Main Report : Chapter 8

幽

8.5.3 Potential Route of Interceptor Sewer for Each Sewerage Zone

(1) Left Bank Area of Tau Hu, Ben Nghe Canal

The area has been developed as the center of Ho Chi Minh City since French era. Combined sewer system was developed along the roads. In the east part of this area covering District 1, 3 and 5 is fully developed with an adequate road networks. And interceptor sewer can be installed in some potential roads along and parallel to the canals. While, in the west part of this area covering District 6, 10 and 11 is very congested area. Only Tran Van Kieu road along Tau Hu canal is recognized as the potential route of the interceptor sewer.

(2) Island Area between Tau Hu - Ben Nghe and Doi - Te Canals

In this area, roads are existed along both canals of Tau Hu - Ben Nghe and Doi - Te. There are no alternative routes for installation of the interceptor sewer except the roads along the canals.

(3) Right Bank Area of Doi - Te Canal :

This area is not fully developed yet. Road networks are not sufficient to develop the sewer system. This area will be developed in future. The sewerage system will be also developed harmonized with the land development. The Vietnamese standards stipulates that the sewerage development for newly developed area must be covered by separate sewer system. Hence the separate sewer system is proposed in this right bank area of Doi - Te canal.

8.5.4 Alternative Study of Interceptor Route for East Area of Left Bank of Tau Hu -Ben Nghe Canal

(1) Selection of Alternative Route

There are two (2) alternative routes for the interceptor sewer; one is Ton Duc Thang - Ham Nghi - Tran Hung Doa roads and second one is Ton Duc Thang -Ben Chuong Duong roads. Based on these two (2) alternative routes, following three (3) options of the interceptor sewer are considered as shown in Fig. 8.20.

(2) Alternative Plan A

Two (2) lines of interceptor sewer are proposed. The main interceptor sewer runs along Ton Duc Thang - Ham Nghi - Tran Hung Dao streets to collect the wastewater from the sub-zones of No.1, 2, 3, 5, 7 and 9. The secondary interceptor sewer is along Ben Chuong Duong Street to collect the wastewater from the sub-zones of No.4, 6, 8 and 10.

The main features of the interceptor sewer are shown as follows.

Length	:	Total: 9,710 m
·		Main : 5,480 m
		Secondary: 4,230 m
Interceptor Diameter	:	Main : \$ 700 mm ~ \$ 1,500 mm
•	:	Secondary : \$ 600 mm ~ \$ 800 mm
Earth Covering Depth	:	Main : 3.7 ~ 10.4 m
~ ·		Secondary : 1.2 ~ 8.3 m
Construction Method	:	Open Cut Method : 7,070 m
		Pipe Jacking Method: 2,640 m

(3) Alternative Plan B

The route B is proposed under Ton Duc Thang – Ben Chuong Duong streets located along Saigon river and Tau Hu – Ben Nghe canal to collect the dry weather flow from the sub-zones of No.1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

The main features of the interceptor sewer are shown as follows.

Length	:	Main : 5,405 m
Interceptor Diameter	:	Main : \$ 700 mm ~ \$ 1,500 mm
Earth Covering Depth	:	Main : 3.7 ~ 10.3 m
Construction Method	:	Open Cut Method : 2,525 m
		Pipe Jacking Method: 2,880 m

(4) Alternative Plan C

The main interceptor sewer runs along Ton Duc Thang – Ham Nghi – Tran Hung Dao streets to collect the wastewater from the sub-zones of No. 1, 2, 3, 5, 7 and 9 as same as Alternative Plan A.

For collection of wastewater from sub-zones of 4, 6, 8 and 10, the secondary interceptor sewer is proposed along the roads, which are perpendicular to Ben Chuong Duong street and conveys it to the main interceptor sewer.

The main features of the interceptors are shown as follows.

Length	:	Main 5,480 m
Interceptor Diameter	:	Main : \$ 700 mm ~ \$ 1,500 mm
Earth Covering Depth	:	Main : 3.7 ~ 10.3 m
Construction Method	:	Open Cut Method : 2,640 m
Pipe Jacking Method:	2,84	0 m

.....

(5) Comparative Evaluation

From the economical point of view, there is no significant difference among three (3) alternative routes.

166 billion VND
168 billion VND
168 billion VND

Basically, interceptor sewer is installed along rivers and canals to intercept the wastewater before it discharges to those water bodies. From this concept, Alternative Plan B is the most appropriate one. While the Ben Chuong Duong street along Ben Nghe canal has a plan to connect Thu Thiem area crossing Saigon River by tunnel. Access road of about 1,000 m to Saigon River crossing tunnel is required to construct under the Ben Chuong Duong street. This access road, which will be constructed by the diaphragm wall much affects the existing drainage system along the Ben Chuong Duong street. The existing drainage sewers to Ben Nghe canal will be affected by the diaphragm wall and required to construct by-pass sewer to Saigon River or upstream reaches of Ben Nghe canal. Hence, Alternative Plan C is proposed as the optimum interceptor route to avoid the congestion of drainage and interceptor sewers under the Ben Chuong Duong street.

8.5.5 Proposed Plan

(1) Eastern Part of Left Bank Area of Tau Hu, Ben Nghe Canal

Alternative Plan C is selected as the optimum interceptor sewer route. The proposed alignment and longitudinal profile are shown in Fig. 8.21 and 8.22.

(2) Western Part of Left Bank Area of Tau Hu, Ben Nghe Canal

The interceptor sewer will be installed along Tran Van Kieu and Ben Ham Turoads harmonizing with the canal side road expansion project.

The proposed alignment and longitudinal profile are shown in Fig. 8. 21 and 8.23.

The main features of the interceptor sewer are as follows:

Total length:4,990 mInterceptor Diameter:φ 700 mm - φ 1,500mmEarth Covering Depth:1.2m - 7.4 m

Khanh Hoi Sub-Zone

(3)

解

Construction Method : Open Cut Method : 4,240 m : Pipe Jacking Method : 750 m

Two (2) lines of interceptor sewer are proposed under Ben Van Don and Ton That Thuyet roads running along the Ben Nghe and Te canals, respectively. The interceptor sewer along the Ben Van Don road joins the other one running along Tong That Thuyet road and the merged interceptor sewer finally joins the main sewer installed in Rach Ong sub-zone after crossing Te canal. The route and the longitudinal profile of the interceptor sewer are shown in Fig. 8.24 and 8.25, respectively.

Main Features

Total Length	: 6,513 m (include can	al crossing)	
Interceptor Diameter	: \$ 450 mm ~ \$ 1,200 mm		
Earth Covering Depth	: 1.2 ~ 5.45 m		
Construction Method	: Open Cut Method		
Canal Crossing	: Canal Name	: Te Canal	
	Length	: 179 m	
	Construction Method	: Shield Tunneling	
e da fata da serie da serie	System	: Siphon with ϕ 900 mm x 2 lines	

(4) Hung Phu Sub-zone

Two (2) lines of interceptor sewer are proposed under the Ben Ba Dinh and Ben Nguyen Duy roads on both sides of sub-zone along the canals. After joining both interceptor sewers, the merged interceptor sewer crosses the Doi canal at the intersection of Chanh Hung and Ben Nguyen Duy roads and connects to the main sewer installed in Pham The Hien sub-zone. The route and the longitudinal profile of the interceptor sewer are shown in Fig. F.8.24 and 8.26, respectively.

Main Features

Total Length	: 4,543 m (include canal crossing)		
Interceptor Diameter	; φ 400 mm ~ φ 500 mr	n	
Earth Covering Depth	: 1.2 ~ 4.35 m		
Construction Method	: Open Cut Method	·	
Canal Crossing	: Canal Name	: Doi Canal	
	Length	: 160 m	
	Construction Method	: Pipe Jacking Method	
	System	: Siphon with \$ 600 mm x	2 lines

(5) Tung Thien Vuong Sub-zone

Two (2) lines of interceptor sewer are proposed under the Ben Binh Dong and Ben Nguyen Duy roads on both sides of sub-zone along the canals. After joining both interceptor sewers, the merged interceptor sewer crosses Doi canal beside the Nhi Thien Duong bridge and reaches to the main sewer installed in Binh Dang sub-zone. The route and the longitudinal profile of the interceptor sewer are shown in Fig. 8.24 and 8.27, respectively.

Main Features

Total Length	: 4,870 m (include can	aÌ	crossing)
Interceptor Diameter	:		
Earth Covering Depth	: 1.2 ~ 5.01 m		
Construction Method	: Open Cut Method		
Canal Crossing	: Canal Name	:	Doi Canał
	Length	:	150 m
	Construction Method	:	Pipe Jacking Method
	System	:	Siphon with ϕ 500 mm x 2 lines

(6) Binh Dong Sub-Zone

Interceptor sewers are proposed under roads surrounding Binh Dong sub-zone. Collected wastewater by the interceptor sewers is transferred to the main sewer in Tung Thien Vuong sub-zone. Crossing under Ngang No.1 canal by pipe jacking method is proposed near by the bridge. The route and the longitudinal profile of the interceptor sewer are shown in Fig. 8.24 and 8.27, respectively.

Main Features

Total Length	: 2,543 m (include canal crossing)		
Interceptor Diameter	:		
Earth Covering Depth	: 1.2 m ~ 4.23 m		
Construction Method	: Open Cut Method	• • •	
Canal Crossing	: Canal Name	: Ngang 1 Canai	
	Length	: 42 m	
	Construction Method	: Open Cut Method	
	System	: Siphon with ϕ 350 mm x 2 lines	

8.5.6 **Diversion Chamber**

All existing combined sewers are affected by tide. Hence, designing diversion chamber, high water level of the receiving water bodies should be taken into consideration. The following four (4) conditions are considered for designing diversion chamber.

Case	Flow Condition	Water level of Down Stream
Λ	Dry weather flow	Low tide
В	Wet weather flow	Low tide
С	Dry weather flow	High tide
D	Wet weather flow	High tide

The proposed typical diversion chamber is shown in Fig. 8.28. The orifice is designed to divert the wastewater to the interceptor sewer. The weir with a flap gate is installed at the center of the diversion chamber. From the maintenance reason, typical plane internal dimension of 2.0m x 2.2m is proposed.

103 units of outlet of combined sewer exist in the priority project area. The location is shown in Fig. 8.29.

8.6 Conveyance Sewer

8.6.1 Alternative Study of Conveyance Sewer Route

Based on the potential Tau Hu, Ben Nghe and Doi, Te canals crossing routes and potential locations of intermediate pumping station, three (3) alternative routes of conveyance sewer are selected as shown in Fig. 8.30. The outline of three (3) alternative routes are described as shown below.

Alternative Route	Characteristics	
(A) Nguyen Bieu	Nearest to the city center	
	Two (2) canals of Tau Hu, Ban Nghe and Doi, Te intersecting point is potential canal crossing route	
	Potential site of pumping station is Da Nam Park	
(B) Tran Tuan Khal	Largest open space for Pumping Station	
dat di setto	Shortest length of canal crossing	
(C) Nguyen Tri Phuong	Potential Pumping Station site faces main road	
	Tennis court space of district office to be used for work yard for construction	

These three (3) alternative routes of conveyance sewer are evaluated under the following aspects:

- Facility of potential site acquisition for canal crossing work yard
- Required length of canal crossing
- Facility of potential site acquisition for pumping station and their circumstances
- Facility to access to pumping station
- Required land acquisition for conveyance sewer installation

Alternative route (B) Tran Tuan Khal is selected as the optimum conveyance sewer route with the lowest construction cost of VND349.2 billion.

The detailed evaluation is described in Supporting Report Appendix F, Table F.13.1.

(2) Comparison between Gravity Flow and Pressured Flow

Due to the proposed wastewater treatment plant site located far from the sewerage development area, conveyance sewer with a total length of 5.4 km is required. Then the earth covering depth of conveyance sewer of gravity flow system becomes deep. And its construction cost becomes high. Hence the pressure flow conveyance sewer is compared with gravity flow conveyance sewer.

Advantage and disadvantage of pressure flow system are listed below:

Advantage:

- Installation of conveyance sewer with earth covering depth of about 1 m
- Bending in the vertical alignment
 - River and canal crossing by bridge with easier maintenance
 - Unnecessary of inflow pump at treatment plant

Disadvantage:

- Requirement of additional pipe with same diameter running parallel for maintenance and emergency
- More frequent maintenance required for sediment removal
- No experience of large scale pressure flow sewer system in Japan

The construction costs of both gravity and pressure flow systems are estimated at same amount of VND 447 billion. While the annual O/M costs of both systems are estimated at VND 18.9 billion for gravity system and at VND 19.5 billion for pressure system.

8.6.2 Proposed Plan

Alternative route B of gravity flow is recommended as the optimum conveyance sewer from the following reasons:

- No significant difference of their construction costs between gravity flow and pressure flow
- Gravity flow is more economical than pressure flow in O/M cost
- Gravity flow has higher reliability in operation than pressure flow
- Proposed alignment and longitudinal profile of conveyance sewer are shown in

Fig. 8.31and 8.32 and its main features are shown below.

Main Features

Total Length	: 5,400 m (including ca	anal crossing)
Interceptor Diameter	: ϕ 2,000 mm \sim ϕ 2,5	00mm
Earth Covering Depth	: 1.2m ∼8.6m	
Construction Method	: Open Cut Method (3,	,850m)
	Shield Tunneting Me	thod (1,500m)
	Pipe Jacking Method	(50m)
River/Canal Crossing (1)	: Canal Name	: unknown
	Length	: 50m
	Construction Method	I: Pipe Jacking
	System	: Gravity with $\phi 2,500$ mm x 1 line
(2)	: Canal Name	: Tac Ben Ra
	Length	: 100m
	Construction Method	I: Shield Tunneling
	System	: Gravity with $\phi 2,500$ mm x 1 line

8.7 Intermediate Sewage Pumping Station

Sewage intermediate pumping station is proposed at Ward 4 in District 8. The area of about 0.6 ha is located in the swampy area enclosed by Dong Dien road and Ong Nho canal.

Design capacity of intermediate sewage pumping station is 640,000 m³/day (445.0 m³/min.). Five (5) units of axial flow vertical type pump with a design capacity of 133.3 m³/min./unit (2 units) and 105.0 m³/min./unit (3 units) are installed. Grit chamber and screen are proposed after the pumping up.

The proposed location and layout of intermediate sewage pumping station is shown in Fig. 8.33 and Fig. 8.34.

8.8 Wastewater and Sludge Treatment Plant

8.8.1 Introduction

Modified activated sludge treatment plant will be constructed at the swampy area in Phuoc Loc ward in District Nha Be. The proposed treatment site is enclosed by Cay kho canal to the east and Go Nai river to the west. The existing land elevation of this area ranges from ± 0.3 m to ± 1.3 m above mean sea level. The soil condition of the top layer of this treatment plant site is rather soft. The base layer is not found until a depth of 30 meters from ground surface.

The treatment plant will treat daily average dry weather discharge plus ground water infiltration. The design flow of 469,000 m³/day consisting wastewater of 426,500 m³/day and ground water of 42,500 m³/day is applied as dry weather flow in 2010. Design influent and effluent water qualities are 180 mg/l and 50 mg/l in terms of BOD₅ respectively.

8.8.2 Preliminary Design

The proposed wastewater treatment plant includes inflow pumping station, primary sedimentation basin, aeration tank, secondary sedimentation basin and disinfection tank. Sludge treatment plant consists of gravity thickener, centrifugal thickener, belt filter press and composting.

The proposed layout of wastewater and sludge treatment plant is shown in Fig. 8.35.

(1) Inflow Pumping Station

A pump station with a capacity of $445 \text{ m}^3/\text{min}$, will be installed by the year 2010. Additional pump with a total capacity of $40 \text{ m}^3/\text{min}$, will further be provided by 2020. S units including one stand-by of axial flow vertical pump with a hydraulic head of 20 m will be installed.

(2) Primary Sedimentation Basin

Rectangular type primary sedimentation basin of 48 units will be constructed with an effective depth of 3.75 m. Dimension of one basin is 7 m width, 51 m length and 4.5 m depth. One unit of flight chain type sludge collector will be installed in each basin. 36 units of sludge drawing pump including 12 units of stand-by with 15 m hydraulic head will be installed.

Hydraulic detention time is 3.75 hours with an overflow rate of 27.4 $m^3/m^2/day$. Proposed primary sedimentation basin is shown in Fig. 8.36.

(3) Aeration Tank

Rectangular type aeration tank of 48 units will be installed with an effective depth of 5 m. Dimension of one (1) unit of tank is 7 m width, 63 m length and 6 m depth. 5 units of blower including 1 stand-by with 6.3 mAq x 800 kw will be installed. Hydraulic detention time is 6.2 hours with sludge recirculation ratio of 54 %. Diffused type aeration will be installed. Proposed aeration tank is shown in Fig. 8.37.

(4) Secondary Sedimentation Basin

Rectangular type secondary sedimentation basin of 48 units with an effective depth of 4.5 m will be installed. Dimension of one (1) unit of basin is 7 m width, 76.5 m length and 5.25 m depth. One (1) unit of flight chain type sludge collector will be installed in each basin. Sludge drawing pump of 36 units including 12 units stand-by with hydraulic head of 10 m will be installed. Hydraulic detention time is 6.75 hours with an overflow rate of $18.2 \text{ m}^3/\text{m}^2/\text{day}$. Proposed primary sedimentation basin is shown in Fig. 8.38.

