TDEM

Survey parameter tests were conducted at the beginning of the survey to aid in determination of the optimum measurement configuration for this survey. These tests were performed at a station where the thickest section was expected, so that the penetration of the measurements could be assessed. The test site was also chosen to be at long offset from the current line so that the effect of electromagnetic noise upon the measurements could be considered.

During these tests, measurements were made at an offset of nearly 4.5 km from the center of the line source and air and permeable core receiver coils with effective areas of 50 and 9,000 m², respectively, were tested. While permeable core loops yield higher signal and have a greater depth of penetration, they can be difficult and time consuming to deploy and retrieve and they have inherently lower frequency response. Small loops are more easily handled and have much higher frequency response, but they have limited depth of penetration.

Measurements were made at a number of filter settings and at two frequencies (3kHz and 4kHz). From these tests proper parameters for data collection were determined.

(e) Measurement Stations

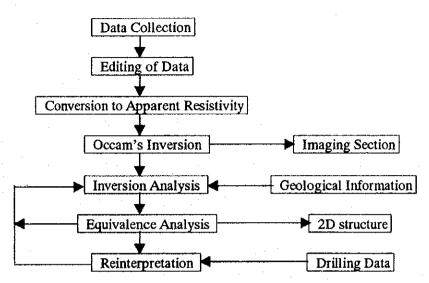
Station Positioning

Survey stations were positioned by land survey with use of topographic maps at a scale of 1:10,000 marked with Universal Transmercator (UTM) coordinates. Station elevations were also determined by land survey.

Station Locations

The total length of the 12 survey lines is about 13.5 km, and measurements were made at a total of 566 survey stations as summarized in the following table and Figure 11.2.3-4.

<u></u>		Co	ordinates (A	.)	Co	ordinates(B)	Line	No.
Site No.	/TDEM line		t point of lir	· .	- Enc	l point of lin	ie -	length	points
0110 1101	, , , , , , , , , , , , , , , , , , , ,	Easting	Northing	(EL.m)	Easting	Northing	(EL.m)	(k m)	(Nos)
ſ	TMB 3.0	610,735	2,191,989	573	613,190	2,190,567	537	2.9	146
	TMB 3.9	638,039	2,175,421	481	639,425	2,175,622	497	1.4	71
	TMB 8.1	642,300	2,175,900	491	642,681	2,175,777	500	0.4	21(6)
	TMB 11.0 a	644,967	2,174,972	468	645,573	2,174,176	501	1.0	51
	ТМВ 11.0 Ь	645,752	2,174,252	523	645,274	2,174,103	482	0.5	26
TEM	TMB 11.0 c	645,126	2,174,515	490	645,332	2,174,244	541	0.34	18(18)
	TMB 11.0 d	645,419	2,174,625	564	645,601	2,174,387	509	0.3	16
	TMB 11.0 e	645,569	2,174,676	621	645,751	2,174,438	541	0.3	16
	TMB 46.0	665,270	2,147,150	465	665,877	2,146,355	425	1.0	51
	KOK-ING B		· · · · · · · · · · · · · · · · · · ·	point se	ounding				15
	· · · · · · · · · · · · · · · · · · ·						sub-total	8.14	455
	TDEMB 29.4	653,231	2,160,066	935	654,126	2,159,719	1292	1.0	21
TDEM	TDEMB 30.0	654,005	2,158,937	950	654,741	2,157,190	640	2.4	49
	TDEMB 35.0	657,600	2,155,400	581	659,061	2,154,035	801	2.0	41
	· · · · · · · · · · · · · · · · · · ·	<u> </u>					sub-total	5.4	111
							total	13.54	566


Noise

Electromagnetic noise is induced in the receiver coil by power lines and from movement of the receiver coil in the earth's magnetic field by wind. Repetitive voltage measurements were made and averaged or 'stacked' to minimize these effects. The electromagnetic noise level was very low in the majority of the survey area but noise from powerlines was appreciable in the vicinity of the drill rig at TMBJ33.

(f) Data Processing

The data analysis procedure used in this study is presented schematically in the flow chart of Figure 11.2.3-5. The data which has been recorded in the field is first transferred from the PROTEM receiver to a personal computer, using the Geonics program "PROTEMC". This data is stored in ASCII data files which are then read by a data inversion program.

In the first phase of data processing, the decay voltages for each gate are transformed into late-time apparent resistivity values, by normalization with respect to field data measurement parameters such as loop dimensions, receiver gain, current and sounding geometry.

The voltages, V_o (in units of mV), which are measured by the PROTEM receiver are converted to magnetic field decay rate, dB/dt (nV/m²), by the following formula (Geonics, 1992).

$$\frac{dB}{dt} = \frac{V_0 \cdot 19200}{E \cdot 2^n}$$

where E is the receiver coil moment (m^2) , and n is the amplifier gain setting. Apparent resistivity ρ_a (ohm-m) are then given as a function of time (t) by,

$$\rho_{a}(t) = \frac{\mu}{4 p t_{c}} \left(\frac{2 \mu M}{5 t_{c} dB/dt}\right)^{2/3}$$

in which, μ is magnetic permeability (*4 π *10⁻⁷ H/m), t_c is measurement time or the gate center time in seconds, and M is transmitter moment which is the product of loop area (m²) and current (A).

An automatic one-dimensional inversion technique was used to generate resistivity models composed up to 19 layers for TEM data and 30 layers for TDEM data. In this process, the resistivity of the layers of a candidate model, which is chosen by the inversion program, are iteratively changed and response curves are computed to determine the model whose response best fits the observed data. The model is not restricted by the condition that the resistivity of the layers change smoothly with depth, as they are with the Occam or `smooth` inversion method. Models derived by this technique, without artificial parameterization, can be used to produce images which aid in visualization of underground structures. The imaging results were also used to estimate initial model parameters for the interactive one-dimensional inversions which followed. Interactive inverse processing is used to obtain one-dimensional resistivity structures in areas where the geological section can be assumed to be composed of a more limited number of discretely layered geoelectric units. In this process we can estimate resistivity and thickness parameters for models composed of up to 8 layers. The inversions are done by the Inman style automatic ridge regression approach to nonlinear least squares curve fitting. This procedure is called as a "layered earth inversion".

Finally, equivalence analysis was performed to estimate uncertainties in the inversion results. This is done by finding alternate models whose response fits the data nearly as well as the best-fit model. In this procedure the resistivity and thickness parameters of the best-fit model are incrementally varied (increased and decreased) until a user-specified fit-error limit is reached. This is done to determine the extent to which the model can be modified while keeping the error of fit within acceptable guidelines. Equivalence analysis indicates the allowable range of each of the model parameter.

The inversion program which was used in this study is "TEMIX-XL" developed by Interpex Ltd. and "TDEM data analysis program" by MINDECO.

Processing of the TDEM data is essentially the same as that for the PROTEM data. The software used in the TDEM processing is proprietary software.

(g) Sounding Results

TEM survey

Resistivity sections by TEM survey, which are shown in Figure 11.2.3-6 to 11.2.3-15, were produced by Occam and layered earth inversions for each data sets. The survey line coordinate is given on the horizontal axes of each figure and the elevation above sea level is shown on the vertical axes of the plot. The units of these axes are meters and the vertical exaggeration of the plot is one to one. The color scale to the right of the plot indicates resistivity in Ohm-m. In the above figures, planned tunnel level is also presented in these figures by solid lines or circles. The feature and characteristic of each resistivity section confirmed by TEM survey are as follows.

< TEM Survey Line TMB 3.0 >

The TEM survey line TMB3.0 extends from NW to SE direction along the Kok-Ing No.2 (B-J) tunnel line and is 2.9 km in survey length. Clear horizontal discontinuities of resistivity, which probably indicate the fracture zone by fault or geological boundary, exist at the No.530, No.1,510, and No.2,200 of the survey point. Therefore, it can be classified in total four structure blocks at this section on the basis of the above horizontal discontinuities of resistivity. (refer to Figure 11.2.3-6)

The first structural block is located between No.0 and No.530, and resistivity of the block shows ranging from 200 to 2,000 ohm-m, which mean relatively high resistivity, and it is identified as granite on the basis of existing geological data. Furthermore, the layered section of the block is mainly composed of two to four layers.

The second block is located between No.530 and No.1,510 with the resistivity ranging from 5 to 400 ohm-m. The block is characterized by low resistivity as a whole in

comparison with that of another blocks. In this case, it is considered that the feature of low resistivity is probably ascribed to the existing of fractured zone by the fault on a large scale. Furthermore, the layered section of the block is mainly composed of three layers. The resistivity of the first layer ranges from 40 to 200 ohm-m, and the thickness varies ranging from 30 to 90 m. The resistivity of the second layer ranges from 5 to 100 ohm-m, and the thickness varies ranging 5 to 30 m. Furthermore, that of the third layer shows more than 120 ohm-m. In this block, the horizontal discontinuity of resistivity, which probably indicates fracture zone, also exists at the No.750, and around this area high resistivity zone is recognized at the deeper place.

The third block exists between No.1,510 and No.2,200 and shows 60 to 1,000 ohm-m as resistivity. The block is identified as P3 formation of Permian age, which are composed of sandstone, shale and tuff, on the basis of existing geological map. The layered section is mainly composed of two to three layers. The resistivity of the first layer ranges from 150 to 1,000 ohm-m, and the thickness varies ranging 30 from 100 m. That of the second layer ranges from 60 to 130 ohm-m, and the thickness varies up to 50 m or more. Furthermore, that of the third layer shows ranging from 600 to 1,000 ohm-m.

The fourth block is located between No.2,200 to No.2,900, and the resistivity of the block varies ranging from 200 to 400 ohm-m. Furthermore, the feature of resistivity distribution provides comparatively stable.

< TEM Survey Line TMB 3.9 >

The TEM survey line TMB3.9 extends from E to W direction on a parallel with nearby Ing-Yot No.2 tunnel and is 1.4 km in survey length. Resistivity along the section ranges from 40 to 900 ohm-m (refer to Figure 11.2.3-7). Resistivity around the tunnel inlet side (No.0-No.1,050) of the line is higher than those of the exit side (No.1,05-No.1,400). In this case, the resistivity of former shows the range of 200 to 900 ohm-m, and the latter show the range of 50 to 200 ohm-m, respectively.

The layered section is mostly composed of three or four layers. Variations in resistivity values of the section are probably caused by different rock facies, metamorphic grade, the existence of underground water and so on. Also, the horizontal discontinuities of resistivity, which probably indicate fracture zones by faults, exist at the No.490, No.830, No.1,050, and No.1,250.

According to the geological condition by existing data, the area of tunnel inlet side is dominated by TRhf (Huai Fak formation) represented by sandstone and tuff interbedded with slate, on the other hand, the tunnel outlet side shows a dominance of CPhk (Huai Krai formation) composed by meta-sandstone interbedded with slate. It is inferred that geological boundary line of the above two formations exists at the No.830 or No.1,050. In addition, existing drilling data of DHB4, which is located nearby No.840, shows CL class as rock grade with sandstone, shale and limestone up to 120 m in depth. From these facts, on the occasion of tunnel excavation near the above discontinuity zones, much attention should be paid to the existing of fractured zone caused by the fault and removal of abnormal groundwater and so on.

< TEM Survey Line TMB 8.1 >

This TEM survey line TMB8.1 also extends E to W direction on a parallel with nearby Ing-Yot No.2 tunnel and is 0.4 km in line length. Resistivity values along the section are relatively low ranging from 16 to 80 ohm-m, which is identified as sedimentary rocks (slate, quartzite etc.). (refer to Figure 11.2.3-8)

One resistivity discontinuity is clearly found at the No.150 with inclined feature toward tunnel inlet direction. And, the resistivity at the area of tunnel inlet direction shows ranging 20 to 30, which mean low resistivity. According to the existing geological data, the area around survey line is occupied by CPnb (Nam Bong formation) accompanying with slate and quartzite interbedded with sandstone. Furthermore, drilling data of DHB8SP performed nearby No.80 show the existence of fractured slate (D as rock class), which is probably ascribed to fault on a large scale, up to about 80 m in depth, and this fact is in harmony with an existing of the above low resistivity zone. In addition, on the occasion of tunnel excavation, particular attention should be paid to the presence of this low resistivity zone.

< TEM Survey Line TMB 11.0 a >

The TEM survey line TMB11.0 a, which is 1.0 km in line length, is situated around the Phu Sang area and is located on southward of Ing-Yot No.2 tunnel alignment. Confirmed resistivity of this line is characterized by low values except for both the surface part and depths part at the center portion. (refer to Figure 11.2.3-9)

Layered earth inversion of the section clarified the existence of two and three layers. The resistivity of the first layer ranges from 30 to 300 ohm-m, and the thickness varies ranging from 30 to 120 m. That of the second layer shows 10-15 ohm-m at No.0-No.130, 4-9 ohm-m at No.130-No.530 and 1-4 ohm-m at No.530-No.1,000. These values are characterized by remarkable low resistivity, and it is inferred that zone at No.130-No.1,000 have been affected by heated ground water, and cracks of basement rock at this area may be partly filled by that. The third layer, which has raised structure at the center of this line, shows relatively high resistivity (130 to 250 ohm-m). There is a possibility that the layer is composed of igneous rocks, which mean probably granite or granite porphyry, and the above heated groundwater may be caused in contact with these igneous rocks, which is continued to at great depths, at the deeper portion.

The existences of horizontal resistivity discontinuity are obtained at No.130, No.430 and No.540. The former corresponds to boundary line of low resistivity zone (10 ohm-m or less), and the last two are located around relatively high resistivity zone.

Furthermore, according to the existing geological data, this area is underlain by CPhk (Huai Krai formation) composed by meta-sandstone interbedded with slate, excluding around starting point of survey line. In this case, geological condition around starting point consists of CPnb (Nam Bong formation), which is composed of slate and quartzite interbedded with sandstone. The drilling data of DHB5 where is located around starting point of line revealed the existence of sandstone and slate, and rock quality shows mostly CM or CH as rock class nevertheless existing of CL class is found between 50 to 85 m in depth. Also, resistivity of this area is confirmed ranging from 10 to 15 ohm-m. Furthermore, by following table, these resistivity values may support the idea that geological condition of this area is derived from

marine sediments.

Taking the above factors into consideration, it is inferred that tunnel alignment, where passes around DHB5 location, is situated on outer area of zone strongly affected by heated ground water because that is located on outside of remarkably low resistivity area. However, as for adit No.2 alignment, adit construction must be taken potential hazards into account because location of that is presumed to be situated on the above remarkably low resistivity area. Furthermore, clear solution for these matter should be further studied in detail based on the additional investigation from the viewpoint of hydrogeological sense, for example drilling investigation, physical survey, including detailed groundwater quality tests.

Geologic Age	Marine sediments sandstone, shale, graywacke	Non-marine sediments sandstone, claystone	Volcanic rocks basalt, rhyolite	Plutonic rocks granite, porphyry	Chemical sediments limestone, dolomite etc.
Cenozoic (Quaternary, Tertiary)	1 – 10	15 - 50	10 - 200	500 - 2,000	50 - 5,000
Mesozoic	5 - 20	25 - 100	20-500	500 - 2,000	100 - 10,000
Paleozoic (Carboniferous)	10-40	50 - 300	50 - 1,000	1,000 - 5,000	200 - 100,000
Paleozoic (before Carboniferous)	40-200	100 500	100 - 2,000	1,000 - 5,000	10,000 - 100,000
Pre-Cambrian	100 - 2,000	300 - 5,000	200 - 5,000	5,000 - 20,000	10,000 - 100,000

Range of Typical Resistivity as for Geological and Rocks

* Unit : ohm-m

* The above table is taken from "Handbook of Physical Contents, 1966"

< TEM Survey Line TMB 11.0 b >

The survey line, which is 0.5 km in line length, is also located on southward of Ing-Yot No.2 tunnel line and intersects at almost right angle toward TMB11.0 a line. The resistivities of this line are also characterized by low values at the deeper part. (refer to Figure 11.2.3-10)

The layered section of this block is made up of two layers excluding between No.0 and No.90, where shows three layers structure. The resistivity of the first layer shows ranging from 20 to 120 ohm-m, and the thickness of that varies between 20 and 180 m. That of the second layer shows remarkable low resistivity values (7 ohm-m or less), which are a harmony with the results of TEM11.0.a survey line, and this layer presumed to be continued to low resistivity layer of that. Horizontal resistivity discontinuities are found out at No.90 and No.370, however, these are merely recognized at shallow portion up to about 50 m in depth. In addition, according to the existing geological data, geological condition of this area is also corresponds to CPhk (Huai Krai formation) composed by meta-sandstone interbedded with slate.

< TEM Survey Line TMB 11.0 c >

The line is located on parallel with TMB11.0 a survey line and is also situated at southward of Ing-Yot No.2 tunnel line. This line is 0.34 km in survey length. Clarified resistivity of line is also characterized by low values at the deeper part. (refer to Figure 11.2.3-11)

Layered earth inversion revealed the existence of two layers excluding the zone between No.240 and No.340, where is located on the northwestward of survey line. The resistivity of the first layer ranges from 50 to 90 ohm-m, and the thickness varies ranging from 120 to 150 m. That of the second layer shows less than 2 ohm-m. The existence of this low resistivity layer also is a harmony with the results of TEM11.0 a survey line and is presumed to be continued to low resistivity layer of that. That of the third layer shows 130 ohm-m and a general tendency of distribution as for that suggests that low resistivity layer thin toward northwestward. Furthermore, at this line, no horizontal resistivity discontinuities are found out. In addition, according to the existing geological data, geological condition of this area is also corresponds to CPhk (Huai Krai formation) composed by meta-sandstone interbedded with slate.

< TEM Survey Line TMB 11.0 d >

This line, which is 0.3 km in survey length, is also located on parallel with TMB11a survey line and is situated at southward of Ing-Yot No.2 tunnel. Clarified resistivity of survey line is also characterized by low values at the deeper part. (refer to Figure 11.2.3-12)

Layered earth inversion revealed the existence of total three layers. The resistivity of the first layer ranges from 20 to 120 ohm-m, and the thickness varies between 80 and 100 m. That of the second layer shows ranging from 4 to 7 ohm-m at the No.0-No.90 and 2 ohm-m at the No.90-300, respectively. The existences of these low resistivity layer are also a harmony with the results of TEM11.0 a survey line and are presumed to be continued to low resistivity layer of that. Furthermore, that of the third layer shows ranging from 220 to 230 ohm-m. Furthermore, clear horizontal resistivity discontinuity is found out at No.90. In addition, according to the existing geological data, geological condition of this area is also corresponds to CPhk (Huai Krai formation) composed by meta-sandstone interbedded with slate.

