <sup>3</sup> /hour    |
| Qmh         | 43,000 m <sup>3</sup> /day            | =   | 1,792 m <sup>3</sup> /hour | 896 m³/hour                 |
| <b>O</b> ww | 53,00 m <sup>3</sup> /day             | = ' | 2,208 m <sup>3</sup> /hour | 1,104 m <sup>3</sup> /hour  |
| Select 7    | ft flume, range of fl                 | อพ่ | 306~ 12,38                 | 0 m <sup>3</sup> /hour      |
|             | · · · · · · · · · · · · · · · · · · · |     |                            |                             |

## 1.12 SLUDGE DIGESTER EQUIPMENT

1.12.1 MIXERS

(1) Specifications

| Type Up/down flow s | rew mixers (with a draft tube, from manufacturer's catalog) |
|---------------------|-------------------------------------------------------------|
| Capacity            | 1,200 m <sup>3</sup> /hour                                  |
| Draft tube diameter | 400 mm                                                      |
| Motor output        | 11 kW                                                       |
| Quantity            | 4 units                                                     |

#### (2) Sludge Mixing Capacity

Sludge turn over rate (mixing the whole sludge volume 8~12 times/day)  $Q = (8~12) \times 2,015$  (Tank volume = 2,015m<sup>3</sup>)/24 = 672 ~ 1,007 m<sup>3</sup>/hour use  $\rightarrow$  1,200 m<sup>3</sup>/hour

### 1.12.2 TANK APPARATUS(ON ROOF TOP)

Tank apparatus are specified as follows.

| Gas collectors(steel made) | <b>∲600 mm × 1 unit</b>                                                                                         |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|
| Gas relief valve (wet type | ) <b>• • • • • • • • • • • • • • • • • • •</b>                                                                  |
| Gas relief valve (dry type | )                                                                                                               |
| Quantity                   | Fotal og 4 units og at state en state være som en som e |

## 1.12.3 WATER HEATERS

## (1) Specifications

| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vacuum type water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Heater capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450,000 Kcal/hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| Heater transfer area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $9.9 \text{ m}^2$ and a final state of the stat |     |
| Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sludge gas and oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Electric motors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Burner motor 1.5 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oil pump 0.4 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oil heater 1.0 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fan 1.5 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | τ,  |
| Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 units (1standby)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| <ul> <li>Provide the second sec<br/>second second sec<br/>second second sec</li></ul> | あなり かいさか しっしかい あいがい しょうかい しょうしん 白白 かい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |



Part II/Tulcea: Appendix-4 Design Calculation of Tulcea WWTP

#### (2) **Nominal Heat Output**

Total required heat 301,249 Kcal/hr = Nominal heater capacity  $Q = (301,249)/(2 \times 0.9)$ = 167,360 Kcal / hr. → 450,000 Kcal / hr (Heater efficiency 0.9) (No. of units:2)

## 1.12.4 OIL SERVICE TANKS

#### (1) **Specifications**

| Туре          | Steel made rectangular tank |
|---------------|-----------------------------|
| Tank capacity | 150 L                       |
| Quantity      | 1 unit                      |

#### (2) **Tank Capacity**

Store oil of more than one hour consumption  $q = (450,000 \times 2)/(10,200 \times 0.85) = 104 L/hr.$  use  $\rightarrow$ 150 L β: Heating value of A-diesel oil 10,200 kcal/kg y: Specific gravity of A-diesel oil 0.85 kg/L

1. 3. 1.

Sec. 1993

1. 1. 1.

ale de la colorid

an an sin d

 $\{1,1,\dots,\ell\}$ 

#### 1.12.5 OIL PUMPS

(1) **Specifications** 

| Туре               | Gear pump            |                         |        |       |     | 1                 | -<br> |         |      |
|--------------------|----------------------|-------------------------|--------|-------|-----|-------------------|-------|---------|------|
| Size               | φ 15 mm              | · ·                     |        | -     | 실환수 | t pri             | ,     |         | -::- |
| Discharge          | 5 L/min.             | n in sta<br>Basel in st |        |       |     | en.<br>Kanya      |       |         |      |
| Discharge pressure | 3 kg/cm <sup>2</sup> |                         |        |       | ÷.  | en de<br>Grand de |       |         |      |
| Electric motor     | 0.4 kW               |                         |        |       |     |                   |       | s de la |      |
| Quantity           | 2 units (inc         | luding                  | 1 stan | idby) | · . |                   | Ч.    |         |      |

#### (2)**Pump Discharge**

Capable of supplying a 300-liter capacity tank within 30 minutes Q = 150/30 = 5 L/minute

## 1.12.6 OIL STORAGE TANK

(1) **Specifications** 

| Туре             | Underground cylinder type |                                                                                                                                                                                                                                      | 가 있는 것 같은 것 같은 것 같이 있다.<br>같은 것 같은 것 |
|------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Storage capacity | 7,500 L                   |                                                                                                                                                                                                                                      |                                                                    |
| Quantity         | l unit                    | an an an tha an an tha an an tha a<br>Tha an tha an t |                                                                    |

#### (2) **Tank Capacity**

en des plansfer Store more than 3-day oil consumption

 $V = 104 \times 24 \times 3 = 7,474 L$  use  $\rightarrow$ 7,500 L a na star sa P 