(5) Disinfection Tank

Salient features of disinfection tank are as follows:

Effective depth: 4 m Dimension of tank: 25 m (W) x 67 m (L) x 4.5 m (D)

Hydraulic detention time is 18.8 minutes. Chlorine injection rate of 3 mg/l is proposed.

(6) Gravity Thickener

Gravity thickener for primary sludge treatment consists of storage tank and thickener. Salient feature of storage tank and thickener are as follows:

Storage tank	: 5m (W) x 5 m (L) x 3.5 m (D)
	: Agitator of 5.5 kw capacity will be installed.
Thickener	: 24 m (\$) x 4 m (H) x 2 units

Proposed gravity thickener is shown in Fig. 8.39.

(7) Centrifugal Thickener

Decanter type centrifugal thickener with a capacity of 1,067 kg/hr/unit is proposed. Four (4) units including one (1) unit will be installed to treat secondary sludge. Proposed layout of centrifugal thickener is shown in Fig. 8.40.

(8) Sludge Dewatering

Belt filter press of 17 units including one (1) stand-by with a capacity of $157 \text{ m}^3/\text{day/unit}$ will be installed. Thickened both primary and secondary sludge will be dewatered from 4 % to 20 % of solid concentration. The proposed layout is shown in Fig. 8.40.

Main Report : Chapter 8

(9) Composting

In this project, land disposal is proposed as the ultimate disposal of sludge, thus it is necessary to stabilize the sludge before disposal so as to reduce pathogens and odor.

EPA established criteria for the use of processed sludge on agricultural land. After the sludge is treated by the treatment process to significantly reduce pathogens it can be applied to the agricultural land. The composting process is included in the category of the treatment process to significant reduce pathogens, hence is proposed as an appropriate process for applying sludge of domestic wastewater to the agricultural land.

Proposed composting process consists of (1) preconditioning and (2) fermentation.

8.9 Sewerage Collection System Development

The right bank area of Doi – Te canal is proposed to be developed by separate sewer system as mention above. Hence secondary/tertiary and main sanitary sewers will be installed in this area. The area consists of 3 sub-zones, which are Rach Ong, Pham The Hien and Binh Dang areas and the total amounts to 537 ha (refer to Fig, 8.18).

The interceptors planned for the area isolated by Tau Hu – Ben Nghe and Doi – Te Canal are proposed to be installed along the roads in the 3 sub-zones. Consequently, the main sanitary sewers for these sub-zones will be connected to the interceptor running along the canal.

The total length of the secondary/tertiary and the main sanitary sewers are 26 km and 35 km, respectively. The pipe diameter ranges from ϕ 300 mm to ϕ 600 mm and the main features of the new drainage pipe by each sub-zone are presented in the table below.

Sewer	Diameter (mm)	Rach Ong (133 ha)	Pham The Hien (196 ha)	Binh Dang (208 ha)	Total
Secondary /Tertiary	300	6,384	9,398	9,984	25,766
	300	7,161	18,747	5,289	31,197
Main	400	782	287	920	1,989
. 1	500	995		647	1,642
	600	•		250	250
Tota	1	15,322	28,432	17,090	60,844
No. of House C	Connection	67,480	42,796	41,562	151,838
No. of Manhol	e	279	388	391	1,058

8.10 Implementation Program of Priority Project for Sewerage Development

8.10.1 Project Phasing

障

The total project cost for the Priority Project of Sewerage Development for Tau IIu, Ben Nghe – Doi, Te Basin is estimated at 4,490.5 VND billion as shown in Appendix J. From the budgetary constraints, the Priority Project should be divided into two (2) phases.

8.10.2 Selection of the Priority Area

Sewerage development area is proposed to divide into 24 sub-zones. And 24 sub-zones are classified into four (4) integrated zones from their wastewater collection system. Eastern part of left bank of Ben Nghe canal consists of 10 sub-zones of No. 1,2,3,4,5,6,7,8,9 and 10. And Western part of left bank of Tau Hu canal consists of six (6) sub-zones of No. 11,12,13,14,15 and 16. Isolated area by both canals of Tau Hu, Ben Nghe and Doi, Te consists of five (5) sub-zones of Khanh Hoi, Ong Kieu, Hung Phu, Tung Thien Vuong and Binh. And Southern part of Doi, Te canals consists of three (3) sub-zones of Rach Ong, Pham The Hien and Binh Dang. Delineation of sewerage sub-zones into four (4) integrated zones are shown in Fig. F.8.41.

Priority sequences for implementation of the priority sewerage development are determined based on the aspects of demand/benefits and constraints of the respective zones.

Demand/benefits consists of population density, public land use and pollution load generation. Constraints consist of affordability of sewerage development and existing combined sewer coverage rate.

These five (5) items are evaluated for the respective zones. Integrated evaluation is obtained assigning marks ranging from 1 to 5 on each item summing up the given marks.

The highest priority is given to Eastern part and Western part of left bank area of Tau Hu, Ben Nghe canal, followed by Isolated zone and Southern part of Doi, Te canal.

While, Western part of left bank area of Tau Hu canal has only one (1) potential route of Tran Van Kieu and Ben Ham Tu roads along Tau Hu canal for interceptor sewer installation. These Tran Van Kieu and Ben Ham Tu roads will be expanded by the canal side roads expansion project after the relocation program along canals will be completed. Then, interceptor sewer of Western part of left bank area of Tau Hu canal should be constructed simultaneous with the canal side road expansion project. While the interceptor sewer for Eastern part of left bank area of Tau Hu, Ben Nghe canal can be constructed independently without any affection by other projects schedule. From this point of view, Eastern part of left bank area of Ben Nghe canal is selected as the Phase I Project area.

8.11 Selection of Appropriate Wastewater Treatment Process for The Phase I Project

8.11.1 General

In the Interim Report, JICA Study Team has conducted detailed comparison of various wastewater treatment processes for the Priority Project with the target year of 2020 and has proposed conventional activated sludge process as the most appropriate wastewater treatment process. The Priority Project is proposed to be implemented in two (2) phases. The Phase I with the target year of 2005 will improve the environmental condition of THBNDT zone immediately. Design conditions of Phase I Project are different from that of those studied at Master Plan Stage and about 50 ha of land is available for treatment plant. Hence, options for treatment process are reviewed again but keeping in mind that process chosen at Phase I could be smoothly switched to conventional activated sludge process proposed for the year of 2020.

8.11.2 Optimum Wastewater Treatment Process

The design conditions for Phase I Project are described below comparing with the ultimate design condition:

Item	Phase I Project	Priority Project (2020)
Population Served	425,830	1,390,282
Design flow	141,000 m³/d	512,000 m³/d
Influent quality	$BOD_5 = 180 \text{ mg/l}$	BOD ₅ = 180 - 250 mg/l
Design effluent quality	$BOD_s = 50 \text{ mg/l}$	$BOD_5 = 20 \text{ mg/l}$

With due consideration to the hot weather of Ho Chi Minh City and scale of treatment plant required, processes which satisfy the above mentioned criteria are selected for evaluation and mentioned below.

- Stabilization pond
- Aerated lagoon
- Primary sedimentation + Stabilization pond
- Modified activated sludge

The above-mentioned four (4) alternatives are evaluated under the following criteria:

- Construction cost/Removal BOD₅
- Facility maintenance

- Operation technology
- Maintenance cost
- Required area
- Excess sludge generation
- Adaptability to variation in quality and quantity of inflow
- Effluent quality
- Environmental aspects
- -- Initial performance
- Smoothness of switching to conventional activated sludge process with bigger capacity in the Final Stage

Pond processes are more economical compared with modified activated sludge process. It is not easy to convert pond process to conventional activated sludge process, which means dual investment will be necessary. Pond processes have quite often smell problem. Furthermore in case of process failure, pond processes need 2-3 months to recover with comparison to 2 weeks for modified activated sludge process.

Modified activated sludge process which has cost efficiency to BOD₅ removal quite close to pond processes, high tolerance to variation of inflow quality and quantity, easy convertibility to Final Stage Process and effluent conforming to Vietnamese standards, is recommended for the Phase 1 Project.

Proposed interceptor sewer and conveyance sewer in Phase I Project are shown in Fig. 8.42. And proposed layout of wastewater and sludge treatment plant is shown in Fig. 8.43.

Station Destruce (m) Ind Fraction B11(m) Cheff Back (Fastion L1) Casel Red (m) Ling More (m) Ling More (m) Ling More (m) Casel Red (m) Ling More (m) Ling More (m) <thling more<br="">(m) <thl< th=""><th>ومعاورتها ويسترك والمرار</th><th></th><th>Accurou-late</th><th>- Construire Misienskier i Adolfische</th><th>Existing</th><th></th><th></th><th>Design</th><th></th></thl<></thling>	ومعاورتها ويسترك والمرار		Accurou-late	- Construire Misienskier i Adolfische	Existing			Design	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Station	Distance (m)		Red Elevation		Right Bank	Canal Bed	High Water	Dike Crown
$\aleph_0 0$ 00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Elevation</td>									Elevation
No.1 60 257 20 1.51 3.445 1.32 No.3 215 373 272 249 3.41 1.33 No.4 220 615 221 1.91 2.43 3.41 1.33 No.5 183 800 2.01 2.13 2.00 3.41 1.33 No.6 180 960 -2.36 1.83 1.84 3.40 1.33 No.6 180 960 -2.76 1.83 1.83 3.13 1.35 No.6 180 1.70 1.97 1.83 3.33 1.35 No.1 150 1.76 1.97 1.83 3.33 1.35 No.11 150 2.30 2.31 2.21 2.33 2.31 1.35 No.12 190 2.43 1.33 1.43 1.40 No.13 1.99 3.31 1.13 No.17 140 3.16 1.35 1.39 1.43	No.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		FL2 (m)	(ຄ)		and the second	EL6(m)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-		-2 55	2.07	1 43			2.00
No.4 200 615 211 191 203 3.42 1.34 No.6 185 980 230 218 200 3.41 1.34 No.6 185 980 230 1.38 1.85 3.40 1.31 No.8 195 1.356 212 216 1.74 3.39 1.35 No.8 1950 1.356 202 1.72 206 3.33 1.35 No.10 180 1.715 2.66 2.04 2.87 3.36 1.35 No.11 180 1.735 2.62 2.10 1.33 3.34 1.35 No.12 205 2.107 2.52 1.77 1.537 3.31 1.38 No.14 195 2.545 3.000 3.53 2.14 1.85 3.30 1.40 No.14 195 3.400 3.16 3.41 1.41 1.40 No.14 1.45 1.40 1.41 1.41	No 2						-3.41	1.32	2.00
No.5 185 800 201 215 200 341 341 No.7 200 1,160 210 210 173 319 131 No.7 200 1,160 212 210 173 319 135 No.9 195 1,555 202 172 207 333 135 No.10 180 1,715 262 203 285 336 135 No.11 1201 1,965 1.82 210 133 314 137 No.13 180 233 213 213 334 138 No.14 195 2,545 226 1,73 136 333 138 No.15 190 2,755 2,73 1,27 3,33 1,38 No.16 405 2,300 -3,33 214 188 -3,30 1,40 No.17 140 3,16 2,00 135 2,00 135 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.00</td></t<>									2.00
No.6 180 980 236 183 185 340 131 No.8 190 1,310 1.99 1.53 339 135 No.8 195 1,535 200 1.72 206 3.33 135 No.10 180 1.741 206 201 283 3.35 1.37 No.11 200 2.31 2.13 3.34 1.37 No.12 202 3.31 1.38 No.13 180 2.535 2.33 2.13 1.38 3.31 1.39 No.14 195 2.541 2.28 1.72 1.57 3.33 1.39 No.16 190 2.735 2.33 2.14 1.83 3.35 1.40 No.17 140 3.16 3.16 3.33 1.40 No.16 200 3.70 2.99 2.34 1.63 3.43 1.44 No.18 90 3.70 2.91 2.34 1.63									2.00
No.7 200 [1,68] 212 210 [74] 339 135 No.8 160 1370 1.99 187 188 338 135 No.10 180 1715 266 203 289 333 135 No.11 200 1965 1.82 210 183 334 137 No.12 205 233 213 213 334 137 No.13 180 7330 233 213 287 333 138 No.14 195 2545 255 177 157 331 139 No.15 900 7330 238 143 343 140 No.16 90 2300 293 198 157 350 140 No.17 140 340 293 293 153 346 141 No.21 225 3379 266 210 163 344 142		185							2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.8	190	1,370	-1.99	1.97	1.85		1.35	2.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1,745						2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2,170						2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.13	180	2,350	-2.33	2.14	2.02	-3.33	1.38	2.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2,545						2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.18	90	3,230	-10.50	1.99	1.86	-3.45	1.40	2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			3,320	-2.98					2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			3,570	-2.93					2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				-2.84					2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.23	175	4,165	-2.75	2.37	1.44	-3.46	1.42	2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					1.97	1.40			2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			4,750						2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		195	5,135	-1.73				1.45	2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			5,513	-1.40					2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		185							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			6,705	-1.63	2.5	1.77	-3.3	3 3 49	2.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			6,900	-1.63					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.41+90		7,360	-2.07	1.7.	1.95	-3.3	1 .	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		210	8,060	-3.27	1.6				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	and the second se								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.49								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			8,93	3.81	1.6	2 1.47	-4.4	6 1.5-	2.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No.54	105	9,33	5 -2.97	1.4	1 1.63			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
No.61 220 10,700 -3.60 1.35 0.70 -4.37 1.59 No.62 190 10,890 -3.62 1.02 1.10 -4.36 1.59 No.63 180 11,070 -3.96 1.28 1.06 -4.36 1.60 No.64 210 11,280 -2.97 0.92 0.86 -4.34 1.60 No.65 190 11,470 -3.66 1.4 0.97 -4.34 1.61 No.66 250 11,720 -2.9 1.19 1.17 -4.32 1.61 No.667 180 11,900 -3.56 1.17 0.92 -4.31 1.62 No.68 190 12,090 -3.98 1.38 1.61 -4.30 1.62	No.59	220	10,30	-2.00	5 1.2				
No.62 190 10.890 -3.62 1.02 1.10 -4.36 1.59 No.63 180 11,070 -3.96 1.28 1.06 -4.36 1.60 No.64 210 11,280 -2.97 0.92 0.86 -4.34 1.60 No.65 190 11,470 -3.66 1.4 0.97 -4.34 1.61 No.66 250 11,720 -2.9 1.19 1.17 -4.32 1.61 No.67 180 11,900 -3.56 1.17 0.92 -4.31 1.62 No.68 190 12,090 -3.98 1.38 1.61 -4.30 1.62									
No 63 180 11,070 -3.96 1.28 1.06 -4.36 1.60 No 64 210 11,280 -2.97 0.92 0.86 -4.34 1.60 No 65 190 11,470 -3.66 1.4 0.97 -4.34 1.61 No 66 250 11,720 -2.9 1.19 1.17 -4.32 1.61 No 67 180 11,900 -3.56 1.17 0.92 -4.31 1.62 No 68 190 12,090 -3.98 1.38 1.61 -4.30 1.62									
No 64 210 11,280 -2.97 0.92 0.86 -4.34 1.60 No 65 190 11,470 -3.66 1.4 0.97 -4.34 1.61 No 66 250 11,720 -2.9 1.19 1.17 -4.32 1.61 No 67 180 11,900 -3.56 1.17 0.92 -4.31 1.62 No 68 190 12,090 -3.98 1.38 1.61 -4.30 1.62									
No.66 250 11,720 -2.9 1.19 1.17 -4.32 1.61 No.67 180 11,900 -3.56 1.17 0.92 -4.31 1.62 No.68 190 12,090 -3.98 1.38 1.61 -4.30 1.62	No.64	210	11,28	0 -2.9	7 0.9	2 0.8	6 -4.3		
No.67 180 11,900 -3.56 1.17 0.92 -4.31 1.62 No.68 190 12,090 -3.98 1.38 1.61 -4.30 1.62									
No.68 190 12,090 -3.98 1.38 1.61 -4.30 1.62									
No.69 80 12,170 -1.30 1.62		80							