< TEM Survey Line TMB 11.0 e >

The line, which is 0.3 km in survey length, is also located on parallel with TMB11a survey line and is situated at southward of Ing-Yot No.2 tunnel. Clarified resistivities of line are also characterized by low values at the deeper part. (refer to Figure 11.2.3-13)

Layered earth inversion clarified the existence of total three layers. The resistivity of the first layer ranges from 30 to 220 ohm-m, and the thickness varies ranging from 60 and 90 m. That of the second layer shows ranging from 5 to 6 ohm-m between the No.0 and No.90 and ranging from 1 to 3 ohm-m between No.90 and 300, respectively. The existences of these low resistivity layer are also a harmony with the results of TEM11.0 a and TEM11.0 d survey line, and it is presumed to be continued to low resistivity layer of that. And, a general tendency of resistivity distribution as for both TEM11.0 a and TEM11.0 d survey line suggests that low resistivity layer thin toward northeastward. Furthermore, that of the third layer shows ranging from 200 to 260 ohm-m, and tunnel alignment passes in this third layer. Clear horizontal resistivity discontinuity is found out at No.90. In addition, according to the existing geological data, geological condition of this area is also corresponds to CPhk (Huai Krai formation) composed by meta-sandstone interbedded with slate.

< TEM Survey Line TMB 46.0 >

The TEM survey line TMB46.0, which is 1.0 km in line length, extends from NW to SE direction around No.7 adit of Ing-Yot No.2 tunnel. This line is characterized by the existence of remarkable high resistivity zone as a whole in comparison with that of another TEM survey line excluding surface part. (refer to Figure 11.2.3-14)

The layered section reveals the existence of two layers. The resistivity of the first layer shows ranging from 20 to 170 ohm-m, and the thickness of this layer ranges from 10 to 50 m. It is inferred that this layer corresponds to both thick alluvial deposits and weathered rock zone. That of the second layer shows ranging from 800 to 10,000 or more, which means remarkable high resistivity. According to the existing geological data, this area is occupied by TRhf (Huai Fak formation) composed by sandstone, tuff interbedded with slate and TRpl (Pa Lae formation) represented by limestone. In general, limestone is known to show high resistivity as a result of electric logging performed by JICA. These facts are an excellent harmony with the existence high resistivity zone on this survey line.

Three horizontal resistivity discontinuities are found out at No.90, No.550 and No.690. It is inferred that these discontinuities correspond to the presence of fractured rock caused by fault. Taking geological map and performed two drilling data (DH7AD1and DHB46SP), where is located on/around survey line respectively into consideration, there is a large possibility that the discontinuity at the No.90 corresponds the geological boundary line between TRhf formation and TRpl formation. In addition, The boring data of the former shows sandstone facies (CM to CH as rock class) and the latter shows limestone facies (CM to CH as rock class) and the latter sho

< TEM Survey Kok-Ing B >

TEM survey Kok-Ing B is located on Kok-Ing No.2 tunnel and is performed by point sounding method for the purpose of confirmation of boundary point between Bs formation (Tertiary basalt) and Permian P3 formation, which is composed of sandstone, shale, tuff and limestone, at the total three point. In addition, P3 formation is overlain by Bs formation, and latter is well exposed on the mountain ridge of this area. Coordinates at the center of each survey point (survey grid) are as follows. In this time, each point interval has about 1 km.

B 1	610,475E, 2,189,727N
B2	611,615E, 2,189,365N
B 3	612,485E, 2,188,959N

Resistivity models of each survey point are shown in Figure 11.2.3-15. Resistivity models of B-1 and B-2 points show a similar two layers structure, and resistivity values of each layer range from 20 to 30 ohm-m at the first layer and vary ranging from 600 to 700 ohm-m at the second layer, respectively. It can be judged that the first layer, which has from 30 to 50 m in thickness, represents Bs formation (Tertiary basalt) and the second layer indicates P3 formation. On the other hand, resistivity models of B-3 point shows three layers structure. The resistivity of the first and the second layers shows ranging from 10 to 200 ohm-m and that of the third layer indicates 3,500 ohm-m. It can be also judged that the former corresponds to the Bs formation (Tertiary basalt) and the latter shows P3 formation,

respectively.

Taking the results of TEM survey into consideration, it is concluded that the Kok-Ing No.2 tunnel passes into the P3 formation, and Bs formation (Tertiary basalt) is not exposed inside this tunnel.

TDEM survey

Resistivity sections by TDEM survey, which are also shown in Figure 11.2.3-16 to 11.2.3-19, were produced by Occam and layered earth inversions for each of the data sets. The survey line coordinate is given on the horizontal axes of the figures and the elevation above sea level is shown on the vertical axes of the plot. The units of these axes are meters and the vertical exaggeration of the plot is one to one. The colour scale to the right of the plot indicates resistivity in Ohm-m. In the above figures, planned tunnel level is also presented in parallel lines. The feature and characteristic of each of the resistivity section confirmed by TDEM survey are as follows.

< TDEM Survey Line TDEMB 29.4 >

The TDEM survey line TDEMB29.4 is located in the high mountain area, which is composed of Middle to Upper Triassic PRpl (Pa Lae formation which is made up of limestone), around the Kok-Ing No.2 tunnel. This line extends from NNW to SSE direction and is 1.0 km long. On the whole, this line is characterized by the existence of a remarkable high resistivity zone as a whole. (refer to Figure 11.2.3-16)

Layered earth inversion reveals the existence of three layers in total. The resistivity of the first layer ranges from 1,200 to 3,300 ohm-m, and the thickness varies ranging from 150 and 400 m. That of the second layer ranges from 5,500 to 10,000 ohm-m or more and is about 300 m thick. And, that of the third layer shows a range from 800 to 2,000 ohm-m. It is inferred that the resistivity differences of each layer have resulted from the existence of a wide variety of rock qualities and water content of rocks, degree of groundwater movement and so on. Furthermore, the existence of horizontal discontinuity in resistivity, which probably indicates fracture zones caused by faults in limestone, is clarified at No.2,915-2,916 on survey line.

Moreover, according to the Occum's inversion model, at the survey point from 2,094 to 2,194 (EL.100 to EL.450), relatively low resistivity zone of eyeball shape (about 1,000 ohm-m) is recognized. There is a large possibility that this low resistivity zone signify groundwater flow. On the occasion of tunnel construction, special attention should be paid to the presence of both horizontal discontinuity in resistivity and low resistivity zone.

< TDEM Survey Line TDEMB 30.0 >

The TDEM survey line TDEMB30.0 is also located on the high mountain area, which is composed of Middle to Upper Triassic TRhf (Huai Fak formation which is composed of sandstone, tuff interbedded with slate), along/around the Kok-Ing No.2 tunnel. And, this line is composed of continuous two lines. The first line extends from NW to SE direction and is 1.8 km long along tunnel alignment, and second line direction elongates from NE to SW direction. Furthermore, the two lines cross at about right angle. These lines are also characterized by the presence of high resistivity zone as a whole. (refer to Figure 11.2.3-17) Resistivity values in this section show an extensive range (100 to 10,000 ohm-m or more). Furthermore, some deep conductive zones reach to about 100 to 200 m in depth at the No.3,012-No.3,016, No.3,036-No.3,037, and No.3,043-No.3,048. However, it is worth noting that the data of this line, in the presence of heterogeneous conductive zone (or body), show reversal transient phenomena. In the case of the presence of clear weak zone between the survey line and transmitter cable, the transient data is sometimes distorted by the secondary magnetic field in the conductive zone. On the other hand, normal transient (not reversal) data was measured between No.3,037 and No.3,048. These matter suggest that clear fractured zone or fault zone crosses the survey line between No.3036 and No.3037 and elongate at the southward area of survey line where reversal transient phenomena is confirmed. Around this area, it should be taken into consideration the direction and characteristic of potential weak zone in the future.

* Reversal transient phenomena; Transient magnetic field data after shutting off the transmitted current has normally positive polarity. The polarity of transient curve is sometimes changed near conductive (e,g, fracture) in resistive host rock. This is caused by secondary magnetic field induced by eddy current in the conductive zone.

< TDEM Survey Line TDEMB 35.0 >

The TDEM survey line TDEMB35.0 is also situated in the high mountain area, which is composed of Middle to Upper Triassic TRhf (Huai Fak formation which is composed of sandstone, tuff interbedded with slate) at this area, along the Kok-Ing No.2 tunnel. This line extends from NW to SE direction and is 2.0 km long. This line is also characterized by the existence of a remarkable high resistivity zone as a whole. (refer to Figure 11.2.3-18 and 11.2.3-19)

Layered earth inversion revealed the existence of two or four layers. The resistivity of the first layer ranges from 150 to 1,800 ohm-m, and the thickness varies from 200 and 300. That of the second layer ranges from 2,800 to 9,600 ohm-m, and the thickness varies from 100 and 300 m. And, that of the third layer shows ranging from 300 to 1,000 ohm-m, and the thickness varies ranging from 100 and 400 m. That of the fourth layer shows a range from 2,000 to 9,300 ohm-m. It is inferred that these resistivity differences of each layer have resulted from the existence of wide variety of rock qualities and water content of rocks and so on. Furthermore, the existence of horizontal discontinuity in resistivity, which probably indicates fracture zones caused by faults in basement rocks, is clarified at No.3,506-3,507 and No.3612-No.3613, of the survey line. On the occasion of tunnel construction, special attention should be paid in the area between the above two horizontal discontinuities in resistivity because there is a large possibility that this area is in fractured, fissured, jointed and faulted rocks.

The list of tables and figures of this chapter are as follows.

< List of Tables and Figures >

Figure 11.2.3-1 Location Map of Drilling Holes, Kok-Ing Tunnel (1) Figure 11.2.3-1 Location Map of Drilling Holes, Ing-Yot Tunnel (2) Figure 11.2.3-2 Concept of TEM, TDEM Survey (1) Figure 11.2.3-3 Concept of TEM, TDEM Survey (2) Figure 11.2.3-4 Location Map of TEM, TDEM Survey Line (1) to (4) Figure 11.2.3-5 Flow Chart of Data Analysis Figure 11.2.3-6 Resistivity Structure by TEM (TMB 3.0) Figure 11.2.3-7 Resistivity Structure by TEM (TMB 3.9) Figure 11.2.3-8 Resistivity Structure by TEM (TMB 8.1) Figure 11.2.3-9 Resistivity Structure by TEM (TMB 11a) Figure 11.2.3-10 Resistivity Structure by TEM(TMB 11b) Figure 11.2.3-11 Resistivity Structure by TEM (TMB 11c) Figure 11.2.3-12 Resistivity Structure by TEM (TMB 11d) Figure 11.2.3-13 Resistivity Structure by TEM (TMB 11e) Figure 11.2.3-14 Resistivity Structure by TEM (TMB 46) Figure 11.2.3-15 Resistivity Structure by TEM (Kok-Ing B) Figure 11.2.3-16 Resistivity Structure by TDEM (TDEMB 29.4) Figure 11.2.3-17 Resistivity Structure by TDEM (TDEMB 30.0) Figure 11.2.3-18 Resistivity Structure by TDEM (TDEMB 35.0 (1)) Figure 11.2.3-19 Resistivity Structure by TDEM (TDEMB 35.0 (2))

Topographical and Geological Characteristic of Typical Location at the Yao River Training

Topographical and geological characteristics of typical locations for the river training area are as follows. In this case, field reconnaissance survey at this area was performed for the purpose of presentation of basic data on the occasion of study as for river training facilities. The above typical locations are shown in the attached location map.

- Station No.1 (Yot river), coordinate 670,350E, 2,144,050N

Station No.1 is located near the outlet portion of the Ing-Yot No.2 tunnel. In general, topographical condition consists of many small hills, and the Yot river meanders through the foot of these hills. Geological condition is mostly composed of strongly weathered shale of the Triassic-Permian in age. Thick alluvial deposits, which are composed of poorly stratified, coarse sand and gravel layer, distributed in the riverbed of the Yot river.

This area corresponds to the river training place, and it is considered that this area has no serious problem for engineering work from geological viewpoint.

- Station No.2 (Yao river), coordinate 675,700E, 2,150,100N

Station No.2 is located on the Ban Nam Lu. Topographical condition of this area shows V-shaped valley with somewhat steep slope, and hill tribe village and reforested mountain slope spread in the neighboring area. Geological condition of this station is covered by alluvial deposits, which mainly consist of sand and silt, and thickness of this layer is inferred to be 5 m or less.

This area is outside the river training place, however, it is considered that this area has no serious problem as for engineering works.

- Station No.3 (Yao river), coordinate 676,500E, 2,148,700N

Station No.3 is located on the Ban Wang Sa. Topographical and geological conditions of this area are similar to Station No.2.

- Station No.4 (Yao river), coordinate 676,500E, 2,148,700N

Station No.4 is located on the Ban Song Khwae. Topographical condition of this area shows mountainous feature and agricultural field with maize, tobacco and vegetables, extended at the foot of hills. This area is perfectly covered by alluvial deposit (overburden deposit) 5 m or more in thickness approximately.

This area corresponds to the river training place, and it is considered that this area has no serious problem for engineering works.

- Station No.5 (Yao river), coordinate 680,600E, 2,135,000N

Station No.5 is located on the Ban Pang Puk. Topographical condition of this area shows wide terrace feature along the Yao river. In this case, the left-bank side of river is characterized by extremely steep gradient and continues to the residential area. The right-side of that is chiefly underlain by flood plain. Geological condition of this area is covered by alluvial deposits and no outcrop of basement rock.

This area also corresponds to the river training place, and it is considered that this area has no serious problem for engineering works from geological sense

- Station No.6 (Yao river), coordinate 681,350E, 2,133,050N

Station No.6 is located on the point at about 1.5 km downstream of the Ban Pang Puk. Topographical condition of this area shows valley feature accompanying with terrace, which is utilized as cultivated field for cotton and maize etc. in small scale at the both abutments. This area is also covered by alluvial deposit and show not outcrop of basement rock.

This area also corresponds to the river training place, and it is considered that this area has no serious problem for engineering.

- Station No.7 (Yao river), coordinate 683,000E, 2,130,000N

Station No.7 is located on the Ban Sop Pet. Topographical condition of this area is similar to that of Station No.5. The left-bank side of river shows feature with steep gradient while the right-bank side is composed of flood plain, which is cultivated to maize and cotton etc. In this area, detrial rock fragments are frequent found, which are made up of conglomerate and sandstone etc. derived from basement rocks.

Furthermore, topographical features of the left bank suggest potential hazard of masswasting in case of a rapid increase of water table.

- Station No.8 (Yao river), coordinate 683,200E, 2,129,300N

Station No.8 is located on the Rong Rian Ban Sop Pet. Topographical condition of this area is characterized by gentle gradient as a whole at the both abutments. The left bank area is the residential area, while the opposite side is utilized for cultivated land. This area is also covered by alluvial deposit, which is inferred as 5 m or more in thickness, and no outcrop of basement rock.

This area has no problem as for engineering works, except for the hazard of small scale as for erosion under the condition of rising of river water.

- Station No.9 (Yao river), coordinate 684,750E, 2,127,950N

Station No.9 is located on the Ban Nam Mong. The topographical condition of this area shows feature of V-shape valley. Geological condition of this area consists of the Triassic-Permian phyllite and schist, which is provided as continuous outcrops at the foot place of the left bank. These basement rocks are overlain by thick alluvial deposits. It is considered that this area has no problems awaiting solution on the basis of geological sense, except for the hazard of small-scale erosion at the both abutments in case of rising of river water.

This area has no problem for engineering works, except for the hazard of small-scale erosion under the condition of rising of river water.

- Station No.10 (Yao river), coordinate 686,500E, 2,121,350N

Station No.10 is located on the Ban Tat. Topographical condition of this area is characterized by wide flood plain, which is utilized as cultivated land for vegetable, tobacco and teak etc. Geological condition of this area consists of strongly weathered shale, which is found at the foot of the left abutment. This basement rock is also covered by thick alluvial deposits.

This area has also no problem as for engineering works from geological sense, except for the hazard of small scale erosion under the condition of rising of river water.

- Station No.11 (Yao river), coordinate 68,300E, 2,119,500N

Station No.11 is located on the downstream about 2 km of the Ban Tat, and corresponds to the DEDP pumping station with floating type. Topographical condition of this area is also characterized by wide flood plain, which is utilized as cultivated land for tobacco. Geological condition of this area is of thick alluvial deposits.

This area has also no problem for engineering works from geological sense, and transportation of existing pumping station should be required as a matter of course.

- Station No.12 (Confluence point of Yao and Nan river), coordinate 690,000E, 2,144,500N

Station No.12 is located on the confluence point of the Yao and the Nan river. Topographical condition around this area shows wide flood plain, which is utilized as cultivated land for a variety of vegetable and tobacco etc. Geological condition of this area is covered by thick alluvial deposits, which are composed of unconsolidated small gravel, sand and silt, and basement outcrops can not be found in provided at this area.

It is considered that there is a potential hazard of increasing erosion at the opposite side of confluence point under conditions of rapid rising river water.

