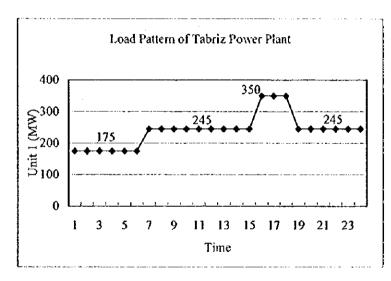

A		٠.		ı:.	7.	4 1	17
23	m	n	na	НX	- 1	4 - 1	

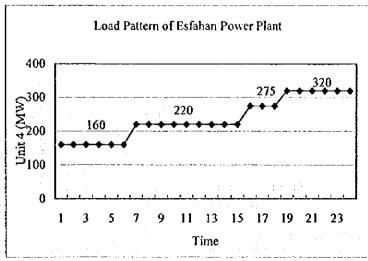
Appendix 7-4-17 Section				
16:59 17:02 783 786 13. 681 12.59 16.21 16.24 755 766] 16.24 16.24 1.369 1.373 1.369 1.373 299 299			3 23	0:27
708 778 778 778 778 744 744 744 744 744 74			45.0	0.24
Nured on June 6, 1998 16:34 16:37 16:30 1797 802 803 12.61 12.59 12.50 12.62 16:19 16:12 274 260 257 166 16:19 16:12 1678 16:19 16:12 1678 160 163 1758 12.63 12.65 1758 12.63 12.65 1758 1			20031	0:21
2 Raw Data mea 16:38 16:41 1738 16:41 1708 1809 12.53 12.61 12.51 12.61 12.60 16:03 10:00 16:03 10:00 16:03 10:00 16:03 10:00 16:03 10:00 16:03 10:00 16:03 10:00 16:03 10:00 170 10:00 16:03 10:00 1	700 (mgq) xON →←	7, 1998	Aid	0:18
SO2, NOx, & O SO2, Core NOx, Core N	SO2 (ppm) 6.7 →← NO.	rred on June 6 &		0:15
1 D.3 2 D.3 35.36 35.3 36.38 37 35.36 35.5 36.38 37 6 mm 6 mm 23.2 Unun 21.2 Umin 0.0074 g 0.035x g 43.20 206 300 203 43.30 40.30 46.90 0.449 g/m3N 6.076 g/m3N 0.313 g/m3N 6.00 12.66	9/9 (wdd) x()N—22—	SO2, NOx & O2 Raw Data measured on June 6 & 7, 1998		0:12
((nm)) 33 (nm) 35 (nm) 35 (nm) 35 (nm) 35 (nm) 37 (nm)	SO2 (ppm) 6/6	SO2, NO		60:0 90:0
(1998/67) Output :: 0.78 Output :: 0.78 S.ps. Temp. (mm) °C 0.441 124.688 124.688 0.030				0:03 0:
Monitoring Results for Unit 4 at Estahan 17P				0:00
Monitoring Results for Unit 4 at 1 Fine] Type: 1 Heavy Oil (70tom/h)	1,000	600 600 600		inute

A	\ թլ	pen	rđix	7-	4-18	3																	î		11		5.5		7:22 Av.	. i 1.	059
	/		1		ن رور رور) .	Ca Not	-	,							λ	ļ !	Cas Flow				(10 ——— (10 (lahun)	<u>.</u>	0		2:13 2:36		7:16 7	, X ;	•
			K				$\langle \rangle$			Crapis					}	$\langle \rangle$	\\ \\\.) 					(mdd)208.		- - - • 13 · · ·		7:10		L	368	
ution Gruph								4		Distribution					<u> </u>	$\langle \rangle \rangle$	/. -				- -		SO2 & NOX Raw Data		- 13	··	7:04)Sn26	7	357 357	651 648
Velocity Deviation Distribution Gruph		9 8	2 2	000	10,	96,4				Temperature Deviation Distribution Graph	Q Q	\$ 8	-01	OI.	ੜ	9 3							SO2 & NC		• 3		2.07		7.01	8 8	8 8
Velocity De	•	3 6 6				J.,	· 12	100 W	_		⊤ ₽		751	157		K			=-1						+3	:	35,9	02 K	6.55 6:	385	\$ 5 S
	Velocity (m/s) Deviation	\$	_	2 17.6	17.9	7 22 0	9 22.8	3.61	_	Temperature (C)	Deviation 6 Average		2 177.7	2 2	_		70	Ĩ	4.9			– –					\$6.9	ri	اة	i ei	-l-,,
[:) 기스		24 17.8 5.8 4.7		18.5 12.3 -2.7 -20.1				Ceviation	Temp	ă ~	183.2 179.4		11.11 -0.2 183.5	J-		5.4	184.3 183.9 180.4	Deviation		:	m dd					Time 6.32	6. SO2.		NOx(pm	202(03)
	5	ļ	14.1	13.2	L.,	1	32.8	18.0	orange.	viation	4	1 9081	<u> </u>	8 83 8 83 8 84 8 84 8 84 8 84 8 84 8 84	- 1		7 2 2	184.3	Standard	1,400	5		CON'I	909	404	200					
· •	4, Velocity (nus) / Deviation	Į	1.51-	14.3	Ĭ	Ĺ_	222	Ш		S. Tomperature (C) / Deviation	~	176.2	'[-	6: 9:		i i	2,6	181.7			5	~1 ~					D.5 29	6 0.441 4 min	23.7 L/min	286	0,041 g/m3N
:	locity (m/s	1	111 4.5 -3.7	9.8- 2.0-	20.3 J.X.3 2.3 -3.5	-	27.5	Ш		трегати	14	-1	Ľ	75.6 182.3			67 87 87 87	8,181		Formula		Standard Deviation					s 2 30 2	_ _	ľ	274 400	++
	÷	-	^ } }	= 3 °	03 ~	7	21 -	verage 21	j	5. Te	-	(1/2/1) (1/4/2)	200	<u> </u>	721-		2000 2000 2000 2000 2000 2000 2000 200	Average 177.		Calculation Formula	Deviation =	Standard Deviation					1 D-5	6 0.441	23.7 L/min		0.077 g/m3N
_	_	,	·		<u>.</u>	,		<u> </u>	0.00	·	_ No		. 10	50 FG	lac :	¥ 1	ार-	_	~ .	- (ाठा			ation	L S	(mu	र्	.1.1	-1-1-
10-8:30)	. 160M₩	ov Data		Velocity (m/s)	21						21.7			18.5		:	22.4		23.5	:	22.6		10.			3. Soot Concentration	Tenip, Average (C)	Gas Manometer (mm) Nozzle Diameter	Qm (Equal Velocity A)	Sucked Stack Gas V(L)	Pv. (mmHg) Soot Concentration
(1999/8/20, 4:30-8:30)	A) Output	clocity R	1.3	, 7 (kg/hi3)				1		0.640	.2 0.648 6 0.656			3 0.63% S 0.63%			3 0.646	1 1	4 0.642			7 0.658	, ,			3. Soot	Temp.	Nouzie	(H)	Sucked	Soot Concen
<u>8</u>	0,000m3 NE.m0000,0	ature &		S.ps. Temp. (mm) °C	174.3	-0.166 176.2	183.2	169.5	-0.239 180.6	185,6	181.2	182.3		1883	9'081	187.2 -0.558 180.0	182.3	184.3	282	-0,408 - 186,2	180.9		-0.362 INL6				11.5	0.294	122,866	<u> </u>	П
an P/P	ural Gas (2	d Temper	Density 7 0#1.3kg/m3N	1	L		8. C. 4	17.6		9.9	21.6		-	15.4 6.9	21.8	_	22.0	14.3	25.0		23.4		17.9 -0				2 11	125,916 123		-1 I	29.87
d at Esfah	A) & Nan	essure, an	0.85 Density 31 70=1.3k	Mano, Real ps. Incl. (mm)	ļ., .,		3 0 0	3 6	٠.	: ;	1.0			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	3		- - - -	1.0	0.5	3 6	0.2	7.0		oint .				0,294	34,746		
for Unit	123tons	Static Pr	el. Penperatu	T.ps.	I	5	: .		20					~ ~		8				**				atutive Pe				125.352	126.594	2 X	30.75
Monitoring Results for Unit 4 at Esfahan P/P	Fuel Type: Heavy Oil (23tonsh) & Natural Gas (20,000m3NA) Output: 160MW	1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data	840 Pitot coef. 630 Bhanal Temperatur	o D.ps.	Ι.	\$ 135	2 8 8	22.5	s 123	20.20	3 280	286		6 8 8			2 292	i				0 0 88		"The Representative Point		2. Water Content	Temp. Average (C)	Gas Manometer (mm) Pre. Weight (g)	(g))(Balance Weight (g) Total Weight (g)	(T) aunic (T)
1.5	ध्र	nam	Pa &	Zero (mm)						8-8 2-5	ş: [:	: 5:5		કે દે					i				Average	Ę		/ater (D. Ave	Gas Manomete Pre. Weight (g)	Post.Weight (g)	Jalance Weight	Sucked Volume (

Netweity Deviation Distribution Graph 12.0 12.0 13.0 15.0	Temperature Deviation Distribution Graph 150.1 15	SOZ & NOx Raw Data	8.00
A Velocity (m/s) / Deviation A 162 162 152 152 152 182 B 202 152 152 153 4 5 6 Ave C 171 164 185 154 155 152 D 222 212 212 242 244 192 E 212 242 255 228 244 192 KN 6.5 16.1 17.5 10.5 14.1 19 Average 19.4 18.9 18.5 18.5 18.5 19.5	S. Temperature (°C) / Deviation 1 2 3 4 5 6 Av 145.0 152.0 155.2 151.0 151.5 145.6 25.6 -12.0 -5.1 -2.2 -12.9 24.4 156.1 191.1 160.2 151.2 152.2 151.6 C 161.1 161.1 162.2 161.2 159.5 156.3 D 153.6 160.0 164.0 163.5 159.5 156.3 C 153.6 160.0 164.0 163.5 159.5 156.3 Average 154.3 166.1 160.2 161.3 159.5 156.3 Average 154.3 166.1 160.2 160.8 157.5 158.3 Caiculation Formula Language 154.5 166.1 160.8 157.5 158.3 Standard Deviation =	Deviation = 1,000	1) 31.6 Lmin 15.3 Lmin 16.000 g 10.000
4 at Estatuan 17P (1998/10/14, 9:10-12:00 Ch) & Natural Gue (32,700m/3N/h) Output: 150 Courser, and Temperature & Velocity Raw Dat 26 year-134g/m3N 1.3 Yello Child (mm) C (44/m3) (ml) C	o	Autive Point 1 1 13.3	132.0x7 125.514 125.926 Nozzle Diameter 131.72 0.04 122.935 Om (Equal Velocity A Company 1.27 0.04 1.87 0.04 1.87 0.04 0.04 1.87 0.05 0.04 0.04 1.87 0.05 0.04
Monitoring Results for Unit First Type : Heavy Oil (36 flow) 1. Dynamic, Real & Static P.	000000000000000000000000000000000000000	Tage The Reput Valer Content Manometer (c	Pre. Weight (g) Post. Weight (g) Balance Weight (g) Total Weight (g) Total Weight (L) For, (mmHg) Xw (%) Average Xw (%)

															ئے	Course of the Co	
1. Dynamic,	_	Real & Static Pressure, and Temperature	essure, a	nd Tem	perature		& Velocity Raw Data	Dote		-		ŗ	7	S	٥	Average	
Pa 841	_	ef.	0.83	0,85 Density			,		<	i a		Ľ	071	Ľ	<i>76</i> 7 8	ज्या :	
м м н, 631		Ethanol Temperatur	×	8 7 0=1.3kg/m3N		1,3			:	-1.0					_1		
Pour Zero (mm)	D.ps. (mm)	T.ps. (mm)	Mano, Real ps. Incl. (mm)	Real ps. (mm)	S ps. (mm)	emp.	T. (trailing)	Velocity (m/k)	×	36.	121-	3.t.	<u> </u>		<u> </u>	3	
	_	4	0.2	19.2		130,3	0.730	19.3	U	줘.			l			0'91	
A-2	0 125	40	2.0	20.0	.0.252	35.5	0.721	16.8	۵	23 C	上	.	Ί.,	ï		22.3	
	200		0.2			153.2	0.691	19.0	ı	×	. !					į	
			0 0	15.2		150.4	0.696	17,6	ᄍ	25.2 15.2				222	22.4	77	
			20	14.4		200	0.738	90	Avene	Ţ,	┸		L	3	7.61	19.7	
				17		135,0	0.722	14.8		1]] !		Gard De	Standard Deviation =	4.0	
	0 50	ę	0,2	%.	0,046	140,3	0.713	12,6									
4 55 5	5 5 6		전 전 전 전	11.2		154.5	0 889 0 889 0 889	15.2		S. Tem	peratur	5. Temperature (C) / Deviation	Deviatio	ç	Tempe	Temperature (C)	Tempera
9	0 130		0.2	20.8		52.3	0.689	20.7							á	Deviation	
) I-O	0 120		0.2	19.2		136.0	0.720	19.4		~	7		4	S	9	Average	
	001		0.2	16.0		143.9	0.706	17.9	≺	130.3	Ľ,	Ľ		7	148.6	143.5	
		35	0,2	14,4	-0.353	145.9	0,703	17.0		6.9	Ť	_		_1	_1	_	
35	28.88		6.2	60 O		155.9	0.687		a	126.5	135.0	1403	24.	255.	<u> </u>	44	
ာ ဗု	3 2		20	? =		153.2		15.1	0	136.0	1	T.			-1	148,4	
	0 170		0.2	27.2		130.9		23.0		-11.1		- 1	1				
9 6	0 175		0.5	28.0		137.0	0.718	23.5	Ω	130.5	137,0		158.1	157.2	2 152.0	<u> </u>	
37	120	?	7 6	27.2	200	158.1	0.683	2.53	2	140.0	' - '	1	1	-7	131	8,121,8	
D-S	0 125		0.2	20.0		157.2		20.3		-7.0			٠ : ا				
ş	0 130		0.5	20.X		220	0.692	20.6	Average	127	138.5	0.44	_		56.2 155.7 153.9	200	
	017		7.0	0.5.5 8.25	;	40.0		9.7.1									_
	88	2	6 6	329	-0.875	146.9		25.4	Calcu	Calculation Formula	rmula		68				
4	0 180		0.2	28.8		159.3		24.5	Deviation =	ion =				_	-{	-	_
\$ \frac{1}{2}	0 190		0.2	30.4		160.6	0.679	25.52	Solo S	(Velocity, Average Velocity), X10 Standard Deviation	Velocity	01× ,	2,1 00 1,200	-	•	<u>:</u> :	
Average			3	20,02	-0.453	1469	0.702	19.7					90 <u>.</u>	-		:	:-
		Representative Point	Ĭ.										800	£ .			· · · · · · · · · · · · · · · · · · ·
													400	:	- · · -·		
2. Water Content	mtent						3, Soot (3. Soot Concentration	u l				88	7	1		\$
			2.5	c;	S-0	•			-	9-11	7	¥.	-	ĺ			
Temp. Avera	() age	7	0.704	7	2000		Temp. A	Temp, Average (°C)	_	4 0 44	,	0.443	Jime	VC 12:1K		12,21	12:24 12:27
Pre. Weight	(3)	125.935	132.54×	125.039	129,377		Nozzle Diameter	Jameier		15		1 5			6. SO2	. NOx, &	6. SO2, NOx, & OZ Raw Data
Post. Weight ((8)	127,178	132,600	126.275			Om (Equ	Om (Equal Velocity A)		20.8 L/min	20.8	20.8 L/min					
Balance Weig	(និ) រដ្ឋន	1.24	0.05	1.24	0.02		Collected	Collected Soot Amount	Ц	3.5	0,041	5.0			SO2/ppm		23.58
Total Weigh	ht (g)	<u>ရှိ</u>	T	2 2	T		Sucked	Sucked Stack Cas V(L)	009 (7)	0 487		\$ V			NOX(ma	al S	
Pv. (mmHe)) autoria	6.39		6.39	T	: -	Soot Concern	Soot Concentration	200	0.088 c/m3N		0,084 g/m3.N	1.		20/205	Ľ	-
(a) MX		2.0		ž X					ŀ	,,,,,	1	,	_		3	5	247 241 242
							2.00	מבינים ביינים	_	2012	_				5	74.7	