1

TABLE 8.1 PROPOSED LONGITUDINAL PROFILE OF TAU HU - BEN NGHE CANAL

Depth	End	Ξ	5.44	5.44	5.41	5.40	5.31	5.30	2. 24:	5.48	5.45	5.45	5.43	5.43	5.43	5.42	5.42	5.41	5.38	5.38	5.37	5.36	5.32	5.30	6.51	6.51	6.48	6.43	6.38	6.30	6.54	6.54	6.54	6.38	6.38	6.38	6.38
ñ	Star	(H1) (m)	5.45	5.44	5.44								5.45	5.43	5.43	5.43	5.42	5.42		5.38		5.37		5.32	6.54					6.38	6.54		6.54	6.48	6.38		72 Y
Slope	Right	(S2)	- 1:3	1:15	1 1 5	1 1	1:1.5	1:15	Existing	Existing	1:1.5	- 60.0 Vertical Vertical	50.0 Vertical Vertical	Vertical	1:1.5	Vertical	1 1.15	5 1:1.5	1:1.5	1:15	1:1.5	1:1.5	-1	1:1.5	Vertical	Vertical	Vertical	1:1.5		1:1.5	1 : 0:5	1:1.5	1:1.5	1:15	1:1.5		
Bank	Left	(IS)	0 1:3	1:1.5	0 1:1.5	: 1	0 1:1.5		0 1:1.5	1:1.5	1:1.5	Vertica	Vertica	Vertical	2.1:1 0	0 1:1.5	0 1:1.5	1:1	0 1:1.5	0 1:1.5	0 1:1.5	0 1:1.5	0 1:0.5	0 1:0.5	0 1:1.5	0 1:0.5	0 1:0.5	1:1.5	•••	1:1.5	0:1:0.5	0 1:1.5	3.1.1.5	<u> : 1.5</u>	0 1:1.5	0 1:1.5	-
	Total	(BS)	90.0 - 120.0	80.0 - 100.0	80.0	70.0 - 80.0	70.0	70.0 - 94.5	89.5 - 105.0	55.0 - 101.0	60.0	50.0 - 60.0	50.	50.0 - 60.0	60.0	60.0	60.0	60.0 - 70.0	70.0	60.0 - 70.0	70.0	60.0	55.0	55.0	60.0	55.0 - 60.0	55.0	60.0	60.0	60.0	55.0	55.0 - 70.0	70.0	0.55	60.0	60.0 - 70.0	100
	d (BA)	Right	None	5.0	5.0	5.0	5.0	5.0	None	None	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
(m)	O'M Road (P4)	Left	None	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	5.0	5.0	11
Canal Width (m)		(B3)	90.0 - 120.0	70.04 - 90.07	70.0	60.0 - 70.0	60.0	60.0 - 84.5	84.5 - 100.0	50.0 - 96.0	50.0	40.0 - 50.0	40.0	40.0 - 50.0	50.0	50.0	50.0	50.0 - 60.0	60.09	50.0 - 60.0	60.09	50.0	45.0	45.0	50.0	45.0 - 50.0	45.0	50.0	50.0	50.0	45.0	45.0 - 60.0	60.0	45.U	50.0	50.0 - 60.0	
	Middle	(B2)	70.0 - 100.0	58.0 - 78.0	58.0	48.0 - 58.0	48.0	48.0 - 72.5	56.0 - 72.5	38.0 - 54.0	38.0	40.0 - 50.0	40.0	40.0 - 50.0	38.0	44.0	38.0	38.0 - 48.0	48.0	38.0 - 48.0	48.0	38.0	41.0	37.0	44.0	43.0 - 44.0	43.0	38.0	38.0	38.0	41.0	41.0 - 48.0	48.0	39.0	38.0	38.0 - 48.0	L
	Rottom	· (B1)	21.0	21.0	21.0	21.0	21.0	21.0	21-35	21-30		21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
T. UNC 05		Section	Existing	N	A	R	N N	N I	A2 -	2 2	A1 -	C	ม เม	ច	- -	A4	١٩	٩١	AI	A1	Ī	A3 .	18	B2	A4	B3	B3	A2	AI	Al	٩١	1	K	Existing	AI	AI	
		10		· -			2.00		2.00				1.5	١.		2.00			2.00	Ŀ.,		Ŀ	2.00			2.00	·		2.00	L			2.00			2.00	
L Diba CI		<u>, 19</u>	-					r e		2.00		2.00		2.00							÷.	2.00		00.2.00	ĺ	L	3 2.00	3 2.00	Ŀ		1	1	2.00	L			I
Tation	1	(m above MSL)	5 -3.44				÷.,				\sim	l	5 -3.43			Ľ				ļ	8 3.37			2 -3.30	Ľ.,		Ŀ	8 445			E.		4 -4.54			I	I
Ļ		(m aho							0 -3.30			0 -3.45						1		ŀ.	Í.,		5 -3.36	I.	Ł		5 -4.51	5 4.48	Į .			0 -4.54	13	04,48		0 -4.38	I
- - -		9 E	200	90	550	100		 	140	180	435	130	310	85	140			165	470	130	35	275	745	40	570	 _	565	1,035	950	[Ň	290	420	12	20	ļ
	tion	End	No.2+20	No.2 + 110	No.5 +40	No.5 + 140	No.15 + 105	No.16 + 40	No.17	No.19 - 45	No.21 - 40	No.21 + 90	No.23 + 30	No.24 - 90	No.24 + 50	No.25 + 100			No.29 + 70	No.30 + 10	No. 32	No.33 + 75	No.38	No.41 + 90	No.44+80	No.44 + 110		No.56-110	No.60+30	No.68 + 80	No. 1 + SO	No.2 - 40	No.4 + 15	No.4 + 20	No.2	No.2 + 20	
	Section	- Start	No.0	No.2 + 20	1+	N0.5 + 40	0	5		1	- 45	Ł	06 +	No.23 + 30	No 24 - 90	No.24 + 50				No.29 + 70			No.33 + 75		No.41+90	No.44 + 80	No.44 + 110	No.47 + 35	No.56-110	No.60 + 30	No	No.1 +80	No.2 - 40	No.1	No.1-10	No.2	
	Samo	Canal Canal				Ben Nehe			<u> </u>				.1.	.1/-	14:		-						123				Tau Hu	(Upstream)[No.47 + 35]			1	55	- 2	Ngang		- Surg	

TABLE 8.2 DESIGN CROSS SECTION OF TAU HU-BEN NGHE CANAL

1

8-33

TABLE 8.3 RESULTS OF HYDRODYNAMIC SIMULATION : EXISTING CONDITION

	Ĺ	,			-	Q V	0		-		c] ਤੋ	Ľ	-		,	2			-	c)	U -		-		0	l
<					72	╞		58	┝─		U	1	<u>e</u>	E C		<					ŧ	-	- 1	- ł	- !	- 1	ļ
Mouth -0 - 40 W.L.	10 MT	N.	.	•		W.L	•	ç	W.L.	۰ ب	TM O+	; 		Mouth	• •	M : 0+	ې اط	?	¥	?	Ŷ	ML		10 M.L		Ŷ	⊐,≯
Ŷ	• •	(EL, m)		(mJ.m)) - ("{m}.	(EL.m) (r	(mJ/s) ((n	3) (%(Cm)	(EL.m) (s	(m3/s) (m)	(m.J/s) (EL.m)	•		(m.)	(m.) (m)	(N) (EL	(EL.m) (mJJ	(m3/s) ¹ (m3/s)	(EL.a)	(WW)	(T/C/H)	(EL.m) (n	(m.//) (m.	(m.//s) (El.m)	_	σĒ	(internet)
	1-	P.	<u>.</u>	ŝ	12	1,66	¢17:	· 21	5.1		12 1 1.50		F	12.175		2 9	।≎ उं¥ी		QC 1 .	0	2	5	2	971 - A1	?	2	<u>.</u>
	2 174	1.74	NO DELLA	×.		ND,1	ş	• • • •	8	;	2 1.50		ţ;	11.120	ŝ	-	1			÷	5	a,	- 	241 - 11 1	• :	5	<u>द</u> ः
N	1X 1	X 1 -		HG	•	1.76	-	-	0%.1	ş	5 1.57		P.	10.6	6		191		2	Ŷ	2	2	i. K	2	_ <u>+</u>	2	<u>.</u>
	001 - 101 - 101	2	-	្តែ		1.76	5	1		32	1.1	P1	ħ	N-120			01- 07-1	NOT .	9. I	2	90[1.32	¥ . 2	191	ş	Ξ	ž.
		1.69	-	F	 : 2.	- 21		: : : :	1	: ; =		: usT	٩	16.6.2		1	3 0		2	3	26	2	2	÷Ì		ہ !	\$ 1
2 = = =		.£	-	वि	 1	1.63		, <u>n</u>	5	- 	161 0		۴	6.405	r,		9 8		5	×,	: •	¥ :	÷	161		2 (
.14 1/ 1.74		1.74		.⊊	2	1.65	.	3 ! ≝	<u>F</u>		1.15		1	1,4%	; ; }		61 - <u>14</u>	5	8	Ą	. 1 5 i	1	3. 	N 1 99	_	3	2
• •	• •	1,11		×.		1.64	Ą	5	R	14	34 - F 25	:	r	1321	1	1 1	11	111	12	ŝ,	• • •	F.	- - -	120 1 1.06	₹	R	3
3	7	95.1		ĥ	8	1.45	24	121	1.45	5	12	ļ	ā	3,000	3		×- 60		8	Ş	с ;	- 	3	41 1 44		\$	8
-		1,46	+-	S.	¥1	Ę.		ž	41	÷	12.1 . 1.37	8 _N 1		1.50		2	1.39 2.9	-	ñ	3	3	:	3	5	-4	ā :	8:
2		1.45		ŝ	7		90	ñ	9		26 1.36			0.000	 		1.32 -33	••	1.32	.76	Ę.	Ę		201 211	_	<u>R</u>	3
3 5	•• • •	6.1		- 01		7,1	ŧ	63	-	ļ	11 1 10	,		12.756	1	112 1,42	42	135	101	22	ę	67		0.1 0.1	3	8	3
0,000 413 144 1,32		12		=	1	1.32		107	3		1.12		8	12,450	\$	91 R	1.45	į		S	ž		Ŷ	5 I I I	2,	R	1.41
n .	1	8	┢──	4	-	_	-		12	- 		1	8	11.450	3	- R	-		2	5	Ŧ	_	۲. ۹	42 1.45		4	q [
12,450 1 35 1.77	·	<u>.</u> 1	ówno	្ពុ		· 1	ន	R	2		9	1	8	10 245	=	- 1	147		Â.	1			\$	-i	4	, ,	÷.
- - - 7		ß		Ŧ		1.66	1		E	19	81 1.49		8	4270		1	2	ก	3	¥	ž,	2	2 2	76 - 1.46 2010 - 2.46	ę (۲. ۲	Ţ
101 v	• • • •	121	,	R	: -	÷	Ę	2	8	Ŗ	141 142	91 -		05.1			5	1 116	3	ð	2 i	5	- i 8	1 1		Ē	9
+	-	- <u>1</u>		1 5,	<u> </u>	31	1	1 <u>4</u>	9	-	74 - 1.46		8	7,460		1			6.	<u>8</u>]	Ē	2	ក្ត ខ្មី	6		ž,	q : :
X.550 1 235 1.67	-	1.67		1		<u> </u>	-146	262	5	46 2	275 1.46		8	090'9			E- 141	911		នុ	=	3	ส ส	₽. - (- (-+	¥.	5
, 7	•	<u>.</u>		ŝ	200	<u>i</u>	ļ	25	1.61		143	1	â	4.250	8	2	3	2		3	274			. ‡	ñ.	Ē	<u>5</u> '
	÷ —	-	<u>.</u>	902	i	0 1		SX.	5	230	141 56	5	010 0	3,900			1.40 -52	271	8	-259	237	-+	a a	_	ş.	Ř	<u>.</u>
1	÷	-	<u>.</u>		387	9	01	- 34 - 34	1 9		522 - 1.3K	:	ĩ	2.05	-		1.34		3	3	66	-÷-			-÷	5	2
	••	4.1	: ×	ХOС Т	107		NIX	30T	3 1 .	101	251 1.37		012 0	0.00	-	305 - 1.32	22 - 22	:	22	649	23	-+	~	- [-+	ŝ	3
2.055 4 479 1.37		: 2	÷	g	• • •			\$	9	361 34	1	8 u	ž	0.210	=			5	2	ព	\$		×1 お	100	η	Ĭ0	9
	· ·	- 5	÷	: 주	11	1.12	н: т —	205	1.32	427 6	614 132			0,215	_	ŧ	1 1	릴	3	2	<u>8</u>	5	× A	342 1.46	<u>'</u>	8	¥.
4 3% 1.66	<u> </u>	1.66	<u>+</u>	ų V		1,60	, 7K	3	1.64	-2x 1(101 1.45	nno)	2	0.215		58 Lo	1.49	•	1.40		9.	<u>z</u>	° 	60 1.67	r;	з	3
-4 -92 1.69	Ť	18	· · · ·	, R	i) (3)	- X	*	1		24.1 147	ារទំព ភ្	×	0.615	9	1 29	141	100	151	Ŗ	2	¥	r,	NC1 1 004	ę	\$	5
8 3 1 1	ŧ	1	÷	9	3	1.67	-10	70	1.7	-10 6	67 1.49	mos	5	(KS*0)	173		66.1	202		Ş				301 690	Ŗ	ŝ	3
			i		: -1			1.7	-	ï		*`-		5.		1.70		-			0		-			1. 2	
			-1			┨			-							l				ļ							

ᅻ	2	Maximum Decharges and Water Lowin for Different Canas (Closed Cana	Decharge	* Pan	later Lon	13 3 5	Junce	3			m verbour	Systom verbout any Southom Caral)	5 5			Ľ							-	44		_	4 B			ų	
			_		8	-	÷	2A	-	'	2	-				2	E.		1	-	ŀ		┿	ŀ		ľ	Ł		4		į
	ę	2 0	W.L	• •	+0 i ₩'r		ę.	ç	• MT	:_ ?	-0 W.L	<u>ः</u> न					Month				, ,							ē			1 14
	(W)(W)	(mJ/s) : (mJ/s) : (EL.m)		3/1) (m	(m3/s) (m3/s) (EL.m)	L.m) (a	n) (a/Cr	1) (E	(m3/a) (m3/a) (EL.m) (m3/a)		(mJ/s) (s/cm)	.m) (m,Vs)	(s) (m0/s)	(EL.m)			(ing	(m./s) (s	(m. ⁷ /s) (E	(EL-m) (m.	1 (*)	(mJ/s) ; (mJ/s) ; (ELum)	21	(B)(2M) (B)	÷.		(W2(E) - (W2(E)]
	-12	-	1.66	-17		1.6	-20	1 1 6	1 19 1	61.	¥ 1.65	61- 1-5		77		Ē	12.175	ş		3	., Ę	ň.		₩ 	ř	76	₹	4	ŧ	Ŧ	i.
	- - -	 -				9	, F		19	2	7 1.65	2 2 2	17	Ŧ		4	11.120	4			Ŗ	2	¥ E,	- -	<u>.</u>	ę	¥.	\$	÷	¥ ·	2
	Ę	 1		 F			82	2	19	22	991 6	107 107	2	1		F	2010	ų,	=	1.4×	-100	7	2: 	달 	. 12	6	3	6	×	4	1
	•••				Ē	-	 - F				101	1	1	747	ηĻ	Ť	920,1	• •	3	I.AK	ء 		3 	3	1.3	N.	<u>8</u>	4	ş	106	4
				÷		<u> </u>								1	i ve	Ĭ	7 010		- =	1.47	*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ې 	92 		÷	3	÷	Ş	Ľ	14
•	÷.	2	3		÷	÷						,			1		1	-	:-		1		N N	-	2	107		1	5	Ş	Ĵ,
•	Ņ	- -			- 2				÷	8	2 3		.	7 . ,		<u>e</u>		3		-;-	÷.,	,		5 F			7	1	1	ç	
	 7	2	1.60	 F;			9	3	2	ŝ		Ŷ,	<u>۽</u>	IT .		5		į	- 7	÷	1	- 1		- 7	-	~ ~ •					
	 *		1.57	 	E	5	26			76	108 1.56	92. 93	Ë	Ŧ			3.220	-	112 - 1	5- N+ I	- 22	110 1.134	\$	S	5 -	ş	≊	5	5	-	5
		• -		4	•		101	127	2	Ē	36 145	Ior si	2	461	əų	â	3,000	. 	1 16	e 651	Ŗ	8	8- 0	161 -	2	3	ŝ	9	3	ŝ	J.
			-	1				ł.	2		111		8	9E T -	N	82	1.520	•••• 	×			8	208	204	<u>8</u>		201	1	¥07-	Э.	с. Т
				••• -		÷				÷ -			R.	- E	G¢n	- 6	0,006	:	- 		:	50 1.22	2 226	ה י -	. 13	22	5,6	2	ž	É	P
	7 . *			• - · ·			* * *				• • • •	1				i –	12.7%	X	1	1.43	 	121 21	987	<u>8</u> 	51	8	137	ç	3	ŝ	97
•			• • • • •	·	 5 - F						1 9	137				÷	12,450	-	्र : स	- 1 - 1 - 1	 	97.1 • • •	\$ 7	. R 	RC.I	· 4	- ¥	1	3	4	2
1		·	_	÷	1	-	ъ. н	- -	-		Ŀ	+	- ! -			12	1.50	÷	- 2	4	3	· Ř. :	5 	÷	- <u>5</u>	: 9 	; 4	, 1	2	. 4	1
•			1	 7	$\overline{\tau}$						• • • •		2 <u> </u>			<u>ځ</u> ک	10.2%	÷	÷	+	R R	<u>.</u> 5	e P	5	ň	3	3	. <u>.</u>	ę	Ģ	4
		- •	ŝ	- • -					;	- į-						٤ ۽ ا	0.00		· : - ·			24 1.27	به . مستر ح	5	13	. R.	5	4	Ŗ	ŝ	÷
•		• • ••		·· ; -		÷	- 7-	a : :					a ¦ ∦ - † -		ગ	3 2	5	;				051 - 20			2		<u>9</u>	1	Ę	158	*
• •	 \$.:		<u> </u>		 8 _ 4		 5 : 3		<u> </u>	1 3	- ri -	1 	1	- +	- jo	3 2	7,60	÷		÷	ຸ ຈ 		: : : :	ž 4		4	(*22	4	ş	11	7
•	 -			-		<u> </u>			_	• • •					a	Ž	9	÷.		2 2 2		113 1.37	2		ŝ.	2	្តដ	Ş	ĥ	ŝ.	1
	1	÷-		• • •	• •											3,8	7		t		103	ţ.	261	12 71	<u>5</u>	100	3	2	, j	594	-
	ę :	• •		• † •				- + -	÷	-		1						1.	· †	÷	÷-	4 -			1	6	200	137	5	12	1
	•	- 1 7	<u> </u>							÷.		2						•	. 4 .	÷			÷.,		÷.					.13	13
	ę.	Ę.	• •		• • •	¥		 7	9.	_ [208 1 43	-	¥.	9 7 1 -		5	60 4		÷		į				-÷ ·		1		1	3	-
	• 5 •	111	1	ិ. ឆ្	г	4	ŝ	ž.	÷.	4 ić.Z-	427 1.42	52 7	2 2	1.36		 10 10	0.CKI0	ł	.	-+					÷		-				
	Ą		92.1	19	374 1.	IJ.	360		134	4 2 651	449 1.35	ef.c- 53	(11)	Ą	-	Z	0.2.0	- 1	-	1	- -	5	5	8		1		ł	7	2	
	2	R			374 - 1.	12	+24	355	1	5		- 54 - 52	5	2	ทั่วงา ขั้ธณ	£	6.215	Ċ,	76 1	1.47	-	621 - 04			61		Ŧ	¥	÷	7	4
	Ē	X01		 :	-	<u> </u>	Ŷ	10	×:	- 4	51 - OI	4	1 16	9	€) NoJ	ź	0,215	÷	2		 	40 139	۲ 2	2			\$	42	7	ta	CF
	- - ••	• • • •		• ~	 			1		-13	191 191	1 1	3	27 I		×	0.615	ŧ	1 59	3		151 19	8	121 . 1	51		2	ě.	ş		2
	- A	· - · -					• • • • •				•••	- 	·	1.43	tuo2 neD n		0,10	24		<u>.</u> 8		130 2X1 130	-120	114 0	ŝ	265- 1	. 399		. v2	3.49	2
						t					١.	-	-	ł	Ň	Max, W.L. at Junction	teor (chan			┨─	·	5	F	2	١.		5	ł		1 47	l
		- 20								•									7	-	•						ŝ				