-	01e)
-	Boren
	Lach
	Clasification of Geological Condition of Each Borenole)
(L Cond
•	ologica
(ol Ge
•	lication
	(Clasi
,	Results
	of Drilling
	Imary
	-1 Sum
	e 11.2
	Table
	-

Ô,

	1 able 11.2.2-1			Incon A		- 11011 VI	H-B	Dhuilten	I imentone	Andacita	Bacalt	Prenhave	Othere
Location	Hole No.	Drilling	Not	one	late	S.S. Contaire	TUD I	ruyuue	TIMESIONE	Undestic		I OLDULATION	
		Depth (m)	(m)	(m)	(m)	slate alt. (m)	(II)	Û)	(B)	(II)	Ê)	(ii)	æ)
Kok intake	DHRD VI	30.0	30.0		;	1	1	1	1		1	1	1
	DHKT-B1	30.0	30.0			;			1	-	1	1	1
Kok-Ine canal route	DHKI-B2	30.0	30.0		4			1	-	-	1	1	
8	DHKL-B7	30.0	20.9	:	1		-	-	9.1	1	1		1
	DHKLB8	20.0	20:0		1		1	1	1	1	1	;	1
	DHR1-B9	20.0	20.0		1	1	1	•	1	1	1	1	;
	DKJ-2	30.0	30.0				-		•	1	1	-	!
	DKI-4	30.0	26.9	3.1		1	1		•		1	1	1
	DKI-5	20.0	11.0			-	9.0]	-		1
	DKI 6	20.0	20.0						l	-	!		1
	DKL7	20.0	20.0		1		-	1	-	1	1	1	-
	DKI-8	20.0	20.0	1				-		ł	1	1	I
Kok-Ing canal	DHKL B4	30.0	12.1	3.9	1	1	1					!	14.0
(south route)	DHKLBS	30.0	17.0	13.0		ł	1		1			1	-
	DHKI-B6SP	30.0	14.2		15.8		1		1	ļ	ł		-
Kok-Ing No.1 tunnel	DHKBITE-ISP	70.0	7.5	2.2	23.6		33.9			1	1	2.8	!
Kok-Ing No.2 tunnel	DHKBJ	70.0	2.8		1		21.7		44.5		1.0		-
1	DHKB-2	65.0	10.0	1	52.1	1	-	-	-	-		-	2.9
	DHK-EXTRA7	50.0	2.2	2.7	36.7		7.5		-		0.9	1	1
Kok-Ing No2. tunnel	DHKB/12-1	65.0	2.0	-			1.0			1	58.4	3.6	;
(B-J route)	DHKBT2-2	55.0	10.2	-		1	44.8	1	1	1		1	
	DHBU 4.5	165.0	6.2	61.0	84.2	-		1		13.6			
Ing diversion weit	DHID-I	40.0	40.0	1		-					-		
	DHID-2	40.0	40.0		-		1			1	•	1	
	DHID-3	40.0	40.0			1		1		1	-		1
Ing Yot No.1 tunnel	I AIHO	50.0	4.0			1	46.0	;	1	1	1	1	ł
	DHY2	30.0	11.7			1	18.3	1	-			1	
Ing Yot No.2 tunnel	DHIADT	65.0	6.4	10.1	44.7	3.8			1	1		1	1
(adit)	DH2AD1SP	0.06	9.0	1.8	58.8		20.4	1		-	-		1
	DH3AD1	60.0	9.1		14.6	36.3		-	ŀ		1	1	1
	DHADI	65.0	0.5	34.6	29.9	1	-	;					
	DHSADI	70.0	4.0	66.0	-	1		-	1	1	-	1	
	DH6AD1SP	120.0	0.7	101.1	2.0	16.2		ľ	1	!			1
	DH7AD1	60.0	2.0	57.8	1]	0.2	-	1	1	ł
			ŀ										

n Hole No. Duiling Soil Statestore Statestore Statestore Turff Phylite Linestore Andesite Turff Phylite Linestore Andesite No midf DHB-2 45.0 6.5 38.5 1412.0 -														
D1001 40.0 1.5 38.5	Location	Hole No.	Drilling Depth (m)	Soil (II)	Sandstone (m)	Shale, slate (m)	S.s.&shale slate alt. (m)	fuff (m)		Limestone (m)	Andesite (m)	Basalt (m)	Porphyry (m)	Others (m)
Diffie 450 6.5 38.5	Mar Vot No. 2 minnet	DHB-1 Second Second	40.0	1.5		38.5		1	ŀ					
THEA 55.0 18.5 36.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	9.	DHR-2	45.0	6.5	1	38.5	:	l;		1		1	!	
(131) (120) (120) (150) <th< th=""><th></th><td>DHB-3</td><td>55.0</td><td>18.5</td><td></td><td> </td><td>1</td><td>36.5</td><td>I.</td><td>1</td><td>-</td><td></td><td></td><td>-</td></th<>		DHB-3	55.0	18.5			1	36.5	I.	1	-			-
JHB45 120.0 7.0 56.9 54.6 1.5 -		DHB.4	120.0	19.0	65.8	15.2		-	1	20.0		-	1	1
DHB-6 150.0 7.1 142.9 DHB-7 60.0 177 42.3 DHB-8 60.0 177 42.3 DHA-1 60.0 17.7 42.3 DHA-1 60.0 1.4			120.0	7.0	56.9	54.6	1	1	1.5	ļ		-	+	-
DHB-R 600 177 42.3 DHA: 500 10.0 42.3 DHA: 500 10.0 58.6 DHA: 500 14 58.6 58.6 13.5 13.6		DHB-6	150.0	7.1	1	ľ		.	1	142.9		-	-	•
DHBA: 500 100 600 14 56.6 </th <th></th> <td>DHB-7</td> <td>60.0</td> <td>17.7</td> <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td>42.3</td> <td></td> <td></td> <td> </td> <td>1</td>		DHB-7	60.0	17.7	-			1		42.3				1
DHA1 60.0 1.4 S6.6 <		DHR-8	50.0	10.0	1		1	40.0	ł	1		1		1
Dimage 700 0.5 69.5 Dimage 35.0 9.2 14.3 11.5 <td< th=""><th></th><td>DHA1</td><td>60.0</td><td>1.4</td><td> </td><td></td><td> </td><td>58.6</td><td></td><td>1</td><td></td><td>1</td><td></td><td>ł</td></td<>		DHA1	60.0	1.4				58.6		1		1		ł
Difficition 35.0 9.2 14.3 11.5		DHA2	70.0	0.5				1	69.5	1	1	1		1
Diffacts 50.0 2.1 24.8 23.1 <th< th=""><th></th><td>DHB0</td><td>35.0</td><td>9.2</td><td>1</td><td>14.3</td><td>ł</td><td>11.5</td><td></td><td> </td><td>1</td><td>ł</td><td>1</td><td>1</td></th<>		DHB0	35.0	9.2	1	14.3	ł	11.5			1	ł	1	1
Difficient 80.0 4.6 35.6 <t< th=""><th></th><td>DHB0.6</td><td>50.0</td><td>2.1°</td><td>24.8</td><td>23.1</td><td>1</td><td>1</td><td>1</td><td></td><td>1</td><td>1</td><td> </td><td>1</td></t<>		DHB0.6	50.0	2.1°	24.8	23.1	1	1	1		1	1		1
DHBASP 145.0 7.5 72.8 58.0 4.2		DHBISP	80.0	4.6		.1	1	35.6				1	39.8	1
DFRN 165 2000 1.0 17.5 181.5 <th< th=""><th></th><td>DHB8SP</td><td>145.0</td><td>7.5</td><td></td><td>72.8</td><td>58.0</td><td>4.2</td><td>1</td><td></td><td>-</td><td></td><td>-</td><td>2.5</td></th<>		DHB8SP	145.0	7.5		72.8	58.0	4.2	1		-		-	2.5
DFH0:18:0 205:0 9.7 90.2 73.5 31.6		DHBI-16.5	200.0	1.0	17.5	181.5	1	-	-	-	1	1		ł
DHB1225 220.0 8.0 40.7 171.3 <t< th=""><th></th><td>DHBJ 18.0</td><td>205.0</td><td>9.7</td><td>90.2</td><td>73.5</td><td>31.6</td><td>1</td><td>1</td><td></td><td>ľ</td><td>1</td><td></td><td>1</td></t<>		DHBJ 18.0	205.0	9.7	90.2	73.5	31.6	1	1		ľ	1		1
DHB126:0 300.0 9.7 290.3		DHBJ-22.5	220.0	8.0	40.7	171.3	I	1	1		I	-		1
DHRI-330 310.0 2.5 12.0 5.6 289.9 89.3 89.3 89.3 12.0 32.0 12.0 32.0 12.0 32.0 12.0 12.		DHBI-26.0	300.0	9.7	1		1	290.3		1		1		•
DFIDAGSE 100.0 10.7 89.3 > DFIDAGS 60.0 4.0 3.0 53.0 89.3 50.3 50.3		DHBI 33.0	310.0	25:	12.0	5.6	1	289.9	-	1	1	1	-	1
DJID49 60.0 4.0 3.0 53.0		DHB46SP	100.0	10.7		.	1		-	89.3				1
DHB60SF 90.0 10.3 0.7 79.0		DHD49	60.0	4.0	3.0	53.0		-			1	1		1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		DHB60SP	90.0	10.3	0.7	1	79.0	-		1	1		1	!
DHC2 65.0 11.5 28.3 25.2	Ing-Yot tunnel	DHC1	42.0	3.5	9.5	29.0		1	ł		1			!
DH1 50.0 1.5 4.0 7.0 5.5 32.0 DH2 80.0 6.1 4.6 2.4 21.0 45.9 DH3 60.0 4.0 28.6 18.4 9.0 DH4 50.0 5.0 13.0 32.0 DH4 30.0 3.0 13.0 32.0 DH5 30.0 3.0 27.0 DH6 3.0 74.0 1730.0 71.4 10.471 71.0 348.3 13.6	(south roule)	DHC.2	65.0	11.5	28.3	25.2	1			-	1			-
DH2 80.0 6.1 4.6 2.4 21.0 45.9 DH3 60.0 4.0 28.6 18.4 9.0 DH4 50.0 5.0 13.0 32.0 DH5 30.0 3.0 13.0 32.0 DH5 30.0 3.0 27.0 DH6 3.0 74.0 1730.0 71.4 10.471 71.0 348.3 13.6	Yao flood control	HU	50.0	1.5	4.0	0.7	5.5	32.0		1				1
DH3 60.0 4.0 28.6 18.4 9.0 DH4 50.0 5.0 13.0 32.0 DH5 30.0 3.3 1.0 11.7 14.0 DH6 30.0 3.0 27.0 DH6 74.0 77.0 77.0 77.0 77.0 77.4 10.471 71.0 348.3 13.6	dam	DHC	80.0	6.1	4.6	2.4	21.0	45.9				;		1
DH4 500 5.0 13.0 32.0		DH3	60.0	4.0	28.6	18.4	9.0			1		-	1	1
DHS 30.0 3.3 1.0 11.7 14.0		DH4	50.0	5.0	13.0	32.0	1			ł		1	I]
DH6 30.0 3.0 27.0		DHS	30.0	3.3	1.0	- 11.7	14.0		1	ł	1	1	1	1
		DHG	30.0	3.0	27.0		-			1		ł	-	1
20000000000000000000000000000000000000	Total	64 holes	4,632.0	736.8	784.9	1,230.0	274.4	1,047.1	71.0	348.3	13.6	60.3	46.2	19.4

* Phyllite involves phyllite & sandstone alternation.
* Porphry involve porphylite.
* "Others" is composed of quartzite and congiomarate.
* Siltstone is estimated as shale.