Monitor Fuel Ty	Monitoring Results for Unit 5 at Esfaban 17P Firel Type: Heavy Oil (4tons/h) & Natural Gas (1. Dynamic, Reul & Static Pressure, and Tem	17,00 Terrar	(1998/6/10 5m3N)Out ure & Vel	(1998/6/16, 10:15-16:00) Om3N/Output : 220MW(h ture & Velocity Raw Dat	SOO) IW(Max Data					SO2, NC	SO2, NOz, & OZ Kaw Data measured on June 8, 129% 15:55 15:59 16:02 16:05 16:08 16:15	Kaw Dat 15:59 1 35 41 15:30	16:02 16:03 34 38 15:92 1	16:05 16:08 33 3 41 42 15.41 15.49	6:08 16:11 34 35 43 41 15:49 15:45	8 11 16:14 35 33 41 42 45 15:42	34 34 15.45	16:20 40 41 15:50	16:23 35 40 15.43	Avg.	Appendix	
Pa mmH 6 Rep. 2 Point (r	841 Priot coef. 631.0 Ritanol Temperatu Zero D.ps. T.ps. (mm) (mm) (mni)	0.85 Density 27 70=1.31g/m3N Mano, Real ps. S.ps. 1 Incl. (mm) (mm)	0.783 1.3 Temp.	7 (hg//m3)	Velocity (m/s)					SOZ(OZ) No.(OZ) Note: S	87 113 02(02) & 0x, & 02	92 108 108 7. NOX(02 7.aw Dat	101 113 = SO2 4	88 k NOx vu ed on Jur	92 94 117 111 alues based ne 10, 1998	94 K8 11 112 ed on O2	118 118 6%	108.		l. l. J. L.	जिल्ल	
D-2	17 150 135	0.2 20.8	0.252 148.1 0,700	0.700	20.5	-				SO2 (rym	37	8 % % 8 % %	71	31.25	33 35 35 35 35 35 35 35 35 35 35 35 35 3		=			39 Avg. 39 33	ગ્રસ્ટ	
2, Wale	2, Water Content			3. Soot C.	3. Soot Concentration	ē				O2 %	4		1_	- 1	4	Ä	Ä	4	15.10 XX	1	14.X2 85	
Temp. A	Temp, Average (C)	C-2 2 C-2 36 37		Temp. Av	Temp. Average (°C)		D-3 2	2 D.3 35.25	الجال	Nox(02)	Note: SO2(O2) & NOx(O2) = SO2	81 NOx(02	81 502 -	NOX V	sad s	76 79 ed on 02=	22 29	*	75	<u>\$</u>	<u>[</u> *]	
Cas Manomete Pre. Weight (g)	(mm)	0.294i 4	4 2	Gas Manometer (Nozzle Diameter	Gas Manometer (mm) Nozzle Diameter		1.324 IM	22 1.61X 6 mm	×17													
Holance Total W	Fost, Weight (g) 129,664 Balance Weight (g) 1,906 Total Weight (e) 1948	M 124,120 126,599 124,690 M 0.042 1.906 0.035 K 1.941	হাত্য	Collected S	Om (Equal Velocity A) Collected Shot Amount Stocked Stack Gas V(L)	0.0072	£ 3	0.0104 g 5001	114													
Sucked Volumer Pv. (mmHg)	(T)	\prod	[]	Pv. (mmHg) Soot Concent	Pv. (mmHg) Soot Concentration		NSE NSE	42,61 0,030 g/m3N	-													
Average	Xw (%) 15.09% Average Xw (%) 15.11%	ኤ ኤ		Ave, Soot (O2 Conve	Ave, Soot Concentration O2 Conversion Value	} 	LIS.	O2 14.K2	ाल													
٤			1						: :											1		
3										e:										r:		
1.200			→- SO2 (ppm)	. 0			m) 6/8	S	SO2 (ppm) 6/10	*	-NOx (ppm) 6/10	01/9 (
1,000				· i		<u> </u>	į		:	:						:				······································		
	. ·			J =									N 1 P									
S						SO2, NOx	0x & 02 B	taw Data	measured o	& O2 Raw Data measured on June 8 & 10, 1998	10, 1998			:		: <u>L</u> _	:	· · · 		- !		
009		:	:	- i		:	•		:		:											
400	wdd.		!		: : :				:	: : ::-												
}	:		•						· •		•				•			<u>.</u>	-	<u></u>		
200							1			· ·			:				:			:		
			***		***************************************							Ž.		Ì		i	Ę		ì			
0 <u>X</u>	0 Minute 0:00	0:03	90:0		0:00		0:12		0:15	0:18		0:21		6	¥6:0	°	72.0		05:30	·]		

Monitoring Results for Unit 5 at Estuban 17/19 Fuel Type : Heavy Oll (Monch)	esults for Unit	i Sat Esti	han I'	<u> </u>	(19991)	(1999/1/27, Riso-12:30) Output : 178MW	-12:30) 70M3V		4. Vel	4, Velocity (m/s) / Deviation	s) / Devi	tion	1	Velocity (m/s) Deviation	(4)	Velucity Deviation Distribution Gruph	intim Distri	aution Cre	<u></u>	<u> -</u>	j		-
1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data	eal & Static P	ressure.	and Te	mperati	re & V	elocity R	aw Data		-	- 1	- 1	T)	S.	9	Average		07		\ \ \ \ \		L. J.	F. F.	• 1 ·1·
Pa 845	Pitot coef.	0.85	Pensit C	3 v 0=1,3kg//m3N	0.×0	4 6		≪	식수			.	3 *	-12			2		4			·	
Pan Zero	ero D.ps. T.ps.	Man 12	Mano, Real ps.	s S.ps.	remp.	Greffins)	Velocity (m/s)	ដ	2.6	ı	53.			7.7	18.3		- 8	Y	X		R)	
0 1-4			1	l	1	1	ı	Ų	일:	l	1	हता	700	21.5	16.8		2 8	<u></u>			م /برا	i 7:	
						0 0.748		2	-	1	1	_Ĺ		0.8	18.3		ķ	Ż	$\langle \chi \rangle$				
6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 9 9 8	8 02 03	16.9		36		:	3	34		ı	.]		0.5			707	X <i>)</i> .	\bigvee	$\langle \rangle$	$\langle \rangle$	λ	
	211 201	0.2	18.5	no	120.0	3 0.761	18.7	딾	\$ ×		18.2	9.9		16.8 2,2	TX.			4 4) ;	$\langle \rangle \rangle$	\		
0 0 1-8	2 8 2 8	52	ı	ļ,	1 IN.7	1		Average	H	2 18,8	8 18.9	Ц	7.71	16.7	17.9				n	۰	_	Gas Plow	
				3,47,0	122.5	5 0.748	19.1					NEW	Standard Deviation =	- uouxe	0.1								
21 E	a S 8	20 07 07									1	•				Temperature Deviation Distribution Graph	re Deviatio	n Distriba	tion Grup	6	; ;	;	
٠.	200	0.2		m v	131.5	5 0,731	19.3		5. Te	5. Temperature (C) / Deviation	<u> </u>	Deviatio	_	Deviation	Deviation				-	; ;			
	X X	0.2		,	118.4	1	91		-	73	es.	4	5		Average		9	7.	-	-		- ;-	
3 3	\$ 8	0.2						<	1183		122.7	हर्स्टर	0.021	£411	1307		36	Z		V			
<u>:</u>	115	65 0.2 0.2	18.5	5 -0.214	129.3	3 0,736	19.3	×	- X		13	-		-1	1384		ò		N			الم	
	8	0.2			127.2			(-12.6	i		4	16.8	5.2	101		- 6	7				۲.	
•	92	0.2	11.3	40 L	124.7	7 0.744	14.6	J	¥2.	व इ.स.	300 300				4		101-	1				Z-1	
	22.	1 7			120.5			α	115.7	Ë	2	-	=	127.4	124.1		0,	$\frac{1}{1}$	1	1			
		54 0,2		5 -0.344	-		* •	ü	61,	-8.4	4 2 5 5		•	1.26.9	125.K		P.	1	1	1	1	-	
0 0 0 0	28 85 88 88	- -	19.7	:	C821 C721	0.73% 2.0.73%		3	4 6				٠. ا	- 1			Ì	^^ -	1.	1,]	; (
	210	0.1		٥	127.4	l I	0.81	Average	6.811	9 122.1	1242		28.0 126.9 125.0	125.0	1242					•	•	, cas 1, 604	•
	8	ö		ń.	122.9	0.747		: .	j														
2 2 2	120	0.2 56 0.2		5. 5.4 5.34				Ö	alation 1	Calculation Formula		1,400			-						-		[
							£1:	Devi	Deviation =	. ;]		-	_		-			1	- -
8 d d	220	2.5	7.71	د. بر	127.9	9 0,738 9 0,740	= =)))	indard D	(Velocity Average Velocity) X10 Standard Deviation	0 ×10		•							:		:	- - • .
rage			17.0	0 -0.645		1 1	5 17.9									802	SO2 & NOx Raw Dub	- a-					
	The Representative Point	Point		÷.								§	14d								; ;		- -
												9			_ ;			·		- XO2(ppm)	1	(usdal)acon	
		-				9	2 Sout Concentration	9				902	- 1				_		-[-		. #
2, Water Content	nteat	3	7	3	[_	200.0			D-6	2 3	9 - 0									-	1		_
Temp. Average (C)	(C) 25	6.5	Ш	ľ	6.5	_		î	i I			Ë	6 9:45		9,48 9,	9.51 9.54	15.6		10:00	10:03	90:01	10:09	10:12
Gas Manometer (mm)	hat	4 0,294	7	4 0.294			Gas Manometer (n	(mm)	16 1.76	1	07 - 01	ा	6.802	NOX.	SO2, NOx, & O2 Raw Date	Date							
Pre Weight (g)	T	43 124.524	2 128.071	28 128.813	13 Sedimery 30 Value	ŗ.	Om (Equal Velocity A)		19.0 L/min		19.0 L/min	7.1		9,65	9:48	╁	9.54 9:57	- 1	1 ~11	i I.	-	10:12	Avg.
Balance Weight (g)	1	22 0.6				Γ	Collected Spot Amount	9	0.061 g	l-t	0.053 g	Te	SO2(ppm		1,201	- 8: 5	156	156	_	153	3 55	155	155
Total Weight (g)	+	28	283	22 S	٦.	Suck Suck Suck Suck Suck Suck Suck Suck	Sucked Stock Gas V(L)		1	6.39		<u>-1</u>	(§) (S)	-		8.15				8,02		8.08	8.11
Pv. (mmHg)	+	7.10		21.10	TT	Į Į	Soot Concentration	1-1	0.125 g/m3N	11.	0.109 g/m3N	- -	SO2(02)	1,376	1,391	1,400	1,401 1,404	S 2	3 5	\$ 5	- 08: - 08:	5 S	180
Xw (%)		16.5g.	12.9%		· T	V V	Ave. Sool Concentra	Value	0.117 g/m3N	N V V	0.00	ि	Note: S	\$02(02)	& NOX(C	12	olev xON	es based	on O2=6	%			
Average Xw (%)	8.86%	<u>8</u>			٦.		TO STATE OF THE PARTY OF THE PA	4				1											
	:						z a																

Appendix 8-1 Monthly Fuel Consumption and Generated Electricity from Each Power Plant

Powe	er Plant		Tal	briz			Esfahan	
Fa	cility	Bo	iler	Gas T	urbine		Boiler	
		Generated	Fuel	Generated	Fuel	Generated	F	nel
Year	Month	Electricity	Heavy Oil	Electricity	Natural Gas	Electricity	Heavy Oil	Natural Gas
		MWh	10 ³ Litter	MWh	$10^3 \mathrm{m}^3$	MWh	10 ³ Litter	10 ³ m ³
1998	June	217,560	54,997	•	-	417,656	55,369	46,833
	July	325,670	82,501	29,315	16,069	467,038	45,097	71,841
	August	336,510	86,206	28,930	15,993	471,811	46,891	69,250
	September	213,880	56,254	29,425	16,279	469,154	43,242	73,175
	October	209,110	52,658	27,555	14,459	368,705	32,922	61,396
	November	325,440	81,881	22,825	13,145	344,270	26,567	61,260
	December	415,520	102,838	17,050	10,057	369,172	29,505	60,286
1999	January	414,520	103,843	12,320	8,485	409,046	54,591	49,993
	February	447,590	111,184	15,894	10,528	381,463	54,660	43,370
	March	325,705	83,568	15,290	8,332	360,100	54,129	39,015

Appendix 8-2 Large Factories

Data of facility types, fuel consumption, and stack information of large factories within target area were collected by Counterpart. Pollutant emission was estimated from existing emission factors from Japan, whereas, wet gas volume was estimated from fuel composition data from Iran and Japan.

Large factories within target area of Tabriz were Tabriz Oil Refinery and Soofian Cement Factory. Stack gas monitoring was not conducted at target power plant due to its small scale of gas turbines. But instead, monthly fuel consumption was obtainable, and using the existing emission factors and combustion calculations, pollutant emissions were estimated, and the result was included in the simulation model. Within target area of Esfahan, pollutant emissions were estimated for Montazeri Power Plant, Esfahan Oil Refinery, Esfahan Polyacryl Factory, Esfahan Steel Industry, Esfahan Cement Factory, and Sepahan Cement Factory. Emission conditions of large factories other than the target power plants are listed in the table below.

Factory Name	Unit	Tabriz Oil Refinery			Soofian Cement
Facility		Heating Furnace			Kiln
Fuel Type		Light Gas	Ge Oil	Heavy Oil	Heavy Oil
Fuel Consumption	, E	62 192 x10	63,000	268,000	140,378.54
Wet Gas Volume	,E	106,777.1	131,458.0	598,857,6	292,662.0
SO _x Emission	£ . 8	•	0176,66	405.1	197.9602
NO, Emission	5	6.4251	7.1397	42.5	91.6752
PM Emission	\$	0.2211	1.5203	47.6	1459,1736
Plue Gas Temperature	ပ	200.0			140.0
Stack height	ε	53.5			40.0
Stack Diameter	٤	2.50			2.00
Sulfur Content	*		8'0	1.95	1,95
NO Emission Pactor kg/10 kcal	kg/10 kca.	20.65	22.47	29.36	122.22
PM Emission Factor	kg/10"kca!	0.346	2.33	16	£43
Reference	Sultur	Ref.Esfahan Power Plant	Ref.111	Ref. Tabriz Power Plant	Ref:Tabriz Power Plant
Information	ğ	Ref.87	Kef.87	Ref.87	Ref.87
	T mayston	Emission Fact Heating Purnece	Fac:Heating Furnace	Fac: Heating Furnace	Fact Heating Fumace
-	Pactor	Puel OFG	Fuel Gas Oil	Fuel: Heavy Oil	Fuel Heavy Oil
		Ref.10	Ref. 10	Ref.110	Ket.110
	Emission	Emission FactHeating Furnace	Fec: Heating Furnace	Fac:Heating Furnace	Fac.Cement Kiln
	FACTOF	Puel: Accessory Gas	Puel: Accessory Oil	Fuel: Heavy Oil	Fuel: Heavy Oil

SIMILAII X								
sciory Name	Cait		Estahan-Polyacryi Factory		Esfahan Cement		Sepahan Coment	
cility		Generation Boiler	Generation Boiler		Blast Fumace	Xim	Kiln	Kile
al Tone		Heavy Oil	Network Cas	Ges Oil	Netural Gas	Heavy Oil	Heavy Oil	Natural Gas
Consumotion	7	1 752 000	58800x10		\$7,024,00×10³	14256	87.679.78	65711,427×10 ³
The second second		0 000 000	O Out Aci	:	0.40.688.0	33.054.8	174,067.0	174,067.0
et vits volume	Ę,	<u> </u>	COUNTY OF		*******	1	C027 / 20	
N. Emission	Š E	4263.6860	•	22,2473	•	32.4472	100.4189	
O. Emission	Ę	371.6684	4 2529	5.2830	9,6622	9.5626	39,4861	39.4861
A Emission	5	92.8726	•	2.0532	500.9692	158,6967	899.6507	899.6507
ue Cas Temperature		150.0	145.0		140.0		140.0	140.0
ack height	E	200.0	10.0		40.0		40.0	40.0
ack Diameter	· E	4.20			2.00		2.00	8
far Content	,	3.13		8.0	0	3,13	3.13	0
O. Emission Factor ku/10 kca	kv/10 kca		14.99	24.94	37.52	12.22	22.221	37.52
M Emission Factor ke/10"kea	ke/10 kea		0	7.7	8473	72%	1,776	9475
eference	Sulfer	Ref.Esfahan Power Plant	Ref.Esfahan Power Plant	Ref.111	Reffesfahan Power Plant	Refüsikhan Power Plant Ref.Esshan Power Plant Ref.Essahan Power Plant Ref.Essahan Power Plant	Ref.Esfahan Power Plant	Ref.Esfahan Power Plant
Information	¥ 2	_	Refix?	Ref.87	Ref.87	Kef.87	Kef.87	Kef.87
	Emission		Pac-Generation Boyler	Fac.Generation Boiler	Fac:Cement Kiln	FactCement Kiln	FaciCement Kiln	FactCement Kiln
	Faceor	Fuel Heavy Oil	Page	Puel Ges Oil	Fuel LNG	Fuelting	Fuel: Heavy Oil	Nuel L'NG
	ξ	Re£111		Ref.111	Ref.111		Ref.111	Ref.111
	Emission	Emission Fac Ceneration Boiler	LEF not available	Fac:Generation Boiler			FaciDry type Cement Kiln	Facibry type Cement Kiln Facibry type Coment Kiln
	Factor	Factor Fuel-Heavy Oil	2000 (0.000	Fuel Heavy Oil	Fuel: Heavy Oil (No Gas)	Fuel: Heavy On No Cas)	Fuer Heavy Cil	FUCE HEAVY CALL NO CURS

Factory Name	Çvit	Esfahan Oil Refinery					Esfahan Steel		
Facility		Generation Boiler	Heating Furnace	Heating Furnace	Heating Sumace	Heating Furnsce	Furnaces	Converter	Purnaces
Fire Tone		Heave Oil	Heavy Oil	Refinary Off Gas	(Natural Gas	Gas Oil	Natural Gas	Netural Gas	Natural Gas
First Consumnion	2	410.400				76,000	190,080,00x10*	169,251.20x10 ³	01x02.603.50x10
Wer Gas Volumo)	903.912.7	oc.			158,584,2	468,960.0	377,530.6	356,456.7
NO. Emission	76	967,0598	· ·		•	40.2571	•	•	
NO Emission	É	84.8267		30.6170	3.5954	8,6130	1,5321	13,3788	19.4277
P.V. P. Price of	Voy.	21.1965	=		0.1302	1,8341	2.1026	866.8900	2,6634
Flue Gas Temperahura	-	. 4			200.0	200.0	140.0	0.002	150.0
Seath beight	· ·					50.5	0.40	50.0	\$0.0
Cook Distractor	: E					2.50	30.8	3.55	2.55
Since Dismeter						8.0	0	0	
South Contents Section Late of Parts	Lotto Voel	•	•	20.6	19.61	22,47	1.45	14.22	21.87
NO. Emission Factor April Office	half of the					2.33	696'0	6190.5	1.46
Reference	Sulfer.		Ref. Esfahan Power Pla	Ref. Estaban Power Plant	Ref.Esfahan Power Plant	Ref.111	Ref Esfahan Power Plant	Ref.Esfahan Power Plant Ref.Esfahan Power Plant	Ref Estaban Power Plan
Information		NOX Ref.87 Emission Fac. Generation Boiler Factor Puel: Heavy Oil	Ref.87 Fac:Hoating Furnace Fuel:Heavy Oil	Ref.87 FaciHesting Furnace Fuel:OFG	Ref.87 Fac:Heating Furnace Fuel:LNG	Refi87 Facificating Furnace Fuel Cas Oil	Ref. 110 Fac.Blast Furnace Fuct:BFG(No Natural Gas)	Ref.87 Fac.Converter FueltanG	Ref.87 Fac. Heating Furnace for rolling Fuel LNG
: '	P.M. Emission Factor	PM Ref.110 Emission Fac.Generation Boiler Factor Puel: Heavy Oil	Ref.) 10 Fac:Heating Furnace Fucl:Heavy Oil	Ref.110 Fac:Heating Furnace Fuel:Accessory Gas	Ref.110 Fac.Heating Furnace Fuel.Accessory Gas	Ref.110 Fact Heating Furnace Fuel: Accessory Cil	Ref.110 Faciliast Fumace Fuels FG(No Natural Gael	Ref.110 Ref.110 Rec.110 Rec.100 Rec.100 Rec.110	Ref.110 Fac.Heating Furnace for roling Fuel-LP(No Natural Gas

