4. The 94-W observation data processing program

The observation data processing program consists of the main program and the initial data making program. The followings are procedure of program operations.

4-1 The initial data making program

In this program, confirmation or input the initial data is required for the following 13 items.

and the Second accountant of the same area to today to	1 1110 10110 11110 2 1
(1) Directory of TEXT file (A:Y)	MSPSYTEXTY)
(2) Directory of RD file (A	:YMSPSYRDY)
(3) Number of observation point	(1)
(4) Objective altitude	(1500)
(5) Interval of the standard level 1	(50)
(6) Interval of the standard level 2 ((in reserve))	(50)
(7) Time interval of calculation of wind vector (wind observation point)	(10)
(8) Altitude above sea level	
(In case altitude above the ground is used, this should be 0)	(0)
(9) Do you calculate the altitude to be above the sea level or the ground	d level?
«Sea=0, Ground=1»	(0)

(10) Altitude correction (In case such as observation on the roof) (0)

(11) Name of the observation point

(initial data)

These data are in the file 94init.dat in A:YMSPS. The data in () are default.

· 4-2 Main program

The main program consists of the following 16 processing items.

(1) Package processing

The processing items necessary for the calculation of the standard level data appears one by one automatically. Also, the observation data obtained by the theodolite is taken in. After all of each processing is over, press return to go to the main menu.

(2) Reproduction of 0.5 second data

The program reads the 0.5 second data from the hard disk, and calculates temperature and humidity at the standard levels up to the specified objective altitude, and also makes the 5 m interval data for search of the significant levels and list them. The significant levels are defined as the top and the bottom of the inversion or isothermal layer of which thickness is more than 50 m, or inversion of which temperature difference is more than 0.4 °C regardless of its thickness.

(3) Reproduction of standard level data

The standard level data is written in hard disk after processing is finished. The data, namely temperature, humidity and pressure at the standard levels, and altitude, temperature, humidity and pressure at the significant levels, are read in the program.

(4) Correction of the initial data

This item is used for correction of date and time of the observation, location of release point, data of surface meteorology at the time of release. Also, it is available for confirmation of the sonde number and memo record.

(5) Temperature profile

Temperature profile is shown up to the specified altitude on the display. The 0.5 second sampling data, the standard level data and the significant level data are denoted by white points, green circle and red circle, respectively. Although correction of the standard level data on this screen that shows whole profile is also practicable, it is advisable to use the screen of split view of the profile (6) for correction.

(6) Temperature profile (split view)

The enlarged profiles of temperature and humidity are shown at the intervals of 350m on the display. Green circle, red circle and purple point denote data at the standard level, the significant level and every 0.5 second data, respectively. Figure on the left side of the red circle shows temperature at the significant level, one right side of green circle shows temperature at the standard level and next one shows temperature lapse rate (temperature gradient). All of these figures should be divided by 10 to obtain real temperature degree. To correct the data of standard level, input "1", then input altitude to be corrected and move the circle with the arrow keys. If there is no necessity for correction, input "0" and then the screen proceeds to the next for correction of the data at the significant level. On this screen, lists of the significant level data (altitude and temperature) are shown. To eliminate a significant level, input the number of the data to be eliminated and next input "0". To correct the data, input the data number and "1", and then move the data point with the arrow keys. To add another significant level, input "-1" and approximate altitude. Some significant level data around the specified altitude are listed at the lower left corner of the screen. Select the appropriate altitude and input its data number. The data is registered as a significant level and its data is shown on the upper right side. But the red circle for the new significant level is not yet added on the profile at this time. If there is no significant level to be corrected, input "0" and then the screen proceed to the next. Reaching to the last screen including the specified objective altitude, the screen returns to the menu.

keys for correction

- → increase 0.1 °C
- ← decrease 0.1 °C
- return to the previous step

(7) List of data

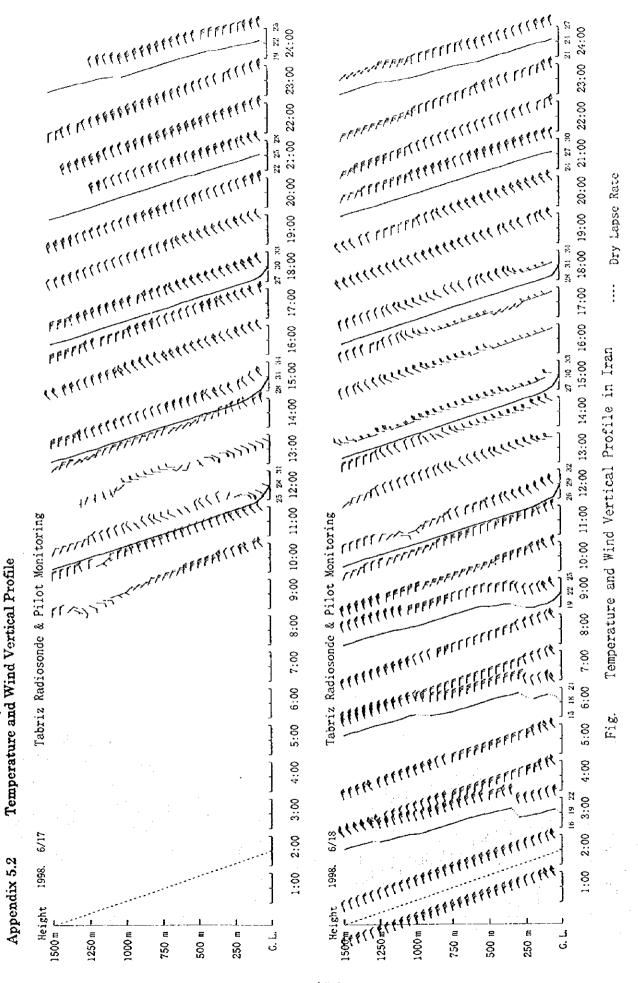
Select one item to be shown from the following menu and input the number.

- (1) Temperature and humidity data
- 2 Data of the significant levels.
- ① shows the list of temperature, temperature lapse rate (temperature gradient) and humidity at the standard levels. If there is any temperature lapse rate greater than $-1.1 \, \text{C/100m}$, input the altitude of the data to be corrected then the same screen as (6), split view of the temperature profile appears on the display. The way of correction is similar to (6).
- ② shows the list of temperature, humidity and altitude of the significant levels. They are picked up automatically by computer, so that some of them might not be "significant" meteorologically. This screen is available for climination of such an unnecessary significant level by input its data number. To correct the data, input the altitude of the data. Then the same screen as (6), split view of the temperature profile appears on the display. The way of correction is similar to (6).

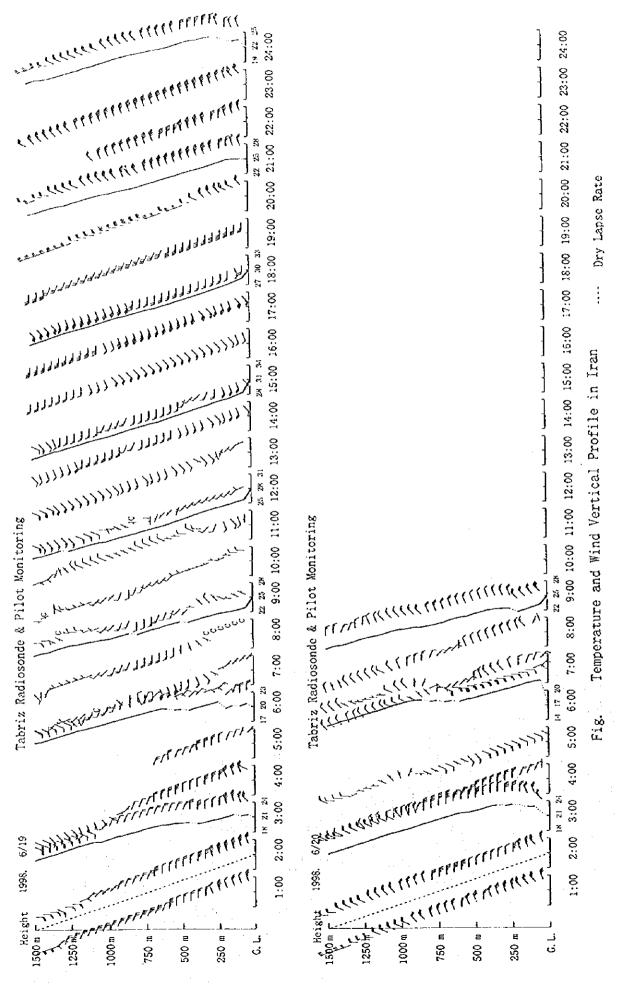
(8) Write data on a floppy disk

Write the RD file on the directory specified at the initial. Contents of the file are date and time of balloon release, sonde number, check data before release, standard level data (temperature and humidity) and significant level data (altitude, temperature, humidity, pressure, every 10 seconds location data).

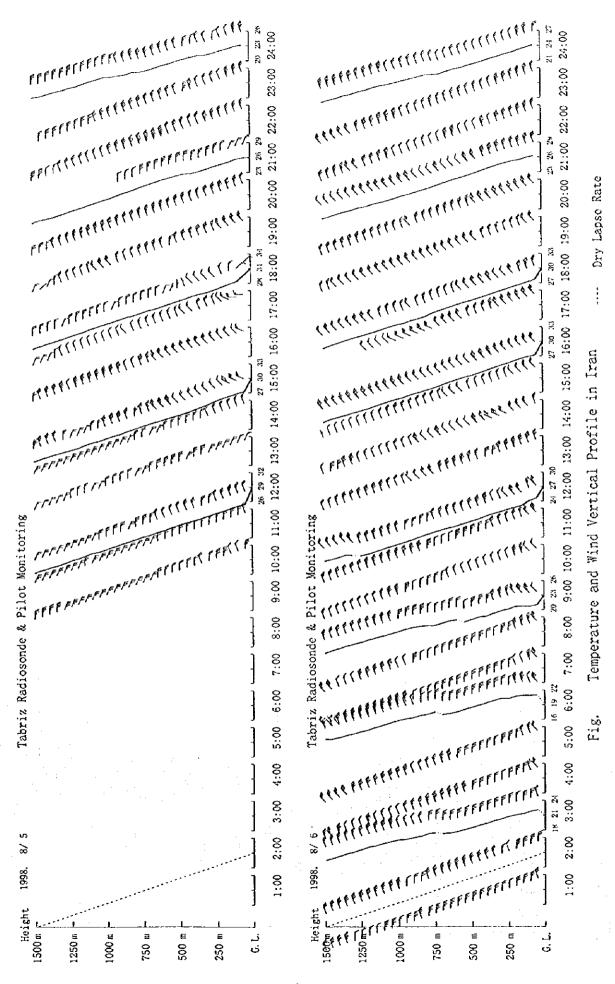
(9) Print out

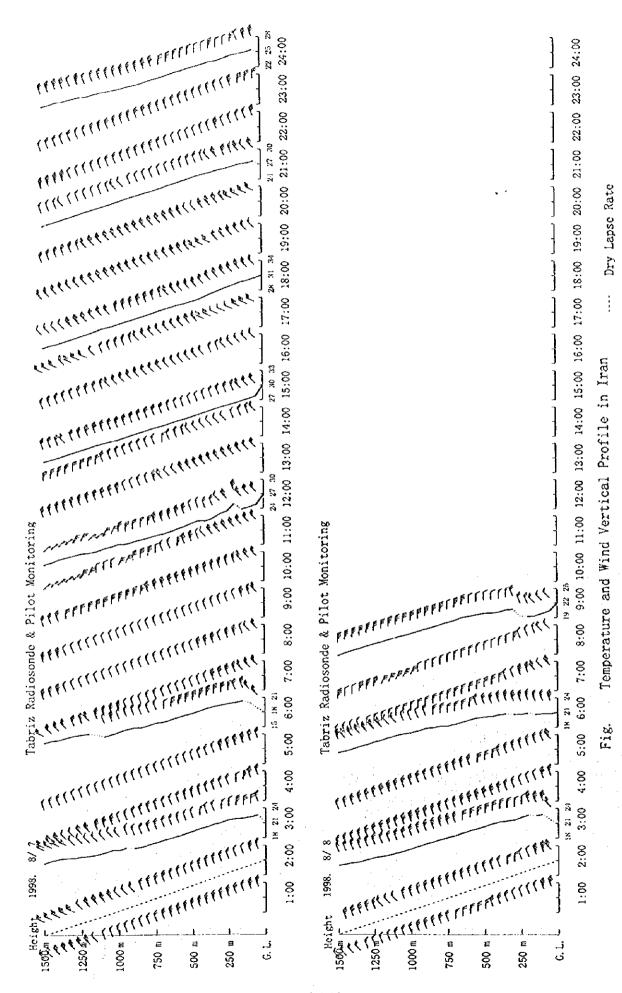

Print out of the lists of the observed data. Temperature observation list includes standard level data (temperature, humidity and pressure), significant level data (altitude, temperature, humidity and pressure) and also sonde number and check data before release.

(10) Next data

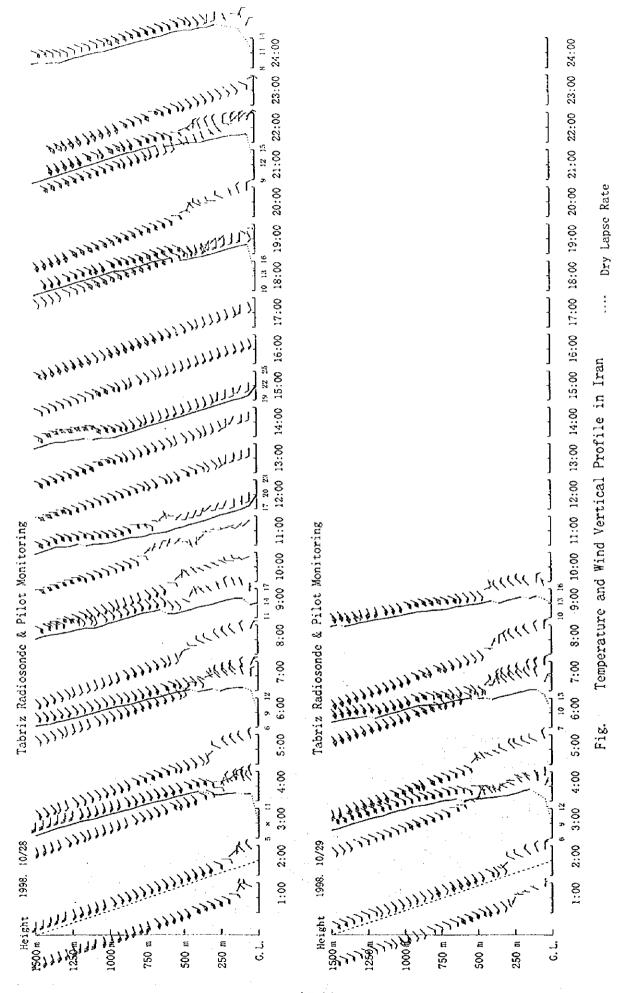

Go to next data processing of another number of observation. The program returns to the initial after saving the processed data on the hard disk or a floppy disk.

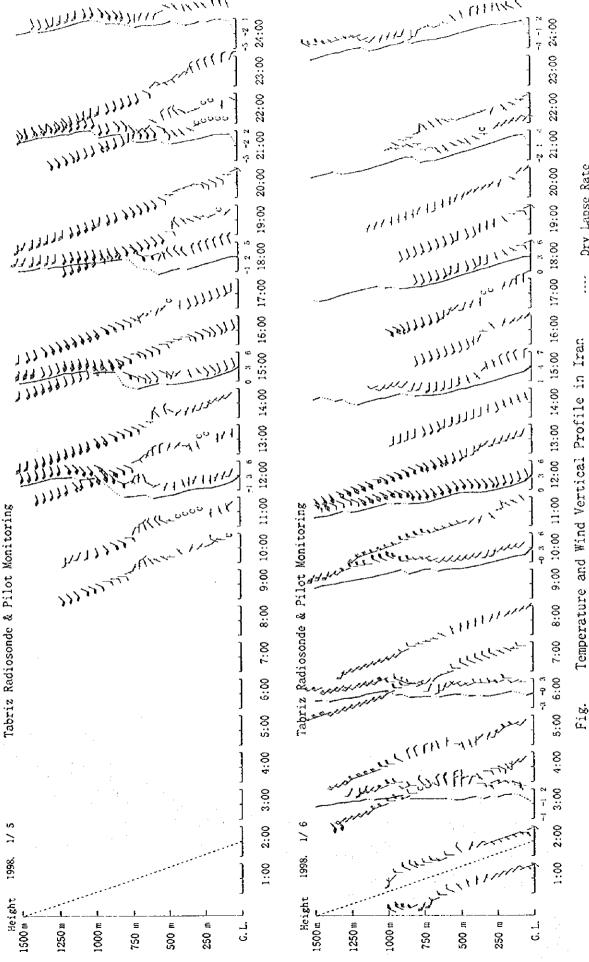
(11) Return to system menu

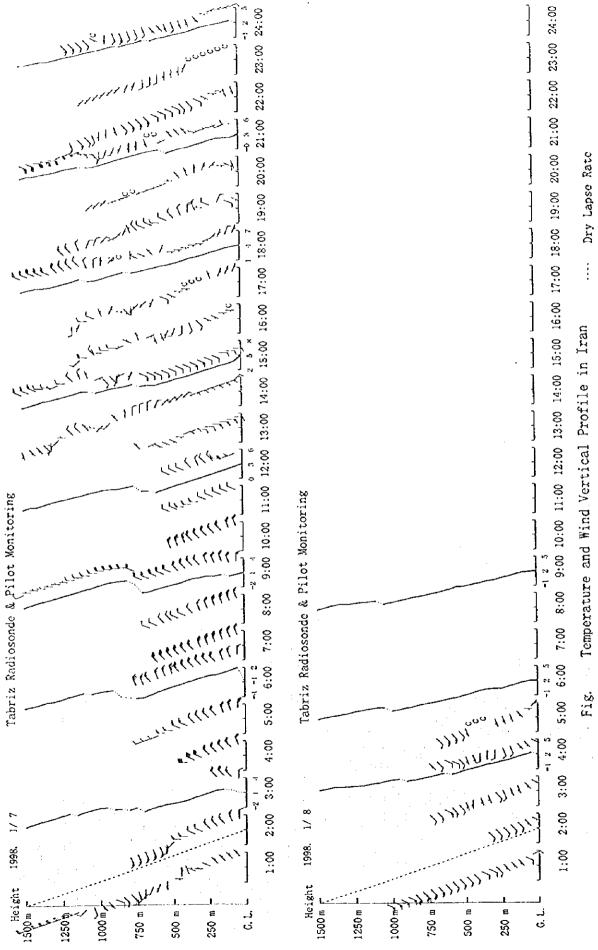

Return to the system menu after saving the processed data on the hard disk or a floppy disk.