		LADICLI, 2.2-3 SUMINIALY OF DEFINING ACSURES (CLASHICAUON OF ANOCK 171455) CLASS OF LACH DOTATION	Definition of the		Vesmins		A AU IUIU				Water	Formation	Drillino
DHKRAM 30.0 38.0 30.0 2.1 DHKRAM 30.0 39.1 30.0 2.1 DHKRAM 30.0 39.1 30.0 2.0 DHKRAM 30.0 39.7 20.0 2.0 DHKRAM 20.0 37.2 20.0 2.0 DHKRAM 20.0 387 20.0 3.0 3.0 3.0 3.0	Location	Hole No.	Depth (m)	; ; ;	Soil	В	CH	CM	CL	D	Table (m)	Name	Year
DHRUBI 300 389 300 21 DINGER 300 391 300 20 DINGER 200 367 200 20 DINGER 200 367 200	Kok intake	DHKLAI	30.0	389	30.0						2.0	Alw.& diluv.	1997
DNRGENE 300 391 300 391 300 391 300 391 200 3111 311 311 31		DHKIBI	30.0	389	30.0		;				2.1	Aluv.& diluv.	1997
DHKGR7 30.0 397 20.9 10 8.1 0 DHKGR8 20.0 367 20.0 31 0.0 DHKGR8 20.0 367 20.0 10.7 20.0 <t< th=""><th>Kok-Ing canal route</th><th>DHKI-B2</th><th>30.0</th><th>391</th><th>30.0</th><th>4</th><th></th><th></th><th></th><th></th><th>2.0</th><th>Aluv.& diluv.</th><th>1997</th></t<>	Kok-Ing canal route	DHKI-B2	30.0	391	30.0	4					2.0	Aluv.& diluv.	1997
DHIGGR6 20.0 367 20.0 0 DHGGR6 20.0 37.2 20.0 37.2 20.0 3.1 0.5 DHGG 3 35.0 38.6 11.0 3.1 0.5 DHG 3 20.0 38.6 11.0 3.1 0.5 DHG 3 20.0 38.6 11.0 3.1 0.5 DHG 3 20.0 38.7 20.0 0.1 0.7 DHG 3 20.0 37.1 4.0 5.0 2.0 4.0 2.5 0.1 DHG 3 20.0 37.1 14.0 5.0 33.1 15.0 0.6 DHG 3 20.0 2.1 4.0 5.0 33.1 15.0 0.6	2	DHKLB7	30.0	397	20.9			1.0	8.1		0	Alw.& dilw.	1997
DMRCH00 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 37.2 20.0 38.7 20.0 37.2 20.0 37.3 20.0 37.3 20.0 37.3 20.0 37.3 20.0 37.3 20.0 37.3 20.0 37.3 20.0 37.3 20.0 37.3 20.0		DHKLB8	20.0	367	20.0	1		+			0	Aluv.& dihrv.	1997
DRG 2 30.0 38.0 30.0 31 0.5 DK(A 30.0 38.5 11.0 31 0.5 DK(A 30.0 38.5 11.0 0.5 0.5 DK(A 20.0 373 20.0 0.7 0.7 DK(A 30.0 373 20.0 10 20 25 DHKB 30.0 377 14.0 50 20.0 11.0 10.0 20.0 55 0.7 20.0 55 0.7 56 55 56 55 56 55 56 55 56 55 56 55 56 56 56 56		DHKI:B9	20.0	372	20.0	I	-	1	1		0.1	Aluv.& diluv.	1997
DK(A = 0.0 385 26.9 3.1 0.5 DK(3 20.0 386 11.0 9.0 2.5 DK(3 20.0 387 10.0 10.1 DHK DHK 30.0 377 14.0 5.0 24.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0		DKI 2	30.0	389	30.0			1			3.0	Aluv.& diluv.	1997
DKMS 20.0 386 11.0 9.0 2.5 DKR5 20.0 387 20.0 2.0 2.5 DKR5 20.0 387 20.0 2.5 DKR5 20.0 397 17.0 0.0 2.5 DHK6 30.0 397 17.0 13.0 2.0 0.6 13.0 0.7 DHK6 30.0 397 14.2 14.1 9.0 2.6 13.0 0.6 5.5 DHK6 7.0 436 10.0 2.7 14.0 2.9 15.0 DHK6 7.3 2.42 18.1 3.1 15.0		DKI 4	30.0	385	26.9	1		1	}	3.1	0.5	Aluv.& diluv.	1997
Dike 20.0 387 20.0 2.5 Diki 20.0 392 20.0 10 Diki 20.0 397 12.0 397 12.0 4.0 5.0 2.0 2.0 10.0 Diki 30.0 397 17.0 13.0 0.6 Diki 30.0 397 14.2 13.0 0.6 Diki 30.0 397 14.2 14.1 9.0 9.0 5.5 Dikik 30.0 397 14.2 14.1 9.0 5.4 15.0 0.6 Dikik 70.0 430 7.5 14.1 9.0 5.4 15.0 0.6 Dikik 70.0 430 2.8 13.1 12.1 14.0 15.9 33.1 15.0 Dikik 70.0		DKIS	20.0	386	11.0		-	-	-	9.0	2.5	Aluv.& diluv.	1997 -
DK137 20.0 39.2 20.0 1.0 DK18 20.0 373 20.0 0.7 DK18 20.0 373 20.0 373 20.0 0.7 DK18 30.0 397 17.0 1.30 0.7 DKK1BY 30.0 397 17.0 1.30 0.6 DKK1P1SY 70.0 430 7.5 14.1 9.0 9.8 2.9.6 5.5 DHKB172Y 50.0 430 3.1 2.7 15.7 15.9 33.1 15.0 DHKB172 55.0 426 10.0 2.7 2.7 4.42 0.7 DHKB172 55.0 420 10.2 2.7 4.42 0.1 DHKB172 55.0 <t< th=""><th></th><th>DK1-6</th><th>20.0</th><th>387</th><th>20.0</th><th>· · · ·</th><th></th><th></th><th> </th><th></th><th>2.5</th><th>Aluv.& diluv.</th><th>1997</th></t<>		DK1-6	20.0	387	20.0	· · · ·					2.5	Aluv.& diluv.	1997
DKL8 20.0 373 20.0 373 20.0 373 20.0 373 12.1 4.0 5.0 2.0 4.0 2.9 13.3 DHKUBM 30.0 397 17.0 13.0 0.6 DHKUFUS 30.0 397 14.2 14.1 9.0 28 21.5 0.6 DHKUFUS 70.0 436 7.5 2.3 15.7 15.9 33.1 15.0 0.6 DHKUFUS 70.0 436 2.1 2.3 15.7 15.9 33.1 15.0 0.6 DHKUFUS 55.0 426 10.0 7.3 24.2 18.1 5.4 8.0 DHKUFUS 55.0 430 3.1 2.7 44.2 0.7 DHKUFUS 55.0 430 0.0 52 40.0 2.4 8.0 <		DKI-7	20.0	392 -	20.0	. .		1	:		1.0	Auv.& dituv.	1997
DHKUB4 30.0 395 12.1 4.0 5.0 2.0 4.0 2.9 13.0 DHKUB45 30.0 397 17.0 13.0 0.6 DHKU155 30.0 397 14.2 15.8 0.6 DHKU155 70.0 430 7.5 14.1 9.0 9.8 29.6 5.5 DHKU123 55.0 430 3.1 2.4 18.1 5.6 4.0 DHKU123 55.0 430 3.1 2.4 4.5 3.7 4.0 DHKU123 55.0 430 3.1 2.4 4.5 3.7 4.0 DHKU132 55.0 430 5.2 4.0 5.4 4.5 3.7 4.0 DHKU132 55.0 40.0 5.2 4.5 3.7 4.0 1.0 DHKU132 50.0 52.0 40.0 5.7		5 DICI 8	20.0	373	20.0	1					0.7	Atuv.& diluv.	1997
DHKD-B5 30.0 397 17.0 13.0 0.6 DHKD-F15K 70.0 430 7.5 14.1 9.0 9.8 29.6 5.5 DHKD-F15K 70.0 430 7.5 14.1 9.0 9.8 29.6 5.5 DHKD-15K 70.0 436 2.8 2.5 15.7 15.9 33.1 15.0 0.6 DHKD-2 65.0 426 10.0 7.3 24.2 18.1 5.4 8.0 DHKD-2 55.0 430 5.2 2.7 4.5 4.0 DHKD-2 55.0 430 5.2 2.7 4.5 4.0 DHKD-2 165.0 52.0 42.0 10.2 1.6 4.0 DHKD-2 40.0 52.0 42.0 52.3 67.2 56.0 57.2 56.0 <t< th=""><th>Kok-Ing canal</th><th>DHKLB4</th><th>30.0</th><th>395</th><th>12.1</th><th>4.0</th><th>5.0</th><th>2.0</th><th>4.0</th><th>2.9</th><th>1.3</th><th>PTR</th><th>1997</th></t<>	Kok-Ing canal	DHKLB4	30.0	395	12.1	4.0	5.0	2.0	4.0	2.9	1.3	PTR	1997
DHKERF 30.0 397 14.2 15.8 0.6 DHKERT1.SF 70.0 430 7.5 14.1 9.0 9.8 29.6 5.5 DHKERT1.SF 70.0 436 2.8 2.5 15.7 15.9 33.1 15.0 DHKERT 50.0 436 3.1 7.3 24.2 18.1 5.4 8.0 DHKERT 50.0 480 3.1 7.3 24.2 18.1 5.4 8.0 DHKERT23 55.0 420 10.2 14.2 4.2 4.2 15.0 5.4 8.0 DHKERT23 55.0 420 10.2 29.3 6.2.3 6.7.2 36.0 10 DHKERT23 55.0 420 10.2 29.3 6.2.3 6.7.2 36.0 10.0 10 10 10 10 1	(south route)	DHKL B5	30.0	397	17.0	1	 			13.0	0.6	PTR	1997
IDHKBITEISP 70.0 430 7.5 - 14.1 9.0 9.8 29.6 5.5 DHKB1 70.0 436 2.8 2.5 15.7 15.9 33.1 15.0 DHKB2 65.0 425 10.0 7.3 2.4.2 18.1 5.4 8.0 DHKB721 65.0 435 2.0 400 3.1 2.7 44.2 40 DHKB722 55.0 430 3.1 40.6 3.1 41.2 4.0 40.0 40.0 40.5 3.7 40.0 DHDF2 55.0 40.0 2.3 67.2 36.0 36.0 40.0 1.0 0.1 0.1 0.1 DHKB722 55.0 40.0 52.0 62.0 40.0 1.0 1.0 1.0		DHKD B6SP	30.0	397.	14.2	-	· •	-	1	15.8	0.6	PTR	1997
DHKBI 70.0 436 2.8 2.5 15.7 15.9 33.1 15.0 DHKB-2 65.0 426 10.0 7.3 24.2 18.1 5.4 8.0 DHKB-2 65.0 435 2.0 - 43 3.1 - 4.2 18.1 5.4 8.0 DHKB1721 65.0 435 2.0 - - - 2.7 - 4.12 - - 4.0 8.0 DHKB1721 65.0 435 2.0 - - - 2.7 4.5 3.7 4.0 DHK122 55.0 420 10.2 - - 2.93 67.2 36.0 36.0 DHK145 40.0 362 40.0 - - 2.23 67.2 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0	Kok-Ing No.1 tunnel	DHKBIT1-ISP	70.0	430	7.5		14.1	9.0	9.8	29.6	5.5	PTR	1997
DHKB-Z 65.0 426 10.0 7.3 24.2 18.1 5.4 8.0 DHKBTZ-1 65.0 480 3.1 2.7 44.2 DHKBTZ-1 65.0 480 3.1 40.6 14.2 4.5 3.7 4.0 DHKBTZ-1 55.0 420 10.2 4.5 3.7 4.0 DHU4.5 165.0 52.0 6.2 29.3 67.2 36.0 DHU51 40.0 362 40.0 29.3 67.2 36.0 DHU52 40.0 362 40.0 1.0 DHU52 40.0 367 40.0 0.1 DHU52 30.0 373 11.7 0.1 DHY2 30.0 373 41.0	Kok-big No.2 tunnel	DHKB 1	70.0	436	2.8		2.5	15.7	15.9	33.1	15.0	P2, P3	1997
DHREBYTEX 50.0 480 3.1 2.7 44.2 DHREBYTEX 65.0 435 2.0 64.6 14.2 4.5 3.7 4.0 DHREBY22 55.0 420 10.2 44.5 8.0 DHID1 40.0 362 40.0 29.3 62.3 67.2 36.0 DHID2 40.0 362 40.0 44.8 8.0 DHID2 40.0 362 40.0 44.8 8.0 DHIV2 40.0 362 40.0 0.1 DHIV2 40.0 362 40.0 15.2 64.1 6.0 65.2 65.2 65.7 65.7 65.7 DHIV2 50.0 363 11.7 15.2 24.1 67<		DHKB-2	65.0	426	10.0	1	7.3	24.2	18.1	5.4	8.0	PTR	1997
DHKGHT21 65:0 435 2.0 40.6 14.2 4.5 3.7 4.0 DHKGHT22 55:0 420 10.2 44.8 8.0 DHHD-1 40.0 52.0 62.0 29.3 67.2 36.0 DHHD-1 40.0 362 40.0 29.3 67.2 36.0 DHHD-2 40.0 362 40.0 29.3 67.2 36.0 DHHD-2 40.0 362 40.0 29.3 67.2 36.0 DHHD-2 40.0 364 40.0 27.1 10.1 DHHD-3 50.0 394 4.0 0.1 DHHD-3 50.0 373 11.7 16.0 49.0 0.1 DHHZ 50.0 374 40.0 <		DHK-EXTRA7	50.0	480	3.1			2.7	1	44.2		P3	1998
DHKBIT22 55.0 420 10.2 44.8 8.0 DHID:1 165.0 52.0 6.2 29.3 67.2 36.0 DHID:1 40.0 362 40.0 10 DHID:1 40.0 362 40.0 10 DHID:2 40.0 362 40.0 10 10 DHIX:2 40.0 364 40.0 10 01 DHIX:1 50.0 394 40.0 15.2 24.1 67 65 DHIX:2 30.0 373 11.7 7 0.2 67 65 50 DHIX:2 30.0 373 11.7 155 24.1 67 67	Kek-Ing No2. tunnel.	DHKBU21	65.0	435	2.0		40.6	14.2	4.5	3.7	4.0	An	1997
DHID(45) 165.0 520 6.2 29.3 67.3 67.2 36.0 DHID1 40.0 362 40.0 1.0 DHID2 40.0 362 40.0 1.0 36.0 36.0 36.0 36.0 1.0 1.0 10.1 DHID3 40.0 362 40.0 1.0 10.1 DHIV3 50.0 394 4.0 15.2 24.1 6.7 6.5 DHIV3 50.0 373 11.7 15.2 24.1 6.7 6.5 DHIV3 65.0 373 11.7 15.5 5.0 6.0 36.7 44.0 DHI3ADI 66.0	(B-I route)	DHKBIT2.2	55.0	420	10.2	-	-		-	44.8	8.0	P3	1997
DHID:1 40.0 362 40.0 10 DHID:2 40.0 362 40.0 10 DHID:2 40.0 362 40.0 0.1 DHID:3 50.0 364 40.0 0.1 DHIT:3 50.0 394 40.0 15.2 24.1 6.7 6.5 DHITY:3 50.0 373 11.7 15.2 24.1 6.7 6.5 DHITY:3 50.0 373 11.7 15.9 6.0 36.7 44.0 DHITY:3 50.0 373 11.7 7.9 8.7 64.4 5.0 DHITY:3 60.0 530 9.1 1.2 16.7 12.4		DHBU-4.5	165.0	520	6.2			29.3	62.3	67.2	36.0	- P3	1998
DHID-2 40.0 362 40.0 0.1 DHID-3 40.0 364 40.0 0.1 DHID-3 50.0 394 40.0 15.2 24.1 6.7 6.5 DHIT 30.0 373 11.7 15.2 24.1 6.7 6.5 DHIT 50.0 373 11.7 15.2 7.4 40 DHIT 65.0 482 6.4 5.7 44.0 DHIT 65.0 482 6.4 12.4 50.6 20.6 DHIT 60.0 530 9.1 12.2 16.7 6.4 5.0 DHIT 66.0 535 9.6 12.4 20.6 20.0 DHIT 70.0 550 9.0 12.4 20.5 <td< th=""><th>Ing diversion weir</th><th>DHD-1</th><th>40.0</th><th>362</th><th>40.0</th><th>1</th><th>-</th><th></th><th></th><th></th><th>1.0</th><th>Alw.& diluv.</th><th>1997</th></td<>	Ing diversion weir	DHD-1	40.0	362	40.0	1	-				1.0	Alw.& diluv.	1997
DHIY2 40.0 364 40.0 0.2 DHIY2 50.0 394 4.0 15.2 24.1 6.7 6.5 DHIY2 30.0 373 11.7 15.2 24.1 6.7 6.5 DHIX2 65.0 482 6.4 15.9 6.0 36.7 440 DHIX2 65.0 482 6.4 7.9 8.7 64.4 5.0 DHIADI 66.0 530 9.1 12 16.7 12.4 20.6 20.0 DHIADI 66.0 530 9.1 12 16.7 12.4 20.6 20.0 DHIADI 66.0 535 0.5 15.4 20.6 20.0 20.0 DHIADI 70.0 550 4.0 15.4 27.1 11.6 27.3		DHD-2	40.0	362	40.0	1	1			•	0.1	Alw.& dilw.	1997
DHIY-1 50.0 394 4.0 15.2 24.1 6.7 6.5 DHIX-2 30.0 373 11.7 6.0 4.9 7.4 4.0 DHIADI 65.0 482 6.4 15.9 6.0 36.7 44.0 DHIADI 65.0 495 9.0 12.9 6.0 36.7 44.0 DHIADI 60.0 530 9.1 12 15.4 20.6 20.0 DHIADI 66.0 535 9.0 12 12.4 20.6 20.0 DHIADI 70.0 535 0.5 12.4 20.6 20.5 DHADI 70.0 550 4.0 15.4 27.1 11.6 21.6 20.5 20.5 DHADI 70.0 550 4.0 12.4 42.2 24.8 27.1 11.6 27.3 21.3		DHID:3	40.0	364	40.0	-	Į		ł	ł	0.2	Aluv.& diluv.	1997
DHIX2 30.0 373 11.7 6.0 4.9 7.4 4.0 DH1AD1 65.0 482 6.4 15.9 6.0 36.7 44.0 DH1AD1 65.0 482 6.4 7.9 8.7 64.4 5.0 DH1AD1 60.0 530 9.1 1.2 15.9 6.0 36.7 44.0 DH1AD1 60.0 530 9.1 1.2 16.7 12.4 20.6 20.0 DH4AD1 65.0 535 0.5 1.2 16.7 12.4 20.6 20.0 DH5AD1 70.0 550 4.0 15.4 27.1 11.6 27.3 DH5AD1 70.0 550 4.0 15.4 27.1 11.6 27.3 DH5AD1 60.0 460 2.0 52.7 17.2 24.3 24.3 DH5AD1	Ing-Yot No.1 tunnel	тлна	50.0	394	4.0	!		15.2	24.1	6.7	6.5	E2m	1997
DH1AD1 65.0 482 6.4 15.9 6.0 36.7 44.0 DH2AD1SP 90.0 495 9.0 7.9 8.7 64.4 5.0 DH2AD1SP 60.0 530 9.1 1.2 16.7 12.4 50.6 20.0 DH3AD1 65.0 535 0.5 1.2 16.7 12.4 20.6 20.0 DH3AD1 65.0 550 4.0 1.2 14.7 49.8 23.5 DH5AD1SP 70.0 550 4.0 15.4 27.1 11.6 27.3 DH6AD1 60.0 660 0.7 12.4 42.2 24.8 23.7 DH6AD1 60.0 460 2.0 52.7 17.2 24.3 DH6AD1 60.0 460 2.0 62.0 17.8 23.0		DHIY-2	30.0	373	11.7	1		6.0	4.9	7.4	4.0	TRpn	1997
DHTADIEP 90.0 495 9.0 7.9 8.7 64.4 5.0 DHTADI 60.0 530 9.1 1.2 16.7 12.4 20.6 20.0 DHTADI 65.0 535 0.5 1.2 16.7 12.4 20.6 20.0 DHTADI 70.0 550 4.0 15.4 27.1 11.9 11.6 27.3 DH6ADISP 120.0 660 0.7 12.4 42.2 24.8 23.7 11.6 27.3 DH6ADISP 120.0 660 0.7 12.4 42.2 24.8 23.7 17.2 24.3 DH6ADISP 60.0 460 2.0 57.0 6.2 7.0 17.8 23.0	Ing. Yot No.2 tunnel	[DHIAD1	65.0	482	6.4	1	1	15.9	6.0	36.7	44.0	CPhk	1997
60.0 530 9.1 $$ 1.2 16.7 12.4 20.6 20.0 20.0 65.0 535 0.5 $$ 1.2 14.7 49.8 28.5 70.0 550 4.0 $$ 15.4 27.1 11.9 11.6 27.3 SP 120.0 660 0.7 12.4 42.2 24.8 22.7 17.2 24.3 60.0 460 2.0 7.0 62 7.0 17.8 23.0	(adit)	DH2AD1SP	90.0	495	9,0	1	1	7.9	8.7	64.4	5.0	CPhk	1997
65.0 535 0.5 14.7 49.8 28.5 70.0 550 4.0 15.4 27.1 11.9 11.6 27.3 SP 120.0 660 0.7 12.4 42.2 24.8 22.7 17.2 24.3 60.0 460 2.0 27.0 6.2 7.0 17.8 23.0		[DH3AD1]	60.0	530	91		1.2	16.7	12.4	20.6	20.0	CPab	1997
70.0 550 4.0 15.4 27.1 11.9 11.6 27.3 SP 120.0 660 0.7 12.4 42.2 24.8 22.7 17.2 24.3 SP 60.0 460 2.0 7.0 6.2 7.0 17.8 23.0		[DH4AD1	65.0	535	0.5				14.7	49.8	28.5	CPhk, CPab	1997
SP 120.0 660 0.7 12.4 42.2 24.8 22.7 17.2 24.3 (0.0) 460 2.0 27.0 6.2 7.0 17.8 23.0		DH5AD1	70.0	550	4.0		15.4	27.1	11.9	11.6	27.3	TRhf	1997
60.0 460 2.0 27.0 6.2 7.0 17.8 23.0 5.1 1.0 17.8 23.0		DH6AD1SP	120.0	660	0.7	12.4	42.2	24.8	22.7	17.2	24.3	TRhf	1997
		DH7AD1	60.09	460	2.0		27.0	6.2	7.0	17.8	23.0	TRhf	1997

Tab	Table11.2.2-4 Summary of Drilling Results (Clasification of Rock Mass Class of Each Borehole)	imary of	Drilling	Results ((Clasific:	ation of]	Rock Ma	iss Class	of Each	Borehol	() () ()	
Location	Hole No.	Drilling Depth (m)	н т (т) т	Soil	В	CH C	CM CM	СГ	Q	Water Table (m)	Formation Name	Year
Ing-Yot No.2 tunnel	DHB-1	40.0	383	1.5	1		22.0	16.5		1.3	TRpn	1996
	DHB-2	45.0	388	6.5	ł		23.0	5.0	10.5	3.1	TRpn	1996
	DHB-3	55.0	402	18.5			3.0	25.0	8.5	3.1.	TRpn	1996
	DHB-4	120.0	463	19.0		1.0	17.0	78.5	4.5	4.5	CPhk	1996
	DHB-5	120.0	461	7.0		19.0	47.5	45.0	1.5	3.2	CPnb	1996
	DHB-6	150.0	482	7.1	-	28.0	0.70	1.7	16.2	3.1	TRpl	1996
	DHB-7	60.0	383	17.7	19.5	2.5		0.4	19.9	3.7	TRpl	1996
	DHB-8	50.0	375	10.0		10.5	5.5	4.0	20.0	12.5	TRhf	1996
	DHA-1	60.0	403	1.4	1	12.0	26.6	19.4	0.6	6.0	TRpn	1996
	DHA.2	70.0	412	0.5	.	1	1	19.0	50.5	0.6	CPhk	1996
	DHB0	35.0	382	9.2	1	ŀ		13.5	12.3	1.5	TRpn	1997
	DHB0.6	50.0	390	2.1			15.3	26.2	6.4	0.7	TRpn	1997
	DHBISP	80.0	420	4.6	13.4	29.2	11.5	4.1	17.2	22.0	PTRgr	1997
	DHB8SP	145.0	488	7.5	-	1	3.2	61.2	73.1	0.7	CPub	1997
	DHBU-16.5	200.0	532	1.0	Ì	79.7	84.8	31.5	3.0	0.0	CPub	1998
	DHRJ-18.0	205.0	537	9.7		63.2	106.9	24.0	1.2	0.0	CPnb	1998
	DHBU:22.5	220.0	547	8.0	-	109.6	71.7	25.8	4.9	0.0	CPub	1998
	DHBU 26.0	300.0	619	9.7	18.4	223.8	23.9	16.2	8.0	0.0	PTRv	1998
	DHBL-33.0	310.0	638	2.5		49.4	109.1	96.5	52.5	10.5	TRhf	1998
	DHE468P	100.0	420	10.7	-	25.7	60.5	3.1	1	4.0	TRpl	1997
	DHB49	60.0	390	4.0				-	56.0	2.1	TRhf	1997
	DHBSOSP	90.06	420	10.3	-	27.3	17.2	8.6	26.6	15.5	TRhf	1997
Ing-Yot tunnel	DHC-T	42.0	387	3.5 1		7.0	15.0	14.4	2.1	21.7	TRpn	1996
(south route)	DHC2	65.0	410	11.5		11.8	27.2	14.5	1	2.8	ms3	1996
Yan flood control	IHC	50.0	322	1.5	1	1	28.3	17.2	3.0	17.8	TRhf	1997
dam	DHD	80.0	284	6.1			31.2	35.7	7.0	3.2	TRhf	1997
	DHD	60.0	296	4.0	-	-	16.1	31.8	8.1	13.0	TRhf	1997
	DH4	50.0	331	5.0	· •		6.9	9.1	29.0	23.0	TRhf	1997
	DHS	30.0	328	3.3		1	5.1	14.9	6.7	10.0	TRhf	1997
	DH6	30.0	316	3.0	-	1	6.6	20.2	0.2	2.0	TRhf	1997
	64 holes	4,632.0		737.7	67.7	855.0	1,100.0	918.1	953.5			
* Rock mass classification is shown in the main report "Rock mass classification by drilling core observation".	on is shown in the m	ain report "F	Rock mass cla	assification	by drilling	core observ	ation".					

ass classification is shown in the main report "Rock mass classification by drilling core observa

