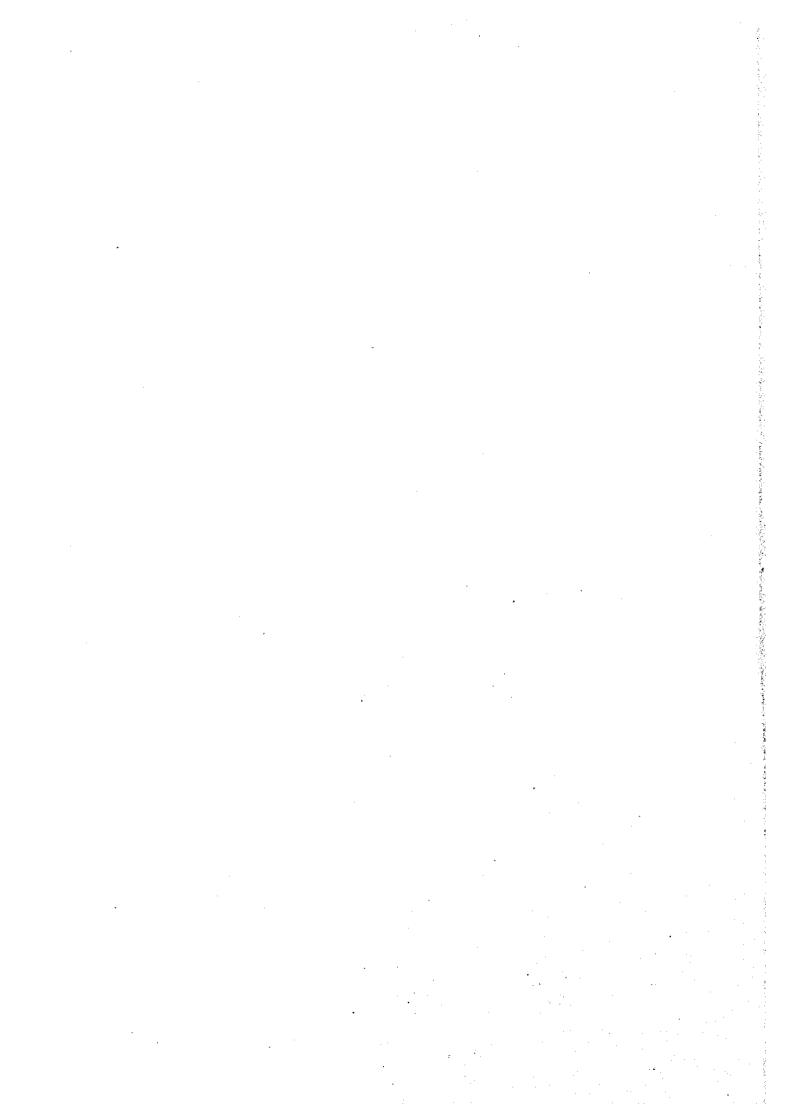
TOP CARE LIVE COMPANY

MARAN MYHRRYATHOMAL CIDIOPERCHEN MARAN

CECTEANT OF CHARLEST WERE REPORTED THE TOTAL SECTION AND SECOND AND SECONDARY CONTRACTOR OF THE PROPERTY OF TH

MO MATERIANA MERENAMENT MORE SENDENTA MORE COLA MATORIANI SENDAMENTA MENDAMENTA MONEMANI ME ATT DEM SENDAMBERTANA CHANILA DESE PRE COLA ELA CENTRO MONEDIESE MESCU


THO ESH, WARES

ACTORIA DIVILLY DECEMBER

JON LIBRARY

J. 1154072 [1]

阿哥四个对于 医电压 医环心结节

JAPAN INTERNATIONAL COOPERATION AGENCY

()

THE KINGDOM OF THAILAND BANGKOK METROPOLITAN ADMINISTRATION

THE STUDY FOR THE MASTER PLAN ON SEWAGE SLUDGE TREATMENT/DISPOSAL AND RECLAIMED WASTEWATER REUSE IN BANGKOK IN THE KINGDOM OF THAILAND

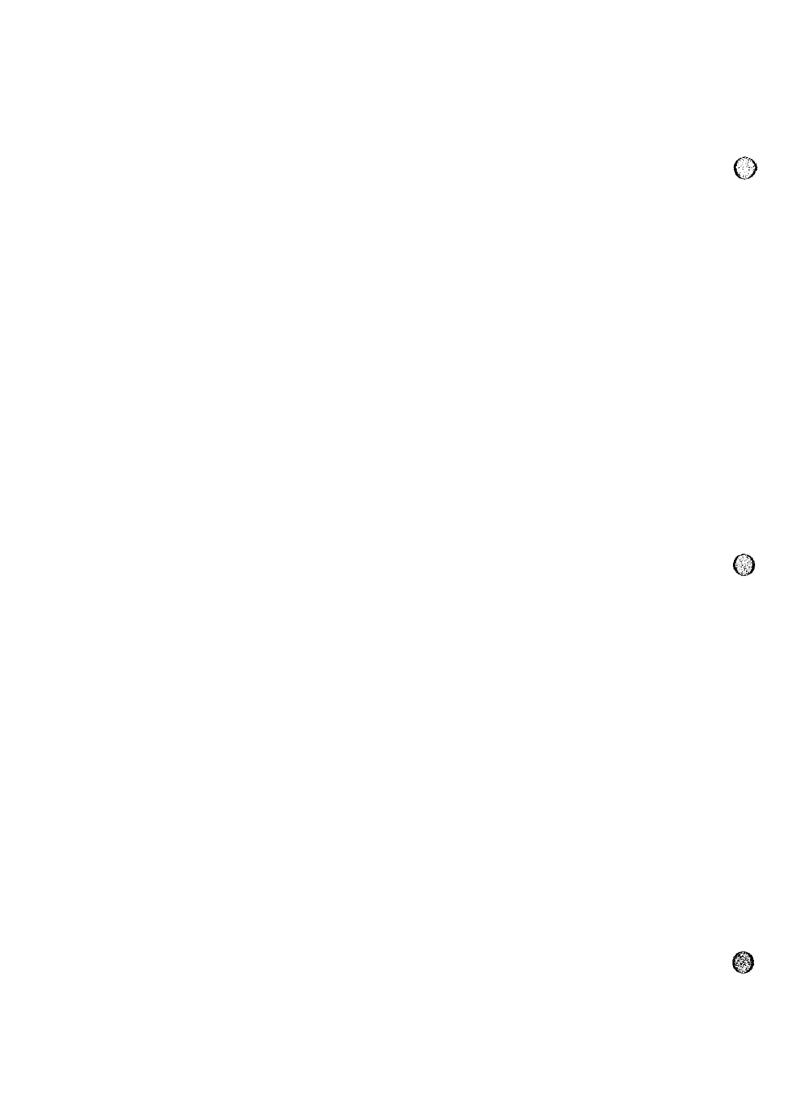
FINAL REPORT Vol. IV DATA BOOK

OCTOBER 1999

NIPPON KOEI CO., LTD.