TABLE 8.4 RESULTS OF HYDRODYNAMIC SIMULATION : PROPOSED CONDITION

8-35

TABLE 8.5 HYDRODYNAMIC SIMULATION RESULTS OF PUMP DRAINAGE SYSTEMS
TABLE 8.5 I

Reservoir Characteristics	I Area Initial (Low) Maximum (High)			10.11	4.050 -1.00 0.70	<	19,000 -0.20		19.000 -1.00 0.95		12.375 -1.00 0.83	
cs .	Casenton	Capacity Start Stup Optimum	21111	(hr:mm)	355		3:57		4:03		4:12	
Pump Characteristics	1273	Stop	CVC!	(m3/s) (EL. m) (EL. m) (h	0.80		0.80		0.80		0.80	
Fumb Ch			Level"	(EL. m)	0.80		0.70 0.00 0.80		-0.80		1.05 -0.80 0.80	
		Capacity		(m3/s)	1 0 25	<u>, , , , , , , , , , , , , , , , , , , </u>	0.70	1	1.50		_	
	I	1	Total		15.27	10.01		10.01	74.01		45.95	
ame.		Arca	Sub-Drainage	(ha)		10.01	32.57		70.92		45.95	
Summer of the second	Drainage oyacura	Category				Phase I	Phase I		Phase II (including	Phase I)	Phase I	
		Name				Thanh Da	Ben Me Coc 1 -	FLAN	Ben Mc Coc 1 -	East + West	Ben Me Coc 2 -	North + South
	ases	Sub-Case				-	2	i	ц	1	ť	•
	Model Cases	S Sec		:		_			7		,	'n

* : Refers to internal water level at reservoir.

** ; Refers to external water level at outlet.

Note : - For all cases, 5-year rainfall as derived from Mass Curve analysis has been applied. - For Thanh Da, at the outlets, dynamic water level with crest level of EL. +1.32 m has been applied.

- For Ben Me Coc 1 and 2, at the outlets, dynamic water level with crest level of EL. +1.50 m has been applied.

- Fiap gates (non-return valves) have been set up at all the outlets.

RdA.L dW0d	Alternative 1 Vertical Shaft Axial Flow Pump	Alternative 2 Horizontal Shaft Axial Flow Pump	Alternative 3 Submersible Motor Pump
18.5		Horizontal Shaft Axial Flow Pump ¢ 500 x 0.35 [m ³ /s] x 3.5 [m]	Submensible Motor Pump #400 x 0.35 [m ³ /s] x 3.5 [m]
Quantity Revolution Efficiency Motor Weicht ber Unit	980 (rpm) 880 (%) 18.5 [kW] 2500 [kgt]	700[rpm] 81 [%] 18.5 [kW] 1000 [kgf]	970 [rpm] 80 [%] 18.5 [kW] 600 [kgr] (pump & motor)
2. Installation Layout			
:			
Other Equipment Discharge Valve Flap Valve Pipe Electrical Equipment	 (本 400 Motor-driven Butterfly) か 500 か 500、 か 600 1 Set (Electrical Panels) 1 (Manual, 5 ton) 2 (Manual, 5 ton) 	l (φ 500 Motor-driven Butterfly) φ 600 φ 500, φ 600 1 Set (Electrical Panels) 1 (Manual, 3 ton) 2 Vacuum Pumps & piping	None \$ 500 \$ 400, \$ 500 1 Set (Electrical Panels) 1 (Manual, 1 ton) None
Area of Civil and Superstructure	Area of pump room is little smaller than Hortzontal shaft model. However, the superstructure is much higher than wher types.	Pump room is little larger than others' because of the motor 3 installation. The height of the building is less than half of Vertical shaft pump's.	Both the area of pump room and the height of superstructure a is smallest among three.
5. Weight of Pump Facilities	Due to the largest weight of pump itself, the total facility is the heaviest among three.	3 Intermediate weight.	Although the pump tself is very light comparing others, civil 4 work weight is little less than others
6. Instaliation of Equipment	The installation requires well trained technicians with special pump installation skills for leveling and shaft alignment.	The installation is easier than vertical type. However, it still 2 requires well trained technicians with special pump installation skills for feveling and shaft alignment.	The installation is the casiest among those three.
Operation	Pump can be easily started because impeller is always a submerged in the water.	Priming by vacuum pump is necessary when the main pump is started. The starting process, however, can be automated to ease the operation complexity.	4
8. Vibration and Noise	Higher vibration and noise are expected than submergible motor pump whose motor is installed under water. The environmental effects are acceptable because the motor is installed on fixed foundation in a closed concrete building while pump is under water.	Higher level of vibration and noise are expected than submergible motor pump whose motor is installed under a water. The level is acceptable level because both pump and motor are installed on the fixed foundation in a closed concrete building.	Vibration and noise are the lowest among three because ail main components are placed under water.

TABLE 8.6 (1/2) COMPARISON OF DRAINAGE PUMP TYPE ALTERNATIVES

ļ

: : .

TABLE 8.6 (2/2) COMPARISON OF DRAINAGE PUMP TYPE ALTERNATIVES	
TABLE 8.6 (2/2)	

			Alternative A
HdAJ, dWDd	Alternative 1 Version Shafe Avial Flow Pume	Alterbatuce 2 Blow Pump	Submersible Motor Pump
9. Dauly Maintenance	Operating condition is hardly checked directly because most of rotating parts such as pump bearing are submerged in water.	Operating condition can be checked directly because all the rotating components, including the motor, are above the water.	Operating condition cannot be checked directly because all the components, including the motor, are submerged in water.
10. Overhaul	Overhaui is drifteult because vertical shaft with some submerged baring requires special skill and well-trained 1 technicians. Lifting up the pump itself is a lot of work.	The casiest maintenance ability is expected because both motor and pump is above the water level. Overhaul is easily performed with its horizontal-separate casing structure.	Overhaul is easy by lifting up the pump and motor unit.
11. Lrić Span	Longer device life, comparing with submergible pumps, can be expected because the motor unit is free from suction water contact. By employing some anti-trosion and or non-metal materials, the pump life can be enhanced.	The longest life among three is expected because both the motor unit and pump itself are always above the suction water kevel.	A long life span cannot be expected. Submergable pumps are generally used for short-time or temporally stations. Leakage may occur because motor unit and pump itself are always in the suction water.
12. Reliability	If the periodically check and maintenance are carried out, long life operation and higher reliability are expected.	If the periodically check and maintenance are carried out, long 4 life operation and higher reliability are expected.	Because of possible leakage into the motor unit due to the temperature changes caused by intermittent operation, it has the lowest reliability.
13. Achievements for the Same Type	There are many cases of adoptions in the past for same type of projects.	There are many cases of adoptions in the past for same type of projects.	Although there are some cases of adoption of submersible motor pump for the long-term or permanent pumping stations. there are no or very few examples of the pumping stations with the large-size submersible motor pump treating scawater contamination.
14. Initial Cost 15. Pump and Mechanical Equipment	Most expensive because of the heaviest and the most 2 complicated pump structure.	Intermediate. Vacuum pump must be installed in order to prime the main pump when it is started.	s Lowest price.
2) Electrical Equipment	Same as others'	Same as others' (Strictly speaking, it costs a couple of percent higher than others because of extra electrical facilities for the priming vacuum pump.)	Same as Plan 1. 4
3) Civil and Superstructure	Most expensive. To reserve enough 1 lift for a crane for maintenance, the superstructure is much higher than others'.	Intermediate. Due to the motor installation, the superstructure has to be a little larger in longitudinal dimension.	Least expensive. Thanks for much flighter weight of pump unit, civil cost is reduced comparing with other pumps.
15. Running Cost	Intermediate energy cost.	Most efficient in electric energy consumption due to the highest pump efficiency.	Same as Plan I.
16. Maintenance Cost	The highest maintenance cost is predicted because there are many consumable parts.	The lowest maintenance cost is expected because both motor and pump is above the water level. Overhaul is easily derformed with its horizontal-separate casing structure.	Intermediate maintenance cost. 3
17. Evaluation	Not recommended. Not recommended. highest initial cost, this type of pomp is not strongly recommended for a project with limited budget.	Not recommended. With higher reliability. longer life expectancy, and high efficiency in the long run. 52 however initial cost is high including civil cost.	Most Recommended. Although low cellability and short life expectancy, initial cost is lowest. This type should be considered as the first choice for this project.

1

8-38

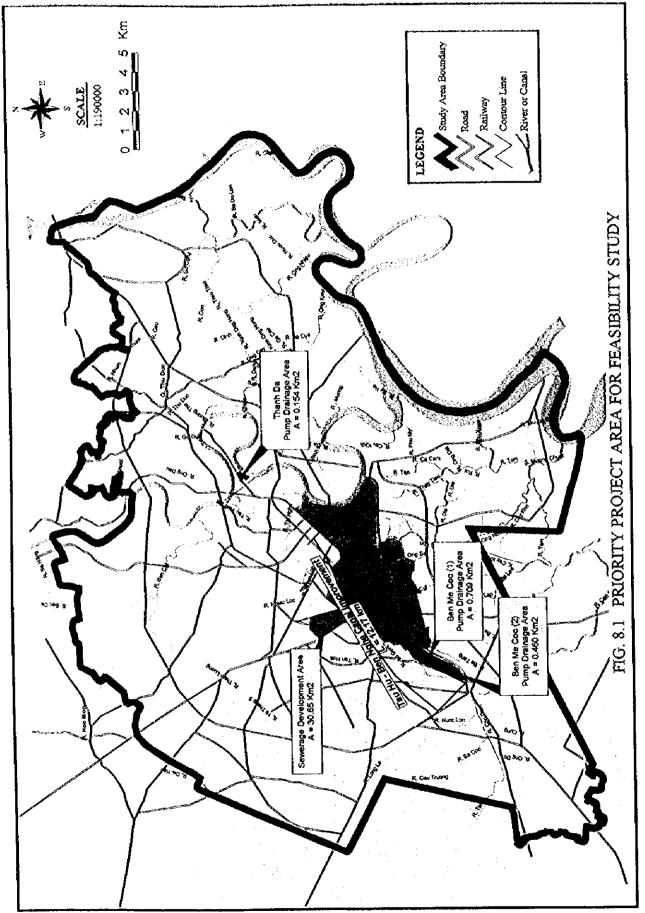
-	TADLE 0.1 IN	OPHIA	TOTAL OF THE ALL THE TAR THE TAR THE ALL AND A T	. T. T.				ĺ
Pumping Station Item	Thanh Da P.S.		Ben Me Coc (1) (East) P.S.		Ben Me Coc (1) (West) P.S.	<i>v</i> à	Ben Me Coc (2) P.S.	
Pump (1)	0.35m3/s×3.5m 400DSZ3(18.5kw)	-	0.35m3/s×3.7m 400DSZ3(18.5kw)	2	0.80m3/s×3.7m 600DSZ3(37kw)	-	0.70m3/s×3.7m 600DSZ3(37kw)	F-1
Pump (2)							0.35m3/s×3.7m 400DSZ3(18,5kw)	
Flap valve () Flap valve (2)	¢ 500mm	-	¢ 500mm	2	¢ 900mm		¢ 750mm ¢ 500mm	
Pipe	¢400mm	-	¢ 400mm	-	¢ 750mm		ф 600mm ф 400mm	···
Crane	1 ton	-	1 ton	-	2 ton	5	1 ton	
Panels etc.								
*H.V. incoming panel				-		-		
*H.V. receiving panel		-		-		 -1		
*Transformer Panel						-		• •
*L.V. Motor Panel		⊷		64		-		
*Aux. Panel				-		ya		.
*Local Control Panel *Instruments							- <u>-</u>	98.95.364.6
Stop log for discharge pit	W1.4 m x H3.1 m	-	W2.6 m x H3.8 m	-	W2.1 m × H3.8 m	-	W3.6 m x H3.2 m	
Stop log for suction pit	W1.5 m x H3.1 m	-	W2.6 m x H3.6 m	-	W2.1 m x H3.6 m		W3.6 m x H3.2 m	
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		W2.0 m × H3.2 m	
Bar screen	W1.5 m x H3.1 m	-	W2.6 m x H3.6 m	-	W2.1 m x H3.6 m		W3.6 m x H3.2 m	~~
Gate for gravity flow	W1.0 m x H1.0 m	-	W1.5 m x H1.5 m	[<u>-</u>	W1.6 m x H1.6 m		W1.3 m x H1.3 m	
	W1.2 m x H1.2 m	-	W2.0 m x H2.0 m		W2.0 m x H2.0 m		W1.5 m x H1.5 m	p4
	W1.4 m x H1.4 m	ы	(W1.4 m x H1.8 m)	3				
				Ξ				(
		-	(WI.3 m × H1.3 m)	Ξ			W1.8 m X H1.8 m	
Outdoor space for power receiving panels	W 4.7 m x D 4.7 m	_	W4.7 m x D4.7 m	-	W4.7 m x D4.7 m	-	W4.7 m x D4.7 m	
				ĺ				

TABLE 8.7 MAJOR EQUIPMENT LIST OF PUMPING STATION

8-39

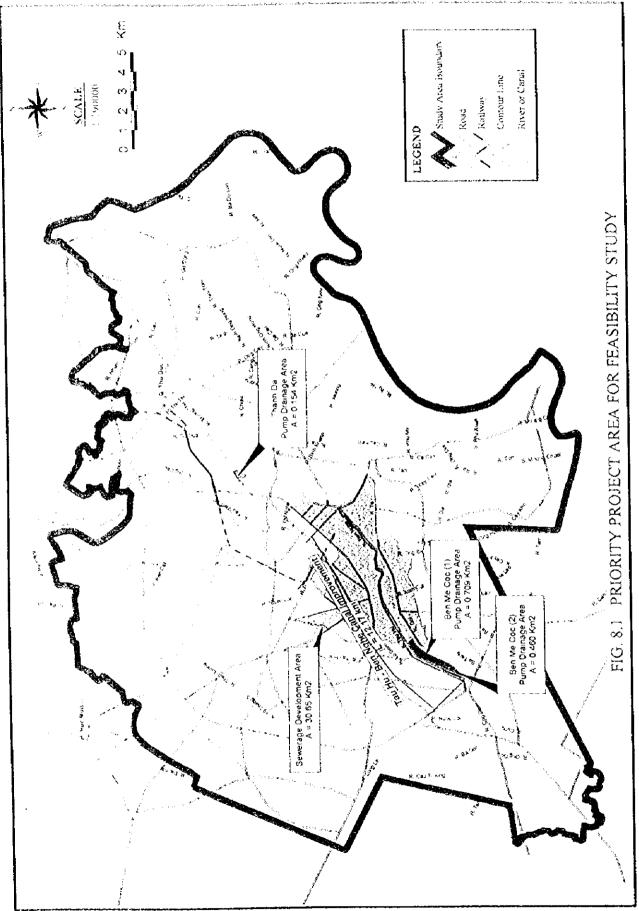
1

T	1997		2010		2020	
Sub-zone	Covered	Population	Covered	Population	Covered	Population
	Population	Density	Population	Density	Population	Density
. 1		(person/ha)		(person/ha)		(person/ha)
1) Tan Hu - Ben Nghe Ca	anal Left Ban	k Area				
1. Sub-zone 1	19,933	151	19,871	150	19,823	150
2. Sub-zone 2	44,971	318	44,688	316	44,470	315
3. Sub-zone 3	12,543	570	12,428	565	12,340	561
4. Sub-zone 4	51,513	707	48,331	663	46,034	631
5. Sub-zone 5	32,333	450	32,041	446	31,820	443
6. Sub-zone 6	38,341	816	36,044	767	34,374	731
7. Sub-zone 7	163,247	703	159,187	686	156,189	673
8. Sub-zone 8	31,366	699	28,425	633	26,355	587
9. Sub-zone 9	25,949	642	25,038	620	24,363	603
10.Sub-zone 10	21,874	923	19,777	834	18,303	772
11.Sub-zone 11	62,892	801	61,771	787	60,936	776
12.Sub-zone 12	10,679	703	9,310	613	8,377	551
13.Sub-zone 13	153,275	553	147,211	531	142,958	516
14.Sub-zone 14	132,401	617	129,482	604	126,901	592
15.Sub-zone 14	88,578	525	89,250	529	89,308	530
16.Sub-zone 14	69,864	629	68,795	619	68,083	613
Sub total	959,759	567	931,649	550	910,634	538
2) Island Area between	Fan Hu - Ben	Nghe and D	oi - Te Canal	5	;	
17.Khanh Hoi	219,217	626	· ·	609	209,134	597
18.Ong Kieu	1,434	372	1,077	279.	864	224
19.Hung Phu	67,220	876		779	54,806	714
20.Tung Thien Vuong	51,588	629		540	40,847	498
21.Binh Dong	21,369	440	· ·	411	18,926	390
Sub total	360,828	643	338,291	603	324,577	578
(3) Doi - Te Canal Right						
22.Rach Ong	68,615	523	1	515	66,778	509
23.Pham The Hien	40,361	219		232	44,768	243
24.Binh Dang	39,140	202		215	43,525	22
Sub total	148,116	288	151,838	295	155,071	302