Estanan 3							
Factory Name	Unit	Estaban Steel			Esfahan Stool		
Facility		Generation Boiler No. 1			Ceneration Boiler No.2		
Fire Type		Natural Gas	Furnace Gas	Coke Gas	Natural Gas	Furnace Gas	Coke Gas
Fuel Consumotion	ξ.	8,401,54x10	61,763.04x10	3,275,42x10°	2,491,63×10	18,316.98×10"	V01.39x10
Wet Gas Volume	\$ 5 E	22,800.8	20,244.6	4,444,6	6,147.3	5,458.1	1,198.3
SO, Emission	Ę		•	0	•	0	•
NO, Emission	Ē	0.7001	0.1033	0.1492	0.2076	0.0306	0.0442
PM Emission	€8×		0		•	\$	٥
Flue Gas Temperature	ρ	140.0			140.0		
Stack height	E	80.0			0,40		
Stack Diameter	£	90.4			1.50		
Sulfur Coment	×	0	0	0	0	٥	•
NO, Emission Factor kg/10 kcal	kg/10*kcal	14.99	3.01	20.48	14.99	10.5	20,48
PM Emirsion Factor	kg/10*kcal	0	0	0	0	0	
Reference	Sulfur	Ref.Esfahan Power Plant	Ref.110 Fuel:furnace Gas	Xef.110 Fuel Coke Gas	Ref. Esfahan Power Plant	Ref.110 Fuel:Furnace Gas	Ref.110 Puel/Coke Gas
Information	ŏ	Ref.87	Ref.87	Ref.87	Kef87		Kef.87
		Fact Ceneration Boiler Fuel LNG	Fac:Generation Boiler Fuel BFG	FactGeneration Boiler	Fact Ceneration Boiler Fuel LNG	Fact Coveration Boiler Fact: BFG	Fac: Ceneration Boiler Fuel: COG
	PM Emission	UF not available	EF not available Set by SUR	EF not available Set by SUR	EF not evallable Set by SUR	EF not available Set by SUR	EF not available - Set by SUR
	Factor	6					

Appendix 8-3 Traffic Volume

For Esfahan area, traffic volumes from 7 roads (8 vehicle types, and 18 hours' total traffic volumes) were obtained from Esfahan municipal authority. Also, since some roads were located near the 3 monitoring stations, the traffic volumes were counted for such roads for a short time. Traffic volumes obtained from Esfahan municipal authority were not hourly data, so 24-hour traffic volume patterns of other JICA project in Greater Teheran Area (#81) were applied. For information such as emission factors, vehicle weight, and fuel consumption that are necessary to estimate pollution emission from vehicles, the data from the other JICA project (#81) were applied similarly. The utilized data are listed in the below.

Fuel Specifications

Vehicle	Vehicle	1	Specific	Sulfur	Equivalent
Group	Type	Fuel	Weight	Content	Inertia
-			(kg/Litter)	(%)	(t)
Car	1	Gasoline	0.730	0.0086	1.0
Bus	Minibus	Gas Oil	0.845	0.8000	3.0
	Bus		0.845	0.8000	10.0
Truck		Gas Oil	0.845	0.8000	8.0
2 Wheeler	1	Gasoline	•	•	•

Fuel Consumption Equation by Exhaust Control Groups

Vehicle	Fuel	Engine	Vehicle	Vehicle Age	Fuel Consumption	n Equation (EF=A	$*B \cdot V*C \cdot V^2$)
Group	}	Туре	Age(Years)	Percentage(%)	A	В	C
car	Gasoline	4 Cycle	0~10	44	0.17590	-0.004264	0.000037100
	ì	1 -	10 and Older	56	0.25640	-0.007639	0.000072500
Bus/	Gas Oil	Direct	0~10	38	0.05673	-0.001377	0.000012390
Truck		Injection	10 and Older	62	0.04427	-0.0007469	0.000005939
2 Wheeler	Gasoline	-		T -	1	•	
Note 1) EF:	Fuel Consu	mption (Litter/I	km; Litter/t • km for	bus and truck)			(#87)

Note 1) EF:Fuel Consumption (Litter/km; Litter/t * km for bus and truck)
Note 2) V:Travel Speed=30km/h

Vehicle	Fuel	Engine	Vehicle	Vehicle Age	EF Equa	tion (EF=A+B • \	/+C • V²)
Group		Type	Agc(Years)	Percentage(%)	A	В	C
Car	Gasoline	4 Cycle	0~10	44	2.3000	-0.01410	0.0007337
			10~20] 36	1.3740	-0.01275	0.0003499
			20 and Older	20	0.5045	-0.01367	0.0003211
Bus/	Gas Oil	Direct	0~10	38	1.4980	-0.04530	0.0004537
Truck	}	Injection	10~20	31	1.4510	-0.03877	0.0003738
		1	20 and Older	31	1.1670	-0.01536	0.0000962
2 Wheeler	Gasoline	1 .		- 1		0.4g/km	

(£87)

(#109)

Note 1) Emission Factor of 2 wheeler is from EPA

Note 2) EF: NOx Emission Factor (g/km; g/t * km for bus and truck)

Note 3) V:Travel Speed=30knvh

Vehicle	Fuel	Engine	Exhaust	Pipe (EF=A+B · '	V+C • V²)	EF of Tire	EF of
Group	1	Type	Α	В	C	Abrasion	Upflung Dust
Car	Gasoline	4 Cycle		0.01		0.02	0.05
Bus	Gas Oil	Direct Injection	0.2245	-0.004336	0.00003172	0.10	0.10
Truck	Gas Oil	Direct Injection	1.4510	-0.038770	0.00037380	0.20	0.10
2 Wheeler	Gasoline	T :					

Note 1) EF: SPM Emission Factor (g/km; g/t · km for exhaust pipe of bus and truck)

Note 2) V:Travel Speed=30km/h

A8-6

Appendix 8-4 Areal Emission Source

The total fuel consumption by fuel types and industrial types of East-Azarbayejan province and Esfahan province were obtained and used in the simulation model as area source. To calculate fuel consumption of the remaining area, first, fuel consumed in the target power plants, large facilities, and road traffic were subtracted from the total fuel consumption. Then, assumption of combustion facility types for each industry was made, and Japanese emission factors of each industry and facility type were applied. To differentiate urban/rural areas of both provinces, the population ratio of urban and rural area was used to distribute the emission. Finally, the emissions were summarized into 3 categories, small and medium facilities and establishments, households, and transportation. The following tables show the details of areal emission.

		ļ			0		December 8.					Power	Transpor-			:	100
Fuel Type	Cait	Grand Total	Total of	Orink	Leather	Wood	Print	Chemical	Non-Metal	Metal	Machinery	Plants	tation	Commercial Agriculture	Agriculture	Household	Coners
Liouid Gas	-	120,112	1,376	648	108	1	-	0	0	152	194	0	1,589	4,453	0	111,318	0
Gasoline	Ē	528.391	209	•	œ		0	0	0	7	189	0	521,531	4,390	2,052	0	
	`` }	1 395 365	138 275	58.692	35.643	2.856	2,620	0	0	12,247	26,216	84,546	512,887	18,073	367,650	:35,459	
Kerosene	Ē	1 002.731	876	216	488	 «n	'n	٥	0	37	179	•	0	060*9	1,149	969'636	
LO SOLL	î	425 819	0	0	0	0	0	0	0	0	0	82,412	0	228,330	0	0	115,071
Natural Gas	10'm²	603.000	27,000	915	115	5,135	0	0	0	36	20,799	0	0	45,000	Φ	504,000	
Fuel Consumption (Esfahan)	tion (Esfal	(naı															
Fuel Type	Unit	Grand Total	Total of	3 pood	Textile &	Wood	Paper &	Coal, Oil &	Non-Metal	Metal	Machinery	Power	Tanspor- tation	Commercial Agriculture Household	Agriculture	Household	Others
iond Gar	-	120 633	1.520	44	756	8	\$	0	0	0	314	0	2,802	4,993	0	118,698	
Gasoline	Ē	786.671	6,882	1,150	4,156	87	89	0	0	0	1,430	0	763,296		119,6	0	0
Cas Oil	ີ ຍ	1,790,085	127,494	17,827	77,631	133	837	0	•	0	31,065	5,490	1,133,859	25.78	325,728	64,256	0 6
Ксгозере	٦̈́E	526,423	6,818	390	5,746	24	\$6	0	0	0	602	2,666	0	2,762	0	802,708	
Heavy Oil	ĵε	486.536	0	٥	0	0	0	0	٥	0	0	19,19	0	314,968	0	0	152,404
Natural Gas	10,m,	6,915,606	2,583,803	846,904	1.409,788	20	478	0	0	0	326,583	0	0	246,000	0	1,502,000	
On Emission (Tabota)	(Teherz)										į						
Fuel Type	Lini	Grand Total	Total of	Food &	Texule &	Wood	Paper &	Coal, Oil &	Non-Metal	Metal	Machinery	Power	Transpor-	Transport Commercial Agriculture Household	Agriculture	Household	Others
		0.0693	A Ordo	0 0004	0000	0	0	0	0	0.0001	0.0003	0	0.0009	0.0025	٥	0.0631	
Lichard Cas		0000	200000	0	0	0	0	0	0	0	٥	٥	0.9531	0	0	0	
Gae Ou	£	2362172	25.9692	11.0229	6.6941	0.5364	0.4920	0	0	2.3002	4.9236	15.8784	X 4877	3,3943	69.0477	25.4403	
Kerosene	ż.	7.5150	0.0070	0.0016	0.0037	0	0	0	Φ	0.0003	0.0013	٥	0	0.0457	0.00%	74537	;
Heavy Oil		228.1977	0	٥	0	0	0	0	0	0	0	44,1648	۰ ۰	122.3628	Ф 6	0 0	61.6701
Natural Gas		٥	0	0	•	0	0	0	0	0	0	0	٥	Ş	2	2	
Total		472.9621	25.9773	11.0249	6.6979	0.5364	0.4921	0	0	2.3005	4,9256	60.0433	97.4412	125,8131	0090'69	52.9571	61.6701
SOx Emission (Estahan)	ı (Esfahan					*			·								
Fuel Type	Unit	Grand Total	Total of	Food &	Textile &	Wood	Paper &	Coal, Oil &	Non-Metal	Metal	Machinery	Power	Transpor- tation	Commercial Agriculture Household	Agriculture	Household	Others
1 ionid Cae		0.0184	0.000	0.0001	0,0001	0	0	0	0	0	0	0	0.0004	0.0007	0	0.0171	
Carolina Carolina		0.3616			•	0	0	0	0	0	0	0	0.3541		0	0	
Car	£.	793567	6 0784	6678.0	3,7011	0.0064	0.0399	0	0	0	1.4811	0.2617	54.1490		15.5294	3.0635	
Kerneme	ż	0.9895	0.0130	٠	0.0109	0	0,0001	0	•	0	0.0011	0.0051	•		0	0.9662	
Heavy Oil		106.4058	0			0	0	0	0	0	0	4,1781	•	68.833	0 (0 0	33,3440
Natural Gas		٥	0	0	0	0	0	٥	0	٥	٥	0				2 17	33 2440
Total		187.1320	6.0947	0.8513	3.7140	0.0064	0.0401	0	0	5	1.4829	4.4449	24.5U25	03.1040	10000	1	

NOx Emission (Tabriz)	on (Tabriz)																
Fuel Type	Unit	Grand Total	Total of	Food &	Textile &	Wood	Paper & Print	Coal, Oil & Chemical	Non-Metal	Metal	Machinery	Power	Transpor- tation	Commercial	Commercial Agriculture Household	Household	Others
Lionid Gas		4 9292	0.0827	0.0344	0.0071	0	0	0	0	0,0102	0.0310	0	0.8799	0.3454	0	3.6212	0
Gasoline	_	234,1813	0.0138	0.0003	0.0004	0	0	0	0	0.0002	0.0129	0	233.9680	0.1359	0.0635	0	0
Cas Oil	d, m	56.9679	7,3024	2,3248	1,7401	0.1736	0.1593	0	0	0.9722	1.9324	3.7706	28.3964	0.60	12,2942	4,6000	0
Kerosche	<u>.</u>	33,1250	0.0406	0,0086	0.0232	0,0001	0.0001	0	0	0.0014	0.0071	0	0	0.2193	0.0414	32.8238	0
Heavy O.		43.2838	0	0	0	0	0	0	0	0	0	6.1134	0	24,7145	0	0	12,4559
Natural Gas		11.0521	0.9702	0.0347	0.0054	0.2987	0	0	0	0.0010	0.6305	0	0	1.8476	0	8,2343	٥
Total		383 5393	8.4096	2.4027	1,7761	0.4725	0.1594	0	0	0.9849	2.6140	9.8840	263.2444	27.8670	12,3991	49.2792	12.4559
NOx Emission (Estahan)	n (Estahan)										•						
Firel Tyme	Unit	Grand Total	Total of	Food &	Texule &	Wood	S	Coal, Oil &	Non-Metal	Metal	Machinery	Power	Transpor-	Commercial	Commercial Agriculture Household	Household	Others
		1,4062	Industry	Dunk.	Cather	10000	10000	Cacmica	- -	C	0.0053	0	0.3939	0.0983	0	. 2086.0	0
Say Diapin		1,490	0.0239	0.0039	0.0123	5000	3000	· -			0.0248	·	9926.98	C	0.0755	 •	0
Gasoline		87.0874	0.0853	0.0107	7,400	200.0	0.000	····	> <	> 0	0.5813	0.0622	15 9362	0.0489	2,7651	0.5539	0
O SE O	Ē	21.1038	1,7576	0.1793	0.9621	1200	7710.0			• •	1900	79200	0	0.0252	Ç	4.2546	0
Kerosene		4.3862	00800	6500.0	66000	7000	coord coord		> 0	,		0.3765	, 0	9.0582	0	0	4,3847
Heavy Oil		13,8195	0	D 40	2	2000	7 1000	> <		> 0	7 5132			2 5660	Ģ	6.2294	0
Natural Gas		36.1756	27.3822	8,1467	16.7144	0.000	0,00/1		5		7010	>			2000	001001	12/3: 1
Tota)		164.0689	59,3089	8.3465	17.8060	0.0043	0.0214	0	0	٥	3,1307	0.4651	103.2567	11.7947	2.8409	12.010.21	78.
S O DM Finiscion (Tahox)	(Cabery)	:		` :							,						
Fuel Type	Unit	Grand Total	Total of	Food &	Textile &	boow.	Paper &	Coal, Oil &	Non-Metal	Metal	Machinery	Power	Transpor-	Commercial Agriculture	*- **	Household	Others
		02000	AUSON O	1 SCAO O	Cather	-		C	0	0.001	0.0034	0	0.0830	0	0	0.0486	0
Corpline		18 3840	\$1000	11000	10000	. 0	0	0	0	٥	0.0003	0	18.2601	0.0834	0.0390	0	0
2000	٠ د	5716.63	× 1764	77656	0 2958	0.0237	0.0217	0	0	0.0221	0.0474	1.4654	48,7253	0.3710	7.5471	1.4311	0
Carolina V	ž	10 3624	19000	0.0017	0.0030	0	0	0	0	0000	0.0003	0	0	0.1216	0.0229	10,2117	0
Mena:		17 0808	•	C		C	G	0	0	0	0	1.5276	•	10.9397	0	0	5.5135
Natural Cas	:	0.0%95	0.1753	0.0685		0	0	0		0.0002	0.1067	0	0	0	0	0.1142	0
Total		114,9370	8,4316	7,9047	0.2998	0,0237	0.0218	0	_ O	0.0235	0.1580	2.9931:	67.0684	11.5157	2,6090	11.8056	5.5135
DV Carining (Editor)	Cacholina															ļ	
Total Carried Park	(Fotonial)		3.5	70.00	Tarrello B.	-	Danes &	\$ 10 lead	-			Power	Transpor-				
Fuel Type	Unit	Grand Total	I otal of Industry	Drink	Leather &	Wood	Point	Chemical	Non-Metal	Metal	Machinery	Plants		Commercial	Commercial Agriculture Household	Household	Cthers
Liquid Gas		0.0626	0.0123	0.0117	0	0	0	0	0	0	90000	0	0.0371	0	0	0.0132	0
Casoline	:	6.8753	0,0448	0,0358	0.0081	0.0002	0.0001	0	0	0	9000'0	0	6.7842	0	40.0	0	o
Gas Oil	m.A.	30.0474	0.7786	0.5988	0.1636	0,0003	0,0018	0	0	0	0.0142	0.0242	27.3448	0.0300	1.6974	0.1723	0
Кегозепе	!	1.3621	0.0130	0.0008	0.0118	0	0.0001	0	0	0	0.0003	0.0114	0	0.0140	0	1,3236	0
Heavy Oil		6.0445	٥	0	0	0	٥	0	0	0	0	0.0941	0	4,0096	0	0	1.9409
Natural Gas		16.5995	16.5131	16.0879	0	0	0	0	0	0	0.4252	٥	٥	0	0	0.0864	3
Total		60.9914	17.3618	16.7349	0.1834	0.0005	0.0020	0	0	0	0.4409	0,1297	74.1662	4.0536	1.7438	1.3935	9409