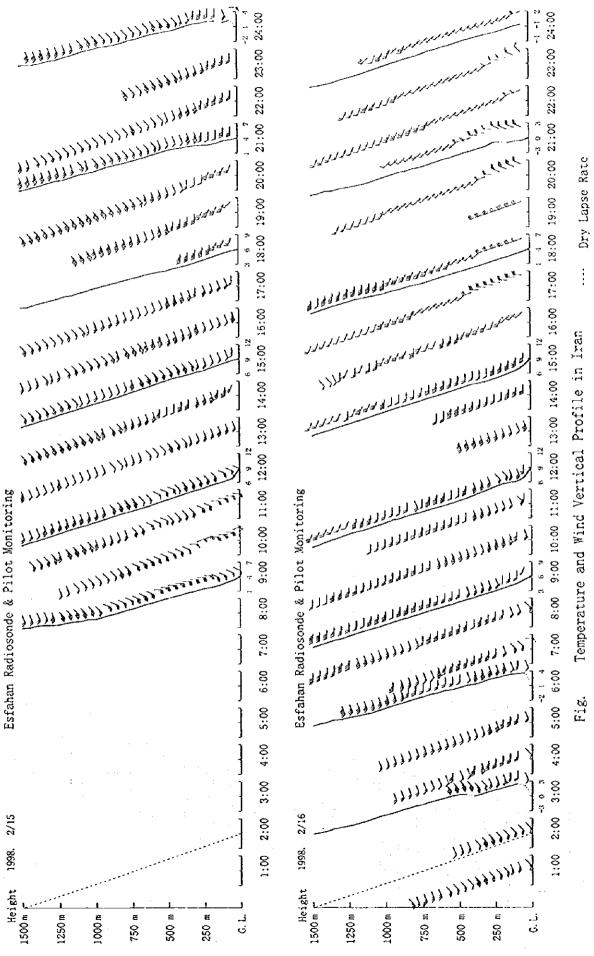

A5-9

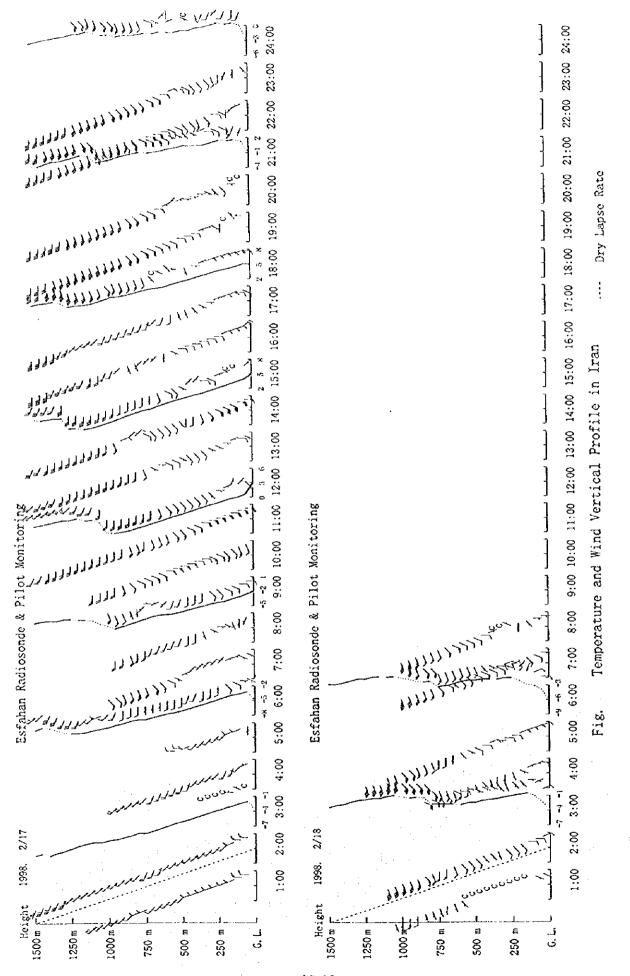
A5-10

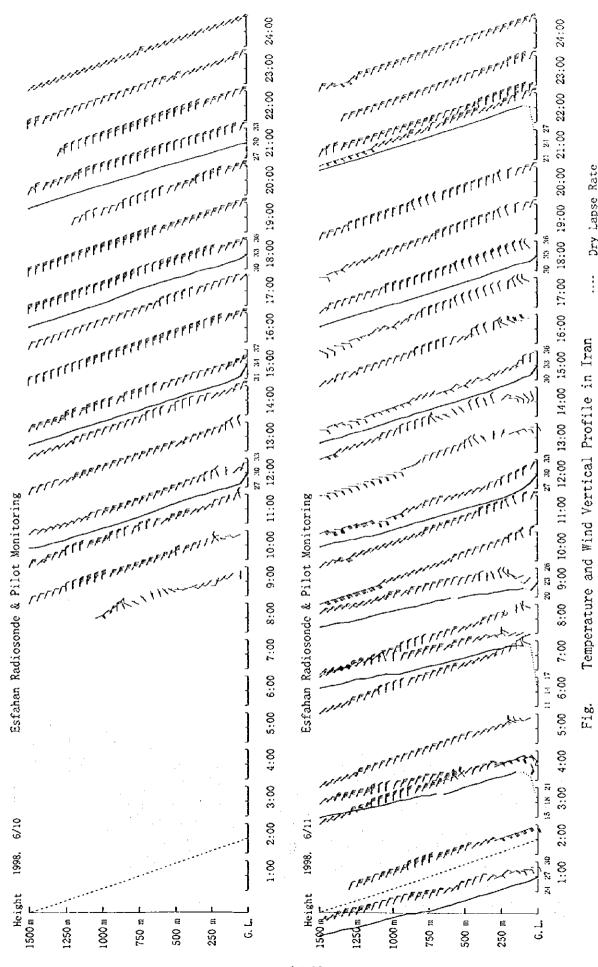

A5-11

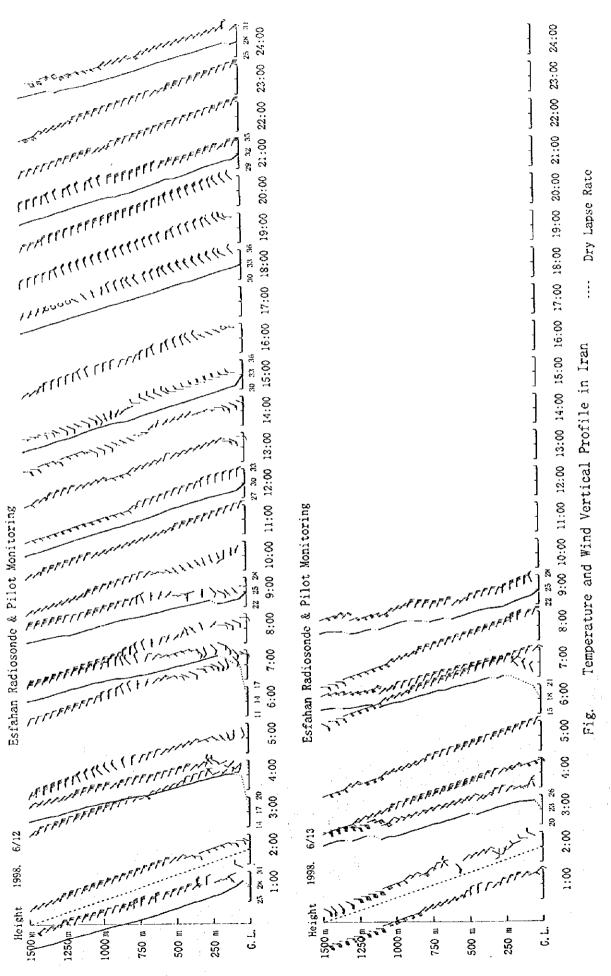

A5-12

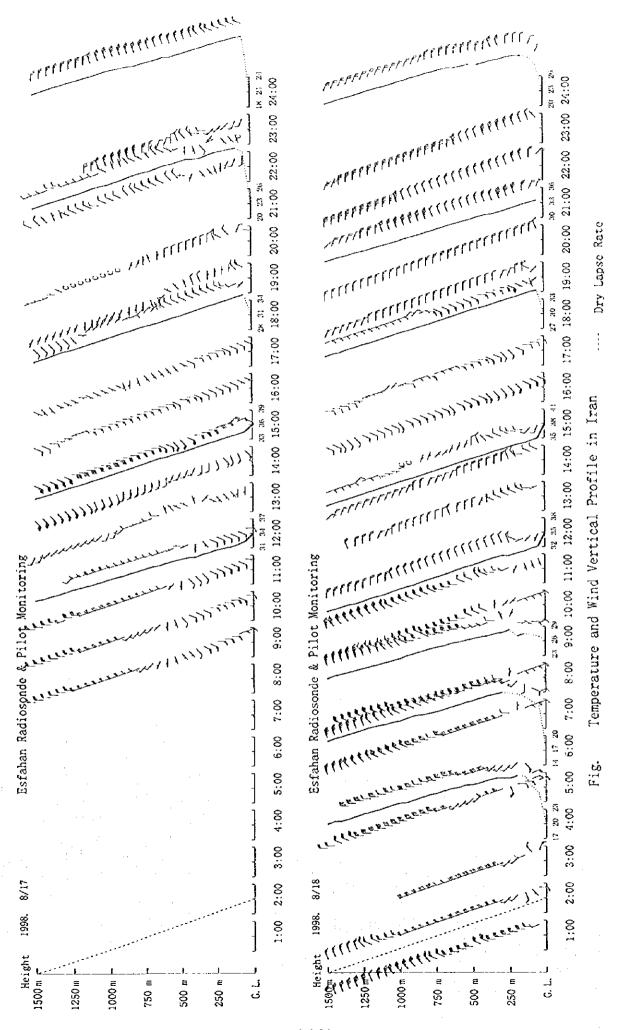

A5-13

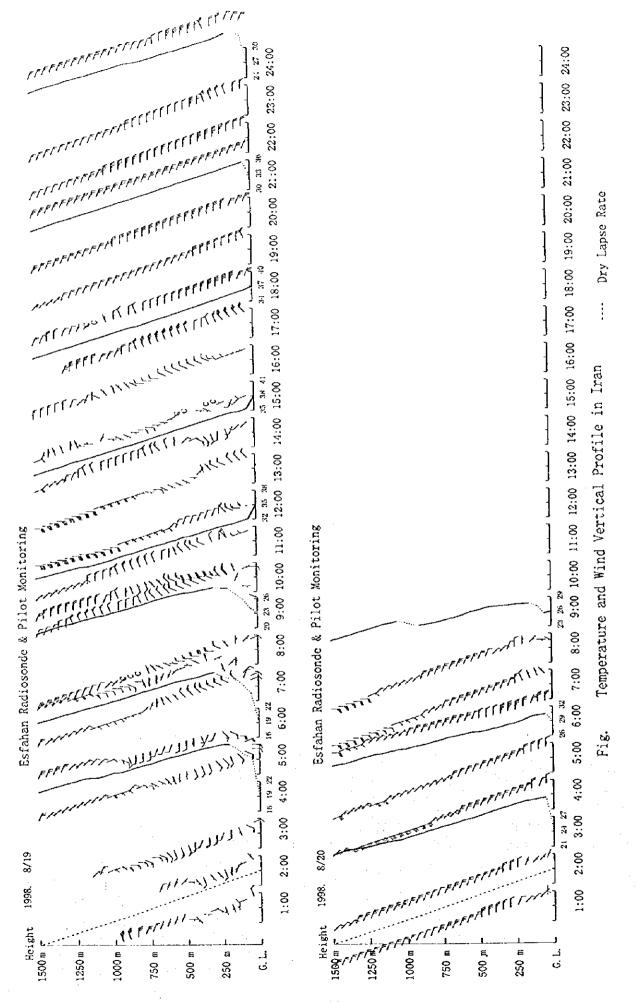

A5-14

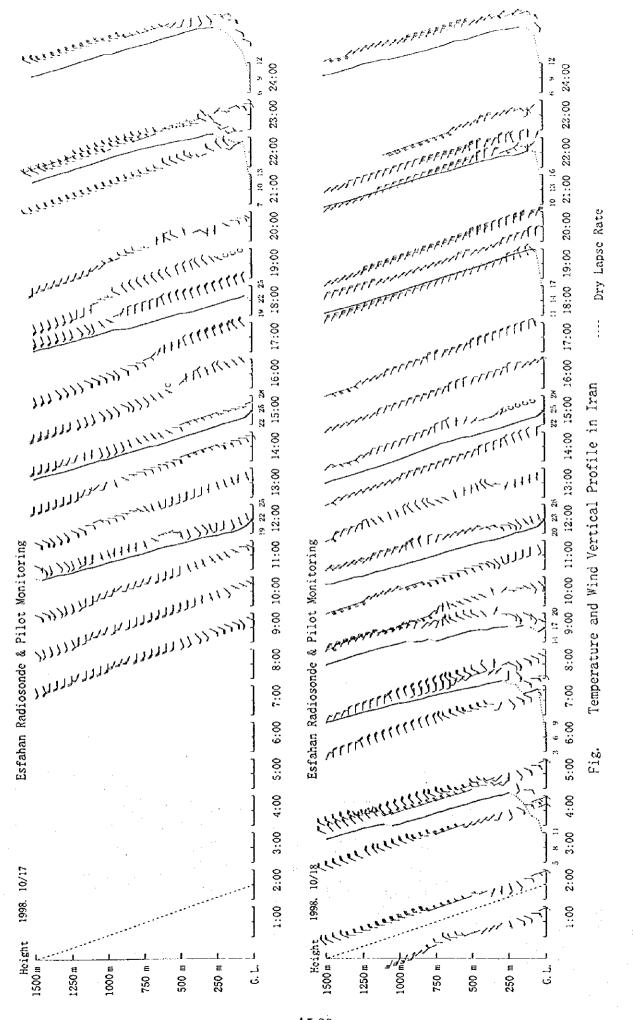

A5-15

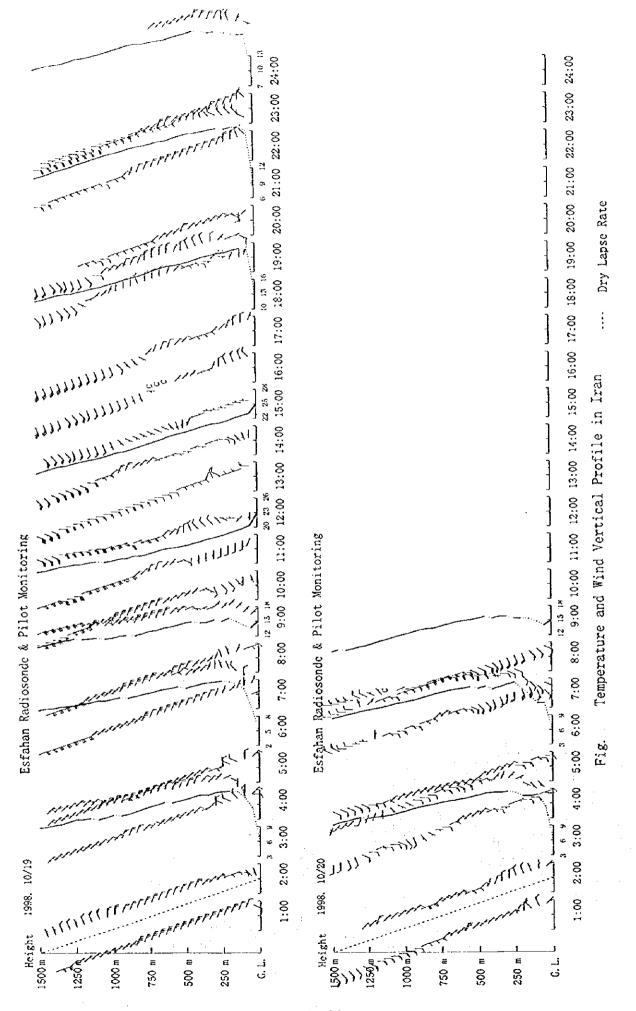

A5-16


A5-17


A5-18


A5-19


A5-20


A5.21

A5-22

A5-23

A5-24

Appendix 6-1 Various Laboratory Work at Power Plant

Operational Notes for Low-volume Sampler (LV)

1. Tools Required

1) Metler Balance 2) Desiccator 3) Silica gel 4) Pincette 5) 6) Stopwatch 7) Hard Case for keeping the Filter collected

2. Lab. Preparation

- 2-1 Keep 10 pieces of Collecting Filter in Desiccator for 24 hours.
- 2-2 Weigh each piece of the Filer by the Melter balance.
- 2-3 Put the piece of the Filter in a plastic bag, and record its weight and serial number on the bag.

3. Field Work Preparation

- 3-1 Clean up coarse particles at the bottom of Cyclone of LV.
- 3-2 Remove the cover of LV and set the Collecting Filter on the Filter Holder as shown in the picture below.
- 3-3 Record the weight and number of the Filter in the Field Report.
- 3-4 Set the cover of LV and supply it with electricity.
- 3-5 Record the indicator of Integrating Flow Meter in the Field Report.
- 3-6 Start up the Pump and record the starting time, date, month, and year on the left part of the second row of the Field Report.
- 3-7 Adjust the Needle Valve to make air flow rate to be 20 liters per 60 seconds.
- 3-8 Choose one of the Collecting Filter for Blank and record the number in the Field Report (Blank shall be the one of the pieces. Keep it inside of the Lab.).

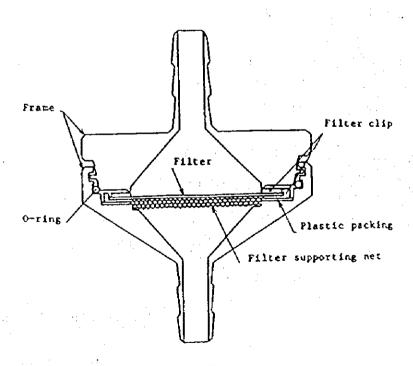
4. Field Work Maintenance (should be done every 5 to 7 days)

- 4-1 Record the date and the current value of Integrating Flow Meter in the Field Report.
- 4-2 Check the time of air suction of 20 liter roughly and adjust the Needle Valve the air flow to be within 58 to 62 seconds.
- 4-3 Check the bottom of Cyclone. Clean it up if you find dust accumulation.

5. Withdrawal

- 5-1 Record the time, date and the current value of the Integrating Flow Meter in the Field Report when you stop the pump.
- 5-2 Calculate total of the flow volume from the records of the starting and ending value.
- 5-3 Withdraw the Collecting Filter and Blank ones and keep these in each plastic bag.

5-4 Check the color of spot on the filter and make comments for the color in the specified column of the Field Report, if you find anything unusual.


6. After Sampling

- 6-1 Keep all of the Collecting Filters in the Desiccator for 24hours in order to make the Filters dried.
- 6-2 Weigh each Collecting Filter by the Metler Balance.
- 6-3 Record the each weight in the Field Report.
- 6-4 Calculate the weight of SPM by deducting the weight of the filter before sampling from the one after sampling.
- 6-5 Calculate the change in the weight of Blank Filter by deducting the weight of the filter before sampling from the one after sampling.
- 6-6 Correct the actual weight of SPM by considering the change of the Blank Filter weight.
- 6-7 Record these results in the Field Report.

7. Safe Keeping

- 7-1 Keep the Collecting Filters in the hard case and keep these in the cool and dark place.
- 7-2 Send or carry these samples along with the Field Report to MOE.

Note: Never fold the Filter. It is very fragile.

Construction of Filter Folder

Operation Procedure of Deposit Gauge Sampling

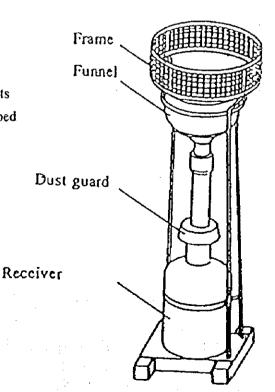
1. Tools Required

1) 500ml of Pure Water, 2) 30cm Length of Blush, 3) Paper towel, 4) Spatula coated with Silicon or equivalent, 5) Poly-ethylene Bottle

2. Field Work Preparation

- 2-1 Wash a Funnel and a Receiver of a deposit gauge with Pure Water.
- 2-2 Wipe the Funnel with Paper towel.
- 2-3 Set the Deposit Gauge as shown in the picture below.
- 2-4 Record the starting time, date, month, and year in the Field Report.

3. Field Maintenance (should be carried out every 5 to 7 days)


- 3-1 Record the date.
- 3-2 Make comments on the unusual surround circumstance of the Field.
- 3-3 Check the exterior (outlook-appearance) of the Sampler.

4. Withdrawal

- 4-1 Take out leaves, insects, and other alien substances on the Funnel and inside of a Receiver.
- 4-2 Wash the Funnel using a Spatula with 500ml of Pure Water. The wash water should be saved in the Receiver with the samples.
- 4-3 Withdraw the Receiver and put the cap on it.

5. Safe Keeping

- 5-1 Keep the samples in the cool and dark place.
- 5-2 Send or carry those samples with the Field Reports to MOE, or reduce the sample volume as described in the next page.

Laboratory Procedure to Reduce Sample Volume of Soluble Settled Dust for Shipment

1. Tools Required

1) 2 liter capped plastic bottles, 2) chemical grade filter papers, 3) plastic bags with fastener

2. Procedures

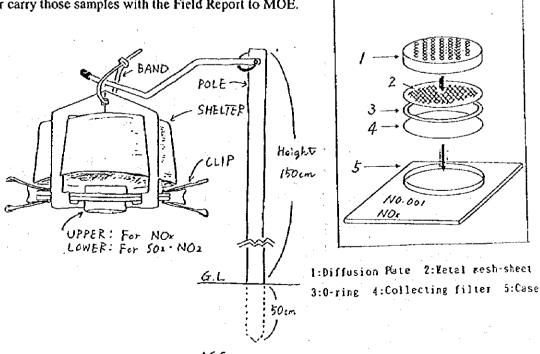
- 2-1 Measure and record the contents (in the order of a deci-liter) in a Receiver, and filter it with a filter paper of known weight.
- 2-2 The filter with deposit shall be dried, and weighed. Record the weight of the dried deposit. Put the dried filter with deposit in a sealed plastic bag.
- 2-3 If the solution is more than 2 liters, collect 2 liters from the solution into a plastic bottle with a cap.
- 2-4 Send the filter and the 2 liter solution to MOE with the Field Report.

Operation Procedure of Passive Sampler

Tools Required 1) Shovel

2. Field Work Preparation

- 2-1 Put one kind of Collecting Filter in one Passive Sampler Case as shown below. The other kind of the Filter should be put in the other Sampler Case and clip the both cases. One is for SO2 and NO2, the other one is for NOx.
- 2-2 In order to distinguish between cases, mark serial number on the cases, and (SO₂ and NO₂) or (NOx).
- 2-3 Dig a hole about 50 cm depth and set a pole, if there is nothing to hang a sampler.
- 2-4 Set a Shelter and Sampler as shown below.
- 2-5 Record on the log sheet the number, (SO₂ and NO₂) or (NOx) on the plastic bag of the case, and starting time, date, month, and year.
- 2-6 Make comments on the unusual surround circumstances on the log sheet.


Withdrawal

- 3-1 Record on the log sheet and the bag the time when it is finished.
- 3-2 Make comments on the unusual surround circumstances on the Field Report (log sheet).
- 3-3 Withdraw the cases with samplers and put these in the bag.