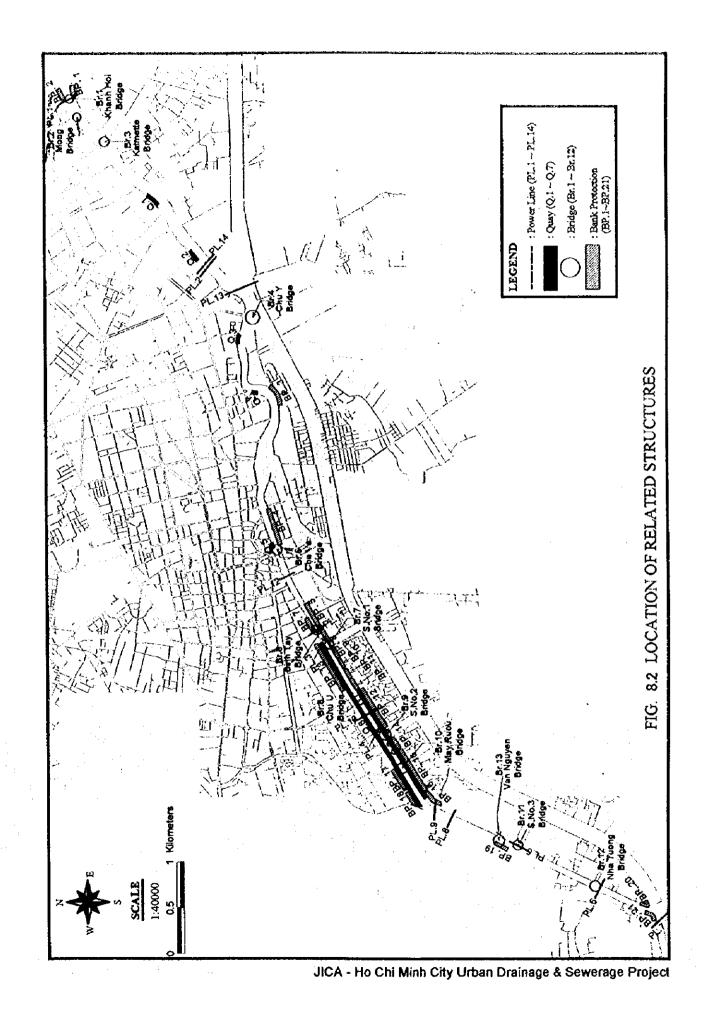

Table 8.8 Covered Population and Population Density by 24 Sub-zones

Sub-zone	Design Wastewater Discharge (m ³ /day) (2020)				
	Wastewater	Groundwater	Total		
1) Tau Hu – Ben Nghe Cana	······································	····			
1. Sub-zone 1	9,297	664	9,961		
2. Sub-zone 2	20,856	1,490	22,346		
3. Sub-zone 3	5,788	413	6,201		
4. Sub-zone 4	21,589	1,542	23,131		
5. Sub-zone 5	14,924	1,066	15,990		
6. Sub-zone 6	16,121	1,152	17,273		
7. Sub-zone 7	73,252	5,232	78,484		
8. Sub-zone 8	12,361	883	13,244		
9. Sub-zone 9	11,427	816	12,243		
10. Sub-zone 10	8,585	613	9,198		
11. Sub-zone 11	28,580	2,041	30,621		
12. Sub-zone 12	3,928	281	4,209		
13. Sub-zone 13	67,047	4,789	71,836		
14. Sub-zone 14	59,517	4,251	63,768		
15. Sub-zone 15	41,885	2,992	44,877		
16. Sub-zone 16	31,931	2,281	34,212		
Sub Total	427,088	30,506	457,594		
2) Islands between Tau Hu -					
17. Khanh Hoi	98,084	7,006	105,090		
18. Ong Kieu	405	29	434		
19. Hung Phu	25,704	1,836	27,540		
20. Tung Thien Vuong	19,158	1,368	20,526		
21. Binh Dong	8,876	634	9,510		
Sub Total	152,227	10,873	163,100		
(3) Doi - Te Canal Right Bar					
22. Rach Ong	31,319	2,237	33,556		
23. Pham The Hien	20,996	1,500	22,496		
24. Binh Dang	20,413	1,458	21,871		
Sub Total	72,728	5,195	77,923		
Total	652,043	46,574	698,617		

L

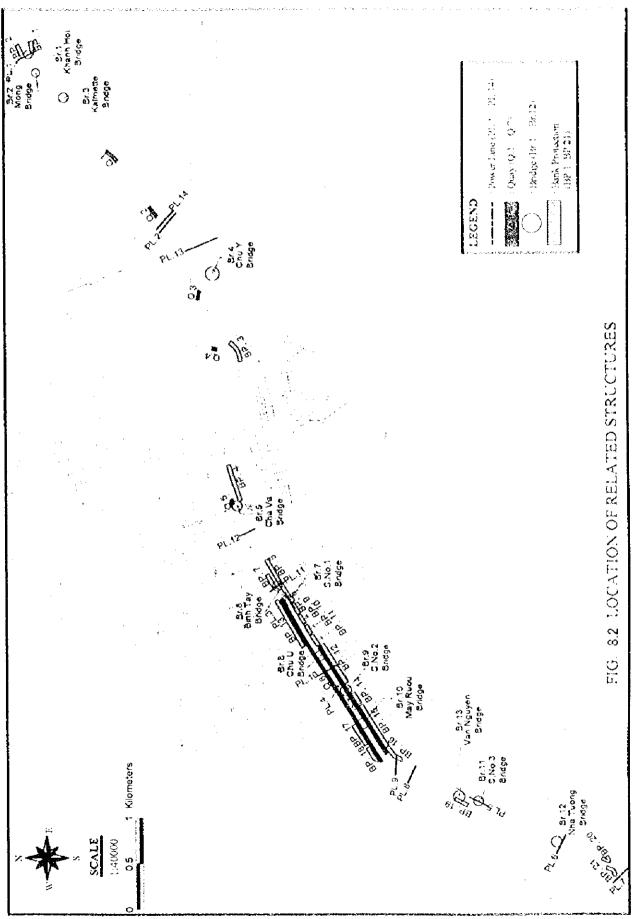

Table 8.9 Design Wastewater Discharge of 24 Sub-zones

8-41

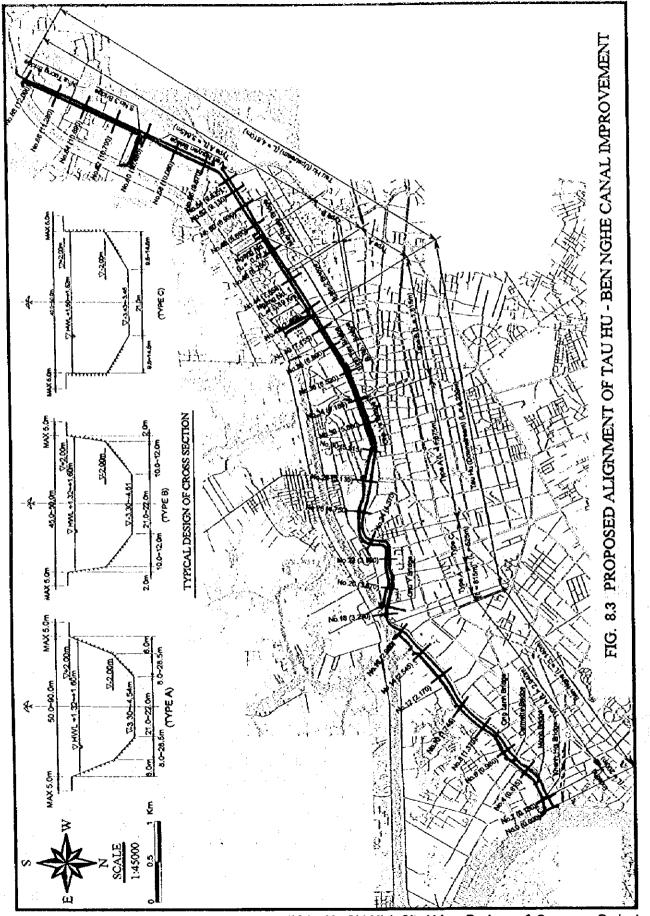


JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

•

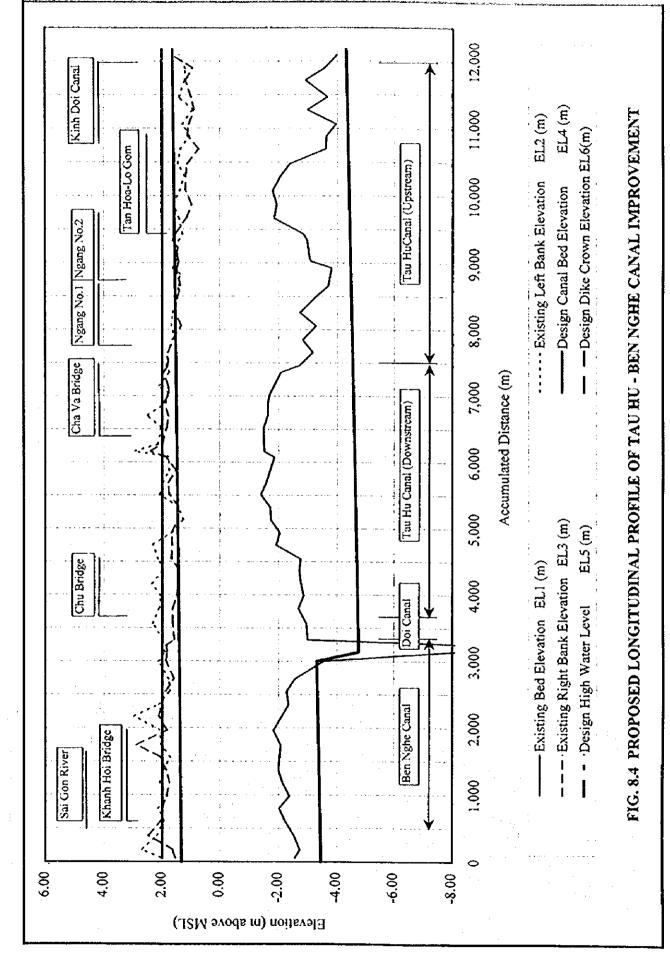


JICA - Ho Chi Minh City Urban Drainage & Sewerage Project



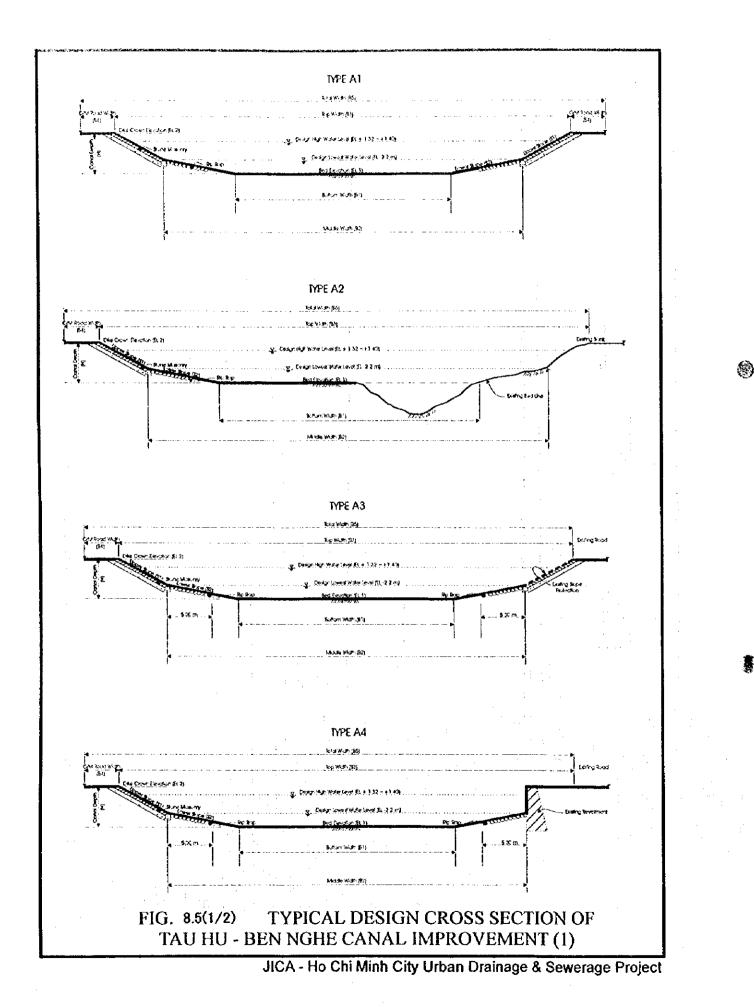
Ś

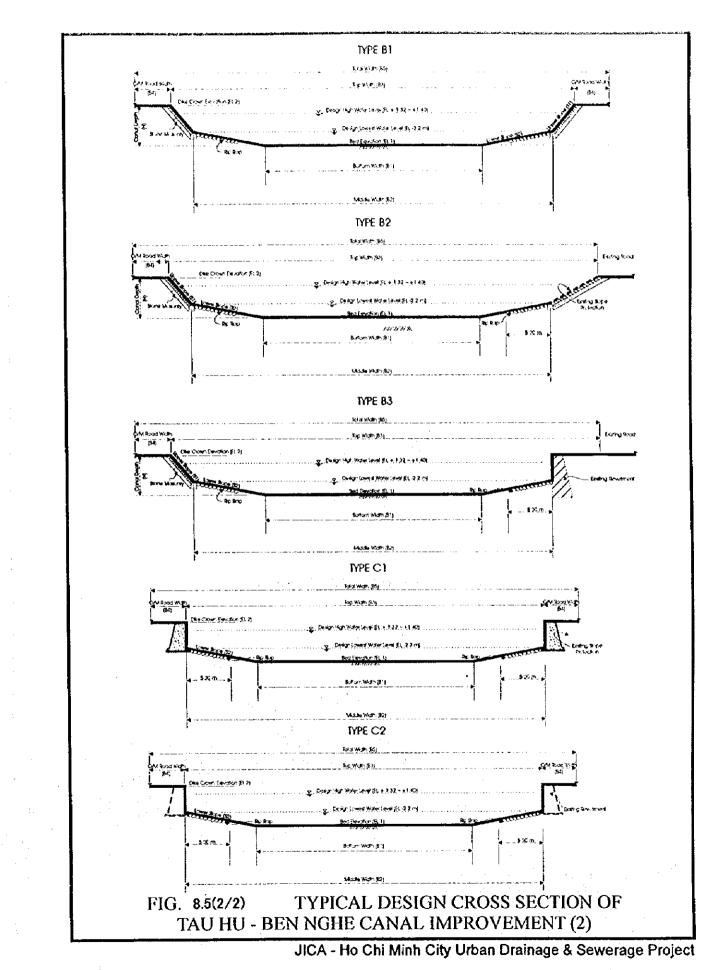
瀫



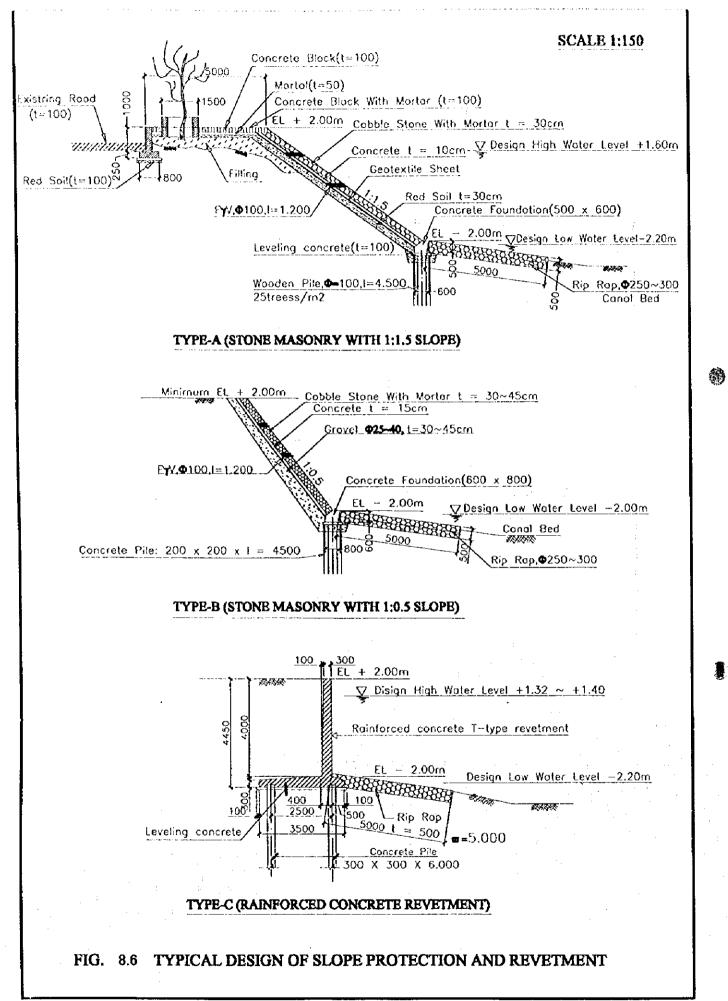
JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