 $\{j_1, j_2, j_3, j_4\} \in \{1, 2\}$ 

#### 1.12.7 GAS BOOSTER FANS

(1) **Specifications** 

| Туре        |                |                  | Turbo fan   |
|-------------|----------------|------------------|-------------|
| Capacity    |                |                  | 81.8 m³/hr. |
| Pressure (s | tatic pressure | in water column) | 500 mm Aq   |

AII-4-22

Electric motor Quantity

#### 1.5 kW 2 units (including 1 standby)

### (2) Capacity

Sludge gas consumption

 $q = 450,000 / 5,500 = 81.8 \text{ m}^3/\text{hr.}$ 

(Sludge gas heat value  $5,500 \text{ Kcal/m}^3$ )

Check for gas consumption

| Required energy       | Kcal/day | 7,229,968 |
|-----------------------|----------|-----------|
| Heater operation time | Hour     | 8.0       |
| Gas production        | m³/day   | 1,913     |
| Gas consumption       | m³/day   | 657       |

| Required heat energy | 301,249 Kcal/hr. |  |
|----------------------|------------------|--|
| Heater output        | 450,000 Kcal/hr. |  |
| No. of units         | 2 units          |  |

## 1.12.8 HEAT EXCHANGE

#### (1) Specifications

| Туре               | Spiral type heat exchanger |                   |         |              |
|--------------------|----------------------------|-------------------|---------|--------------|
| Heat transfer area |                            | 15 m <sup>2</sup> | Ŭ       |              |
| Water temperature  | Inlet                      | 35°c,<br>70°c,    | Outlet  | 40°с<br>60°с |
| Quantity           | Total N                    |                   | l units |              |

## (2) Energy Transfer

| Provide an exchanger to ea |                                       |        |                    |
|----------------------------|---------------------------------------|--------|--------------------|
| Required energy per unit,  | M = 7,229,968                         | x1/4 = | 1,807,492 Kcal/day |
|                            | · · · · · · · · · · · · · · · · · · · |        | 75,312 Kcal/hr.    |

### (3) Required Heat Transfer Area

| Α | = (M:                                    | $(1.2)/(K \times \Delta tm) = (75,312 \times 1.2)/(600 \times 27.4)$ |
|---|------------------------------------------|----------------------------------------------------------------------|
|   | an a | $= 5.5 \text{ m}^2 \text{ use } 15 \text{ m}^2$                      |
|   | M =                                      | Heat transfer 75,312 Kcal/hr.                                        |
|   | K == .                                   | Overall heat transfer coefficient 600 Kcal/m <sup>2</sup> hr. °c     |
| • | Δtm                                      | Logarithmic average of temperature difference                        |
| • |                                          | = $(\Delta t 1 - \Delta t 2) / (\ln \Delta t 1 / \Delta t 2)$        |
|   |                                          | $= (30 - 25) / (\ln (30/25)) = 27.4 $ °c                             |

$$\Delta l = 70 - 40 = 30 \,^{\circ} c$$

$$\Delta 2 = 60 - 35 = 25$$
°c

## (4) Sludge Recirculation

γ

Q I = M/(C ×  $\Delta t$ ×  $\gamma$  × 60) = 75,312/(I × 5 × 1,000 × 60) = 0.25 m<sup>3</sup>/min.

C Sludge specific heat 1 Kcal/kg.°c

Δt Temperature difference between inlet and outlet sludge

40 - 35 = 5°c

Unit weight of sludge 1,000 kg/m<sup>3</sup>

Part Il/fulcea: Appendix-4 Design Calculation of Tulcea WWTP

### (5) Water Recirculation

 $Q 2 = 75,312 / (1 \times 5 \times 1,000 \times 60) = 0.13 \text{ m}^3/\text{min.}$   $\Delta t \qquad \text{Difference of temperature between inlet and outlet}$ 70 - 60 = 10 °c

## 1.12.9 SLUDGE CIRCULATION PUMPS

## (1) Specifications

| Туре                  | Sludge pump with suction screw |             |            | ew ;           |
|-----------------------|--------------------------------|-------------|------------|----------------|
| Size                  |                                | 100 mm      |            |                |
| Discharge             |                                | 0.7 m³/min. | anter ta 🔸 |                |
| TDH                   | 1.                             | 15 m        |            |                |
| Motor output          | •• `                           | 5.5 kW      |            | an<br>An an Ar |
| No. of units          | · .                            | 4 units     |            |                |
| and the second second | 1.11                           |             |            |                |

#### (2) Capacity

Sludge circulation rate  $Q = 0.25 \text{ m}^3/\text{min.}$  use  $\rightarrow 0.7 \text{ m}^3/\text{min.}$ 

#### (3) Head

Total head = Actual head + pipe losses + losses in heat exchanger (10m) = use 15 m

 $E_{\rm c}$  (  $E_{\rm c}$ 

法行政法 法法法法

elle same det

Strate and states

and the second

### (4) Motor Output

 $P_m = 0.163 \times 0.7 \times 15 \times (1 + 0.2) / 0.4 = 5.13 \text{ kW} \text{ use} \rightarrow 5.5 \text{ kW}$ 

### 1.12.10 HOT WATER CIRCULATION PUMPS

#### (1) Specifications

| Type Line pump                  |       |  |
|---------------------------------|-------|--|
| Size                            | 65 mm |  |
| Capacity 0.34 m <sup>3</sup> /m |       |  |
| TDH                             | 25 m  |  |
| Motor output 3.7 kW             |       |  |
| Quantity 4 units                |       |  |

#### (2) Capacity

Return from exchanger,  $Q = 0.13 \text{ m}^3/\text{min}$ .