4. Safe Keeping

4-1 Keep the samples in the cool and dark place.

4-2 Send or carry those samples with the Field Report to MOE.

Appendix 6~2

Data Collection Procedure for Air Monitoring Stations (6 stations) and <u>Meteorological Observation Stations (2 stations)</u>

1. Down Loading of Logged Data to Hard Disk (HDD) of Computer in Station

Person in charge: Experts of each Power Plant

Time

; Once a week

Action

: Data has to be transferred to HDD from a logger.

2. Collection and Dispatch of Floppy Disks and Charts

Person in charge: Experts of each Power Plant

Time

: After the time of maintenance at the beginning of every month,

data has to be transferred to floppy disks once a month.

Action

: a. Copy the data from HDD at each station to floppy disks in Text file, by choosing EXPORT from the File Pulldown Menu of the computer.

Collect the disks afterward.

b. Collect charts.

c. Send the collected floppy disks and the charts to MOE.

3. Data Screening

Person in charge: Counterparts of MOE

Time

: On or around 10th of every month

Action

: a. Load the data from floppy disks to DRAPS system.

- b. Print out data from the collected floppy disks from each station.
- c. Check and verify the data with the charts; reasons of no measurement, agreement of times on charts and floppy data, time of changes from/to DST to/from the Standard, etc.
- d. Verify extraordinary data as the data collected at the time of no measurement or else and delete the data from the floppy disks. This is Screening.
- e. All the collected data from 8 stations are to be put together or compile one or two floppy disks.
- f. Print out the data from the above mentioned floppy disk after the screening.
- g. Copy the floppy disks to fresh ones.

4. Dispatch for Screened Floppy Disks and Data to JICA

Persons in charge: Counterparts of MOE

Time

: On or around 15th of every month

Action

: Dispatch the copied floppy disks to the JICA Team.

Maintenance & Check Lists for Automatic Ambient Air Measuring Instrumennt

Place:		Name	of Monitoring	Station:	
Month:	Date:				
	Replacement of				
The body	Filter				
of	Check of				
Instrument	Sucked Flow				
	Volume				
	Others				
Standard	Remaining Gas	-			
Gas	Pressure				
Gas Gen-	Replacement of				
erator	Silica gel				
Logger	Record Logged	·			
	data into Flop-		,		
	py Disk				
	Others				
Recorder	Check of Date				
	and Time				
	Replacement of	•			
	Ink ribbon cas-				
	sette				
}	Replacement of				
	Chart				
	Coefficient Of				
	Span Adjust-				
	ment Value				
	Others			<u></u>	<u> </u>

Note: Replacement of Filter to be every 2 weeks or depend on the dirtiness of the Filter

- ; Gas Pressure to be 150 kg/cm3 at the biginning
- : Silica gel to be replaced with a new one when it turns pink color
- : Replacement of Floppy disk and Chart to be every one month
- : Coefficient of Span Adjustment Value to be confirmed

Records for Measurement not to be carried out due to some reasons Name of Monitoring Station: Place: Month: Remarks Time of Mea- Time of Mea- Reasons of Measurement not to be able item surement surement not to carried out carried out carried out SO : NO NO 2 WD WS Month: Remarks Time of Mea- Time of Mea- Reasons of Measurement not to be able Item surement surement not to carried out carried out carried out SO₂ NO NO 2 WD WS Month: Remarks Time of Mea- Time of Mea-Reasons of Measurement not to be able item surement not to carried out surement carried out carried out SO₂ NO NO 2 WD WS Month: Remarks Reasons of Measurement not to be able Time of Meaitem Time of Measurement not to carried out surement carried out carried out SO₂ NO

Examples: A: Adjustment B: Automatic Adjustment C: Power Failure D: Equipment or Instruments Breakdown E: Inappropriate Instruction F: Obstructing Gas G: Equipment or Instruments change H: Logger breakdown I: Chart Failure J: Leak K: Lowering Zero L: Others

NO 2 WD WS

Maintenance & Check Lists for Meteorology Meter

Place: Name of Monitoring Station: Month: Date: Confirmation of appearance Clean up the glass dome(S.R) Check color of silica gel (S.R) Check poly dome (N.R) Drain off dehumidifier (N.R) The body Clean up filter of and leak nozzle Instrument (N.R) Confirmation of normal movement of fan (S.R.N.R) Confirmation of ventilation (Temp.) Record Logged Logger data into Floppy Disk Others Recorder Check of Date and Time Replacement of pens (for Wind direction & speed) Fill up ink in pens(for others) Replacement of

Note: S.R = Solar Radiation Meter N.R = Net Radiation Meter

Chart

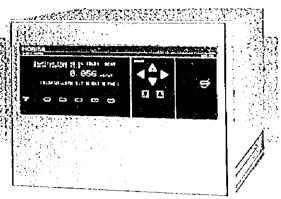
Note: Replacement of Poly dome should be done when it is found deformation or etc.

: Silica gel is to be replaced with a new one when it turns pink color

: Withdrawal of Floppy disk and Chart is to be done in every one month

Records for Measurement not to be carried out due to some reasons Place: Name of Monitoring Station: Month: ltem Time of Mea- Time of Mea- Reasons of Measurement not to be able Remarks s u r e m e n t surement not to carried out carried out carried out WD WS TEMP SR NR Month: Item Remarks Time of Mea-Time of Mea-Reasons of Measurement not to be able surement not to carried out carried out carried out WD WS TEMP SR NR Month: Item Remarks Time of Mea- Time of Mea- Reasons of Measurement not to be able surement not to carried out carried out carried out WD WS TEMP SR NR Month: Remarks Item Time of Mea- Time of Mea- Reasons of Measurement not to be able sur em ent surement not to carried out carried out carried out WD WS **TEMP** SR NR

Examples of Reasons of Measurement not to be able to carried out: A: Adjustment B: Power Failure C: Equipment or Instruments Breakdown D: Inappropriate Instruction E: Equipment or Instruments change F: Logger breakdown G: Chart Failure H: Lowering Zero 1: Others


	(ne/m3)			l	ı	9	1.	Ш	9000	ı		ı	ı						2000		0.503	l				ł	\$50.0	╛	1	77.0	T					-	ļ	ı	2070	Ĭ	ı	ı	0 0	ı			1	Ţ	I	
	5	2.560	16,370	Ц	j	┙			0000	↓	3 8	1							068 1	L							Ц	┙	1	2					1	_1_		1	26.5	1	2300		3,339		1	T	962.1		1	
	cono 1 (ue/m3)	000		1	- 1	- 1	٠ ١	1	2000	ı	1								9000	ı			1		П		0000		-	0.00					ı				1	0000	1	ŀ	ı		L	1	000			
	a ,	14	1.013	0.914	0,605	0.563	0.520	0.076	0.002	2000	000:	0.102	7 1.0						201.00	L	L	1,056			8200	0.014	101.0	0.132	6600	0.136					l	_1			1	975	L			İ		⅃	0.12			
	0000		1	ı		1	9000	- 1	ı	1	П	ı	7000						9000				ļ		ı	- 1	000		1							١		ı	1	1000	1	ı	ı	1		8	١			
	Ž.	0.248	0.079	9600	0,119	0000	0000	0013	0000	100	7 K	0.012	0.0222						0.101	0123	0137	0 087	7110	0.119	0.014	900.0	0000	2010	0.010	0025						ı	600			8	1	1	1	ı	_1	0018	_			
	0000	900	0000	0,001	9000	0.006	0000	000	000	000	0010	000	000						9000	2000	8	0000	0000	9000	0.001	000	1000	0000	000	000	Ì						1	-	1	88	ı	1	ļ		000		8			
		10,70	0.169	0.015	0.168	0.194	0.179	0014	0.013	0.012	0.103	0.017	0.0112						15.0	1	0.155	0149	0.157	0.162	0.012	0.017		0.011	Ш	0.028							1		┙	0.35	1	0012	4	Ц			601			
		(CM/M)		1	ı	Ш	1			-	ı		8	L			\$ 50 E			L.	28	L.	١.		Ľ	808		10.60	1	- 1	1		T.	23.39		2727		38.60	1.	٠ ا	1	2 2 8	- 1		69.84	٠,		8	- 1	4172
	SPM (ug)	1	1	25300	L	23700			48000	┛	Ш		25200	80,68	П	ា	23000	1	0000	3 8	2018	Ŀ	8180	1_	40000	L	Ŀ	3100	L		1	21300	Ļ	1300		ш	:	4	-	11800	l	_	32800	Ŀ	Ц			39400		16300
	volume	(E)	910000	685.072	729.991	806.474	614,115		649.850			637.267	683.400	719,495	8 8 8	343.910	505 513	200	1000	140,002	57.75	72.078	741 407	47.67.63	761 231	712275		1.	663,358				1	739.691		359,305			1		_		785.845		_		L	L.	620.882	345175
	volume	(M3)	755.77	747.748	810565	911.311	705.995	895.577	785,322	812.610	324,331	745.112	758.831	872.071	733.178	416.840	612 712	90,770		2003.182	25.000	916.058	27.78	217 228	919 922	197.038	826.129	342.013	775.618	809.508	866,790	790.905	433.189	928.230		384.866	301.578	723 438	799 308	562,366	717.574	784 442	949 667	821 778	371 654	809.928	801.384	846.304	752.546	418378
	perioc	(ME)	7775	37225	41815	46165	35.805	48035	40080	41620	17305	38775	38985	43220	37370	21660	30215	47030		ONE.	73.4	20000	46063	258.0	46080	41990	41485	17385	37345	40360	41730	37385	21675	47015		20215	14240	37260	41800	. 46295	35995	42900	43175	39915	19150	39860	38845	40515	37355	21890
٠	£,	1	1	L	9		ı		650			620		ď.	1	Ţ	8	1		ı	1	П	L	i	1		9	1	ı			_[-		J	1	999		:	1		:	5 650	[L	•	ı	10 650	li	ŀ
	L	temp	\perp	1	Ĺ	L	Ļ	L	35		L	-	٠٠	ì	Ŀ		2	4	İ	ō	1		1	1		L	:	L			Ц	╽	1	200		L			Ŀ		Ĺ	L	Ĺ	L	L	:	L	Ц	Ц	L
·.	ampling finish		1998/2/14 12:45	00-01-07-0001	1009/4/2011:10	1999/5/31 12:40		1998/7/28 18:15	1998/8/26 14:20		1998/11/2 10:15	1998/11/30 8:35	1998/12/27 10:28		1999/2/22 9:45	1999/3/9 10:50	1999/3/31 10:30	1999/5/2 1625		1998/2/14 17:15	1998/3/4 13.13		07/01/82/19/0001		70/1/20 10:00 L		398/8/70 130	1998/11/2 12:40		1998/12/27 11:5	1999/1/26 11:30		1999/3/9 12:00	1999/5/2 17:30		1998/2/21 16:40		1898/3/31	1998/4/29	1868/5/31	1998/6/26	1998/7/27	1998/8/27 11-00	1998/10/20 10:3	1998/11/2 17:5	1998/12/1 10:1		1999/1/26 13:05	1999/2/22 11:45	02-61 0/2/0001
:	Samping start	┪	-1	1998/2/23 11:30	1930/3/4/5/33	╀	-	1999/6/26 9-40	1	1	1-	ŀ	-	-	1999/1/26 10:55	Н	1999/3/9 10:55	4	ł	-	C421/1/2/R661	1998/3/4 13:25	1998/3/31 11:00	-1-	1998/3/31 15/6/	-	1898///28 11:10	+.	_	₽-	_			1999/3/9 1205		1998/2/7 15:45	1998/2/21 16:50	1998/3/4 14:15	1998/3/31 11:45	Oarsmalek 1998/4/29 12:30	1998/5/31 16:15	Qeramalek 1998/6/26 16:15	Garamalek 1998/7/27 11:25	Oaramalek 1998/9/21 17:20	Garamalek 1998/10/20 10:40	1998/11/2 17:55	Oaramalek 1998/12/110:20	Caramatek 1998/12/29 9:50	Caramalek 1999/1/26 13:10	1999/7/27 11:50
N)	Sampling	location	-1	-		Demarks	1-	Hermon	ŧ-	+-	•		-	Т		•		Baranloo	1	7	-+	-	+	+	T	7	+	╁	1	1				Mayer		Oncamalah		Oeremalek	Ogramelek	Oaremalek	Oersmalek	Ceremalek	Caramalek	Oaramalak	Oeremelek	Ogramatek	Caramalak	Caramatek	Oaramalek	Ceromolek
Tabriz	Sample	No.	TS-1	Ç.	<u> </u>	2	7.77	G	67		T-76	T-79	T-88	7-100	T-103	1-106	T-109	7-112		TS-3	ř	7	-14				ρ 	ê P	0,0	8	T-102	T-105	T-108	1		70	۴	13	1		7-36		<u></u>	i i	1	Ş	6 8 -	T-101	1-104	1-107

Esfahan	un			İ	- }				7,740	200	;		- 2	9	- q	Suga	- 5	Sono
Sample	Sampling	Start	Sempling finish	9.4	ath F	period (min)	volone (EE3)	volume S (25 1atm)	SPM (kg)	(SE/M3)	(a/an)	(0 p/m3)	(2/2/2)	(ng/m3)	7,	(nr/m3)	`,†	(ne/m3)
No.	Control	00-11-0/0/0001	1008/9/23 19:35	+-	L	21695	8	377.697	_	28.06	0.211	9000	0 023	0000	260	0 0 0 0	0960	7750
1 0 U	Colsnan	1998/2/23 12:40	a co	2	930	43060	867.639	757,349	33700	44.50	0 192	6000	0,150	200	4 168		0/4/	1185
200	Colebahy	1998/3/26 10:20	[50	15	630	43475	864 398	741.935	33200	45.15	0.120	5000	0.187	9000	3646		15.030	0824
515-5	Golehah	1998/4/25 16:45		20	630	41645		671.221	36800	2. E	0.142	0000	0.20	2100	2 7601	2/00	22.750	0.630
	Goishahr		1998/6/27 15:10	30	630	i t	1400,734	1141.974	31600	27.57	0.130	0000	2020	5000	i c	0072	0417	0000
F-545	Golshahr		1998/7/30 9:20	35	93 93 93		756.000	606.337	30,0	143.46	2 6	2000	0012	0000	0 736	0115	0.542	0.085
E-543	Goishahr		1998/9/7 16:00	32	630	55120	728.000	284,780	300	8 8	0100	000	0010	1000	0330	0.038	0.687	0.067
E~553	Golshahr		1998/9/27 11:00	S	93	28:460	200	100,100	2000		0	600	0.00	0000	0360	0.046	0.625	0,072
E-562	Gotshahr		1998/10/21 9:00	8	88	3000	32,370	2000.431	2000		Ę	٤	7100	0000	0.422	9000	0.711	0.010
E-565	Gotshahr	1998/10/21 9:00	1998/11/22 15:00	ह्य	8	07497	801 DS	13.030		76.37	600	0000	7100	0000	0.470	0000	0.820	0.013
E-574		1998/11/22 15:00	1998/12/20	33	8	2000	92.626	060.047	71	0. 30 0. 30	2000	0000	0017	6000	0.452	650.0	0.798	0000
E-583	Golshahr	1998/12/26 15:00	-	32	930	24180	484 635	388.694	30,53	2 60	770	***						П
E-602	Golshahr	1999/1/13 10:00	1999/1/31 12:35	흐	630		488,108	390.318	30.02	200.0	t	†		T				
6-592	Golshahr	1999/1/31 12:35		20	630		843.028	651.124	05.25	A A	T	†	†	T		-		
1001	Colshehr		~	ટ્ર	23	7305	983.836	759.879	3		T	1	T	T	-	<u> </u>	-	
E-610	Goishahr		1989/5/10 14:00	22	စ္တ	- 1	87.480 0.480	050,504	777	62.74								
											0000	0.000	0000	1000	1 520	0000	1,380	0.042
6-83 3-83	Xeveh	1998/2/8 12:30	1998/2/23 16:10	10	630	21820	465.657	406,465	12400	COS	800	000	2777	200	2877	2000	7 180	0.411
, S.	X	1998/2/23 11:50	1998/3/26 12:15	10	630	44665	834.495	728.418	42200	27.93	CC .	2000	2 5		1926		26.240	188
1	Kaveh	1998/2/26 12:15	1998/4/25 15:40	15	630	39085	848.552	762.138	42400	35.63	0.183	0000	2 0	3 6	377.6	5	٠ 	0860
F-521	Kavah	1998/4/25 15:40	1998/5/25 14:00	20	630	ı	821.828	692.878	4300	8	3			200	2000	1500	28150	0.619
FLK3K	Keveh	1998/5/25 14:00	1998/6/27 0:00	30	630	- 1	065.290	868.497	318	\$			7	1	2010	0	0.195	0016
1	Keresh		1998/7/30 11:30	35	630	47030	740,000	593.505	89,700	2 2	0 107	0.014	è è	3	722.0	200	8,60	0033
2.44	Kayah		1998/9/7 11:00	32	630		720,000	577.464	96600	149.97	0013	2000	700	3	2000	200	0.807	0800
2	4		1998/9/27 14:30	35	630	29010	650,281	52.547	51800	- 89.32	0010	2000	0.010	7000	20.0	200	0 833	0.088
2663	Kavek	П	1998/10/21 11:00	35	630	32910	701.343	562 501	29500	105.78	000	2000	0100	300			800	9100
9	X	_		35	630	46545	984.900	789.923	12550	2.89	0.00	0000	2			2	6780	8100
5-676	Yeveh	1998/11/92 17-45	1998/12/	35	630	48735	018.560	816.919	15950	19.52		8		3 8			2000	2800
584	Kavah	1998/12/26 14:00	1	35	630	24420	570,380	457.464	8 8	32	600	7000	500	3	7780	200		
3	Yes,	1999/1/13 13:00	1999/1/	01	630	24385	541.145	432.730	31500	22.73	1	1		1	T	T	İ	Ī
E-103	Kayah	1999/1/31 11:25	1999/3/3 8:45	22	630	43040	295.234	228.028	3220	141.21	1	1	Ì		1	T	ľ	T
5503	Caveh	1999/3/3 8:45	1999/4/8 11:15	2	930	7350	440,158	339 962	15800	46.48		1	1	1	1	t	l	Ī
	Keveh	1999/4/8 11:15	1999/5/10 14:50	25	630	46295	660.078	501.266	30200	62.00				1				
	 - -								Ī				0000	1000	1036	0000	1610	O COR
58.2	Shamati	1998/2/8 15:20	1998/2/23 10 50	0.	630	19890	457.498	399.343	0069	1,28	C\$(0	300	7500	3 8	035		6.5	0.0
. 63	Shariet			01	630	44 769	894.157	780.496		3	5	1000	3		9	2000	0990	0.520
5-510	Shariati		1998/4/25 16:45	15	စ္တ	43420	836273	12.73	3			200	2000	0,000	400	0110	0121	0.665
E-520	Sharrati		Ц	౭	8	41660	23.72	533.808	0000	2 2		3	Ş	Š	5 827	0.105	8.750	0.158
E-536	Shariati		ı		8	47765	103	685.214	1000	18.0	200	200	0011	1000	0.248	1200	0.165	2100
E-542	Shanati	1998/6/27 17:25	1998/7/30 11:00	ļ	830	47135	747,000	S11860	20000	6690		3 8	200	É	0 756	8/00	0.192	0.020
F-545	Shariati	00:11:08/2/8661		Ì	630	10020	726000	282.776	0000	2	3 6	8	Š	8	0412	0038	336	0.112
F-555	Sharraft	1998/9/7 10:00	1998/9/27 12:00		630	28920	551.095	441.997	3/300	57.40	777	3000	1		1000	1500	1.285	0.158
3	tar.	₽			630	32960	591,820	474.659	8	24.5	3	3				-56	1 207	8.0
5-567	Sharat	_			630	46410	826.557	662.926	8 8 8	12882	0200	5000	8000	3 8	Ę	200	1620	0000
36.5	Change		_		630	48780	871.102	698 653	<u>Ş</u>	S	200	000	200		03.	2600	1 557	0.133
0/0-1	Charles	1 1008/12/26 13:00	-		930	24465	461,366	370.031	2018 818	38	0.212	0017	0.028	200	6000	***	, CO.) ·
200	Shariet	-	1999/1/31 1015		630	24330	453,700	362 904	22100	1609	1	1		1	†	T	t	Ī
200	Charact	+	-	L	630	44985	653,755	504 937	25000	49.51		1	1	1	1	†	\dagger	Ī
1 S	Sharret	-	1999/4/	8	630	5430	794.824	613.893	10900	17.76		1	1	Ţ	1	†	T	T
	Sheriet	1999/4/8 10:35	1999/5/10 15:30	52	630	46375	707.653	537,395	21500	40.01		1		1	1	1		
7(0)	Charter	-к			١			į.	ļ		İ							

A6-12

APDA-360

Features

The APDA-360 Ambient Particulate Monitor uses beta-ray absorption to show the mass of air suspended particles under 10 um in size.

The system has two basic units: the analyzer and the pump. A separate sample intake connects directly to the analyzer. Oversize particles are filtered out by impactor or cyclone filtration.