Liquid Gas	kg/kg	ı	,	kcal/kg	12,145	12,145	- - -	0.002	0.002						
Gasoline	. Z	0.7315	0.7315	kcal/L	8,400	8,400		0.0086	9800.0						
Gas Oil	kg/	0.8286	0.8286	kcal/L	9,073	9,073	%	8.0	8'0						
Xerosene	, Kig	0.7951	0.7951	kcal/L	8,826	8,826		0.0333	0.0333						
Heavy Oil	Kg/L	0.9700	0.9715	kcal/L	9,703	10,156		1.95	3,13						
Natural Gas	kg/m³,	0.7970	0.7970	kg/m³ _N	8.680	8.680		0	0						
NOx Emission Factor	on Factor			·											
Fuel Type	Unit	Pood &	Textile &	Wood	Paper &	Coal, Oil &	Non-Metal	Metal	Machinery	Power Plants	Transpor- tation	Commercial Agriculture		Household	Others
		20 15 I	27.3	22.1	22.1	22.74	61.8	27.97	27.74	26.17	0.001742	32.4	32.4	13.59	32.4
Coroline	:	21.62	27.3	75	34	22.47	_	44.39	41.22	24.94	0.002105	18.7	18.7	0	18.7
Casoline	Latinheal	3 2	273	. 45	*	22.47		44.39	41.22	24,94	0.000182	18.7	18.7	18.99	18.7
10 and 10	20 At Av	22.80	273	20.1	20.1	16.12		21.8	22.88	22.40	ı	20.7	20.7	18.88	20.7
Tions Oil		21.50	27.3	808	59.8	29.36		42.81	41.77	38.79		56.6	9.99	0	56.6
Natural Gas	:	22.15	27.3	48	34	19.62		15.86	17.72	14.99	•	24.0	24.0	9.55	77
PM Emission Factor	n Factor														
		Food &	Textile &	1,000	Paper &	Coal, Oil &	Non-Metal	Meral Machinery	Machinery	Power	止	Commercial Agriculture Household	Agriculture	Mouschold	Others
Fuel Type	5	Drink	Leather	wood	Print	Chemical	motat-iost	mater		Plants					ľ
1 joined Gas		2130	0	0	0	1.346	7286	1.460	1.460	0	0,0000800	0	0	0.0889	
Casoline		36.03	2.26	2.26	2.26	2.330	7286	0,492	0.492	4.72	0.0000000	5.39	5.59	0	\$.59
10000	1.17/10 Venal	20.00	2.26	2.26	2.26	2,330	7286	0.492	0.492	4,	0.0001521	5.59	5.59	2.8769	5.59
2	100 A	96.0	32,6	2.26	2.76	2.330	0877	0.492	0.492	7.	•	5.59	5.59	2.8769	5.59
Nerosene		27.4	3.5	3.26	3.26	16 000	2236	7.670	7.670	4.72		12.20	12.20	0	12.20
5		26.50	0717	07.7	C	0.346	9877	1.460	1.460	0		0	0	0.0645	0
TARCET CEN			•												

Sulfur Content

Caloric Value

Specific Weight, Caloric Value, and Sulfur Content

Specific Weight

Fuel Type

Unit

NOx Emission	Ox Emission Factors in Detail		Unit: kg/10 kcal	. luca														ĺ
Fuel Type	Food & Drink		Textile & Les	filer		Wood	<u> </u>	er & Print	ŭ	oal, Oil & Chemi	261	Nor	Non-Metal		Meta			
Liquid G	22,15	<u> 3</u>	27.3		3	22.1 Wood,dry	<u>₹</u>	22,1:Wood,dry	3	22.74 Olo	22,74 Oil drying furnace (B)	(9)		-	(6)	22.97		(a)
Casoline	22.15 > Average Value	3	27.3		3	34 Average Value	3	34 Average Value	3	12.47	Oil hearing (ê		Cement	ê	44,39	Metal	ê
20.20	22.15	3	77.3	Textile,dry	3	34 Average Value	3	34 Average Value	3	22.47 5	mace, Gasoil	<u>@</u>		Calcination	ê	44.39	Heat-(reatment	ê
Kerosene	22.8 Food,broil	3	27.3		3	20.1 Wood,dry	3	20.1 Wood,dry	3	16.12	Oil daying	ê	50,56	Furrace	ê	00	Furnace	ê
Heavy Oil	21.5 Food,broil	3	27.3		3	59.8 Wood,dry,class-B	3	59.8 Wood, dry, class-B	3	29.36ij	furnace	ê			ê	12.0		ê
Natural Gas	22.15 Average Value	3	27.3		3	34 Average Value	3	34 Average Value	(V)	19.62 Oil)	19.62 Oil heating furnace ((3)	37.52		(B)	1881		(B)
									ŀ									

Fuel Type	Machinery			Power Pants		٤	ransportation		ŏ	ommencial	₹	gneuhurai	T	Cousehold	<u></u>	Xhors	
Toyld Gas	27.74		(B)	26.17		<u>(</u>	0.001742		(3)	32,4 (Boiler, LPG	3	32.4 Boiler, LPG	€	13.59 Home, LPG	(g)	32.4 :Boiler	
soline	17.14		ê	7.8		3	0.002105	kg/km/vehicle	9	18,7 Boiler gasoil	3	18.7 Boiler gasoil	3		•	18.7 Boxler gasou	
Gas Qi	4.4		ê	24.94	Generation	3	0.000182		ê	18.7 Boiler	3	18.7 Boiler	3	18,99 Home, Kerosene	ê	18,7 Boiler	3
03676	22.88		ê	- 64.55	Boiler, classe,	3	•		•	20.7 Boiler	3	20,7 Boiler	3	18.99 Home	ê	20,7 Boiler	-
10 V	41.77	forging furnace	ê	38.79		€	•	-	•	56,6 Boiler	3	(A) 56.6 Boiler	3	-	•	56.6 Boiler	
ural Cas	7,72		ê	14.80	_	3		_		24.0 Boiler town eas	3	24.0 Boiler town cas	3	9 SS Home NG	8	24 Boiler town ras	_

vel Type	Fuel Type Food & Drink	Textile &	WIO KCAI		§	7	ľ	Paper & Print		[5	8 O 8	Semical		Non-Metal	<u> </u>		N N			
quid Ous	21,3 Dry,C-eletrolode	3	O Set by SUR	SUR		O:Set by SUR		Sig	GISH BY SUR	-	1	383	dary Cas	3	41877		3	1 460		ر د
Gasoline	36.03 Av. of kerosene	3	2.26]		3		3	226		3	233	3	2.33 Oil Secon- (A)	3	9877	Cement	3	0.492	0.492 Ineading	Xero- (A)
Ges Oil	36.03 € heavy oil	3	2.26 . Dry paper	y paper.	₹	2.26 Dry, paper.	3	226		Ť	.;	heating	_ Çer∧	3	728	Calcination	3	0.492		sene (A)
crosene	2.26/Dry, paper	3	2,26	Kerosene		2.26 Kerosene	3	226	Kerosene	3	3	Sumace:	්රී	3	9877 (F	2877 Furnace, class-C (3	0.490		~
eavy Oil	69.8 Dry, fertilizer	€	2.26			2.26	3	7.26		3	×		- :	3	14%		€	7,670	rolling	3
Intural Cas	21 3 Dry C-eletrolode	3	O Set by	- X	_	SUN ALIE	•	0	O ISM NOTE	•	0.346	Second	Secondary Cas (A)	3	0877		₹	. 660		(Y)

uel Type	Мисмпету		Power Plant		Transport,	Tation	<u>င</u> ိ	hmmercia!		Agnoultural		ĭ	Household	Others	7.L
od Gas	1,460	Heat LPG (A)	0	Set by SUR	0.0000800	88	<u>(a)</u>	O Set by SUR	-	3	Ser by SUR	Ŀ	0.0889 Home, LPG	(g)	O Set by SUK
Jasoline	0.492	Steel, manage (A)	7.7		(A) 0.0000800	800 xg/km/vehicle	ē	68.8	₹	5.5		€		•	£ 65.8
Jas Oil	0.492	ncs- ment (Acro) (A)	7,4	Generation	(A) 0.000152		ê	5.59 > Boiler, Kerosene (A)	See (A		5.59 P. Boller, Kerosene (A)	€	2.8769 Home Kerosene	<u>6</u>	5.59 > Boiler, Kerosene (
Cerosone	0,492	3,492 (sure-) som (A)	4.72	boiler, classed	· 3		•	S.S9 U	3	5.59	_	3	2.8769 Home	6	: 48.8
leavy Oil	7.670	heating class-C (A)	4,72		3		-	12.20 Boiler, class-C	3	12.20 [34	2.20 Boiler, class-C	3			12.20 Boiler, class-C
atural Gas	1.460	LPG (A)	-	Set IN SUR	-			O Ser by STR	•	370	See ho Still	•	0.0645 Home NG	<u>@</u>	O See hy SUR

Note 1) Class-C is used for heavy oil unless mensioned Note 2) Assumed that 90% of PM is deleted by sorubbor

Appendix 8-5 Basic Framework of Simulation Model

Table 8-5-1 Pasquill's Stability Index ("Safety guides for Water cooled nuclear power plants" Safety Guide, 1982)

Wind		Daytime	,			Nighttime	
Speed(U)		Solar Radiat	lion (T) kW/m	12	Net Ra	diation (Q)	kW/m²
n√s	T=>0.60	0.60>T	0.30>T	0.15>T	Q=>-0.02	-0.02>Q	-0.04>Q
		=>0.30	=>0.15			=>-0.0	4
U<2	Λ	A-B	В	dD	nD	G	G
2<=U<3	A-B	В	C	đD	nD	E	F
3<=U<1	В	B-C	C	ďD	nD	nD	E
4<≔U<5	С	C-D	dD	dD	nD	nD	nD
6<=	С	dD dD	dD	dD	nD	nD	nD

Table 8-5-2 Lid Height by Seasons

Area		Morning	Noon	Afternoon	Night	Midnight
Tabriz	Summer	1,113.6	1,500.0	1,500.0	1,383.3	1,275.0
	Winter	1,250.0	1,250.0	1,233.3	1,200.0	1,300.0
Esfahan	Summer	1,338.9	1,438.9	1,486.1	1,447.2	1,377.8
	Winter	316.7	1,500.0	1,500.0	1,266.7	1,066.7

Unit: m

Definition of lid is "within upper inversion layer, and be the lowest layer", whereas definition of inversion layer is "layer with temperature increase of more than 0.1 degrees Celsius per increasing altitude of 50m, and with its thickness 100m and above".

Table 8-5-3 Potential Temperature Gradients by Seasons

		Daytime	Nighttime
Tabriz	Summer	0.0018	0.0023
	Winter	0.0048	0.0053
Esfahan	Summer	0.0021	0.0027
	Winter	0.0037	0.0052

Unit: C/m

Table 8-5-4 O3 Background Concentration

Area	Season	Morning	Noon	Afternoon	Night	Midnight
Tabriz	Summer	12.6	47.9	56.0	19.1	13.6
	Winter	14.1	32.7	25.2	12.0	12.5
Esfahan	Summer	11.4	38.1	54.3	22.0	15.7
	Winter	11.0	29.7	35.4	12.2	10.8

Unit: ppb

Table 8-5-5 Upper Wind Speed Correction Factors by Atmospheric Stability Classes

Stability	Λ-CD	dD-nD	E-G
Tabriz	0.05	0.07	-0.10
Esfahan	0.18	0.20	0.35

Table 8-5-6a Dispersion Parameters Set for Tabriz Area

	Vertical		Atmosp	heric Stability	Classes	
	Layers	A-B	BC-CD	dD	nD	E-G
Summer	1(<=10m)	AB	С	D	D	F
Morning	2(10-40m)	В	CD	D	D	E
	3(40-70m)	В	CĐ	D	D	E
	4(100m<)	С	Ð	D	D	D
Summer	1	AB	C	D	-	-
Noon	2,3	В	CD	D	-	-
· · · · · · · · · · · · · · · · · · ·	4	С	CD	D	_	-
Summer	1	В	С	D	D	F
Afternoon	2,3	BC	CD	D	D	E
	44	CD	D	D	D	D
Summer	1	-	-		D	F
Night	2,3	-	-	-	D	E
	4	<u> </u>	-	-	D	DE
Summer	1	-	-	-	D	FG
Midnight	2,3	-	-	-	D	EF
·	4		-	-	D	DE
Winter	1	В	С	D	D	FG
Morning	2,3	C	CD	D	D	F
:	4	CD	D	D	D	Е
Winter	1	AB	С	D	-	-
Noon	2,3	В	CD	D	-	-
· :	4	_ C	CD	D	-	-
Winter	1	В	С	D	D	FG
Afternoon	2,3	BC	CD	D	D	F
	4	CD	CD	D i	D	Е
Winter	1	-	-	-	D	F
Night	2,3	٠ -	-		Ð	EF
:	4	-	-		D	DE
Winter	1	-	-		D	F
Midnight	2,3	-	-	-	. D	EF
	4	-	-		D	DE

Table 8-5-6b Dispersion Parameters Set for Esfahan Area

	Vertical	Atmospheric Stability Classes					
	Layers {	A-B	BC-CD	dD	nD	E-G	
Summer	1(<=10m)	AB	C	D	D	FG	
Morning	2(10-40m)	В	CD	D	D	F	
·	3(40-70m)	В	CD	D	Ð	Ł	
	4(<=100m)	С	D	D	D	E	
	5 (100m<)	С	Ð	D	D	Е	
Summer	1	۸	С	D	-	-	
Noon	2,3	AB	CD	D	-		
	4,5	BC	CD	Ð	-	-	
Summer	1	AB	C	D	D	FG	
Afternoon	2,3	В	CD	Ð	D	F	
	4,5	С	CD	D	D	E	
Summer	1	-	-	-	D	FG	
Night	2,3	-	-	-	D	F	
	4,5			-	D	Е	
Summer	1	-	-	-	D	G	
Midnight	2,3	-	-	-	Ð	FG	
	4,5		<u> </u>	-	D	EF	
Winter	1	AB	C	D	D	FG	
Morning	2,3	В	CD	D	D	F	
	4,5	С	D	D :	D	E	
Winter	1	Α	С	D	-	-	
Noon	2,3	AB	CD	Ð	-	-	
	4,5	BC	CD	D	-	<u> </u>	
Winter	1	AB	С	D	D	FG	
Afternoon	2,3	В	ÇD	D :	D	F	
	4,5	С	CD	D	D	Е	
Winter	1	-	-	<u> </u>	D	FG	
Night	2,3	- '	-	-	D	F	
	4,5	-	-	-	D	Е	
Winter	1	-	-	-	D	G	
Midnight	2,3	-	-	-	D	FG	
	4,5		-	-	D	EF	

Table 8-5-7 Initial Dispersion Width

:	Line		Areal	
Area	Transportation	Industry	Household	Transportation
Tabriz	5.0	20.0	5.0	1.0
Esfahan	5.0	20.0	5.0	1.0

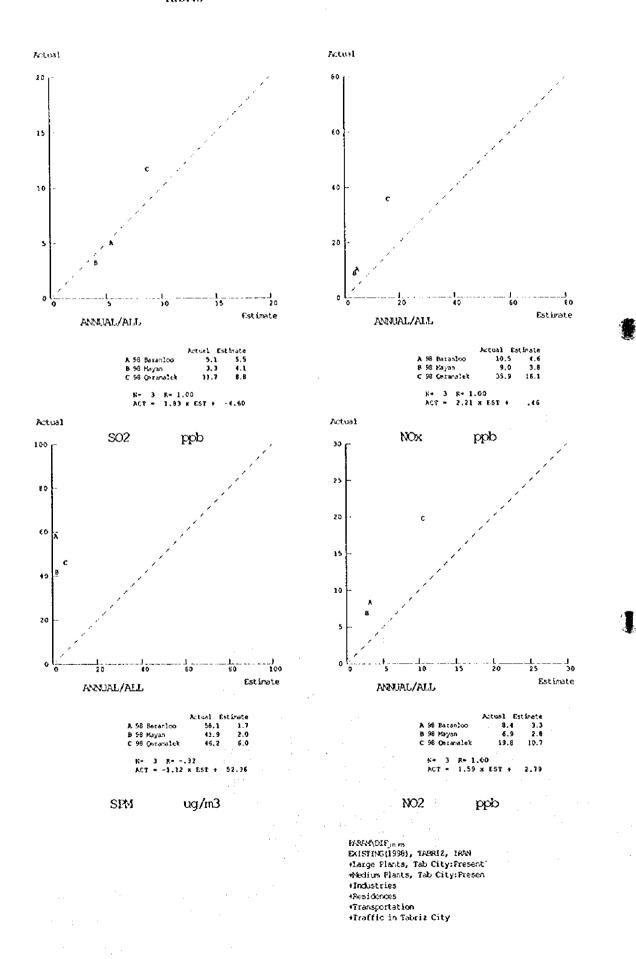
Unit: m

Appendix 8-6 Parameters for Simulation Model

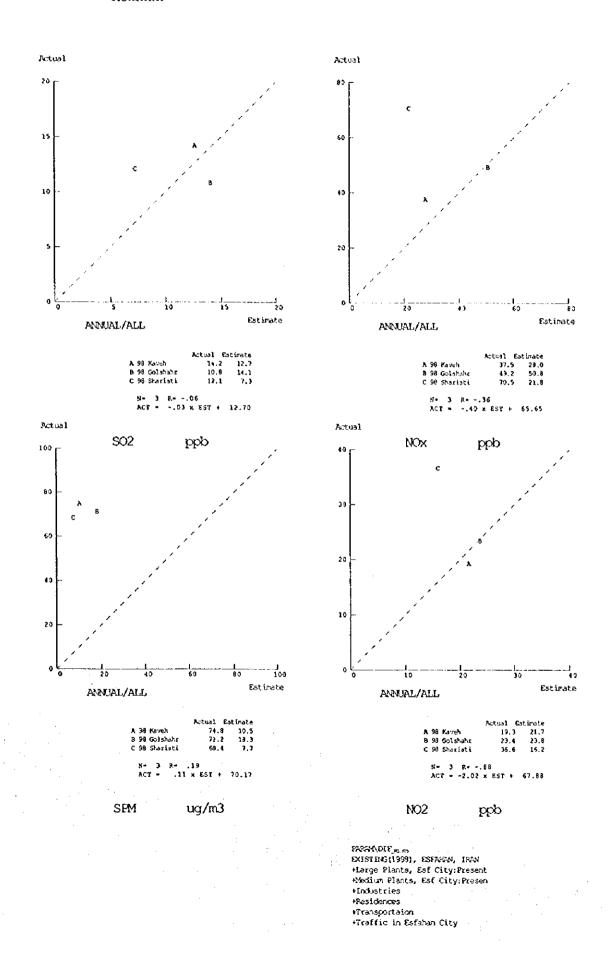
Table 8-6-1 Constant for σ_{y} and σ_{z} for Plume Equation

