4 POLLUTION LOADS

In this section, existing and future discharged pollution load into the lake is roughly estimated to know shear of pollution sources. Pollution sources for estimated pollution load are listed as follows.

nave e d

. . .

an English

e en la presidada de Ali

a sure in the

- Domestic wastewater
- Commercial / Institutional wastewater
- Agricultural wastewater
- Livestock wastewater
- Leachated pollution load from non-collected solid waste
- Treated wastewater from sewerage treatment plant

Basically, pollution load is estimated multiplying unit pollution load by frame. Estimation method and precondition of calculation are described as below.

1 19 4 3

Frame

)

)

Using frames for estimation are summarized as follows, and details are shown in from *Table III.4.1* to *Table III.4.3*.

Domestic wastewater

128.

i <u>stan di san kata</u>	1998	2000	2008	2015	2025
Population (city area)	108,457	114,579	139,078	160,508	185.004
(other area)	1,564	1,564	1,564	1,564	1,564
Total population	110,021	116,143	140,642	162,072	186,568
Ratio of served pop	oulation in	population	in city area		
	46 %	51 %	70 %	78 %	85 %
Agricultural wastewa	ter			e o plana en el Secondo en el secondo en	

xgiicultul al mastematel	
Total amount of fertilizer as T-N	19.0 kg/day*
Total amount of fertilizer as T-P	13.3 kg/day*
Note: * according to the questionnaire s	urvey by JICA.

Livestock wastewater	۲۰۰۰ د. مراجع کار	
No. of livestock (1998 – 2025)	Sheep	6,216 heads*
	Cow	871 heads*
	Alpaca	290 heads*
	Hog	311 heads*
Note: * accordin	or to the questionnair	e survey by IICA

Solid waste

Amount of illegally dumped solid waste

	 1998	2000	2008 - 2025
	11,799 tons/year	11,799 tons/year	0 tons/year

Unit Pollution Load

Using unit pollution load is shown as below. (refer to Table III.4.4.)

Domestic wastewater from non-se	rved population		
	BOD	T-N	<u> </u>
Graywater only	28.8 gcd	2.75 gcd	0.625 gcd
Sewerage treatment plant	BOD	T-N	Т-Р
Inflow (gray + blackwater)	45 gcd	11 gcd	1.25 gcd
Removal efficiency	70 %	30 %	30 %
Discharged P. Load	13.5 gcd	7.7 gcd	0.875 gcd

Commercial wastewater

Pollution load (commercial) = Pollution load (domestic) x 15.1 %* Note: * the ratio is acquired from PRONAP plan.

A. C. C. Harrison & C. Livestock wastewater Unit P.L. (g/head-day) BOD NEW T-N Τ-P Sheep . . 60 27 4.2 Cow 660 330 199 56.0 Alpaca 60 27 Hog 217 22 14.4

4.2

Solid waste			
	BOD	T-N	<u>T-P</u>
Quality of leachate (mg/l)	2,500	800	80
Quantity of leachate		13,274 n	n3/year
			, san t
$= \frac{1}{2} \left[\frac{1}{2}$			be en en terret
Run-off	e e taño tegas to		
	BOD	T-N	Т-Р
Domestic wastewater	0.6	0.6	1.0
Commercial / Institutional wastewater	0.6	0.6	1.0
Agricultural wastewater	•	0.3	0.2
Livestock wastewater*	0.55 - 0.3	0.55 - 0.3	0.55 - 0.3
Wastewater from Solid waste	0.6	0.6	1.0
Treated wastewater from treatment plan	t <u>1.0</u>	1.0	1.0

Note: * According to development of inundation area, it assumes that the pastureland shifts from lake site to inland, and details are shown in *Table 111.4.5*.

Results

Based on the results of estimation in the above calculation condition, the discharged pollution load into the lake is shown in *Figure 111.4.1*. The transition of pollution load and share of each pollution source are summarized as follows.

Existing discharged pollution load into the lake consists chiefly of sewage (domestic, commercial, institutional and others wastewater and treated wastewater from treatment plant) and livestock wastewater.

Existing sewage account for 65 per cents of all pollution loads in T-P and the share of livestock wastewater is 31 per cents, respectively. (refer to *Figure III.4.2.*)

While, solid waste and agriculture are unimportant in the composition of pollution load.

In present condition, a ratio of increase in discharged pollution load between 1998 and 2025 is below.

	BOD	T-N	I-P
2025 / 1998	1.14	1.67	1.28
	1	an a tha an a	•

a and the second second and the second s

> 1997年1月1日(1997年)(1997年)(1997年)(1997年)(1997年) 1997年(1997年)(1997年)(1997年)(1997年)(1997年)(1997年))

等人合意 法公司合法保持法院公司承兑 化合理结构

4. 法法法法的法律法法法法法法

en stationer i k

n de la filme de la filma de la filma de la filma. En antides de la filma de la filma de la filma de la filma de

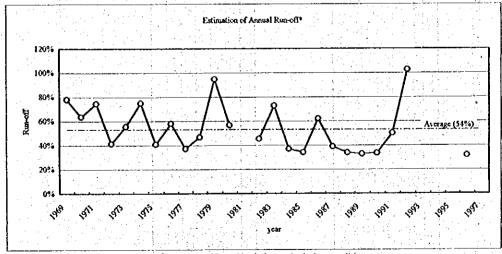
, en le parafart y les ales consur d

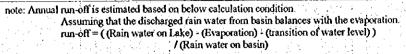
in stab

C

As mentioned in the section of "Available Data of the lake" at Chapter III.2.1, it assumes that the deterioration of Puno Interior Bay became clear in 1980's. Similarly, discharged pollution load in 1972 and 1981 is roughly estimated as reference. (refer to *Table III.4.6*) Based on the above estimation, it found that discharged pollution load from 1972 to 1998 was increased quickly.

Table. III.2.1


The Estimation of Run-off Coefficient in The Study Area


					Water	balance			
Year	Water Level (m)	Precipitation (mm)	Evaporation (mm)	(A) Rainwater in basin (x10 ⁶ m ³ /)resr)	(B) Rainwater on lake (x10 ⁶ m3.)car)	(C) Evaporation from lake surface (x10 ⁶ m3/year)	(D) Transition of water level (x10 ⁶ m3/year)	(E) B‡C-D	Run-off (%) (-E/A)
1968	3,809.22	624.1	1,938.8	32.8	9.7	-30.1		1	•
1969	3,808.96		2,089.2	26.4	7.8	-32.4	-4.0	-20.6	7.78%
1970	3,808.76		1,986.3	29.7	8.8		-3.1	i-18.9	64%
1971	3,809.02		2,043.1	34.3	10.1	-31.7	4.0	-25.6	75%
1972	3,808.89		2,047.4	41.9	12.4	-31.7	-2.0	17.3	41%
1973	3,809.28		1,912.7	41.8	12.4	-29.6	6.0	-23.2	56%
1974	3,810.06		1,877.5	39.4	11.6	-29.1	12.1	-29.6	5 75%
1975	3,810.38		1,939.7	50	14.7	-30.1	5.0		419
1976	3,810.64	758.0	1,984.9	39.8	11.7	-30,8	4.0		: 58%
1977	3,810.38		1,938.6	39	11.5	-30.0	-4.0	:-14.5	379
1978	3,810.58		1,932.9	43.5	12.8	-30.0	3.1	-20.3	479
1979	3,810.84		1,959.5	27.7	8.2	-30.4	4.0	-26.2	959
1980	3,810.51	614.4	2,122.7	32.3	9.5	-32.9	-5.1	-18.3	. 579
1981	3,810.71	-	2,002.9	-	- E	-31.0	3.1		
1982	3,810.64	794.0	2,082.8	41.7	12.3	-32.3	-1.1	-18.9	459
1983	3,809.73	434.1	2,412.8	22.8	6.7	-37.4	-14.1	-16.6	
1984	3,810.64	1,290.6	2,003.0	67.8	20	-31.0	14.1	-25.1	379
1985	3,811.03		1,923.1	56.3	16.6	-29.8	6.0	°-19.2	349
1986	3,811.98	927.4	1,927.5	48.7	14.4	-29.9			629
1987	3,811.35		2,095.6	1. 1. 1. 33.1	9.8	-32.5	-9.8		: 399
1988	3,811.10	847.7	2,072.6	44.5	13.1	-32.1	-3.9	- 15.1	349
1989	3,810.58	684.6	1,966.4	35.9	10.6	-30.5	-8.1	-11.8	339
1990	3,809.99	646.8	1,968.3	34	10		-9.1	-11.4	34
1991	3,809.67	596.8		31.3	9.3				ି 50%
1992	3,809.15	374.1	2,192.7	19.6					1039
1993	3,808.92			39.9			-3.5		· ·
1994	3,809.22		•	42.2					- <u></u>
1995	3,808.78	543.3		28.5	8.4		-6.9		5. m -
1996	3,808.50	753.5	1,842.8	39.6	11.7	-28.6	-4.3		329
1997	3,808.97	908.9		47.7	14.1		7.2	1.	- 1
Average	3,809.09	766.5	1,938.8	•	-	•			54%
	Water surface	ofLake	15.5	km2				•	

Area of basin

)

52.5 km2

The Water Level of Titicaca Lake and The Monthly Precipitation in Puno Table. III.2.2

	(The Wate	(The Water Level of Titicaca	-	ake)		-					unit : mo	unit : monthly average (ge (m)
	January	February	March	April	May	unr	July	August	September (October	November December	December	Average
1993	3809.070	3808.820	3808.720	3808.650	0 3808.680	3808.800	3808.910	3809.030	3809.160	3809.150	3809.030 3809.160 3809.150 3809.170 3808.930	3808.930	3808.924
1994	3808.940	3808.940 3809.260	3809.460	3809.600	3809.560	3809.460	3809.460 3809.340 3809.210 3808.980	3809.210		3809.010	3808.930	3808.900	3809.221
1995	1995 3809.000 3809.010 3809.190	3809.010	3809.190	3808.250	3809.140	3809.020	3808.890	3808.780	3808.780 3808.550 3808.580 3808.480	3808.580	3808.480	3808.430	3808.777
1996	3808.500	3808.770		3808.880	3808.780	3808,660	3808.520	3808.410	3808.170	3808.200	3808.140	3808.120	3808.499
1997	3808.290 3808.720	3808.720	3809.180	3809.360	3809.330	3809.210	3809.100	3809.010	3809.010 3808.915	3808.873	3808.873 3808.836 3808.772	3808.772	3808.966
1998		3808.807 3808.875 3808.975	3808.979	3808.038	3808.915	,	•		•		۰	•	1
												source : SENAMHI	NAMHI

					1			
mm)		1	1	1	753.5	•	•	
monthly (I	December	111.5	73.2	80.2	118.0	44.9	•	į
: jiun	November	79.2	52.6	50.3	88.3 118.0	62.9	•	
	October	69.1	36.6	15.3	10.4	30.1		
	September	18.0	18.3	21.9	12.8 0.8	108.2		
							•	
	July	0.0	0.0	0.0	2.9	0.0	•	
	Jun	1.1	0.4	0.0	0.0	0.0	:	
	May		29.9		0.0			
	April	52.5	116.2	2.1	76.3	88.6	•	
cation)	March	107.0	113.3	124.0	60.8	98.6	 	
i ne Montniy Frecipitation	February [100.7	183.1	119.7	130.5	- 213.2	•	
(I ne Mon	January	175.6	180.0	122.7	252.7	239.6	196.4	
		1993	1994	1995	1996	1997	1998	

source : SENAMHI

III-26

 Table. III.3.1
 Water Quality Parameters of Field Survey

No.

ameter Lake water Lake sediment Drainage channel treatment plant Analysis Method survey survey survey survey	o 0 1 0 Thermometer	v Secchi's disc	o o pH meter (the glass electrode method)	o o o o	0 0 DO meter	o Glass-fiber filter	o o Standard Method	o Japan Industrial Standard (JIS K0102)	ant o Testing Method for Sediment (Environment Agency of Japan)	s Testing Method for Sediment (Environment Agency of Japan)	o 0 7-N = Kj-N + NO3-N + NO2-N	o o Standard Method (Ammonia-Selective Electrode Method)	0 0	o o Testing Method for Sediment (Environment Agency of Japan)	o o Standard Method (Ascorbic Acid Method)	o o Standard Method (Ascorbic Acid Method)	roup o o Simplified Filter Paper Method
Water Quality Parameter qual	Temperature	Transparency	Hd	ORP	DO	SS	BOD,	COD _{Mn}	Moisture content	Ignition Loss	T-N	NH, - N	NO ₂ +NO ₃ - N	Ki-N	PO4 - P	T-P	Total Coliform group

The Results of Water Quality Survey (Puno Interior Bay : 2 Dec. 1998) Table. III.3.2 (1)

	23	- 59' 11"	11:37	17.2	ட	East / G	11:45	1.2	1.2	0.2	1.0	16.7	9.2	7.4	0.2	14.8	9.1	7.4	0.2	
		1.37" 69 -			· . ·									- 		S				
	- 21	69 1 5		17	لی	East / G	11:22	- 1.5	1.4	0.3	1.2	15.3	8.8	6.4	0.2	14.S	8.5	5.3	0.2	
	- 17	24	6.18	17	յեւ	East / G	9:32	2.0	0.8	0.4	1.6	17.6	9.1	10.9	0.2	16.9	9.2	1.11	0.2	
	16	70 - 00' 40"	\$:53 8:53	17	íL,	East / G	9:07	1.5	0.8	0.3	. 1.0	17.3	0.6	13.2	0.2	16.0	9.2	8.3	0.2	
	14	00.37"	9:43	17	ц	East / G	9:51	2.8	0.8	0.6	2.2	17.5	9.2	11.0	0.2	17.3	9.2	11.3	0.2	
	13	70 - 00' 20"		17	Ъ	East / G	10:14	6.3	8 0 ,	1.3	5.0	17.1	9.2	9.3	0.2	15.3	9.0	11.0	0.2	
	10	70 - 00' 53" 7 15 - 60' 50" 7	10:22	17.5	<u>ц</u>	East / G	10:35	3.5	0.8	0.7	2.8	17.3	9.2	8.0	0.2	16.5	8.9	5.6	0.2	
	6	- 59' 78"	ĵ	17.5	Ŀ	East / G	10:09	6.3	0.9	1.3	5.0	16.5	92	10.4	0.2 5 5	14.8	8.6	3.7	0.2	Suo.
	6	- 59' 80"	10:52	17.5	Ľ.	East / G	10:58	1.2	0.7	0.2	1.0	17.2	9.3	7.3	0.2	17.3	9.2	12.4	0.2	N : no wind G : gentle S : slightly strong SS : strong
	5	1: 1:	_	16 -	ц	East / G	12:00	5.6	2.1	1.1	4.5	15.9	8.9	6.9	0.2	14.3	9.0	6.2	0.2	Wind: S S S S
	2	59 - 57' 61" (C6 0C - C1	16	<u></u> ц.	East / G	12:32	18.4	4.0	3.7	14.7	16.3	11.9	6.8	0.1	14.6	9.0	5.4	0.1	F : Fine C : Cloudy R : Rain
	1	69 - 57' 23" 69 - 57' 61" 69 - 58' 81	12-11	16	Ľ.	Z	12.54	23.0	4.2	4.6	18.4	16.3	8.9	6.5	0.1	14.4	8.9	5.1	0.1	Weather : F : Fine C : Clouc R : Rain
TAUIC: TITI-	Point No.	Longitude		degrees C.)	J.	tion)	(Finish)	(u	y (m)	Upper (20 %)	wer (80 %)	Temperature (degrees C.)	Hď	DO (mg/l)	Conductivity	Temperature (degrees C.)	pH	DO (mg/l)	Conductivity (s/m)	
	Items	1 1	Sampling Found Lautude Sampling Time (Start)	Air temperature (degrees C.)	Weather	Wind (direction)	Sampling Time. (Finish)	Depth (m)	Transparency (m)	Sampling U	Depth (m) Lo	Upper Layer ((I		2	Lower Layer ((2	

0

The Results of Water Quality Survey (Puno Interior Bay: 21 Jan. 1999) Table. III.3.2 (2)

)