Table11.2.2-5 Results of Standard Penetry		Result	210 10 010	- Forestyp		TANA V HOMM						A DUAL TANK A TANK A DEPENDENT OF DEPENDENT A TANK A TANK A TANK A TANK A						
			K	Kok intake	2					Kok	-Ing wate	er divers	ion cana	l betwee	n Kok ir	otake an	Kok-Ing water diversion canal between Kok intake and No.1 tunnel	nnel
DHKI-A1 (30 m)	E C		DHKI-F	DHKI-B1 (DKI-1, 30	, 30 m)	Ĩ	DKI-2 (30 m)	(I		DHKI-	DHKI-B2 (DKI-3	, 30 m)	Ĩ	DKI-4 (20 m)	(u	Δ	DKI-5 (20 m)	
EL.389.0				EL.389.0			EL.389.0				EL.391.0			EL.385.0			EL.386.0	
GL-1.95, 16/7/97-27/7/97	-27	T91	GL-2.1	GL-2.10, 29/7/97-5/8/97		GL-3.00,	GL3.00, 21/10/97-23/10/97	23/10/97	Water level		GL2.00, 28/8/97-3/9/97	-3/9/97	GL -0.50,	29/10/97		1	GL-2.50, 25/10/97-28/10/9	8/10/97
Original Revised U:	5	USCS	Original	Original Revised	USCS	Original	1	USCS	Depth(m)		Original Revised	USCS	Original	Revised	uscs	Original	Revised	USCS
10		CL	6	. 6		80	8	SM	1	š	Ś	ML	6	δ	E	~	2	SM
10		CL	- 11	11	SP	16	15.5	SM	2	: 12	12	ML	×	8	CH	18	18	CH
15		CL	5	5	SP	19	17	SM	:::: : ::::	: 16	16	ն	26	26	CH	23	23	CH
6		SM	13	13	SP	18	16.5	SM .	4	17	17	CL	14	14	CH	16	16	ΗO
14	•	CL	7	7	SP	19	17	SM	\$	16	16	HO	15	15	CH	20	20	CH
11		SC	S	5	SP	23	19	SM	9	25	25	CH	25	25	CH	15	15	СН
21.5	L	SP	4	4	SP	15	15	SM		21	21	CH	8	8	SM	32	32	СН
20.5	÷ .	SP	17	16	SP	20	17.5	SM	8	28	28	CH	15	15	SM	27	27	ΗO
27	· · · ·	SP	19	17	SP	27	21	SM	6	31	31.	CH	9	9	ΗЭ	18	18	CH
ដ		SP	18	16.5	SP	27	21	SM	01	34	34	CH	10	10	CH	47	47	CH
27.5		SP	19	17	SP	18	16.5	SM		37	37	CH	27	21	SM			Tuff
28		SP	38:	26.5	SP	38	21.5	SM	12	42	42	CH	30	22.5	WS			Tuff
50		SP	34	24.5	SP	37	26	SM	et :: 13	41	41	CH	46	46	СГ			Tuff
19		SP	37 -	26	SP	39	27	SM	14 State	46	46	CH	29	29	CL			Tuff
23		SP	40	27.5	SP	48	31.5	SM		47	47	CH	27	27	CL			Tuff
22		SP	31	23	SP	35	25	SM	16	48	48	CH	15	15	СГ			Tuff
26.5		SP	35.	25	SP	50	32.5	SM	110	45	45	CH	16	16	СГ			Tuff
28.5		SP	28	21.5	SP	45	30	SM	18	: 45	45	CH	16	16	СL			Tuff
26.5	1 1	SP	21	18	SP	48	31.5	SM	19	49	49	CH	23	23	CL			Tuff
27.5		SP	28	21.5	SP	46	30.5	SM		48	48	CH	32	32	Сľ			Tuff
28.5		SP	22	18.5	SP	38	26.5	SM	12	53	53	CH	31	31	C			
26.5		SP	25	20	SP	47	31	SM -		76	45.5	sc	30	30	าว			
29		SP	28	21.5	SP	41	28	SM	23	3 71	42.5	SC	64	63	CL			
59		SP	17	16	SP	40	27.5	SM	24:	13	43.5	SC	61	60	ರ			
27.5	1	SP	23	19	SP	55	34.5	SM	25	: 79	46.5	SC.	68	67	CL			
30.5		SP	30	22	SP	49	31.5	SM	26	94	53.5	sc			Sandstone			
38.5		SP	30	22	SP	43	28.5	SM	27	86	49.5	sc			Sandstone			(****
54		SP	25	19.5	SP	39	26.5	SM	- 28	92	52.5	SC			Sandstone			
84		CL	37	25.5	SP	54	34	SM	- 29	94	53	sc			Sandstone			
		SM			SP			SM	30	94	53	sc			Sandstone			

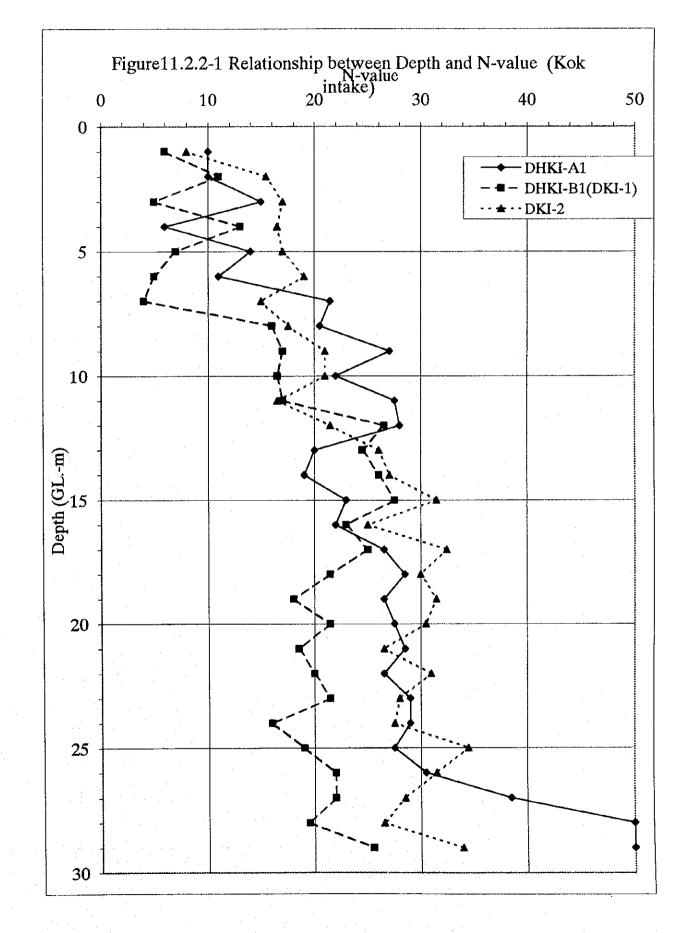
								,	
	Kol	Kok-Ing water diversion canal between No.2 tunnel and Ing weir	ter diver	rsion can	al betwe	en No.2	tunnel a	w gul bu	'eir
	Ā	DKI-8 (20 m)	(0	DHI	DHKI-B8 (20 m)	ш)	DHKI-I	DHKI-B9 (DKI-9, 20 m)	(, 20 m)
		EL.373.0			EL.367.0			EL.372.0	
Water level		GL0.70, 13/10/97-14/10/97	-14/10/97	GL-0.0	GL0.00, 31/8/97-7/9/97	-7/9/97	GL-0.08	GL-0.08, 25/9/97-28/9/97	-28/9/97
Depth(m)	Original	Revised	USCS	Original	Revised	USCS	Original	Revised	USCS
	┢┯╸	6	CH	S	Ş	СГ	16	16	ರ
6	20	20	CH	7	6	CL	28	28	ರ
Ċ.	58	28	Ð	16	16	CL	35	35	G
4	27	- 27	нЭ	23	53	CL	22	22	СГ
5	22	22	CH	23	23	CL	30	30	СГ
io 	20	20	CH	36	36	G	22	22	C
4	19	19	CH	31	31	C	80	80	5
8	10	10	CH	62	62	Ъ	S 3	53	G
6	18	18	CH	33	33	CL	53	53	5
10	20	20	CH	23	23	b	49	49	CL
11	17	17	ΕH	22	22	ដ	. 57	57	CL
12	22	22	CH	29	29	Ъ	48	48	CL
6	59	29	CH	38	28	ษ	43	43	CL
14	20	20	CH	39	39	ರ	51	51	CL
15	20	17.5	sc	15	15	പ	- 58	58	g
16	28	21.5	SC	20	20	CL	48	48	C
41	23	19	SC	22	22	CL	80	80	ರ
18	13	13.	SC	40	40	Ċ	90	90	ಶ
19	18	17	SM	31	31	сг	65	65	g
20	27	27	HO			ರ	50/15cm	8	ರ –

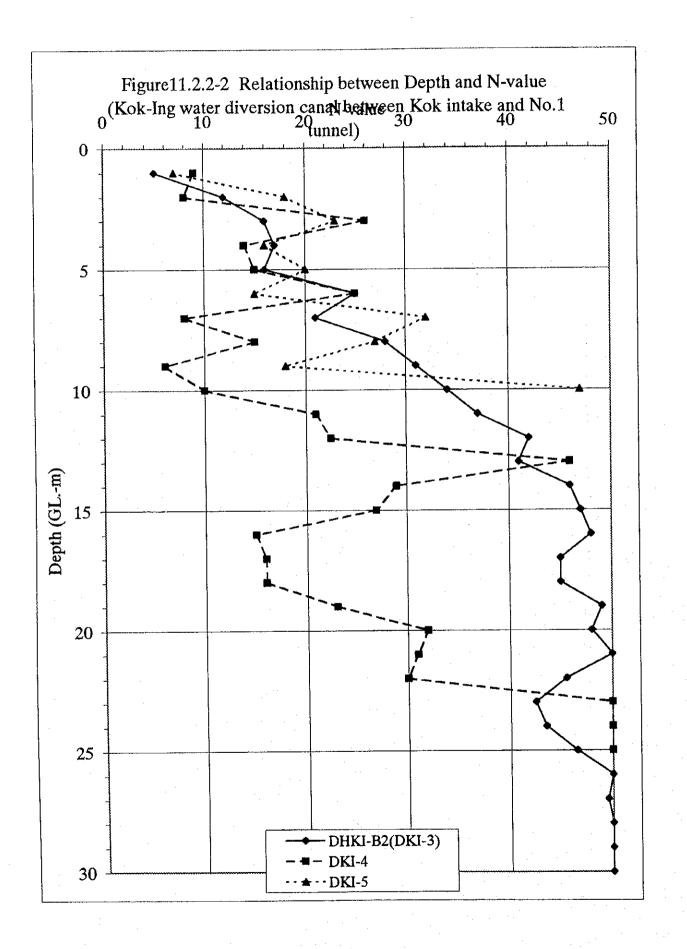
3
. هر
n Test
E.
0
5
Ģ.
5
Peneti
R
<u>a</u>
9
ъ
ĩ.
andar
Ъ
3
ō
Ē
s of S
50
÷
llus
Resi
2
H
~
<u>`</u> (
2
- N
1.2.2-7
6
7
T _a

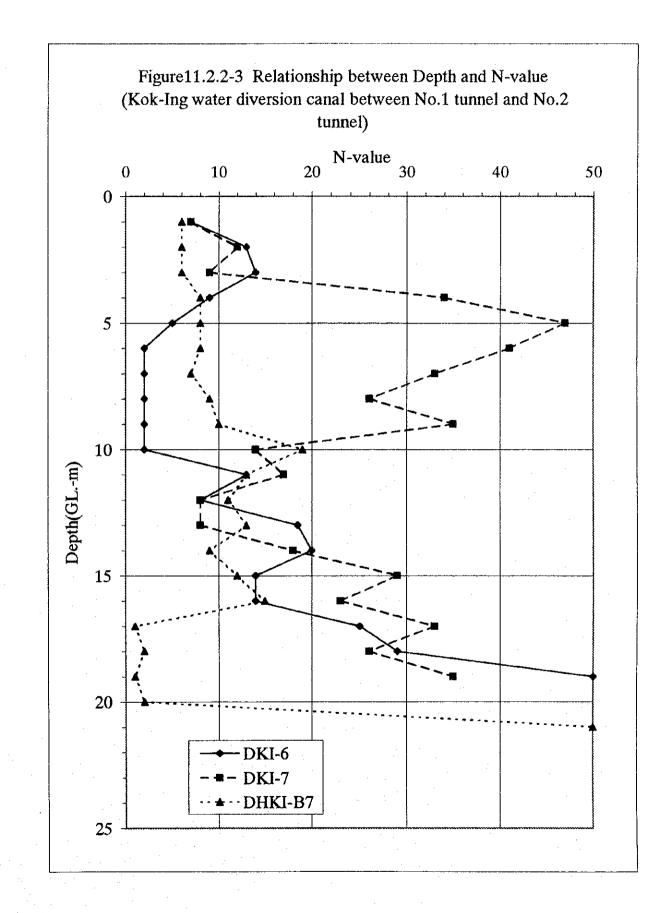
	innel	(u		-22/8/97	uscs	ป	ដ	ษ	ъ	ъ	ป	ರ	ปี	ರ	ಕ	g	5	ಕ	J.	IJ	D	Ы	g	ц Ц	G	Limestone										
est (3)	I No.2 tu	DHKI-B7 (30	EL 397.0	14/8/97	Revised	6	6	9	8	~	80	. 7	6	10	- 19	13	11	13	é	12	15	- 1	2	1	2	100										
Results of Standard Penetration Test (3	unel and	DHI		GL-0.0,	Original	6	6	9	8	8	8	7	6	10	19	13	11	13	6	12	15	1	2	1	5	50/5cm										
Penetrs	n No.1 ti	0)		29/10/97	USCS	СГ	CL	CL	ป	CL	CL	C	CL	CL	CL	CL	сĽ	CL	CL	CL	С	CL	C	СН	CH											
ndard	l betwee	DKI-7 (20 m	EL 392.0	0, 28/10/97-29/	28/10/97-2	Revised	4	12	6	34	47.	41	33	26	35	14	17	8	8	18	29	23	33	26	35.						-					
s of Sta	ion cana	DI		GL-1.00,	Original		12	6	34	47	41	33	26	35	14	17	8	8	18	29	23	33	26	35												
Result	Kok-Ing water diversion canal between No.1 tunnel and No.2 tunnel	(0			USCS	Ð	CH	GH	CH	G	5	CH	E	Ю	CH	CH	SM	SM	SM	Ю	CH	E	CH	CH	СН											
.2.2-7	Ing wate	DKI-6 (20 m)	EL 387.0	18/10/97-19/10/97	Revised	- 6	13	14	6	5	14	5	2	5	5	13	8	18.5	20	14	14	25	29	50												
Table11.2.2-7	Kok-	ā		GL-2.50	iginal	-	13	14	6	5	2	2	5	6	5	13	8	22	25	14	14	25	29	50												
				Water level		1	2	.	4	5	9	7	8		10	11	12		14	15		17	18	19	20	21	22	23	24	25	26	27	28	29	30	

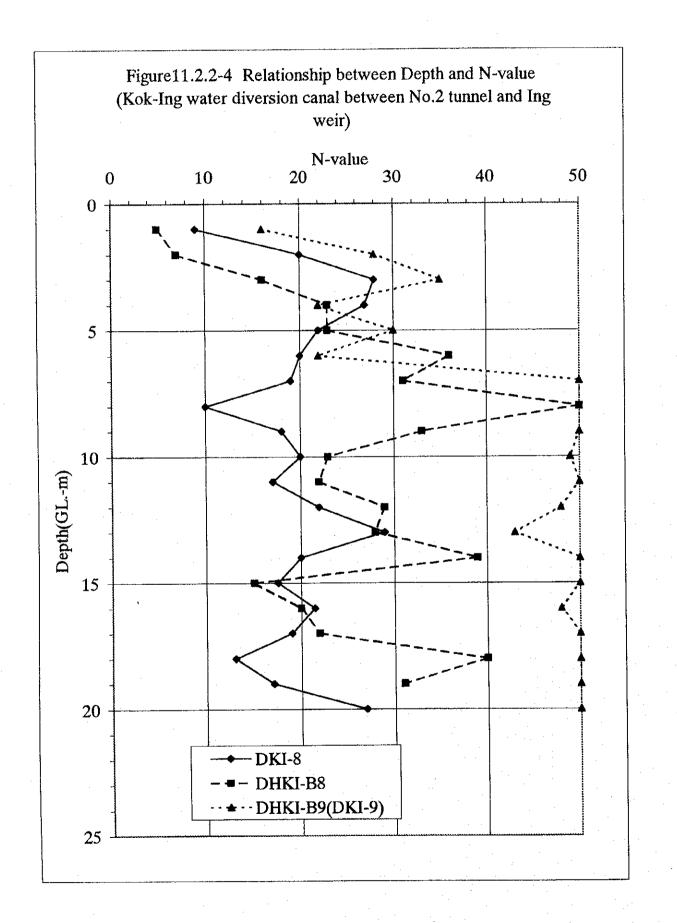
· · .	•		Table11.2.2-9		Results of Standard Penetration Test (5)	s of Stai	ndard P	'enetra	ition le	(c) 1S			LADIELL.Z.Z-LU RESULTS OF STADUATO F	71-2-2-	ANUTAS.	1 1 1 2 2		•
• •	L			.	- 		Ing weir							, 1 14	Kok-Ing water diversion ca	water di	version	G
Тал.		•	DH	DHID-1 (40 r		HQ	DHID-2 (40 m)	(0	DHI	DHID-3 (40 m)	n)		ΗŪ	DHKI-B4 (30 m)	(m)	IHU	DHKI-B5 (30 n	2
	1						EL.362.0		ш	EL.364.0				EL 395.0			EL.397.0	-
	Wat	Water level	GL-1.00		-26/9/97	GL-0.10	GL0.10, 20/9/97-29/9/97	<u> </u>	GL0.20, 15/9/97-1/10/97	15/9/97-	1/10/97	Water level	_	GL1.29, 31/7/97-9/8/97		GL0.60, 11/8/97-1	, 11/8/97	F
	De	Depth(m)	Original	Revised	_	Original	Revised	USCS (Original Revised		uscs	Depth(m)		Original Revised	USCS	Original Revised	Revised	
			16		G	35 -	35	CL	27	27	сг		9	6	CL	e	e	
		2	20	20 :	CL	32	32	СГ	20	20	СН		7	7	СГ	13	13	
		£	19	- <u>1</u> 9	с IJ	38	28	CL	21	21	CH		4	4	CL	17	17	
	: :	4	24	24	GL	-16	16	G	19	19	CH	4	<u></u>	5	CL	22	22	
		5	17	16	SM	21	21	G	10	10	G		27	27	ว	7	7	
•		0	13	13	SM	- 16	15.5	SM	52	25	GH	9	41	28	SM	9	9	
		2	32	23.5	SM	15	15	SM	30	30	CH	z	46	30.5	SM	4	4	
• .		8	14	14	SM	30	22.5	SM	41	41	EH	8	43	29	SM	2	5	
		0	10	10	CL	35	25	SM	33	33	CH		: 40	27.5	SM	8	8	
÷		10	18	16.5	SM	38	26.5	SM	37	37	CH	10	36	36	CL	35	25	
		11	31	33	SM	45	30	SM	49	49	CH	11	38	26.5	SM	44	29.5	
		12	19	17	-SM	47	31	SM	59	37	SP	12	50/8cm	100	CL	40	27.5	
		19	23	6I	SM	48	31.5	SM	76	45.5	SP	13			Sandstone	43	29	
11		14	25	20	SM	41 .	28	SM	50/15cm	57.5	GP	4			Sandstone	45	30	
.45		15	32	23.5	SM	34	24.5	SM	80	47.5	SP				Sandstone	47	31	
5 -]	16	33	24	SM	39	27	┢	50/15cm	57.5	g2	16			Sandstone	78	46.5	
	<u>}</u>	1	23	19	SM	42	28.5		50/10cm	82.5	SP	17			Sandstone	50/15cm	57.5	
		18	25	20	SM	46	30.5	SM	50/15cm	57.5	SP	: 18			Sandstone			ŝ
		19:	31	23	SM	37	26	SM	83	49	SC	19			Conglo.			S
		20	40	27.5	SM	38 -	26.5	SM	50/15cm	57.5	SC	20	•		Conglo.			~
		21	29	22	SM	36	25.5	SM	50/10cm	82.5	SM				Conglo.			v 1
		22	35.	25	SM	41	28	SM	50/10cm	82	SM	22			Conglo.			5
			24	19.5	SM	42	28.5	SM	50/10cm	82	SM	2			Conglo.			~
		24:	32	23.5	SM	45 -	29.5	SM	50/15cm	57	SM				Conglo.			43
		25:00	40	27	SM	37	25.5	SM	10/0cm	100	SM	25			Conglo.			201
		26	40	27	SM	40	27	SM	10/0cm	100	S	26			Conglo.			~
		27	48	31	SM	45	29.5	SM	50/15cm	56.5	SP	27			Conglo.			\$
		28	34	24	SM	42	28	SM	50/15cm	56.5	SP	28			Conglo.			~
		29	37:	25.5	SM	48	31		50/10cm	80.5	SP	29			Conglo.			0
		30:	49	31.5	SM	46	30		50/15cm	56	SP	:0¢:			Conglo.			S
		1. E	41	27.5	SM	40	27		50/15cm	56	SP							
		37	49	31	SM	44	28.5	SM	50/15cm	55.5	SP		61	36.5	SM	70	41	
		33.	45	29	SM	44	28.5		50/10cm	79.5	SP	1.137	62	37	SM	72	41.5	
		34	57	35	SM	60	36		50/10cm	79.5	SP	38	63	37.5	SM	75	43	
		35:	09	36	SM	99	39	SM	50/15cm	55.5	SP	39	70	40.5	SM	75	43	
]						v	<continu-< td=""><td><continued on="" right="" sheet="" side="" the=""></continued></td><td>right side</td><td>sheet></td><td></td><td></td><td></td><td>SM</td><td></td><td></td><td></td></continu-<>	<continued on="" right="" sheet="" side="" the=""></continued>	right side	sheet>				SM			