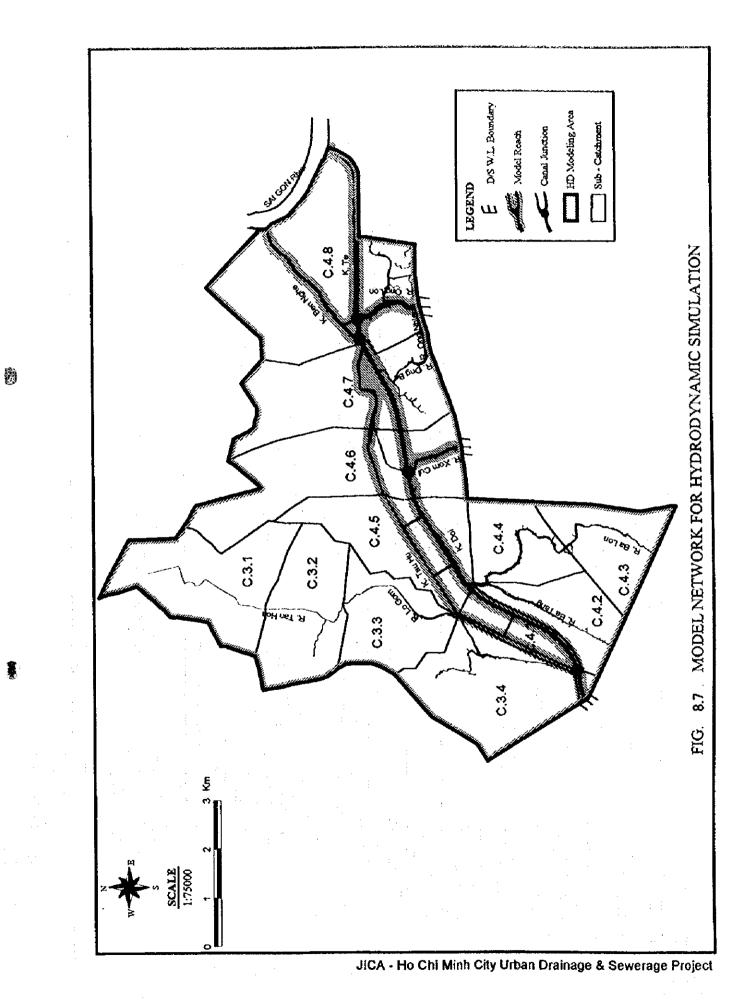

Θ

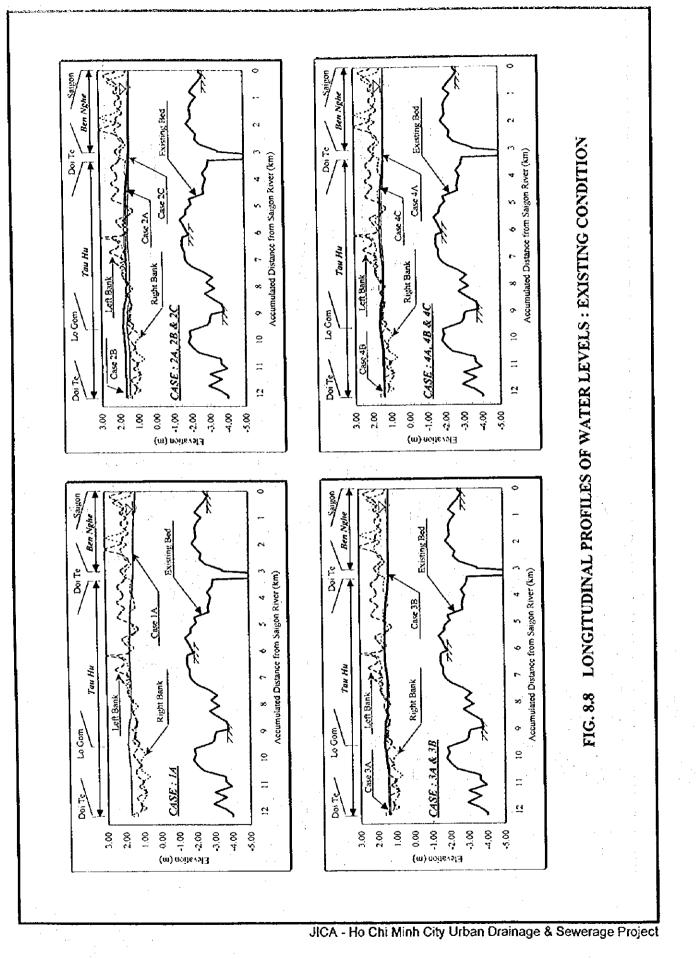


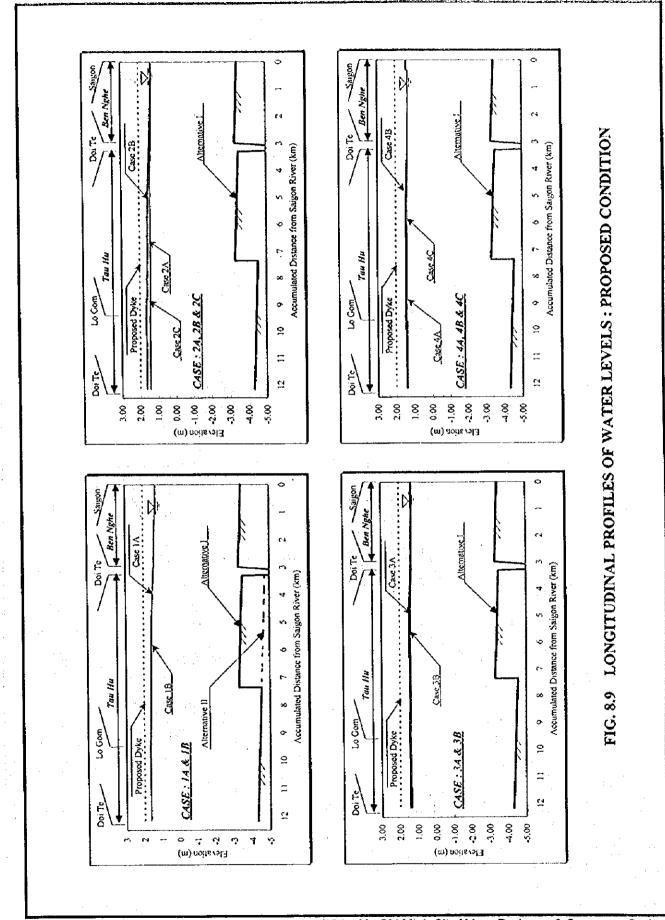
8-45


Ŷ

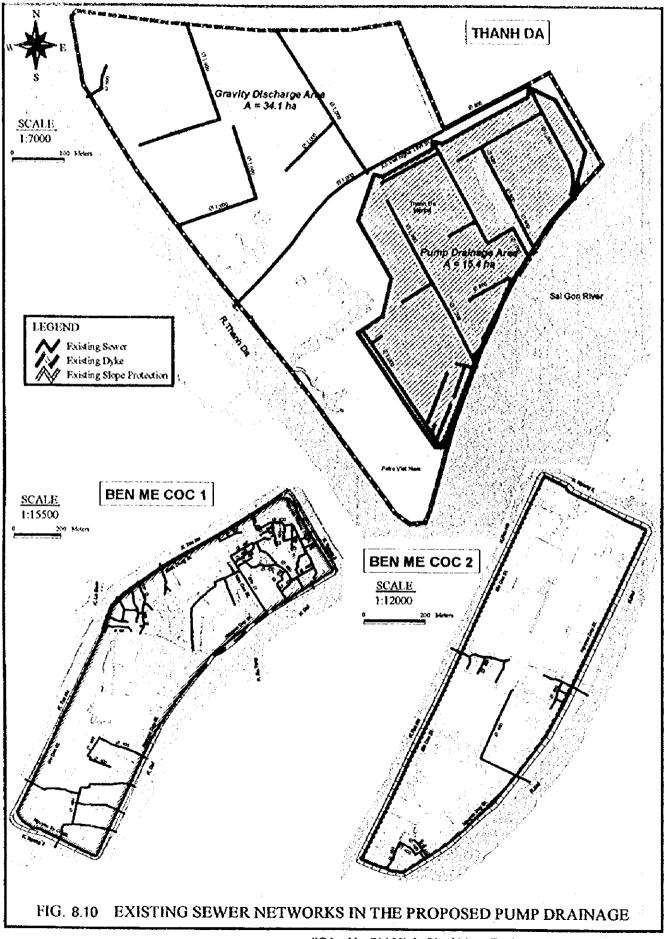
3



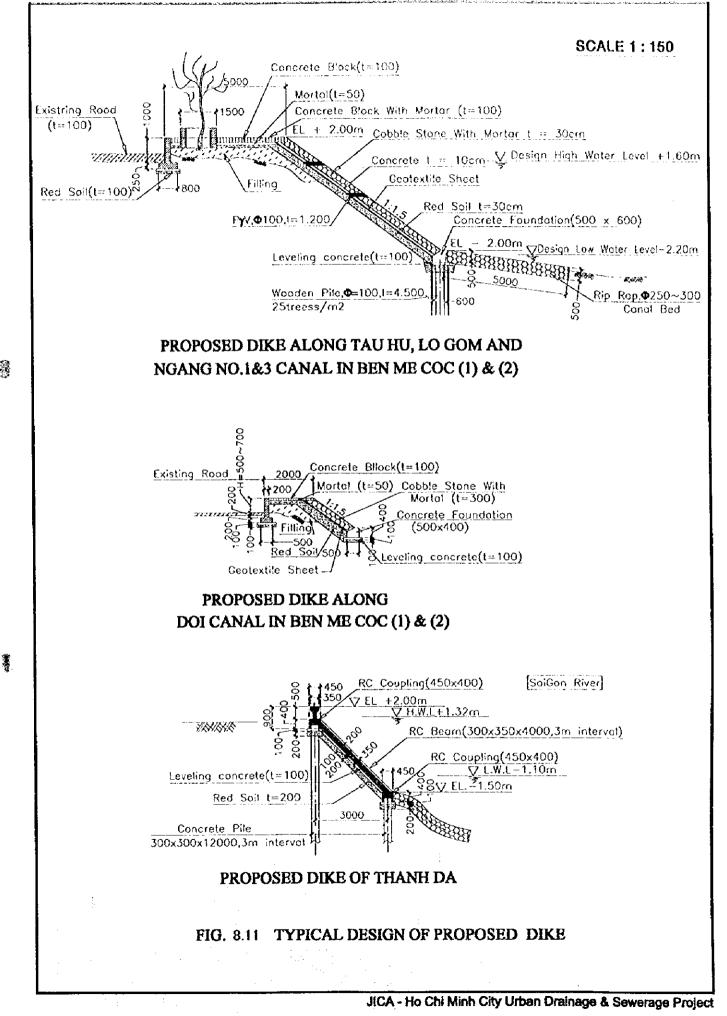

\$

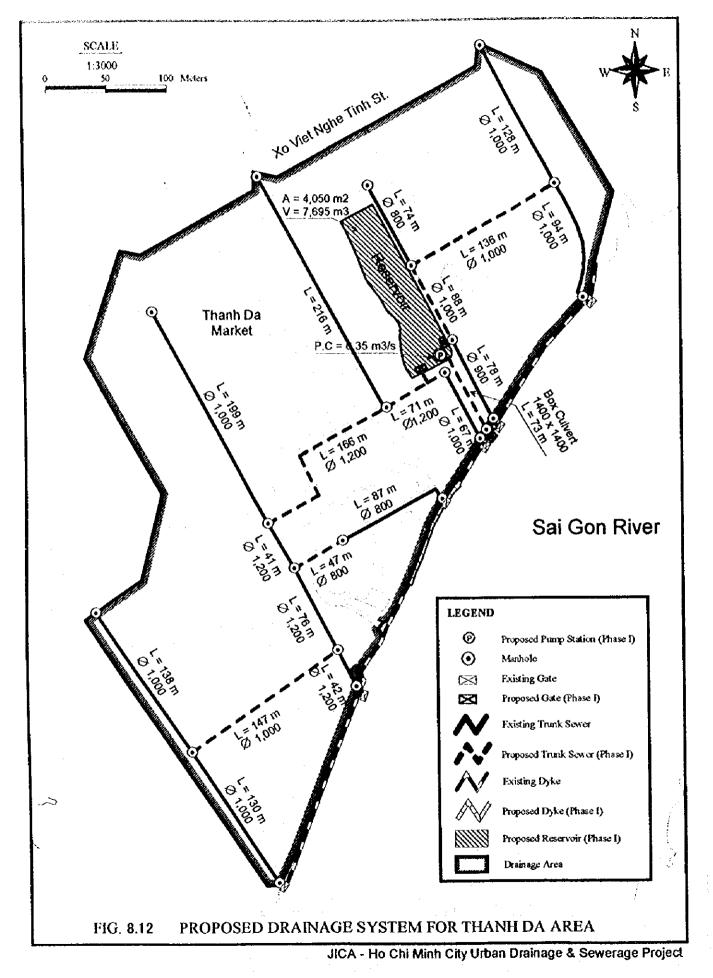


JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

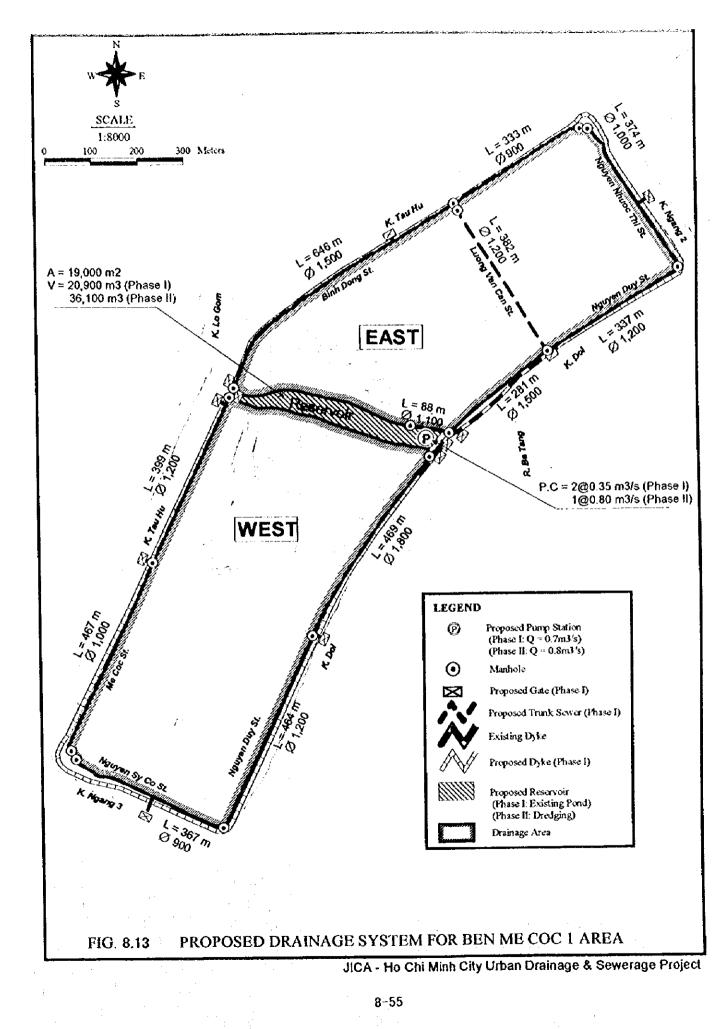


8

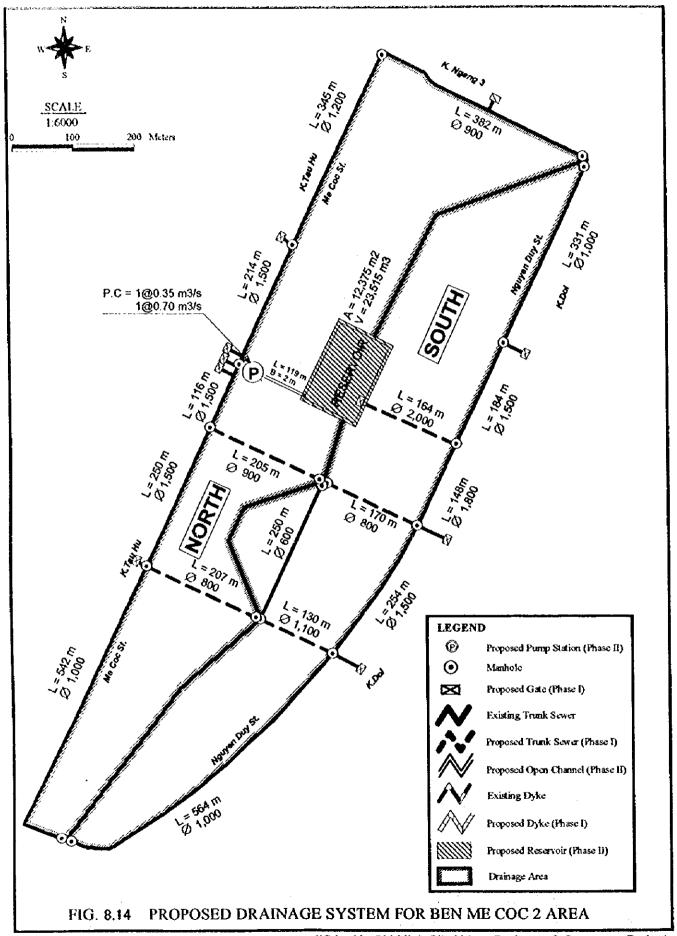