•

	:											<u>i</u>						· · .									
	Colifor	ε	2.0E+00	ĝ	Q	1.0E+00	3.0E+00	1.0E+00	2.0E+01	4.7E+01	4.0E+00	9	3.0E+01	2.0E+00	5.0E+01	4.0E+00	1.0E+03	3.7E+01	7.7E+02	1.7E+02	7.0E+01	6.0E+01	1.7E+01	7.0E+00	2.0E+00	<u>Q</u>	
	4-L	(mg/l)	E	•	٩.		,	, 1	1	-	8	:	1	1	1 ,	•	1	•	P	1	1	•	P	1	1	1	-
	PO4-P	(mg/l)	,		,	ł	1		1	ı,	ı	1	1	T	ı	•	١	1	1	1	•	•	-		•		
	Z-F	(mg/l)	0.47	1.67	0.44*	0.42	1.25	2.50	1.67	1.67	2.08	1.67	2.08	0.83	1.67	0.73*	3.75	2.08	2.50	2.08	1.25	2.08	0.73*	0.69*	0.83	3.75	
	No ₃ -N	(mg/l)	0 44	QN.	0.44	- QZ	0 44	QN	0.44	0.44	0.88	R	0.88	0.44	0.88	0.44	0.88	0.44	0.88	0.88	0.88	0.44	0.44	0.44	QN	0.88	
	N02-N	(m2/l)	QN	QN	Q	Ą	Ð	QN	QN		an N	QN	QZ	0.01	10.0		QN .	0.01	10.0	0.01	10'0	DN	0.01	EN.	<u>ND</u>		-
	N-"HN	(mg/!)	0.03	10.0	Ê	0.04	0.15	0.15	0 44	0.50	0.08	0.27	0.15	0.34	0.28	0.29	0.28	0.34	0.50	0.45	0.14	0.27	0.28	0.25	0.05	0.18	• •
	CODM	(mg/l)	2.6	6.0	6.3	6.4	24.8	20.4	40.0	30.4	43.2	35.2	30.4	28.0	43.4	30.4	31.2	30.4	48.6	32.8	31.2	34.4	22.2	32.4	21.8	22.4	
a	BOD5	(mg/l)	9.0	0.3	1.6	0.2	5.1	3.6	18.8	14:0	20.8	20.3	19.5	8.3	- 37.3	16.3	12.8	19.0	21.5	19.5	5.11.3	25.8	6.2	7.7	10.9	6.3	
	SS	(mg/l)	9.0	0.5	0.5	0.5	9.0	10.7	1.11	22.9	8.0	6.8	92	8.7	36.4	- T0.2	18.7	11.2	110	59.7	19.0	~ 20.0	16.2	67.2	10.0	40:0	
	Turb.	([/am)	- 1	e.	I .	2	4	8	۰ ۳	14	L	6	12	10	12	~ 12 ~	5	12	45	- 21 -	61	22	12	18	S		
	Conduct	•	0.14	0.14	0.14	0.14	0.17	0.17	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.17	0.18	0.18	0.18	0.16	0.16	
	od	(m@/)	3.3	2.2	3.7	3.9	3,01	2.6	3.5	2.9	3.4	2.9	42	4.1	2.9	2.3	3.2	. 3.3	2.9	. 3.0	3.2	2.7	2.8	2.2	3.6	3.7	
	;	ЪН	8.9	8.6	0.6	8.8	0.6	9.0	0.6	9.3	9.2	9.2	9:3	9.2	9.2	8.9	9.3	9.2	9.0	1.6	9.0	9.2	8.9	0.6	9.3	9.4	ŀ
	Transp.	Э		3.50		3.20		1.30		06.0		1.15		0.95		0.85		0.75		0.20		0.65		0.75		1.00	
		Temp.	16.4	15.2	16.7	15.5	16.3	15.6	17.0	16.7	16.2	15.7	17.3	16.6	- 17.8	17.4	18.1	181	15.6	16.0	16.6	16.7	15.6	15.7	15.0	15.0	
	Items		Upper laver	Lower layer	Upper laver	Lower layer	Upper layer	Lower laver	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer									
-	1 dial	No.		13	2 Ur		S U		6 Ur		й 6	13	10	L	13 Ur	.	14 Ur		16 Ur	<u> </u> 3	17 U		21 U	<u>רן</u>	23 UI	.	
· · ·	Ĺ		Ļ		L								L		<u> </u> .					į		i	L				ļ

Note * : Inorganic-N (NH4-N + N02-N + N03-N) NH4-N, NO2-N, NO3-N, T-N were analyzed by HACH

111-29

The Results of Water Quality Survey (Puno Interior Bay: 28 Jan. 1999) Table. III.3.2 (3)

- Califor		5.0	2	ĝ	4.0E+01	8.0E+01	2.2E+01	2.6E+01	5.5E+01	Q	1.5E+01	1.0E+01	2.0E+01	4.00+01	2.0E+01	1.5E+02	1.3E+01	3.5E+02	1.6E+02	2.0E+01	4.0E+02	3.5E+01	5.5E+01	Ð	Q
۵ ۲	(I/oll)		•		•	0.16	0.50	•	0.33	0.23	0.21		•	0.20	0.40	•	0.20	0.29	0.32	0.26	0.40	0.23	0.33	0.18	0.14
a va	(ma/l)	0.03	0.01	0.02	0.01	0.13	0.13	1.14	0.26	0.15	0.16	0.34	0.37	0.18	0.22	0.21	0.20	0.21	0.24	0.16	0.21	0.03	0.05	0.07	0.07
T	(1/2m)	*10.0	+10.0	06.0	0.75	0.45	1.05	0.90	1.03*	0.75	0.60*	0.60	1.04	3.45	1.05	2.40	0.36*	0.46*	0.75	-3.00	0.48*	0.75	0.78*	0.33*	1.35
NON	(l/om)	g	Q Z	QN N	0.10	QN	0.30	- 0.10	0.30	0.10	0.30	0.10	0.30	0.10	0.30	0.10	QN	0.20	0:30	QN	0.20	QZ	0.40	0.10	0.10
NUN	(l/am)	0.01	Q Z	10.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.03	0.01	0.01	0.02	0.01	0.02	0.02	0.01	0.01	0.02	0.02	0.09	0.01
N- HN		ĝ	0.01	0.01	10.0	0.25	0.35	0.63	0.72	0.19	0.29	0.19	10.1	0.25	0.60	0.75	0.35	0.24	0.34	0.28	0.27	0.33	0.36	0.14	0.22
		0.8	2.0	5 1 ,6	1.4	10.6	6.8	17.1	25.7	21.2	18.8	20.4	3	20.4	21.2	20.4	19.6	22.8	18.4	12.2	. 0.6	17.1	10.0	6.5	8.4
BOD.	(me/l)	4.4	•	4.9	1	14.0	22.1	20.4	36.8	35.4	25.3	25.6	21.6	46.9	40.1	26.3	23	36.8	32.3	29.3	15.2	29.1	35.5	12.8	24.6
22		14.0	12.0	19.0	17.0	22.0	21.0	15.0	54.0	20.0	22.0	19.0	24.0	25.0	38.0	26.0	45.0	26.0	28.0	25.0	•	34.0	36.0	20.0	44.0
Turk		1.5	1	1.5	1	10	10	10	6	16	12	14	13	19	16	19	18	20	19	ा6	18	16	19	8	6
Conduct		0.14	0.14	0.14	0.14	0.17	0.17	0.18	0.18	0.17	0.18	0.17	0.18	0.17	0.18	0.17	0.18	0.18	0.18	0.18	. 0.IS	0.18	0.18	0.17	0.17
00	([/au)	4.4	3.3	4.6	3.7	3.6	3.5	2.7	2.7	5.2	3.6	3.5	3.2	5.6	4.5	5.2	5.9	6.1	6.1	4.7	4.4	3.6	3.4	4.7	5.1
	Hd	9.1	8.7	9.1	9.1	9.2	9.2	9.2	9.1	9,4	9.3	9.2	9.2	9.5	9.1	9.3	9.4	9.1	9.2	9.2	9.1	9.2	9.1	9.4	9.4
Transp	a)		3.6		3.0		1.3		1.1		1.0		. 1.0			-	6.0		0.6		0.7		9.0		1.2
	Temp.	16.1	15.6	16.3	15.8	15.3	15.3	15.9	15.9	15.9	15.3	16.0	16.0	16.9	15.8	17.2	17.2	16.6	16.6	16.9	16.8	15.0	15.0	15.2	TS.1
Items		Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer 16.8	Upper layer	Lower layer	Upper layer	Lower layer
	Point No.			61		~		<u> </u>		<u>م</u>		2	-	2 2		4		<u>2</u>		<u>2</u>		5		33	

111-30

Note * .: Inorganic-N (.NH₄-N + N0₂-N + N0₃-N) NH₄-N, NO₂-N, NO₃-N, T-N were analyzed by HACH ()

()

	_	~
1	. 3 Reh 1000	1
	σ	
;	ع	ŝ
	¢,	
	"	2
	2	• 5
	ity Summer / Dung Interior Ray .	5
	2	
ż	÷	
	40	2
	<u>،</u>	
	å	3
۰.	\subseteq	2
		3
	Ĩ	2
ż	Ū	2
. '	Ŷ	5
:	ï	A L
- 1	۶	Š
	ulte of Water Onality Sum	
÷	+	
	Ň	
	Ģ	=
ł	2	n N
:	Ţ,	3
	ho Doculto	ß
	ρ	
	È	i
	C	
1		. ´
ļ		. :
	3	Ð
	c	4
	0	j
;		ł
	Ś	5
	4	Š
	È	1
•		

)

																			• •.							-
Colifor	æ	9.0E+00	Q	2.0E+00	2.1E+01	4.1E+01	3.2E+01	1.2E+02	5.7E+01	5.6E+01	5.3E+01	6.3E+01	3.9E+01	3.8E+01	4.7E+01	7.0E+01	1.2E+02	5.4E+02	2.1E+02	4.3E+02	1.0E+02	1.3E+02	1.8E+01	3.6E+01	1.0E+01	
T-P	(mg/l)	1	١		0.09	0.16	0.27	1.12	•	0.25	0.30	0.34	0.50	0.31	0.38	0.35	0.30	0.49	0.50	0.41	0.38	0.29	0.24	0.31	0.23	
P04-P	(l/gm)	0.07	0.08	0.07	0.08	0.13	0.17	0.75	0.79	0.24	0.29	0.23	0.28	0.30	0.28	0.26	0.26	0.34	0.36	0.37	0.38	0.21	0.20	0.17	0.17	
N-1-	(l/dm)	0.04*	0.01*	0.06*	1.65	1.50	0.16*	5.10	7.35	1.80	1.35	1.80	1.20	1.35	1.05	1.05	0.40*	1.95	2.40	· 66.0 ·	1.20	2.10	0.35*	0.21*	1.20	
N03-N	(mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.20	0.00	0.10	0.00	0.00	0.00	0:30	0.00	0.10	0.00	0.00	0.00	0.20	0.00	
N-20N	(mg/l)	0.01	~ 0 . 01~~	0.01	0.00	0.01	0.01	0.13	0.13	0.02	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0.04	0.05	0.04	0.06	10.0	0.01	0.01	0.01	
N-"HN	(mg/l)	0.03	00.0	0.05	0.00	0.19	0.15	2.59	3.05	0.57	0.50	0.31	0.65	0.16	0.34	0.21	85.0	0.50	0.74	0.85	1.04	0.31	0.34	0.00	0.10	1
COD _{Mn}	(mg/l)	4.6	7.8	1.1	6.6	1.8	8.8	12.4	18.4	7.6	3.2	8.4	7.2	2.8	6.8	8.0	8.0	6.0	7.6	4.0	15.2	8.4	13.6	7.6	9.6	
BODs	(mg/l)	1.7	6.8	10	3.7	1.9	6.2	18.4	14.1	4.5	3.7	4.5	5.7	3.8	7.0	3.6	5.8	4.3	5.6	2.9	10.4	2.8	10.8	2.0	9.5	
SS .	(mg/l)	0.5	4 0	0.7	1.1	3.6	5.0	24.3	91.7	26.0	13.3	30.0	29.9	17.0	23.0	12.3	3.1.0	35.4	33.0	34.4	27.0	10.0	40.0	30.8	28.8	
Turb.	(mg/l)		•	25	-24	19	24	44	49	36	34	36	36	34	36	36	36	- 56	58	56	56	30	31	28	29	
Conduct	•			0.14	0.14	0.15	0.15	0.17	0.18	0.17	0.17	0.18	0.18	0.18	0.18	0.18	0.18	0.10	0.15	0.12	0.13	0.17	0.17	0.17	0.17	
DO	(mg/l)		•	3.6	3.7	3.9	3.9	4.2	3.6	4.4	4 1	4.7	4.8	4.9	5.7	5.4	4.9	5.5	5.0	4.0	3.6	42	3.0	4.7	4.4	
	Hd	•		8.5	8.6	8.7	8.9	8.1	8.6	8.9	9.0	9.0	9.0	9.0	9.1	9,1	0.6	4.1	8.4	8.2	8.2		8.4	8.1	8.5	
Transp.	(m)		4.0		4.0		2.0		0.5		1.0		1.0		10		0.1		0.5		0.4	· · ·	1.0		1.0	
	Temp.		and a firmula	15.3	14.6	14.9	13.7	16.5	15.5		14.1	16.1	15.0	••	L	15.5	14.5			14.6	14.3		14.0	15.8		
štems		Upper laver	Lower laver	Upper laver	Lower laver	Upper layer	Lower layer	Upper layer	Lower laver	Upper layer	Lower laver	Upper laver	Lower layer													
	Point No.			7		5	- 2 m.	ه		6		10		13		14		16		17	•	21		23	•	

* : Inorganic-N (NH_4 -N + NO_2 -N + NO_3 -N) N H_4 -N, N O_2 -N, N O_3 -N, T-N were analyzed by HACH

Note

111-31

1.1.1

The Results of Water Quality Survey in The Interior Puno Bay (Date : 8 Jul. 1999) Table. III.3.2 (5)

			Tenach			Conduct	Tith I	1 33	ROD.	-BOD.	COD.	-5	N-,HN	NON	NON	N-F	P0P	<u>т</u> -Р	Colifor
Point No.	Trems	Temp.	(m)	Hd			(mg/l)	(mg/l)		(mg/l)		ž	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	E
-	Upper layer	11.2		8.7	6.4	0.14	9	8.0	9.7	1	44	•	0.02	00.0	0.00	4.00	0.04	0.11	1
	Lower layer	11.1	7.65	8.5	6.7	0.14	5.5	8.0.	7.6	1	5.6	•	0.14	0.01	0.00	4.00	0.05	0.07	2.0E+00
2	Upper layer	11.3		8.4		0.14	5.5	0.6	4.0	1	4.6		0.06	0.00	0.00	3.00	0.04	0.08	1.0E+00
	Lower layer	1.1.1	7.15	8.3	6.8	0.14	4.5	0.6	6.9	-	5.6		0.04	0.00	0.00	5	0.04	0.08	2.0E+00
Ś	Upper layer	9.8		9.2	•	0.15	3	18.0	16.0	10.2	14.0	16.0	0.09	0.06	0.10	5.00	0.20	0.27	1.0E+00
•	Lower layer	8.8	1.53	9.0	9.7	0.16	4.5	23.0	22:0	•	16.0 -		0.18	0.01	0.00	6.00	0.29	0.31	5.0E+01
0	Upper layer	10.8		0.6	7.0	0:16	7	46.0	40.2	17.5	23.6	34.8	1.92	10:0	0.30	8.00	0.28	1.05	9.0E+01
	Lower layer	9.7	1.26	8.5	2.2	0.16	13	63.0	50.4		34.8		2.68	0:07	0.40	5.00	1.76	0.39	1.0E+02
م	Upper layer	10.0		.9.2	10.9	0.15	ŝ	25.0	16.7	. 13.8	26.0	22.0	0.18	0.02	0.20	5.00	0.29	.0.38.	1.9E+02
	Lower layer	9.0	1.16	9.2	10.0	0.15	106	25.0	15.5	-	22.0	, - , - , - , - , - , - , - , - , - , -	0.06	0.01	0.10	5.00	0.43	0.37	1.0E+00
10	Upper layer	9.6		9.1	8.2	0.16	9	19.0	32.2	•	22.8		0.50	0.01	0.20	4.00	0.43	0.54	2.5E+02
	Lower layer	9.5	1.85	9.1	7.6	0.16	. 9	15:0	9.6		15.6	•	0.25	0.01	0.10	7.00	0.58	0.35	2.0E+00
1 1 1	Upper layer	10.0		9.2	10.4	0.15	41	13.0	31.2	27.8	18.8	26.0	0.27	0.01	0.10	5.00	0.37	0.45	1.0E+01
	Lower layer	94	1.81	9.1	8.8	0.16	2 -	23.0	49.8		26.0	-	0.42	0.01	0.10	7.00	0.46	0.38	1.8E+01
4	Upper layer	11.1		9.2	9.4	0.15	4	14.0	4.7	1	22.0		0.28	0.01	0.10	6.00	0.38	0.48	9.4E+01
	Lower layer	11.1	1.76	9.2	9.1	0.15	4	23.0	10.8	1	17.2 -		0.41	10.0	0.20	8.00	0.58	0.45	•
16	Upper layer	9.2		8.8	6.4	0.10	3	11.0	22:5	20.2	22.0	22.8	0.38	10.0	0.10	4.00	0.35	0.42	6.1E+02
	Lower layer	9.5	0.90	8.6	5.1	01.0	5	30.0	24.6	•	22.8	-	0.50	10.0	0.20	7.00	0.56	0.06	•
17	Upper layer	5.6		0.6	6:2	0.16	2	21.0	26:9		23.6		1.23	0.01	0.10	6.00	0.52	0.54	1.7E+02
	Lower layer	9.3	1.71	8.9	7.5	0.16	5	14.0	31:5		20.4		1.68	0.01	0.10	6.00	0.94	0.44	3.0E+03
21	Upper layer	9.2		0.6	7.2	0.16	1.5	21.0.	11.6	1	20.4		0.28	0.01	0.10	7.00	0.23	0.29	5.5E+01
	Lower layer	9.2	1.45	0.6	7.3	0.16	2	17.0	3.2		14.4	- - -	0.37	0.01	0.10	6.00	0.38	: 0.35	
23	Upper layer	9.0		9.4	9.7	0.14	5	23.0	6.3	•	12.8		0.10	0.00	0.10	4.00	0.19	0.29	3.0E+02
	Lower layer	8.5	1.00	- 94		0.15	. 8	26.0 -			14.4	-	0.14	0.01	0.30	6.00	0.31	. 0.23	3