4.14, 14 T. Fr. S

#### (3) Head

Total heads = Actual head + pipe losses + losses in heat exchanger (20m) = use 25 m

#### (4) Motor output

 $Pm = (0.163 \times 0.4 \times 25 \times (1 + 0.2) / 0.6)$ = 3.26 kW use  $\rightarrow$  3.7 kW

and the second

e de la constante de la constan

## 1.12.11 GAS HOLDER

#### (1) Specifications

| Туре         | Steel made Dry seal type |
|--------------|--------------------------|
| Capacity     | 1,100 m <sup>3</sup>     |
| Size         | 12.6m φ × 13.3mH         |
| No. of tanks | 2 units                  |

## (2) Capacity

| Gas generation   | 1,913 m³/day       | te d'a ser d'a ser en la ser e<br>La ser en la |                                        |
|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Retention time   | 8 hr.              |                                                                                                                                                                                                                                    |                                        |
| Storage capacity | 1,913 × 8 / 24 / 2 | $= 319 \text{ m}^3$                                                                                                                                                                                                                | use $\rightarrow$ 1,100 m <sup>3</sup> |

## 1.12.12 GAS SCRUBBERS

#### (1) Specifications

| Туре         | Dry type (intermittent) scrubbers  | · · ·   |    |
|--------------|------------------------------------|---------|----|
| Capacity     | 150 m³/hr.                         |         | ъ. |
| Size         | 1,800 mm × 4,200 m H × 2 units     |         |    |
| No. of units | 2 × 1,800 mm × 4,200 m H × 2 units | 2 units |    |

#### (2) Capacity

Treat all the gas produced  $Q = 1,913 \times 1/24/2 = 40 \text{ m}^3/\text{hr.}$  use  $\rightarrow 150 \text{ m}^3/\text{hr.}$ 

#### (3) Diameter of Towers

Velocity of gas flow 1 m/min. D =  $(4 \times 150/60/3.14/1)^{0.5}$  = 1.785 m/, use  $\rightarrow$  1800 mm/

# (4) Chemical Consumption

Inflow and outflow gas H2S concentrations are 100 ppm and 10 ppm, respectively.

 $V1 = 0.235 \times 10^{-3} \times Q \times \mu$ = 0.235 × 10<sup>-3</sup> × 150 × 24 × 0.9 = 0.761 L/day

 $(\mu \text{ Removal efficiency} = 90\%)$ V0 = V1/(C0 × 0.8) = 0.761/(100/1,000) × 0.8 = 9.5 L/day

C0: Chemical requirements to absorb 100 kg hydrogen sulifide= 1000 kg

 $\gamma$ : Nominal specific gravity of chemical 0.8

### (5) Life of Chemical

T V

 $= (V \times 10^{3}) / V0 = (5 \times 10^{3}) / 9.5 = 525 \text{ days}$ = Volume 5 m<sup>3</sup>

## 1.12.13 WASTE GAS BURNERS

#### (1) Specifications

| e<br>Je | Туре     | In furnace               |
|---------|----------|--------------------------|
|         | Capacity | 300 m <sup>3</sup> /hr.  |
|         | Size     | 1,500 mm D × 10,200 mm H |

| Motor        | Cooling fan |
|--------------|-------------|
| 11           | Gas blower  |
| No. of units | 2 units     |

## (2) Treatment Capacity

Capacity: all produced gas

 $Q = 1,913 \times 1/24 \times 2.0 \times 1/2$ 

= 80 m<sup>3</sup>/hr. use  $\rightarrow$  300 m<sup>3</sup>/hr.

## 1.12.14 SEED SLUDGE PUMPS(SLUDGE WITHDRAW)

## (1) Specifications

| Туре         | Sludge pumps with suction screw |  |
|--------------|---------------------------------|--|
| Size         | 100 mm                          |  |
| Capacity     | 1 m³/min.                       |  |
| T.H.L        | 15 m                            |  |
| Motor output | 7.5kW                           |  |
| No. of units | 2 units                         |  |

## (2) Capacity

 $Q_{-} = 1 \text{ m}^{3}/\text{min.}$ 

## (3) Total Dynamic Head

 $H = 15 m c_{10}$ 

### (4) Motor Output

 $Pm = 0.163 \times 1 \times 15 \times (1 + 0.2) / 0.4$  $= 7.34 kW use \rightarrow 7.5 kW$ 

## 1.13 APPARATUS FOR SLUDGE DEWATERING EQUIPMENT

141.125

经济投资

## 1.13.1 SLUDGE STORAGE TANK MIXER

(1) Specifications

| Туре         | Vertical paddle type |                             |  |
|--------------|----------------------|-----------------------------|--|
| Shape        | Approximately        | 4,000mm ×6,400mm × 2,500mmH |  |
| Capacity     | 64 m <sup>3</sup>    |                             |  |
| Blade size   | 1,500 mmø            |                             |  |
| Motor output | 7.5 kW               |                             |  |
| No. of units | 2 units              |                             |  |

#### (2) Tank Capacity

Store average one-day sludge production  $V = 139 \times 1/2 = 70 \text{ m}^3$ 

#### 1.13.2 SLUDGE SUPPLY POMP

(1) Specifications

Туре

Single-axis screw pump

Y164.