. Ambient air is pumped in at a constant flow rate for a predetermined time. A glass-fiber filter tape collects the air-suspended particles.

The beta source is sealed carbon-14, under 100 microcuries. No special license is required to use the system.

The plastic-scintillator detector gives long-term operation at low maintenance cost.

Principle

Beta ray absorption

Absorption of beta rays passing through matter depends upon the mass of the matter. Sample at a constant flow rate is passed through the monitor during the measurement cycle and the particulates are captured at a spot on the tape. The intensity of the beta rays after they have passed through the particulates on the tape is measured by a plastic scintiflator. The tape background is also measured for each cycle. These data are processed by an integral microprocessor to give the concentration of particulates in the ambient air. The flow regulator keeps the sample flow constant. (The tape may be used for one full

month.)

Specifications

Principle: Beta ray absorption Application: Suspended particulate matter (SPM) in ambient air (up to 10 μ m) Range: 0-0.25/0.5/1.0/5.0 mg/m³ Measurement cycle: 30 min/1/3/12/24 h.

switch selectable

Accuracy (60-minute measurement): $\pm 10 \mu g/m^3$ or $\pm 10\%$ of reading.

whichever is greater

Beta source: Sealed 14C, 100 uCi or less

Detector: Plastic scintillator

Sample tape: Rolled glass fiber, 21 m/roll Sample flow: 16.7 9/min, regulated

Data display: Time, flowrate and mg/m2.

switch selectable

Printer: Separate unit (optional)

Indication: Measured value, range, alarm, maintenance screen

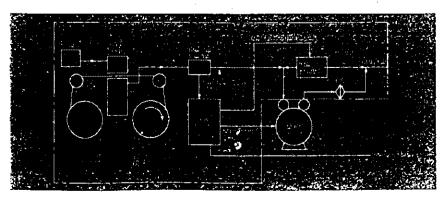
Alarms: Out-of-paper error, count error,

flow-rate error, etc.

On-screen messages are available in four languages: English, German, French, and Japanese.

Input/output:

+ 0-1 V/0-10 V/4-20mA


· Contact input/output

Ambient temperature: 0-40°C Power: 100/115/230 VAC, 50/60 Hz

(to be specified)

Dimensions: 430 w × 310 h × 400 d mm

16.9 w × 12.2 h × 15.8 d in Weight: Approx. 19 kg, 42 los

Settled Dust Data Sheet

Appendix 6-6

Result of bag sampling at Qaemieh

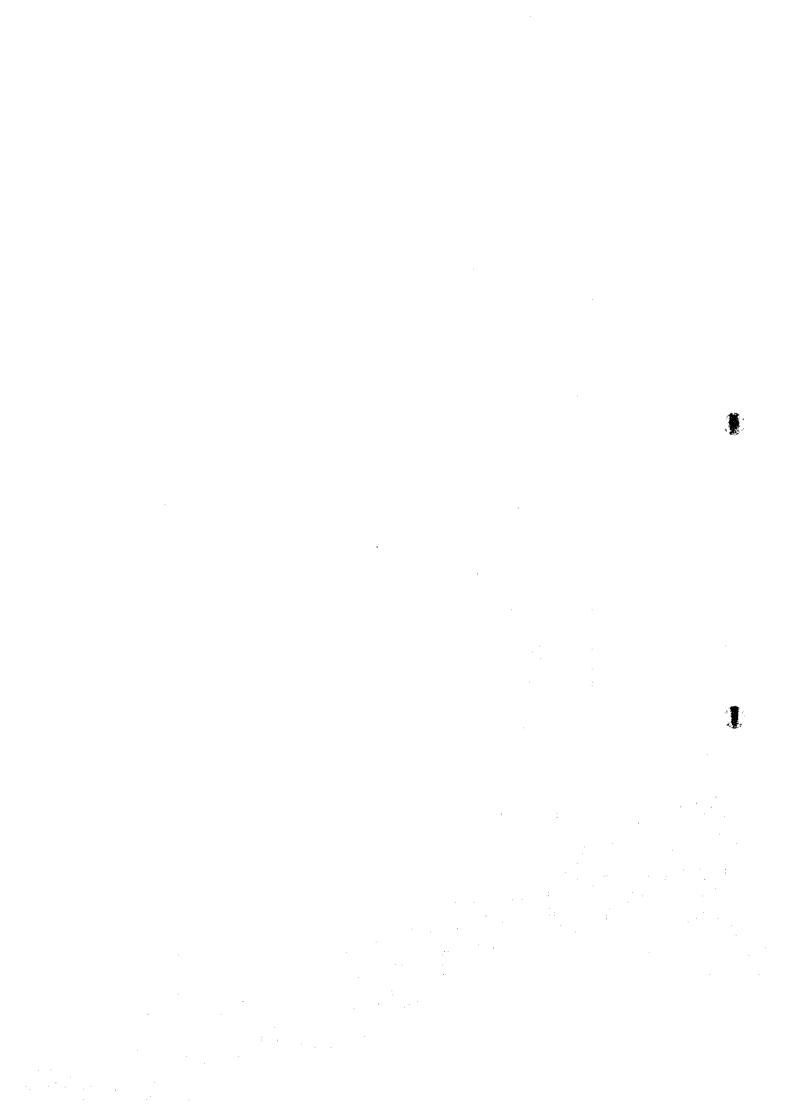
(summer,1998)

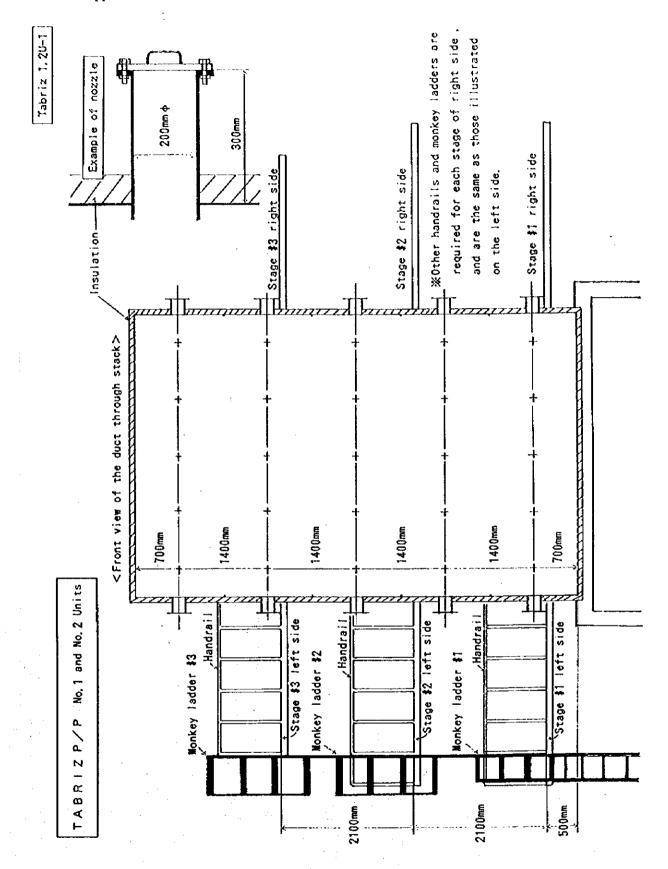
Date	Time	SO2	NO	NO2	NOx	WD	WS .	Temp.
		(ppm)	(ppm)	(ppm)	(ppm)		(m/s)	(°C)
6/30	15	0.0009	0.0000	0.0047	0.0047	Е	3.0	35
	16	0.0007	0.0000	0.0039	0.0039	ESE	3.6	35
	17	0.0006	0.0000	0.0032	0.0032	Е	3.7	35
	18	0.0006	0.0000	0.0043	0.0043	ESE	3.6	34
	19	0.0006	0.0000	0.0061	0.0061	ESE	4.0	33
	20※	0.0007	0.0002	0.0086	0.0090	ESE	4.6	32
	21※	0.0007	0.0004	0.0134	0.0138	ESE	3.9	31
	22※	0.0009	0.0000	0.0104	0.0105	ESE	4.6	30
	23	0.0006	0.0000	0.0132	0.0132	ESE	4.9	30
	24	0.0003	0.0005	0.0029	0.0034	ESE	5.2	29
7/1	1	0.0003	0.0004	0.0017	0.0021	ESE	3.4	28
	2	0.0001	0.0005	0.0021	0.0026	ESE	3.0	28
	3	0.0002	0.0000	0.0018	0.0018	WSW	1.4	23
	4	0.0004	0.0001	0.0025	0.0026	SW	1.0	19
	5	0.0003	0.0004	0.0025	0.0029	NNW	1.6	19
	6	0.0003	0.0009	0.0044	0.0052	N	1.0	19
	7.	0.0002	0.0000	0.0044	0.0044	WSW	0.4	20
	8	0.0016	0.0020	0.0148	0.0169	SW	1.5	24
	9	0.0021	0.0021	0.0157	0.0178	WNW	2.5	26
	10	0.0008	0.0008	0.0087	0.0095	W	1.6	29
	11	0.0005	0.0002	0.0066	0.0068	WNW	2.4	30
	12	0.0023	0.0003	0.0075	0.0078	NW	1.5	31
	13	0.0032	0.0004	0.0146	0.0150	NW	1.9	33
	14	0.0058	0.0004	0.0124	0.0128	NW	1.6	34

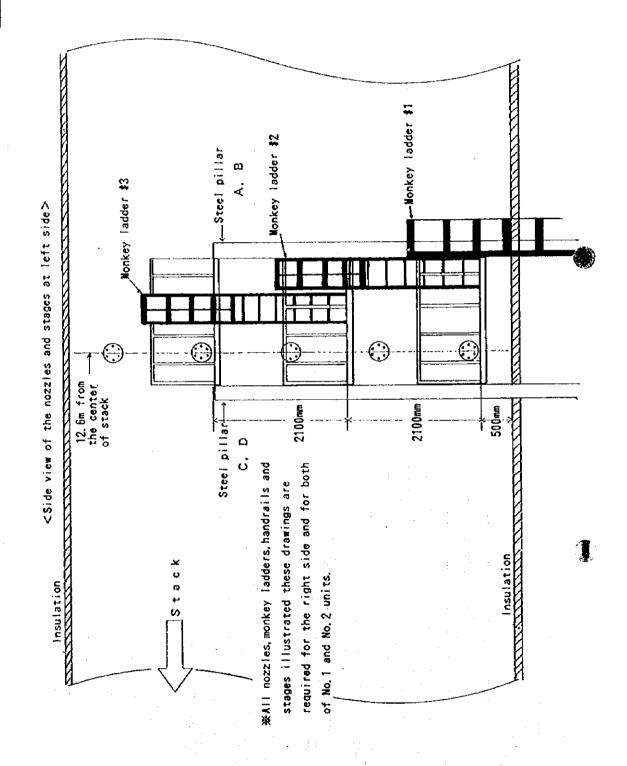
^{*} samples collected down the hill (behind the school) where more down-wash takes place.

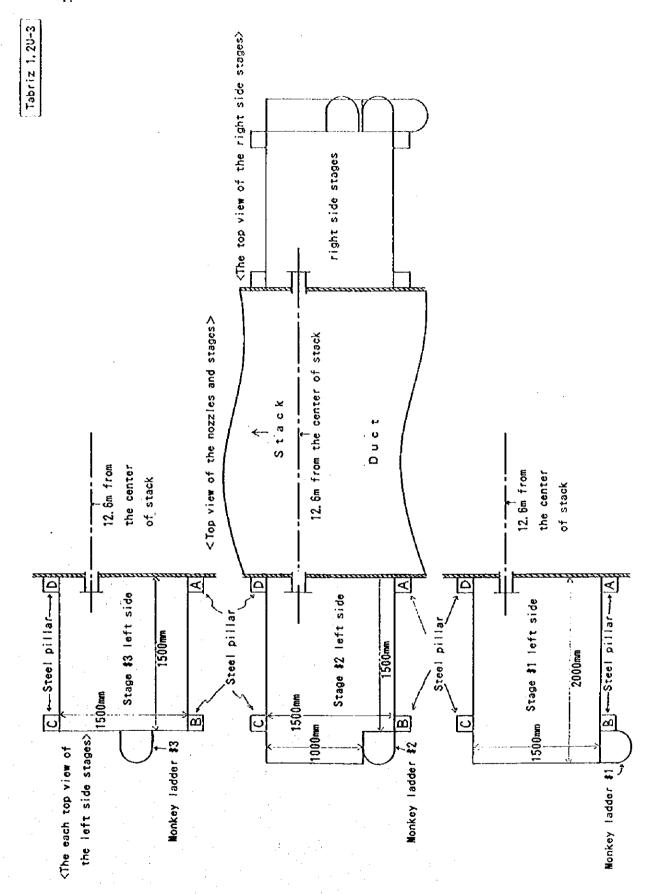
All other samples are collected within 1000m down the school (almost center of village).

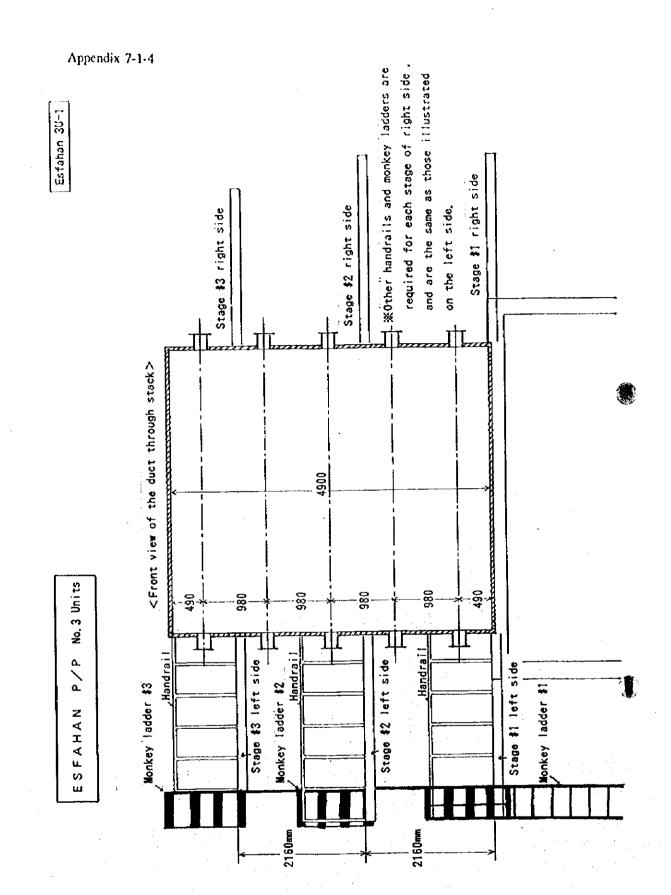
WD: Wind Direction

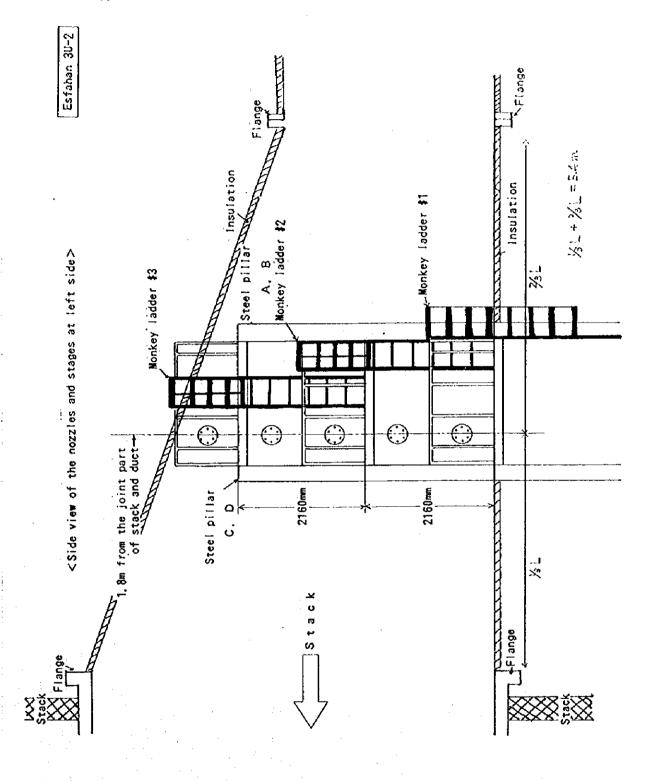

WS: Wind Speed

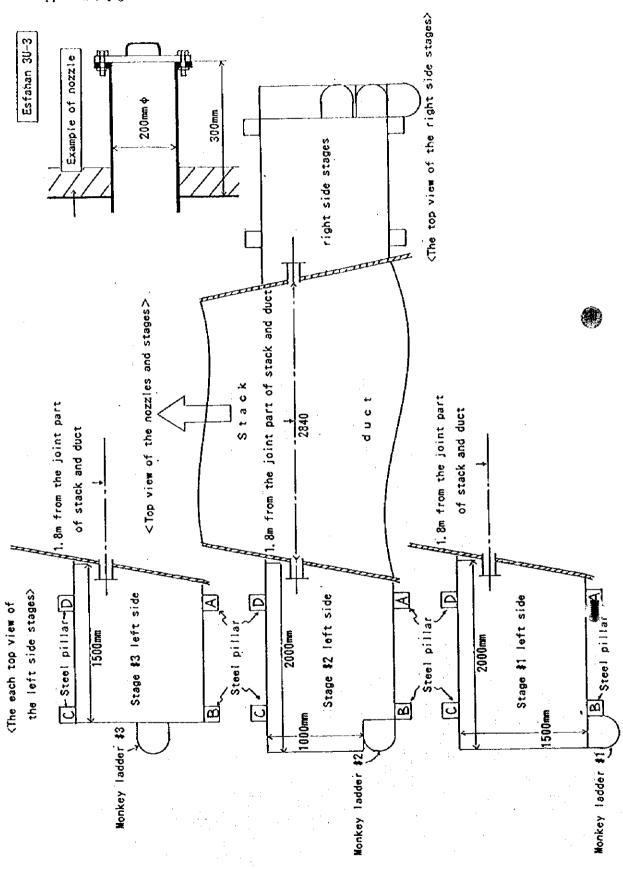

TEP.: Temperature

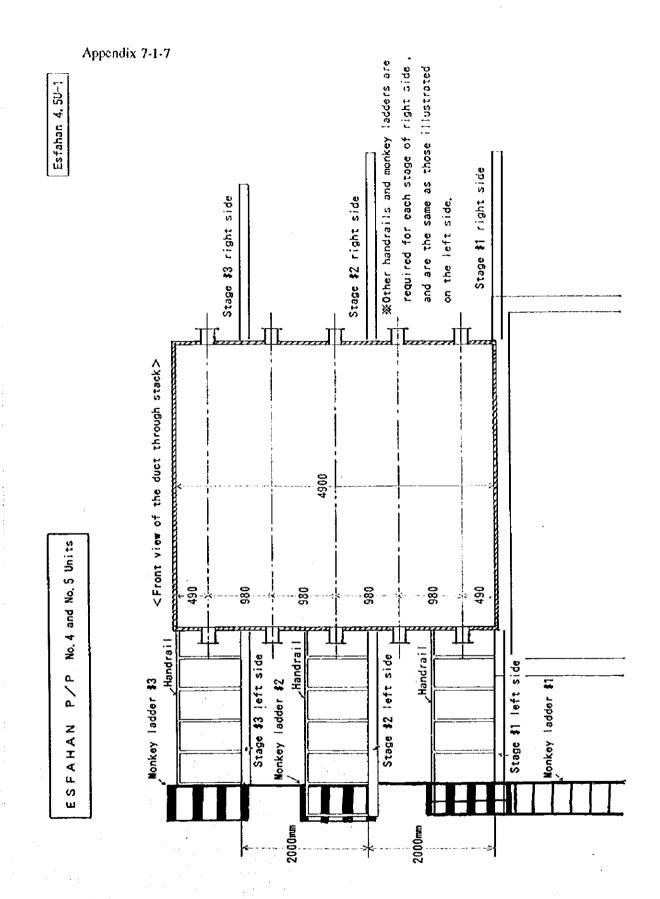

Result of bag sampling at Qaemich

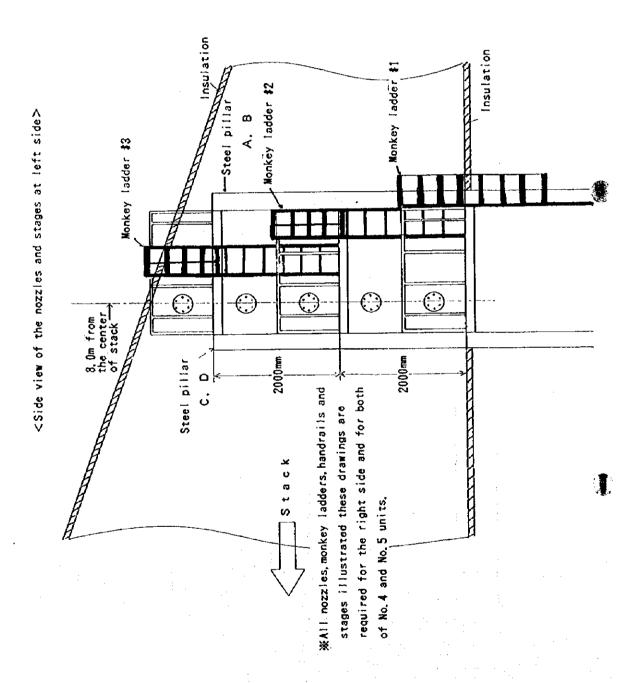

(winter,1999)