1154072 {1}

THE STUDY FOR THE MASTER PLAN ON SEWAGE SLUDGE TREATMENT/DISPOSAL AND RECLAIMED WASTEWATER REUSE IN BANGKOK


IN THE KINGDOM OF THAILAND

FINAL REPORT

DATA BOOK

Table of Contents

- A. EXISTING, ONGOING AND PLANNED MAJOR BMA WASTEWATER SCHEMES
- B. SOLID WASTE LANDFILL SITES
- C. BMA COMMUNITY WASTEWATER TREATMENT PLANTS AND KHLONG WATER IMPROVEMENT LAGOONS INSPECTED BY THE STUDY TEAM
- D. PRIVATE WASTEWATER TREATMENT PLANTS INSPECTED BY STUDY TEAM
- E. FORECASTS OF FUTURE POPULATION IN PROPOSED SCHEME AREAS
- F. RELEVANT WATER QUALITY STANDARDS
- G. ANALYSIS OF KHLONG WATER QUALITY SURVEYS
- H. UNIT COSTS
- I. HYDRAULIC DESIGN CALCULATIONS FOR MAIN INTERCEPTOR SEWERS FOR PROPOSED WASTEWATER SCHEMES
- J. WASTEWATER QUALITY DETERMINED BY YANNAWA PROJECT CONTRACTOR
- K. WASTEWATER QUALITY IN LUMPHINI DETERMINED BY JICA EXPERT
- L. STUDY AND COUNTERPART TEAM WASTEWATER SURVEY RESULTS
- M. RECORDS OF WASTEWATER TREATMENT PLANT PERFORMANCE

A. EXISTING, ONGOING AND PLANNED

MAJOR BMA WASTEWATER SCHEMES

the first of the second of the

Scheme Name and Area Si Phraya (1st Scheme)

Catchment Area

 $2.7 \, \mathrm{km}^2$

Population

Population and forecast population of area

Designed for 120,000 in 2009

Serviced population and forecast serviced population of area

Total population of area forecast as 104,690 in 2017 (Wastewater User Charge Study, 1998) Assume fully serviced by scheme

Population density

388 per ha in 2017

Flow

· Dry weather flow

Design capacity: 30,000 m³/d Currently 20,000 m³/d

Peak flow in foul sewers

Not known

· Max fully treated flow

20,000 m³/s (limited by current pumping capacity)

Influent quality

Average BOD: 61 mg/l (October 1995 - April 1999), max.

Monthly average: 89 mg/l. Full records are included in Table M1 in Data Book

M

Night soil

None received

Effluent quality

Average BOD: 5 mg/l (October 1995 - April 1999), max.

Monthly average: 9 mg/l Full records are included in Table M1 in Data Book M.

Sludge produced

Volume produced

1.6 m³/d average over 19 months (October 1995 - September 1996 and March - September 1998), currently reported to be 1.8 m³/d

Dry solids produced

0.11 1/d (October 1996 - September 1997), currently calculated to be 0.3 1/d.

1.0 t/d assumed in future

Percentage of dry solids

6 % (October 1996 - September 1997), currently reported to be 15%

Per capita dry solids

2 g/c/d (calculated from 120,000 population)

 Stabilisation in plant None

Sewers

• Type of system

Interceptor system on combined sewers

Length of foul sewers

2.3 km

· Sewer sizes

600 - 1,200 mm dia.

No of interceptors

14

No of manholes

36

· No of pumping stations

1

· Capacity of pumping station

Not known

Wastewater Treatment Plant

Process

Contact stabilisation activated sludge

· Process units

Coarse and fine screens, Flow balancing and pumping, Acrated grit separators, Mixed liquor contact aeration tanks, Rectangular scraped clarifiers, Return activated sludge stabilisation aeration tanks, Chlorination, Polymer dosing and sludge floculation tanks, Sludge gravity thickeners, Sludge storage tanks, Polymer dosing and sludge belt presses, Sludge cake to skips, Rapid gravity sand filter for effluent used for road washing only.

· Site area

0.30 ha

• Housing

Fully housed

Implementation

Completion

1994

· Current status

Operational

Ratanakosin (2nd Scheme)

Catchment Area

 4.1 km^2

Population

- Population and forecast population of area Designed for 160,000 in 2011
- Serviced population and forecast serviced population of area
 Total population of area forecast as 93,675 in 2017 (Wastewater User Charge Study, 1998)
- Population density
 228 per ha in 2017

Flow

- Dry weather flow Design capacity: 40,000 m³/d
- Peak flow in foul sewers
 5 x DWF = 200,000 m³/d
- Max fully treated flow $2.5 \times DWF = 100,000 \text{ m}^3/\text{d}$

Influent quality Not known

.....

Night soil

None will be received

Effluent quality Not known

Sludge to be produced

- Volume produced 40 m³/d from Design Report
- Dry solids produced 8 t/d from Design Report
- Percentage of dry solids
 20 % design requirement
- Per capita dry solids 70 g/c/d calculated
- Stabilisation in plant None

Sewers

• Type of system
Interceptor Sewerage on existing Combined Drainage

 Length of foul sewers Not known

Sewer sizes

300 - 1,500 mm dia.

No of interceptors

4

No of manholes

Not known

No of pumping stations

Only at WWTP

• Capacity of pumping stations

5 x DWF to preliminary treatment

Wastewater Treatment Plant

Process

2 stage activated sludge

· Process units

Coarse and fine screens, aerated grit channels, 2 circular path 1st stage aeration tanks with diffused air, 4 horizontal flow intermediate clarifiers, 2 circular path 2nd stage aeration tanks with diffused air, 4 horizontal flow final clarifiers, post aeration, sludge gravity thickeners, sludge belt presses.

Site area

0.64 ha

Housing

Plant on 3 operational floors with full air management and odour control.

Implementation

Contract start

1993

• Current status (November 1998)

80 % complete but contract halted

Planned completion

1999

Din Daeng - BMA Stage 1 (3rd Scheme)

Catchment Area

37.8 km²

Population

- Population and forecast population of area
 697,875 in 1990, 1,080,175 in 2015. Designed for 1,080,000 in 2011
- Serviced population and forecast serviced population of area
 Total population of area forecast as 1,169,930 in 2017 (Wastewater User Charge Study, 1998) Assume will be 92 % serviced in 2017
- Population density
 310 per ha in 2017

Flow

· Dry weather flow

Design capacity: 341,289 m³/d for Stage 1 and 2, and 463,104 for Stage 3

• Peak flow in foul sewers and preliminary treatment
5 x DWF: 1,706,400 m³/d for Stage 1 and 2, and 2,315,520 m³/d for Stage 2.

· Max fully treated flow

 $1.5 \times DWF = 511,920 \text{ m}^3/\text{d}$ for Stage 1, 2.5 x DWF for Stage 2 = 833,200 m³/d and for Stage 3 = 1,157,760 m³/d.

Influent quality

Assumed for Stage 1: BOD 150 mg/l, SS 150 mg/l, N 30 mg/l, P 8 mg/l Assumed for Stage 2: BOD 200 mg/l, SS 200 mg/l, N 35 mg/l, P 10 mg/l

Night soil

None will be received

Effluent quality

Design limit for average quality: BOD 20 mg/l, SS 30 mg/l, N (total) 10 mg/l, NH₃(N) 5 mg/l, P 2 mg/l, DO 5 mg/l

Studge to be produced

Volume produced

Stage 1: 250 m³/d, Stage 2: 362 m³/d (NOSS Design Report - differs from Agricultural Use of Sludge Study: AIT,1998)

Dry solids produced

Stage 1: 34.1 t/d before lime addition, Stage 2: 51.2 t/d before lime addition (differs from Agricultural Use of Sludge Study)

Percentage of dry solids
 20 % design requirement

Per capita dry solids

49 g/c/d calculated for Stage 1 and 47 g/c/d for Stage 2 from above - this does not include lime addition (differs from Agricultural Use of Sludge Study: AIT,1998)

• Stabilisation in plant

Partial lime stabilisation

Sewers

Type of system

Interceptor sewer system collecting from existing combined sewers

· Length of foul sewers

66.4 km

Sewer sizes

200 - 3,200 mm dia.

No of interceptors

439

No of manholes

980

No of pumping stations

6

Capacity of pumping stations

Up to 350,000 m³/d

Wastewater Treatment Plant

Process

Activated sludge with nitrification and de-nitrification

Process units

Inlet pumping station, Bar screens, Aerated grit chambers, Aeration tanks with anoxic zones and diffused air system, Circular scraped clarifiers with chemical dosing for P removal, Sludge gravity thickeners, Sludge belt presses, Lime mills and Sludge cake dosing.

Site area

2.72 ha

• Housing

Fully housed plant with operational plant on 2 floors. Air management and odour control for preliminary treatment only.