AII-4-26

11

| Size         | φ 100 mm                |
|--------------|-------------------------|
| Capacity     | 20 m <sup>3</sup> /hour |
| TDH          | 20 m                    |
| Motor output | 5.5 kW                  |
| No. of units | 5 units                 |

## (2) Discharge Capacity

One pump to each dewater equipment

| $Q1 = 130 \times 2$         | $\times 10^{-3} \times 100 / (0.2 \times 1.5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = 1.95 m <sup>3</sup> /hour | use $\rightarrow$ 20 m <sup>3</sup> /hour 0.33 m <sup>3</sup> /minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Filter velocity             | 130 kg/m·hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Filter width                | $2 m^{2}$ $2 m^{2}$ , and $2 m^{2}$ is the second |
| Sludge solid concentration  | 0.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Allowance                   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## (3) Electric Motor Output

Pm =  $0.163 \times 20 \times 0.33 \times (1+0.3) / 0.3$ = 4.71 kW use → 5.5 kW

## 1.13.3 CHEMICAL FEED PUMP

#### (1) Specifications

| Туре         | Single-axis screw pump          |  |  |
|--------------|---------------------------------|--|--|
| Size         | φ 50 mm                         |  |  |
| Capacity     | 3 m³/hour                       |  |  |
| TDH          | 20 m                            |  |  |
| Motor output | 1.5 kW                          |  |  |
| No. of units | 5 units (including one standby) |  |  |

## (2) Discharge Capacity

| A pump to each dewater equipr<br>(one standby pump for all dew |                        | nent)                  |                                 |
|----------------------------------------------------------------|------------------------|------------------------|---------------------------------|
| $Q1 = (30 \times 2 \times 10^{-3})$                            |                        |                        | × 1.5)                          |
| = 2.925 m³/hour →                                              | 3 m <sup>3</sup> /hour | 0.05 m <sup>3</sup> /m | nin.                            |
| Filter velocity                                                | 130 kg/m·hr.           |                        |                                 |
| Filter width                                                   | 2 m                    |                        |                                 |
| Solid concentration of sludge                                  | 0.2 %                  |                        | 14                              |
| Allowance                                                      | 1.5                    | 동 것을 물러 것              | $1 < \frac{1}{2} < \frac{1}{2}$ |

### (3) Electric Motor Output

 $Pm = 0.163 \times 20 \times 0.05 \times (1+0.3) / 0.25$ = 0.85 kW use  $\rightarrow$  1.5 kW

## 1.13.4 CHEMICAL SOLUTION TANKS

## (1) Specifications

| Tank type     | Steel made cylinder type |
|---------------|--------------------------|
| Tank capacity | 15 m <sup>3</sup>        |
| Approx. size  | 1,700 mmø × 2,300mmH     |

| Electric motor output | 2.2 kW (for mixer) |
|-----------------------|--------------------|
| No. of tanks          | 2 units            |

## (2) Sludge Storage Tank Capacity

| Dosing rate $4.18 \times 10^3 \times$ | $0.008 \times 7/5 = 46.82 \text{ kg/day}$ |
|---------------------------------------|-------------------------------------------|
| Dewatered solids                      | 4.18 t/day                                |
| Chemical dosing rate (Polymer)        | 0.8 %/kg·ds                               |
| (5 days/week operation)               |                                           |
| Storage capacity. 2 hour              | s of design sludge volume                 |
| 2 tanks                               | s (alternately used)                      |
| $V = (47 \times 100) / (0.2)$         | × 2/6/3)                                  |
| = 3,902 L use                         | -→ 4,000 L                                |
| Chemical solution concentra           | tion 0.2 %                                |
| Operation time a day                  | 6 hours                                   |
| Retention time                        | 2 hours                                   |

#### 1.13.5 CHEMICAL FEEDERS

## (1) Specifications

| Туре                  | Chemical pump |
|-----------------------|---------------|
| Supply rate           | 1.0 L/min.    |
| Electric motor output | 0.4 kW        |
| Quantity              | 2 units       |

#### (2) Supply Rate

One feeder is attached to each solution tank, supplying chemical in 15 to 20 minutes.  $Q = (4,000 \times 10^{3} \times 0.2) / 100 \times (1/(15 \sim 20)) \times 1 / 0.5$   $= 1.1 \sim 0.8 \rightarrow 1.0 \text{ L/min.}$ Apparent specific gravity of polymer 0.5

4.5.15

hay good a

And the second of the

al and she As which are 11

11411

#### 1.13.6 CHEMICAL CONTAINERS

#### (1) Specifications

| Туре               | Stainless steel made, cylinder container | * i i i |
|--------------------|------------------------------------------|---------|
| Effective capacity | 150 L                                    |         |
| Quantity           | 2 units                                  |         |

#### (2) Capacity

Provide 2 tanks (alternately used), with capacity of 7-day chemical consumption.  $V = 46.82 \times 7/5 \times 0.5 \times 7 \times 1/2$ = 115 L use  $\rightarrow 150 L$ 