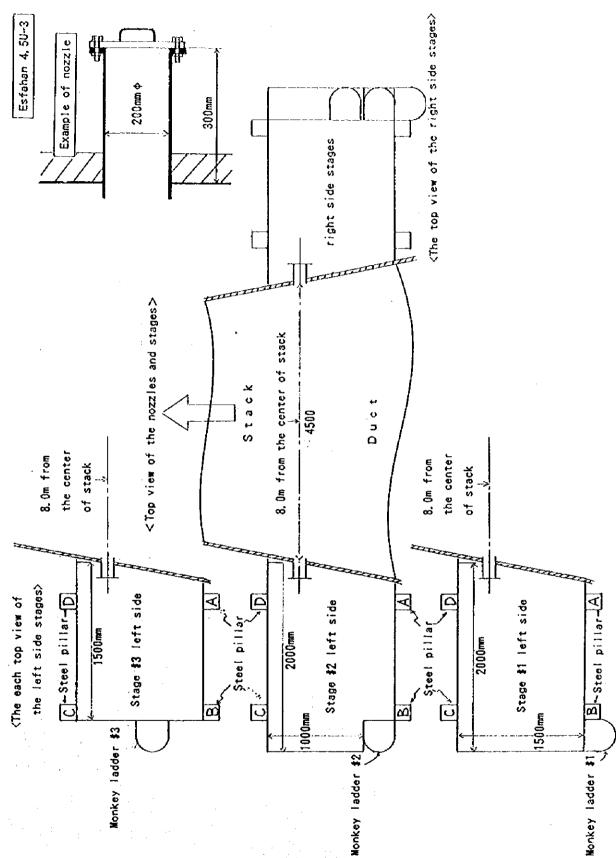

Date	Time	SO2	NO	NO2	NOx	wd	ws	Temp.
		(ppm)	(ppm)	(ppm)	(ppm)		(m/s)	(\mathcal{C})
1/25	15	0.0050	0.0003	0.0151	0.0154	N	3.3	4.6
	16	0.0040	0.0004	0.0180	0.0183	N	3.5	4.3
	17	0.0041	0.0003	0.0262	0.0267	N	3.1	3.7
	18	0.0044	0.0064	0.0356	0.0421	NNE	3.5	2.6
	19	0.0028	0.0012	0.0328	0.0340	NNE	3.8	2.2
	20	0.0045	0.0314	0.0349	0.0661	NNE	3.6	2.1
	21	0.0033	0.0170	0.0311	0.0329	N	2.9	1.5
	22	0.0058	0.0080	0.0360	0.0440	NNE	2.9	1.4
	23	0.0024	0.0040	0.0279	0.0320	S	1.4	1.3
	24	0.0031	0.0152	0.0253	0.0406	NNW	0.7	1.0
1/26	1	0.0046	0.0023	0.0302	0.0324	NNE	1.0	1.5
	2	0.0047	0.0017	0.0291	0.0308	N	1.4	0.7
	3	0.0040	0.0013	0.0274	0.0287	N	1.8	0.3
	4	0.0032	0.0013	0.0264	0.0275	NNE	3.2	0.1
	5	0.0039	0.0036	0.0321	0.0357	NNE	3.3	0.0
	6	0.0011	0.0111	0.0138	0.0249	N	2.5	0.1
	7	0.0011	0.0038	0.0187	0.0225	W	0.5	-0.1
	8	0.0021	0.0052	0.0313	0.0365	WNW	0.75	-1.0
	9	0.0023	0.0026	0.0217	0.0243	sw	0.7	-0.6
	10	0.0030	0.0042	0.0275	0.0315	WSW	1.6	2.2
	11	0.0041	0.0020	0.0210	0.0227	SSW	1.6	3.5
	12	0.0018	0.0010	0.0161	0.0169	WNW	2.0	4.0
	13	0.0018	0.0055	0.0250	0.0306	W	2.9	5.0
	14	0.0017	0.0014	0.0162	0.0175	NW	3.0	6.2

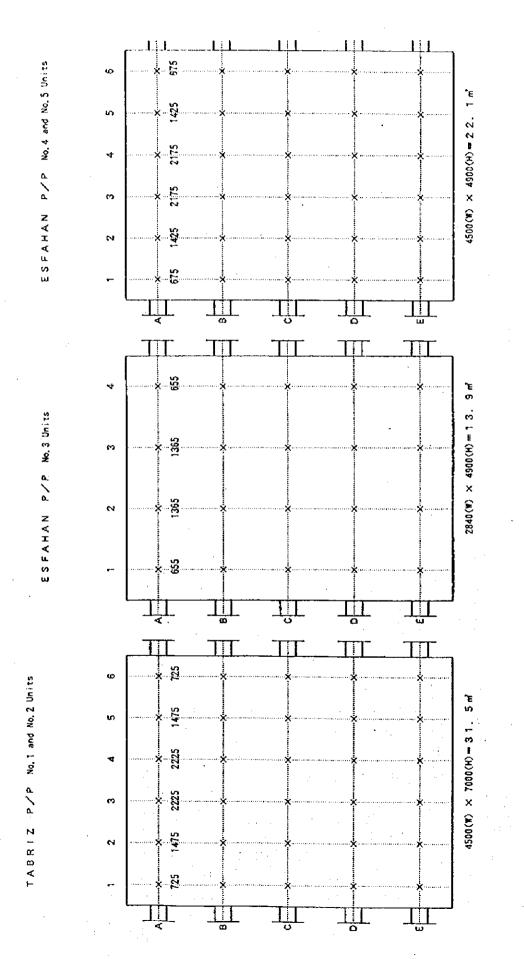


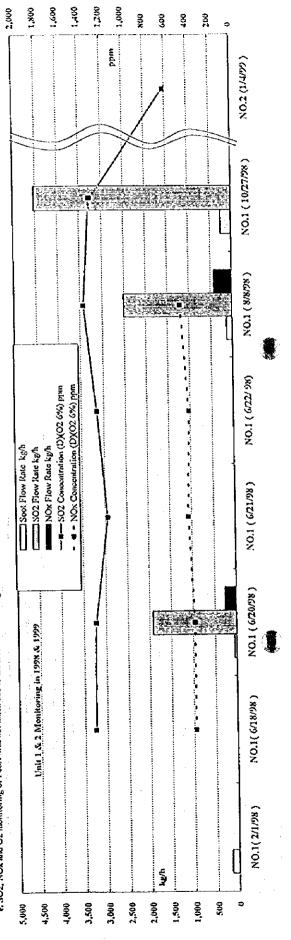









the center of stack-



Stack Gas Monitoring Process Model

Time sample	9:00 а.т.	10:00 a.m	11:00 а.т.	12:00 p.m.	13:00 p.m.	14:00 p.m.	14:00 p.m. 15:00 p.m.	16:00 p.m.	17:00 p.m.	Remarks
Preparation. Installation and Withdrawal of Apparatus	Record Today's Atmospheric Pressure	Transport Apparatus to a				-		Withdrawal of monitoring		
:		monitoring					:	Apparatus		
		allation of		Take an Average Dynamic		,				
Velocity Distribution	: 41	Apparatus	Monitoring	Pressure					Calculation	
Monitoring				Representa- tive Point Calculation					or Velocity	
	Weigh Moisture			Nozzle	Weigh			·		Leave the nozzle in the representative
Water Content	absorption	<u>]</u>		Pre-Heating	absorption					point for SO2, NOx
Monitoring		Installation			tube	7				& Oz mointoring to
	(Pre-Collection)	of Apparatise		Monitoring	Post-Colletion	Calculation				velocity monitoring
		Commandation of the Comman		& Collection						
										Filters are to be
				•••		Installation,				weighed alter
Soot Collection						Equal velo-				for 30 minutes and
·.						tion, Pump				keeping in desiceator
		•••								for 10 minutes
						Nozzle	Monitoring	•••		perofe and and an
			* * * *			Pre-		••••		Smiomoni
						neating;				
•						Warming up	•••			
SOz, NOx .02 Monitoring						Span & Zero				
•						Calibration		T	•••	
	 -						Monitoring			

Search Cas Maniforning Results for Unit 1 & 2 at Tabriz Power Plant	nitorria	a Results fo	r Unit 1 &	2 at Tabriz	Power Plan	1			
TOTAL STREET		4			Unit 1 (350)		!		Unit 2 (350)
ריאון (אשהיו ביששהווא : יאואה)		1.5	1 10 CC 30 10 10 10 10 10 10 10 10 10 10 10 10 10	VOV 0.00 A.m. 3	10. 1C		AUX. 8 9X	Oct. 27 '98	Jan. J. 199
Date		1.00.1 78	F66,1 36 June 14, 76 June 20, 76 June 21, 76 June 21, 76 June 21, 760 June 22, 19-00 June 20, 16-30	0000	00.51.00	0.45-13-00	11-52-19-00	10:39-16:00	10:00-17:00
Time		10:00-16:00	06:21-01:21	00.51-02.01	7.4.4.4.7	200	7, 6	27.6	745
luano.	Mike	350	230	220	290		$^{\circ}$		
Fuel Consumption	Ś	M HO:	140:	59 : 011	65 FIO: 65	65 110: 65	65 110: 72	79 FIO: 79	? <u>?</u>
HOstony Of NGaNatural Cus	ZVZ								
	of from	654		653	653	0\$9	653	£\$9	0.73.0
Chair Brasson Assessed	1	98.0		-0.72	(96.90)	(-0.40)	•	-0.65	968'0-
Cont. Dank Continued Acts	*6	31.5		31.5	31.5	31.5	31.5	31.5	31.5
Darker Dues production (News)		13.7	0.5	13-2	6.3	(3-2)	٧-2	ă	r.
representative from the 5000 contention	ړ	104		081	(0619)	(-192)	198	182	190.3
Stuck Gas Average Lemperature)	30	,	20.1	9×1		22.5	20.4	19.4
Stuck Gas Average Velocity	è	17,5	٠	70.)		761		99.4
O: Concentration	*	No insurfaced	9::1	2.5	×77	7.7	7		
Market Contract	*	10.78	10.78 No incumenting	9.76	9,55	9,55 № попистыц	10.1	13.1	No moreon sex
Control Control	Ś	1		1.16 × 10 ^a	•	•	$1.27 \times 10^{\circ}$	1.19×10	1.15 x 10"
Stack Cold Flow Pate (19)	;			901 2 10	,	•	1.14 × 10	1,03 × 10°	
Strock Gree Flow Rate (D)	Ž	3		2 2	30 0		L	1	No escentiones
Soot Cone, Avg. at Representative Point (D)	Z		0.16 No unandorus	60'0					
Soot Concentration (6% 02)	Z'w/	•	•	0.10	0,10	20.0			
Soot Flow Rate / hour	, K.	163	•	54.2	,	•	C.		767
Selve Consentration (1)	1	No Hourborny	822	417	3	742		03.4.	2
			1,310	1,300	1,180	1,260	1,370		*13
302 (878 02)	5			_	•	•	2,510	4,530	1
NO2 Flow Rate / Bour			P. C.		926	243	273	. **3250	25200
NOx Concentration (D)	<u>و</u>	No securious							
NOX (6% 02)	Hdd		784						
NOx Flow Rate / bour	kg/h		•	707			,		

e. e. indicates Extra-ordinary values which are not suitable for evaluation because of a NOX analyzer's malumetron.
 d. Each stack gas flow rate is obtained by calculation when the distribution of gas velocity is measured only.
 s. SO2, NOx and O2 monitoring of Feb.1 was not taken due to the faut that standard gases were not delivered in time to meet the monitoring.

Ap	13011	div	7.4.	1
25 D	Den	CH)	7-4-	1

Appe	-		2	7-	4	-2 टु	3	22.1	3.6	7.	17.9	×	x.x6	0.X2 x 10°	1430 × 1430			0.136	×2.0	300	385	2,540	<u> </u>	<u>0</u>	13.6			
┤╮┞┈	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		220	110:39	MG: 47,000	159	(0.25)	ដ		(148)	(20.5)	14.8	15.1	×.0		1	50.0	0.063	-	35	82	_	۲. د	78				
	MIRE 5 78 14		220	110:3	NG: 45,000 NG:	630,8	0.11	33.1	0-5	1.46	21.6	15.5	14.6	003×10	90.	0.77.0	0.02	0.051	14.8	7	z	μ	14	112	1,4			
L.J.	Jul 26 32 Inc	9:00-13:00	33:	X: 01		53	-0.45	22.1	920	147	19.7	6.75	8.97	04.4 5.104		0.7 × 10	0.00	160.0	66.2	1,280	1,350	2,x20	22X	240	235	tion.		
- }	Oct 14. 38		991	110:33	8	Ŀ	199	2	3	158	19.0	9.22	13.9	V 00.4		S	0.03	<u> </u>		159			069**	64.8**		67 167 CONTRACTOR AND THE PROPERTY OF THE PROPERTY OF A NOVE AND YOU'S MULTIPARTION		
Unit 4 (320)	Aug 20, 9%	4.30-8.30	91	10.01	8		92.9		<i>c</i>				9.30	Ļ	01.07.7.0	0.70 x 10	90.0							_		s: of a NCx an		
Unit 4	June 7, 98		_	92 · O1	<u>}</u>	6 187		2	- E							<u>.</u>	11 0.31	•	_		200	•	152		1	Hereton Sessor		
	X6, 9 011			16.013	: 		_	2. C	c						U 1.26 x 10	0* 1.13 × 10°	0.41	_				0.85	1		7 2	and able for man	the section of	
	20, 27, 20,	10:00-16:00						_		<u>}</u>	377		0,0	7	0.89 x 10	0.80×10	L	_	Š		So nexemoning			_			ANGRADO POCA	
		V. V. V. V. V. V. V. V. V. V. V. V. V. V			92		_			ž	5.		;		0.42×10	0.38 × 10	L		•			∵				3	Harry Voluces W	
Power Plant		26 13 %				71. 20.	:			13-1	133		:		0.60 × 10°	6 0 5d × 10°	L		.							ò	ates taxtra-ord	neusured only.
Estahan Po		Aug. 16	2.00.21		10:1	NC : TO	_	?		-8				1 9.63	0.40 × 10°	טויי אָרַיע	L					624 629			133 248		₫.	clocity is near
Stack Gas Monitoring Results for Unit 3, 4 & 5 at Esfahan. Unit 3, 1200			<u> </u>	7.4	11O: 10.8	NG: 10,800	0.150	<u>ۍ</u>		(G-3)	_	2		10.1	0,0	9.			63 0.467	•			·			70	e pour only.	which of gas v
its for Unit			9.01	75 7	110:19.2		.4 632.8	0.21	13.9	13.3	146			7.01	0,41 x 10°	900	4		0.263			0.000,1 0.750,1			216		upprosecutativa	hen the distrit
oring Resu			10:30-19		<u>Q</u>		1 631.4	7		(E-3)	4	•	8.73	No немпертик	٠,			0.19 No mainway	•	•	1,110	ξ.				•	up su paunsuo	wicelation w
Gas Monit		Feb. 23,98	10:00-16:	75	110:	-	1.059	0.72	13.9	7. 0.	.:	13,3	No nemidoning	-	"NYM" 0 37 × 10		m3N/h 0.34 X 10		· · · · · · · · · · · · · · · · · · ·	h 65.4	BUNDLING THE HEADER	£	-1	Винопични ом ший	£	-	cate values m	obtained by a
Stack	(5)			M≪c	\$	∜Nyu.	al immi	#W	_	PACKAN.	ည	, m/s	*	%	2		Z W	VAN (V/BIS	Num's	Kg/h	uçle	undd	kg/h	bbu	hy.ld	Kr.A	WHEN ITHE	w rate is
	Unit (Kaled Capacity: MWe)	Date	Time	Output	Fuel Consumption	HO-Heury Oil, NO-National Cos	Atmospheric Pressure	Statio Presente Average	Sinck Dust Sectional Area	Representative Point for Sand Collection	Ninck Cas Awarga Tomporature	Stuck Gas Average Velocity	On Consendration	12O, Water Content	Cant Con Plan Puls /W)	States this Floor state (11)	Stack Gas Flow Rate (D)	SAN CAME, AND M Keptersonamous Issue (12/B13/N	Soot Concentration (6% O2)	Soot Plow Rate / hour	SCy Concentration (D)	SO ₂ (6% O ₂)	SO2 Flow Rate / hour	NOx Concentration (D)	NOx (6% O2)	NOx Flow Rate / hour	Note: a. Figura in parenthoses indicate values measured at the representative point only.	e. Each stack am flow rate is obtained by calculation when the distribution of gas velocity is measured only.

NO.5 (6/8) NO.5 (6/10) NO.5 (1/72) Part & Mentioring in 1998 & 1999 9 5 8 000 8 8 000 9 000, 000 1,250 3.5 3 350 NO.4 (222) NO.4 (46) NO.4 (67) NO.4 (829) NO.4 (10/14) NO.4 (1/26) Unit 4 Monitoring in 1998 & 1999 Ş 3 2,000 3,000 8 2, 20 2,000 3 000'1 3 PP89 55. 3 300 Š NO.3 (2009) NO.3 (APARTA) NO.3 ないななべつま ■ 位 NOx Concentration (DXO2 6%) ppm Soot Flow Rate kg/h NOx Flow Kate kg/h SO2 Flow Kate kg/lt Unic 3 Monitering in 1998 & 1999

\$

900

.; 8

3

1,730

35.7

30,

3

3

7.0

٨	rbl	sen	dix	7-4	-3
en Distribution Graph		9	3		01 1 0 0 1

Cas Flow

Temperature Deviation Distribution Graph

0.650 0.650 0.655

6.7 17.3 20.7 28.2 28.2

285 285 285 155 155

Actorial Deviation of the Control of			y *	₹ }: 	نا ا	1 2	
Velocity (m/s) Deviation	Аметяце	307	502	0.81	502	20.0	19.8
Veloc	9						Tation
•	,	9.5	2 2 3 2 3 2	53.5	10.9	<u>설</u> 호	23.6 24.9 Standard Deviation
E 01	4	9.1	24.8 1.0	21.8	10.01	27.89	Stand
/ Deviati	n	2 Q 4 A	3.1.2	17.65	걸음	2 4	19.3
(s/uu) k	73	9.0°	980	(4) C.	25.0	300	18.3
4. Velocity (nvs) / Deviation	_	<u> </u>	212	<u> </u>	14 ×	210	13:1
7		<	æ	Ú	û	ω	Average

Velocity (m/s)

0.652 0.649 0.648 0.648

-0.815

195.2 196.3 197.2

(1998/2/1, 10:00-16:00) Output: 350MW (Max.)

1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data

Fuel Type: Heavy Oil (the Otyth was not confirmed)

Monitoring Results for Unit 1 at Tabriz PAP

0.85 Density (g/cm3) Mano, Real ps. S.ps. Incl. (mm) (mm)

4.5	ttion .	Standard Deviation	Standa				,
2,42		24.9	23.6	19.3	<u>.</u> ₹	2	Average
20.5		24.5 10.5	6.8 8.8	2.4	3.0	101	ಣ
á		10.9 8.48	10.0 10.0	0.2	19.5 0.6	12.8	â
18.0		14.3	21.8	1.7.1 6.5-	를 <mark>다</mark>	10.2 20.2	ပ
20.5		10.8	24.8	3.1	34.0 4	22.	m
6		9.5	9.1	5.4 4.0	9.0 4.0	<u> </u>	<
Average	٥	۰	4	3	41	-	

Temperature (C) Deviation	Average	197.0		195.5		200		अस्त		ह्य		194.5	3
Tempera	9		٦										ation =
	\$	0 X6	17.6	193.2	-5.5	1919	-11.1	192.3	4.6.	ठाहा	-14.9	193.4	Standard Deviation =
eviation	7	197.8	14.2	1967	4.6	194.5	0.0	192,8	-7.2	0061	-19.2	194,4	Stand
۾ (ي	n	197.2	11.6	197.2	11.6	1962	7.3	193.1	9	9161	-12.4	195.1	
erature	ч	196.3		1962	7.3	1963	11	194.9	7:	192.5	\$	195.2	
s. Temperature (C) / Deviation	_	1252	3.0	194.4	ç	35.5	4.3	195.01	2.2	6161		194,4	
-		<		=		υ		Α		×		Average	•

0.650 0.650 0.653 0.653 0.653

.0.864 4

22 22 52 22 52 52 52

9

0.652 0.655 0.655 0.655

-0.839

8

Calculation Formula	"	Velocity, Average Velocity), ×10	Standard Deviation
Culculatio	Deviation #	(Velocusta)	Separation

0.656 0.657 0.659 0.659

191.9 192.5 191.6 190.0

. 8

10.8 15.8 16.3 24.4 28.0

10000

5

97 000	Gas Flow
	2.0

Deviation #	(Velocity, Average Velocity), ×10 Standard Deviation

90.00 0:00 0:00 0:00 0:00 0:00 0:00 0:00					17.7	
	00:0	000	33.0	3	3	
202(pm) 204(pm) 205(02)				_		***
(Ox(oven) 2) %						14###1
02:02						
02(02)		-				
02(02)						おおおおお

NOX(O2)						

Note: SOZ(O2) & NOX(U2) = SO2 & NOX values based on O2=6% = SO2. NOX and O2 monitoring was not taken due to the fact that standard gases were not delivered in time = SO2. NOX and O2 monitoring was not taken due to the fact that standard gases were not delivered in time to meet the monitoring.