T	able11	Table11.2.2-10 Results of Standard Penetration Test (6)	Result	ts of Sta	andard	Peneti	ation]	Fest (6)	
		ł	Kok-Ing	water di	iversion	Kok-Ing water diversion canal, south route	uth rout	e	
	DΗ	DHKI-B4 (30 m)	(m)	DHI	DHKI-B5 (30 m)	(m)	DHK	DHKI-B6SP (3	(30 m)
		EL 395.0			EL.397.0			EL.397.0	
ter level	GL -1.29,	9, 31/7/97		GL-0.60,	_	11/8/97-18/8/97	GL-0.63,	3, 21/8/97-	7-8/9/97
pth(m)	Original	Revised	USCS	Original	Revised	USCS	Original	Revised	USCS
1	6	6	СL	3	Э	ML	12	12	cr
3:	7	7	cr	13	13	CL	10	10	СН
3	4	4	CL	17	17	CL	22	22	СН
4	s	S	CL	22	22	СГ	26	26	CH
5	27	27	ರ	7	7	sc	16	16	CH
0	41	28	SM	6	9	sc	12	12	CH
z	46	30.5	SM	4	4	sc	17	17	ΕĦ
8	43	29	SM	2	. 2	sc	16	16	CH
6	40	27.5	SM	8	8	sc	15	15	CH
10	36	36	сг	35	25	SM	23	23	СН
11	38	26.5	SM	44	29.5	SM	22	22	CH
12	50/8cm	100	CL	40	27.5	SP	60	60	CH
13			Sandstone	43	29	sc	46	46	ರ
14			Sandstone	45	30	SP	S0/Scm	100	ಕ
15			Sandstone	47	31	SP			Shale
16			Sandstone	78	46.5	SP			Shale
17			Sandstone	50/15cm	57.5	SP			Shale
18			Sandstone			Sandstone			Shale
19			Conglo.			Sandstone			Shale
20			Conglo.			Sandstone			Shale
21			Conglo.			Sandstone			Shale
22			Conglo.			Sandstone			Shale
23			Conglo.			Sandstone			Shale
24			Conglo.			Sandstone			Shale
25:			Conglo.			Sandstone			Shale
26			Conglo.			Sandstone			Shale
27			Conglo.			Sandstone			Shale
28			Conglo.			Sandstone			Shale
29			Conglo.			Sandstone			Shale
30:			Conglo.			Sandstone			Shale


		<u> </u>	Γ	ľ
Ъ	SP	SP	SP	SP
45.5	55		54.5	54.5
80	50/15cm	50/15cm	[50/15cm]	50/15cm
SM	SM		SM	SM
41	41.5	(1	43	
70	72	75	75	
SM	SM	SM	SM	SM
36.5	37	37.5	40.5	
61	62	63	70	
36	37	38	39	-40


<Continued on the right side sheet>


Table 11.2.2-11 Results of Standard Penetration Test (7)


	Ine-Yot canal	
	12	
	20	
GL-1.5	3/9/97	-20/9/97
Original	Revised	USCS
4	4	CL
5	Ś	CL
6	e.	CL
7 .	7	CL
19	19	G
7	7	С
17	17	сг
70	42.5	SC
50/5 cm	100	SC
		Shale
		Tuff
		- Tuff
		Tuff
		Taff
		Tuff
	1. 1. 1.	Shale
		Shale
		Shale
	10 J. 10	Shale
		Shale
		Shale
•	•	Shale

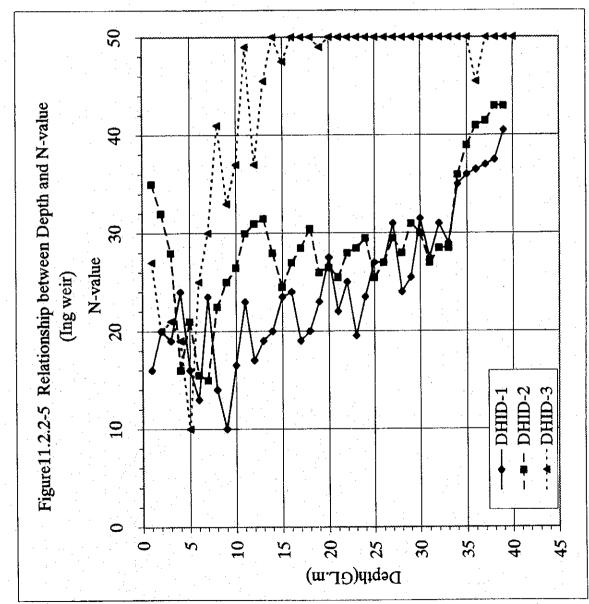
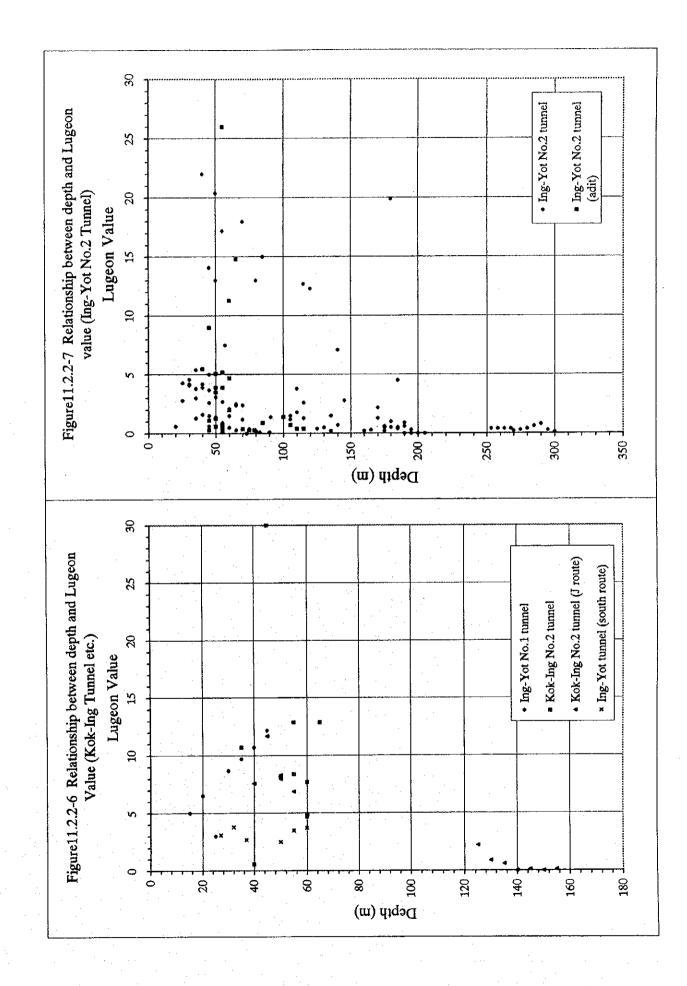
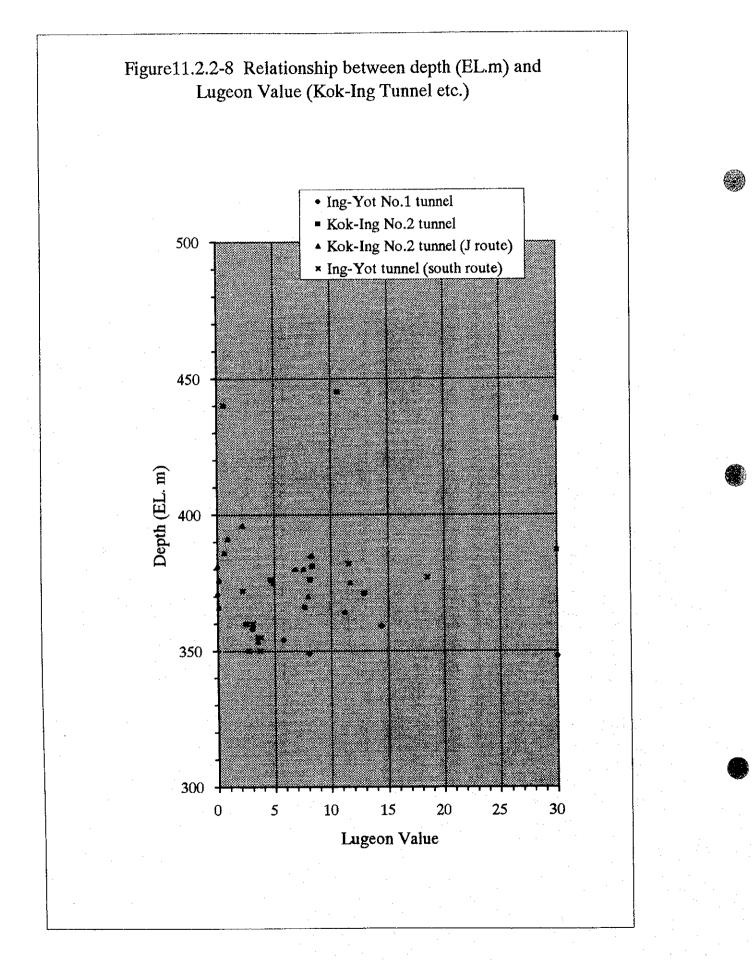

 Original : Original N-value Revised : Revised N-value, revised formulas are as foliows. Revision by depth : N' = N (in case of L< 20 m), N' = (1.06 - 0.003 L) N (in case of L > 20m) Revision for measured N-value at sand layer (by Terzaghi-Peck) N = (N -15) / 2 + 15 (in case of N > 15) N = (N -15) / 2 + 15 (in case of N > 15) * USCS: Unified soil classification system * USCS: Unified soil classification system SP: Poorly graded sands, gravelly sands SM : Silty sand, sand-silt mixtures SC : Clayey sands, sand-silt mixtures SC : Clayey sands, gravel-sand mixtures CH : Inorganic clays of low to medium plasticity, fat clays clt: Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays ML : Inorganic silts and very fine sands, silty or clayey fine sands, or clayey silts, with slight plasticity

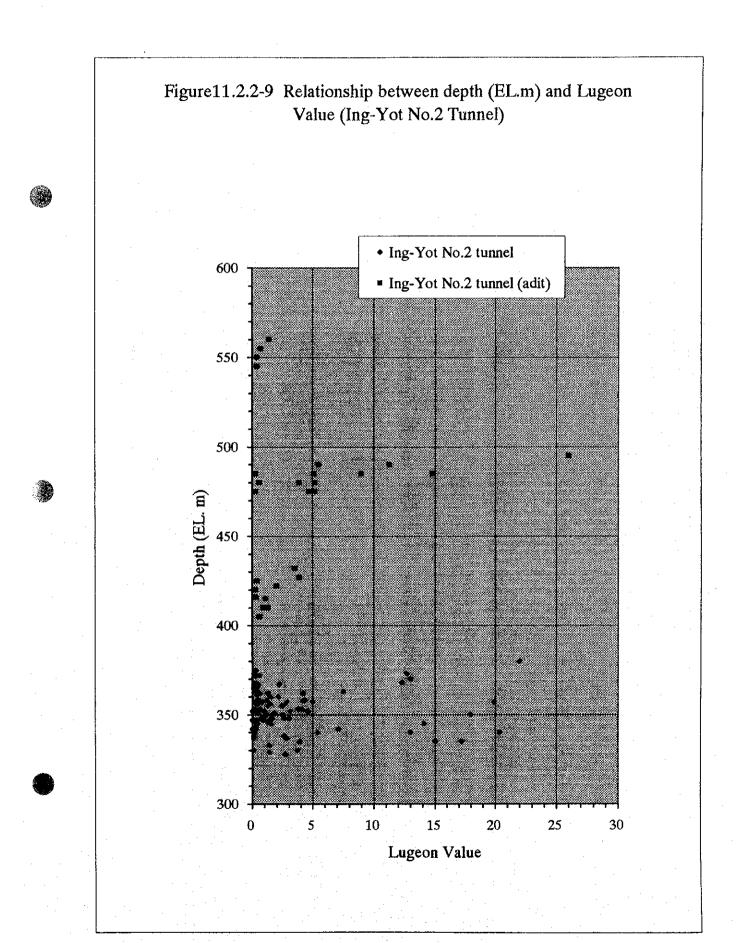
				Table	Table 11.2.2-12	2 Results of 1	s of Lug	Jugeon Lest (L)	(T)				
	Rorehole	Borehole	Testing Depth (m)	spth (m)	Testing Depth (ELm	(PELm)	Max, Water	Lugeon	Water	Testing	Boring	Core Condition	Rock. Class.
Location	NO	G.H. (ELm)	From	L L	From	L L	ress. (kg/cm ²)		Table (GL-m)	Date	Form. Name	Geology	
Transfer National Contraction	Thirtic	436	55	8	381	376	13.6	8.4	15.0	30/8/97	P3,P2	Limestone	CL, CM
intering which Ritemond		436	98	8	376	371	13.6	4.7	15.0	31/8/97		Limestone	D, CL
		436	8	2	371	366	13.6	12.9	15.0	31/8/97		Limestone	D, CL
	muku.	426	50	55	376	371	12.9	8.2	8.0	28/7/97	PTR	Shale	CL, CM
		426	55	8	371	366	12.9	12.9	8.0	31/7/97		Shale	CL
		426	8	65	366	361	12.9	7.7	8.0	1/8/97		Shale	CL CH
	DHR-EXTRAC	1480	35		445	104 14 1	6.3	10.7		24/4/98	P3	Shale, Tuff	۵
	ALC AN	480	40	45	440	435	14.3	0.6		26/4/98		Shale, Tuff	Q
		480	45	50	435	430	4.8	56.6	,	26/4/98		S.s., Tuff	CM, D
IX ALLES No.2 minuel	DHKIT24	435	50	55	385	380	12.5	8.3	4.0	18/8/97	An	Basalt	CH
(11CA YOUND		435	55	8	380	375	12.5	6.9	4.0	18/8/97		Basalt	CH
		435	8	65	375	370	12.5	4.9	4.0	18/8/97		Basalt	CM, CH
	hukiry.	420	4	45	380	375	10.9	7.6	8.0	13/9/97	P3	Tuff	D
		420	45	50	375	370	12.4	11.7	8.0	13/9/97		Tuff	D
		420	50	.	370	365	12.9	8.0	8.0	14/9/97		Tuff	0
	THRIA 5	521	125		396	391	11.6	2.2	35.0	20/2/98	P3	Shale, Andesite	CL, D
	CHCAN	521	130		391	386	4.3	0.9	37.5	21/2/98		Shale, Andesite, S.s.	되
		521	135	140	386	381	6.1	0.6	45.0	22/2/98		Andesite, S.S., Shale	ŋ
		521	140	145	381	376	14.6	0.0	45.0	23/2/98		Andesite, Shale	CM, CL
		521	145	150	376	371	14.3	0.1	42.5	24/2/98		Andesite	CM, CL
		521	150	155	371	366	14.1	0.0	40.0	25/2/98		S.s., Andesite	CM, D
		521	155	165	366	356	10.2	0.1	1.7	16/3/98		S.s., Shaie	cl, cM
Tao Vot No 1 filmed	DHIV 1	394	30	35	364	359	8.7	11.2	6.5	20/7/97	ms3	Tuff	ជ
		394	35	9	359	354	5.6	14.4	6.5	21/7/97		Tuff	CM, CL
		394	9	45	354	349	10.7	5.8	6.5	21/7/97		Tuff	CM
		394	45	50	349	344	12.2	8.1	6.5	21/7/97	 		
	DHY2	373	15	20	358	353	5.0	3.0		76/6/7	TRpn	Tuff	D, CL
		373	20	25	353	348	6.5	3.5	4.0	8/9/97		Tuff	CM, CL
		373	25	30	348	343	3.0	57.4	4.0	8/9/97		Tuff	CL, CM
Tho. Vol. No.2 finanel	DH1AD1	482	50	55	432	427	11.5	3.5	44.0	15/7/97	CPhk	Shale	CM, CL
		482	55	60	427	422	11.5	3.9	44.0	15/7/97		Shale	CM, CL
		482	99	65	422	417	16.5	2.0	44.0	16/7/97		Shale	CL CM
	DH3AD1	530	45	20	485	480		0.3	20.0	1/9/97	CPnb	Shale	CL, CM
		530	50	55	480	475	14.1	0.6	20.0	2/9/97		Shale	CM, CL
		530	55	09	475	470	14.1	0.3	20.0	3/9/97		Shale	CM, CH