## 1.13.7 FILTER CLOTH WASHING PUMPS

#### (1) Specifications

| Туре          | N                         | Aulti-stage centrifugal pump  |
|---------------|---------------------------|-------------------------------|
| Size          |                           | φ 50 mm                       |
| Discharge     |                           | 0.2 m³/min.                   |
| Total head    |                           | 60 m                          |
| Electric moto | or output                 | 5.5 kW                        |
| Quantity      | nan (Terfeet)<br>National | 5 units (including 1 standby) |

### (2) Discharge Pumps

One pump to each dewatering machine, and one standby pump for all equipment.  $Q = 100 \times 2 = 200$  L/min. use  $\rightarrow 0.2$  m<sup>3</sup>/min. Then, the pump discharge per 1 m cloth is 100 L/min. Total dynamic head 60 m Electric motor output Pm = 0.163 × 60 × 0.30 × (1+0.2) / 0.5

 $III = 0.103 \times 60 \times 0.30 \times (1+0.2)7 \ 0.3$ 

 $= 4.69 \text{ kW} \longrightarrow 5.5 \text{ kW}$ 

## 1.14 EFFLUENT PUMPING STATION

### 1.14.1 FLOW RATE

Flow rate is determined as follows.

| Qad | 37,000 m³/day | 428 L/s |
|-----|---------------|---------|
| Qmd | 43,000 m³/day | 498 L/s |
| Qmh | 53,000 m³/day | 613 L/s |

## 1.14.2 PUMPING EQUIPMENT

### (1) Design Flow Rates

| Qad | 37,000 m³/day              | 26 m <sup>3</sup> /minute |
|-----|----------------------------|---------------------------|
| Qmd | 43,000 m <sup>3</sup> /day | 30 m <sup>3</sup> /minute |
| Qmh | 53,000 m³/day              | 37 m <sup>3</sup> /minute |

### (2) Wastewater Pumps

4 units (including 1 standby), mixed flow centrifugal type driven by electric motor.

|            |                   | Pump     | dis      | charges       | Total pump  |
|------------|-------------------|----------|----------|---------------|-------------|
| Wastewater | Wastewater inflow | Wastewat | er pumps |               | discharge   |
| inflows    | rates             | 15       |          | (m³/min/unit) | (m³/minute) |
|            | (m³/minute)       | · 4(1)   |          | No. of units  |             |
| Qad        | 26                | 30       |          | 2             | 30          |
| Qmd a      | 30                | . 30     |          | 2             | 30          |
| Qmh        | 37                | 45       |          | 3             | 45          |

#### (3) Pump Size:

| Pu | m | p | S | , i | ۰. |   |  |
|----|---|---|---|-----|----|---|--|
|    | ÷ |   |   |     | 2  | 1 |  |
|    |   |   |   | 1.1 |    |   |  |

| 15 m <sup>3</sup> /minute | ÷   | e i Hayara a |  |
|---------------------------|-----|--------------|--|
| 146(Q/V) <sup>0.5</sup>   | V = | 2.5 m/sec    |  |
| 358 mm use                |     | 00 mm        |  |

#### (4) Wastewater Surface Elevations:

Q = = D = =

| Suction water | levels at | inflow of |        |
|---------------|-----------|-----------|--------|
|               |           | 1.000     |        |
|               | Qmd       | 1.000     | M.W.L. |
|               | Qmh       | 1.000     | M.W.L. |

#### Part II/Tulcea: Appendix-4 Design Calculation of Tulcea WWTP

Suction water levels at inflow of

| -         |     | Qad   | 5.600 | M.W.L. |
|-----------|-----|-------|-------|--------|
| <br>1.1.1 | 1.1 | 🔆 Qmd | 5.600 | M.W.L. |
|           | ÷   | Qmh   | 5.600 | M.W.L. |
|           |     |       | *     |        |

(5) Actual Head:

| Qad | 5.600 |   | (1.000) | = | 4.600 m        |
|-----|-------|---|---------|---|----------------|
| Qmd | 5.600 |   | (1.000) | = | 4.600 m        |
| Qmh | 5.600 | - | (1.000) | = | <b>4.600</b> m |

Total head losses at pump equipment:

| Pump size                                      | φ 400                   |
|------------------------------------------------|-------------------------|
| Pump bore(m)                                   | 0.4                     |
| Pump discharge(m <sup>3</sup> /min)            | 15                      |
| Pump discharge(m <sup>3</sup> /sec)            | 0.250                   |
| Delivery bore sectional area (m <sup>2</sup> ) | 0.126                   |
| Pump velocity(m/s)                             | 1.990                   |
| Loss coefficients                              |                         |
| Inlet                                          | 0.15                    |
| Sluice valve                                   | <b>0</b>                |
| Check valve                                    | 1.0                     |
| Outlet                                         | 1.0 State Barence 74-17 |
| Bend                                           | 0.25                    |
| Friction loss                                  | f × L/D 1.195           |

**Total** 3.595

## (6) Head Losses

 $\phi 400 = 0.727 \text{ m} \text{ F} \times \text{V}^2/2\text{g}$ Pipe length L = 15 m Friction loss by Darcy-Wiseback Formula hf = f × L/D × V<sup>2</sup>/2g