()

€

Table. III.3.2 (6)The Results of Water Quality Survey (Puno Interior Bay : 4 Aug. 1999)

)

r	•			۰.	• .						. • •						2.5	- 			÷			•	
Colifor	00740 0	2.2.2	5.0E+00	4.0E+00	3.0E+00	3.7E+01	2.0E+01	1.4E+01	7.2E+02	2.0E+00	6.0E+00	3.8E+01	1.4E+01	1.5E+01	5.0E+00	1.6E+01	1.8E+01	3.5E+01	4.0E+01	1.5E+01	3.4E+01	7.0E+00	6.0E+00	1.5E+01	9.0E+00
Ч-Т (Ð	ĝ	·0.06	0.86	1.05	4.91	3.65	1.39	1.07	1.41	1.52	1.09	1.09	1.25	1.32	1.21	1.22	1.01	1.10	0.84	0.89	0.78	0.68
P04-P			g	g	ĝ	ß	QN	2.66	2.84	0.31	0.20	0.31	0.51	0.08	0.11	0.11	0.32	0.09	0.18	0.08	0.16	ĝ	QN	QX	0.03
N-1	(1/A)	N.C	5.00	4.00	5.00	6.00	6.00	12.00	13.00	6.00	5.00	7.00	6.00	5.00	5.00	7.00	7.00	6.00	5.00	6.00	3.00	5.00	4.00	5.00	4.00
Z-SOZ		3	0.00	0.00	0,00	00'0	0.00	0.20	0.00	0.00	0.00	01.0	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.01	0.00	0.00	0.00	0,00	00.0
N02-N		10.0	0.0	0.01	0.00	0.01	0.00	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.010	0.01	0.01	0.01	0.01	0.01	000
N-"HN		50.0	0.04	0.05	0.05	0.14	0.18	5.43	5.38	0.59	.0.41	0.59	0.57	0.27	0.38	0.28	0.55	0,42	0.58	. 0.24	0.34	0.14	0.26	0.15	51.0
CODM		+ +	3.9	3.9	5.1	12.4	:16.5	21.0	.29:0	14.0	21.2	13.2	18.8	15.5	16.5	13.2	19.6	14.7	20.4	14.0	16.5	15.1	16.5	12.0	,14 9
		<u>8</u>	6.8	10.6	3.2	9.5	12.1	17.8	28.1		22.8	12.9	10.8	10.7	9.6	13.2	8.9	34.7	8.4	38.0	8.3	8.1	7.1	17.8	8.7
SS		0.0	7.0	.0.9	5.0	58.0	21.0	30.0	29:0	34.0	26.0	21:0	32.0	27.0	26.0	24.0	27.0	23.0	22:0	19.0	120	34.0	28.0	35.0	100
Turb		F	1	1		13	15	10	14	32	- 16	1	S	6	9	و	8	5	و	9	9	6	10	10	- - -
Conduct	4	0.15	0.15	0.15	0.15	0.16	0.17	0.16	0.16	0.17	0.18	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.18	0.17	017
οq		6 .8	72	6.2	5.8	7.6	7.2	9.2	8.3	2.7	3.4	7.2	7.2	8.6	6.4	12.3	3.9	8.1	7.7	8.2	6.8	7.7	7.7	8.1	: V F
Ha		8.5	8.3	8.6	8.6	9.1	9.1	9.2	9.2	8.5	8.3	8.9	8.9	0.6	0.6	0.6	8.8	0.6	8.9	- 0.6 -	8.8	8.4	0.6	0.6	01.0
Transp.	Ê		5.50		5.00		1.50	and the second	1.50	44.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0.70		1.20		1.70		1.40		1.60		1.80		1.50		1 60
Temp.		11:7	11.7	11.8	11.5	10.3	10.1	10.2	9.7	11.2	10.2	12.6	12.5	13.8	10.9	12.6	11.7	12.9	12.8	12.6	11.5	11.2	6.6	11.5	10.0
Items		Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower laver	Upper laver	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	T AWAY Javier
	Point No.			2 0		s U		6 U	<u> </u>	6	j	10 10		13 0		14 - 1		16 ° L		17 L	<u>[</u>]	21 1	<u> </u>	· 23	

The Results of Water Quality Survey (Puno Interior Bay : 18 Aug. 1999) Table. III.3.2 (7)

Colifor	E	1.9E+01	1.5E+01	4.8E+01	5.0E+01		7.0E+00	1.2E+02	3.4E+01	2.45+01	3.0E+00	1.3E+01	6.0E+01	4.0E+01	3.0E+00	2.0E+00	7.0E+00	5.0E+00	2.0E+00	3.0E+00	2.0E+01	4.0E+00	3.0E+01	2.0E+00	5.0E+00
d-T	(mg/l)	2	£	QN	PN	0.71	0.63	2.03	2.63	1.06	16.0	Ð	ĝ	0.73	0.68	2	0.93	0.94	az	0.84	0.73 [Γ	0.83	0.55	0.70
P04-P	(mg/l)	0.15	ę	an	QZ	0.14	0.23	2.07	2.35	0.51	0.37	0.43	0.66	0.42	0.53	0.43	0.59	0.45	0.54	0.33	0.43	0.09	0.23	0.06	0.13
N-T	(mg/l)		•	•	•	- - 	•	•	-	1	1	;	1		1	1	-		-	••••	•	•	,		•
N03-N	(mg/l)	QN	ND	0.10	â	0.10	0.10	0.20	0.20	01.0	0.20	0.10	0:20	0.20	0.10	0.20	0.10	0.20	0.20	0.20	0.20	01-0	0.10	0.10	0.10
N02-N	(mg/l)	QN	QZ	QN	QN	10.0	0:01	0.01	0.02	QN	Q	0.01	0.02	0.01	0.01	QN	QN	0.01	0.01	0.01	QN	0.01	0.01	0.01	Q
N-"HN	(l/gm)	1	•	3	•	*	•	5	•	•	•	•	•	•	•	-	,	-	•	•	•	•	•	•	
COD _{Mn}	(mg/l)	3.8	4.6	4.2	4.8	7.2	16.8	27.6	22.0	23.6	23.6	20.4	22.0	22.8	20.4	23.6	23.6	22.0	20.4	21.2	18.0	18.8	16.8	15.2	14.8
BODs	(mg/l)	3.0	20.0	21.4	24.1	31.2	79.0	153.8	137.6	130.5	16.6	78.9	121.3	50.9	75.1	117.3	116.5	47.2	34.5	78.2	75.0	73.6	77.9	70.9	77.9
SS	(mg/l)	5.0	6.0	6.0	1	19.0	28.0	27.0	35.0	23.0	28.0	27.0	27.0	21.0	23.0	23.0	98.0	16.0	28.0	21.0	27.0	21.0	44.0	17.0	24.0
Turb.	(mg/l)	1	1	1	1	12	14	18	224	12	14	12	.87	10	12	8	6	11	29	6	12	19.	179	13	18
Conduct		0.15	0.15	0.15	0.15	0:17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.18	0.17	0.17	0.17	0.17	0.17	0.18	0.17	0.17
0 C	([/ām)	6.8	6.2	5.9	5.1	7.2	7.7	5.2	3.2	9.6	8.8	10.4	5.9	10.4	8.9	10.1	7.6	9.3	8.5	9.6	9.3	7.9	8.4	7.4	7.4
л. Г	r rd	8.3	9.5	8.2	8.2	8.3		8.1	8.9	8.8	9.0	8.1	9.0	9.1	9.1	9.0	9.2	9.2	9.1	9.1	1.6	9.3	9.2	0.6	9.1
Transp.	e E		7.00		5.00		1.35		1.20		-1.50		1.50		1.50		1.50		1.20		1.20		0.95		1.20
Temp		12.0	11.5	12.3	11.8	10.8	-10.5	12.3	6.11.	12.1	10.9	12.9	12.0	13.0	12.0	13.6	13.2	13.7	13.4	13.0	13.0	11.6	11.1	10.5	10.7
Items		Upper layer	Lower layer	Upper layer	Lower layer																				
	Point No.	•••		6		s S		9		6		10		1		4		 		17		5		<u></u> ព	

 Table. III.3.2 (8)
 The Results of Water Quality Survey (Puno Interior Bay : 7 Sep. 1999)

1000

				÷		•			•					_						_				_		
Colifor	E	1	,	1	1	•	,	,	,	t	1	1	1	-	,	1	•	•	,		,	-	۱	•	•	
T-P	(mg/l)	0.22	Q	QN	0.24	0.55	0.80	4.76	2.83	5.81	1.03	1.32	1.04	1.12	1.06	0.88	0.84	1.83	1.99	0.95	2.75	0.78	1.72	0.71	1.05	
P04-P	(l/gm)	â	QN	QN	QN	0.08	0.24	1.35	1.18	0.62	0.65	0.62	0.63	0.50	0.62	0.54	0.53	1.31	1.61	0.52	0.41	0.55	0.48	0.15	0.15	
r-N	(mg/l)	1.51	1.46	1.29	1.25	2.05	2.03	8.93	6.17	2.79	2.59	2.56	2.58	6.13	4.08	3.99	5.15	4.35	3.82	3.74	3.35	3.53	4.05	2.62	1.98	
N03-N	(l/2m)	1.10	1.10	1.00	06.0	01.1	0.80	1.80	0.90	1.20	1.00	1.10	0.70	1.30	0.80	1.10	0.90	1.20	0.80	1.20	0.80	1.20	0.90	1.10	0.80	
Noz-N	(mg/l)	0.01	0.01	0.01	0.00	0.01	0.01	0.04	0.02	0.01	0.01	0.01	0.01	0.01	- 10,0	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.01	
NH4-N	(I/gm)	0.13	0.08	0.12	0.07	0.10	0.06	6.87	3.16	0.17	0.17	0.14	0.15	0.11	0.21	0.09	0:16	0.70	1.58	- 0,10	0.11	0.09	0.10	0.07	0.09	
CODMn	(mg/l)	4.8	4.0	5.0	6.0	14.3	16.3	37.2	27.6	26.0	23.6	24.1	26.0	22.3	21.2	26.0	25.2	25.2	25.2	29.7	22.0	19.6	20.8	13.3	16.4	
BODS	(mg/l)	6.6	6.8	4.0	7.2	16.9	23.8	37.1	40.7	20.0	2.9	19.4	8.2	21.6	30.2	6.4	- 12.9	17.2	17.0	21.4	54.0	7.9	4.8	8.9	5.0	
SS	(mg/l)	. 2 .	7		.37	45	19	72	86	1		19	19	- 31 -	35.	39	47	118	99	- 48	1 .	1	45	38	36	-
Turb.	(mg/l)	9	. 3: ·		4	15	25	45	130	21	23	18	61	18	20	16	16	21	34	- 18	22	18	27	18	18	
Conduct	•	0.16	0.16	0.16	0.16	0.17	0.17	0.18	0.18	0.17	0.18	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	- 11.0 -	0.17	0.17	0.17	0.17	0.17	
Q	(mg/l)	6.4	5.8	. 99	5.9	L'L	6.6	11.1	12:4	8.7	6.7	9.6	10.1	6.6	5.4	10.4	10.2	8.2	3.6	9.6	9.2	7.9	6.5	7.1	7.5	
	Нď	8.5	8.4	84	8.4	9.1	9.1	0.6	8.6	9.1	9.1	9.2	9.2	9.2	1.6	9.2	9.1	6.8	8.2	1.6	9.1	0.6	0.6	9.1	9.1	
Transp.	(m		5.00		4.70		1.30		0.80		1.50		1.15		1.40		1.15		0.20		0.65		0.75		1.00	
Ę	I emp.	12.9	12.4	-12.8	12.4	11.8	11.0	13.8	13.2	13.0	11.5	14.5	13.7	13.9	12.4	15.2	- 13.7	13.6	11.5	13.2	12.5	12.2	11.8	10.6	10.3	
Items		Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer	Upper layer	Lower layer											
	Point No.			2		s		9		6		10		- 13 -		14		I6		17.	•	21		53		

The Distribution of Water Temperature in The Lake

12.7]	12.1	11.5	6.6	11.8	14.1	14.5	15.3	14.8	16.0	16.4	Average
10.3	10.5	9.7	8.5	10.01	12.3	12.5	13.4	13.3	15.0	15.0	Min.
15.2	13.7	13.8	11.3	13.2	15.4	16.01	16.9	16.7	17.2	18.1	Max.
7 Sep.	18 Aug.	4 Aug.	8 Jul.	i Jun.	36285	20 Apr.	9 Mar.	3 Feb.	28 Jan.	[21Jan.	
sprees centiprade	unit : acgree										

The Vertical Variation of Water Temperature in The Lake

Table III.3.4

7 Sep. Max.	0.5 1.2	0.4	0.8 1.2	0.6 2.4	·· 1.5 · 1.8 ·	0.8 1.1	1.5 2.9	1.5 1.5	2.1 2.1	0.7 1.1	0.4 1.9	0.3 · 1.3
18 Aug.	0.5 1	0.5	0.3	0.4	1.2	6.0	1.0	0.4	0.3	0.0	0.5	-0.2
4 Aug.	0.0	0.3	0.2	-0 : 2	1:0	0.1	2.9	0.9	1.0		1.3	1.3
8 Jul.	1.0	0.2	1.0	1.1	1.0	1.0	9.0	0.0	-0.3		0.0	0.5
l Jun.	0.0	0.0	1.0	0.1	8.0	0.2	0.4	•	1 0	0.4	1.2	0.3
36285	0.5	0.8	0.1.0	1.0	8.1	1.0	1.7:	0.4 %	0.0	-0.3	0.8	1.1
20 Apr.	0.3	1.7	0.4	0.7	0.6	.6.0	1.2	0.8	0.1	0.7	0.9	0.5
9 Mar.	0.6	0.2	8.0	2.4	0 7	0.4	10	1.1	0.0	0.7	1.9	1.1
3 Feb.	•	0.7	1.2	0.1	s - 8°0	1.1	6.0	- 1.0	-0.1	0.3	0.3	0.5
28 Jan.	0.5	0.5	0.0	0.0	0.6	0'0	1.1	0.0	0.0	0.1	0.0	["O
21Jan.	1.2	1.2	0.7	:0.3	0.5	0.7	0.4	0.0	-0.4	-0.1	-0.1	0.0
Point No.		7		<u>و</u>	- 6 -	10	13	14	16	12.12	21	23

Table III.3.5Transparency in The Lake(from January to September 1999)

Ĩ	-		; ;	м Ц х	÷	1.1			-	Ľ.		.: •		÷.
ro-ochren	unit : m	Min.	3.5	3.0	1.0	0.5	0.7	1.0	6.0	0.8	0.2	0.4	0.6	6.0
January		W2N.	L*L	2.7	2.7	- 1.5	2.3	<u>6</u> I	2.0	2.4	1.8		1.9	1.8
(ILCOLL)		- Av.	5.1	4.7	1.6	1.1	1.4	· · · • † • • • •	1.4	1.3	0.9	1.2	1.2	1.3
		Point No.		. 2	5	6	6		13	14	16	17.	21	23