:		
		tative Point
		Represen
		Ě
	į	•

A Marian Carlon								
A Water Comen							- CH	r
	-	77.4	1	2				
(A)	7776	3.5	4.4.5	4.7		Temp. Average (C)	4	
lemp. Average (C)	F-10-10-1	1		8		(IIII)	6 0.44	00.9
Gas Manometer (mm)	<u>.</u>	000	•	3		Cas Melonico (mas		*
Charles St. Land St. A.	117.611	121 224	124 200	121,350		Nozzle Diameter	o mm	
rre, weignt (g.)				30.00	. :	On (Cours) Velocity A)	18.09 L/min	1881
Post. Weight (g)	125,221	125,227 121,305	12-22	22,948		Carried Inches		170
Water Water	1 612	0.03	0.02	3		Collected Soot Amount	U.Oey E	3
Dalamer vergin E		ı	ľ		:	Charles Stack Gas V(L)	500 421	000
[Total Weight (g)	1.04.3		770		•		ě	y X Y
Carled Volume (1.)	30		2			Pv. (mmHg)	À	0.00
Comment of the commen	1		45,5	ŀ		Soot Concentration	0.164 g/m3N	0.160 g
rv. (mmrg)			4	T	.*	A us Con Concentration	0.162 g/m3N	* . .
Xw (%)	, C. 7.		2	I		200	_	Ave Co
Average Xw (%)	10,78%	.				OZ Conversion value	Kinner	
			the second of social second		7			

* Manometer was frozen, so that it could not be measured

Λ	ppe	en	dix	7-4	-4			4-											4	ı ——	.			-	VOn (ppsen)			†	- :		Time	1321	ŀ	5.21 Avg.	1 1	12.61 13.51	379 3x6	
		<u>-</u>	$\overline{\ \ }$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	۵ ا		$\langle \rangle$	X	Gas Flow			40 411		<		100	-/- a	$\langle \rangle$		· ·	Cas Flow				\$02 (pless) — 8 — N							13:15 13:18	1	555 555		1294 1293	_1	
		+	- -		}	$\langle \langle \rangle \rangle$	$\langle \chi \rangle$	$\rangle \rangle$	૭			<u>[</u>		1			1	$\langle \rangle \langle$	XX	$\langle \rangle$	S			-		n	:						- 1	77.5		13.50		٠
	_	ļ-,	-(A	H	$\langle \chi \rangle$	$\langle \rangle$	$\int_{-\infty}^{\infty}$	n		Graph			$\frac{1}{T}$		1		$\langle\!\langle\!\rangle$	X	14	ì									-		13:12	ŀ	× × ×	193	13.48	385	Varies used on 0.2-6.
n Graph		Ī	__! \-	X		X	$\langle \rangle$	м М			ibution	i -			1		Ţ	\mathbb{V}	Y,	4 W					: : :8	ļ			:	•	. –	13:09		8 E	25	1308	393	o passer
tribution	40	ò	2 5	Y,	01 01	\$	٩ ١	r-4			on Distr	07	8	2 5	Ŋ	9.	2 5	3 8 A	-	•					3			+	÷	1		13:06		5 \ 5 \ 2 \	ž.	13.40		
ution Div											Deviati														S S S S S S S S S S S S S S S S S S S				•	•		13:03		8 3	19.	13.50 1298	96	= 502 & NOX
Velocity Deviation Distribution Graph											Temperature Deviation Distribution Graph													-	-	<u>.</u>	: :			•		13:00	Date	12.57		13.50		
Veloc											Temy													i	<u>.</u>	:			- !			12:57	02 Raw	х 3 22		13.52	387	k NOXIC
(3/11/6)	lion	Average	23	200	18.9	20.3	3	70.7	20.1	X.K		1 6	Average	188.1	1900	7.031		188.9		189.1	189.2	2,1			: 		:		- -				NOx, & O2 Raw Data	52.53	3 53	13,47	ğ	Note: 502(02) & NOX(02)
Velocity (m/s)	Deviation	•	100	22	24.2	77	10,6	14.4	23.9	ation	į	Deviation		N N	<u> </u>	- 4	4	CX.	-10.2	018	1x7.7	ation #			- <u>-</u> -			-	-			1 12:54	, SQ	3	NO. (np	ς δ	NON(O2)	Note: 3
_	J	0 00	38	20 C	21.4	22.3	2.4	9.1	22.5	Standard Deviation	_		٠,	1865 1555	191.4	10.6	-			1930	1	Standard Deviation #					mdd	↓		*		12:51						
	}	l			l	L		4.1	Ш	Stand	•	evistion evistor	4	1874 -8.8	1901	4.3	<u> </u>	۳		130.2	6.681	Stano		1400	1200	8	8	8	\$	30	_				l ea	_, _	+ 1	_
A Maladia (M. Maniation)		Ĺ	2 6	2 2 4				25	Ц		į	S. Temperature ("C) / Deviation		150 150 150 150	189.7	23		╚	_	3.5				Ì	7 × 10						2	32 32 6 0,4412	ę ww	25.3 L/min	218	35.50 0.064 e/m/tN	a	13.51
. 1		Ĺ	3 2 3 2	20.4		19.7		3 3 5 5	6'XI C			nperatur		2 2 2 3 3	Ľ		\ \ \ \ \ \	Ë		- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	1		2	annu s	e Velority	viation					7			- 4			1 [Ave.O2
	; ;	-	2002	13.4	3	12	-20.2	25. 26.	13.0			S. Yen		9 <u>(8)</u>	(<u>*</u>	90	3 5	1865	-13.2	15.6	1	1 1	Colomboian Postanta	Deviation #	(Velocity-Average Velocity) X10	Standard Deviation					13.2	32 6 0.441	e mm	25.3 L/min	300 218	50 %	0.052 g/m3N	0.146 g/m3N
			≺ .	=	ပ	Ω		앒	Averag			: .		<	=	(ر	O		교	Average		-		Veloc	Ş.				:	<u> </u>	\ \ \ 		_[3	1	35.50	╅┈╂	
(00:		e [T	Velocity (m/s)	12.5	20.6	22.8	23.5	13,4	20.4	22 22 23 24	20.6	2	18.9	19.K	4.5	7 2 2	6.6	50	2, 2	74.	13.6	80.0	7.7	3,6	25.6	20,1				3. Soot Concentration	Temp. Average (°C) Gas Manometer (nm)	neter	Om (Equal Velocity A	Cultered Spot Amount Sucked Stack Gas V(L		Ave. Som Concentration	Ö2 Conversion Value
10:20-1	Output: Evant vi	2 2		Y Ve		0.658 0.657	0.662	0,663 0,663	0.659	657	0.657 0.657	0.656	0,662	0.657	0.655	0.656	0,063	0,658	0,660	0.658	0,662	0.663	0.662	0000	0.653	9590	0.659			3	2 2 2 2 3	mp. Aver	Norsile Diameter	r (Equal	Cultered Soot Amount Sucked Stack Gas V	Pv. (mmHg)	Ave. Soci Concentration	Conver
7)8/6/20.		Velocit	3,7%	_		190.1 20.6 0.0		186.5 0. 184.5 0.				0. 4.161		190.5 0			100			0.001		i.		100.0			189.2				4	[<u>2]</u> 5	ž	<u>5</u>]	<u>ै।</u>	<u> } </u>	<u> 위(취</u>	<u>S</u>
Plant (19	ľ	rature	1	Ϊ.	١.	.0.514 1		 - - :	-	1	-0.856 1			1 74× 1				-	. ×79.0-					? ?		- 1	.0.717				3	30.5	122,847	12.892	200	П	Ť	П
Power		d Temp	.85 Density 36 70-1 3ke//m3N	Mano, Real ps. S.ps.	1			25.8 27.3	8,4	19.2	22.3 . 23.4 .	. 9.6	7.5	911 814 84		21.3	?; ;	18.0		233	27.2	28		7. c	25.6		19.4	:-				1 5		7)	1.229	200	9.74%	
II Tubriz		SUTC. A.	0.85 Density 36 70-139	Mano. Re	I _	0 0	0.2	0.2	0.2	0.2	0.2	2 5	0	0 0	. 6	0.2	270	0.2	0.2	200	0.5	0	0.5	2 6	0.7	0.2				-	64	32.5	-	_	810.0		Ť	
Monitoring Results for Unit 1 at Tabriz Power Plant (1998/6720, 10:20-15:00)	Faci Type: Heavy Oil (astonea)	1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data	Tremental	-1	1	\$9	!				35			ž	}				32				:	<u>.</u>				- The Representative Point				2 T			262	2	9.77%	9.76%
sults for	E A	eal & St	870,2 Pitot coef. 652,9 Phanol Temeralui	S ps.		26 25 25	99	5 × ×	8	130	150	8 5	S	œ <u>-</u>	120	9		R 유	<u>5</u> 21	50 54	27.	ક	20 :	21.5	165	195		epresent			ien T	(j)	Î	2	9 E 9	<u>(i)</u>		
oring Re		ment. K	870.2 1	Sero Sero	I	ر ت	4	4 4	۰	9	Ø 4	₹ ₹	4	₹ ₹	-	· •••	~ ·	4 4	4	0 4	,	7	₩.	4 0	00	٩	B.C.	- The R		÷ (2. Water Content	Temp. Average (C)	Pre. Weight (g)	Post.Weight (g)	Balance Weight (g)	Sucked Volume (L)	Yv. (mmHg) Xw. (%)	Average Xw (%)
Monit	ag.	. Dy	4 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 3	<u>-</u>	7 · · ·	4	<u>۲ ۲</u>	=	13-2	3 U 4 A	2.5	ડિં	35	3	ડ	<u>وا</u>	- 6 6	2	7.5	3 2	3	다 (법 (<u>т</u>	1 0) 1 0)	ğ	Average			:	¥	Temp	e e	Post	라 라 다	Suck	X (%)	Aver

Apr	enc	lix	7-4	-5
		0.00		- 1

(1998/6/21, 9:45-13:00)	Output: 290MW
it I at Tubriz Power Plant	
Monitoring Results for Unit 1 at Tubriz Power Plant (1998/6/21, 9:45-13:00)	Fuel Type : Heavy Oil (65toms/h)

1. Dynamic, Real & Statle Pressure, and Temperature & Velecity Raw Data

ľ	040	700 101 th	_	0 85	AS Dencity		0 2 2 3		
-	2	5							
High		652.7 Ethanol Temperatud	eniperatus	•	12 7 0ml 3kgf/m3N	(Am3N	1.3		
ģ	Zero	D.ps.	T ps.		Mano. Keal ps.	S.ps.	Temp.	٨	Velocity
200	(mm)	(EE)	(mm)	nC.	(mm) (mm) (mm)	(mm)	ပ	(kgf/m3)	(m/s)
ı									
5	2	135	28	0.2	859.0 8,981 898.0-0,81	-0.898	808	0.658	18.6

2, Water Content

3. Soot Concentration

,	`		_	-					_	_
	:	;								
C:2	30.5	0.147	124,774	124.827	0.053		• : :			
64		. 2	127,451	128,658	1.207	1.260	20	32.58	9.65%	
2:3	29.75	0.147	125,292	129,136 125,340 128,658	0.048					
-		7	127.946	129.136	1:16	1.238	50	31.20	9 46%	9.55%
	Temp. Average (C)	Gas Manometer (mm)	Pre, Weight (g)	Post. Weight (g)	Balance Weight (g)	Total Weight (g)	Sucked Volume (L)	Pv. (mmHg)	Xw (%)	Average Xw (%)

Temp. Average (C) Gas Manometer (mm)	1 B-2 33 12 0.882	2 B-2 34 12 0.882
	o mm	um 9
(Equal Velocity A)		20.01 L/min
Otherted Soot Amount .	0.0107 g	0.0120 g
Sucked Stack Gas V(L)	300 . 217	300 215
	37.57	39.74
Soot Concentration	0.049 g/m3N	0.056 g/m3N
Ave. Soot Concentration	0.053 g/m3N	
O2 Conversion Value	0.135 g/m3N Ave.O2	Ave. 02 12.82

13.61 13.61 13.62 13.63 1.52 3 58 . 242 1.09 561 195 13.50 235 11.3% 367 93 193 3.48 639 192 13.67 SO2, NOx, & O2 Raw Data measured on June 20, 1998 SO2, NOx, & O2 Raw Data measured on June in, 1998 85.51 85.51 84.51 412 3 5 5 S 88 22 <u>1</u> 2, 5 2, 5 2, 5 13.50 3 ₹ % 82.1 83.1 55. 13.52 1,305 5 X 8 13,47 NOA (fig. SO2(O2) NOA(O2)

11:45 AVE. 1,182 88 250 28.21 635 232 12.92 634 234 12.88 631 234 12.88 SO2, NOx, & O2 Raw Data measured on June 21, 1998 640 233 12.86 242 12.59 249 249 252

11:52 Avg. 722 742 222 243 12:39 12:19 1,258 1,264 387 414 NOX(C2) 417 418 421 421 421 418 415 Note: SO2(O2) & NOX values based on O2=65 744 242 12.25 22 28 22 22 22 22 SO2, NOx, & O2 Raw Data measured on June 22, 1998 ¥ 8 5 057 12.07 70.21 24.22

SO2, NOx & O2 Kaw Data measured on June 18, 20, 21 &, 22, 1998 tudd 8 \$ 8 1,200 క్ష 9

. 9 MOA (ppm) 6/18 SO2 (pym) 6/22 9 9 9 6:03 -502 (ppm) 6/18 -6 NOs (ppm) 6/21 linute 0:00 0 ደ

9

Ë

9. 4.

9:23

0:18

0:15

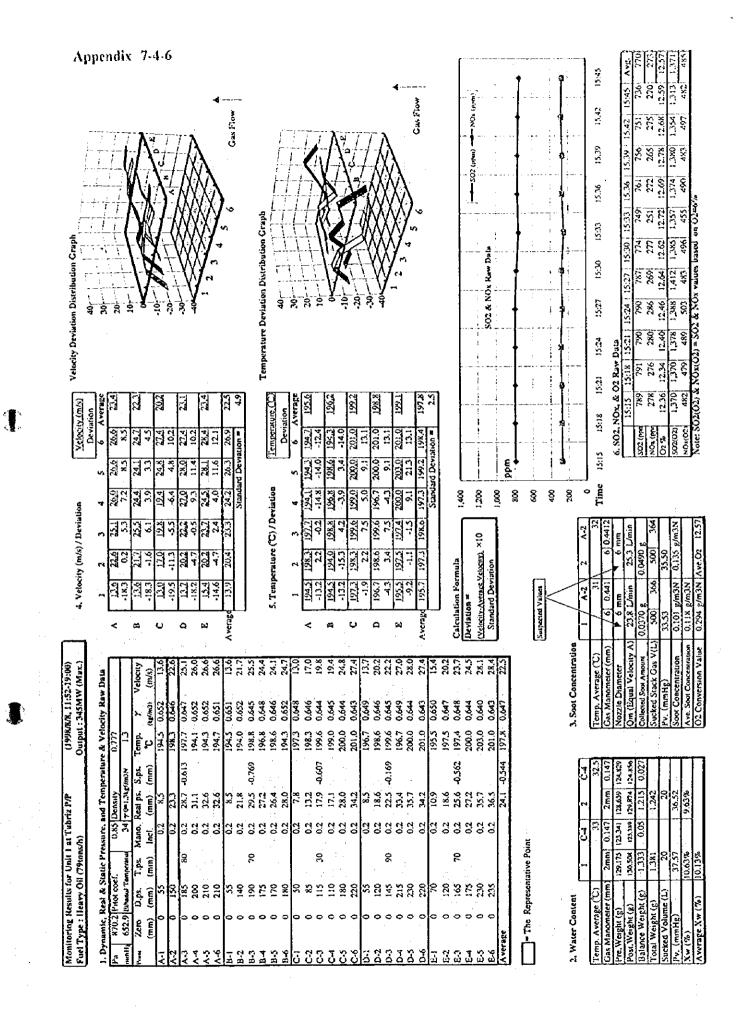
0:12

10th (unit) 002

SQ2 (ppm) 6/20 1/Ok (ppm) 6/22

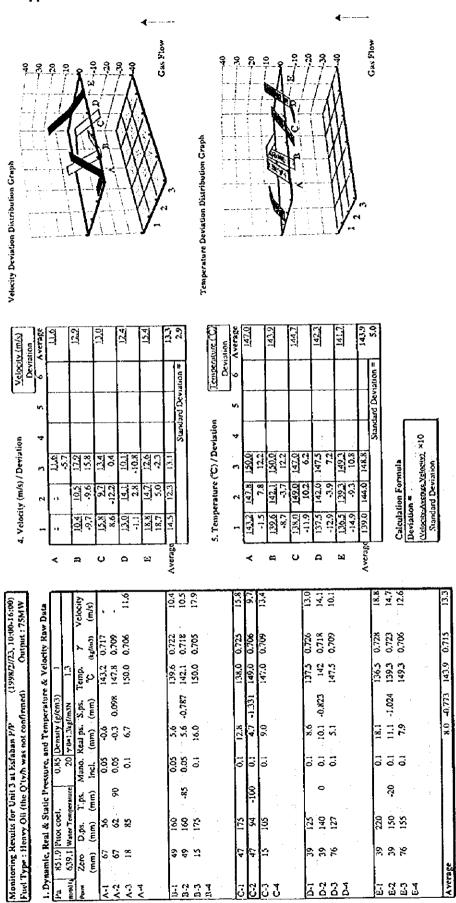
Montioring Results for Unit 1 at Tabriz Power Plant (1998/6/22, 9:45-13:00)
Purt Type : Heavy Oli (65tons/h)

1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data


matri 649.9 [chlunol Temperature] 33 [Tobic] (high) 1.3 Velocity Rep. Zero D.ps. T.ps. Mano. Real ps. Sps. Temp. Y Velocity Nam. (mm) (mm) (mm) (mm) (m/s) (m/s) nam. 17 180 65 0.1 12.7 -0.399 191.5 0.653 16.6	S.	866.2	866.2 Pitot coef.	<u>۔</u>	283	2.85 Density		0.778		
Zero D.ps. T.ps. Mano. Real ps. S.ps. Temp. Y (mm) (mm) (mm) °C (se/ms) 17 180 65 0.1 12.7 0.399 191.5 0.653	mmH	649	Eihanel Ta	ensperatur		70-1.3kg	(m)	1.3		-
(mm) (mm) Incl. (mm) (mm) °C (14/m2) (mm) 17 180 65 0.1 12.7 -0.399 191.5 0.653	ė	Zero	D ps.	T.ps	Mano.	Real ps.	S.ps.	Temp.	χ.	Velocity
180 65 0.1 12.7 -0.399 191.5 0.653	- X		(mm)	(mm)	Incl.	(mm)	(mm)	ပ္	(Ref/In3)	(m/s)
	2		ì	_	0.1	12.7	-0.399	191.5	0.653	16

2. Water Content

3. Soot Concentration


· Water content monitoring of 22 June, 1999 was not carried out.