JICA - Ho Chi Minh City Urban Drainage & Sewerage Project



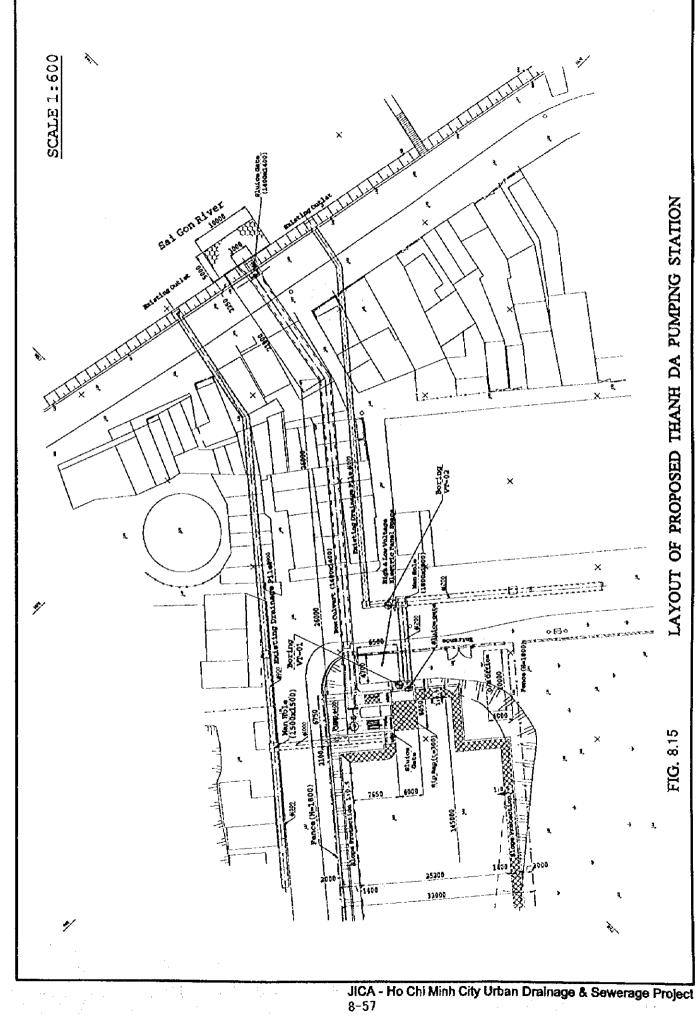
JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

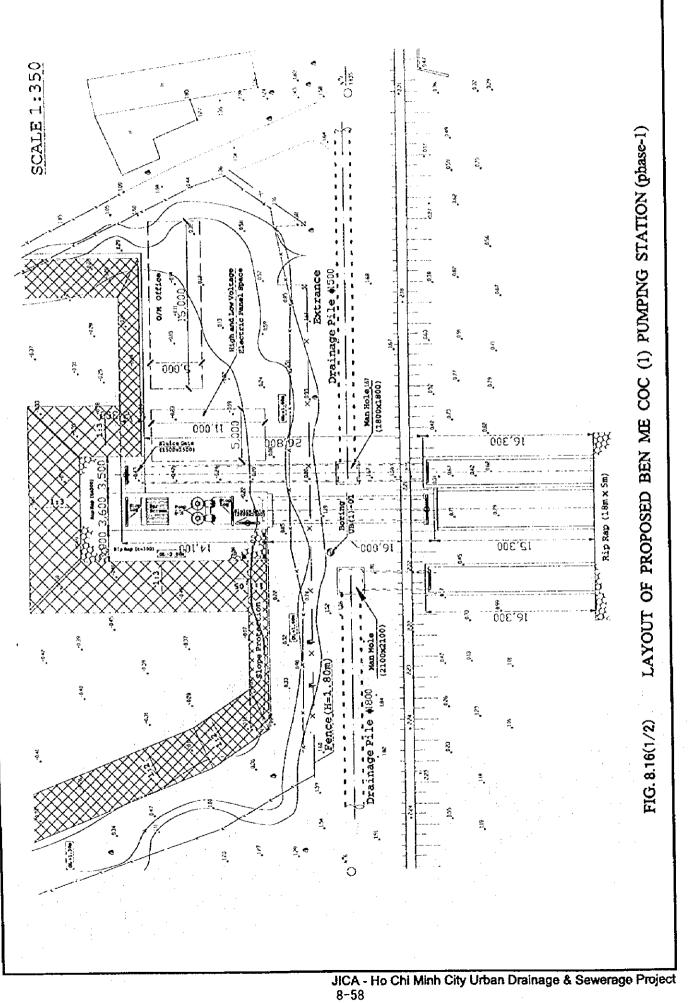

1000 C

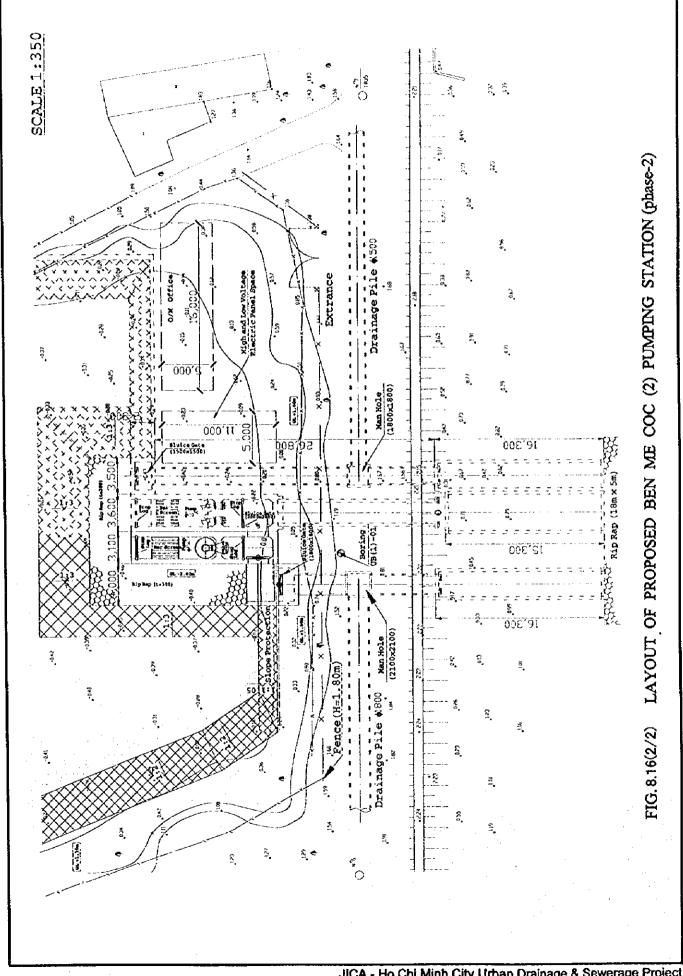
A sheet



Ċ

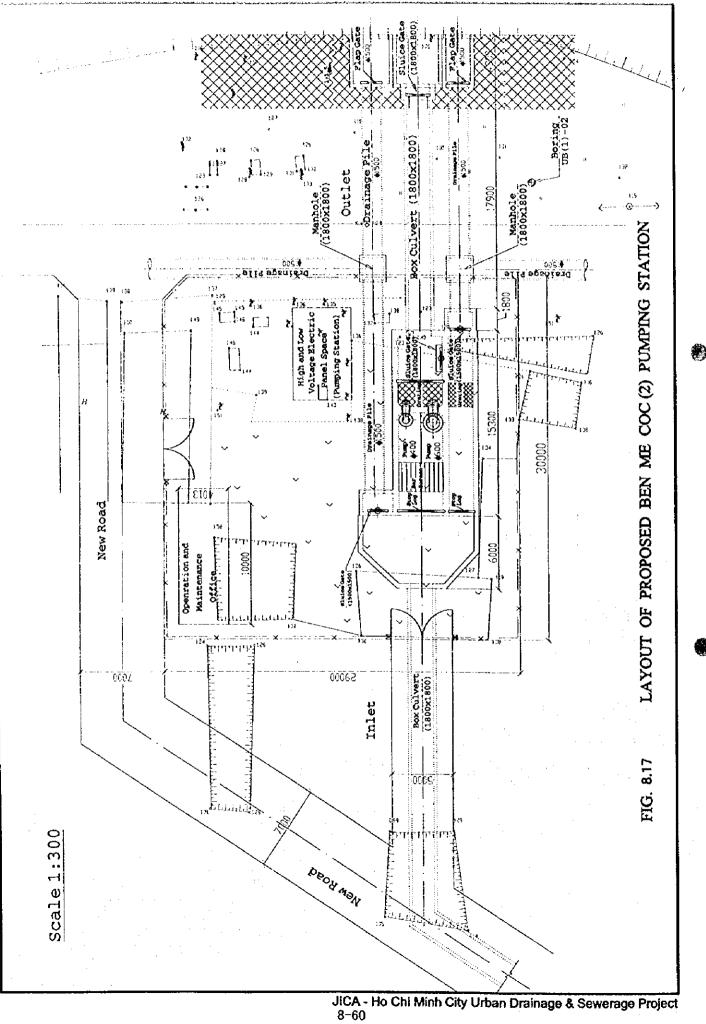


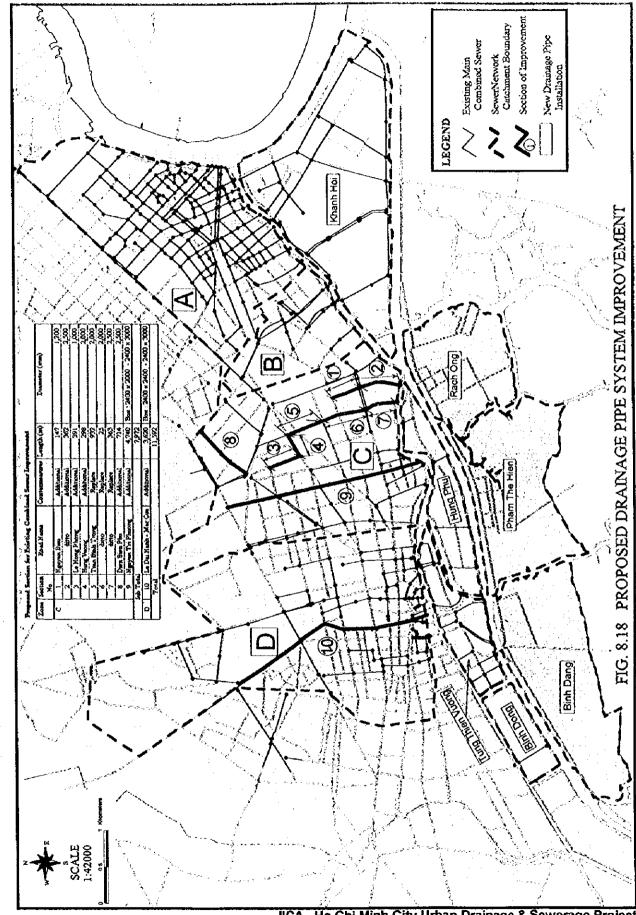

....



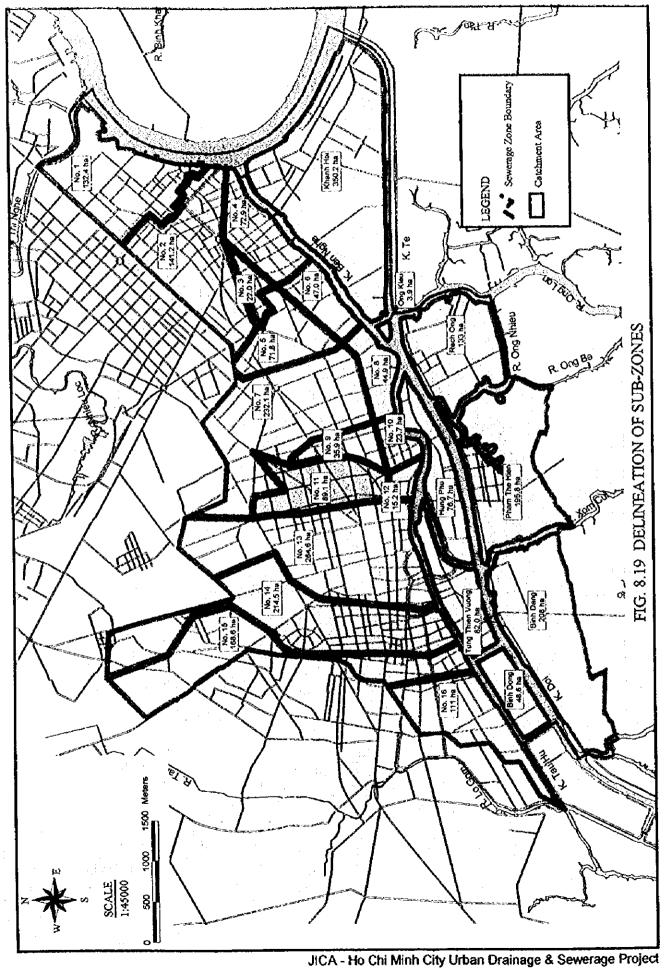
JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