E

Pc	int No.	Av.	Max.	Min
1	Upper layer	8.6	9.1	8.0
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Lower layer	8.6	9.5	8.2
2	Upper layer	8.6	9.1	8.2
1.1	Lower layer	8.5	9.1	8.2
5	Upper layer	8.9	9.2	8.3
$\alpha \in \mathbb{R}^{+}$	Lower layer	8.9	9.2	8.3
6	Upper layer	8.6	9.2	7.8
	Lower layer	8.7	9.3	7.8
9	Upper layer	8.9	9.4	8.4
14 F C	Lower layer	8.9	9.3	8.3
10	Upper layer	8.9	9.3	8.1
	Lower layer	9.0	9.2	8.1
13	Upper layer	9.1	9.5	8.4
	Lower layer	8.9	9.1	8.3
14	Upper layer	9.0	9.3	8.3
	Lower layer	9.0	9.4	8.1
16	Upper layer	8.9	9.2	8,3
	Lower layer	8.8	9.8	8.2
17	Upper layer	8.8	9.2	8.2
117 ^{- 1} 1	Lower layer	8.8	9.2	8.2
21	Upper layer	8.8	9.3	8.2
	Lower layer	8.8	9.2	8.1
23	Upper layer	8.9	9.4	8.1
	Lower layer	9.0	9.4	8.2

)

)

Table III.3.6Transition of pH in the Lake(Observation from January to September 1999)

Table III.3.7Transition of DO in the Lake(Observation from January to September 1999)

<...:

Poir	nt No.	Av.	Max.	Min.
1	Upper layer	.5.1	6.8	2.7
	Lower layer	4.7	7.2	2.2
2	Upper layer	4.7	6.7	2.6
	Lower layer	4.4	6.8	2.0
5	Upper layer	4.5	7.6	2.7
	Lower layer	4.9	9.7	2.6
- 6	Upper layer	4.1	9.2	1.5
	Lower layer	3.1	8.3	1.0
9	Upper layer	5.0	10.9	2.7
	Lower layer	4.6	10.0	2.9
10	Upper layer	5.3	10.4	3.2
	Lower layer	4.8	7.6	2.9
13	Upper layer	5.9	10.4	2.9
	Lower layer	4.6	8,9	1.2
14	Upper layer	6.0	12.3	3.2
	Lower layer		91	2.1
16	Upper layer	5.3	9.3	2.9
	Lower layer		8.5	3.0
17	Upper layer		9.9	3.1
	Lower layer	5.0	· 9.3	2.7
21	Upper layer		7.9	2.8
	Lower layer		8.4	2.2
23	Upper layer		9.7	1.8
	Lower layer	4.9	9.4	1.6

Po	nt No.	Av.	Max.	Min.
1	Upper layer	5.0	14	0.5
	Lower layer	5.5	12	0.5
2	Upper layer	6.0	19	0.5
	Lower layer	6.7	17	0.5
5	Upper layer	19	58	0.6
	Lower layer	- 16 💠	28	5.0
6	Upper layer	23	46	10
	Lower layer	46	92	23
9	Upper layer	21	34	8.0
	Lower layer	20	28	6.8
- 10	Upper layer	19	30	9.2
	Lower layer	22	32	8.7
13	Upper layer	21	36	11
	Lower layer	22	38	10
14	Upper layer	19	26	12
	Lower layer	36	98	11
16	Upper layer	37	÷ 110 ×	··· 11
	Lower layer	42	. 95	22
17	Upper layer	22	34	12
	Lower layer	37 👘	120	13
21	Upper layer	22	34	10
	Lower layer	36	67 .	17
23	Upper layer	21	35	9.0
	Lower layer	37	78	19

Table III.3.8Transition of SS in the Lake(Observation from January to September 1999)

Table III.3.9Transition of BOD5 in the Lake(Observation from January to September 1999)

Point No. Av. Max. Min. 1 Upper layer 4.1 9.9 0.5 Lower layer 7.3 11.0 0.3 2 Upper layer 3.3 10.6 0.5 Lower layer 5.2 9.0 0.2 5 Upper layer 7.4 16.9 0.9 Lower layer 13.5 23.8 3.6 6 Upper layer 22.3 40.2 12.0 Lower layer 26.5 50.4 14.0 9 Upper layer 12.1 35.4 1.5 Lower layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 16.2 46.9 1.7 Lower layer 16.2 46.9 1.7 Lower layer 15.1 36.8 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 </th <th>3.15</th> <th>The Bridge of the</th> <th>n na sub</th> <th></th> <th></th>	3.15	The Bridge of the	n na sub		
Lower layer 7.3 11.0 0.3 2 Upper layer 3.3 10.6 0.5 Lower layer 5.2 9.0 0.2 5 Upper layer 7.4 16.9 0.9 Lower layer 13.5 23.8 3.6 6 Upper layer 22.3 40.2 12.0 Lower layer 26.5 50.4 14.0 9 Upper layer 12.1 35.4 1.5 Lower layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 16.2 46.9 1.7 Lower layer 16.2 46.9 1.7 Lower layer 15.1 36.8 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 15.1 36.8 0.6 Lower layer 15.1 36.8 0.6	Poi	nt No.	Av.	Max.	Min.
2 Upper layer Lower layer 3.3 10.6 0.5 5 Upper layer 5.2 9.0 0.2 5 Upper layer 7.4 16.9 0.9 Lower layer 13.5 23.8 3.6 6 Upper layer 22.3 40.2 12.0 Lower layer 26.5 50.4 14.0 9 Upper layer 12.1 35.4 1.5 Lower layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 8.4 21.6 4.0 13 Upper layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 15.1 36.8 0.6 Lower layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19	1	Upper layer	4.1	9.9	0.5
Lower layer 5.2 9.0 0.2 5 Upper layer 7.4 16.9 0.9 Lower layer 13.5 23.8 3.6 6 Upper layer 22.3 40.2 12.0 Lower layer 26.5 50.4 14.0 9 Upper layer 12.1 35.4 1.5 Lower layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 13.4 32.2 2.6 Lower layer 16.2 46.9 1.7 Lower layer 16.2 46.9 1.7 Lower layer 15.1 49.8 2.3 14 Upper layer 15.1 36.8 0.6 Lower layer 15.1 36.8 0.6 Lower layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 <tr< td=""><td></td><td>Lower layer</td><td>7.3</td><td>11.0</td><td>0.3</td></tr<>		Lower layer	7.3	11.0	0.3
5 Upper layer Lower layer 7.4 16.9 0.9 Lower layer 13.5 23.8 3.6 6 Upper layer 22.3 40.2 12.0 Lower layer 26.5 50.4 14.0 9 Upper layer 12.1 35.4 1.5 Lower layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 8.4 21.6 4.0 13 Upper layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer <td< td=""><td>2</td><td></td><td>3.3</td><td>10.6</td><td>0.5</td></td<>	2		3.3	10.6	0.5
Lower layer 13.5 23.8 3.6 6 Upper layer 22.3 40.2 12.0 Lower layer 26.5 50.4 14.0 9 Upper layer 12.1 35.4 1.5 Lower layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 8.4 21.6 4.0 13 Upper layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 15.1 36.8 0.6 Lower layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2			5.2	9.0	0.2
6 Upper layer Lower layer 22.3 40.2 12.0 1.0wer layer 26.5 50.4 14.0 9 Upper layer 12.1 35.4 1.5 10 Upper layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 8.4 21.6 4.0 13 Upper layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	5	Upper layer	7.4	16.9	0.9
Lower layer 26.5 50.4 14.0 9 Upper layer 12.1 35.4 1.5 Lower layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 13.4 32.2 2.6 Lower layer 16.2 46.9 1.7 Lower layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2		Lower layer	13.5	23.8	3.6
9 Upper layer Lower layer 12.1 35.4 1.5 10 Upper layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 13.4 32.2 2.6 Lower layer 8.4 21.6 4.0 13 Upper layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	6	Upper layer	22.3	40.2	12.0
Lower layer 10.2 25.3 1.5 10 Upper layer 13.4 32.2 2.6 Lower layer 8.4 21.6 4.0 13 Upper layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2		Lower layer	26.5	50.4	¹ 14.0
10 Upper layer Lower layer 13.4 32.2 2.6 13 Upper layer 8.4 21.6 4.0 13 Upper layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	9	Upper layer	12.1	35.4	1.5
Lower layer 8.4 21.6 4.0 13 Upper layer 16.2 46.9 1.7 Lower layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2		Lower layer	10.2	25.3	1.5
13 Upper layer Lower layer 16.2 46.9 1.7 14 Upper layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	10		13.4	32.2	2.6
Lower layer 17.1 49.8 2.3 14 Upper layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2		Lower layer	8.4	21.6	4.0
14 Upper layer Lower layer 8.1 26.3 0.6 Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	13	Upper layer	16.2	46.9	1.7
Lower layer 9.5 23.0 1.4 16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2		Lower layer	17.1	49.8	2.3
16 Upper layer 15.1 36.8 0.6 Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	14	Upper layer	8.1	26.3	0.6
Lower layer 12.7 32.3 1.9 17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	1975	Lower layer	9.5	23.0	1.4
17 Upper layer 14.3 38.0 2.4 Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	16	Upper layer	15.1	36.8	0.6
Lower layer 19.8 54.0 5.8 21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	(1, 1)	Lower layer	12.7	32.3	1.9
21 Upper layer 7.6 29.1 0.4 Lower layer 11.2 35.5 3.2	17		14.3	38.0	2.4
Lower layer 11.2 35.5 3.2		Lower layer	19.8	54.0	5.8
	21	Upper layer	7.6	29.1	0.4
		Lower layer	÷ 11.2 ÷	35.5	3.2
23 Upper layer 7.4 17.8 0.4	23	Upper layer	7.4	17.8	0.4
Lower layer 10.7 24.6 5.0		Lower layer	10.7	24.6	5.0

The Results of Sediment Quality Survey (Date : 6. Feb. 1999) Table. III.3.10 (1)

)

		••		÷				•		<u>بر</u>							:			5
		60	Π		Π			Τ		E B B		Ъ.			Ċ					: Black / Blackly color
្តដ	15	-308	83	78	65	26	12	₽		₹	<u> </u>	Ω			U					llacki
						_	_	-			6 6		U U							Н Д
51	16	32	78	74	-	43	33	,					Ω				1			: Blac
									•											
		е С								3001130100	B		ণ							
17	16	-36	8	68	'	27	8	'	۰.		<u> </u>		р С							Ę
								-			IE IE			ა ს ს	•	ن ع))	144		Grayish Brown
16	<u>1</u> 6	321	88	89	1	24	29		1.		 _ <			Ω Ω				nd The		ayish
																Ъ				ହ
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									B		<u>B</u>		 	GrBr	<u> </u>			GrBr
14	17	-28	8	8	69	77	89	5	j. L		<u> </u>		<u> </u>			· 0	<b>;</b>			
$\vdash$			╞	<u> </u>				-				GwBl			ত					: Gray light : Blackly Gray : Gray with Black
្តដ្រ	11	389	12	43	•	<u> 66</u>	19					A			œ.	j				it Ga
	1 I.									Le la	1									ray li lackiy ray w
		6								BIBr	. annon i	Ā		ਸ਼ੋ						0.20
2	16	-34	8	8	93	99	25	'	tu D			Ф	ļ	0						ភ្លុង ភ្លុង ភ្លា
; <b> -</b> -			┞	<u> </u> 					· · ·			U								666
. 0	15	325	82			22						- V - V								wn ray
			Í							<u> </u>				ĨŔ						y Bro sh G
											BIBr			GwBl			Å			Blackly Brown Gray Greenish Gray
v V	16	-378	ß	76	78	48	31	ង			<u> </u>			А		<u> </u>	<u>ບ</u> !			<u>а</u> бб 
			┞	-	<u> </u>						ਹ									BBr G G G
်  _ဟ	16	-16		38	1		6		•					· · · · · ·						<u>a</u> 00
				5		Γ					1						•			
									: Upper layer		С С			Bri		<u>с</u>				Black Brown Brown light
5	18	-307	13	7		13	16	•	pper		۲			ф		<u>。</u>				lack rown rown
·	<b></b>	<u> </u>			<u> </u>	]			D •		1									<u> </u>
	. 81	-75	6	74		9	2			ABr	B.									ធ្មអ្នក
		5		ľ		13	Π													ддд
12				Ļ	†-		Π		-		<u> </u>		<u>+</u>	<u> </u>						t
Point No	ြ	iti E	4	ά	U	A	ä	0								1				Color of sediment
- [1	nent (	reduc		<u> </u>	<b>.</b>					•• ₩	5 CH	- 10 cm	- 15 cm	- 20 CH	25 cm	30 cm	- 35 cm	- 40 cm	- 45 cm	r of s
1	Sediment erature*	tion	nie Lie	%)		<u>5</u>	(%)			Sediment	γ. -		1	- 5 - 7 - 7	4	<del>ຕ</del> 	ς Έ	4	- 4	Colo
:    _#	1 8	Ovadation reduction	Moisture   A	paten:		lenit	Loss (%)			Sed			910) I	ແອແມງ	99S					
Items		Ľ		ŭ			-						en u Te Receber		· · ·		· · ·			
· -									· .						· · · .					

												·	÷.			•			•		. •							•	•							•		н			
23	14.1	13.4		-380	-323	-	8	12		22	22		23.43	9.28	1	1.38	1.25			- - -					Γ		ਸੂ ਸ		]									: Black / Blackly color		-	
21	14.7	14.9	14.9	-310	-341	-194	85	62	68	48	33	32	52.90	33.44	35.05	•	1.65	2.33	-	-	5	<u> </u>		С M		1	-	- - - - - - - - - - - - - - - - - - -							-			Elack /			
17	15.0	14.6		-324 1	-247	-	92	87		28	27		34.22	21.97	•	0.29	5.10					ABI				( (	2		]				a sea sea sea sea sea sea sea sea sea se					Ę			
	14.2	14.6	14.7	-333 1	-259	-160	76	82	76	13	19	28	14.37	22.40	9.27	2.19	1.13 -	1.56				A BI					2 8	<u> </u>				0				]		Grayish Brown		•	
14	14.3	13.8	15.9	-378	-370	-357	84	76	75	23	19	20	12.29	6.75	3.77	0.45	1.19	1.07				A BIBr					B			ს ს	]		1					GrBr	•		
13	13.8 ·	14.4	14.9	-355	-384	-283	88	74	49	30	20	12	6.08	14.68	2.74	0.49	1 03	1.20					I,	and a second			Br						с С	1	-			Gray light Blackly Gray	and with black	(	
6   9   10   13	14.4	14.3		-356	-340		87	83	-	33	26	-	· 13.96	23.04		1.75	0.85	-	T			תקר	A				a 🐪	B B					n en partenne en serentere	A CONTRACTOR OF A CONTRACTOR A					CWBI : CTay		
6	13.9	14.3	14.8	-271 1	-293	-343	- 18	86	80	32	25	21	8.01	20.73	4.02	1.39	1.07	1,14		A GrG		<u>ام</u> م				ڻ ن				and the second				and the second of the						- 	
. 9	13.9	14.0		-368	-354	-	87	81	-	29	21	•		26.89	•	2.46	0.75	•				A	Ť		Cou	B								an a			:	: Blackly Brown : Gray	Creensn Gray		
5	13.5	14.0		1 161-	-246		63	36	-	7	4	1	8.77	. 3.34		0.77	0.95	-				ი გ				       	ц С П										-	ភ្នា ភ្លា ភ្លា ភ្លា ភ្លា ភ្លា ភ្លា ភ្លា ភ្ល	3	• • •	
5	13.3	13.9	13.9	-235 1	-86	-149	74	66	30	8	6	2	9.02	1.76	1.11	0.89	0.32	0.46		ଓ ୪	******			С В				ს ე	- 				19 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					: Black : Brown	srown ugnt	(	
uint No.	13.7	13.7	14.2	-209 [	-271	-37	<u>4</u> 8	71	58	8	12		4.00	4.04	2.74	0.70	1.01	0.05				ບ <		m		Т		C Brl						and the second secon		2					
Point No	V		U	I A I	B	0	V	m	0	A I	B	с С	A	B	C	A	e B	c	-		****								riants and and a second second									lent			
Items	Sediment	Temperature (C)		Oxidation	reduction potential	( mV )	Moisture	Content (%)		Ignition	Loss (%)		Total - N	(mg/g-dry)		Total - P	(mg/g-dry)		<ul> <li>Sediment surface -</li> </ul>		- 5 cm				- 15 m	•	- a . j	ເຈິຊ ເອີ ເອີ	2 d.	) in 8	÷.,	uiba E	Š.			- +0 CH		Color of sediment			