	2				Ž	'	1	_T 	į
33	12 0.882	e mm e	Sain.	3	432		0.050 g/m3N		₹ 12.
	12	٥	17.66 L/min	0.0217 g	909	37.57	0.050		0,123 p/m3N Ave.Oz
33	12 0.882	6 mm	17.66 L/min	. 3	432		0.053 g/m3N	0,052 g/m7N	NEm/4
	12	9		0.0228	009	17.57	0.053	0,052	0.123
Temp. Average (C)	Gas Manometer (mm)	Nozzle Diameter	Om (Equal Velocity A)	Cullected Soot Amount	Sucked Stack Gas V(L)	Pv. (mmHg)	Soot Concentration	Ave. Soot Concentration	O2 Conversion Value

Αp	pen	dix	7-	4-7																4				+] ;	15:20	L	1,533	325	1,312]		
. . !		<u>'</u>	Λ	<u></u>	<u>I</u>	λ		Gas Flow		40	2	<u>ରୁ ହ</u>	۱	유 <u>유</u>	3 8 / /	γ	; •	Cas riow				:		<u> </u>	NON (pilm)			15:17	0073	1	3250 3250	1			
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		X	$\langle \rangle$)						Q Q	<i> </i> }	$\langle \rangle$:	; ;		-502(ppm) -		-	15:14	Į.	0951 9951	3250 3250	1,310 1,301			
					$\langle\!\langle\!\rangle$	$\langle \rangle$		n.	raph		1	-{	V.		₩	$\langle \! \rangle$	$\langle \rangle$	9		-		:		_	1	}	-	8 15:31	L.	8000			00 O2=6%	} }	
Grapb					Y	X)	\(\text{c} \)		hatian G		ļ - } }	-	V		$\sqrt{\frac{1}{2}}$	$\langle \! $	\. \.	'n		1	1.	Raw Data			- <u>-</u>		-	15:08		9	3250	3 8			
stribution	36	23 9	Å	07.0	ह	À	H		on Dietri				V		<u></u>	\ <u>/</u> -	64				1	SOZ & NOX Raw Data	· ·		:	<u> </u>		15:05	١	20.5		8 2	1 2	T Y	
vîation Dî									Deviad:												1		<u>;</u>			-		15:02	ł	┙.	· ~.	309 1315	- V	8 700	
Velocity Deviation Distribution Graph									Tomosacture Controller Dietributken Grash	mper with										1	1	atues		-		; ;		14:50	Raw Data	1.	- m	304 13		- (70)*0	
<u>(</u> -	Average	0 73	20.5	<u></u> जहा	X0X	;	7	35 4 6.	4 		Average	179.6	181.7	183.7			क्रा	1822	<u>.</u>	-		Extra-ordinary Valu		-		1	_	14.56)x. & O2	_[_	~ m	1317	_	2 (70) (70)	
Velocity (m/s)	Deviation 6 Aver	0.01	22.8	<u> </u>	9	11.4	12	25.0		Compenies (C)	Deviation Aver	3:		5.3		16.6	25X	L,	# uoi			Extra-o						14:53	6, SO2, NOx, & O2 Raw Data		SO2(ppm NOA(ppm	\$ 50 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$	NO.(02)	704 :310k	
	~ 	7.6 7.6	242 7.7	22.5	797	871.8	970 100 100 100 100 100 100 100 100 100 1	22.0 24.7 25.0 Standard Deviation =			_]	91X1	183.4	3.3	11.9	25.25 25.25	तुः तुः	**	Standard Deviation =		1		mdd	1				0.14150			1	~		··-•	
alion	Į	200	201 283 8.3		1.			Ц"		Deviation	4	Ľ	2 182.8	7 1843		2 183.8 8.4.4	8,081	Ţ	Stano	3,500	جے چ	2.500	2,000	1,500	1,000	50	Î	Time		اد	38K			ភ្ញា	
4, Velocity (m/s) / Deviation	l	21.2 21.1.2 3.1	1.8 2.3		17.5		20.0	7.5 20.5		5, Temperature (C) / Deviation			80.1 180.2	5.8 -5.6		.5.8 181.6	कांश्वर होत			4	}	110, ×10					2	21	4 mm	19.6 L/min	0.09938 g S00 3	18.47	2	Ave.02 3.47	
Velocity (1		23 55 24 55 21 4:	Ĺ				<u> </u>	12.8		Temperat				- 1-	-	17.1	Ľ	F		culation Formula	ti.	(Velocity-Avence Velocity), Standard Deviation					53	21	-	min.	388	1	╼	E/m3N Av	
नं	l	<u>.</u>	L	U	۵		ഥ	Average	J	ς,		L <u>`</u> ∢	=	ــــــــــــــــــــــــــــــــــــــ	l ,	Ω.	떮	Average	L	Calculation	Deviation =	(Vetocity: A: Standar			• .		-		A E	19.6 L/min	ō]_	18.47	3 8	0.298 E	
16:00) Max.)	a		λ _i α	6.	2 .9	25.1	25.2		21.6	24.2	22.8	1.11	19.6	22.5	20.0	17.5	25.2	7.07	13.5	20,4			20.4			ยาโรชน์จแ		(C)	ler (mm)	Orn (Equal Velocity A)	Cine V(1)		Centration	on Value	1
(1998/10/27, 10:39-16:90) Output : 345MW (Max.)	Raw Da		Velocity (m/s)	L .,	0.676	1290	0,669	0,673	0.672	0,668	999'0	0.670	0.668 0.668	0.663	0.677	0.672	0.667	0,660	0.675	0.670	0.063	0.664	699.0	:		3. Soot Concentration		Temp. Average (°C)	Gas Manameter (mm)	(Equal V	Cultered Soot Amount	Pv. (mmHg)	Soot Concentration Ave. Soot Concentration	02 Conversion Value	₹
(1998/10/2 Output :	e Velocity	0.788	Temp.	1	176.9 0.0		181.6 O.4	1		182.8 183.4 0.	ı		183.2 0		0 1.77	180.1 0		1881 2 2 0	ĺ	181.6		187.9	1 1						ë ž	ō	3 3	3	χŽ	8	
	erature A	0	١.,		1 2/2/-				-0.535				0,441			1,70				-0.409	ı		-0,646	· ·			D-2	21	0.147	126.957	0,25	П	Π		
riz P/P	nd Temp	0.85 Density	Mano. Real ps.	1	9 6		29.9	16.5		12.6	24.4	5.9 12.2	18.1	23.6	29.5	146		32.3	8,7	17.7	27.6						7		2mm	179,405	1 28	R	10.95%		· .
1 at Tab	ressure,	0.85	Mano.	10	ج د دو		0.2	0.2		0.0	0.2	<u></u> 0 0		0.2	200			0 0	0.1		0.2	0.2		יחוס			D:2	1 1	0 147			٥٨	c- &	*	: ,
r Unit	Static P	oet.	21	(mm) (%)	د د د د	:	061	105	280 110	160 175	- 1	75 155	230 - 90	200	2 2 2 2	185	K 82	205	011	225 250 110		195		* The Representative Point				╂┤	m) 2mm		1.248	1.1	18.47	13,09	
~ 5	1 🚆	ş		S S	135	6 8	8 8	S 5 5	រ ដ			0	N =		2 0		0 0 1 2	5 6	1	0 0	1		H	Repres		1	onlen	rage (C	meter (m		ight (g	ume (L		W (%)	
g Results fo	ic, Rea	0.2		١,	0 4	0	00	0	0	00	C				- J				i	- 1	1		1	٤,		٠,	·	1 5	5 [.	<u> 5</u> 15	انجل	달이	되	×	
Monitoring Results for Unit 1 at Tabriz P.P. Fuel Type : Heavy Oil (79tonch)	. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data	Pa 870,2 Pitot coef.	rum 2cro			۰ ۵ ۲۰۰۷	*		B-3 0	B-5 0	-	C-1 C-2			900	. 2. 4	7 4	Š	1-3	6.2	3 4	<u> </u>	Average	Ė]		2. Water Conlent	Temp. Average (°C)	Gas Manometer (mm)	Post Weight (g)	Balance Weight (g)	Sucked Volume (L)	Pv. (mmHg) Xw (%)	Average Xw (%)	

No. 12.5 12.4 2.	Unit 2 a 73tone0 de Press	A A	42 P/P C C nd Tempera	1999/1/4, 1 1atput : 34! urc & Velo	(1999/1/4, 10:00-17:00) Output: 345MW (Max.) sturc & Velocity Raw De	3	- L	4. Velocity	4. Velocity (m/s) / Deviation	víation 4	» ا	Ave (g		Velocity Deviation Distribution Graph	m Distributi 40r. :	Jon Craph	y ! - ; ; ;	·	1		Appe
1 202 208 224	897 Pitot coef. 0.85 Density 0.806	Si Density 0.806	0.806		1	Π	<	9 F C	기 T		0 CZ		51.0 51.2		2 8						cut
C 126 125	Mano, Real ps. S.ps. Temp. 7	S.ps. Temp. 7 (inm) C (hifm)	Temp. 7	1.	43	Vetocity	=	20.4		<u> </u>	¥1.5		1		Ž. Ž	V)		1X
E 132 133 130 132	125 0.1 10.1 194.8 0.670 285 0.1 23.0 191.4 0.675	10.1 194.8 0.670 23.0 191.4 0.675	194.8 0.670			14.6	U	12.0 8.9		<u> </u>	89 ¢		<u>83</u>		101			1	"		l - pij - (
E 221 128 521 121 123	270 -26 0,1 21,8 -1,310 191,0 0,676 140 0,2 22.6 194,5 0,671	21,8 -1,310 191,0 0,676 22,6 194,5 0,671	191,0 0.676 194,5 0.671	:			۵	12 E		<u>l</u>	23.6	<u> </u>	202		-\-·\ }	\bigvee	$\langle \chi \rangle$		4.		y
S. Temperature (C) / Deviation Emperature Deviation Superature Deviation Distribution Graph S. Temperature (C) / Deviation Emperature (C) / Deviation Superature (C) / Deviation	155 0.2 25.0 194.6 0.671 160 0.2 25.8 194.5 0.671	25.0 194.6 0.671 25.8 194.5 0.671	0.671 0.671		44	022 233	a	125 125 1	<u>L</u>	L	l		18.4		<i>j</i> -		XX	$\langle \rangle$	\	4	
S. Temperature (°C) / Deviation 1 2 3 4 5 6 Average 1 10 122 121 2 1 2 1 2 1 2 1 2 1 2 1 2 1	245 0.1 19.7 193.4 0.673 250 0.1 20.2 192.5 70.674	19,7 193,4 0,673 20,2 192,5 0,674	0,673	;	임원	चिख	Average	14.0	╚	Ш	21.9 ard Devia	L	<u> </u>			•		(Gas Flow		
1 2 3 4 5 Everiation Emigrature (C) / Deviation D	0 270 28 0.1 21.8 0,990 193.3 0.673 21.4 0 135 0.2 21.8 194.0 0.672 21.4	21.8 -0,990 193.3 0.673 21.8 194.0 0.672	193.3 0.672		हें हैं	~ ~			. :				ء 	VC santersonne	viation Dis	tribution (ranb				
1934 1914	140 0.2 22.6 193.8 0.672 145 0.2 23.4 191.5 0.676	22.6 193.8 0.672 23.4 191.5 0.676	0.672		ដូដ	00		5. Temper	June (C)	/ Deviation	<u> </u>	emperature Deviation	ea-					;			
10.8 12.14 12.10 12.25 12.24 12.25	85 0.1 6.9 193.2 0.673	6.9 193.2 0.673	0.673		12	la.		-		4	°,] E		Ş \$			l	 		
1924 1924 1924 1924 1925 1924 1925 1924 1925 1924 1925 1924 1925	155 0.1 12.5 193.6 0.673 178 1-31 0.1 14.3 0.946 193.1 0.673	12.5 193.6 0.673 14.3 -0.946 193.1 0.673	193,6 0.673 193,1 0.673		16.2		<	10 X	27		30.5		3 1		2	:		.1_1 			
Calculation Formula Average 1928 1928 1924 1924 1924 1924 1925 1926 1925 1926 1925 1926 1925 1926 1925 1926 1925 1926 192	85 0.2 0.7 191.4 85 0.2 13.7 189.5	9,7 191,4 0,676	0,676 0,679		14.2		a	1 <u>93.4</u> 7.5	¥7	-	93 K		77		Į.				_/\		
Part 1910 1909 1900 1973 1910 1909 1900 1973 1910 1909 1900 1973 1910 1909 1912 1912 1912 1912 1912 1912 1913 1822 1912 1913 1823 1912 1913	0 105 0.2 16.9 188,9 0.679 18.8 0 00 01 73 1873 0.682 123	16.9 188.9 0.679	0.679 0.680		3.81		Ų		ទា		189.5		977		1 01	<i>]</i> -\	7		آماً		
1912 1916 1893 1890 1903 1904 1854 1854 1916 1916 1895 1895 1905 1903 1905	195 0.197 15.0 0.677	15.7	191.0 0.677		18.1		Ω		<u>~</u>	L	0.061		87.8		8	-XX XX	$\langle \rangle \langle \rangle$		1-1-1		
1912 1916 1803 1890 1890 19013	189 0.2 30.5 180.0 0.693	30.5 180.0 0.693	180.0 0,693		25.0		헕	Т.	-1	<u>' </u>	L	1_	5.4		/ ~)	$\langle\!\langle\!\rangle$	$\langle\!\langle\!\rangle$	À	∢	
Standard Deviation	30.6 187.8 0.681	30.6 187.8 0.681	0.681		25.2		Average		Ľ		1		25			4) / / / / /	λ	Gas Mon		
1,000 2,000 4,00	269.0 0.181 5.6 1.0 0.692	2.6 181.0 0.692	0.692		10.7		d			\prod	ard Devia		4,2				· •				
1,000 2,00	0 160 0.1 12.9 187.3 0.682 16.4 0 175 29 0.1 14.1 -0.577 189.5 0.679 17.2	12.9 187.3 0.682 16.4	189.3 0.682 16.4	17.2			Calcula	tion Form	d d												
1,000 2,00	120 0,2 19,3 188.9 0,680 20,1	19,3 188.9 0.680 20.1	188.9 0.680 20.1	20.1			Deviate	ın e				3				5	1				
2,000 1,000	24.0 22.0	28.2 180.0 0.693 24.0 23.4 185.4 0.685 22.0	0,693 24,0	24.0 22.0			CZelocity: Stand	Avenue Vel	on x10		k] 	i) *	 ;	
2,000 2,000 1,	-0,896 190,3 0,678	-0,896 190,3 0,678	190,3 0,678		19.4					& 1	:	- X3	tra-ordina	ary vatues	- 		- 	;			
2,000 1,	The Representative Point									3,000					× 20°						
2 D.3 0 Tinte 13:30 13:35 13:36 13:39 13:42 13:45 13:48 13:51 13:54 13:57 14:00 A G. SOZ, NOR, & OZ Raw Data 4 min	No monitoring was taken	No monitoring was taken	TING WAS TAKEN							2,000					: 	<u>-</u>		1)x(ppm)		
2 D-3 0 13:0 13:1 13:4 13:2 13:4 13:5 13:3 13:5 13:3 13:5 13:3 13:5 13:3 13:5 13:3 13:5 13:3 13:5 13:3 13:5 13:3 13:5 13:3 13:5 13:3	Water Contact	1 Sont Concentration	1 Cost Consection	Topografian	e di cui cui					000,1	:	<u> </u>	·-·-		<u>:</u> .			Ī			
Column C	1 0.\$ 2 0.\$	2 D.5		o coor concentration	Total Trans	. ,		50	2 D-3		!									- •	
A min Extra- Store Sto	Temp. Average (°C) 0 Temp. Average (°C) Cas Manameter (°Tm) 0.00 0.00 Gas Manameter (°Tm)	000		Temp. Average (°C) Gas Manonieter (mm)	Se (C)			000	0.0			13:33	13,36			13,48	13/51			90.1	
Charlester Continuary Con	0000 00000 0000 0000	0,000 0.000		Nozzle Diameter	ieter		4	mu	Ē		ωĮ	. SO2. NOx	. & 02 K	ŀ	-				- 1		Ţ
Confinary Parkers Color	Post. Weight (g) 6.000 6.000 6.000 0.000 Om (Equal Velocity A)	0000 0000		Om (Equal Velocity ,	/elocity	٠.		/min	Ž.			Ë		338	=	13:45			=		≺
######################################	0000 0000	0.000		Sucked Stack Gas	Cas	Ę,	Ш			ू जि	4			82,5						1 1	25.
on ###### g/m.3N Noc.02 4.60 Noice: SO2(O2) & NOx values based	20		Soot Concentration	rv. (mmrg) Soot Concentration	tration		4.44 ######		4,45	, , ,		`		300			1_			25.2	3 2
the state of the s	0.00% 0.00%		Ave. Sout Concentr O2 Conversion V.	Ave. Soot Concentry	on V	MI S	北京東京古 京計200円以	NEmy	l I	mg	ΣJZ	O.(02)	23 & NG	(O2) = SO2 3	NOx value		1 02=6%		_		•


								~~~		100	2	
	8	ş	8	8	3	3	3	3	3	Š	3	;
7												***
Sec.												### HR
NOr(now)		•	_									
\$ \$	_											24.6
120202		Ī										<b>####</b>
					_	_	_					44.08
NOx(02)		•								]		
			VIII - 1000	( ·	1	The same of	100	3				

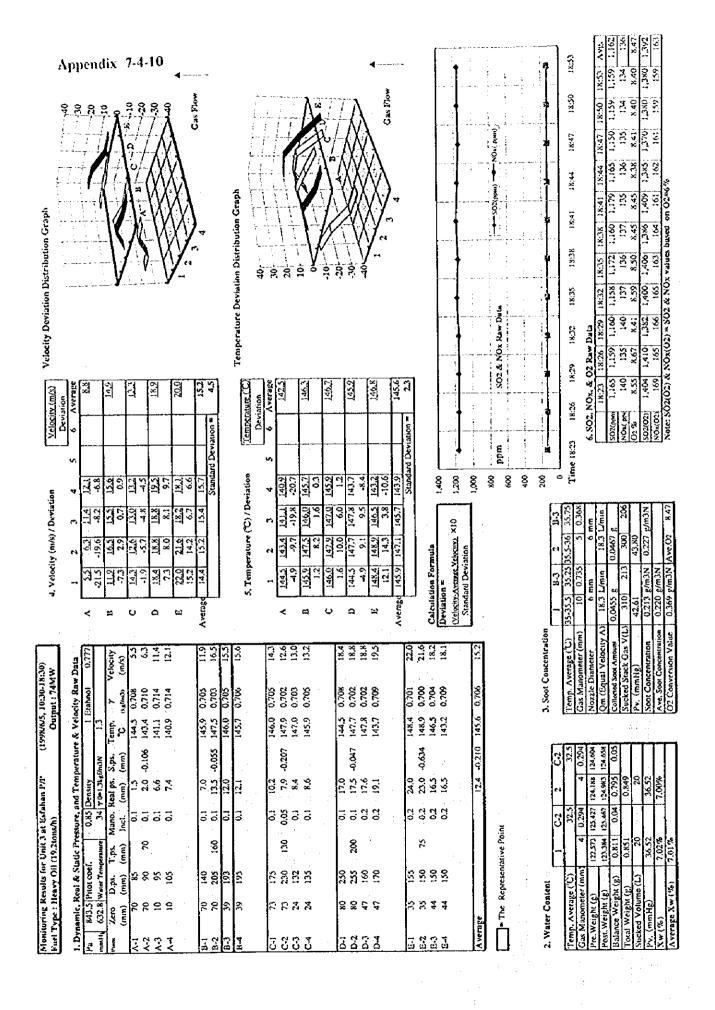
Om (Equal Velocity A)

121.634 124.535 0.916 0.01 0.922

124.111 | 123.708 | 120.718 | 124.529

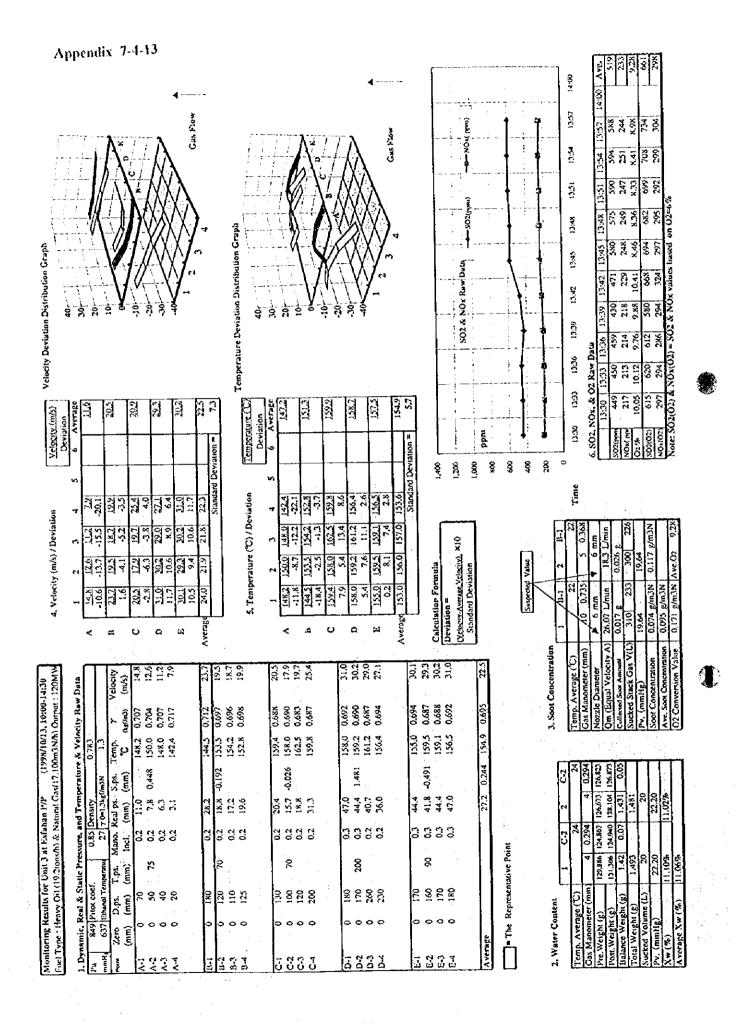
Gas Manometer (mm) Pre. Weight (g)

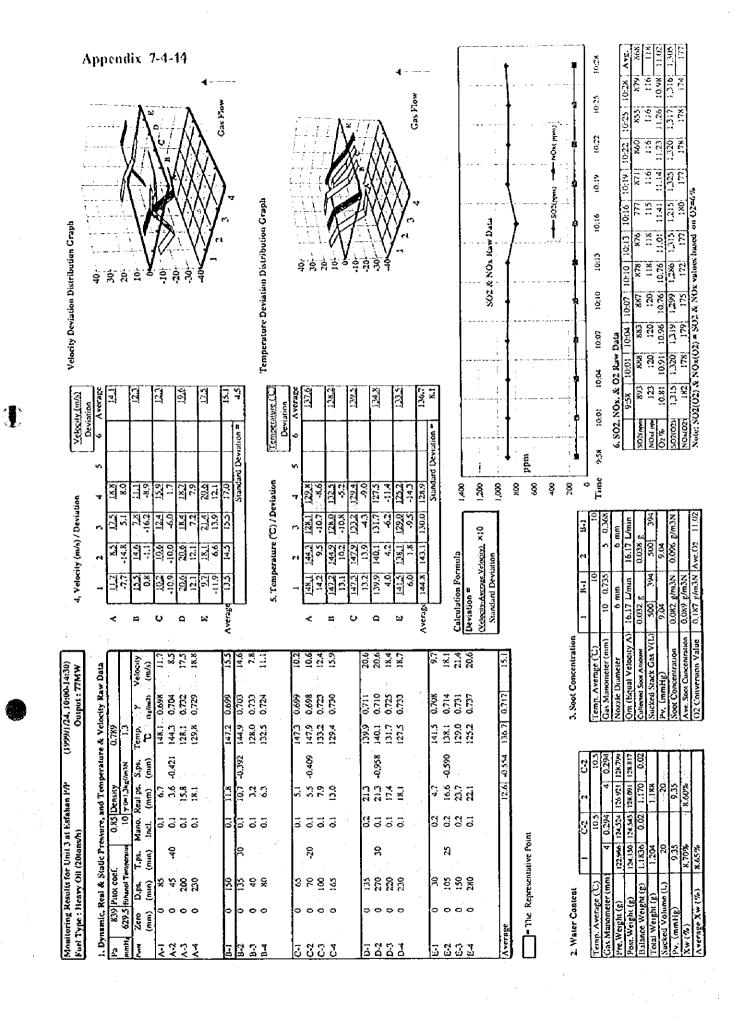
Temp. Average (C) 2. Water Content


Post, Weight (g) Halance Weight (g) Total Weight (g) Sucked Volume (L)

3. Soot Concentration Temp. Average (C)

= The Representative Point


Note: SO2(O2) & NOx(O2) = SO2 & NOx values based on O2=6% = SO2. NOx and O2 monitoring was not taken due to the fact that standard gases were not delivered in time to meet the monitoring.