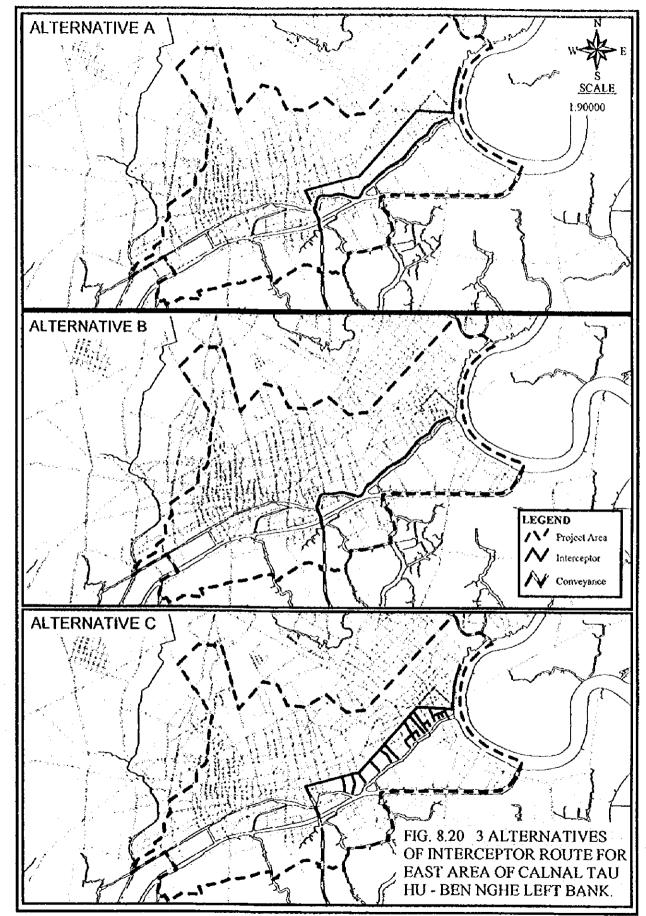
6

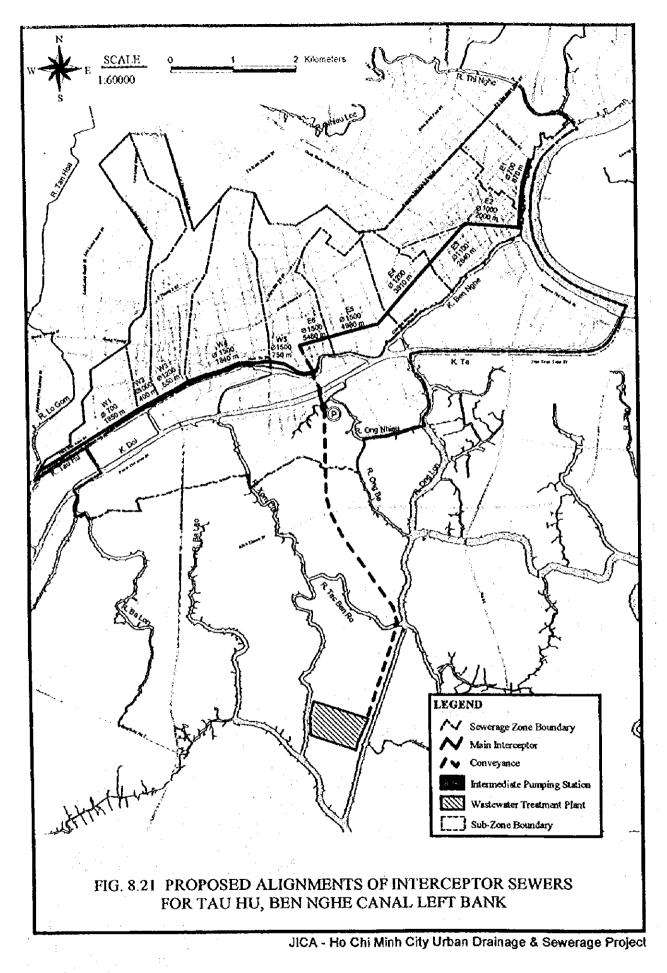




Ì

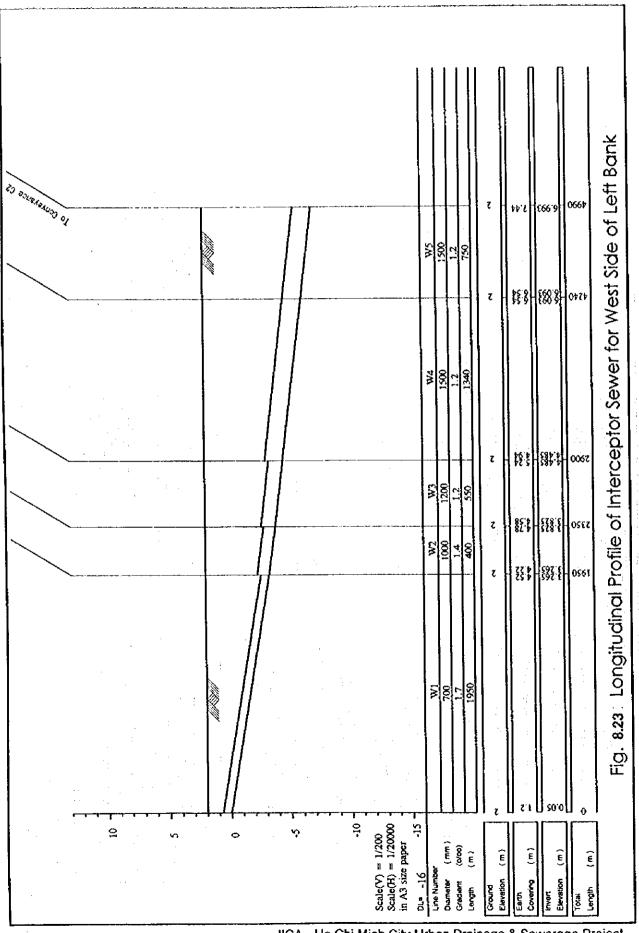

JICA - Ho Chi Minh City Urban Drainage & Sewerage Project 8-59

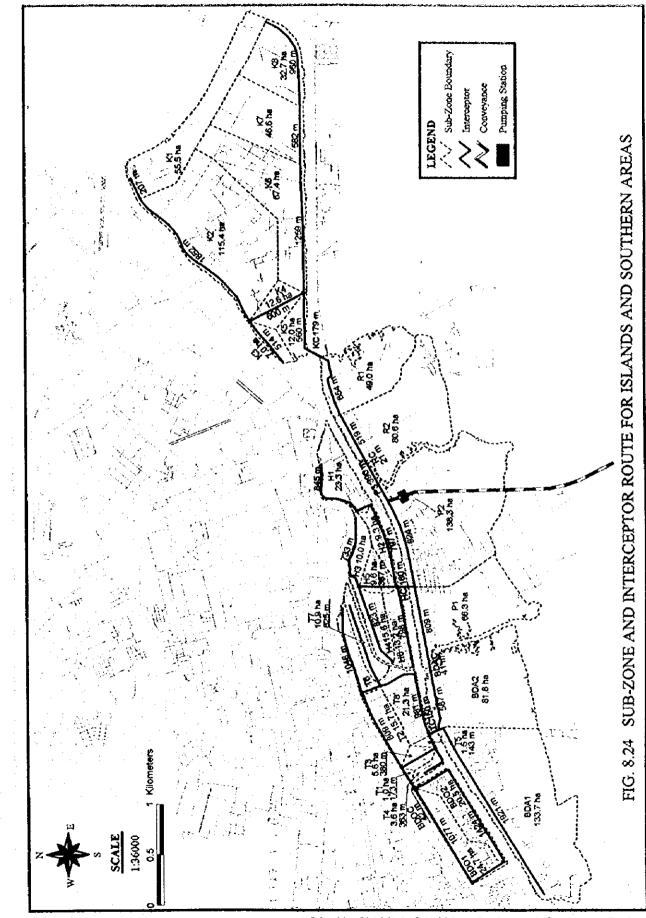



纞

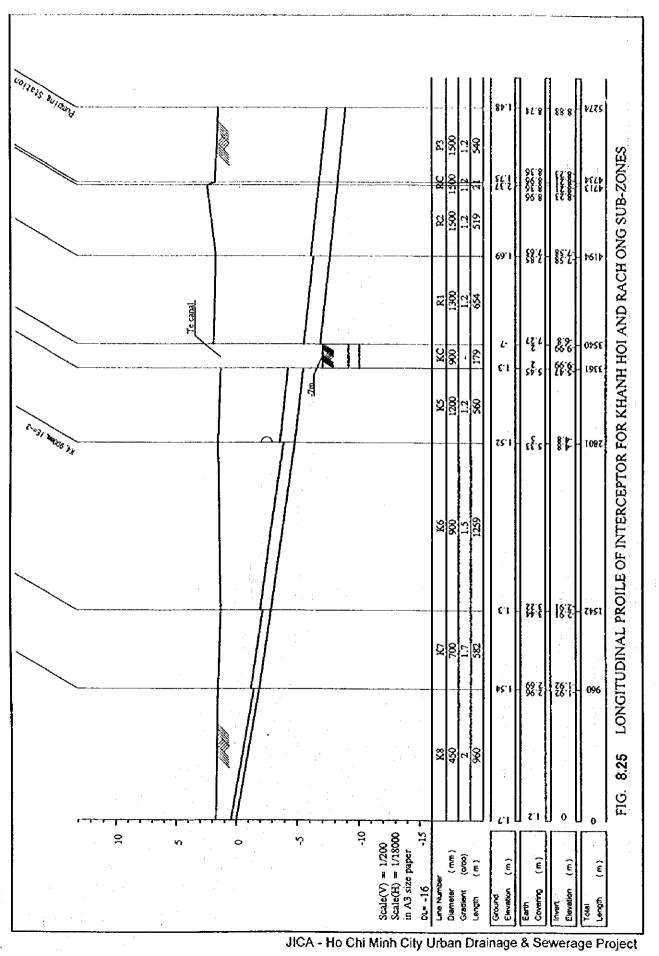
JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

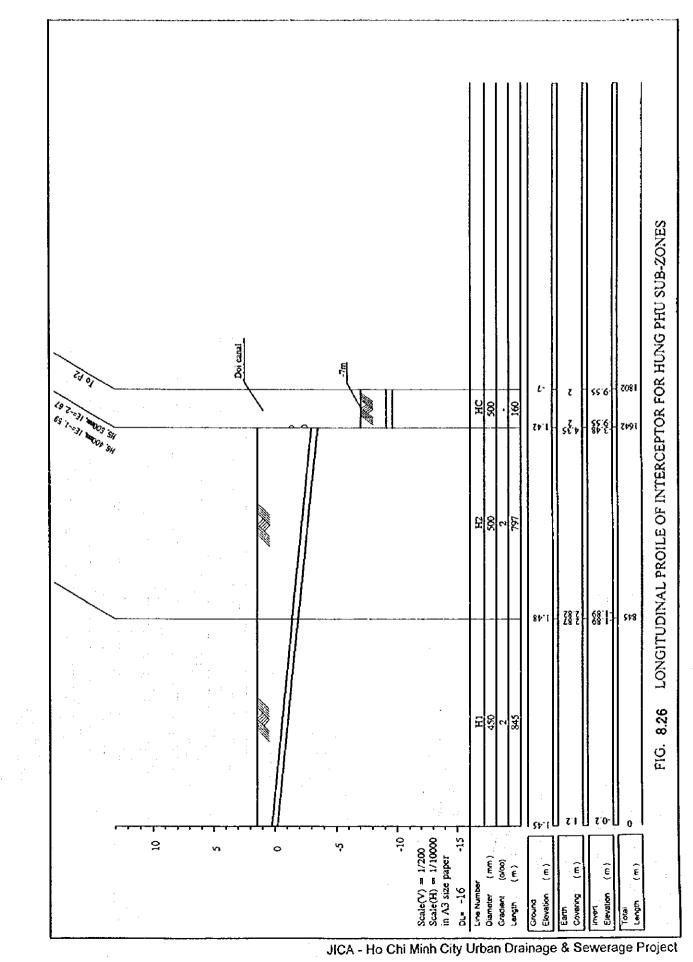
JICA - Ho Chi Minh City Urban Drainage & Sewerage Project




赣

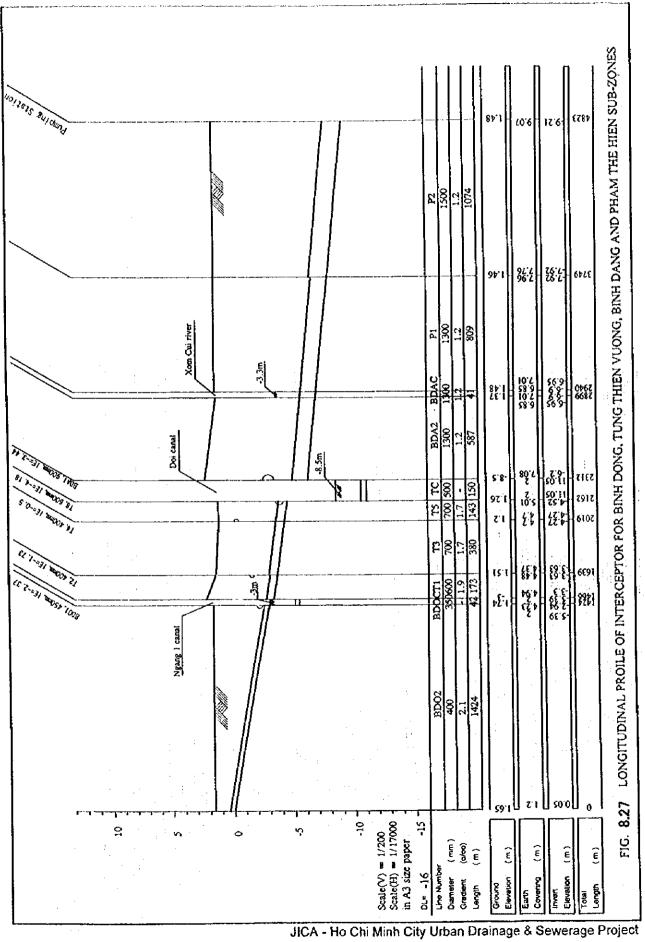
I


8-65

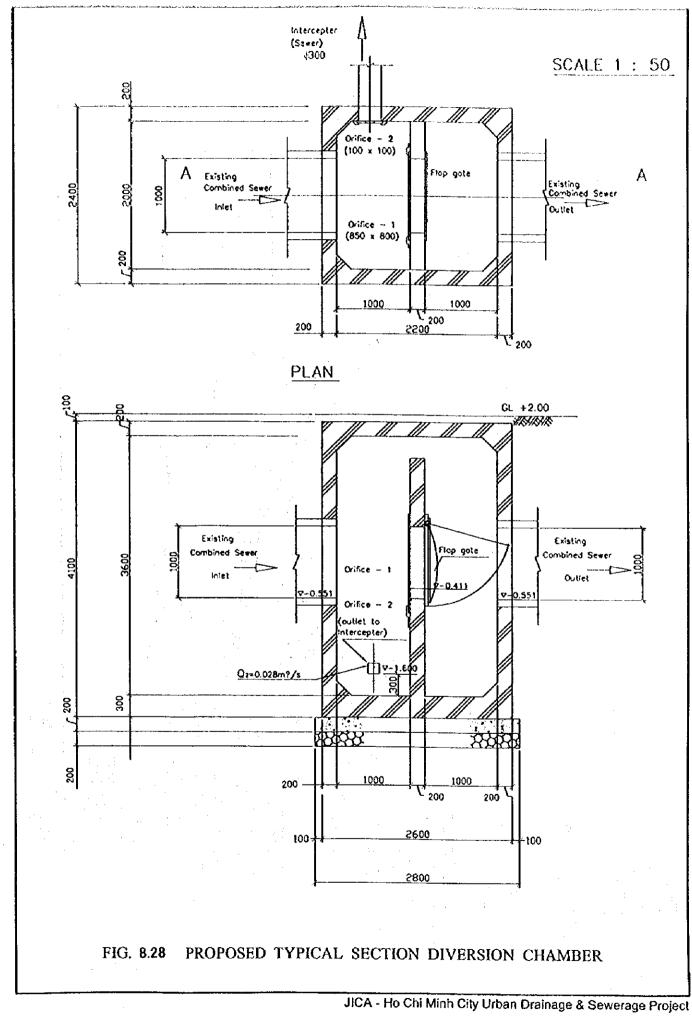


JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

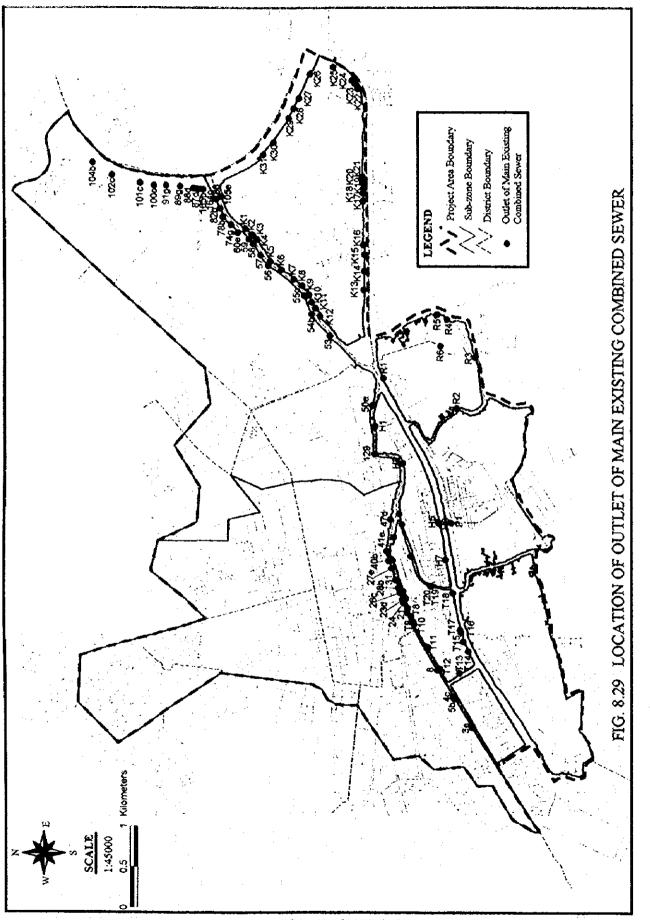
JICA - Ho Chi Minh City Urban Drainage & Sewerage Project

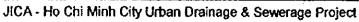


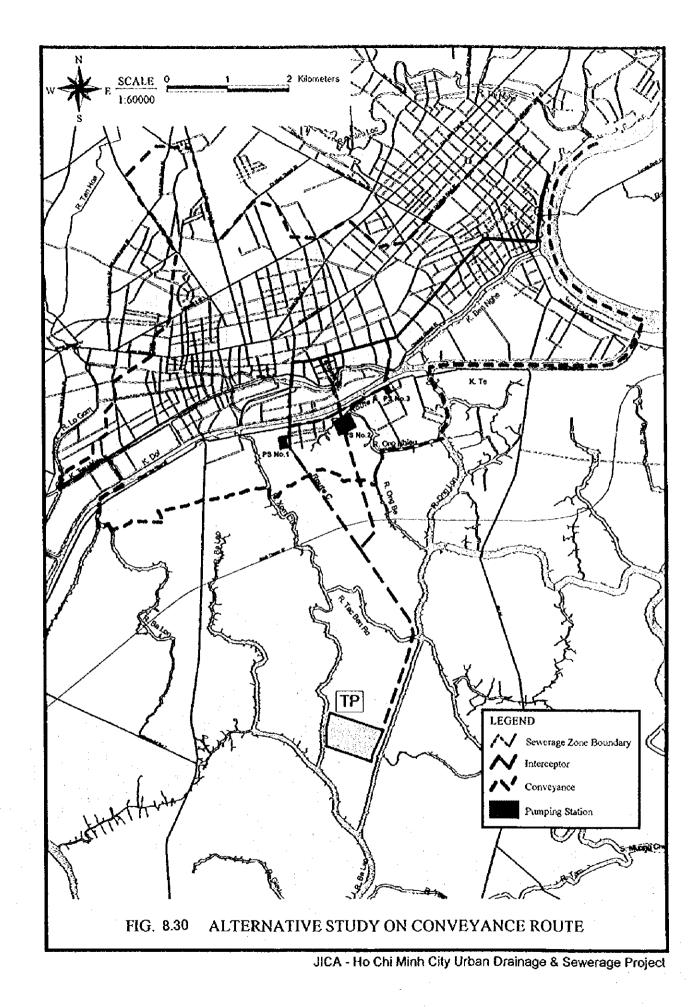
쀐


Ľ

:. .




.


1

9

.

8-73