111-40

The Results of Water Quality Survey (Drainage Channels : 5 Jul. 1999) Table. III.3.11 (1)

6.0E+03 1.0E+04 Coliform 2.6E+04 5.0E+04 7.5E+03 1.6E+04 1.1E+04 1.0E+04 4.9E+03 6.7E+03 2.0E+04 1.15+04 1.3E+03 6.0E+03 6.2E+03 (n/ml (l/gm) Ч-Р Н P04-P (l/am) 15.00 15.90 5.62* 11.70 16.20 11.70 (l/gm) 21.60 15.27* 4.64***** 9.99* 13.05 5.60* 10.05 7.49* 10.35 Z Z-SOZ (l/gm) 4.90 1.80 3.50 1.40 2.70 2.10 20 Z-20Z (I/gm) 0.04 0.09 0.0 20 Z-"HZ 8.50 13.25 13.25 6.00 6.00 7.00 5.25 5.25 5.00 (mg/l) 4.15 5.80 5.30 4.85 7.25 COD_M ( mg/l ) 
 56.1

 52.0

 52.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0

 50.0
 BOD; ( 1/gm ) 15.3 40.7 19.3 12.3 26.3 12.3 76.4 15.3 19.7 4.7 14.8 14.8 14.8 ŝ ( mg/l ) 3090 918 2400 1750 552 552 552 168 168 168 133 133 237 211 154 83.0 90.0 75.0 36.0 SS DO ( mg/l ) 4.2 3.9 3.9 4.4 5.2 3.8 3.8 8.1 8.2 8.3 7.9 8.5 8.3 7.7 7.7 Hd 8.5 8.3 8.4 8.6 8.5 Temp. ( m³/sec.) 0.0002 0.0002 0.046 0.016 0.016 0.031 0.004 0.094 0.109 0.136 0.009 0.006 0.001 Flow 0.047 2,678 3.974 346 .382 8.122 9,418 .382 778 518 .061 86 3.974 .750 5 5 (m³/dav) Flow Sampling 13:10 13:50 14:00 18:45 18:35 18:15 18:00 17:50 13:25 13:35 time 8:34 8:44 8:56 9:10 9:27 Point No. <u>c</u>1 ń 4 Ś 3 m 2 from 13:00 to 14:00 from 8:00 to 9:00 Sampling from 18:00 to 19:00 time

Note * : Inorganic-N (NH₄-N + N0₂-N + N0₃-N )

Table. III.3.11 (2)

The Results of Water Quality Survey (Drainage Channels : 1 Feb. 1999)

time $(m^2/adv)$ $(m^2/dsc)$ $1^{cm/y}$ $(mg/1)$ $($	Sampling	Daine No	Sampling	Flow	Flow	Tame	11	ğ	SS	BOD5	COD _M	N-"HN	N-20N	N- ₂ 0N	InorgN*	P04-P	T-P	Coliform
	time	FUILT NO.		( m ³ /day)		l cmp.	ц	( mg/l )	( mg/l )	( mg/l )	( mg/l )	(mg/l)	(mg/l)	(l/gm)	(mg/l)	(mg/l)	(l/gm)	(   m / u )
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	8:50	86.4		11.2	8.2	Q	132	26.8	14.5	1.05	0.109	2.00	3.16	0.25	0.40	4.5E+02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	from 8:00	7	9:10	121.0	0.0014	13.6	7.5	£	24.0	17.8	17.5	2.90	0.119	0.50	3.52	0.38	0.53	1.2E+03
49:55 $1.641.6$ $0.0190$ $13.6$ $8.3$ ND $31.0$ $27.8$ $29.5$ $11.50$ $0.060$ $2.10$ $13.66$ $0.46$ $0.60$ 5 $10:10$ $1.900.8$ $0.0220$ $15.2$ $7.9$ ND $200$ $130$ $53.5$ $32.25$ $0.084$ $1.80$ $34.13$ $0.69$ $$ 2 $12:50$ $86.4$ $0.0010$ $12.8$ $8.3$ ND $180$ $277$ $77.5$ $7.00$ $0.080$ $1.00$ $8.08$ $0.35$ $0.69$ $$ 2 $12:58$ $34.6$ $0.0004$ $14.8$ $7.4$ ND $28.0$ $8.0$ $11.5$ $0.029$ $120$ $1.61$ $0.19$ $0.65$ 3 $13:25$ $1.468.8$ $0.0170$ $14.9$ $8.4$ $2.5$ $59.0$ $7.8$ $23.5$ $6.13$ $0.027$ $2.144$ $0.52$ $0.71$ 5 $13:25$ $1.468.8$ $0.0170$ $14.9$ $8.4$ $2.5$ $59.0$ $7.8$ $23.5$ $8.63$ $0.077$ $2.144$ $0.52$ $0.73$ 6 $13:33$ $103.7$ $0.0012$ $18.2$ $7.7$ $0.7$ $32.5$ $36.3$ $0.077$ $2.90$ $9.18$ $0.43$ $0.66$ 2 $13:33$ $103.7$ $0.0012$ $18.2$ $7.7$ $0.7$ $32.6$ $36.3$ $0.077$ $2.90$ $9.18$ $0.61$ $0.76$ 2 $18:47$ $17.0$ $0.0002$ $12.5$ $8.3$ $176$ $3.017$ $17.4$ $0.52$ $0.77$	to 9:00	3	9:40	86.4	0.0010	14.0	8.0	3.5	296	49.6	47.5	13.88	0.096	3.20	17.18	0.54	0.61	1.1E+03
		4	9:55	1.641.6		13.6	8.3	Ð	31.0	27.8	29.5	11.50	0.060	2.10	13.66	0.46	0.60	9.0E+02
		5	10:10	1.900.8		15.2	7.9	QN	200	130	53.5	32.25	0.084	1.80	34.13	0.69	-	1.3E+03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	12:50	86.4	1	12.8	8.3	Ð	180	277	77.5	7.00	0.080	1.00	8.08	0.35	0.62	7.0E+02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	from 13:00	2	12:58	34.6		14.8	7.4	2	28.0	8.0	11.5	0.38	0.029	1.20	1.61	0.19	0.53	1.0E+03
413:251.468.80.017014.98.42.559.07.823.58.630.0772.5011.210.430.64513:33103.70.001218.27.70.754.039.033.519.630.1071.7021.440.520.73118:4717.00.000212.28.34.317655.032.04.630.0504.509.180.410.65218:1186.40.001012.67.72.271.036.349.530.130.1534.2034.480.610.77318:1186.40.001012.58.03.574.017128.07.000.0903.4010.490.43-417:49259.20.003012.38.23.453.010.750.1393.1010.490.45517:3825.90.003314.87.62.994.05.041.56.500.2303.8010.530.440.53	to 14:00	ß	13:05	2.419.2		13.8	8.0	3.4	108	43.3	25.5	6.13	0.046	2.90	9.08	0.41	0.76	9.9E+02
5         13:33         103.7         0.0012         18.2         7.7         0.7         54.0         39.0         33.5         19.63         0.107         1.70         21.44         0.52         0.73           1         18:47         17.0         0.0002         12.2         8.3         4.3         176         55.0         32.0         4.63         0.050         4.50         9.18         0.41         0.65         0.65           2         18:13         86.4         0.0010         12.6         7.7         2.2         71.0         36.3         49.5         30.13         0.153         4.20         3.48         0.61         0.77           3         18:11         86.4         0.0010         12.6         7.7         2.2         71.0         36.3         49.5         30.13         0.153         4.20         3.48         0.61         0.77           3         18:11         86.4         0.0010         12.5         8.0         3.5         740         10.75         0.13         7.60         3.40         10.49         0.45         -7           4         17:49         2592         0.0033         12.8         7.6         24.0         50.1		4	13:25	1.468.8		14.9	8.4	2.5	59.0	7.8	23.5	8.63	0.077	2.50	11.21	0.43	0.64	7.6E+02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	13:33	103.7		18.2	7.7	0.7	54.0	39.0	33.5	19.63	0.107	1.70	21.44	0.52	0.73	2.7E+03
2       18:33       86.4       0.0010       12.6       7.7       2.2       71.0       36.3       49.5       30.13       0.153       4.20       34.48       0.61       0.77       17.1         3       18:11       86.4       0.0010       12.5       8.0       3.5       74.0       17.1       28.0       7.00       0.090       3.40       10.49       0.43       -       1         4       17.49       259.2       0.0030       12.3       8.2       3.4       53.0       24.0       33.0       10.75       0.139       3.10       10.49       0.43       -       1         5       17:38       25.9       0.0003       14.8       7.6       2.9       94.0       5.0       41.5       6.50       0.230       3.80       10.53       0.44       0.53       6.53       6.50       6.50       5.0       10.53       0.44       0.53       6.53       6.50       5.0       5.0       10.53       5.44       0.53       6.54       0.53       6.54       0.53       6.54       0.53       6.54       0.53       6.54       0.53       6.54       0.53       6.54       0.53       6.54       0.53       6.54       0.53 <td></td> <td>-</td> <td>18:47</td> <td>17.0</td> <td></td> <td>12.2</td> <td>8.3</td> <td>4.3</td> <td>176</td> <td>55.0</td> <td>32.0</td> <td>4.63</td> <td>0.050</td> <td>4.50</td> <td>9.18</td> <td>0.41</td> <td>0.65</td> <td>1.5E+03</td>		-	18:47	17.0		12.2	8.3	4.3	176	55.0	32.0	4.63	0.050	4.50	9.18	0.41	0.65	1.5E+03
3       18:11       86.4       0.0010       12.5       8.0       3.5       74.0       17.1       28.0       7.00       0.090       3.40       10.49       0.43       -       1         4       17:49       259.2       0.0030       12.3       8.2       3.4       53.0       24.0       33.0       10.75       0.139       3.10       13.99       0.41       0.46       1         5       17:38       25.9       0.0003       14.8       7.6       2.9       94.0       5.0       41.5       6.50       0.230       3.80       10.53       0.44       0.53       6.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44       0.53       6.44<	from 18:00	7	18:33	86.4		12.6	7.7	2.2	71.0	36.3	49.5	30.13	0.153	4.20	34.48	0.61	0.77	1.0E+03
259.2         0.0030         12.3         8.2         3.4         53.0         24.0         33.0         10.75         0.139         3.10         13.99         0.41           25.9         0.0003         14.8         7.6         2.9         94.0         5.0         41.5         6.50         0.230         3.80         10.53         0.44	to 19:00	ŝ	18:11	86,4		12.5	8.0	3.5	74.0	17.1	28.0	7.00	0;090	3.40	10.49	0.43	•	1.2E+03
25.9 0.0003 14.8 7.6 2.9 94.0 5.0 41.5 6.50 0.230 3.80 10.53 0.44		4	17:49	259.2		12.3	8.2	3.4	53.0	24.0	33.0	10.75	0.139	3.10	13.99	0.41	0.46	8.0E+02
		S	17:38	25.9	0.0003	14.8	7.6	2.9	94.0	5.0	41.5	6.50	0.230	3.80	10.53	0.44	0.53	6.4E+02

Note * : Inorganic-N (NH4-N + N02-N + N03-N)

()

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1					1.7	4 4 4	ç t	
time $(m^3/dav)$ $(m^3/sec.)$ $toup.$ $prr.$ (           10:40         9.590.4         0.111         13.0         8.1         (           10:51         1.468.8         0.017         13.2         7.9         (           10:51         1.468.8         0.017         13.2         7.9         (         (           10:51         1.468.8         0.007         13.2         7.9         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (         (	Sampling	Detervior		Flow	Flow	, t	) 1	8	SS	BOD	CODMa	Z-"HZ	Z-20Z	Z-soz	InorgN*	P04-P	- -	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	time	FOIDT NO.		(m ³ /dav)		r curb.	цd	( mg/l )	( mg/l )	( mg/l )	( mg/l )	(mg/l)	(mg/l)	(mg/l)	(l/gm)	(I/gm)	(l/gm)	[m/ m]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	10:40	9.590.4	0.111	13.0	8.1	44	490	10.1	22.0	9.35	0.130	2.70	12.18	0.258	0.314	4.4E+02
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	from 8:00	5	10:51	1.468.8	1	13.2	7.9	3.5	103	36.3	31.0	6.20	0.220	3.10	9.52	0.536	1.600	6.3E+02
4 $10:10$ $0.9$ $0.0001$ $11.6$ $8.2$ 5 $9:55$ $8.812.8$ $0.102$ $12.5$ $8.1$ 7 $1$ $13:45$ $7.344.0$ $0.085$ $20.1$ $7.7$ 2 $13:51$ $1.814.4$ $0.021$ $14.6$ $7.8$ 3 $14:10$ $2.160.0$ $0.025$ $14.1$ $7.9$ 4 $14:24$ $2.6$ $0.00003$ $16.0$ $7.9$ 5 $14:30$ $1.296.0$ $0.015$ $-7.7$ $7.7$ 5 $14:30$ $1.296.0$ $0.015$ $-7.7$ $7.7$ 1 $17:30$ $7.084.8$ $0.082$ $16.0$ $7.8$ 2 $17:30$ $7.084.8$ $0.082$ $16.0$ $7.8$ 2 $17:23$ $950.4$ $0.011$ $14.0$ $8.1$ 3 $17:12$ $1.382.4$ $0.016$ $13.6$ $-7.6$ 4 $16.59$ $1.7$ $0.000$ $13.6$ $-7.6$ $-7.6$	to 9:00	3	10:25	3,196.8		12.0	8.0	4.0	1.992	49.8	34.0	2.90	0.320	5.00	8.22	0.560	1.540	6.0E+02
5         9:55         8.812.8         0.102         12.5         8.1           1         13:45         7.344.0         0.085         20.1         7.7           2         13:51         1.814.4         0.021         14.6         7.8           3         14:10         2.160.0         0.025         14.1         7.9           4         14:24         2.6         0.0003         16.0         7.9           5         14:30         1.296.0         0.015         -         7.7           5         14:30         1.296.0         0.015         -         7.7           6         17:30         7.084.8         0.082         16.0         7.8           1         17:30         7.034.8         0.082         16.0         7.8           1         17:32         950.4         0.011         14.0         8.1           3         17.12         1.382.4         0.016         13.0         8.1           6         0.000         13.6         -         -         7.7		4	10:10	0.9		11.6	8.2	4.9	876	37.1	24.0	3.95	0.320	3.50	7.77	0.742	1.242	4.2E+03
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	9:55	8.812.8	ļ	12.5	8.1	6.3	828	34.8	31.5	7.05	0.320	2.60	9.97	0.907	1.746	2.9E+03
Z         13:51         1.814.4         0.021         14.6         7.8           3         14:10         2.160.0         0.025         14.1         7.9           4         14:24         2.6         0.00003         16.0         7.9           5         14:30         1.296.0         0.015         -         7.7           1         17:30         7.084.8         0.015         -         7.7           2         14:30         1.296.0         0.015         -         7.7           3         17:12         1.382.4         0.016         13.0         8.1           3         17:12         1.382.4         0.016         13.0         8.1           4         16:59         1.7         0.000         13.6         -		-	13:45	7,344.0			7.7	4.4	227	36.8	31.0	12.05	0.190	4.20	16.44	0.477	0.734	5.6E+02
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	from 13:00	2	13:51	1.814.4		i	7.8	2.2	131	50.0	52.0	10.15	0.340	3.90	14.39	1.096	2.274	4.5E+03
4         14:24         2.6         0.0003         16.0         7.9           5         14:30         1.296.0         0.015         -         7.7           1         17:30         7.084.8         0.082         16.0         7.9           2         17:23         950.4         0.011         14.0         8.1           3         17:12         1.382.4         0.016         13.0         8.1           4         16:59         1.7         0.000         13.6         -	to 14:00	3	14:10	2,160.0	Ī	Į	7.9	3.4	146	36.4	23.0	3.25	0.310	4.50	8.06	0.807	1.554	1.1E+03
5         14:30         1.296.0         0.015         -         7.7           1         17:30         7.034.3         0.082         16.0         7.8           2         17:23         950.4         0.011         14.0         8.1           3         17:12         1.382.4         0.016         13.0         8.1           4         16:59         1.7         0.000         13.6         -		4	14:24	2.6			7.9	3.1	70	36.9	25.0	3.65	0.310	3.20	7.16	0.735	2.336	2.0E+03
1         17:30         7.084.8         0.082         16.0         7.8           2         17:23         950.4         0.011         14.0         8.1           3         17:12         1.382.4         0.016         13.0         8.1           4         16:59         1.7         0.000         13.6         -	-	5	14:30	1,296.0	1		7.7	-	75	75.8	57.0	10.65	0.320	2.00	12.97	1.398	2.516	2.8E+03
2         17:23         950.4         0.011         14.0         8.1           3         17:12         1.382.4         0.016         13.0         8.1           4         16:59         1.7         0.000         13.6         -	• •		17:30	7,084.8			7.8	3.7	52 .	36.1	21.8	2:22	0.160	4.10	6.48	0.656		6.1E+02
3         17:12         1.382.4         0.016         13.0         8.1           4         16:59         1.7         0.000         13.6         -	from 18:00	2	17:23	950.4		1	8.1	3.4	65	44.3	33.0	7.45	0.250	3.40	- 11.10	1.029	2.322	1.2E+03
4 16:59 1.7 0.000 13.6 -	to 19:00	3	17:12	1,382.4		13.0	8.1	3.4	1.275	35.8	23.5	3.25	0.260	4.20	7.71	0.898	2.128	7.8E+02
		4	16:59	2.1.2	0.000	13.6	•	3.4	35	56.8	60.0	3.35	0.330	3.20	6.88	0.810	1.644	3.0E+03
CCN'N 1711007 1		5	16:49	2.851.2	0.033	15.2	•	3.3	169	11.8	40.0	13.50	0.240	2.50	16.24	1.574	3.056	4.7E+03