A7-20

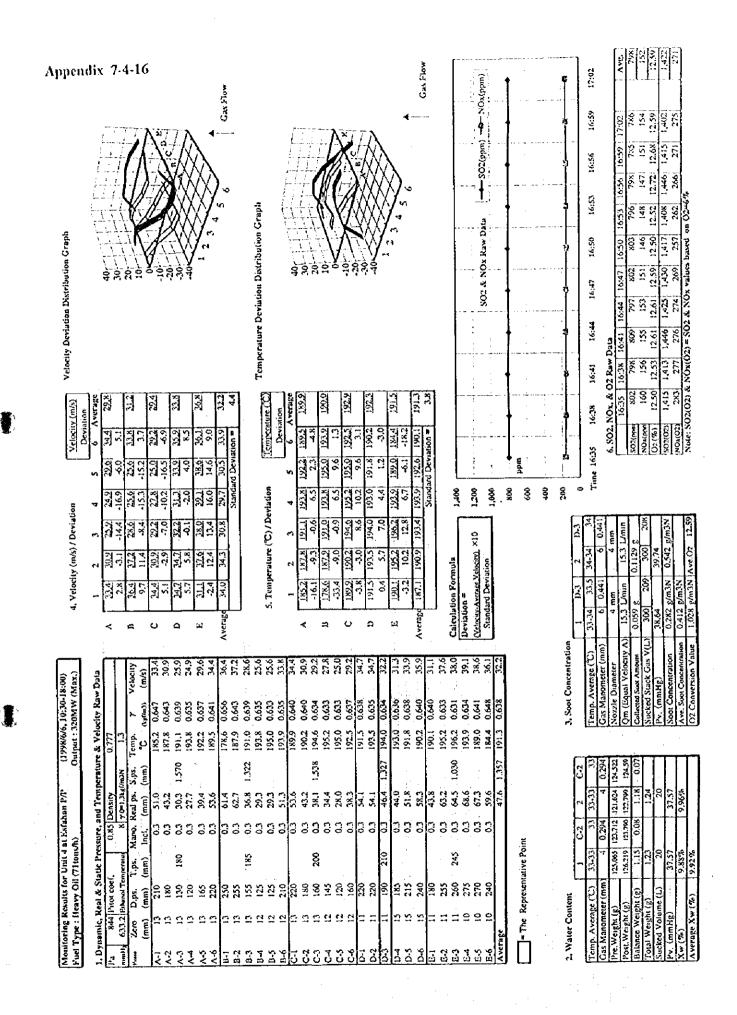


Appendix 7-4-11 ন্ত্রাহাহাহা নিউম্ভার্কারী নির্মাধারীয়	
10.88 11.62 10.88 11.62 10.88 11.62 2x3 2x3 2x6 2x3 2x6 11.387 11.438 135 11.39 135 134 15.09 15:12 15.09 15:12 15.09 15:12 15.09 15:12 15.09 15:12 15.09 15:12	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1,193 1,1 1,193 1,1 1,193 1,1 1,1355 1,1 1,179 1,1 1,409 1,1 1,409 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61 1,1 1,61	15
	11/3 (mpm) xOv —
17.89   17.89   17.89   17.89   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.73   17.7	Ø11 Air Intake
1,186 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187	SO2 (ppm) 6/11
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	5 % 111
SOZ (ppw NOA (ppw SOZ (ppw NOA (ppw SOZ (ppw NOA (ppw SOZ (ppw NOA (ppw SOZ (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA (ppw NOA	on June 4, 5 &
	S.22 (ppm), 6.5 — — NOx (ppm) 6.5 — — Ox & O2 Raw Data measured on June 4, 5 & 11, 1998
8-3 32 11029 2111 2111 2111 16.92	m) 6/5
2 B-3 32-32 33 14 1.029 6 mm 11.75 L/min 0.0214 g 300 211 35.50 0.135 g/m3N	2 Raw Data me
11-3 12-31-5 14 -1-1029 14 -1-1029 15 -10min 15	0x & 02
11.7 10.025 10.17 10.17 10.17 10.17 10.17	
ocity Raw Data  T Velocity  Y Velocity  Y Velocity  O.711 9.63  3. Soot Concentration  Temp. Average (C)  Gas Manometer (nm)  Nozzie Danoster (nm)  Nozzie Danoster  Om (Equal Velocity A)  Collected Stuck Gas V(L)  Fu. (nmHg)  Soot Concentration  Ave. Soot Concentration  Ave. Soot Convention  Or Conversion Value	SO2, N
Deity Raw Data  T Velocity  T Velocity  T Velocity  O.711 9.63  O.711 9.63  O.711 P.63  O.	
re & Velocity Raw Data  0,776  1,3  Temp. Y Velocit  141.1 0,711 9.4  3, Soot Concent  Temp. Average ( Gas Manometer  Nozite Diameter  Nozite Concentrat  Aver. Soot Concentrat  Aver. Soot Concentrat  Oz Conventrat  Oz Conv	SO2 (ppm) 6/4
10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10.800 10	88
schure, and Temperations (Cast Density 36 Pro-1.38/ma) Mano, Real pt. S.ps. 1nct. (mm) (mm) (c.2 2.0.4 20.14 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20 12.20	
Mano, 10.85  Mano, 10.85  C.2.2  C.2.2  C.2.2  C.3.47  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43  C.3.43	
(ea) & Static Pre (ea) & Static Pre (ea) & Static Pre (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperatud (chano) Temperat	
1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data   1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data   1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data   1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data   1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data   1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data   1. Dynamic President (mm)   1. Dynamic President (mm)   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1. Dynamic President   1.	E d
1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dynamic, Real 1. Dyn	1,400

	Ap	ı)	end	lix '	7-4-	12																	[						]	ę.					
																									:	NOxt pynn)				9 14:00	O AVE.	1 34K	137	629 24X	
	<i>r</i>	<u>-</u>	<u> </u>	λ.		<i>آ</i> آ	<b>∢</b> -	Cas Flow	-		6	2 0	<u>2</u>	۲- <u>۹</u>	-10 -10	-30	8	3 -	∢	Gas Flow						. <b>†</b> [			9	15:49	49 14:00	353	138	243	
	1	!	1	/}	<u>د</u> ان		$\lambda$	Ş			ſ	1						X		Ü						-SO2(Jylen)				15:46	15:49		138	11	
	+-	- <del>1</del> - <del>1</del>	-}	$\langle 1 \rangle$	)a	()	$\mathbb{N}$	\				1 - 1				[]/. []/	$\langle \rangle$	$\langle \cdot \rangle$								1.				15:43	43   15:46	L.	137	LJ	
	1-1-	<del>-</del>	7		[]	YX	$\chi\chi$	<b>)</b> -	,	u de	, 1		$\langle \rangle$	W/			$\langle \rangle$	$\langle \rangle$	$\langle  angle$	\				<u></u>	· . · • • ·	·· - •	-	- <u>-</u> -     		15:40	40 15:43		138 1	1 12	
dosa	-	\ \ 	1	V	$/\!\!/$	$\bigvee_{i}$	$\bigvee$	/ es		tion Gr	1		{	7	1	$\mathcal{N}$	V	$\langle \rangle$	$\langle \rangle$	/-				, Data						\$1 .	37 15:		139 1	2501	; }
rtion G	-	) 	 \	$\sqrt{f}$	$\bigvee_{\lambda}$	/_/	<b>V</b> -			Sistribu	<u>.</u>		<u>.</u>		- <u>-</u> -/		\-\ \-\	X	γ.	<b>М</b>				OX Key	•			. :		15:37	15:37		1386	259 2	
Distrib	\$	ġ	8	<u>a</u> 8	01	8 8	4			ristion I	,				<b>N</b>	<u> </u>	. <u> </u>	У	-					SOZ & NOx Kaw				•		15:34	31 15:		137	<u>دُا ۔ ا</u>	
heviation										ture De																		- <del>- ;</del>		15:31 ato manife	2x 15:		239		
Velocity Deviation Distribution Graph										Temocrature Deviation Distribution Graph														· <del></del> -	! 					ŝ	25 15:		236		, (*)
ſ		ខ្ពុខ្ព	3	25	13.2	\$XI	्र श्रु	12	<u></u>			្ត្រ	146.4	803	<u> </u>	155.6	0.8%	<u> </u>	155.0	152.4	9.7			:	: - <del>:</del>			· [	1	15:28	22   15:		135	251	<b>3</b> / 3
	Vetocity (m/s) Deviation	Average		<u></u> 1	7		124	L			Temperature (C)	Average	4		<b>!</b> 	2			<u> </u>	Si				:				1		15:25 XQX	15:			2 2	5)306:
l	ğ a	١				-	-	-	eviation		SHI C	) •		$\downarrow$		_	$\downarrow$			$\frac{1}{1}$	eviation			•	ppm				1	15:22		SO2(ppn	NOx(pp	SO2(02)	
	`	Ś	35	7.4	1916	    [a]	25.5	253	Standard Deviation =		· uon	W	0:	53.2	<b>[</b> ]	24.3	51.7	-1.6	8 ts	52.4	Standard Deviation =		€. F	7,200	<u>;</u>	8 8 8 8	<del>.</del>	 82							
	eviation ,	4	25	3.9			21.6	1	Š		/ Devia	4	1		<u>چ</u>		×0		ST 0.55				٦		- 7				[-]	ž ž	Ę	Π	201	Z.	(5.0%)
	[/ (%)	٦	10.64	25.4	Ĺ		4 2 2	1			5. Temperature (C) / Deviation	2 3		700	•	7 7	-		28.7	ľ	IJ		œ.	OIX TAID					2 18	5 0	18,74 Umin	0.0302 g	300		
	elocity (		*3.4 *3.4 *1.1			<u></u>	9. S. S.				Cempera	_	1 000		· .	<u> </u>	563		7 V V		]	ç	NE C	Deviate					13-1	38	_	0	208	g/m3N 0	P/m.sn   Ave.O2
	-	1		L <u>`</u> _	Ü			Average	Ш				<u> </u>	<u> </u>	 1	i o		_	'' '의	Average	Ш		Calculation Formula	(Velocity-Average Velocity), X10 Standard Deviation					-	10 0.	18.74		310		13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55 13.55
:	_		•																1	~								10,0		QÎ	1	Ĭ	3	+++	-1
8:30)	NW.	Data	1	Velocity.	1.4	9 6	7.9	16.2	13.2	13.4		12.7	7	27.	-		2 5 2 2 3 3 3 3 3	19 R	20.3		8.61	19.1	21.5		15.1			1 Cast Concentration	OUCEINE	Temp. Average (°C) Gas Manometer (mm)	Om (Equal Velocity A)	Collected Soot Amount	Sucked Stack Gas V(L)	Soot Concentration Ave. Soot Concentration	OZ Conversión Value
12:00-1	Output	ity Raw		7 (ker//m3)	i .	0.699	969'0	0,707	0.695	0,689		0,683	0.689	0.686			0.686	0,687	0.693		689.0	0.682	0.691		0.692			0	. 3001	Temp. Average ( Gas Manomoter (	m (Equ	Sollected S	Sucked Stack	Ve. Soot	72 Conv
(1998/N/16, 12:00-18:30)	(NA)	& Velo	6.76 1.3				200	143.2		154.2		157.7	<u>x</u>	1.5	<u>}</u>		26.3	155.5	151.7		154,4	58.7	153.0		152,4			•	• (	E IOI.	<u>- 10</u>		;	- Ivil 21	۳,
3	8	Serature	. i	1. ~	1	£ 7.7	: .		-0,328				0.262				A 0.0	•				6,423			-0.268				C3	32.5 0.294	126.50	0.06			
¶⁄4 uer	ural Gas	Id Yen	0.85 Density 43 7 0=1.3kg/m3N		1		ું. જ	13.1	ı	8.74 6.84		28.5		7,60	7		21.7		20.1		19.2	17.6	X 23		13.1				2		128,342	8	1.251	36.52	
at Esfat	N N	KEUTC, A	28.4	Mano, Real ps.	I	5.5	<b>.</b>	0.0	9.1	. 0.1	;	9	0.0		;		0.2		0,		0.2	0.2	2 6			Ĕ			C3	32.5	2 2 2	0.02			
Monitoring Results for Unit 3 at Estahan 1979	Fuel Type: Heavy Oil (Htonsch) & Natural Gas (H,000m3N/h) Ourput: 75MW	1. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data	f. moeratud		Ι.	2			ę.		٠.:		8		:		£	:				8	:	•		The Representative Point			-	۳	126.982	1.126	1.143	36.52	9.63%
esults fo	io XX	S & Co	840,5 Pitot coef. 631 Ethnol Temoratu	O.ps.		5 S	<del>Q</del>	1,50	62.1	₹ 8	?	3	8	8 3	3		<u> </u>	250	265		130	120	150			Cepresent		į	) L	(mm)		ht (g)	(g)	1 1.1	1
oring R	ž Š	amic, F	631	Zero (mm)	L	• •	0	-	-	00	•	ľ	~	<b>.</b>	>		(4 f	10	0		4	₹ .	00		» Le	≖ The §	• :	į	water Content	Temp. Average (C) Gas Manometer (mm)	Pre. Weight (g)	Balance Weight (g)	fotal Weight (g)	No. (mmHg) Xw (%)	Average Xw (%)
Mont	Fuel	À	P.	1	₹ :	7 ? 2 \$	¥		13-2	5 5 4		Ö	ន	<u>;</u>	5		3 2	ដ្ឋ	ğ		3	7 0	<u> 3</u>		Average		:	•	\$ •1	Cas Cas	1 0	Balar	Total	Pv. (mr Xw (%)	٧٥٢






Velocity Deviation Distribution Graph				01					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4			Temperature Deviation Distribution Graph		The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th			30///		10//			30,	100	1								
Velocity (m/s)	6 Average	17.8	1	717	27.61		25.5	;	Ğ	_	Mion # 4.2			Temperature (C)	[[	6 Average	7697		9121 —	171.3		170.6	4.56	3	3 121		j						
4. Velocity (m/s) / Deviation	1 2 3 4 5	72 10 13.8 12.2	- Co	7.0 -9.2	Ĺ	-15.2 -3.8	25.2 24.4 24.5 27.8	6.0 6.2	1.1 5.3 16.5 14.6	22.1 20.3 21.1	Standard Deviation **		•	5. Temperature (C) / Deviation		1 2 3 4 5	ा राज्या हाका	-6.9 7.1			13.1	167.1 174.0 1.	6.6 3.8	77.	3.0 2.0 11.0	164.3 167.2 177.2	Standard Deviation	Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street St		Deviation =	(Vehicity Average Velocity), X10	Standard Deviation	
		<		<b>=</b>	ပ		ā		ĸ	Average							<		=	Ú	:	۵	1	괴		Average	:						
0-16:00) 65MW	w Data	$\prod$		Velocity (m/s)	21.0	18.5	13.8	17.9		23.1	19.0	18.1	24.7			18.6	15.6	20.3	22.3		25.2	24.4	24.5	27.8		8	7.7	24.1	4.62	28.0			21.9
(1999/2/22, 10:00-16:00) Output : 165MW	J. Dynamic, Real & Static Pressure, and Temperature & Velocity Raw Data		_	7 (kg(m3)	l l			0,660		3 0,677			5 0.655				0.677		0.652		1 0.673			3 0.660		- 1				0.655			23.3 -0.238 171.5 0.665
(1999/ ed)	ure & V.	8		•	160.6			175.0		163.6			178.5			161,2			180.2		166.4		•	174.8		347				178			38 171.
P/P confirm	empera	11y (5/cm	Jagamin.	ps. S.ps.	21.2	16.2 -0.625	8.9 -0.002	0.4I		25.6	17,2 -0,752	15,2 -0,131	3.2		į	16.6	998.0- 9:11	0.020	23.0		30.2	28.2 -0.601	8.0 -0.385	36.0				27.20.621	8.2 -0.170	2.5			3.3 -0.2
Esfahan was not	re, and T	0.85 Density (g/cm3)	20 70-1.3kg/m/N	Mano, Real ps. S.ps. Incl. (mm) (mm)	ı			0.1 7		0.2						0.2	0.2		0,2 2,		0.2		0.2			ı				0.2 0.2			7
Init 4 ut	ic Pressu	_		T.ps. Mano (mm) Incl.		8	115				:						35	:15				5							25				
Monitoring Results for Unit 4 at Esfahan P/P Fuel Type: Heavy Oil (the Q'tyfn was not confirmed)	il & Stati	844 Prior coel.	6.3.2. Water Temperature	D.ps. T. (mm) (m	290	230 230		200		182	140		195			135	110	140	160		190			225				190	240	230			
ring Kes	mic, Re	144 Pr	6,1,2 W	Zero D (mm)	1.	88	5	2		2	2	Ŋ	Z			52	22	45	45		36	36	45	5	•		፠	3	69	ę.			إيو
Monito Fuel Ty	J. Dyns	i di	mmH	Press	  -  -	7-5 V	۲-5	4	A-5		2	0.3	4	й. Х	B-6	៉ូ	ö	<u>5</u>	<u>.</u>	3 8	ā	D-2	3	7	6	9.0	ទី	3	្ជ	<u>.</u>	જ	93	Average

2. Water Content						2, Sout Concentration		
	Ŀ	77	7	22.0	_		1 C-3	2 C3
Tenn Average (C)		01		101	:	Temp, Average (°C)	8	5
Gas Manometer (mm)	23	0.147	2	0.147		Gas Manometer (mm)	4 0.294	4 0.294
Pre Weight (g)	125.185	121.234	124.150 122.883	122.883		Nozzle Diameter	mm 9	, mm 9
Post Weight (g)	125 234	122.590	124.210 124,622	124,622	1	Om (Equal Velocity A)	14.3 L/min	·14.3 L/min
Balance Weight (g)	0.05	1.36	000	1.74		Collected Soot Amount	0.037 g	0.032 g
Total Weight (g)	14.		1.80			Sucked Stack Gas V(L)	320	400 313
Sucked Volume (L)	20		20		÷ .	Pv. (mmHg)	7.88	8.45
Pv. (mmHg)	Š		9.04			Soot Concentration	0.117 g/m3N	0.100 g/m3N
Xw (%)	9.94%		12,38%		:	Ave, Soot Concentration	0.109 g/m3N	
Average Xw (%)	1.6%					O2 Conversion Value	NEm/g	P/m3N Ave.Oz #####

The Representative Point

2, Water Content

00.0	Ş	0.0	ç	UU-U	0.00	00-0	000	00-0	800	00:0	000	AVE
	3	3	3	3	20-0					ı		
SOZinani												######
	-			_		_			_			200
NOK(35m)	_											
		_						_		_		北京村北京
- - - -												
(0)(0)									L			おおおななな
2				_								
NO. (03)	_						_					PFRFF