Implementation

· Contract start

1993

Current status (November 1998)

86 % complete but contract suspended

Completion

Not known

Yannawa - BMA Stage 2 (4th Scheme)

Catchment Area

28.5 km²

Population

- Population and forecast population of area 560,000 in 1992, 900,000 in 2020. Designed in 2 phases for these populations
- Serviced population and forecast serviced population of area
 Total population of area forecast as 540,275 in 2017 (Wastewater User Charge Study, 1998) Assume will be fully serviced in 2017
- Population density
 190 per ha in 2017

Flow

Dry weather flow

Design capacity: 200,000 m³/d for Phase 1 and 2, and 360,000 for Phase 3

Peak flow in foul sewers and preliminary treatment

5 x DWF: 1,000,000 m³/d for Phase 1 and 2, and 1,800,000 m³/d for Phase 2.

· Max fully treated flow

 $1.5 \times DWF = 300,000 \text{ m}^3/\text{d}$ for Phase 1, $2.5 \times DWF$ for Phase $2 = 500,000 \text{ m}^3/\text{d}$ and for Phase $3 = 900,000 \text{ m}^3/\text{d}$ for Stage 3.

Influent quality

Assumed for Phase 1: BOD 150 mg/l, SS 150 mg/l, N 30 mg/l, P 8 mg/l Assumed for Phase 2: BOD 200 mg/l, SS 200 mg/l, N 35 mg/l, P 10 mg/l

Night soil

- Volume delivered 1,000 m³/d
- Quality

Assume COD 35,000 mg/l, BOD 4,000 mg/l, TS 25,000 mg/l, TDS 6,000 mg/l, SS 19,000 mg/l, P 310 mg/l, pH 7.2, Alkalinity (CaCO₃) 1,800 mg/l, Grease 440 mg/l.

Effluent quality

Design limit for average quality: BOD 20 mg/l, SS 30 mg/l, N (total) 10 mg/l, NH₂(N) 5 mg/l, P 2 mg/l, DO 5 mg/l

Studge to be produced

Volume produced

Wastewater sludge at 20 % dry solids = 215 m³/d in Phase 1 & 2, and 442 m³/d in Phase 3 calculated from solids quantities excluding lime addition. Lime is proposed to be added at 5 kg/kg ds which is considered excessive.

• Dry solids produced

24.0 t/d from wastewater + 19.0 t/d from night soil = 43.0 t/d in Phase 1 and 2, 31.6 t/d from wastewater + 19.0 t/d from night soil = 50.6 t/d in Phase 3 from Design Report excluding lime addition.

Percentage of dry solids

20 % design requirement

• Per capita dry solids

53 g/c/d calculated for Phase 1 and 2 and 43ghd for Phase 3 from above - this does not include lime addition (differs slightly from Agricultural Use of Sludge Study: AIT, 1998)

• Stabilisation in plant

Lime stabilisation of wastewater sludge only.

Sewers

Type of system

Interceptor sewer system collecting from existing combined sewers

Length of foul sewers

53 km

Sewer sizes

150 - 2,250 mm dia

No of interceptors

429

No of manholes

589

No of pumping stations

3

Capacity of pumping stations

106 - 1,513 l/s

Wastewater Treatment Plant

Process

Sequential batch reactor activated sludge (CASS)

Process units

Inlet pumping station, Dynamic grit separators, Fine bar screens with compactors, Pumps to reactor basins with provision for chemical dosing for P removal, Reactor basins, Collection and cascade outfall, Sludge gravity thickeners, Sludge belt presses with polymer pre-conditioning, alum and lime dosing.

• Site area

3.2 ha

Housing

Fully housed plant on 4 operating floors

Implementation

- Contract start 1995
- Current status (November 1998)
 Design and construction 79 % complete
- Completion 1999

Nong Khaem - BMA Stage 3 (Part of 5th Scheme)

Catchment Area

42.9 km²

Population

Population and forecast population of area

178,000 in 1992, 450,000 in 2020. Designed in 2 stages for these populations

Serviced population and forecast serviced population of area

Total population of area forecast as 362,685 in 2017 (Wastewater User Charge Study, 1998) Assume will be 49 % serviced in 2017 assuming Stage 2 does not proceed

· Population density

85 per ha in 2017

Flow

Dry weather flow

Design capacity: 157,000 m³/d for Stage 1 Phase 1 and 2, not specified for Stage 2

· Peak flow in foul sewers and preliminary treatment

5 x DWF: 785,000 m³/d for Stage 1, not specified for Stage 2

• Max fully treated flow

 $1.5 \times DWF = 236,000 \text{ m}^3/\text{d}$ for Phase 1, $2.5 \times DWF$ for Phase $2 = 393,000 \text{ m}^3/\text{d}$ for Stage 1, not specified for Stage 2

Influent quality

Assumed for Phase 1: BOD 150 mg/l, SS 150 mg/l, N 30 mg/l, P 8 mg/l Assumed for Phase 2: BOD 200 mg/l, SS 200 mg/l, N 35 mg/l, P 10 mg/l

Night soil

No new provision for night soil deliveries. Existing plant to remain

Effluent quality

Design limit for average quality: BOD 20 mg/l, SS 30 mg/l, N (total) 10 mg/l, NH₃(N) 5 mg/l, P 2 mg/l, DO 5 mg/l

Sludge to be produced

· Volume produced

73.0 m³/d (Agricultural Use of Sludge Study: AIT,1998) for Stage 2

• Dry solids produced

14.5 t/d (Agricultural Use of Sludge Study: AIT,1998) for Stage 1

Percentage of dry solids

20 % design requirement

Per capita dry solids

32 g/c/d (Agricultural Use of Sludge Study: AIT,1998)

Stabilisation in plant
 Digestion plant for sludges from Nong Khaem, Ratburana and Yannawa

Sewers

Type of system

Interceptor sewer system collecting from existing combined sewers

· Length of foul sewers

42.1 km

· Sewer sizes

300 - 2,300 mm dia.

No of interceptors

208

• No of manholes

356

No of pumping stations

8

· Capacity of pumping stations

Up to 785,000 m³/d

Wastewater Treatment Plant

Process

Activated sludge (vertical loop reactor)

· Process units - wastewater treatment

Coarse and fine screens, Vortex grit separators, Vertical Loop Reactor aeration tanks with both diffused air and surface aeration, Horizontal flow clarifers with ferric chloride addition for phosphate removal, Diffused air flotation sludge thickeners.

· Process units - central sludge treatment

Sludge cake rapid mix and slurry preparation tanks, Mesophilic anaerobic sludge digesters with membrane gas holders, Sludge belt presses.

· Site area

8.32 ha

Housing

Open plant

Implementation

Contract start

1996

Current status (November 1998)

Design and construction 20 % complete

Completion

2001

Ratburana - BMA Stage 3 (Part of 5th Scheme)

Catchment Area

42.3 km²

Population

Population and forecast population of area

177,000 in 1992, 375,000 in 2020. Designed in 2 stages for these populations

Serviced population and forecast serviced population of area

Total population of area forecast as 435,195 in 2017 (Wastewater User Charge Study, 1998) Assume will be 42 % serviced in 2017 assuming Stage 2 does not proceed or 86 % if it does.

• Population density

103 per ha in 2017

Flow

Dry weather flow

Design capacity: 65,000 m³/d for Stage 1 Phase 1 and 2, 130,000 m³/d for Stage 2

· Peak flow in foul sewers and preliminary treatment

5 x DWF: 650,000 m³/d for Stage 1 and 2

· Max fully treated flow

 $1.5 \times DWF = 98,000 \text{ m}^3/\text{d}$ for Phase 1, 2.5 x DWF for Phase 2 = 163,000 m $^3/\text{d}$ for Stage 1, 325,000 m $^3/\text{d}$ for Stage 2

Influent quality

Assumed for Phase 1: BOD 150 mg/l, SS 150 mg/l, N 30 mg/l, P 8 mg/l Assumed for Phase 2: BOD 200 mg/l, SS 200 mg/l, N 35 mg/l, P 10 mg/l

Night soil

 Volume delivered 400 m³/d

Quality

Assume COD 35,000 mg/l, BOD 4,000 mg/l, TS 25,000 mg/l, TDS 6,000 mg/l, SS 19,000 mg/l, P 310 mg/l, pH 7.2, Alkalinity (CaCO₃) 1,800 mg/l, Grease 440 mg/l.