Stability	α_y	ry		х		α_{z}	Υz		х	(m)
	0.901	0.426	0	~	1,000	1.122	0.0800	0	~	300
٨	0.851	0.602	1,000	~		1.514	0.00855	300	~	500
						2.109	0.000212	500	~	
В	0.914	0.282	0	~	1,000	0.964	0.1272	0	~	500
	0.865	0.396	1,000	~		1.094	0.0570	500	~	
C	0.924	0.1772	0	~	1,000	0.918	0.1068	0	~	
	0.855	0.232	1,000							
	0.929	0.1107	0	~	1,000	0.826	0.1046	0	~	1,000
D	0.889	0.1467	1,000	~		0.632	0.400	1,000	~	10,000
						0.555	0.811	10,000	~	
	0.921	0.0864	0	~	1,000	0.788	0.0928	0	~	1,000
E	0.897	0.1019	1,000	~		0.565	0.433	1,000	~	10,000
						0.415	1.732	10,000) ~	
	0.929	0.0554	0	~	1,000	0.784	0.0621	0	~	1,000
F	0.889	0.0733	1,000	~		0.526	0.370	1,000	~	10,000
						0.323	2.41	10,000) ~	
	0.921	0.0380	0	~	1,000	0.794	0.0373	0	~	1,000
G	0.896	0.0452	1,000	~		0.637	0.1105	1,000	~	2,000
						0.431	0.529	2,000	~	10,000
						0.222	3.62	10,000) ~	

(#87)


Table 8-6-2 α and γ for Puff Equation

Stability	α	γ
Α	0.948	1.569
В	0.781	0.474
С	0.635	0.208
D	0.470	0.113
Е	0.439	0.067
F	0.439	0.048
G	0.439	0.029
		(407)


(#87

Appendix 8-7 Conformity of Measured and Calculated Concentrations

Tabriz

Esfahan

Appendix 8-8 Distribution of Annual Average Concentration (All Sources)

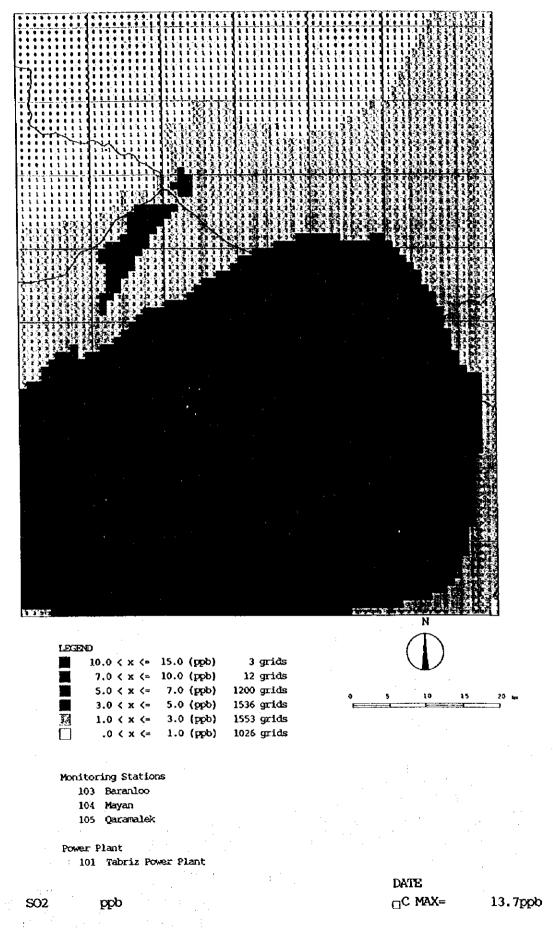


Figure Distribution of Annual Average Concentration (SO₂, All Sources, Tabriz)
A8-18

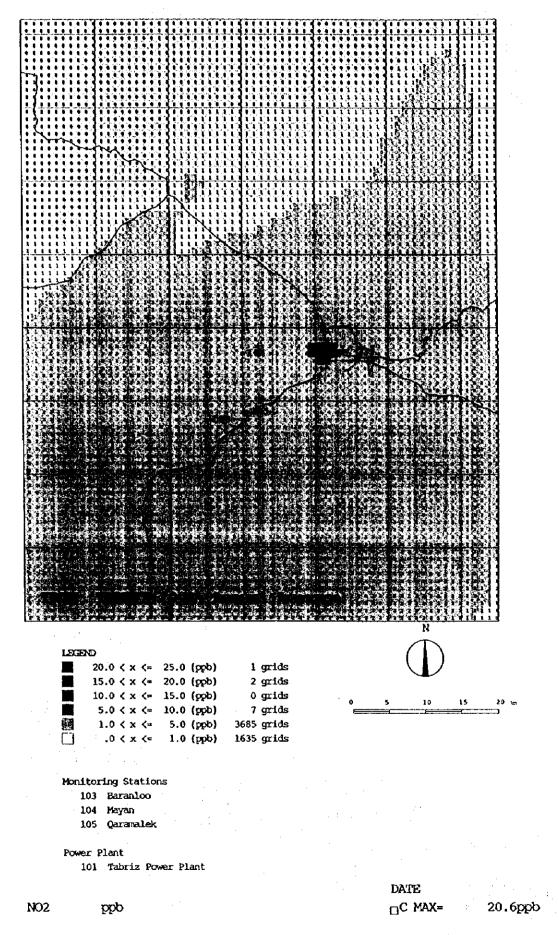
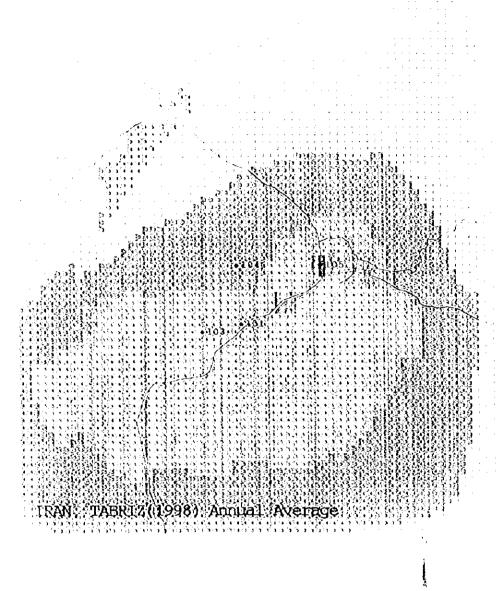



Figure Distribution of Annual Average Concentration (NO₂, All Sources, Tabriz)

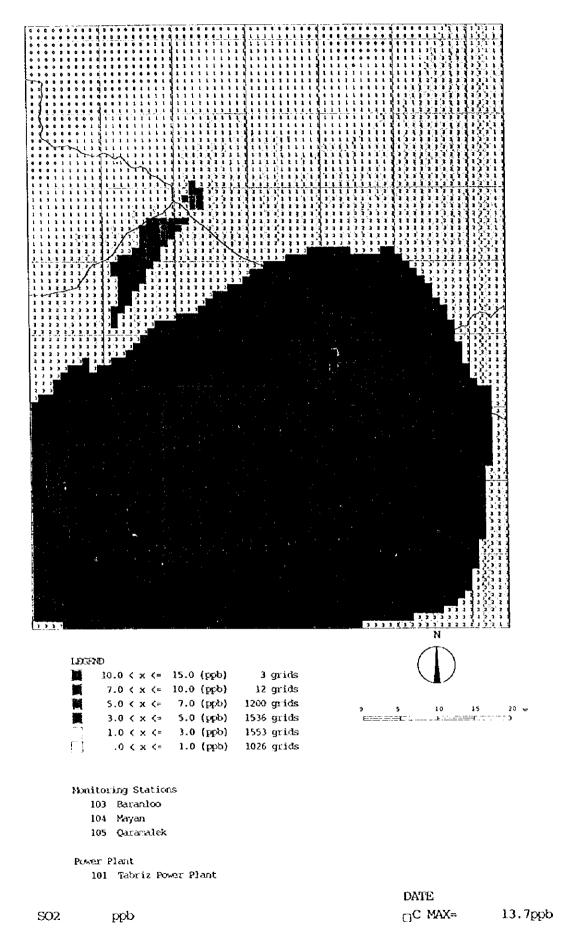


Figure Distribution of Annual Average Concentration (SO $_2$, All Sources, Tabriz) A8-18

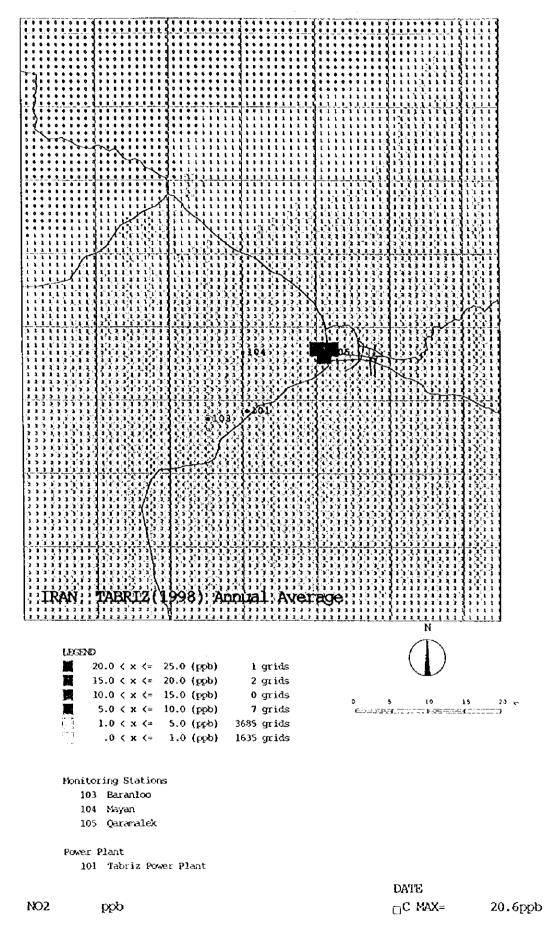


Figure Distribution of Annual Average Concentration (NO $_2$, All Sources, Tabriz) A8-19

- 161

:03

IRAN, TABRIZ(1998) Annual Average.

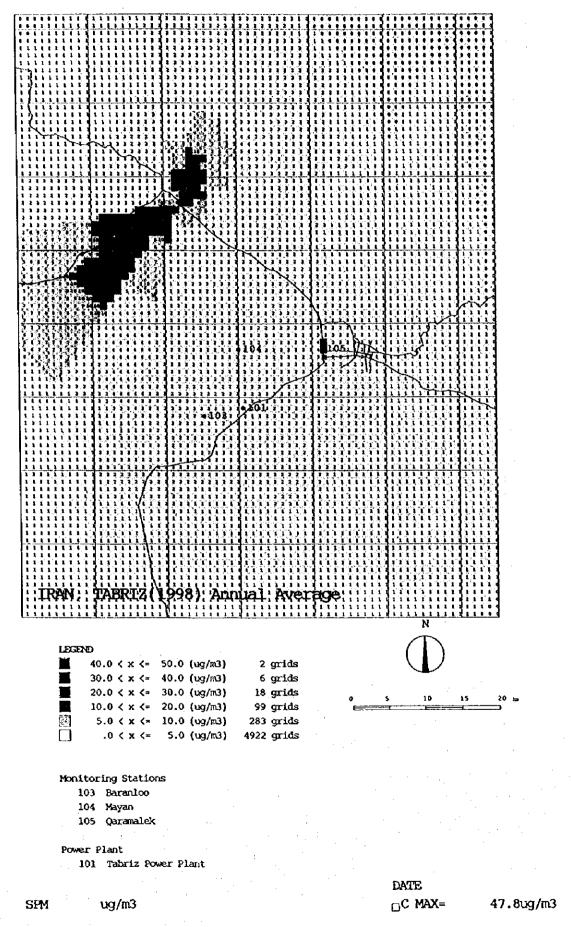


Figure Distribution of Annual Average Concentration (SPM, All Sources, Tabriz)
A8-20

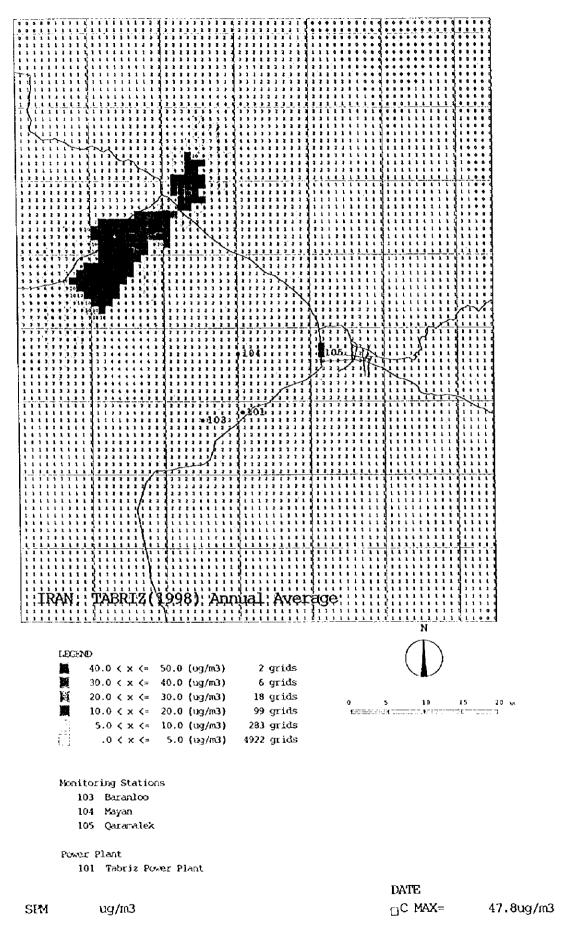


Figure Distribution of Annual Average Concentration (SPM, All Sources, Tabriz)

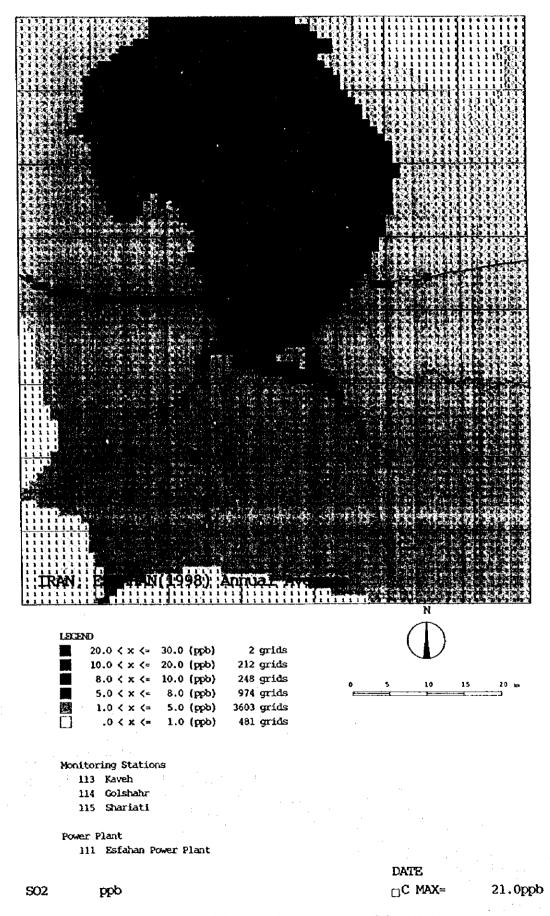


Figure Distribution of Annual Average Concentration (SO₂, All Sources, Esfahan)



Figure Distribution of Annual Average Concentration (SO₂, All Sources, Esfahan)

IRAN, ESFAHAN(1998) Annual Average

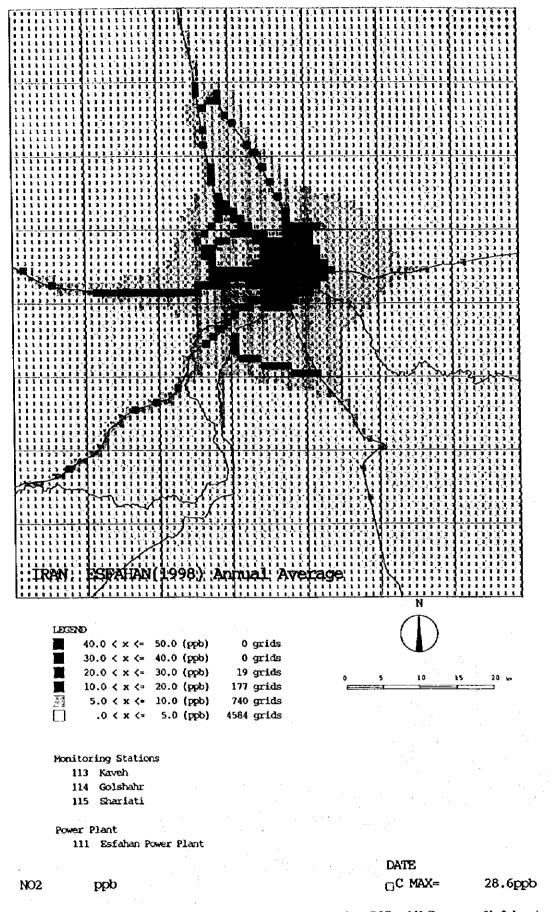


Figure Distribution of Annual Average Concentration (NO2, All Sources, Esfahan)

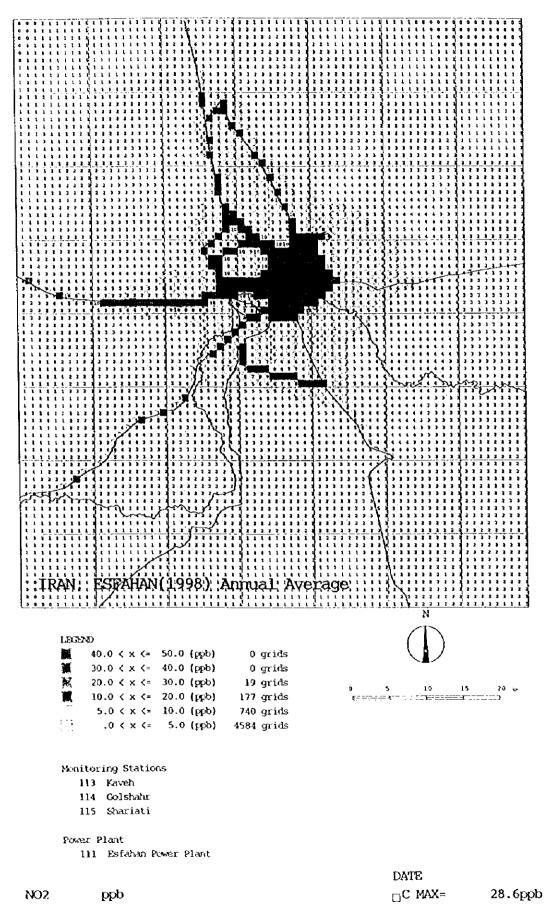


Figure Distribution of Annual Average Concentration (NO₂, All Sources, Esfahan)
A8-22

IRAN, ESFAHAN(1998) Annual Average

.