 $f = 0.02 + 1/(2000 \times D)$  (New cast iron pipe) For old cast-iron pipes multiply the 'f by 1.5

|      |       | φ 400 | <ul> <li>A state of the sta</li></ul> |  |
|------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | D(m)  | 0.4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| . 2  | F     | 0.021 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| f' = | 1.5×f | 0.032 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

## (7) Total Head Required

| Qad     | 4.600       | +   | 0.727       | = 5.327 m |
|---------|-------------|-----|-------------|-----------|
| Qmd     | 4.600       | +   | 0.727       | = 5.327 m |
| Qmh     | 4.600       | Ŧ   | 0.727       | = 5.327 m |
| The rec | uired total | pum | p head is t | hen 5.5 m |
|         |             | -   |             |           |

## (8) Shaft Power of Mixed Flow Centrifugal Pumps

 $L = k \times \gamma \times Q \times H / \mu$ where

L Shaft power of pump

k 0.163 kW or 0.222 PS

11

- Q Pump discharge (m<sup>3</sup> / min) H Pump total dynamic head (
  - Pump total dynamic head (m)
  - Specific gravity of water ( $\gamma = 1$ )
- μ Pump efficiency

Calculations for shaft power requirements

| Items              |        | ¢400 |            |
|--------------------|--------|------|------------|
| Pump discharge(Q)  | m³/min | 15   | <b></b>    |
| TDH (H)            | m      | 5.5  |            |
| Pump efficiency(µ) |        | 0.72 |            |
| Shaft power        | kW .   | 19   | a segretar |

## (9) Outputs of Pump Drives

## $P = L(1+\alpha) / \mu \times G$

L

α

γ

- where P
  - Pump power (kW)
    - Pump shaft power (kW)
    - Allowance for motor
      - Allowance for engine 0.2

## μG Transmission efficiency (1.0 for direct connection)

|                                |               | والارتقاع والمتكار |
|--------------------------------|---------------|--------------------|
|                                | φ <b>40</b> 0 |                    |
| Shaft power (L)                | 19            |                    |
| Allowance (a)                  | 1.15          |                    |
| Efficiency of transmission (µG | 1.00          |                    |
| Pump drive output (P) kW       | 21            |                    |

## (10) Pump Specifications

0.15

| Vertical mixed<br>pumps |         | flow centrifugal |  |
|-------------------------|---------|------------------|--|
| Pump bore               | mm      | 400              |  |
| Pump discharge          | m³/min. | 15               |  |
| Total dynamic head      | m       | 5.5              |  |
| Motor/engine outputs    | kŴ      | 21               |  |
| Pump drive              |         | Motor            |  |

## 2. RECIRCURATION PROCESS

## 2.1 DESIGN BASIS

## 2.1.1 DESIGN WASTEWATER INFLOW RATES

Design wastewater inflow rates are determined as follows.

| Average daily flow |   | 0.1  | 37,000 m³/day                | 428 L/s   |  |
|--------------------|---|------|------------------------------|-----------|--|
| Average namy now   |   | Qad  | 17. UNBU m <sup>2</sup> /08V | - 478 178 |  |
|                    | - | ~~~~ | 57,000 m rauj                | 140 140   |  |
|                    |   | -    |                              |           |  |

Part IVTulcea: Appendix-4 Design Calculation of Tulcea WWTP

| Maximum daily flow  | Qmd | 43,000 m³/day 💠 | 498 L/s |
|---------------------|-----|-----------------|---------|
| Maximum hourly flow | Qmh | 53,000 m³/day   | 613 L/s |

## 2.1.2 DESIGN WASTEWATER QUALITY

Design wastewater quality is determined as follows.

 BOD
 =
 130 mg/L

 SS
 =
 140 mg/L

 T-N
 =
 20 mg/L

 T-P
 =
 3.5 mg/L

## 2.1.3 DESIGN WASTEWATER QUALITY (INCLUDING SIDESTREAM WASTE LOADS)

Design wastewater quality (including sidestream waste loads) is calculated as follows.

|     |      | Sector States and Sector States |
|-----|------|---------------------------------|
| BOD | ==   | 145 mg/L                        |
| SS  | =    | 160 mg/L                        |
| T-N | · == | 24 mg/L                         |
| T-P | =    | • 4.6 mg/l                      |
|     |      | ~                               |

|           | Removal Efficiency(%) |                        |                         | Wastewater Quality (mg/L) |                     |                       |
|-----------|-----------------------|------------------------|-------------------------|---------------------------|---------------------|-----------------------|
| Parameter | Primary<br>treatment  | Secondary<br>treatment | Overall<br>removal rate | Raw waste-<br>water       | Primary<br>effluent | Secondary<br>effluent |
| BOD       | 30                    | 91                     | 93.7                    | 145                       | 101.5               | 9.1                   |
| SS        | 40                    | 93                     | 95.8                    | 160                       | 96.0                | 6.7                   |
| T-N       | 10                    | 60                     | 64.0                    | 24                        | 21.6                | 8.6                   |
| T-P       | 10                    | 78                     | 80.2                    | 4.6                       | 4.14                | 0.9                   |

### 2.1.4 POLLUTANT DISCHARGE LIMITS BY NTPA 001

Pollutant discharge limits by NTPA 001 is regulated as follows.