Effluent quality

Design limit for average quality: BOD 20 mg/l, SS 30 mg/l, N (total) 10 mg/l, NH₂(N) 5 mg/l, P 2 mg/l, DO 5 mg/l

Sludge to be produced

• Volume produced

55.0 m³/d (Agricultural Use of Sludge Study: AIT, 1998) for Stage 1.

• Dry solids produced

11.0 t/d (Agricultural Use of Sludge Study: AIT, 1998) for Stage 1

Percentage of dry solids

20 % design requirement

per capita dry solids

45 g/c/d (Agricultural Use of Sludge Study: AIT, 1998)

• Stabilisation in plant

None proposed

Sewers

· Type of system

Interceptor sewer system collecting from existing combined sewers

· Length of foul sewers

21.7 km

· Sewer sizes

300 - 2,300 mm dia.

No of interceptors

164

· No of manholes

162

No of pumping stations

5

· Capacity of pumping stations

Up to $325,000 \text{ m}^3/\text{d}$ (5 x DWF)

Wastewater Treatment Plant

Process

Activated sludge (vertical loop reactor)

Process units

Coarse and fine screens, Vortex grit separators, Vertical Loop Reactor aeration tanks with both diffused air and surface aeration, Horizontal flow clarifers with ferric chloride addition for phosphate removal, Diffused air flotation sludge thickeners, Sludge belt presses, Lime addition to sludge cake.

Site area

1.41 ha

Housing

Housed plant, but with odour control for preliminary treatment units

Implementation

Contract start

1996

Current status (November 1998)

Design and construction 20 %

Completion

2001

Chatuchak - BMA Stage 4 (6th Scheme)

Note the extent of this scheme is being reviewed in July

1999 in view of budget constraints.

Catchment Area

33.4 km²

Population

- Population and forecast population of area 430,000 in BMA plan (432,000 in Agricultural Use of Sludge Study: AIT,1998)
- Serviced population and forecast serviced population of area Total population of area forecast as 320,401 in 2017 (Wastewater User Charge Study, 1998) Assume mostly serviced by scheme
- Population density 96 per ha in 2017

Flow

· Dry weather flow

Design capacity: 150,000 m³/d (115,200 m³/d in 2000, 127,900 m³/d in 2010 and 150,000 m³/d in 2020)

- Peak flow in foul sewers and preliminary treatment 5 xDWF: 750,000 m³/d
- Max fully treated flow

 $1.5 \times DWF = 225,000 \text{ m}^3/\text{d}$ for Phase 1, $2.5 \times DWF = 375,000 \text{ m}^3/\text{d}$ for Phase 2

Influent quality

Assumed for Phase 1: BOD 150 mg/l, SS 150 mg/l, N 30 mg/l, P 8 mg/l Assumed for Phase 2: BOD 200 mg/l, SS 200 mg/l, N 35 mg/l, P 10 mg/l

Night soil

None to be delivered

Effluent quality

Design limit for average quality: BOD 20 mg/l, SS 30 mg/l, N (total) 10 mg/l, NH₃(N) 5 mg/l, P 2 mg/l, DO 5 mg/l

Sludge to be produced

- Volume produced
 - 67.0 m³/d (Agricultural Use of Sludge Study: AIT,1998) for Stage 1.
- Dry solids produced
 - 13.4 t/d (Agricultural Use of Sludge Study: AIT,1998) for Stage 1
- Percentage of dry solids

20 % design requirement

• Per capita dry solids

31 g/c/d assumed and used to derive quantities (Agricultural Use of Sludge

- Study: AIT,1998)

Stabilisation in plant

None proposed

Sewers

Type of system

Interceptor sewer system collecting from existing combined sewers

Length of foul sewers

31 km

· Sewer sizes

400 - 2,250 mm dia.

No of interceptors

300

· No of manholes

Not known

No of pumping stations

3

• Capacity of pumping stations

 $150,000 - 900,000 \text{ m}^3/\text{d} (6 \times \text{DWF})$

Wastewater Treatment Plant

· Process - wastewater treatment

Bid documents requires screening, grit removal, storm flow separation, biological and/or chemical treatment

Process – sludge treatment

Anacrobic digestion has now been selected from options in bid document.

• Site area

1.12 ha

Housing

Fully housed

Implementation

• Contract start

1999

• Current status (November 1998)

Tenders submitted and contract being negotiated

• Completion

2003

Khlong Toey (7th Scheme)

Note scheme not committed - information from SAPROF

Study for OECF,1998

Catchment Area

57.15 km²

Population

- Population and forecast population of area 694,000 in 2017. Previously 847,000
- Serviced population and forecast serviced population of area
 Total population of area forecast as 813,590 in 2017 (Wastewater User Charge Study, 1998) Assume mostly serviced by scheme
- Population density
 142 per ha in 2017

Flow

Dry weather flow

Design capacity: 261,000 m³/d. Previously 320,000 m³/d.

· Peak flow in foul sewers and preliminary treatment

5 x DWF: 1,035,000 m³/d

· Max fully treated flow

 $1.5 \times DWF = 391,500 \text{ m}^3/\text{d}$

Influent quality

Assumed for Phase 1: BOD 150 mg/l, SS 150 mg/l, N 30 mg/l, P 8 mg/l Assumed for Phase 2: BOD 200 mg/l, SS 200 mg/l, N 35 mg/l, P 10 mg/l

Night soil

None to be delivered

Effluent quality

Design limit for average quality: BOD 20 mg/l, SS 30 mg/l, N (total) 10 mg/l, NH₃(N) 5 mg/l, P 2 mg/l, DO 5 mg/l

Sludge to be produced

- Volume produced 170 m³/d
- Dry solids produced
 33.93 t/d based on 1 kg/kg BOD
- Percentage of dry solids
 20 % design requirement
- Per capita dry solids 49 g/c/d
- Stabilisation in plant None proposed

Sewers

• Type of system

Interceptor sewer system collecting from existing combined sewers

• Length of foul sewers

92 km

· Sewer sizes

 $150 - 2,800 \, \text{mm}$

Wastewater Treatment Plant

Process

Nitrifying activated sludge plant

· Process units

Coarse screen, Grit separation, Storm flow separation, Activated sludge aeration tank with mixed liquor re-circulation, Rectangular scraped clarifiers, Final aeration, Centrifugal sludge thickeners, Dewatering centrifuges.

• Site area

3.2 ha

Housing

Fully housed

Implementation

Feasibility Study being arranged in 1999

Thonburi (8th Scheme)

Note scheme not committed - information from SAPROF

Study for OECF, 1998

Catchment Area

51.2 km²

Population

- Population and forecast population of area 1,381,000 in 2017. Previously 1,531,000
- Serviced population and forecast serviced population of area
 Total population of area forecast as 1,160,415 in 2017 (Wastewater User Charge Study, 1998) Assume mostly serviced by scheme
- Population density
 227 per ha in 2017

Flow

Dry weather flow

Design capacity: 518,000 m³/d. Previously 575,000 m³/d.

· Peak flow in foul sewers and preliminary treatment

5 x DWF: 2,590,000 m³/d

· Max fully treated flow

 $1.5 \times DWF = 778,000 \text{ m}^3/\text{d}$

Influent quality

Assumed for Phase 1: BOD 150 mg/l, SS 150 mg/l, N 30 mg/l, P 8 mg/l Assumed for Phase 2: BOD 200 mg/l, SS 200 mg/l, N 35 mg/l, P 10 mg/l

Night soil

None to be delivered

Effluent quality

Design limit for average quality: BOD 20 mg/l, SS 30 mg/l, N (total) 10 mg/l, NH₁(N) 5 mg/l, P 2 mg/l, DO 5/mg/l

Sludge to be produced

- Volume produced 338 m³/d
- · Dry solids produced

67.34 1/d based on 1 kg/kg BOD

- Percentage of dry solids
 20 % design requirement
- Per capita dry solids

49 g/c/d

• Stabilisation in plant

None proposed

Sewers

• Type of system

Interceptor sewer system collecting from existing combined sewers

Length of foul sewers

97 km

Sewer sizes

150 - 3,800 mm

Wastewater Treatment Plant

Process

Nitrifying activated sludge plant

• Process units

Coarse screen, Grit separation, Storm flow separation, Activated sludge aeration tank with mixed liquor re-circulation, Rectangular scraped clarifiers, Final aeration, Centrifugal sludge thickeners, Dewatering centrifuges.