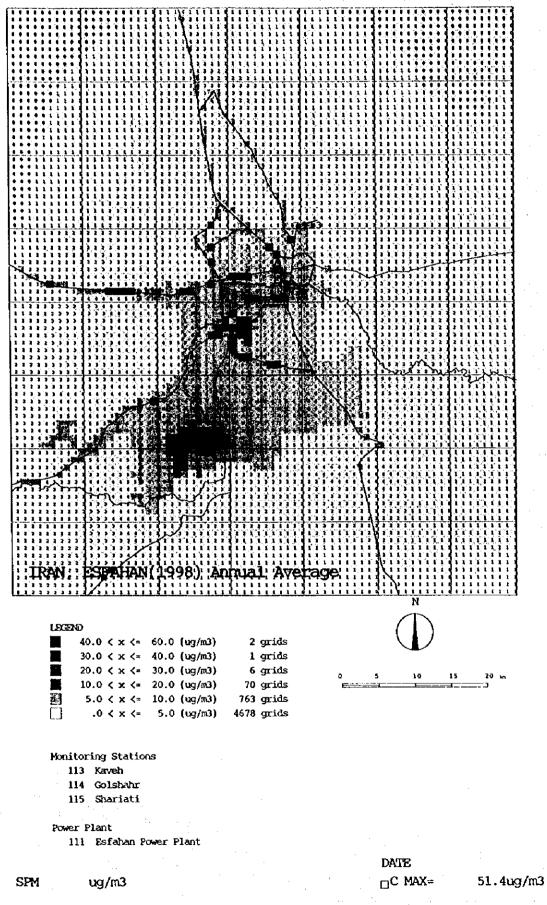


Figure Distribution of Annual Average Concentration (SPM, All Sources, Esfahan)

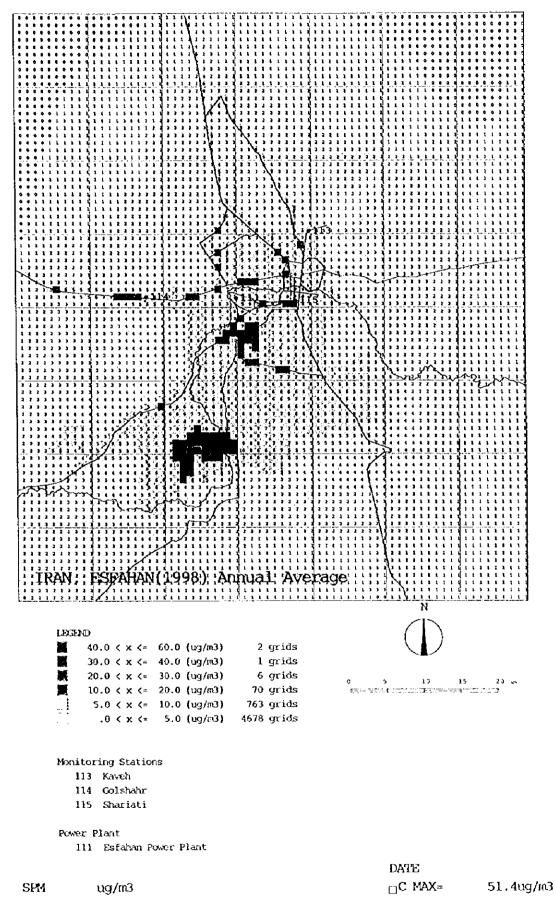


Figure Distribution of Annual Average Concentration (SPM, All Sources, Esfahan)
A8-23

IRAN, FSPAHAN(1998) Annual Average

Method for determination of heavy metals in ambient air

This method is valid for heavy metals on collecting filter paper used by Low Volume Air Sampler and insoluble components in settled dust.

1. Preparation of Analysis Sample Solution

(1) Reagents

- (a) Hydrochloric acid (1+2)

 Note: (1+2) means a mixture of 1 part of 100% HCl and 2 parts of pure water.
- (b) Hydrochloric acid (1+10)
- (c) Nitric acid 100%
- (d) Nitric acid (1+10)
- (e) Perchloric acid 100%

(2) Operation

- a) Chop the filter paper with sample solid into a 100 ml beaker made of fluororesin. Pour into the beaker 20 ml of nitric acid (c) and 5 ml of hydrochloric acid (a). Heat the beaker on a hot plate (130°C) for one hour, while covering with a watch glass made of fluororesin.
- b) After one hour, remove the watch glass, and keep heating until the contents being reduced to 5 ml. Cool down. Add 5 ml of nitric acid (c) and heat again until the contents to 5 ml.
- c) Cool down and add 10 ml of nitric acid (c), 3 ml of perchloric acid (e) and 3 ml of hydrochloric acid (b). Partially cover with the watch glass and heat on the hot plate of 200°C.
- d) Stop heating when the white fume of perchloric acid ceased. After cool down, add 5 ml of nitric acid (c) and heat it again on the heat plate at 130°C. Cover tightly with the watch glass when the perchloric acid white fume ceased.
- e) Keep heating until the contents turns to white or light-yellow. Remove the watch glass when it is white or light-yellow.
- f) When it is approximately dry, stop heating and cool down. [If it is still black or brown, add 2 ml of nitric acid (c) and 3 ml of perchloric acid and heat again. Organic matter should be decomposed completely in this manner.]
- g) Add 50 ml of warm pure water and 10 ml of nitric acid (d), heat on the hot plate (130°C) for 10 minutes to dissolve the white remains.

- h) Filtrate the contents by a filter paper of Class 5B after cool down. Wash the beaker and the filter with warm nitric acid (d). Filtrate the washing in the same manner as before.
- i) Combine all the filtrates and washing into a beaker of 100 ml made of fluororesin and heat it gradually on the hot plate (130°C) until approximately evaporate to dryness.
- j) After cooling the dry material, add 10 ml of nitric acid (d) and heat on the water bath to dissolve it.
- k) After cooling, transfer the contents into a measuring flask of 25 ml. Add pure water to the marked line of 25 ml. This is the sample solution to the atomic absorption spectro-chemical analysis.
- 2. Calculation Method for Heavy Metal Concentration in Air

V, Ni, Pb, and Zn concentration in ambient air sampled by Low Volume Air Samplers shall be calculated according the the following formula.

 $C = (Cs \cdot Cb) \times 25 \times 1000/(V \times 298/(273 + t))$

where C: metal concentration, micrograms/m3 of air

Cs: Result of Atomic Absorption Analysis, microgram

Cb: Blank test results of Atomic Absorption Analysis, microgram

V: Air volume sacked into the Low Volume Air Sampler, m³

t: Average ambient air temperature while sacking air to the Sampler

1

Analytical Procedure for Soluble Metals in Settled Dust

Sample: 2 liter solution in a capped plastic bottle

Preparation:

- 1. Reduce the sample of 2 liter to 25 ml using a 100 ml beaker (repeatedly supplying the sample for the evaporation loss) by evaporation and by avoiding violent boiling.
- 2. Wash the plastic bottle and pour the wash water to the beaker for evaporation.
- 3. Stop heating when the remained solution is approximately 20 ml.
- 4. After cool, filtrate the solution and put the filtrate to 25 ml measuring flask.
- 5. Wash the evaporation beaker with 5 ml pure water and filtrate the wash water and put the filtrate to the measuring flask.
- 6. Make the filtrate total 25 ml with pure water and bring it to the Atomic Absorption Analysis.

Method for Determination of Heavy Metals in Stack Gas

This method is valid for heavy metals on cylindrical filter paper used for sampling of soot in stack gases.

1. Preparation of Analysis Sample Solution

- (1) Reagents
 - (a) Hydrochloric acid (1 + 2)
 - (b) Hydrofluoric acid (100%)
 - (c) Hydrogen peroxide in water (30%)
- (2) Apparatus 100 ml Beaker made of fluororesin
- (3) Operation
 - a) Chop the sampled filter to a suitable size to put into a beaker of 100 ml made of fluororesin. Add 30 ml of hydrochloric acid (a) and 5 ml of hydrogen peroxide solution.
 - b) Heat the beaker covered with a watch glass of fluororesin for 60 minutes on a water bath. After cooling it, wash the watch glass with warm pure water of 10 · 15 ml. Filtrate this washing solution and the contents in the beaker by using a filter paper of Class 5B.
 - c) Add 20 ml of hydrochloric acid (a) into the beaker and heat it on the water bath for 10 minutes. After cool it, filtrate the contents by using the previous filter paper.
 - d) Wash the beaker with 30 ml of warm pure water and filtrate the washings with the same filter paper.

1

- e) Combine all the filtrate and washings into a beaker of 100 ml made of fluororesin. Vaporize the contents to approximate dryness on the water bath.
- f) Add 10 ml of hydrochloric acid (a) into the beaker, heat it on the water bath to dissolve the contents. After cooling, move the contents in the beaker into a measuring flask of 25 ml. Add pure water up to the marked line of 25 ml. This is the sample solution to the Atomic Absorption Spectro-chemical Analysis.
- g) Separately operate in the similar manner on the filter paper and take it as the blank test solution to the Analysis.

2. Analysis Method

- (1) The atomic absorption spectro-chemical analysis shall be applied.
- (2) Reagents
 - (a) Nickel Standard Stock Solution (1 ml = 100 micrograms of Ni)

Add 20 ml of nitric acid (1+2) to 0.100 gram of metallic nickel (not less than 99.5% as nickel) in a graduated cylinder of 1000 ml. Gently heat it in warm water to dissolve completely and then dilute it with pure water exactly to 1 liter.

Nickel Standard Solution (1 ml = 2 micrograms of Ni)

Dilute the Standard Stock Solution with hydrochloric solution of (1+25) to exactly 50 times. This solution shall be freshly prepared at each time when required.

(b) Vanadium Standard Stock Solution (1 ml = 100 micrograms of V)

Dissolve 0.230 grams of ammonium metavanadate in approximately 200 mo of warm pure water. Add 10 ml of hydrochloric acid (1+2). After cooling, dilute the contents with pure water exactly to 1 liter.

Vanadium Standard Solution (1 ml = 10 micrograms of V)

Dilute the vanadium standard stock solution with hydrochloric acid (1+25) exactly to 10 times. This solution shall be freshly prepared at each time when required.

(c) Lead Standard Stock Solution (1 ml = 100 micrograms of Pb)

Add 20 ml of nitric acid (1+4) to 0.100 g of metallic lead (nmot less than 99.9% as lead). Gently heat to dissolve it. Subsequently, boil it to release NOx gas. After cooling, dilute with pure water correctly to 1 liter.

Lead Standard Solution (1 ml = 10 microgram of Pb)

Dilute the Lead Standard Stock Solution with hydrochloric acid (1+25) correctly to 10 times. This solution shall be freshly prepared at each time when required.

(d) Zine Standard Stock Solution (1 ml = 100 microgram of Zn)

Add 80 ml of hydrochloric acid (1+2) to 0.100 g of metallic zinc (not less than 99.9% as zinc), dissolve it, and dilute the contents with pure water correctly to 1 liter.

Zinc Standard Solution (1 ml = 1 microgram of Zn)

Dilute the Zinc Standard Stock Solution with hydrochloric acid (1+25) correctly to 100 times. This solution shall be freshly prepared at each time when required.

(3) Gas to be Used

Metal	Combustible Gas	Combustion Support Gas
Nickel	Acetylene	Air
Vanadium	Acetylene	Nitrous oxide
Lead	Acetylene	Air
Zinc	Acetylene	Air

(4) Apparatus

Atomic Absorption Spectro-chemical Analyzer

Lamp and Wave Length

Hollow-cathode Lamp	Wave Length	
Nickel	232.0 nm	
Vanadium	318.4 nm	
Lead	283.3 nm	
Zinc	213.9 nm	

(5) Preparation of Working Curve

The working curve shall be prepared in accordance with Article 7.1 (1) of JIS K0121.

(6) Operation

Burn the correspondent hollow-cathode lamp. After the flame having stabilized, measure the absorbance or absorption percentage by using a filter having the corresponding wave length of the sample solution and obtain the heavy metal amount from the working curve.

Separately operate a blank test by using a blank solution and correct the results.

3. Heavy Metal Concentration in Stack Gas

The metal concentration in stack gas is expressed by the milligram of metal in 1 m³ of the dried stack gas at 25°C and 760 mmHg.

$$C = m/Q$$

where C: metal concentration (mg/m³S)

m: weight of metal in the sample (mg)

Q: volume of dried sample gas (m³S)= $V \times (298/(273+tm)) \times ((Pa + Pm \cdot Pv)/760)$

T

where V: volume of gas sucked by a gas meter (m3)

tm: temperature of the gas sucked (C)

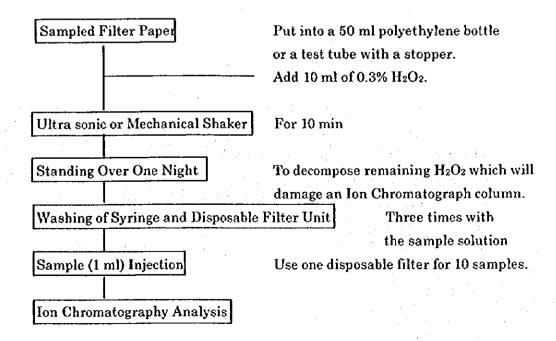
Pa: barometric pressure (mmHg)

Pm: gauge pressure at the gas meter (mmHg)

Pv: saturated water vapor pressure at tm (mmHg)

Method for Determining of Gaseous Pollutants in Air by Passive Samplers

1. Introduction


Passive samplers are to collect gaseous pollutants in ambient air based on a molecular diffusion and selective chemical bondage. It is convenient for air sampling without electric power supply and its small size.

The sampler consists of a diffusion plate with 45 pinholes, a stainless mesh, an o-ring made of TFE (Poly-tetra-fluoro-ethylene), a filter paper (impregnated with TEA, glycerin, and other required chemicals), and a casing body.

When the sampler is exposed in ambient air avoiding a rain fall and direct sun shine, gas molecules diffuse into pinholes and reach the filter. Only acidic gases are trapped there by TEA. Sampling period is usually one day to several days. Starting and ending times of the sampling should be recorded. After exposure, the sampler is removed and put into a package bag. Review to Chapter 6 and its Appendix for kinds of samplers used for the Study and setting up of the samplers.

Sampler Chemical Analyses

2.1 Ion Chromatography for NO2 and SO2

For references:

The following are used with an eluent of 1.8 mM of Na₂CO₃ and 1.7 mM of NaHCO₃ at the flow rate of 2.0 ml/min.

Guard Column

- Dionex, Ion Pac., AG4A-SC

Analytical Column

· Dionex, Ion Pac., AS4A-SC

Auto-suppresser

- Dionex, ASRS-14 mm

2.2 Absorptiometry for NOx

- a) Put a sampled filter into a 50 ml polyethylene bottle or a stopper test tube.
- b) Add 10 ml of pure water to the bottle.
- c) Keep it for 30 minutes.
- d) Shake it for a few minutes.
- e) Cool it to 2 to 6 °C in a refrigerator.
- f) Add 2 ml of a color reagent solution (see below)
- g) Keep it for 30 minutes in the refrigerator
- h) Take it out of the refrigerator and keep it to reach the room temperature.
- i) Colormity at 545 nm.

References:

(1) Color Reagent

<u>Sulfuric Acid Solution</u> - Dissolve 80 grams of sulfanilamide in 200 ml of phosphoric acid and add pure water to make it correctly 1 liter. Keep it in a cool and dark place.