| BOD | < | 20 mg/L  |   |
|-----|---|----------|---|
| SS  | < | 60 mg/L  |   |
| T-N | < | 10 mg/L  | ì |
| T-P | < | 1.0 mg/L |   |

#### 2.2 CALCULATIONS OF SIDESTREAM POLLUTANT LOADS

#### 2.2.1 RAW SLUDGE VOLUME

Raw sludge production volume is calculated by the following equation.

| Solid production (t/day) | = 43,000 ×            | $140 \times 10^{-6} \times 0.4$        |
|--------------------------|-----------------------|----------------------------------------|
| Sludge concentration     | = 2.41 t/day<br>2.0 % |                                        |
| Sludge volume            | 2.41 × 100            | $\div$ 2.0 = 120.4 m <sup>3</sup> /day |



#### 2.2.2 WASTE SLUDGE VOLUME

| Parameter | Influent quality | Reaction tank influent | Primary clarifiers removal |
|-----------|------------------|------------------------|----------------------------|
|           | (mg/L)           | quality (mg/L)         | Efficiency(%)              |
| BOD       | 130              | 91                     | 30                         |
| SS        | 140              | 84                     | 40                         |

Assuming that the reactor influent S-BOD is 66.7% of the total BOD; then Scs is 60.7 mg/L Waste sludge production volume is calculated by the following equation:

| $Ow \times Xw =$ | $(a \times Scs + b \times Sss - c \times 0 \times XA)$ | Q |
|------------------|--------------------------------------------------------|---|
|------------------|--------------------------------------------------------|---|

where,

| Qw   | Volume of waste sludge (m <sup>3</sup> /day)                  |
|------|---------------------------------------------------------------|
| Xw   | Average SS concentration of waste sludge (mg/L)               |
| Q    | Influent volume to reactors (m <sup>3</sup> /day) 43,000      |
| XA - | MLSS concentration in reactors (mg/L) 3,000                   |
| Scs  | Influent soluble-BOD concentration to reactors (mg/L) 60.7    |
| Sss  | Influent SS concentration to reactors (mg/L) 84               |
| a    | Sludge yield coefficient of S-BOD(mg MLSS/mgSS) 0.4~0.6 0.5   |
| b    | Sludge yield coefficient of SS(mg MLSS/mgSS) 0.9~1.00. 0.95   |
| C    | Coefficient of SS reduction due to indigeneous respiration of |
| 1. T | activated sludge micro-organisms (L/day) 0.03~0.05 0.04       |
| θ    | HRT in reactor basins (day) $12.3/24 = 0.51$                  |

therefore,

| $Q_W \times X_W = (0.5 \times 60.7 + 0.95 \times 84 - 0.04 \times 0.51 \times 3,000) \times Q \times 10^{-6}$ |
|---------------------------------------------------------------------------------------------------------------|
| = 48.64 x Q x 10 <sup>-6</sup> $=$ 2.09 t/day                                                                 |
| Solid production = 2.09 t/day                                                                                 |
| Sludge concentration $= 0.9\%$                                                                                |
| Sludge production = $2.09 \times 100 \div 0.9 = 232 \text{ m}^3/\text{day}$                                   |

#### 2.2.3 THICKENED SLUDGE

Thickened sludge production volume is calculated by the following equation.

Sludge solids = 2.41 + 2.09 = 4.50 t/day la e ta ef Primary sludge Excess sludge Sludge volume = 120.4 + 232 = 353 m<sup>3</sup>/day (2.0%) (0.9%) 4.50 × 0.85 = 3.82 t/day Solids = Assuming sludge concentration is 3.5 % 100 ÷  $109 \text{ m}^3/\text{day}$ Studge volume = 3.82 3.5 = X

## 2.2.4 SLUDGE SUPERNATANT OF THICKENERS

Sludge supernatant of thickened weight is calculated by the following equation.

244 m<sup>3</sup>/day 353 109 = Liquor volume = Solids weight = 4.50 × 0.15 = 0.67 t/day 2000 × 10<sup>-6</sup> = BOD 244 × 0.49 t/day = BOD is assumed to be of 2,000 mg/L 10-6 × 700 × 0.17 t/day T-N = . ' 244 == 700 mg/L T-N is assumed to be of

11.57

T-P =  $244 \times 180 \times 10^{-6} = 0.04 \text{ t/day}$ T-P is assumed to be of 180 mg/L

#### 2.2.5 DIGESTED SLUDGE

Digested sludge production volume is calculated by the following equation.

Digested sludge solids =  $3.82 \times (1 - 0.7 \times 0.5) = 2.49 \text{ t/day}$ Digested sludge volume 3.0%Sludge volume =  $2.49 \times 100 / 3.0 = 83 \text{ m}^3/\text{day}$ 

#### 2.2.6 DEWATERED SLUDGE(SLUDGE CAKE)

Dewatered sludge production volume is calculated by the following equation.

Solids =  $2.49 \times 0.9 = 2.24$  t/day (Assuming 20.0 % solids concentration) Cake volume =  $2.24 \times 100/20.0 = 11 \text{ m}^3$ /day

#### 2.2.7 DIGESTED SLUDGE FILTRATE

Digested sludge filtrated weight is calculated by the following equation.