• Site area

4.8 ha

· Housing

Fully housed

Implementation

No committed programme

B. SOLID WASTE LANDFILL SITES

SOLID WASTE LANDFILL SITES

Site Name and Location

Lat Krebang

Management

Privately managed under 5 year contract commenced 1994

about 6 million t

About 3 months

Capacity

Total

Daily quantity accepted 3,500 t/d

Remaining capacity (January 1999)

When expected to be full 1999

1 1 CH

Plans when full Contractor preparing new site in

Samuk Prakarn

Site Area

35 ha

Site Access

Poor unpaved track

Waste Delivery

Contractor collects from On-Nut Transfer Station

Costs

Contractor paid Baht 149 per tonne

Environmental Control

Cover No regular soil cover, most of waste

exposed during inspection. 300mm

soil cover planned.

Base lining 300 mm clay scal

Leachate management Leachate collection and treatment in

acrated lagoons but acrators not operating during inspection

Gas management None

Odour control Spray masking but notfunctioning

during inspection

Site management Poor and environmentally

unsatisfactory

Complaints from neighbours Reported complaints

Waste segregation Segregation during waste collection

but also seavengers on landfill site

Night soil or wastewater sludges accepted No

Site Name and Location

Kamphangsaen

Management

Privately managed under contract commenced 1989

Capacity

Total

40 million t

Daily quantity accepted

4,000 t/d

Remaining capacity (January 1999)

38 million t, sufficient for more than

30 years

When expected to be full

after 2020

Site Area

160 ha

Site Access

Good paved track

Waste Delivery

Contractor collects from Nong Khaem and Tharaeng

Transfer Stations

Costs

Contractor paid Baht 173 per tonne from Nong Khaem and

Baht 214 per tonne from Tharaeng

Environmental Control

Cover

regular soil cover

Base lining

20 m clay seal

Leachate management

Leachate collection and treatment in

aerated lagoons

Gas management Odour control

None None

Good

Site management

Complaints from neighbours

No neighbours

Waste segregation

None at site

Night soil or wastewater sludges accepted

No

C. BMA COMMUNITY WASTEWATER TREATMENT PLANTS AND KHLONG WATER IMPROVEMENT LAGOONS INSPECTED BY THE STUDY TEAM

.

en karalinen erikainen erikainen erikainen erikainen erikainen erikainen kontaktionen erikainen erikainen erik Erikainen erikainen

Name and Function

Huay Kwuang Wastewater Treatment Plant

Serves 38 local residential apartment blocks with a predominantly separate sewerage system and WWTP

Management

BMA

Plant constructed in 1975 for NHA, transferred to BMA in 1990.

Location

Huay Kwuang

Operating Units

Coarse bar screen,

Lift pumps

Bar screens

Grit channels

Primary settlement tanks

Conventional activated sludge plant

Secondary settlement tanks

Return sludge lift pumps

Chlorination plant (not used)

Sludge storage and sludge consolidation tanks

Sludge digestion

Sludge belt press

Condition and Development Plans

Clean and orderly plant with pleasant landscaping closely surrounded by apartment housing blocks. No treatment plant covering and odours evident. Biogas not utilised for heating, but gas mixing in digester. Excess gas is released periodically from digester without flare.

Incoming Flow and Quality

See performance records in Table M2 Data Book M.

Effluent Flow, Quality and Utilisation

See performance records in M2 Data Book M.

Some effluent used for watering the treatment plant site but most discharged to khlong.

Sludge Production

4 m³/d sludge cake at 14 % ds trucked for use in Sirikit Park in city.

Operation Staff

5 technical staff and 10 workers.

Other Information

BOD measured once per week, COD and SS three times per week

Name and Function

Klong Chan Community Treatment Plant

This is a septic tank/extended aeration process plant serving the local housing area. The plant only treats the overflow from the single septic tank.

Management

BMA

Location

Lat Phrao

Operating Units

Bar screen, Influent pump chamber, Aeration tanks, Secondary sedimentation tanks, Chlorination contact tank (not used), sludge sand beds.

Plant Condition and Development Plans

The aeration tanks suffer foaming problems. The plant is well kept although equipment is old.

Incoming Flow and Quality

Septic tank effluent inflow approx. 2,000m³/d but WWTP design capacity is 6,500 m³/d.

BOD 280 mg/l, COD 450 mg/l, SS 50 mg/l, pH 7

Effluent Quality

BOD 25 mg/l, COD 46 mg/l, SS 17 mg/l, pH 7 National Standard is 20:30 BOD:SS. Final effluent discharged to Khlong Chan.

Sludge Disposal

There is no regular removal of sludge cake from the sand bed.

Other Information

BOD, SS and pH analysed by BMA once a week.

(4)

Name and Function

Rama Indra Community Treatment Plant

This is a septic tank/extended acration process unit serving the local housing area. The plant only treats the overflow from the single septic tank.

Management

BMA

Location

North-East Bangkok

Operating Units

Bar screen, Pump chamber, Aeration tank with three floating aerators, Secondary sedimentation tanks, Chlorination contact tank (not used), Sludge sand beds.

Plant Condition and Development Plans

Plant is well kept but with ageing equipment.

Incoming Flow and Quality

Septic tank inflow approx. 400m³/d but WWTP design capacity is 800 m³/d. BOD 170 mg/l, SS 57 mg/l, pH 7

Effluent Quality

BOD 17 mg/l, COD mg/l, SS 24 mg/l, pH = 7 National Standard is 20:30 BOD:SS. Final effluent discharged to canal.

Sludge Disposal

No regular removal of sludge cake is from the sand beds.

Other Information

BOD, SS and pH analysed by BMA once a week.

Name and Function

Tung Song Houng WTP No 1

This is an aeration/polishing pond system serving the local population accepting the overflow from the septic tanks.

Management

BMA

Location

Don Muang

Operating Units

Inlet pumping chamber, Bar screen, Aeration pond with 5 surface aerators, Polishing pond. The polishing pond contains fish.

Plant Condition and Development Plans

This old plant is well kept. Mechanical equipment is generally old, although recently the aeration system has been replaced. There is a problem with algal growth in ponds which is raked out manually.

Incoming Flow and Quality

Actual flow 1,500m³/d, but WWTP designed for 3,000 m³/d BOD 109 mg/l, COD 119 mg/l, SS 55 mg/l, pH 7.3

Effluent Quality

BOD 20 mg/l, COD 47 mg/l, SS 25 mg/l, pH 7.6 National Standard is 20:30 BOD:SS. Final effluent discharged to Klong Bang Pood.

Siudge Disposal

No sludge is removed from the ponds.

Operation Staff

1 technical scientist and several labourers.

Other Information

Samples are analysed for BOD, COD, SS and pH by BMA site laboratory about twice a month.

Tung Song Houng WTP No 2

This is a conventional activated sludge plant serving the local population accepting overflow from septic tanks.

Management

BMA

Location

Don Muang

Operating Units

Inlet to balancing tank via bar screen, Aeration tank, Secondary settlement tank, Chlorination tank. Sludge drying bed. The sludge digestion tank is being used as a highrate aerobic system before secondary settlement.

Plant Condition and Development Plans

This plant has mechanical equipment which is generally old and much of the steel work is rusty and needs replacing.

Incoming Flow and Quality

Current inflow is 474m³/d but WWTP is designed for 700 m³/d. BOD 164 mg/l, COD 289 mg/l, SS 132 mg/l, pH 7.2

Effluent Quality

BOD 53 mg/l, COD 84 mg/l, SS 28 mg/l, pH = 7.5 National Standard is 20:30 BOD:SS.. Final effluent discharged to the Khlong.