The Results of Water Quality Survey (Drainage Channels : 15 Feb. 1999) Table. III.3.11 (3)

)

Note **: Inorganic-N (NH4-N + N02-N + N03-N)

III-43

The Results of Water Quality Survey (Drainage Channels : 14 Jul. 1999) Table. III.3.11 (4)

Coliform 5.5E+02 4.2E+02 2.4E+02 1.4E+02 L.SE+02 3.6E+02 7.5E+02 2.0E+00 ( m/ m] ) 2.0E+02 5.1E+02 7.2E+02 3.2E+02 L. IE+02 6.3E+02 5.2E+01 5.3E+0] 7.8E+02 g (l/gm) 0.38 2.06 8.20 7.30 5.19 0.28 6.38 5.45 1.77 0.07 7.34 6.85 2.52 3.58 <u>т</u>-р 0.05 1.41 7.01 0.11 P04-P (l/am) 8.53 3.64 6.83 4.29 7.45 3.13 1.10 0.24 9.03 6.52 0.05 2.72 5.67 7.00 0.02 3.53 2.87 121.00 109.00 116.00 (l/gm) 52.00 27.00 94.00 28.00 Z 24.00 7.00 7.00 60.00 29.00 5.00 24.00 24.00 17.00 22.00 6.00 *N-20N (I/gm) 0.30 1.40 0.60 0.10 0.80 1.80 2.20 0.60 0.90 0.10 0.90 8.1 1.80 0.30 0.80 8.0 *X-"0X (I/2m) 0.24 0.20 0.03 0.03 0.02 0.25 0.49 0.04 0.02 0.10 0.42 0.01 0.03 0.01 0.41 0.01 N- HN (i/g/l) 14.58 24.13 27.00 29.38 12.15 24.13 12.42 0.18 21.88 12.67 16.58 11.87 11:13 15.88 9.00 10.88 0.37 CODM ( mg/l ) 35.9 70.6 50.2 132 31.8 17.5 73.9 37.4 29.8 43.2 37.4 66.4 31.9 43.4 30.0 22.3 41.3 33.8 BOD, ( mg/l ) 82.0 42.8 3.7 130 14.7 22.5 33.5 51.9 55.3 19.7 22.5 20.7 45.1 165 7.8 3.6 9.7 8.7 SS (mg/l) 96.7 22.3 30.0 13.9 35.3 126 82.0 304 61.3 45.0 71.0 530 59.0 52.2 36.6 11.0 22.1 129 DO ( mg/l ) Hd Temp. Flow (L/sec.) ( m³/day) Flow Sampling time • Sampling Point No. **M** Ы 4 4 4 6 v 'n from 8:00 to 9:00 from 18:00 to 19:00 rom 13:0d to 14:00 time

Note * : These parameters were measured by HACH.

The Results of Water Quality Survey (Drainage Channels : 11 Aug. 1999) Table. III.3.11 (5)

D

								,		<u>.</u>	•					<u> </u>			
Coliform	( lm / u )	3.0E+05	2.4E+06	1.2E+06	9.4E+05	2.26+07	4.0E+02	3.0E+05	2.9E+06	4.0E+05	1.1E+06	8.0E+03	4.0E+02	2.8E+05	8.8E+05	2.8E+05	8.5E+05	8.5E+04	1.1E+03
Ч-Г	(I/gm)	3.58	6.51	3.12	4.81	11.18	-	4.89	3.32	6.41	4.27	13.55	Ð	7.89	10.33	16.76	4.81	3.58	Ð
P04-P	(mg/l)	4.16	8.4]	4.89	8.55	9.89	•	8.96	6.33	5.84	3.70	4.23	-	6.83	7.11	5.45	3.87	4.36	ĝ
Z-F	(mg/l)	17.20	30.01	7.05	60.45	7.53	0.66	14.78	20.91	5.40	50.60	6.18	0.51	18.70	7.54	7.08	4.52	3.33	0.84
No ₂ -N	(mg/l)	0.30	1.10	0.90	1.10	0.60	0.10	1.80	0.70	0.80	1.20	0.90	0.10	0.10	0.60	0.40	0.30	0.10	0.50
No	(l/gm)	0.02	0.04	0.11	0.31	0.03	0.00	0.64	0.02	0.19	0.03	0.23	0.00	0.14	0.04	0.08	0.02	0.00	0.05
Z-"HN	(mg/l)	37.13	72.64	17.36	212.56	23.74	0.44	17.36	27.15	32.47	58.08	22.70	0.42	31.05	28.39	33.95	28.39	18.98	0.48
COD _{Min}	( mg/l )	43.4	5.4	11.4	129.4	19.4	15.4	27.4	43.4	27.4	49.4	33.4.	27.4	67.4	47.4	23.4	33.4	25.4	9.4
BOD,	( mg/l )	104	21.2	53.0	422	35.6		39.4	813	38.7	150	27.0	36.0	262	89.9	38.5	45.2	36.7	7.3
SS	( mg/l )	32	130	27	288	20	12 -	19.	55	20	36	38	10	72	48	22	23	22	19
g	( mg/l )	3.1	1.4	3.8	0.4	0.0	5.0	3.1	1.7	3.8	0.2	0.0	5.6	1.4	1.5	1.7	0.9	1.6	4.1
;	Hd	8.4	8.5	8.4	8.7	9.0	7.1	8.4	8.3	8.7	8.1	8.8	9.0	8.1	8.3	8.4	8.2	8.3	8.7
	Temp.		11.1	10.7	12.8	9.8	11.4	18.8	14.8	16.2	21.5	13.0	20.0	8.6	10.5	10.0	0.4	-9.3	11.1
Flow	(L/sec.)	0.3	4.5	7.0	25.3	3.0	0.8		1	1	1	Į.,	0.04		5.0	9.0	0.8	1.5	4.0
Flow	( m³/dav)	25.9	388.8	604.8	2 185.9	259.2	69.1	25.9	518.4	691.2	17.3	6912.0	3.5	8.6	432.0	777.6	69.1	129.6	345.6
Samoline	time	8:00	8.18	8:28	8:35	8:51	00.6	12:05	12:18	12:24	12:35	12:40	12:50	17:53	18:00	18:08	18:13	18:38	18:25
	Point No.	-	2	5	4	5	9		2	3	4	5	6		2	ω	4	5	9
Samiling			from 8:00	to 9-00	2				from 12:00	to 13:00					from 18:00	to 19:00			

Note * : Inorganic-N ( NH4-N + N02-N + N03-N )

r e la station qui

. .

1999)
4 Aug.
ų.
Channels :
(Drainage Chanr
eV.
ty Survey
uali
Š
of Water Q
of
The Results o
The ]
· .
٩
[able. III.3.11 (
<b>.</b> "

Coliform	(lm/n)	ę	4.2E+02	8.0E+01	2.75+03	4.0E+01	1	5.6E+03	3.6E+03	2.1E+03	ę	ę		2.0E+03	4.48+04	2.0E+03	ę	3.0E+03	ß
q-T	(1/gm)	1	1	1	•	-	ł	1	1	,	•	-			-	1	1		
P04-P	(mg/l)	,	1	1	1		1	,	1	1	)	1	-	,		}	1	-	
N L	(mg/l)	57.00	56.00	20.00	68.00	48.00	1	275.00	23.00	25.00	15.00	25.00		120.00	27.00	26.00	10.00	21.00	4,00
N-fon	(mg/l)	1.80	2.10	2.00	2.80	1.60	•	11.00	1.20	1.00	2.70	2.10	,	6.50	0.00	0.80	0.90	1.50	0.70
N02-N	(mg/l)	0.020	0.300	0.320	1.210	0.060	T	0.500	0.020	0.040	. 0.630	0.400		0.260	0.030	0.010	0.020	0.230	0.010
N-"HN	(mg/l)	50.50	45.50	19.75	50.25	19.25	•	75.00	19.50	23.35	9.25	19.50	-	34.00	28.75	24.75	11.25	20.00	0.06
COD	( mg/l )	44.8	69.1	44.8	77.2	61.0	•	164.0	36.8	38.8	32.7	40.8	-	147.9	38.8	34.7	26.7	28.7	20.6
BOD;	( 1/gm )_	77.6	136.3	77.4	125.5	17.6	Ŧ	652.0	47.7	29.7	9.2	28.2	-	494.6	23.3	88.1	28.3	5.5	ĝ
SS	( mg/l )	130	87	36	66	41	•	740	87	22	23	35	-	134	83	36 {	96	26	61
ጸ	( l/gm )	3.2	1.3	3.3	2.2	0.0	0.0	4.6	1.9	4.0	4.4	6.5	0.0	5.1	2.1	3.1	1.9	3.5	5.3
1	bur Lind	7.9	8.1	8.0	8.0	8.3	•	8.0	7.7	8.2	8.1	8.6	-	8.0	7.8	8.2	7.7	8.3	8.4
T	r cmp.	7.4	11.1	10.4	12.3	8,2	•	15.6	14.7	15.7	21.2	20.6	•	11.1	11.0	12.5	13.6	12.8	12.3
Flow	( L/sec.)	1.5	9.0	10.0	2.0	1.5	•	3.0	7.0	8.0	1.0	5.0	-	3.0	5.0	1.0	0.5	1.5	10.0
Flow	(m ³ /dav)	129.6	777.6	864.0	172.8	129.6	•	259.2	604.8	691.2	86.4	432.0		259.2	432.0	86.4	43.2	129.6	864.0
Sampling	time	8:25	8:34	8:44	8:53	9:43	•	12:29	12:38	12:44	12:49	13:14	•	16:10	16:18	16:28	16:33	17:04	16:45
Daint No.	L'OULL INO.	1	2	ε	4	5	6	1	2	m	4	5	6		2	ε	4	5	6
Sampling	time		from 8:00	to 9:00					from 13:00	to 14:00					from 18:00	to 19:00			

					·	unit : mg/l
Channel	Rainy / Dry Season	Flow (m3/day)	SS (mg/l)	BOD ₅ (mg/l)	T-N (mg/l)	T-P (mg/l)
Llavini	Rainy season 1)	3,583	631	28	8.8	0.5
	Dry season 2)	118	188	272	128.5	-
Floral	Rainy season	2,006	1,568	31	11.7	0.5
	Dry season	526	82	67	40.3	4.5
Carabaya	Rainy season	2,327	857	15	12.4	0.1
	Dry season	619	27	54	40.0	4.6
Ricardo Palma	Rainy season	965	168	12	16.6	2.1
Ricardo Palma	Dry season	429	94	130	24.2	3.4
Average	Rainy season		852	24	11.2	0.6
Ricardo Palma	Dry season	_	124	166	42.3	3.4

#### Table. III.3.12

9

Average Water Quality in the Channels

note: 1) Average of 3 surveys in the rainy season

2) Average of 2 surveys in the dry season

Table. III.3.13 (1)

The Estimation of Discharged Pollution Load From Drainage Channels (Rainy Season)

•	Т-Р	L (ka/dav)	     	5 0.0	0 3.7	3 1.8	18%	-	1 0.0	7 2.7	4 1.3	13%	-	59 0.7	4 3.7	7 2.2	21%		7 0.7	4 0.0	5 0.3	3%	+	3 0.0	6 9.0	9 4.5	44%	•	1.3	19.0	0 10.2	1	1.3	16.3	
		c (mg/l)		0.55	0.50	0.53		•	0.61	2.07	1.34	•	•	0.5	1.74	1.17	•		0.57	1.74	1.15	•	-	0.53		1.79		•		•	1.20	•	•	•	
D	Z	L (kg/dav)	74.3	0.3	19.3	31.3	26%	55.3	2.0	13.3	23.6	19%	43.0	13.7	13.7	23.4	19%	74.3	12.0	0:0	28.8	25%	0.0	0.0	48.0	16.0	13%	247.0	28.0	94.3	123.1	191.7	26.0	81.0	
	N-1	C (mg/l)	38.85	4.45	2.45	15.25		52.73	23.15	9.30	28.39	•	12.80	15.47	5.65	15.11		11.30	13.80	4.65	9.92	-	10.35	01.11	16.95	12:80	-	•			15.53		1	•	
	۰. ۱	L (kø/dav)	88.3	9.0	207.7	101.7	41%	40.0	1.7	62:0	34.6	14%	55.7	36.7	95.7	.62.7	26%	85.0	21.0	1.7	35.9	15%	0.0	0.0	34.0	11.3	5%	269.0	68.3	401.0	246.1	229.0	66.7	339.0	
4	BOD.	C (me/l)	49.6	119.4	27.7	65.6	ł	43.7	20.7	43.5	36.0	•	19.9	36.7	40.7	32.4	-	15.6	19.9	43.6	26.4	-	18.0	5.0	11.8	11.6		-		•	34.4		••••	-	
		L (kæ/dav)	4,471	10	2.299	2,260	29%	476	3	150	210	3%	6,523	-86	2,815	3.145	41%	5,914	51	22	1,995	26%	1	2	482	162	2%	17,385	164	5,768	7,772	16,908	160	5,618	
	SS	c (m¢/l)	1.255	163	264	560	•	390	41	100	177		874	159	1,138	724	•	687	48	327	354		36	94	169	100	•	-		•	805	•		•	
	×	Q ( m3/dav )	2.678	63	8,006	3.583	37%	835	81	1,411	776	8%	2,909	864	2,246	2,006	21%	5.818	1.123	40	2,327	24%	17	26	2,851	965	10%	12,257	2,157	14,555	9.656	11.422	2,076	13.144	
	Flow	Q ( m3/sec )	0.0310	0.0007	0.0927	0.0415	3.7%	0.0097]	0.0009	0.0163	0.0090	8%	0.0337	0.0100	0.0260	0.0232	21%	0.0673	0.0130	0.0005	0.0269	24%	0.0002	0.0003	0.0330	0.0112	10%	0.1419	0.0250	0.1685	0.1118	0.1322	0.0240	0.1521	
	·d	Date	26 Jan. '99	1 Feb. '99'	15 Feb. '99	Average	Share (%)	26 Jan. '99	1 Feb. '99	15 Feb. '99	Average	Share (%)	26 Jan. '99	I Feb. '99	15 Feb. '99	Average	Share (%)	26.Jan. '99	1 Feb. '99	15 Feb. '99	Average	Share (%)	26 Jan. '99	1 Feb. '99	15 Feb. '99	Average	Share (%)	26 Jan. '99	1 Feb. '99	15 Feb. '99	Average	26 Jan. '99	1 Feb '99	15 Feb. '99'	
		Point No.		• 					1					м		2			4					<u>د</u>					Total				Total	( except	

C

The Estimation of Discharged Pollution Load From Drainage Channels (Dry Season) Table. III.3.13 (2)

ġ

)