Filtrate volume =  $83 - 11 = 72 \text{ m}^3/\text{day}$ Dry solids weight =  $2.49 \times 0.10 = 0.25 \text{ t/day}$ BOD =  $72 \times 1,500 \times 10^{-6} = 0.11 \text{ t/day}$ (Assumed BOD concentration = 1,500 mg/L) T-N =  $72 \times 150 \times 10^{-6} = 0.01 \text{ t/day}$ (Assumed BOD concentration = 150 mg/L) T-P =  $72 \times 80 \times 10^{-6} = 0.01 \text{ t/day}$ (Assumed BOD concentration = 80 mg/L)

#### 2.2.8 SIDESTREAM VOLUME AND WASTE LOAD

Sidestream volume and waste load is calculated by the following equation.

|               | Thi   | ckener | sup | Sludge filtrate |            |
|---------------|-------|--------|-----|-----------------|------------|
| Liquor volume | ; = · | 244    | ·+  | 72 =            | 315 m³/day |
| Dry solids    | = '   | 0.67   | +   | 0.25 =          | 0.92 t/day |
| BOD           | =     | 0.49   | +   | 0.11 =          | 0.59 t/day |
| T-N           | =     |        |     |                 | 0.18 t/day |
| T-P           | =     | 0.04   | Ŧ   | 0.01 =          | 0.05 t/day |

## 2.2.9 WASTEWATER QUALITY (INCLUDING ALL SIDESTREAMS)

Wastewater quality (including all sidestreams) is calculated by the following equation.

Overall wastewater flow = Influent + Sidestreams 43.000 + 315 Maximum daily flow · \_ · 43,315 m<sup>3</sup>/day Then, the design wastewater flow characteristics are; × 130 × 10<sup>-6</sup> + 0.59)/43,315 BOD (43,000 =  $0.00014278 \times 10^6 = 143 \rightarrow 145 \text{ mg/L}$ (43.000  $\times$  140  $\times$  10<sup>-6</sup> + 0.92)/43,315 SS ===

|     | Ħ | $0.000160302 \times 10^6 = 160 \rightarrow 160 \text{ mg/L}^+$ |
|-----|---|----------------------------------------------------------------|
| T-N | = | $(43,000 \times 20 \times 10^{-6} + 0.18)/43,315$              |
|     | = | $0.000024038 \times 10^6 = 24.0 \rightarrow 24 \text{ mg/L}$   |
| SS  | = | $(43,000 \times 3 \times 10^{-6} + 0.05)/43,315$               |
|     | = | $0.000004619 \times 10^6 = 4.6 \rightarrow 4.6 \text{ mg/L}$   |

## 2.3 SLUDGE PRODUCTIONS

#### 2.3.1 RAW SLUDGE

Raw sludge production volume is calculated by the following equation.

Solid production (t/day) =  $43,000 \times 160 \times 10^{-6} \times 0.4$ = 2.75 t/day Sludge concentration 2.0 % Sludge volume 2.75 × 100 ÷ 2.0 = 137.6 m<sup>3</sup>/day

#### 2.3.2 WASTE SLUDGE VOLUME

| Parameter | Influent quality | Reaction tank influent | Primary clarifiers removal |
|-----------|------------------|------------------------|----------------------------|
|           | (mg/L)           | quality (mg/L)         | Efficiency(%)              |
| BOD       | 145              | 101.5                  | 30                         |
| SS        | 160              | 96                     | 40                         |

Assuming that influent S-BOD to reactor basins is 66.7 % of the raw wastewater BOD,S-BOD concentration is estimated to be; 67.70 mg/L Waste sludge production volume is calculated by the following equation:

 $Qw \times Xw = (a \times Scs + b \times Sss - c \times \theta \times XA)Q$ where, Qw Volume of waste sludge (m<sup>3</sup>/day)

| Xw          | Average SS concentration of waste sludge (mg/L)               |          |   |
|-------------|---------------------------------------------------------------|----------|---|
| Q.          | Influent volume to reactors( m <sup>3</sup> /day)             | 43,000   |   |
| XA          | MLSS concentration in reactors (mg/L)                         | 3,000    |   |
| Scs         | Influent soluble-BOD concentration to reactors (mg/L)         | 67.7     |   |
| Sss         | Influent SS concentration to reactors (mg/l)                  | 96       |   |
| a           | Sludge yield coefficient of S-BOD(mg MLSS/mgSS) 0.4~0.6       | 0.5      |   |
| . в 🐇       | Sludge yield coefficient of SS(mg MLSS/mgSS) 0.9~1.00.        | 0.95     | 1 |
| C           | Coefficient of SS reduction due to indigeneous respiration of |          |   |
|             | activated sludge micro-organisms (1/day) 0.03~0.05            | 0.04     |   |
| 0           | HRT in reactor basins (day) 12.3/24                           | = 0.51   |   |
| t general i |                                                               | 10 N. A. | ċ |

therefore,

 $Qw \times Xw = (0.5 \times 67.70 + 0.95 \times 96 - 0.04 \times 0.51 \times 3,000) \times Q \times 10^{-6}$ = 63.54 × Q × 10^{-6} = 2.73 t/day Solid production = 0.9 % Sludge concentration = 0.9 % Sludge production = 2.73 × 100 ÷ 0.9 = 304 m<sup>3</sup>/day = 0.21 m<sup>3</sup>/min.