Sludge Production and Quality

Sludge is removed from the bottom of the secondary settlement tank on to sand beds from where it is used as compost within the WWTP site.

Other Information

Samples are analysed for BOD, COD, SS and pH by the BMA site laboratory about once/twice a month.

Name / Function

Makkasan Pond

This is an aerated lagoon plant to improve Khlong Sam Sen water quality but there are also drain inlets.

Location & Address

Makkasan, Din Daeng

Operating Units

Aeration Pond with 3 – 12 day retention Sedimentation Pond 14 ha site

Incoming Flow

 $30,000 - 140,000 \text{ m}^3/\text{d}$, quality not known

Effluent Disposal

Final effluent discharged to the Klong Sam Sen.

Sludge Disposal

No sludge is wasted from the sedimentation pond.

Name | Function

Rama IX Pond

This is an aerated lagoon plant to improve Khlong Lat Phrao.

Location & Address

Lat Phrao

Operating Units

Aeration Pond Sedimentation Pond 8 ha site

Incoming Flow and Quality

30,000 - 60,000 m³/d BOD 15 mg/l., COD 30 mg/l., SS 100 mg/l.

Effluent Quality

BOD 10 mg/l., COD 21 mg/l., SS 56 mg/l. Final effluent discharged to the Khlong Lat Phrao

Sludge Disposal

No sludge is wasted from the sedimentation pond.

D. PRIVATE WASTEWATER TREATMENT PLANTS INSPECTED BY THE STUDY TEAM

Klang (Central) Hospital WWTP

Plant built in 1979 for a 200-bed hospital. Developed in 1985/1987 for 400 beds.

Location

Pom Prap Sattru Pra

Operating Units

Grit chamber with bar screen, Equalisation tank, Aeration tank, Secondary sedimentation tank, Chlorination contact tank.

Plant Condition

Plant operates adequately though mechanical equipment is old. The aeration system has been recently been replaced.

Incoming Flow and Quality

Inflow about 200m³/d. BOD 246 mg/l, COD 266 mg/l, pH 6.5

Effluent Quality and Disposal

BOD 8.5 mg/l, COD 76 mg/l, SS 40 mg/l, pH 6.5 National Standard is BOD:SS 20:30. Final effluent discharged to klong.

Sludge Disposal

Small amount of waste sludge used as liquid fertiliser.

Management Arrangement

Managed by BMA hospital staff on a part time basis.

Other Information

Samples analysed about twice a week.

Vajira Hospital WWTP

Plant built in 1983 for 500 bed hospital.

Location

Dusit

Operating Units

Bar screen and scum separator, Aeration tank, Secondary sedimentation tanks, Chlorination contact tank with fish in final chamber. Sludge belt-press with polymer addition.

Plant Condition and Development Plans

The plant is well maintained though mechanical equipment is old.

Incoming Flow and Quality

Inflow about 2,000m³/d BOD 90 mg/l, COD 150 mg/l, SS 65 mg/l, pH 7

Effluent, Quality and Disposal

BOD 17 mg/l, COD 30 mg/l, SS 24 mg/l, pH 7 National Standard is BOD:SS 20:30. Final effluent discharged to khlong.

Sludge Disposal

Sludge cake is used as compost on the site grounds.

Management Arrangement

Managed by BMA hospital staff part time by 4 labourers and 1 technician.

Other Information

Samples analysed by BMA site laboratory about once a week.

CP Tower WWTP

This is an extended activated sludge/aerobic system constructed in 1990 serving this 30-floor commercial building. Wastewaters are from offices, shops and restaurants. There are approx 2,000 staff and the WWTP has a design capacity for 6,000 p.e.

Location

Bang Rak

Operating Units

Equalisation tank and pre-acration tank

Contact aeration tank

Sedimentation tank

Chlorine contact tank

Effluent sump

Sludge sump

The design was by Unoimax Int of Bangkok.

Plant Condition

This plant is in good condition and located within the basement of the CP Tower.

Incoming Flow and Quality

Design inflow 480m³/d at 200 mg BOD/l.

Effluent, Quality and Disposal

National Standard is BOD:SS 20:30.

Final effluent discharged to drain.

Sludge Disposal

12 m³ of sludge is removed by vacuum road tanker once a year.

Management Arrangement

Managed by CP staff of which 5 to 6 staff are responsible for water and wastewater operations.

River Garden Apartment WWTP

This is a septic tank/anaerobic filter unit system constructed in 1990 for this 17-floor condominium of 46 apartments housing about 100 people.

Location

Bang Rak

Operating Units

Septic tanks

Two-stage anaerobic units

Sedimentation tank

Chlorine contact tank

This plant was designed by ASC Consultant.

Plant Condition and Development Plans

The plant is in good condition located within the basement.

Incoming Flow and Quality

Not known

Effluent, Quality and Disposal

National Standard is BOD:SS 20:30.

Final etfluent discharged to drain.

Sludge Disposal

Sludge is removed by vacuum road tanker once a year.

Narai Hotel WWTP

This plant was constructed in 1995 to serve the 15-floor hotel of 471 rooms, kitchen and restaurant with 500 staff.

Location

Bang Rak

Operating Units

Screening chamber
Sludge re-aeration tank
Contact aeration tank
Sedimentation tank
Disinfection contact tank
Sludge storage tank
Sludge press (not used)

Plant Condition

This plant is new and in good condition.

Incoming Flow and Quality

Design inflow is 700m³/d at 200 mg BOD/l.

Effluent Quality and Disposal

National Standard is 20:30, BOD:SS.

Effluent BOD 14 mg/l, COD 54 mg/l, SS 15 mg/l, pH 7.78, Grease/oils 0.1-20. Final effluent discharged to drain.

Sludge Disposal

No sludge is wasted from the sedimentation tank

Management Arrangement

Managed by hotel staff by 4 to 5 technical operators.

Other Information

Analysis by private laboratory about once/twice a month.

Chlorine is dosed only in the high season, usually November to May.

Singha Beer WWTP, Boon Rawd Brewery Co.

This is an Upward Flow Anaerobic Sludge Blanket (UASB) and Activated Sludge (AS) system constructed in 1994/95. The plant is an upgrade of an Anoxic/AS plant which was originally constructed in 1980.

The flows enters the equalisation tank from the various production lines.

Location

Dusit

Operating Units

Screening basket
Equalisation tank,
Anaerobic UASB reactor
Aeration tank
Sedimentation tank
Thickener tank
Sludge plate press.

Plant Condition

This plant is new and all equipment is in good condition.

Incoming Flow and Quality

Design inflow is 6,000m³/d.

BOD 1600 mg/l, COD 2000 mg/l, SS 600 mg/l, TDS 3000 mg/l, N 50 mg/l, P 5 mg/l.

Effluent Quality and Disposal

BOD 15 mg/l, SS 25 mg/l, TDS 1250 mg/l, N <5 mg/l, P 5 mg/l. Final effluent discharged to drain leading to Chao Phraya river.

Studge Disposal

12 m³/week of sludge is taken for use on the Singha sugar cane tields.

Management Arrangement

Managed by Singha staff WWTP manager, one laboratory assistant and 15 operators.

Other Information

Acration tank has a spray masking odour control system.