-								ľ		ł	
	 - - -	5	Flow		SS	ň	BUD5	1	- N-T		
;	L	ø	ď	O	7	U U	Ч	U	4	U J	, <b>,</b>
Foint No.	Date	( L/sec )	( yab/Ear )	(mg/l)	(kg/day):	(mg/l)	(kg/day)	(Ilgm)	(kg/day)	([/3m)	(kg/day)
	11 Aug. '99	0.23	20.1	41.0	0.7	135	2.0	106.3	2.00	S.77	0.0
	24 Aug. '99	2.50	216.0	335	81.3	408	102.3	150.7	36.33	;	2
	Average	1.37	118.1	188	41.0	. 272	52.2	128.5	19.17	5.77	0.00
	Share (%)	3%	3%		12%	•	12%		14%	ł	%0
	11 Aug. '99	5.17	446.4	77.7	1 33.7	64.1	29.7	45.33	20.33	4.50	2.00
- -	24 Aug. '99	2.00	604.8	85.7	52.3	69.0	48.3	35.33	23.33	•	· ·
•	Average	6.08	525.6	81.7	43.0	66.6	39.0	40.33	21.83	4.50	2.00
-	Share (%)	12%	12%		12%	•	9%	1	16%	•	11%
	11 Aug. '99	8.00	691.2	23.0	15.7	43.4	29.7	56.33	39.33	4.62	3.33
4	24 Aug. '99	6.33	547.2	31.3	16.3	65.1	32.0	23.67	12.00	•	
	Average	71.7	619.2	27.2	16.0	54.2	30.8	40.00	25.67	4.62	3,33
	Share (%)	14%	14%	•	5%		2%	-	19%	•	19%
	11 Aug. '99	8.77	757.4	116	211.0	206	309.3	17.33	5.33	3.40	0.33
- - -	24 Aue. '99	1.17	100.8	72.7	7.7	54.5	8.0	31.00	4.33	•	•
	Average	4.97	429.1	94.2	109.3	130	158.7	24.17	4,83	3.40	0.33
-	Share (%)	10%	10%	•	31%	•	36%	-	4%	•	2%
	11 Aue. '99	28.17	2,433.6	26.7	003	33.1	67.0	26.00	70.0	3.61	12.33
9	24 Aug. '99	2.67	230.4	34.0	7.7	17.1	5.0	31.33	6.67	-	•
	Average	15.42	1.332.0	30.3	49.0	25.1	36.0	28.67	38.33	3.61	12.33
	Share (%)	31%	31%	1	14%	•	8%	•	28%	•	69%
Total	11 Aug. '99	50.33	4.348.8	-	351.3	8	437.7	•	137.00	-	18.00
	24 Aug. '99		1,699.2	1	165.3		195.7	-	82.67	-	ł
	Average	35.00	3.024.0	85.4	258.3	105	316.7	36.32	109.83	5.95	18.00
Total	11 Aug. '99	22.17	1.915.2	•	261.0	•	370.7	•	67.00	ł	5.67
(except	24 Aug. '99	17.00	1,468.8		157.7	•	190.7	•	76.00	•	•
No.6)		19.58	1,692.0	124	209.3	166	280.7	42.26	71.50	3.35	5.67
					-						

#### Table. III.3.14

Discharged Pollution Load into the Lake through Major Channels

()

						unit : kg/day
Channel	Rainy / Dry Season	Flow (m3/day)	SS	BODs	T-N	T-P
Llavini	Rainy season 1)	3,583	2,260	102	31.3	1.8
	Dry season 2)	118	41	52	19.2	0.0
Jorge Basadre	Rainy season	(778)	(210)	(35)	(23.6)	(1.3)
	Dry season	_		-		
Floral	Rainy season	2,006	3,145	63	23.4	2.2
	Dry season	526	43	39	21.8	2.0
Carabaya	Rainy season	2,327	1,995	36	28.8	0.3
	Dry season	619	16	31	25.7	3.3
Ricardo Palma	Rainy season	965	162	11	16.0	4.5
	Dry season	429	109	159	4.8	0.3
Chanu chanu	Rainy season		•	-	•	<b>_</b>
	Dry season	(2434)	88	67	66.3	12.3
Average	Rainy season	8,881	7,562	212	99.6	8.8
	Dry season	1,692	209	281	71.5	5.7
Rainy seasor	/Dry season 3)	5.2	36.1	0.8	1.4	1.6

note: 1) Average of 3 surveys in the rainy season.

2) Average of 2 surveys in the dry season.

3) except Jorge Basadre and Chanuchanu.

#### Table. III.3.15

## The Results of Water Quality Survey (Espinar Sewerage Treatment Plant)

				( 17-19 Feb. 1999
	<u></u>	Water Quality of Dis	charged wastewater	
Items	17 Feb.'99	18 Feb.'99	19 Feb.'99	Average
Flow (m3/sec.)	22,234	24,941	36,403	27,859
Temperature	16.3	14.0	17.1	15.8
pH	7.8	7.7	8.7	8.1
DO (mg/l)	3.1	0.4	4.7	2.7
SS (mg/l)	463	231	365	353
BOD ₅ (mg/l)	128	266	63	152
COD _{Mn} (mg/l)	87	50	70	69
NH ₄ -N (mg/l)	2.20	2.40	2.42	2.34
$N0_2$ -N (mg/l)	4.68	4.05	4.03	4.25
$N0_3-N (mg/l)$	32.1	32.6	26.7	30.47
InorgN* (mg/l)	38.98	39.05	33.15	37.06
$P0_4$ -P (mg/l)	1.01	0.46	0.66	0.71
T-P (mg/l)	3.70	3.71	3.33	3.58
Coliform (n/ml)	5.5E+03	8.0E+02	1.6E+03	2.6.E+03

( 14, 22-23 Jul. 1999 )

		Water Quality of Di	scharged wastewater	
Items	25 May '99**	16 Jun. '99**	22 Jul.'99	Average
Flow (m3/sec.)	÷	•	8,274	-
Temperature	12.4	10.0	-	
pН	7.9	8.0		
DO (mg/l)	4.5	6.8	1.9	•
SS (mg/1)		-	194	
BOD, (mg/l)	173	81.0	183	-
COD _{Mn} (mg/l)			75	-
NH ₄ -N (mg/l)	5.92	3.43	4.15	-
N02-N (mg/l)	3.12	2.31	0.07	
N0 ₃ -N (mg/l)	4.85	3.0	0.40	-
T-N (mg/l)	13.99*	8.74*	36.61	-
P0 ₄ -P (mg/l)	-		0.72	-
T-P (mg/l)	1.96	-	3.51	-
Coliform (n/ml)	-	- 148 - <b>-</b> 148	6.0E+01	l

Note * : Inorganic-N ** : for reference data

Table. III 3.16

The Share of Discharged Pollution Load in The Puno Interior Bay

		Flow		Dis	charged Polluti	Discharged Pollution Load (kg/day	sy )	
	Date	( m3/day )	SS	BODS	T-N	Inorganic-N	P04-P	T-P
Sewerage	17.Feb.'99	22,234	10,294	2,846	-	867	23.0	82.0
Treatment	18.Feb.'99	24,941	5,761	6,634		974	11.0	92.0
Plant	19.Feb.'99	36,403	13,287	2,293	•	1.207	24.0	121.0
	Average	27,859	9,781	3,924		1.016	19.3	- 98.3
	Share (%)	74%	56%	94%		%06	77%	%16
Drainage	26 Jan.'99	16,168	19.547	372	1	154	•••••	•
Channel	1 Feb. 99	2,808	- 291	1.52	1	46	1.3	1.7
	15 Feb.'99	16,024	7,912	513		180	11.3	19.0
	Average	9.656	7,772	246		110	5.8	10.2
	Share (%)	26%	44%		•	10%	23%	%6
Total	Total ( average )	37.516	17.553	4.170	•	1.126	25.1	108.5

Ū.	(Dry Season)							
		Flow		Dis	charged Polluti	Discharged Pollution Load (kg/day	ay )	
	Date	(m3/day)	SS	BODS	N-T	Inorganic-N	P04-P	T-P
Sewerage Treatment	18.Feb '99	8,274	1,605	1,514	302.9	•	6.0	29.0
Plant								
	Share (%)	73%	86%	83%	73%	E	30%	62%
Drainage	11 Aug '99	4,349	351	. 138	137.0		14.3	18.0
Channel	24 Aug.'99	1,699	165		82.7			
	Average	3,024	258 **	<b>317</b>	109.8		14.3	0.81
tion at the second of the	Share (%)	27%	14%	E17%	27%		71%	38%
Total	Total (average)	11,298	1,863	1,831	412.7	-	20.3	47.0

Table. III 3.17

Þ

#### Estimation of Existed Pollution Load in Puno Interior Bay

	1 (C)	tate de t		1 A.	1	
		Western lake area	Northern lake area	Southern lake area	Eastern lake area	Total
Lake Volume 1)	(x1000m3)	8,556	6,253	3,032	2,997	20,838
and the second	BOD	18.1	16.8	20.4	9.90	-
	T-N	2.85	1.14	2.95	1.22	-
	T-P	0.36	0.26	0.72	0.24	-
Existed pollution load 3)	BOD	154,867	105,047	61,847	29,674	351,435
(kg)	T-N	24,385	7,128	8,944	3,657	44,114
	TP	3,080	1,626	2,183	719	7,608
Lake Volume 1)	(x1000m3)	8,556	6,253	3,032	2,997	20,838
Average water quality 2)	BOD	20.3	10.8	35.7	13.10	-
	T-N	5.22	4.66	8.85	4.22	
	T-P	0.97	1.15	2.78	0.64	-
Existed pollution load 3)	BOD	173,691	67,530	108,232	39,266	388,719
(kg)	TN	44,663	29,138	26,831	12,649	113,281
	T-P	8,300	7,191	8,428	1,918	25,837
	(kg) Lake Volume 1) Average water quality 2)	Lake Volume 1)(x1000m3)Average water quality 2)BODT-NT-NExisted pollution load 3)BOD(kg)T-NT-PItem (kg)Lake Volume 1)(x1000m3)Average water quality 2)BODT-NT-NT-PItem (kg)Existed pollution load 3)BOD(kg)T-NT-PItem (kg)Existed pollution load 3)BOD(kg)T-N	Western lake area           Lake Volume 1)         (x1000m3)           Average water quality 2)         BOD           Average water quality 2)         BOD           T-N         2.85           T-P         0.36           Existed pollution load 3)         BOD           (kg)         T-N           24,385           T-P         3,080           Lake Volume 1)         (x1000m3)           (kg)         T-N           5.56           Average water quality 2)         BOD           20.3         T-N           5.22         T-P           0.97         Existed pollution load 3)           BOD         173,691           (kg)         T-N	Western         Northern           lake area         lake area           Lake Volume 1)         (x1000m3)           Average water quality 2)         BOD           BOD         18.1           T-N         2.85           T-P         0.36           0.266           Existed pollution load 3)         BOD           (kg)         T-N           24,385         7,128           T-P         3,080           1,626           Lake Volume 1)         (x1000m3)           (kg)         T-N           20.3         10.8           T-N         5.22           Average water quality 2)         BOD           20.3         10.8           T-N         5.22           Average water quality 2)         BOD           BOD         20.3           Average water quality 2)         BOD           T-N         5.22           4.66           T-P         0.97           1.15           Existed pollution load 3)         BOD           (kg)         T-N           44,663         29,138	Western         Northern         Southern           lake area         lake area         lake area         lake area           Lake Volume 1)         (x1000m3)         8,556         6,253         3,032           Average water quality 2)         BOD         18.1         16.8         20.4           T-N         2.85         1.14         2.95           T-P         0.36         0.26         0.72           Existed pollution load 3)         BOD         154,867         105,047         61,847           (kg)         T-N         24,385         7,128         8,944           T-P         3,080         1,626         2,183           Lake Volume 1)         (x1000m3)         8,556         6,253         3,032           Average water quality 2)         BOD         20.3         10.8         35.7           T-N         5.22         4.66         8.85         7.78           T-P         0.97         1.15         2.78           Existed pollution load 3)         BOD         173,691         67,530         108,232           (kg)         T-N         44,663         29,138         26,831	Western lake area         Northern lake area         Southern lake area         Eastern lake area           Lake Volume 1)         (x1000m3)         8,556         6,253         3,032         2,997           Average water quality 2)         BOD         18.1         16.8         20.4         9.90           Average water quality 2)         BOD         18.1         16.8         20.4         9.90           T-N         2.85         1.14         2.95         1.22           T-P         0.36         0.26         0.72         0.24           Existed pollution load 3)         BOD         154,867         105,047         61,847         29,674           (kg)         T-N         24,385         7,128         8,944         3,657           T-P         3,080         1,626         2,183         719           Lake Volume 1)         (x1000m3)         8,556         6,253         3,032         2,997           Average water quality 2)         BOD         20.3         10.8         35.7         13.10           T-N         5.22         4.66         8.85         4.22           T-P         0.97         1.15         2.78         0.64           Existed pollution load 3)

1) assumption : water level = 3,808 m

2) From the results of lake water quality survey by JICA and PELT(1999). (refer to Table 2.17 (2))

3) multiply lake volume 1) by average water quality 2).

 Table III.4.1
 Population in the Study Area

100.0% 100.0% 90.0% 90.0% 85.0% 85.0% 77.00% 77.00% 0.0% 0.0% 0.0% 0.0% 2025 1564 14949 17172 18777 18777 18777 18777 18777 18777 14159 14159 14159 14150 111905 471 119053 471 471 450 5150 11048 11048 17461 17461 17461 8473 5364 9102 9102 5364 77385 7385 7385 erved pop. 2008 51.0% 0.0% 0.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 67.0% 11596 7421 11824 12334 2034 3076 3381 1523 756 756 758 295 0 Served pop. 17307 11076 17648 17648 7534 7534 11391 8805 38050 38050 38050 79 79 79 79 7381 381 4579 1051 300 13 1364 13 %0.0 10302 6467 10328 10729 10729 1625 2490 22921 1291 534 534 534 3018 0 Ó ō 8 erved ] 457 1051 300 1364 1364 1364 1364 Population sub-tota ğ [ otal 2 S S

Number of Livestock in the Study Area

				unit : head
Name of micro Cuenca	Sheep	Cow	Alpaca	Hog
1 Huaje	250	65	30	56
2 Dos de Mayo	50	6	12	20
3 Ventilla	700	153	50	50
4 Orkopata	20	0	0	30
5 Pucamayo	70	10	0	25
6 Chacarilla	70	0	0	0
7 Santa Rosa	60	0	0	15
8 San Martin	35	5	0	25
9 Alto manto	200	40	25	0
10 Huayna Pucara	45	10	5	25
11 Capullani	1,583	200	168	15
12 Jayllihuaya	1,500	302	0	20
13 Chimu	1,633	80	0	30
Total	6,216	871	290	311

source : Questionnaire survey by JICA (1999)

#### Table III.4.3 Fertilizer Consumption in the Study Area

	Consumption	Content (	w/w%)	Amount (	kg/year )
Fertilizer	(kg/year)	N	Р	N	Р
Guano de ovino	78,430	8.0	6.0	6,274.4	4,705.6
Fosfato Diamonico	116	18.0	46.0	20.9	53.4
Urea	1,329	46.0	0.0	611.3	0.0
Nutrifollaje	10	20.0	20.0	2.0	2.0
Guano de Isla	390	10.0	10.0	39.0	39.0
Nitrato de Amonio	48	33.5	0.0	16.1	0.0
Superfosfato triple	101	0.0	18.0	0.0	18.2
Potacio	22	0.0	0.0	0.0	0.0
Nitroforka	5	20.0	19.2	1.0	1.0
Fosfato	21	0.0	46.0	0.0	9.7
Cloruro de potacio	60	0.0	0.0	0.0	0.0
Guano Ilama	60	8.0	6.0	4.8	3.6
Bayfolam	2	11.0	8.0	0.2	0.2
Kurowanuchi	2	0.0	0.0	0.0	0.0
Ceniza	40	0.0	0.0	0.0	0.0
Total	•	a a presenta	nender 🖕 er fins	6,969.7	4,832.7

source : Questionnaire survey by JICA (1999)

## Assumption of Unit Pollution Load

note	graywater only	the ratio is acquired from PRONAP plan.	gray + blackwater								
T-N T-P	2.75 gcd 0.625 gcd	Pollution load generation (domestic wastewater) x 15.1 %	11 gcd 1.25 gcd	30 % 30 %	7.7 gcd 0.875 gcd	27 g/head-day 4.2 g/head-day	330 g/head-day 56 g/head-day	27 g/hcad-day 4.2 g/hcad-day	22 g/head-day 14.4 g/head-day	800 mg/l 80 mg/l	id waste 11.799 tons/year d waste 0.16 0.16 3.0 m ping site 24.581 m2 copitation 720 mm/year 0.75
BOD	28.8 gcd	Pollution load generation (	45 gcd	70 %	13.5 gcd	60 g/head-day	660 g/hcad-day	60 g/head-day	217 g/hcad-day	2.500 mg/l	13,274 m3/year Assuming : quantity of solid waste specific gravity volume of solid waste thicken assuming dumping site Intensity of precipitation Run-off
sources	non-served population		inflow	Removal Efficiency (%)	Discharged Pollution Load	Sheep	Cow	Alpaca	Hog	Ouality of leachate	Quantity of leachate
pollution sources	Domestic wastewater	ter .	Sewerage Treatment Plant	3		Livestock wastewater				Solid waste	