Table 11.2.2-12 Results of Lugeon Test (1)


						ſ			Ì				
Location	Borehole	Borehole	Testing Depth (m)	epth (m)	Testing Depth (ELm)	th (EL.m)	Max. Water		Water	Iesting	Boring	S	Rock Class.
	No.	G.H. (EL.m)	From	To	From	J.	Press. (kg/icm ²)	Value	Table (GL-m)	Date	Form. Name	Geology	
Ing-Yot No.2 tunnel	DHKAD1	535	50	55	485	480	14.9	5.1	28.5	11/9/97	CPhk, CPab	Sandstone	D
(Adit)		535	55	.09	480	475	14.9	5.2	28.5	14/9/97		Sandstone	CL, D
		535	60	65	475	470	14.9	4.7	28.5	15/9/97		Sandstone	ษ
	DHSAD	550	55	60	495	490	5.8	26.0	27.3	29/6/97	TRhf	Sandstone	CM, CL
		550	09	. 65	490	485	7.8	11.3	27.3	29/6/97		Sandstone	CM, CL
		550	65	70	485	480	7.8	14.8	27.3	29/6/97		Sandstone	CM, CL
	DH6ALDSP	660	90	95	570	565	2.5		24.3	19/8/97	TRhf	Sandstone	CM, B
		660	95	100	565	560	2.5	,	24.3	19/8/97		Sandstone	CH, CM, CL
		660	100	105	560	555	14.5	1.4	24.3	19/8/97		Sandstone	B, CH, D
		660	105	110	555	550	14.5	0.7	24.3	19/8/97		Sandstone	CH, CM, CL, D
		099	110	115	550	545	14.5	0.4	24.3	20/8/97		Sandstone	CH, CM, CL
		660	115	120	545	540	14.5	0.4	24.3	20/8/97		Sandstone	B, CH
	DH7AD	460	45	50	415	410	13.9	1.1	23.0	23/8/97	TRhf	Sandstone	CH, CM
		460	50	55	410	405	14.4	1.3	23.0	24/8/97		Sandstone	CH
		460	55	60	405	400	14.4	0.6	23.0	25/8/97		Sandstone	CH
Ing-Yot No.2 tunnel	DHAT	403	45	50	358	353	11.1	0.6	6'0	25/5/96	TRpn	Tuff	CL, CM
		403	50	55	353	348	12.2	0.6	6.0			Tuff	cl, cM
		403	55	60	348	343	13.4	6.0	6.0			Tuff	CM, CL
	DHA2	412	55	09	357	352	13.4	0.8		21/6/96	CPhk	Phyllite	
		412	60 50	65	352	347	14.3	0.5	0.6			Phyilite	D
		412	65	2	347	342	15.7	0.3	0.6			Phyllite	Q
	DHB-1	383	25	30	358	353	6.5	4.3	1.3	5/6/96	TRpn	Shale	CL, CM
		383	30	35	353	348	8.3	4.1	1.3			Shale	CM, CL
		383	35	40	348	343	9.4	3.0	1.3			Shale	CM, CL
	DHB-2	388	30	35	358	353	7.7	4.2	1.3	30/5/96	TRpn	Shale	CM, CL
		388	35	40	353	348	8.8	3.8	1.3			Shale	D
		388	9	45	348	343	10.0	1.6	1.3			Shale	Q
	DHB-3	402	40	45	362	357	10.6	4.2	3.1	21/8/96	TRpn	Tuff	CL
		402	45	50	357	352	11.9	5.0	3.1			Tuff	GL
		402	50	55	352	347	13.1	3.1	3.1			Tuff	G
	DHB-4	463	105	110	358	353	15.5	1.2	4.5	20/5/96	CPhk	Limestone, S.s	CM
		463	110	115	353	348	15.5	3.8	4.5			Sandstone	CL
		463	115	120	348	343	15.5	2.6	4.5			S.s., limestone	GL
	DHB-5	461	105	110	356	351	15.4	1.5	3.2	26/696	CPub	S.s., Slate	CM, CL
		461	110	115	351	346	15.4	1.8	3.2			Slate	CM
		461	115	120	346	341	15.4	13	3.2			Slate	CH


Table11.2.2-13 Results of Lugeon Test (2)

	Rock Class		ß	CM	K	В	B		CM, CL, CH	CH	GH	CĽ, D	CL, D	CL, D	CM, CL	CL, D	CM, D, CL	D, CL	D, CL	ct, D	CL,D	۵, D	CL, D	D	Q	0	CH, CM	CM, CH	CM, CL	CH, CM	CH, CM	CM, CH	CH, CM
	Core Condition	Geology	Limestone	Limestone	Limestone	Limestone	Limestone	Limestone	Tuff	Tuff	Tuff	Tuff	Tuff, Shale	Shale	Shale	Shale	S.s., shale	S.s. & Shale alt.	S.s. & Shale alt.	S.s. & Shale alt., Tuff	S.s. & Shale alt., Tuff	S.s. & Shale alt.	S.s. & Shale alt.	Shale	Shale	Shale	Slate	Slate	Slate	Slate	Slate	S.s., Slate	Slate
	Boring	Form. Name	TRpi			TRpl			TRhf			TRpn			TRpn			CPnb	-					TRhf			CPnb						
	Testing	Date	6/8/96			12/5/96			26/5/96			18/9/97	19/9/97	20/9/97	8/9/97	16/6/6	10/9/97	11/7/97	12/7/97	12/7/97	13/7/97	13/7/97	14/7/97	27/6/97	27/6/97	28/6/97	19/3/98	20/3/98	21/3/98	22/3/98	23/3/98	24/3/98	25/3/98
(2)	Water	Table (OL-m)	3.1	3.1	3.1	3.7	3.7	3.7	12.5	12.5	12.5	1.5	1.5	1.5	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	2.1	2.1	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Results of Lugeon Test (3)	Lugeon		1.5	7.1	2.8	2.6	1.4		5.4	3.9	3.7	 	2.8	4.6	1.3	1.6		12.7	12.3	0.4	0.5	0.2	2.0		20.4	17.2		0.3	1.3	0.2	1.0	0.4	0.0
ts of Lug	Max. Water	Press. (kgl/cm ²	15.4	4.4		11.4	12.5		10.5	11.7		5.9 6.7	7.2			10.1		5.1	5.1	12.1		12.1		5.3		6.3			10.1	10.1	10.1	10.1	10.1
	Testing Depth (EL.m)	Lo	342	337		333	328		335	330	325	357	352	347	350	345		368	363	358				340	335	330			357	352		342	332
Table 11.2.2-14	Testing De	From	347			338			340	335		362	357		355			373	368		358	353		345	340	335			362	357	352		342
Tabl	Depth (m)	To	140	145		50									i !	Ì		1									165		175				200
	Testing Depth (n	1		140		145			35			20	·		35			115				Ļ		1 1 1 2 1 2 1		55			170	175			
	T Borehole	G.H. (EL.m)	482	482	482	383	383	383	375	375	375	382	382	382	390	390	390		488	488	488	488	488		390	390	532	532	532	532	532	532	532
	Rorehole	No.	THRA						DHBS			DEBO			DHR0.6			DHRSP						DHB49			DHRIT65	(JJCA)					
		Location	Tan. Var No 2 th band																														


Location Borehole Borehole Borehole Ing. Yot No.2 turned No. G.H. (EL.m) Ing. Yot No.2 turned DHBJ18:0 537 (TCA) 537 537 (TCA) 537 537 (TCA) 537 537 (TCA) 537 537 (TCA) 547 547 (TCA) 547 547 (TCA) 547 547 (TCA) 547 547 (TCA) 619 547 (TCA) 619 619 (TCA) <th>Testing Depth (T Testing Depth (T 165 T T 165 T T 175 175 T 180 T T 180 T T 180 T T 180 T T 185 T T 190 T T 185 T T 185 T T 185 T T 185 T</th> <th>pth (m) To 170</th> <th>Testing Depth (ELm)</th> <th>Т</th> <th>Max. Water</th> <th>Lugeon</th> <th>Water</th> <th>Testing</th> <th>Borin</th> <th>Boring Core Condition</th> <th>Deat Class</th>	Testing Depth (T Testing Depth (T 165 T T 165 T T 175 175 T 180 T T 180 T T 180 T T 180 T T 185 T T 190 T T 185 T T 185 T T 185 T T 185 T	pth (m) To 170	Testing Depth (ELm)	Т	Max. Water	Lugeon	Water	Testing	Borin	Boring Core Condition	Deat Class
No. OH (JICA) O. DHBU330 OH (JICA) O (JICA) O (JICA) OH	H	To 170 175	•								T ROLK LIXY
DHRUISO		170 175	From		ress. (kgi/cm ²)	Value	Table (GL-m)	Date	Form. Name	Geology	
(IICA) DiHBU225 (JICA) (JICA) (IICA) (IICA) (IICA)		175	372	367	10.5	0.3	4.0	18/3/98	CPnb	Slate, S.s.	CM, CH
			367	362	10.1	2.2	0.0	22/3/98		S.s., Slate	CM
		180	362	357	10.1	0.5	0.0	23/3/98		Sandstone	CH, CM
		185	357	352	10.1	19.9	0.0	24/3/98		Slate, S.s.	CM, CL, CH
		190	352	347	8.1	4.5	0.0	25/3/98		Sandstone	CH, CM
		195	347	342	10.1	6.0	0.0	26/3/98		Sandstone	CM
		205	342	332	10.1	0.3	0.0	28/3/98		Sandstone	CM, CH
		180	372	367	10.1	0.6	0.0	28/2/98	CPnb	Slate, S.s.	CH, CM
		185	367	362	10.1	0.5	0.0	1/3/98		Slate	CM, CH
		190	362	357	10.1	0.5	0.0	2/3/98		Slate	CM, CH
		195	357	352	10.1	0.6	0.0	3/3/98	:	Slate	CH, CM
		200	352	347	10.1	0.0	0.0	4/3/98		Slate, S.s.	CM, CH
	7 200	205	347	342	10.1	0.0	0.0	5/3/98		Sandstone	CH
		220	342	327	10.1	0.0	0.0	86/6/8		Sandstone	CH
	9 253	258	366	361	10.1	0.4	0.0	27/2/98	PTRv	Tuff	CH, B
		263	361	356	10.1	0.4	0.0	1/3/98		Tuff, Dacite	CH, B
		268	356	351	10.1	0.4	0.0	2/3/98		Tuff	CH, B
		273	351	346	10.1	0.4	0.0	3/3/98		Tuff	CH
	8 270	275	368	363	6.8	0.2	7.3	9/2/98	TRhf	Tuff	CH, CM
001 001 001 001 001 001 001 001 001 001	8 275	280	363	358	8.8	0.3	7.5	10/2/98		Tuff	CH, CM
03	8 280	285	358	353.	6.8	0.4	7.5	12/2/98		Tuff	CH, CM, CL
83	8 285	290	353	348	6.9	0.6	8.2	13/2/98		Tuff	CH, CM
	-	295	348	343	8.8	0.8	17.2	14/2/98		Tuff	CH
638	8 295	300	343	338	11.5	0.3	44.0	16/2/98		Tuff	CH
638		310	338	328	10.1	0.1	10.5	18/2/98		Tuff	CH, B, CM
Inp/Yot No.2 tunnel (1) (DHCH) (2010) 387		32	360	355	9.0	3.1	21.7	12/5/96	TRpn	Siltstone	CM, CH, CL
(south route) 387	7 32	37	355	350	10.7	3.8	21.7			Siltstone, S.s.	CM, CH, CL
		42	350	345	11.2	2.7	21.7			Sandstone	CM, CL, CH
410 2 10 10 2 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	0 50	55	360	355	13.5	2.5		16/7/96	ms3	Sandstone	CM, CL
410		60	355	350.	13.5	3.5	2.8			Sandstone	CL, CM
410	09 - 0	65.	350	345	14.7	3.7	2.8			S.s., shale	CL, CM

	Borehole	Borehoie	Testing Depth (m)	pth (m)	Testing Depth (EL-m)	h (EL-m)	Lugeon	Water	Borin	Boring Core Condition	
Location	.°Z	G.H. (EL.m)	From	To	From	To		Table (GLm)			
Kolzlao tamael	DHKIB6SP	397	10	15	387	382	>50.0	0.6	PTR	Soil, shale	٩
KEANTH FOUTEN		397	15	8	382	377	11.6	0.6		Shale	Ð
		397	20	22	377	372	18.5	0.6		Shale	D
		397	25	30	372	367	2.2	0.6		Shale	a
Ino. Vot No.7 tunnel	DH2Ad1SP	495	8	75	425	420	0.4	5.0	CPh	Shale	D, CL
V.EV.		495	75	8	420	415	0.3	5.0		Shale	CM, CL
		495	62	2	416	411	03	5.0		Shale	CM, CL
		495	85	8	410	405	60	5.0		Shale	CL
	DH3Adt	530	4	45	490	485	5.5	20.0	CPnb	Shale	CM, D
		530	45	50	485	480	0.6	20.0		Shale	CL, CM
		530	50	55	480	475	3.9	20.0		Shale	CM, CL
		530	SS	99	475	470	5.2	20.0		Shale	
Inc. Vot. No. 7 thinks!	DHRISP	420	55	8	365	360	0.1	22.0	PTRgr	Granite porphyry	Ð
		420	8	65	360	355	2.1	22.0		Granite porphyry	CL, CH, CM
		420	8	P2	355	350	2.4	22.0		Granite porphyry	CH, B, CM
		420	2	75	350	345	2.4	22.0		Granite porphyry	CM, B
		420		80	347	340	0.0	22.0	× .	Granite porphyry	CM, CH
	DHB46SP	420		45	380	375	22.0	4.0	TRpl	Limestone	GM
		420		50	375	370	0.3	4.0		Limestone	GY
		420	50	55	370	365	13.0	4.0		Limestone	CH, CL
		420		8	363	360		4.0		Limestone	CH, CM
		420		65	360	355	1.5	40		Limestone	QM
		420		2	355	350		4.0		Limestone	CM, CL
		420	م	-75	350	345	18.0	4.0		Limestone	CH, CM
		420		8	345	340	43.0	4.0		Limestone	CM
		420		85	340	335	13.0	4.0		Limestone	CM
		420		8	335	330	15.0	4.0		Limestone	CM, CL
		420		95	330	325	0.1	4.0		Limestone	CM
		420		96	329	324	1.4	4.0	•	Limestone	CM
	DHBSOSP	420		75	350	345		15.5	TRhf	S.s. & Shale alt.	CM, CH, CL
		420		80	345	340	0.4	15.5		S.s. & Shale alt.	CM, CH, CL
		420	80	85	340	335	0.2	15.5		S.s. & Shale alt.	CM, CH, CL
		420	8	8	337	330	0.1	15.5		S.s. & Shale alt.	CM

•

			≼ [0_00			4	Derrode
Borehole No.	Kind of Logging	Depth	Range	Remarks	Borchole No.	Kind of Logging	Deptn	kange	Vendas
DHBJ-4.5	DHBJ-4.5 Electric logging					Electric logging			
(111-153 m)	Stort normal	111-131 m	80-500	most of data show 80-300	(82-203 m)	Short normal	82-90 m	10-(>)200	most of data snow 20-30 of over
	(ohm-m)	132-135 m	400-650			(ur-mdo)	91-96 m	8-12	low resistivity
	×	136-148 m	700-1.550	high resistivity (CM class of S.s., Sh., An)			97-101 m	12-95	
		149-153 m	320-500				102-110 m	5-12	low resistivity
	I one neme	111-132 m	100-200				111-113 m	120-(>)200	
	(mindo)	133-150 m	380-800	high resistivity (CM class of S.s., Sh., An)			114-118 m	10-(>)200	
		151-153 m	280				119-126 m	5-12	low resistivity
	SP Incoinc		270-450	Sp curve shows monotonous line.			127-129 m	20-80	
	0.00			values show (+)			130-136 m	5-12	low resistivity
	Gamma loveine		15-80	in average, S.s. 47.1			137-142 m	10-160	
	Cmc)	 , -		Shale 47.1			143-149 m	>200	high resistivity (CM, CH class of S.s.)
				Andesite 42.9			150-160 m	10-150	
DURLIKS	Flechic logoing.						161-164 m	5-10	low resistivity
776 10X m	Short normal	26-68 m	20-40	33, 38-40, 51-55 m show 50-163			165-168 m	25-60	
	(ohm-mì	68-164 m	20-40	low resistivity, 73-83 m (>10), 92-101 m			169-172 m	10-12	low resistivity
				(8-13), 125-128 m (5-10), 140-160 m (3-12)			173-200 m	10-(>)200	
		165-186 m	15-40				201-203 m	5-8	low resistivity
		187-195 m	5-10	low resistivity		Long normal:	82-100 m	13-42	
	Tone normal	26-31 m	>30	************		(ut-utqo)	101-111 m	5-12	low resistivity
	ann-m)	32-55 m	30-40				112-119 m	15-(>)200	
		55-138 m	15-25				120-126 m	10-15	fow resistivity
		139-162 m	10-15	low resistivity			127-129 m	15-25	
		162-190 m	15-20				130-139 m	8-12	low resistivity
		191-195 m	10	low resistivity			140-143 m	15-70	
	SP logging	26-138 m	(-)5-(-)200	values show (-), 32-132 m ((-)50-(-)200)			144-148 m	>200	high resistivity (CM, CH class of S.s.)
	(viii)	139-145 m	0-(-)25	values change from (-) to (+)			149-152 m	15-20	,
		146-173 m	0-75	values show (+)			153-178 m	10-30	most of data show 10-15
		174-180 m	0-(-)-0	values show (-)			179-194 m	15-30	
		181-183 m	25-50	values show (+)			195-203 m	5-10	low resistivity
		184-187 m	0-(-)45	values show (-)		SP logging	90-131 m	(-)10-(-)200	values show (-)
		188-195 m	5-175	values show (+)		(AUI)	132-155 m	0-75	values show (+), part of data show (-)
	Gamma logging		40-82	in average, S.s.57.5					10-(-)60
	(cba)			Slate 66.6			156-158 m	0-(-)25	values change from (+) to (-)
							159-198 m	(-)50-(-)200	values show (-)
	1. 						199-203 m	5-60	values show (+)
		·				Gamma logging		25-83	in average, S.s.50.7
						(cbs)			Slate 09.4