E. FORECASTS OF FUTURE POPULATION IN PROPOSED SCHEME AREAS

Table E.1 Forecasts of Future Population in Planned and Proposed Wastewater Scheme Areas (1/3)

()

Category 1 (Planned Areas)	nned Areas)					8001		(KAA)		Uiuc	0200	174
Catchment Name	District	Dist Area	Dist Area	Catch Area	Density	Population	Density	Population	Density	Population	Density	Population
1		(km²)	(%)	(km²)	(no/ha)	(×1000)	(no/ha)	(×1000)	(no/ha)	(×1000)	(no/ha)	(x1000)
Khlong Toey	Khlong Toey	12.27	<u>3</u> 51	12.27	981	254	168	98	179	220	81	233
. Mest	Vadhana	13.28	901	13.28	16	124	%	127	112	149	130	173
	Total			25.55	128	SCE	130	333	144	698	159	404
Khiong Toey	Phra Khannong	13.6	7.5	10.20	102	104	¥0;	110	137	140	176	180
East	Suan Laung	23.68	육	9.47	9	જ	2	\$	8	88	<u> </u>	121
	Bang Na	20.28	70	14.20	69	86	72	102	88	125	107	152
	Totai			33,87	7.8	265	82	27.8	105	354	134	453
Thonburi North	Bang Phlat	11.36	CKOT	11.36	150	170	154	175	170	193	190	216
	Total	L		11.36	150	170	154	175	170	163	190	216
Thonburi Central	Bang Noi	11.94	\$	11.34	178	202	179	203	184	506	061	216
	Bangkok Yai	6.18	100	6.18	241	149	246	152	172	167	298	184
	Total			17.52	200	351	203	355	215	376	228	400
I honburi South	Thonburn	8.63	001	8.63	335	289	336	290	340	293	344	297
	Khlong San	6.05	901	6.05	295	178	% %	179	304	184	313	189
	Cham Thong	26.25	35.	9.19	5	46	7.	65	%	ዩ	98	79
	Total			23.87	222	531	224	534	230	549	237	565
Nong Bon	Bang Na	20.28	સ	5.07	60	35	27	37	3 <u>%</u>	45	107	54
•	Phra Kannong	13.6	អ	3.40	102	35	108	37	137	47	176	8
	Prawer	45,88	8	27.53	8	83	£	88	8	16	36	\$
	Suan Luang	23.68	Ç	9.47	99	63	70	99	64	86	22	121
	Lote			45.47	84	216	69	222	36	272	7.3	334
	Adjusted total	Paria	1.4	55.00	œ.	261	6	1 626	£	623	88	404

Table E.1 Forecasts of Future Population in Planned and Proposed Wastewater Scheme Areas (2/3)

Catchment Name Bang Sue Dusit					2	NOO	हें	2(00)	≼ં	2010	4	A-154-12
	District	Diet Area	Dist Area	Catch Area	Density	Population	Density	Population	Density	Population	Density	Population
		7 m 3	(%)	(km²)	(no/ha)	(x1000)	(no/ha)	(x1000)	(no/ha)	(x1000)	(no/ha)	(x1000)
					2005	12	203	43	205	44	206	44
•	usu o	10.01	3 8	, ç,	1 6		223	77.6	253	263	280	<u> </u>
<u> </u>	Sang Suc	50.11	3 8	70.40	1 6	16	7	48	79	52	88	98
5	(hatuchak		1	S Co				222	1,83	150	205	391
	lotol			15.51	×e.	7.						4.7
Ī	Huay Kwaane	15.1	100	15.30	100	153	107	7	149	X.7	/07	715
Summa America	100); \ <u>\</u>	100	14.3	107	3	149	2238	207	317
-	10101								1		301	071
Wang Thong Long Hang Kan	ane Kapi	29.7	7	26.	2	<u></u>	5 /	ž	2	* 1	1	
		33.55	9	2 27	99	16	5	17	75	22	178	⊋.
76.7	Soan Leaning	86	2 2		25	5	6	55	105	202	140	269
*	Wang 1.1.	1,3,4					i.	757	=	322	134	448
	lewil			33.46	[2	4,	,	<u>3</u> :	3 5			0
	adjusted total	Ratio	30.	28.98	t	757	82	274	108	, th.	14.5	c/4
1		,	ı	05.00	7.1	160	17	173	2	248	158	955
Danis Vinia	College April	3 .	2 5		. ;;	5	,	8	22	8	92	131
2,	Cha Tao	3 9	3 6	į () (3	Ş	23	Ç,	<u>1</u> 0	62
5	at Phrao	30.48	C	,0,	70			1,77	80	300	120	866
	lleto[]			47.35	20	3	3	ફ	ð	3 ;	2 5	
	School lotor betains	0.1.0	000	43.00	51.0	239.0	54.0	256.0	76.0	362.0	108.0	0.710

Table E.1 Forecasts of Future Population in Planned and Proposed Wastewater Scheme Areas (3/3)

()

Category 3 (Proposed Areas)	posed Areas)										ļ	
					_	998		2000)	ř	2010		2020
Catchment Name	District	Dist Area	Dist Area	Catch Area (km²)	Density (no/ha)	Population (x1000)	Density (no/ha)	Population (x1000)	Density (no/ha)	Population (x1000)	Density (no/ha)	Population (x1000)
Don Muang	Don Muang	34.56										
	Airport	-6- -		25.50	27	191	42	82	8	254	126	22
	Sai Mai			4.20	55	23	59	22	77	32	102	43
	Total			29.70	72	214	92	226	96	286	123	264
Sar Mai	Sai Mai			34.80	55	161	65	205	77	268	707	354
	Bang Khen			16.40	56	92	59	- 26	80	131	108	177
	Total			\$1.20	55	283	65	302	7.8	66٤	104	531
'S YE'	Lak Si		100	25.00	29	156	99	166	68	223	120	300
	Точа			25.00	29	951	99	166	68	523	120	300
Bang Khen	Bang Khen			16,60	\$6	66	65	86	08	133	108	081
,	Sai Mai			5.70	55	31	59	34	77	44	102	58
:	Total			22.30	99	124	65	132	- 46	122	107	238
Lat Phrao ⁷⁷				26.30	79	163	65	171	82	216	104	274
	Total			26.30	29	163	59	171	82	216	104	274
Eastern Corndor	Saphan Sung			12.30	32	25	35	42	90 80	19	74	3
	Bang Kapi			7.20	0,	20	74	53	96	69	អ	8
	Khanna Yao			7.50	33	អ	35	22	52	39	92	57
	Bung Kum			01.10	71	15	77	16	110	ន	158	ť.
-	Minhuri			16.00	16	25	18	29	85	45	42	67
	Total			44,90	31	140	37	166	53	237	75	337
Nong Jok"	Nong Jok			26.10	25	- 29	27	7.1	39	56	48	125
	Total			26.10	25	29	27	1,4	36	26	48	125
Lat Krabang ⁵³	Lat Krabang			16.50	75.	95	38	63	63	104	104	172
,	Total			16.50	\$	98	38	29	63	104	104	172
City South West	Chom Thong			15.20	70	106	71	8 01	7,8	611	98	131
,	Bang Khun Tien			15.30	35	53	37	\$6	S	1	89	104
	Bang Bon			9.90	37	37	40	9	š	5,4	74	74
	Pasi Chareon			5.30	205	× 5	§:	88 :	£1 3	2:	162	& :
	Daily Mide			<u> </u>		0.00	S S	25.5	100	12.5	2 3	100
	Lata			47.00	SC	707	ć	212	2)	200	G	

Note:

1): Assume that Lat Phrao densities apply to other districts in area

2): Assume 80 % of population in this part of district

3): Assume 50 % of population in this part of district

F. RELEVANT WATER QUALITY STANDARDS

()

2. Effluent

A. Industrial Effluent Standards (PCD/MOSTE)

Items	Unit	Standard values
1. pH	-	5.5 – 9.0
2. Total Dissolved Solids (TDS)	mg/l	- not more than 3,000 mg/l depending on receiving water or type of industry unde consideration of PCC but not exceed 5,000 mg/l not more than 5,000 mg/l exceed TDS of receiving water having salinity of more than 2,000 mg/l or TDS of sea if discharge to sea
3. Suspended Solids (SS)	mg/l	- not more than 50 mg/l depending on receiving water or type of industry or type of wastewater treatment system under consideration of PCC but not exceed 150 mg/l
4. Temperature	°C	not more than 40
5. Colour and Odor	-	not objectionable
6. Sultide (as H ₂ S)	mg/l	not more than 1.0
7. Cyanide (as HCN)	mg/l	not more than 0.2
8. Heavy Metals		
- Zinc	, n	not more than 5.0
- Chromium (Hexavalent)	n n	not more than 0.25
- Chromium (Trivalent)	"	not more than 0.75
- Arsenic	"	not more than 0.25
- Copper	"	not more than 2.0
- Mercury	"	not more than 0.005
- Cadmium	"	not more than 0.03
- Barium	#	not more than 1.0
- Selenium	n	not more than 0.02
- Lead	n	not more than 0.2
- Nickel	п	not more than 1.0
- Manganese	"	not more than 5.0
9. Fat, Oil and Grease (FOG)	n	not more than 5 mg/l depending on
		receiving water or type of industry
		under consideration of PCC but not
		exceed 15 mg/l
10.Formatdehyde	,,,	not more than 1.0
11.Phenol	"	not more than 1.0
12.Free Chlorine	"	not more than 1.0
13.Pesticides	n	not detectable