 ${\underline{\bf NEDA~Solution}}~-~{\bf Dissolve~0.56~grams~of~N-1-naphthyl-ethylene~diamine~dihydrochloride~in~100~ml~of~pure~water.}$

Color Reagent is a mixture of the <u>Sulfuric Acid Solution</u> and the <u>NEDA Solution</u> (10 + 1).

- (2) <u>Sodium Nitrite Stock Solution</u> (1 microgram NO₂/ml) 1.5 grams of sodium nitrite that has been dried at 105 to 110℃ for over than 4 hours is weighed out and dissolved in pure water to a volume of 1 liter.
- (3) Sodium Nitrite Solution Dilute the Stock Solution with pure water correctly to 100 times, and take 0, 2, 5, 10, and 20 ml of the diluted solution and again dilute it with pure water up to 100 ml (0 to 2.0 micrograms NO₂/ml).

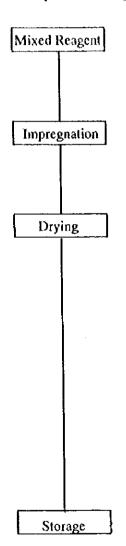
3. Ambient Concentration

Ambient air concentration of each gaseous pollutant has to be calculated from the results of the chemical analyses using the following equation.

 $C = W \times a / H$

where C: ambient air concentration (ppb)

W: result of the chemical analysis (micrograms) adjusted after the blank test


H: minutes exposed (min)

a: coefficient - see the table below.

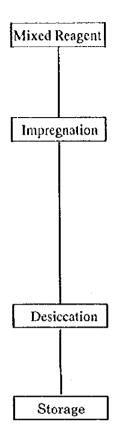
		•	
	10℃	20℃	30°C
SO_2	120.3 x 10 ⁻⁶	123.8 x 10 ⁻⁶	127.3 x 10 ⁻⁶
NO_2	104.4 x 10 ⁻⁶	107.5 x 10 ⁻⁶	110.5 x 10 ⁻⁶

Impregnated Filter Paper for Passive Sampler

1. Preparation of Impregnated Filter Paper (SO₂ + NO₂)

Pour glycerin 10 ml into a capped measuring cylinder, add TEA 30 ml and finally make the contents to total 100 ml by addition of pure water. Shake it for a few minutes.

Put 100 round filter papers (ADVANTEC No. 51A or equivalent, 47 mm in diameter) on a vat (30 x 20 x 5 cm) with a pair of tweezers. Pour the mixed reagent into the vat.


Dispose excess reagent by decantation. And put a square filter on the vat to absorb excess reagent.

Put a square filter (ADVANTEC No. 51A) on a plate of a silica gel desiccator and put impregnated filters, one layer and without touching each other. Place two pillars (triangle shaped, cardboard made) on the first square filter and place the second square filter on top of the pillar. Accordingly make tiers of square filter papers to make space for 100 wet round filters for drying without touching each other. Cover the desiccator and keep it for 2 to 4 hours.

Complete dryness is not necessary. As glycerin has water holding property, it can keep the filters in a slightly moistened condition.

Put 5 dried round filter papers in a small polyethylene bag. Seal the bag and store in a cool dark place. The effectiveness of the paper remains for 3 months before use.

2. Preparation of Impregnated Filter Paper (NOx)

Pour glycerin 10 ml into a capped measuring cylinder, add TEA 30 ml and finally make the contents to total 100 ml by addition of pure water. Shake it for a few minutes.

Dissolve PTIO 0.3 g with acetone into the mixed reagent of 15 ml which is named as NOx Reagent

Put round filter papers (ADVANTEC No. 51A or equivalent, 47 mm in diameter) in a desiccator (see Note 1) with a pair of tweezers, not to touch each other.

Pour the mixed reagent of 200 micro-liter with a micro-dispenser on one filter, one by one.

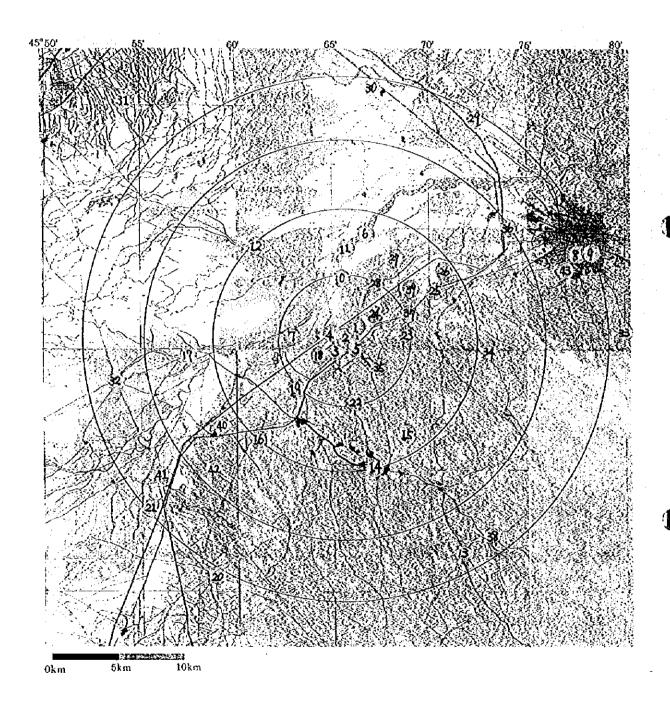
Introduce clean air into the desiccator with the flow rate of about 2 liter/minute. Blow air for approximately one hour (see Note 2).

Put each 5 filters in a small polyethylene bag (scaled type), seal the bag tightly, and store it in a cool and dark place. The effectiveness of the loaded filter paper remains for 3 months before use.

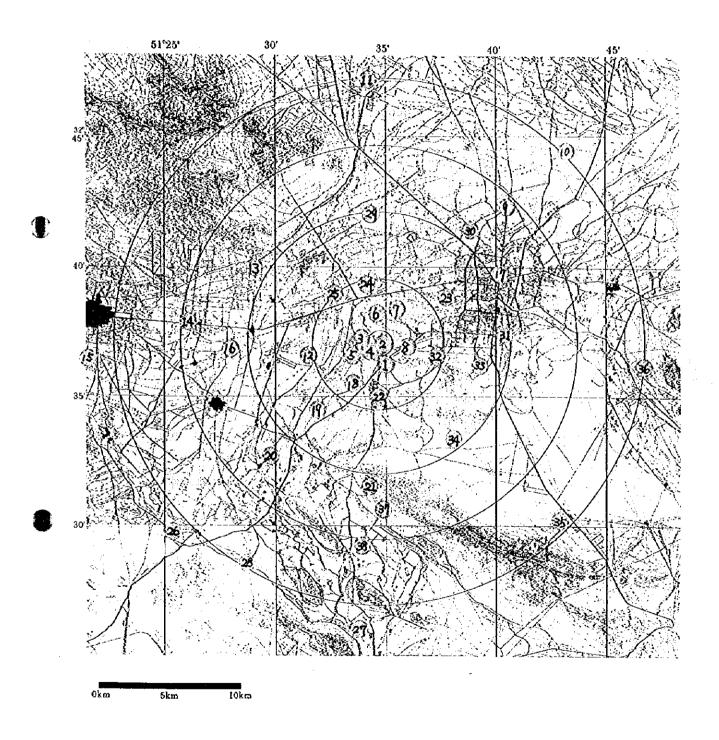
Note 1: Box type, 30 x 25 x 40 cm, with gas inlet nozzles, silica bed

Note 2: As glycerin has water holding property, filters are slighly moist.

Tabri	2(1)	courte and	17000		1 7 (12	SIAC (Samp.	11118		
	Sampling start time				102-	NO2	5042-	SU2	NOx NOx	
l No.	is on the Field 1958/2/1 11:05	15 on the Field 1598/2/8 11:45	temp 5	(min) 10120	(uz/ml) 0.1800	ppb 2	(ug/ml) 43 57	242	(mi) peb 0668 11	
	1998/8/3 10:00	1898/6/13 9 20	20	12920	0.6900		ND	Q	0293 8	
1	1998/8/22 10:20 1998/11/7 13:50	1998/8/29 9:10 1998/11/14 10:42	25	8570 8452	1 2200	14	ND 4 20	27	0 790 12 1 600 39	
·								C to l		
2	1998/2/1 11:12	1998/2/8 11:40 1998/6/13 9:30	20	10108 12910	1.2000		118 85 23 20	649 97	1.492 20	1
	1998/8/22 10:25	1998/8/29 9:10	25	8565	ND	Ç	NO	0	1.140 17	1
L	1998/11/7 1400	1998/11/14 10:43	10	84431	2.4000	27]	NO 1	C	1.820 56	j
3	1998/2/1 11 20	1998/2/8 11:53	5	10113		0	174.50	969	0.703 9	
1	1998/6/3 10:25 1998/8/22 10:35	1998/6/13 9:35 1998/8/29 9:15	20	12910 8560	1.0500 ND		2 28 5:50	34	0.898 16 0.830 12	
L	1998/11/7 14:05	1998/11/14 10:45		8440	1.8400	21	12.00	79	1.990 52	1
1 4	1998/2/1 11:35	1993/2/8 15:40	5	10325	NO	- 0	128.02	695	0.765 10	1
	1998/6/3 10:30	1998/6/13 9.45	20	12915	0 9900	7	23.10	96	1 258 20	
	1998/8/22 10:45 1998/11/7 14:10	1998/8/29 9:20	25	8555 8440	1.0100	5 12	14.00	90	0.740 15 1.940 42	
5	1998/2/1 13:25 1998/6/3 10:40	1998/2/8 1150 1998/8/13 10:00	20	8545 12920	1.1500	0	266.45 1 21	1751	0.967 15 0.843 17	
•	1998/8/22 1050	1998/8/29 9 25	2 5	8555	0.6500	7	0.53	3	0.850 19 1.790 42	
L	1998/11/7 14:25	1998/11/14 10.40	10	8415	1 2300	14	0.83	5	1.790 42	1
6	1998/2/2 14.50	1998/2/8 12:54	5 20	7084 10125		0	224.13	1776	0240 S 0.418 S]
	1998/6/8 11:00 1998/8/31 11:25	1998/6/15 11:45 1998/9/7 12:25	25	10140	ND 0.4500	0	ND 1.34	7	0.430 9	1
L	1998/11/8 10:35	1998/11/15 12:35	10	10200	NO	0	ND	<u>oi</u>	4.200 55	j.
7	1998/2/2 15 25	1998/2/9 15 20	5		1.7600	20	7.24	47	0391 26	
	1998/6/15 11:00	1998/6/26 9:30 1998/9/7 10:45	20 25		1.0400 ND	7	1.45 0.49	5	0801 14 0810 8	
<u> </u>	1998/11/8 10:00	1998/11/15 10:4			0.9800	9	1.72	ğ	5 320 79	
8	1998/2/3 8:33	1998/2/10 8:50	5	10097	1.7600	171	NO	01	1.149 32	1
ľ	1998/6/14 18:00	1998/6/23 10:10	20	11170	ND	G.	ND	0	0.541 6	
	1998/8/22 11:45 1998/11/9 10:45	1998/8/29 10:10			1.7100	11	224	14	1.150 21 2.480 34	
		11.11		1000			5C# 50	10001		- 1
9	1998/2/3 23:00 1998/8/13 16:00	1998/2/9 23:00			0.9100		256.20 ND	1665 C	1.108 17 0.808 13	
10	I 1000/2/0 1215	1998/2/17 12:20	1 5	12965	N/D	0	1.28	61	0810 8	1
"	1998/2/8 12:15 1998/6/8 10:30	1998/6/15 11:25			0 8700	8	1,02	5	0.811 18	
1	1998/8/31 11:00	1998/9/7 11:45 1998/11/15 11:5			ND 0.9900	9	1.33 ND	7	0.660 6 1.820 33	
										_
11	1998/2/8 12:40 1998/8/8 10:50	1998/2/17 12:35			ND ND	- 0	5.01	27	0.572	1
	1998/8/31 11:20	1998/9/7 11:55	25	10115	NO	0	2.80	15	0.720	3
L	1998/11/10 9:30	1998/11/19 9:00	19	11490	1 3600	11	ND -	0	2710 4	y
12	1998/2/8 13:12 1998/6/8 11:40	1998/2/17 13:00				0	3.10 ND	15		1
-	1998/8/31 12 20	1998/6/15 12:00	25			- 6	ND	ŏ	VD (3-
<u>L</u>	1998/11/8 11:35	1998/11/15 12 2	5 10	10130	1.0700	10	0.46	3	1940 3	5
13	1998/2/9 11:22	1998/2/16 11:0			ND	0			0.280	
	1998/6/6 17:30 1998/9/8 12:15	1998/6/15 18:3: 1998/9/16 12:3:				4 0	0.54		0.208 10 0.940 10	2
<u> </u>	1998/11/10 11 5							4	4.100 5	
14	1998/2/8 12:05	1998/2/16 14:5	3 (11693	ND	1 0	0.24	11	0.170	2
	1998/8/8 16:10	1998/6/15 18 5	5 20	13125	ND	0	NO -	0	0.005 1	
ļ	1998/9/8 11:45 1998/11/10 11:10							0		<u>6</u> 2
15	1998/2/9 12:45	1999/2/17 14.4		5) 11640	Lio	1 0	NO	0	0.240	
i "	1998/6/6 15.50	1998/6/15 17.5	3 20			0	1.05	4	0130	1
•	1998/9/8 13-05 1998/11/10 13.1			5 10060 0 12960				5		4 9
										_
16	1998/2/9 18:12 1998/6/6 10:25				NO 0.8200	6	0.50 ND	3	0360 0388 I	0
	1998/9/8 11:30	1998/9/16 11:2	0 2	5 10070	0.5800	5	ND	0	1.140 1	9
l	1998/11/10 11:0	0 1998/11/19 10:0	wi i	0] 11460	1.1300	9	NO	<u> </u>	2450 3	8
17	1998/2/9 16:40			5 11160		- 6	NO LIA	j j		8 5
	1998/6/6 12:00 1998/9/8 12:30						1.10 ND	5 0	0.260 7	9
L	1998/11/10 9 45	1998/11/19 9.1	0 1	0 11485	0.6100	5	ND	0	4.250 5	4
18	1998/2/9 18 00	1998/2/17 7:0			ND		NO	ा		4
	1998/6/7 17:10 1998/9/7 20:45			0 8330 5 10215	ND ON		ND ND	0	0.035 0.880 1	1
	1998/11/10 205			0 10080						6
19	1998/2/10 10:	45 1998/2/17 12	00	5 10155	I NO	1 4	0.70	41	0.470	f 3
	1998/6/6 10:00			0 13120)]	0.62		0.365 1	1


Tabri	z (2)	٩	'assiva Sampler	Data List		
tocation	Sampling start time	Sampling finish time is on the Field	average period temp (min)	NO2- (ug/ml)	NO2 SO42- ppb (ug/ml)	SO2 NOx NOx ppb (ug/ml) ppb
No	is on the Field 1998/2/10 11:30	1998/2/18 11:15	5 10065	ND	0 037	2 0.420 1
	1998/6/6 11:00 1998/9/8 11:00	1998/8/20 12:30 1998/9/18 11:00	20 20250 25 11520		3 NO 4 NO	0 1.140 19
L	1998/11/10 10:35	1998/11/19 9.45	10 11470	1 0100	8 093	4 4560 61
21	1998/2/10 12:00	1998/2/18 12:20 1998/6/27 10:50	5 11540 20 8530		0 1.00 9 ND	5 0 660 8 0 0 342 14
	1998/9/8 10:25	1998/9/16 10:45	25 11540	ND	0 ND 10 ND	0 1.210 13 0 3 950 55
	1998/11/10 10:20	1998/11/19 9:35 1998/2/17 14:30		1.1700		10 0530 7
22	1998/2/10 12:45 1998/6/8 15:30	1998/6/15 17.45	20 13095	0.8100	0 1.77 6 2.01	8 0398 10
	1998/9/8 13:20 1998/11/10 13:35	1998/9/18 12 55 1998/11/19 13:25	25 10055 10 11510		4 2.84 10 1.42	
23	1998/2/10 15:35	1998/2/18 13 05		ND	0 0.50	
1	1998/8/3 11:15 1998/8/22 11:00	1998/8/13 10:45 1998/8/29 0:00	20 12930 25 7980	0 8 6 0 0 ND	6 4.32 0 NO	0 ND 0
L	1998/11/7 14 35	1998/11/15 10:10	10 9815	1,2400	12 8 00	45 2020 39
24	1998/2/10 15:50 1998/8/3 11:35	1998/2/18 13:15 1998/6/13 11:00	O 9925	NO 0 8 700	0 231 7 193	
	1998/8/22 11:30	1998/8/29 8:50	25 8540 10 9820	0.5600	6 ND 8 21.05	0 1,050 21
	1998/11/7 14.40	1998/11/15 10:20			,	
25	1998/2/10 18:15 1998/6/3 12:00	1998/2/18 15:15 1998/6/13 11:15	5 10020 20 1291	1.2300	0 0.18 9 1.92	8 1283 22
	1998/8/22 11:50 1998/11/9 10:55	1998/8/29 10:05 1998/11/19 15:35	25 853: 10 14580		6 124 13 1.90	
26	1998/2/10 16.40	1998/2/19 15:05	5 1142!	ND	6 ND	0 0.950 11
	1998/6/7 11:00 1998/9/5 12:30	1998/6/17 10:45 1998/9/13 10:00	20 1294 25 893	0.9900 ND	7 ND 0 9.68	0 0.968 17 52 1.020 13
L	1998/11/9 12:20	1998/11/23 14:20	10 2028	3.4200	16 2 20	
27	1998/2/11 10:38 1998/8/3 12:10	1998/2/18 14:35 1998/6/13 11:30		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 255	
	1998/8/22 12:10 1998/11/9 12:45	1998/8/29 10:35		ND	6 1.07 8 1.74	
28	1998/2/11 11:05	1998/2/18 14.45		ON E	O ND	
.,	1998/8/3 12:20 1998/8/22 12:00	1998/6/13 11:40 1998/8/29 10:10	20 1292 25 853	1.3900	10 9.2	
	1998/11/9 13 00	1998/11/19 15:50	10 1457		10 270	
29	1998/2/11 12:00 1998/6/7 12:00	1998/2/20 15:25 1998/6/17 12:20	5 1316 20 1442	5 ND 0 0.1100	0 ND 5 0.6	0 0770 8
	1998/9/5 13:30	1998/9/13 11:20	25 995 10 1299	0.5800	5 0.8	5 0390 10
	1999/11/14 11:45		101 1250 5 1455) 101 /2 1 0 NO	0 0.470 5
30	1998/2/11 12:28 1998/6/7 12:15	1998/2/21 15:00 1998/6/17 12:50	20 1443	5 ND 5 ND	0 10	0 0197 2 0 0040 23
	1998/9/5 13:45	1998/9/13 11:40			T OIND	
31	1998/2/11 13:20 1998/6/20 17:50	1998/2/21 14:25 1998/6/28 0:00	20 901	5 ND 0 ND	(ND	0 0.180 3
	1998/9/5 15:00 1998/11/14 12:40	1998/8/13 12:15 1998/11/23 12:50	25 991 10 1297		9 02	0 ND 0 5 1 6270 73
32	1998/2/11 1638	missig	5			
<u> </u>	1998/8/10 13:00	e grand to the second				
33_	1998/2/11 18.17	e e carre con e e e	30.0	3 ND	0 04	
34	1998/2/12 11.45 1998/8/11 10:30	1998/2/18 16:20 1998/6/20 16:00	0 1329		0 ND 0 ND	0 0.120 2 0 0.013 0
1	1998/9/5 11:45 1998/11/14 16:00	1998/9/13 10:45 missing	25 1002 10	e ND	0 ND	0 0310 4
35	1998/2/12 14:55	1998/2/19 10:55	5 840	O ND	0 ND	0 0.150 2
	1998/6/6 9:30 1998/8/22 12:30	1998/6/13 10:30 1998/8/29 9:35		0 ND 5 NO	0 0.6	
L	1998/11/8 9:40	1998/11/15 10:00	10 1010	0.8800	8 ND	0 1.490 28
36	1998/2/15 12:35	1998/2/21 17:00		5 ND 0 1.9500	0 0.2 13 1.4	
	1998/8/31 12:55	1998/9/7 16:00	25 1026	5 0.6500	6 0.9	4 5 1 020 18
1 22	1998/8/3 11:50	1998/6/13 11:07				
37				O ND	O ND	0 0.008 0
38	1998/8/6 17:50					0 0234 9
39	1998/6/16 19:40				O ND	0 0305 5
40	1998/6/20 10:40			O ND		
41	1998/6/20 12:00 1998/9/7 18:00	1998/9/16 18:00	25 1290	0.3800 0.3800	0 NO 3 0.4	8 2 1290 15
<u></u>	1998/11/1 20:00		10	1	1 1	
42	1998/6/10 11:30			O ND	0] 05	
43	1998/6/10 18:15	1998/6/20 21:00	0] 1456	0.9800	7 NO	0 0.412 11