Table 11.2.2-17 Results of Geophysical Logging of Each Borehole (1)

gging of Each Borehole
Geophysical Log
Results of
able 11.2.2-18

Borehole No.	Kind of Logging	Depth	Range	Remarks	Borehole No.	Borehole No. Kind of Logging	Depth	Range	Remarks
DHR1-22.5	DHR 23.5 Electric logzing				DHBJ-33.0	DHBJ-33.0. Electric logging	174-175 m	500	
(12-210 m)	Shor normal	12-14 m	75-115	high resistivity	(174-300 m))	Short normal	176-213 m	900-(>)2,000	a da a ba a da a ba a ba a ba a ba a ba
	(m. m.)	15-104 m	20-80			(m-mho)	214-236 m	400-1.300	low resistivity. CL class of tuff
	for months		2	07 - (161) 107 111 - (100 400) 144			737-247 m	000-2000	
									form and interiors of allowing
				140 m (170-1,000), 120 m ccl, (000,1-021)			111 647-047	700-007	IOW ICODININ' OF CLASS OF LITT
				(120-(>)1,000, 169 m (125), 176 m (250),			250-271 m	1,100-2,700	
				190-191 m ((>)1,000), 161-166 m S.s. CH-B			272-279 m	3,500-(>)5,000	high resistivity, CH class of tuff
		195-219 m	150-(>)1.000				280-300 m	1,500-4,000	293-295 m (3,600-4,000)
	- Inner and	12.12 m	00-150			Tone normal	174-175 m	200-700	
		11 104		hich reciptivity		(m-mh)	m 212-921	800-1512 000	
	(uranan)	T-+	25-07						
				145 m (130), 162-166 m (100-450), 190 m			m 867-617	005'1-000	IOW RESISTIVITY, CL CLASS OF THIT
				(150)			239-247 m	1,000-1,600	
		195-219 m	140-550				248-251 m	400-900	low resistivity, CL class of tuff
	SP Interne	12-188 m	(-)200-(-)80	values show (-)			252-271 m	1,000-2,900	
	0 00 I	180 101 m	35-180	values show (4)			2.72-280 m	3.500-/>)5.000	high resistivity. CH class of mff
	() m)	INT TET-COT							
		192-203 m	c/I(-)-0	values show (-)			E 005-187	7,100.c(<)-001.z	(000,c(<)-004,E) m 042-E42
		204-210 m	25-130	values show (+)		SP togging	174-203 m	(-)20-(-)150	values show (-)
		211-219 m	(-)5-250	values show (+), (-)		(AUK)	204-257 m	(-)90-100	values show (+), (-)
	Famma loboino.		15-90	in average. S.s.52.8			258-300 m	30-400	values show (+)
	9		2			Control Control		16 50	
	• • •		1	State 03.U		SinSSoi ainningo		00-01	III average, 3.S. 20.4
DHBJ-26.0	Electric logging					(cbs)			Tuff 31.1
(m.005-80)	Short normal	38-191 m	1,000-6,800						
	(m-mh)	192-224 m	6.800-(>)10,000		F				
		725-263 m	>10,000	high resistivity B. B-CH. CH of hiff					
			- 000 0 000 2			-			
			000'6-000'0						
		267-298 m	1,000-5,000						
		299-300 m	5,500-6,000	-					
	Tone normal	38-191 m	1,000-9,400						
	a Vinterni mi	102 m	8.200	-					
		103 246							
		266-267 m	5,500-8,500						
		268-298 m	1,400-7,400	•	-				
		299-300 m	8,000		-				
	SP logging	101-183 m	(-)10-(-)200	values show (-)			-		
		184-192 m	0-1-740	values change from (-) to (+)					
			15 125						
		111 607-06T	CCT-CT	VALUES SHOW (+)	-				
		m / 67-067	07-0	values show (+)					
		298-300 m	50-110	values show (+)					
	The second se			T_66.00 -	-				
	Camana woxgurg		70-0	In average, Jutt 32.1			-		

Table 11.2.2-19 Summary of Vp Data by Full Waveform Sonic Logging

		Â	DHBJ-4.5 (Vp km/sec)	Vp km/se	(C)	
	S	S.s.	Shale	e	Andesite	site
	GM	Б	CM	CL	CM	СГ
Num.	5	2	2	21	10	3
Av.	5.42	4.45	5.55	4.68	5.39	4.07
Max.	5.8	4.5	5.7	5.6	6.1	4.8
Med.	5.4	4.5	5.6	4.7	5.3	3.8
Min.	5.1	4.4	5.4	3.4	5.0	3.6
Stdev.	0.29	0.07	0.21	0.67	0.41	0.64
* Formation : P3	ion : P3					

	ĨŪ	JBJ-16.5	DHBJ-16.5 (Vp km/sec)	ec)
<u> </u>	S.S.		Slate	
	W	CH	CM	CL
Num.	.5	- 62	67	19
Av.	4.56	4.48	4.39	4.02
Max.	4.7	5.1	5.5	4.6
Med.	4.6	4.5	4.4	4.0
Min.	4.3	3.7	3.0	3.5
Stdev.	0.15	0:30	0+0	0.29
* Formation	on : CPnb			

		DF	DHBJ-18.0 (Vp km/sec)	(Vp km/s	ec)	
		S.s.			Slate	
	ΗO	CM	С	EH	CM	CL
Num.	11	- 67	S	6	· 23 ·	3
Av.	4.85	4.48	4.06	4.63	4.34	3.10
Max.	53	5.5	5.0	5.1	5.6	3.7
Med.	5.0	4.6	3.9	4.6	4.4	3.1
Min.	4.0	3.0	3.2	4.1	3.3	2.5
Stdev.	0.45	0.57	0.77	0.32	0.46	0.60
* Formation	ion : CPab					

Remarks, Num.: Numbers, Av.: Average (km/sec), Max.: Maximum (km/sec), Med.: Median (km/sec) Min.: Minimum (km/sec), Stdev.: Standard deviation

		P	DHBJ-22.5 (Vp km/sec)	(Vp km/sec	(
		S.s.			Slate	
	B-CH	H	CM	CH	CM	CL
Num.	<u> </u>	33	2	72	67	4
Av.	4.86	4.81	4.45	4.60	4.31	3.98
Max.	5.0	5.3	4.5	5.4	4,9	4.5
Med.	4.8	4.9	4.5	4.6	4.3	4.0
Min.	4.7	4.1	4.4	4.0	3.4	3.4
Stdev.	0.11	0.28	0.07	0.29	0.33	0.51

* Formation : CPnb

	a)HBJ-26.0	DHBJ-26.0 (Vp km/sec)	()
		U	Tuff	
	B	B-CH	CH	CM
Num.	18	61	175	8
Av.	5.87	5.51	5.46	5.18
Max.	6.3	6.3	6.5	5.5
Med.	5.9	5.5	5.5	5.2
Min.	5.1	4.5	4.1	4.6
Stdev.		0.38	0.52	0.29
* Formation	ion : PTRv			

		DHBJ	-33.0 (Vp k	m/sec)	
		Tuff		S.S.	
	CH	CM	ษ	CM	
Num.	34	48	42	. 9	2
Av.	5.32	5.15	4.84	5.10	4.80
Max.	5.8	5.2	5.5	5.5	4.9
Med.	5.4	5.15	4.8	5.05	4.8
Min.	4.9	4.7	4.7 4.2 4.9	4.9	4.7
Stdev.	0.22	0.23	0.29	0.21	0.14
* Formati	ion : TRhf				

Table 11.2.2-20 Summary of Vs Data by Full Waveform Sonic Logging

		a	HBJ-4.5 (DHBJ-4.5 (Vs km/sec)	(
· ·	S.S.	S	ЧS	Shale	Ande	Andesite
	CM	G	CM	C	GM	cr
Num.	· 5 ·	2	2	21	10	.3
Av.	3.04	2.70	2.95	2.66	3.09	2.70
Max.	3.2	2.9	3.1	3.1	3.4	2.9
Med.	3.0	2.7	3.0	2.8	3.0	2.8
Min.	3.0	2.5	2.8	2.2	2.9	2.4
Stdev.	60.0	0.28	0.21	0:30	0.17	0.26

	a	HBJ-16.5	DHBJ-16.5 (Vs km/sec)	c)
-	S.s.		Slate	
	CM	Э	CM	ರ
Num.	2	6L ·	67	19
Av.	2.78	2.87	2.79	2.72
Max.	3.1	3.4	3.4	3.0
Med.	2.7	2.9	2.8	2.8
Min.	2.6	2.2	2.1	2.2
Stdev.	0.19	0.23	0.24	0.23

		Ĩ	DHBJ-18.0 (Vs km/sec)	(Vs km/se	(c)	
		S.s.			Slate	
	CH	CM	CL	CH	CM	ರ
Num.	11	65	S	6	23	e
Av.	2.80	2.80	2.82	2.51	2.66	2.40
Max.	3.0	3.5	3.2	2.8	3.1	2.7
Med.	2.9	2.8	2.8	2.5	2.7	2.6
Min.	2.5	1.9	2.3	2.2	2.1	1.9
Stdev.	0.19	0.27	0.33	0.19	0.28	0.44

		IQ	HBJ-22.5	DHBJ-22.5 (Vs km/sec)	0		and the second second
		S.S.			Slate		
	B-CH	CH	CM	CH	CM	ц Ц	-
Num.	7	33	2	22	67	4	
Av.	2.90	2.86	2.80	2.83	2.78	2.65	_
Max.	3.0	3.2	2.8	3.4	3.1	2.8	_
Med.	2.9	2.8	2.8	2.8	2.8	2.7	_
Min.	2.8	2.5	. 2.8	2.3	2.2	2.4	
Stdev.	0.08	0.16	0.00	0.16	0.16	0.17	-

	9	DHBJ-26.0 (Vs km/sec) Tuff	.0 (Vs km/se Tuff	()
-	B	B-CH	CH	GM
Num.	18	61	- 175	ø
Av.	3.34	3.25	3.30	3.36
Мах.	3.6	3.8	4	3.9
Med.	- 3.4	3.2	3.3	3.4
Min.	£	2.8	2.7	2.9
Stdev.	0.18	0.22	0.22	0.29

		DHBJ-	DHBJ-33.0 (Vs km/sec)	cm/sec)	
		Tuff		S.s.	s.
	CH	GM	CL	¥	Ъ
Num.	34	4 8	42	6	7
Av.	3.05	3.06	3.06	3.00	2.95
Max.	3.5	3.9	3.8	3.2	3.0
Med.	3.1	3.1	3.0	3.0	3.0
Min.	2.6	2.6	2.5	2.8	2.9
Stdev.	0.20	0.25	0.32	0.14	0.07

Table 11.2.2-21 Summary of Resistivity (Short Normal) Data by Electric Logging

-m)	Andesite	C CM CT	10	867.0		735	400	404.0	
DHBJ-4.5 (ohm-m)	Shale	CM	2 21	750.0 279.3		750 220	700 80	70.7 198.1	24
	S.s.	GL	1	180.0	180	180	180		* Emmation - P3
		MO	0	675.0	1.200	515	320	<u> </u>	m-mho.
			Num	Av.	Max.	Meď.	Min.	Stdev.	* 1

	Slate	
E	CM	СГ
77	- 66	19
21.8	22.9	20.7
163	162	- 73
15	19:	17
e	Ś	S
26.7	22.1	14.2
	11.8 15 15 15	

			DHBJ-18.0 (ohm-m)	0 (ohm-m)		
		S.S.			Slate	
	CH	Q	ป	CH	CM	C
Num	11	02	s	6	23	
Av.	81.4	45.6	42.6	17.8	30.0	40.0
Max.	>200	>200	160	30	>200.	55
Med.	30	8	15	- 15	10	35
Min.	10	5	10	10	5	30
Stdev.	81.8	61.8	65.7	8.3	45.9	13.2
* Format	* Formation : CPnh					

Formation : UFnb

* On the occasion of computation as for Av. and Stdev., >200 value is converted as 200.

39.6 E ರ 22 8 5 ନ୍ନ Slate 124.5 CM 8 5 SS 8 DHBJ-22.5 (ohm-m) 8 [43.2 36.0 ΗO 7 ß ŝ 50.0 ß 54 К S ห 3 >1,000 475.5 335.8 S.s. CH <u>5</u> 33 ຊ * Formation : CPnb CH-B >1,000 445.6 5743 63 S Stdev. Num Max. Med. Min. Av.

		DHBJ-26.0 (ohm-m)	0 (ohm-m)	
		Tr	Tuff	
	æ	B-CH	CH	CM
Num	18	61	176	8
Av.	6,655.6	4,450.8	4,928.4	4,362.5
Max.	>10,000	>10,000	>10,000	>10,000
Med.	6,950	3,800	3,600	4,300
Min.	1,800	1,300	500	1,100
Stdev.	3,375.7	2,409.8	3,242.8	2,690.7
OLUCY.	1101060	21/2/14	Ś	2

* On the occasion of computation as for Av. and Stdev., >10,000 value is converted as 10,000. * Formation : PTRv

		DHB	DHBJ-33.0 (ohm-m)	0-m)	
		Tuff		S.s.	
	EH	CM	сГ	CH	CM
Num	34	47	44	6	2
Av.	2,835.3	1,741.5	1,208.4	1,466.7	1,075.0
Max.	>5,000	2,800	2,500	2,000	1,500
Med.	2,450	1,700	1,100	1,425	1,075
Min.	1,200	200	400	1,000	650
Stdev.	1,054.5	563.3	537.4	328.1	601.0
* Formation	tion : TRhf				

* On the occasion of computation as for Av. and Stdev., >5,000 value is

converted as 5,000.

Remarks Num.: Numbers, Av.: Average (ohm-m), Min.: Minimum (ohm-m), Med.: Median (ohm-m) Max.: Maximum (ohm-m), Stdev .: Standard deviation

Data by Electric Logging	
(Long Normal)	
y of Resistivity	
22 Summar	
Table 11.2.2-22	

			DHBJ-4.5 (ohm-m)	(m-m 40) ;		-
	S.s.	s.	Shale	ale	And	Andesite
	CM	G	GM	CL	CM	CL
Num	. 6	1	5	21	10 -	G
Av.	396.7	100.0	625.0	182.1	569.0	273.3
Max.	009	100	650	550	800	550
Med.	365	100	625	150	590	150
Min.	250	100	009	100	380	120
Stdev.	157.7		35.4	123.0	157.8	240.1
* Unit : o	ohm-m				· .	•

S.s. Slate CM CH CM CL Num 6 77 66 19 Av. 16.2 19.8 18.9 20.2 Max. 23 39 40 30 Med. 15 17 18 20.2 Med. 15 8.4 6.6 4.8 Stdev. 4.4 8.4 6.6 4.8			DHBJ-16.5 (ohm-m	5 (ohm-m)	
CM CH CM 6 77 66 16.2 19.8 18.9 23 39 40 15 17 18 16 19.8 18.9 23 39 40 15 17 18 12 10 10 12 10 10 4.4 8.4 6.6		S.S.		Slate	
6 77 66 16.2 19.8 18.9 23 39 40 15 17 18 15 17 18 15 17 18 15 17 18 15 17 18 12 17 18 12 10 10 4.4 8.4 6.6		W	CH	CM	CL
16.2 19.8 18.9 23 39 40 15 17 18 12 10 10 4.4 8.4 6.6	Num	6	41 .	66	19
23 39 40 15 17 18 12 10 10 4.4 8.4 6.6	Av.	16.2	19.8	18.9	20.2
15 17 18 12 10 10 4.4 8.4 6.6	Max.	33	39	40	30
12 10 10 4.4 8.4 6.6	Med.	15	17	18	20
4.4 8.4 6.6	Min.	12	10	10	10
	Stdev.	4.4	8.4	6.6	4.8

	•		DHBJ-18.0 (ohm-m	0 (ohm-m)		
		S.s.			Slate	
	НЭ	CM	ե	CH	CM	CL
Num	11	70	5	6	23	3
Av.	47.7	25.8	11.6	20.8	16.6	25.0
Мах.	>200	>200	15	30	42	30
Med.	15	12	10	20	13	25
Min.	5	S	8	15	10	20
Stdev.	75.5	44.5	3.2	5.8	9.3	5.0
* On the	occasion of	* On the occasion of computation as for Av.	on as for Av.	. and Stdev.	, >200 valu	>200 value is convert

	•		
		•	
į	2	ŝ	
-	oc 200	1	
	ð	Ş	

			AA TATVA			ſ
			m-muo) c.22-i8HU	(m-mno) c		
•		S.s.			Slate	
	CH-B	CH	CM	CH	CM	СГ
Num	7	33	2	73	67	21
Av.	194.3	237.3	45.0	36.0	36.6	42.5
Max.	450	550	80	100	230	150
Med.	110	200	45	30	25	27
Min.	4	50	30	10	15	20
Stdev.	150.0	171.9	21.2	16.2	33.2	30.8

		DHBJ-26.0 (ohm-m)	0 (ohm-m)	
		Tuff	Æ	
	æ	B-CH	CH	CM
Num	18	61	176	8
Av.	7,283.3	4,873.8	5,304.0	5,112.5
Max.	>10,000	>10,000	>10,000	>10,000
Med.	10,000	4,100	4,000	5,000
Min.	1,800	906	500	1,300
Stdev.	3,432.8	2,617.4	3,561.1	2,784.4
* On the	* On the occasion of computation as for Av. and Stdev., >1	computatio	m as for Av.	and Stdev

10,000 value is 4 converted as 10,000.

		DHB	DHBJ-33.0 (ohm-m	0-m)	
	S	S.s.		Tuff	
	CH	CM	CH	CM	cr
Num	9	2	34	<i>1</i> 47	44
Av.	1,271.7	875.0	3,241.2	1,711.3	1,026.1
Max.	1,500	006	>5,000	2,900	2,800
Med.	1,350	875	2,950	1,500	875
Min.	800	850	1400	400	500
Stdev.	257.7	35.4	1,217.3	57.69	581.9
	•				0000

* On the occasion of computation as for Av. and Stdev., >5,000 value is converted as 5,000.

Remarks Num.: Numbers, Av.: Average (ohm-m), Min.: Minimum (ohm-m), Med.: Median (ohm-m) Max.: Maximum (ohm-m), Stdev.: Standard deviation