100

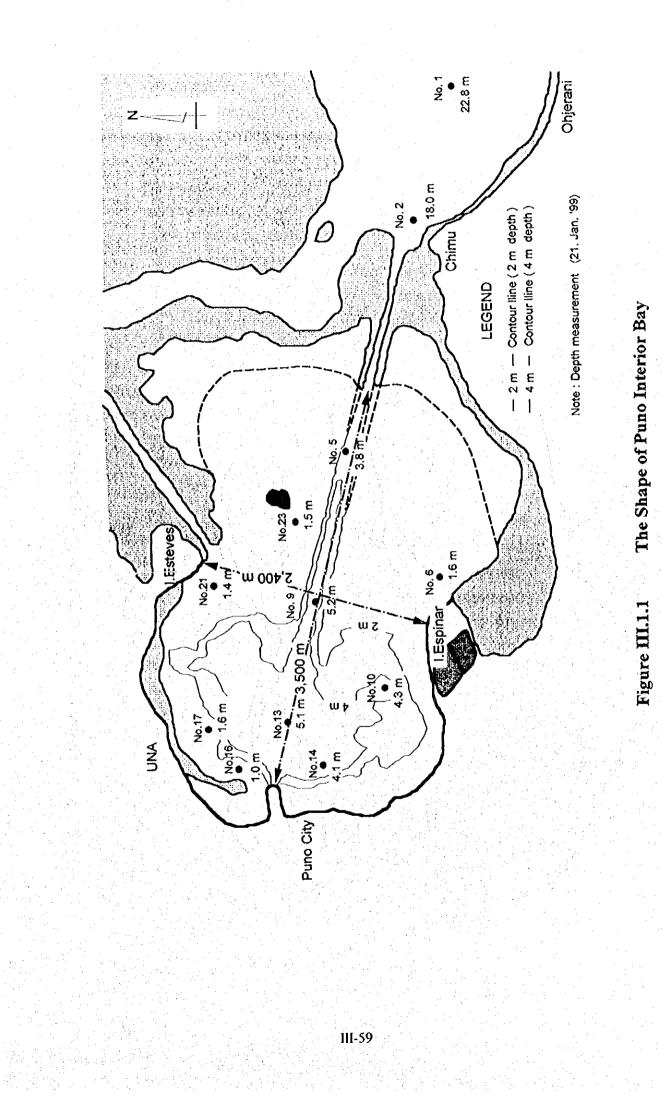
#### Assumption of Run-off Coefficient

Pollution Sources	BOD	T-N	Т-Р
Domestic wastewater	0.6	• • • • • • • • • • • • • • • • • • •	1.0
Commercial / Institutional wastewater	0.6	0.6	1.0
Agricultural wastewater	•	0.3	0.2
Livestock wastewater*	0.3 - 0.55	0.3 - 0.55	0.3 - 0.55
Solid waste	0.6	0.6	1.0
Treatment Plant	1.0	1.0	1.0
•		•	

#### note : * Assuming : area A: pastureland in lake site ( inundation area) area B: pastureland in mountain area

Regional distribution of livestock in the Study Area

	area A		area - B
1998	50%	į	50%
2000	50%	÷	50%
2008	25%	I	75%
2015	0%		100%
2025	0%		100%


run-off

0.8 0.3

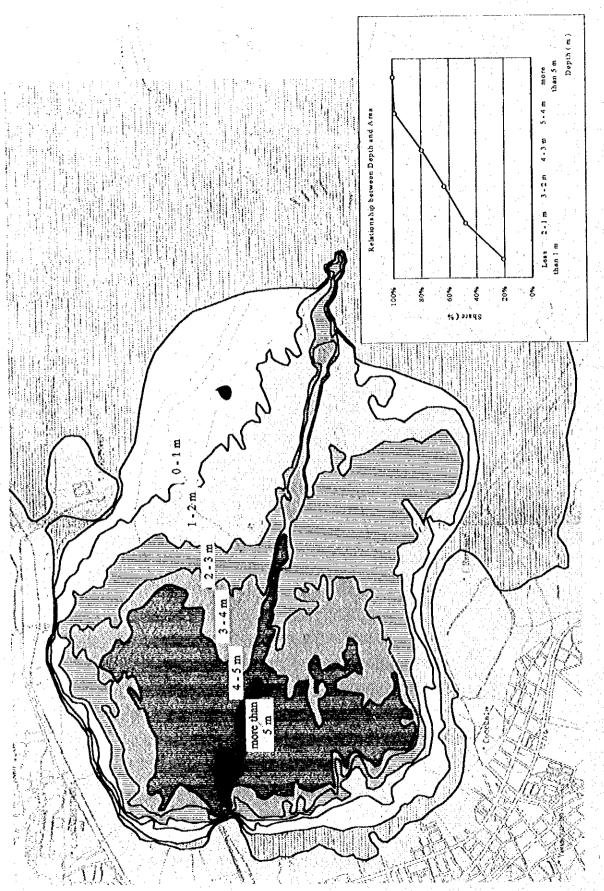
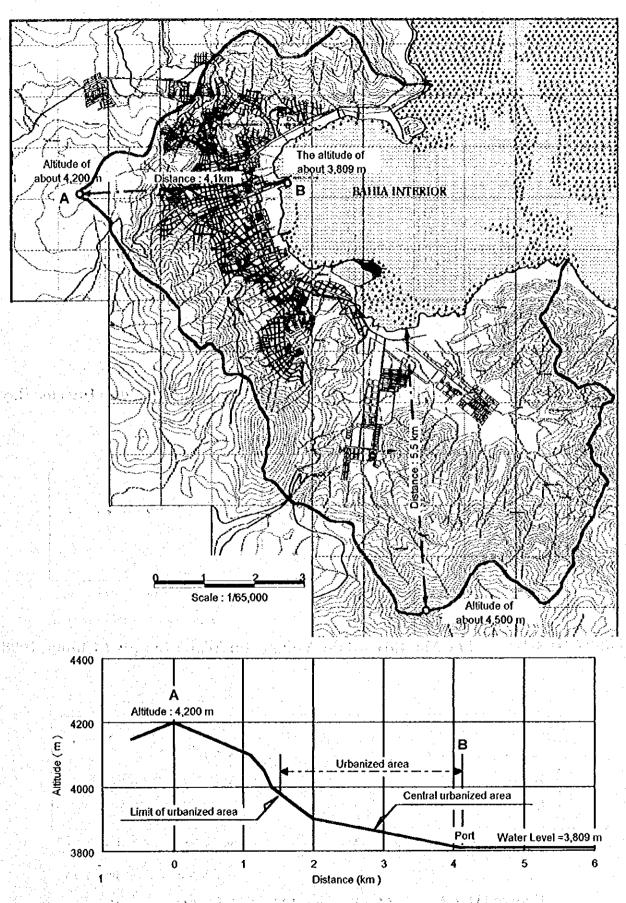
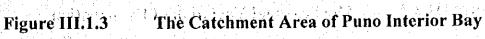
JII-57

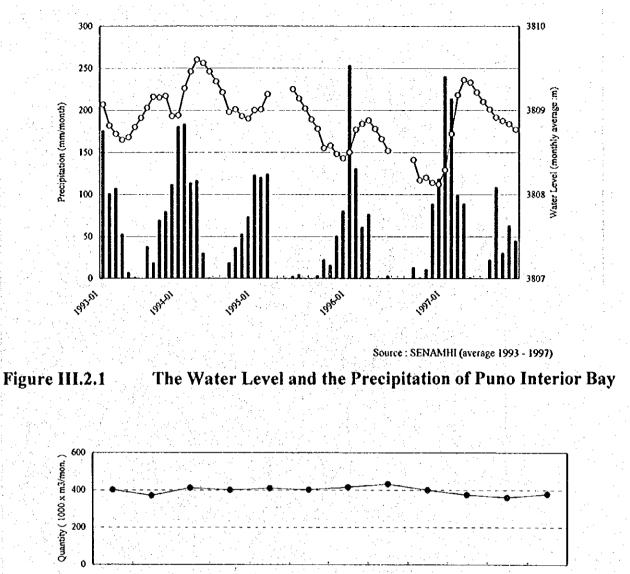
Estimation of Discharged Pollution Load in 1972 and 1981

<b></b>	ľ,	2.4		]	<b></b>	<u>ہ</u>	0 0	62	0.7		5.9	2.1	5.9	267.9	÷.		276.5	\$ <del>.</del>	1.0			•			1.6	515.8	27	52	5.1	127.6			
Total	5 708 5	1 40	350.9		Total			4362.9	1580.7	272.1	4362.9	1580.7 272.1	1095.9	26	001	C.11/4	27	5624.5	1840.1	S		2 • •	1	• •	1,721.6	515	102.2	2,216,2	715.1	121		· ·	
vaste	8.09	20.1	2.8		aste*	0	00	33.4	10.7	10	33.4	10.7	0	0 0	2022	0.00	17	55.8	17.9				0.6	0.6	20.0	6.4	- - -	33.5	10.7	1.7			:
Solid waste					Solid waste*									ć.		•	۰.				• •	1 							м. 			· .	
Livestock	1 032 8	477.0	80.6		Livestock	0	00	2987.0	1434.8	237.1	2987.0	1454.8	0	00	1 1000	5050.4	232.5	3086.4	1437.4		• •	•	0.3	5 0 3 0 3	896.1	430,4	1.17	925.9	431.2	69.8	(Pop)i / (Pop) ₁₉₄₈ )		
Agriculture		-			Agriculture*	0	00	0.0	7.0	4.9	0.0	4.9	0	00		0.0	8.2	0.0	11.7		• •	•	•	0.3		2.1	1.0	•	3.5	1.6	d) ₁₉₉₈ x ( (Pop)i / n Load		
Treatment plant	2 813 0	6820	216.8		Treatment plant	0	00	0	0	0	00	0.0	913.0	223.2	4.07	<b>o</b> c	0	013.0	223.2		70%	30%	1.0	01	00	0.0	0.0	315.3	179.8	20.4	(Pollution Load) = (Pollution load) (100% x ( P.Load : Discharged Pollution Load	year (1972 or 1981) Population	the year 1998
Commercial	1.				Commercial	┢	<del>o c</del>	176.1	16.8	3.8	176.1	3.8	137.9	33.7	0.0	2.007 19.7	4.5	205.9	19.7		• •	•	0.6	0.6	105.7	10.1	3.8	123.5	11.8	4.5	Pollution Load P.Load : D		
Domestic	1 626 7	1.020.1	35.3		Domestic	0	00	1166.4	111.4	25.3	1166.4	25.3	0	00	N 0701	130.4	29.6	1363.4	130.2	10.77	• •	•	9.0	0.6	699.8	66.8	25.3	818.0	78.1	29.6	note : * where:		
unit P. Load (ccd)	78.8	2.02	0.6		unit P. Load (ged)		11	28.8	2.75	0.625		•	45	11	0.00	28.8	0.625	•	•		• •	•	•			•	•	•	•			· · · · · · · · · · · · · · · · · · ·	-
	COR	)   	a-t-			BOD	N Q	BOD	Z- F	Т-Р	BOD	Ζ 4 - Η	BOD	Z A F F	-		۰ ۲	BOD	Z o F F			Ч-Т	BOD	х 4 Г	BOD	N-L	T-P	BOD	Z-F	T-P			
Population	110 021	110001			Population	0		40.500			40.500		20.288		740 14	040.14		67,628								1972			1861				
					Served area non-served Total non-served non-served							Efficiency		Run-off		Discharged Pollution Load																	
	866	51		]	Ľ				71.6	1						186	51							۰. ۰		• .						3 	2 



West of



Figure III.1.2 The Depth of Puno Interior Bay

Ç



3





Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Source : Ensa-Puno (Chimu, 1998)

Figure III.2.2 The Monthly Intake Volume for Water Supply (Chimu, 1998)

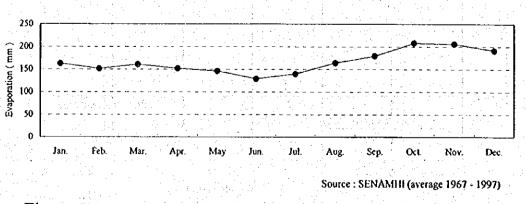
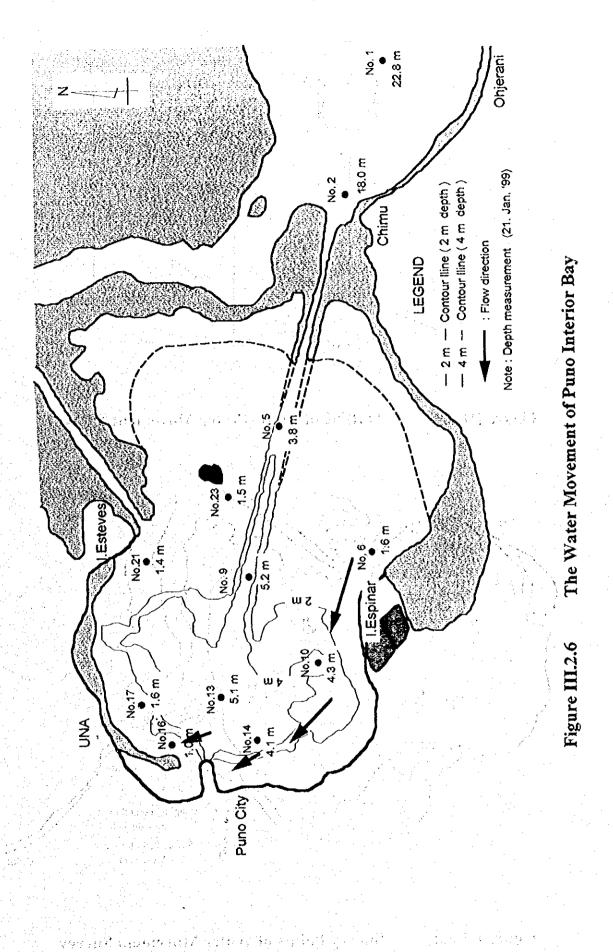


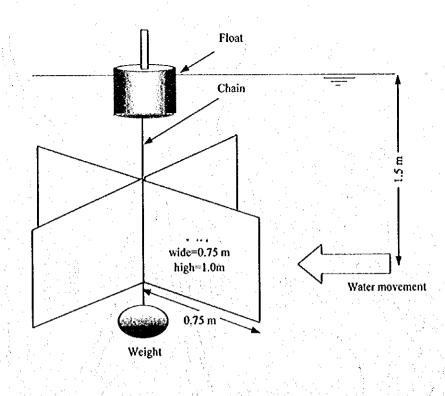

Figure III.2.3 The Seasonal Variation of Evaporation



Estimated parameter for precipitation = ( $Pi \times Ri$ ) + ( $P_{i-1} \times Ri$ -1) + ( $P_{i-2} \times R_{i-2}$ ) Where;

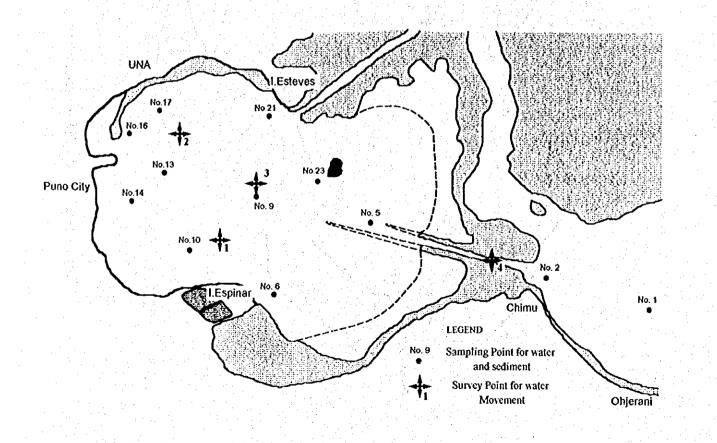
- Pi, Ri : Monthly precipitation of this month and itsRun-off
- $P_{i,1}, R_{i,1}$  : Monthly precipitation of the last month and its Run-off
- $P_{i-2}, R_{i-2}$  : Monthly precipitation of the month before last and its Run-off


Figure III.2.4


9

ð

The Relationship between Variation of Water Level and Precipitation








é

Figure III.2.7 Outline of Buoy (Water Movement Survey)



Survey Points of Water Movement Survey

Figure III.2.8