33. C.1.	ÁS	ρ	assive Samo	oler Data List				
Esfaba		Sampling finish time			NO2 S	042- 1 \$	OS NOX	XOX
No.	is on the Field	is on the Field	temp (mi	n) tun'tan		n'mh .	in'nu da	deal
1	1998/2/10 15 00	1998/2/17 14:00		580 0 8300	9	35 00 5 30	229 1.31 20 1.19	
	1998/8/17 11:00	1998/6/27 11:30 1998/8/29 14:00		130 1.4100 900 0.8700	€	034	1 123	
[]	1999/10/24 8 42	1998/11/2 15:10	10 13	408 12100	8	0 25	1 3.47	0 43
2	1998/2/10 15 00	1998/2/17 1400	5 8	580 ND	0	33 00	216 055	0 5
	1998/8/17 11:00	1998/6/27 11:30	20 14	430 08800	6	0.85	3 036	2 9
	1998/8/19 15:10	1998/8/29 14:15 1998/11/1 11:35		905 0.7200 875 1.8200	15	133	4 2.15 5 3.26	
l	1933/10/24 6 00	1930/11//11/05	101 11	0101 102001				
3	1998/2/10 16:00	1998/2/17 14:00		520 ND	6	5.00	33 030 6 099	
	1998/6/17 11:30 1998/8/19 15:15	1998/8/27 11:30 1998/8/28 14:17		400 1.0100 462 0.9200		1.60	5 152	
L	1998/10/24 9 50	1998/11/1 10:30		560 2.1500	18	0.85	4 269	0 49
4	1998/2/10 18:00	1998/2/17 14:00	5 8	520 0 7000	8	12.00	79 0.93	0 23
'	1998/6/17 11:35	1998/6/27 11:15	20 12	940 1.7400	12	1.89	8 1.42	1 26
	1998/8/19 15:20 1998/10/24 9:10	1998/8/29 14:20 1998/11/1 17:20		900 1.1700 010 1.5200	12	3 00 0 84	12 1.65	
	1330/10/24 3 10	1 1930/11/11/10	t					
5	1998/2/14 14:05 1998/6/17 11:45	1998/2/21 9:10 1998/6/27 11:15		345 0 8100 930 2 0100	10	8.32	40 1.05 35 1.57	
	1998/8/19 15:30	1998/8/29 14:30		900 0.8500	6	3.94	16 1.76	
	1998/10/24 8 35	1998/11/1 11:10	10 11	675 1.9400	16	022	1 356	0 57
6	1998/2/12 16:30	1998/2/19 18:20	5 10	190 ND	0 N	ō]	0 057	
	1998/6/17 18:00	1998/8/25 20:30		670 1.0300	8	1.72	8 2.17 4 1.09	
	1998/8/23 14:00	1998/8/30 18:00		0320 0.4600 1940 0.7400		380	4 1.05 18 6.97	
· · · · · · · · · · · · · · · · · · ·					1 1 1 1			
7	1998/2/12 18:00 1998/6/17 18:00	1998/2/19 16.40 1998/6/25 20:15		0120 ND 1655 1.0300	8	2.23	10 096	
- 2	1998/8/23 16:00	1998/8/30 17:00	25 10	0140 0.2700	2 N	Ö	0 0.6	
L	1998/10/24 18:00	1998/11/5 18:00	10 1	7280 1.7900	10 N		0) 65	
8	1998/2/12 14 35	1998/2/19 17.45		0270 1.3700	13	19.00 0.46	104 3.15 2 1.55	
	1998/8/23 15:00 1998/10/26 15:40	1998/8/30 20:00		0380 0.5400 0415 3.8300	35	1.46	8 48	
9	1 1008 (9 (12 15 25	1998/2/19 14:30	5	8585 0.8700	10	9.00	59 19	20 40
•	1998/2/12 15:25 1998/6/1 12:35	1998/6/7 18:20		8865 1.7100	18	1.31	8 1.1	34
	1998/8/19 18:15	1998/8/20 10:20		2485 : 0.9600 1630 : 2.2700	19	2.19 3.21	9 23 15 52	
l	1998/10/25 10:10	1998/11/2 12:00	1 101 1	10301 22100	!71	3211		
10	1958/2/12 15:45	1998/2/18 16:00		0095 1.1200 8965 ND	- 11	3,95	128 2.0 7 0.5	
	1998/6/116:45 1998/8/19 18:00	1998/6/27 19:30 1998/8/29 10:28		2508 1.2000	9	0.73	3 22	70 31
	1998/10/24 15:00	1998/11/2 16:00	10 1	3020 2.4000	18 1		0 1.0	2.1.1
11	1998/2/12 16:40			8510 0.7600	9	10.00	66 0.8	
	1998/6/22 11:10			4650 1 3800 0100 ND	9 0 8	0.67	2 08 0 05	
1	1998/10/25 11:20			4580 1.6600	111	131	5 32	
12	1998/2/14 10:30	1998/2/20 14 30	51	8880 0.6300	1 7	0.20	1 0.6	30 17
'*	1998/8/19 9.40		25 1	4620 1.0800	7	0.42	2 10	70 16
L	1998/10/24 9:35	1998/11/2 12:00	10 1	3105 18200	13	0.40	2 43	50 57
13	1998/2/14 11:10	1998/2/21 11:03	5	8633 0.7900		15.00		50 25
	1998/6/20 11:00			0290 1.1700 4490 1.9400		1.06	3 06	81 20 90 26
	1998/8/19 10:30 1998/10/24 10:20			1450 2 3000		1.90		30 80
	1998/2/14 11:30		6	8630 0.9800	1 11	6.00	39 1.3	60 32
14	1998/6/19:10	1998/6/10 10:20		3030 1.8100		1.44	6 13	58 26
1	1998/8/19 11:00	1998/8/29 12:15	25 1	14475 1.4300	9	0.35	1 14	80 22 900 41
L	1998/10/24 10:4	0 1998/11/1 13:00	1011	1660 0 8900		0.55	- 15	
15	1998/2/14 11:50			8625 0.6400		··· 0.50		130 27 161 13
	1998/6/7 10:15			8845 . 0.9600 4445 0.9700		0.94		10 20
L	1998/10/24 105	5 1998/11/1 13:50		1895 1.6100	13	237	11 3.0	80 48
16	1998/2/14 12:10	1998/2/21 11:55	51	8625 0.7300	8	0.30	2 04	40 18
	1998/6/20 12:40	1998/6/27 16:35	20 1	10315 1.1300			<u> </u>	
	1998/8/19 12:10			14450 0.9600 11680 1.1000		0.83	3 2	350 36
	100		1 1					100 1 40
17	1998/2/14 19:40			7145 0.8800 12780 1.5100		2.66		130 49 130 41
	1998/10/25 9.25			11615 3.7700		2.15	1G 43	590 84
18	1998/2/16 10:10	1998/2/22 14.45	5	8915 0.7000	18	080	5 1.	170 25
	1998/8/23 10:00	1998/8/30 8:45	25	8565 1,8000	19	1.10	7 2	740 59
I	1998/10/26 9-54	1998/11/5 8 25	10	12875] 3.9200	29	1.90	8 5	540 86
19	1998/2/16 10:3			8850 ND	0	1.80		510 58
	1998/6/20 13:0			10140 0.9200 8460 1.2000		ND 1.10		529 15 470 35
L	1998/10/26 95			12875 2.2900		0.87	4 6.	110 80
20	1998/2/18 11:0	0 1998/2/22 14:30	51	8850 ND	0	0.60		760 12
1	1998/8/23 10:1	0 1998/8/30 9:15	25	8585 1.3600	14	0.64	4 2.	110 45
L	1998/10/26 10 0	5 1998/11/5 8.45	10	12880 3.710	281	6.43	2 2	570 54


Esfaha	an (2)	F	Passiva :	Sampter	Data List					
Location	Sampling start time	Sampling Brish time	everage	period	NO2-	NO2	SO12-	SO2 I	NOX	NOX 1
No.	is on the field	is on the Field	temp	(min)	do mb.	ppb	(no mb	pab	ducinh	ppb
21	1998/2/18 11:35	1998/2/22 15 00	5		ND	0	0.30		0.540	10
	1998/8/7 14:10	1998/8/20 10:15	20	17045	2.2100	12	0.84	3	3 058	35
l l	1998/8/23 11:30	1999/8/30 10:10	25	8560	0.3200	3	0,31	2	0.570	12
L	1993/10/26 11:20	1998/11/5 10:00	10	2880	1.1000	8	0.47	2	2 250	31]
r	r 72	4000/0/000 05 00		4555						
22	1993/2/18 12:15	1998/2/22 15:30	25	8835		0	0 20	1 5	0.780	12
	1998/8/23 11:45	1998/8/30 10:20	- 23	8555 8600	05700	6 16	0.77 NO	- 0	1,160	23 30
į.	1998/6/21 12:00 1998/10/28 11:35	1998/8/28 11:20 1998/11/5 10:20	10		1.4100 1.4500	11		15	0.833 4.500	57
£	1333/10/20 11/33	19307 1179 1020	10	12003	1,4300		3,40		1.200	L31
23	1998/2/17 13:30	1998/2/23 11:40	5	1090	ND	O	0 25	2	0.860	16
	111111111111111111111111111111111111111		·				Luna	L		
24	1998/2/17 13.45	1998/2/23 11:55	5	7090	ND	0	2.10	17	1.700	32
	1998/8/22 11:30	1998/8/29 11:30	25	10080	0.5200	0 5	1.62	9	1.560	24
L	1998/10/25 12:15	1998/11/4 13:40	10	14485	2 2400	15	1.90	7	5.110	- 71
25	1998/2/17 14:00	1998/2/23 12:10	. 5			0		3		19
1	1998/6/20 10:30	1998/8/27 14:00	20		0.9800	9	ND	0		21
	1998/8/19 10:00	1998/8/29 11:45	25		1.8400	12	0.41	1		20
L	1998/10/24 10:00	1998/11/2 8.45	10	11445	1.4100	12	ND	0	L	11
r	1 1000/0/10 1215	1998/2/24 14.45	5	0010	0,7700		ND		1 1 1 1 1 1 1 1 1	E A18
26	1998/2/18 14:15	1998/8/30 9:30	25		0.8400	9		0	1,190	27
i	1998/10/26 10:30	1998/11/5 9:10	10		23600	18		4		62
L	1 13307 10720 10.39	1330/11/3 3.10	1 17	12000	2 3000	<u> </u>	V.32		1,300	921
27	1998/2/16 15:20	1998/2/24 16:00	5	8680	ND	0	0.30	2	0.750	121
	1998/8/7 11:40	1998/6/20 10:10	20			5		2	3.051	12 28
•								T		
28	1998/2/18 18 00	1998/2/24 16:30	5			,	1.70	11		20
	1998/8/23 10:40	1998/8/30 9.40	25		0.5000	5		3		18
L	1998/10/26 10:55	1998/11/5 9:25	10	12870	1.1300	. 8	0.74	3	3.670	46
	1 4500 10 140 4000	1 4444 /4 /4/ 14 44	T		25040	T	r	T		
29	1998/2/19 19:30	1998/2/25 12:30	5			8		6		33
	1998/8/22 11:00 1998/10/25 11:35	1998/8/29 11:15	25			5 15		1 6		19 45
	1 1990/10/23 11:53	1370/11/4 14:10	1 19	14000	1 22500	1	1.00	<u></u>	1 3300	43
30	1998/2/20 10:00	1998/2/25 15:10	1 5	7510	0.6500	1 11	0.70	5	2.610	58
"	1998/8/19 19:30	1998/8/27 6:30	25					14		39
i	1998/10/25 10:50		10	14635	2.7300	18		13	8.070	73
31	1998/2/19 19:00	1998/2/25 23:00	5				ND			
1	1998/8/1 10:10	1998/6/10 15:15	50					5		
	1998/8/19 15:10	1998/8/30 13:00	25					11		
L	1998/10/25 10:00	1998/11/2 12:10	10	11650	1.5400	13	1.30	(4 3 10	62
32	1998/2/20 12:00	1998/2/25 14.00	1 .	7320	0.7000	1	0.89	,	2.380	53
34	1 1330/2/20 12:00	1 1330/2/23 14.00	٠	1320	V.1VVV		V 03		2 300	331
33	1998/2/20 12:30	1998/2/25 14:35	1 5	7325	0.7000	1 9	0.90	1	1.400	35
"	1998/8/22 12:50	1998/8/30 10:45	2:				2.51	13		
1	1998/10/26 9:00	1998/11/4 10:10	10					1 1		
		The second second		:						

0 0.40

Location of Passive Sampler at Tabriz

Location of Passive Sampler at Esfahan

Appendix 9-7 Comparison of Data: Passive Sampler and Automatic Analyzer

unit: ppb SO_2 NO_2 NO_{x} Measuring Measuring point month/day Passive Auto. Passive Auto. Passive Auto. $2/2 \sim 2/9$ Baranloo 47 20 26 Mayan Pump $2/8 \sim 2/17$ 0 1 4 Qaramalek 2/15~2/21 0 12 Baranloo 6/15~6/26 7 14 5 6.3 7.4 8.9 Mayan Pump 27 $6/8 \sim 6/15$ 0 Qaramalek 13 30 $6/7 \sim 6/17$ 5 --•----Baranloo 3 8/31~9/7 4.2 0 6.4 8 8.7 Mayan Pump 8/31~9/7 15 2.0 4.0 0 5.1Qaramalek 8/31~9/7 3.6 6 12.9 18.1 5 18 Baranloo 11/8~11/15 9 3.5 9 10.5 **79** 13.4 11/10~11/19 Mayan Pump 0 2.2 11 9.8 43 14.4 Qaramalek $11/9 \sim 11/19$ 14 15.3 18 25.252.965 Golshahr 2/14~2/21 39 11 32 Kaveh 2/12~2/19 59 10 40 Shariati $2/19 \sim 2/25$ 0 0 19 Golshahr $6/1 \sim 6/10$ 6 13 26 Kaveh $6/1 \sim 6/10$ 8 18 34 Shariati $6/1 \sim 6/10$ 6 15 35 Golshahr 8/19~8/29 1 9 22 43.2 13.2 20.4 Kaveh 8/19~8/29 9 11.5 7 22.8 31 48.4 Shariati 8/19~8/29 11 15.4 30.0 25 51.8 Golshahr $10/24 \sim 11/1$ 3 12.4 30.1 41 71.6 Kaveh $10/25 \sim 11/2$ 15 24.519 78

> 128.5 - : no Data

62

55.1

Location of measuring points are shown in Appendix 9-6.

 $10/25 \sim 11/2$

Shariati

Tabriz	No. on A9-16	Esfahan	No. on A9-17
Baranloo	7	Golshahr	14
Mayan Pump	11	Kaveh	9
Qaramalek	36	Shariati	31

21.2