Items	Unit	Standard values
14.Biochemical Oxygen Demand (BOD)	н	not more than 20 mg/l depending on receiving water or type of industry under consideration of PCC but not exceed 60 mg/l
15.Totał Kjeldahl Nitrogen (TKN)	t	not more than 100 mg/l depending on receiving water or type of industry under consideration of PCC but not exceed 200 mg/l
16.Chemical Oxygen Demand (COD)	н	not more than 120 mg/l depending on receiving water or type of industry under consideration of PCC but not exceed 400 mg/l

Remarks:

- 1. PCC = Pollution Control Committee
- The standards were summarized from the Notification of the Ministry of Science, Technology and Environment, No.3, B.E. 2539 (1996) issued under the Enhancement and Conservation of the National Environmental Quality Act B.E. 2535 (1992). The Notification was published in the Royal Government Gazette, Vol. 113, Part 13 D, Dated February 13, B.E. 2539 (1996).
- 3. Notification of the Ministry of Science, Technology and Environment, No.4, B.E. 2539 (1996) issued under the Enhancement and Conservation of the National Environmental Quality Act. B.E. 2535 (1992) and published in the Royal Government Gazette, Vol. 113, Part 13 D, dated February 13, B.E. 2539 (1996) specifies that pollution sources that the above standards are to be applied are factories group II and III issued under the Factory Act B.E. 2535 (1992) and every kind of industrial estates.
- Notification of the Pollution Control Committee, No. 3, B.E. 2539 (1996) dated August 20 B.E. 2539 (1996) has issued types of factories (category of factories issued under the Factory Act B.E. 2535 (1992) that are allowed to discharge effluent having different standards from the Minister Notification No.3 above as follows:
- 4.1 BOD up to 60 mg/1
 - 1) animal furnishing factories (category 4 (1))
 - 2) starch factories (category 9 (2))
 - 3) food from starch factories (category 10)
 - 4) animal food factories (category 15)
 - 5) textile factories (category 22)
 - 6) tanning factories (category 29)
 - 7) pulp and paper factories (category 38)
 - 8) chemical factories (category 42)
 - 9) pharmaceutical factories (category 46)

10) frozen food factories (category 92)

4.2 COD up to 400 mg/l

- 1) food furnishing factories (category 13 (2))
- 2) animal food factories (category 15 (1))
- 3) textile factories (category 22)
- 4) tanning factories (category 29)
- 5) pulp and paper factories (category 38)

4.3 TKN

- 1) 100 mg/l effective after 1 year from the date published in the Royal Government Gazette of the Ministerial Notification No. 4
- 2) 200 mg/l -- effective after 2 year from the date published in the Royal Government Gazette of the Ministerial Notification No. 4 for the following factories:
 - food furnishing factories (category 13 (2))
 - animal food factories (category 15 (1))

C. Building Effluent Standards

1) Standard Values

		Rang	e or Max	cimum Pe	ermitted	Value
Parameter	Unit		For T	hese Cate	egories	
		Α	В	С	D	E
1. pH	-	5-9	5-9	5-9	5-9	5-9
2. BOD	mg/l	20	30	40	50	200
3. Solids				1		
3.1 SS	mg/l	30	40	50	50	60
3.2 Settleable S.	mg/l	0.5	0.5	0.5	0.5	-
3.3 TDS	mg/l	500	500	500	500	-
4. Sulfide	mg/l	1.0	1.0	3.0	4.0	-
5. Total Kjeldahl Nitrogen (TKN)	mg/l	35	35	40	40	-
6. Fat, Oil and Grease (FOG)	mg/l	20	20	20	20	100

^{*} These values are in addition to the TDS of the water used.

Source:

Notification of the Ministry of Science, Technology and Environment issued under the Enhancement and conservation of the National Environmental Quality Act. B.E. 2535, published in the Royal Government Gazette, Vol. 111 special part 9, dated February 4, B.E. 2537 (1994).

2) Type and Sizes of Buildings Subject to Effluent Control

Building Type	Size	Level of Standard	Remarks
1. Condominium	Less than 100 units	C	
	100 but not more than 500	В	
	500 units or more	A**	
2. Hotels	Less than 60 rooms	С	
	60 but not more than 200	В	
	200 rooms or more	A**	
3. Dormitories	From 10 to not greater than 50	D	
	rooms		
	From 50 to 250 rooms	l c	
	250 rooms or more	В	1
4. Massage parlors	From 1,000 m ² to not	B C	
(or equivalent)	greater than 5,000 m ²		
(0.14)	5,000 m ² or more	В	
5. Hospitals	From 10 to not greater than	В	
or respirate	30 beds	_	
	30 beds or more	A**	
6. Schools, Colleges,	From 5,000 m ² to not	A** B	
Universities or	greater than 25,000 m ²		
Institutes	25,000 m ² or more	A**	†
7. Government offices,	From 5,000 m ² to not	A** C	Working
Stage enterprises,	greater than 10,000 m ²		Area only
International	10,000 m ² to not greater	В	(excluding
agencies, Banks, and	than 55,000 m ²		central
Office Buildings	55,000 m ² or more	A**	service area)
8. Department stores	From 5,000 m ² to not	B	
o. Department stores	greater than 25,000 m ²		
	25,000 m ² or more	A**	
9. Fresh food markets	From 500 m² to not greater	A** D	
2. 1 KSh food highkets	than 1,000 m ²	1	
	From 1,000 m ² to not greater	l c	
	than 1,500 m ²	1	
	From 1,500 m ² to not greater	В	
	than 2,500 m ²	1 ~	
·	2,500 m ² or more	A**	
10. Restaurants and	Less than 100 m ²	A** E	Dining area
food shops or food	From 100 m ² to not greater	l ő	Daning orea
centers	than 250 m ²	~]
Contrio	From 250 m ² to not greater	l c	
	than 500 m ²		1
	From 500 m ² to not greater	В	
	than 2,500 m ²	"	}
	2,500 m ² or more	A**	
	1 2000 Hr of Hiory		1

^{*} Level of Standard refers to the 6 parameters listed in standard Value-Building Effluent Standards.

^{**} This type and size of building will be controlled by the Pollution Control Officer, as specified in Section 69 of the Act.

D. Housing Estate Standards

1) Standard Values

		Range of Maximum for These Categories	Permitted Values
Parameter	Unit	A 100 units but not more than 500	B more than 500 units
1. pH	-	5.5-9.0	5.5-9.0
2. BOD	mg/l	30	20
3. Solids			
Suspended Solids (SS	-	40	30
Settleable Solids	ml	0.5	0.5
TDS	mg/l	500	500
4. Sulfide	n	1.0	1.0
5. Total kjeldahl Nitrogen (TKN)	11	35	35
6. Fat, Oil and Grease (FOG)	н	20	20

Source: Notification of the Ministry of Science, Technology and Environment No. 5.6 B.E. 2539 (1996) issued under the Enhancement and Conservation of National Environmental Quality Act, B.E. 2535 (1992), published in the Royal Government Gazette, Vol. 113, Special Part 9, dated March 27, B.E. 2539 (1996).

2) Methods for Examination

Parameter	Method
1. pH Value	pH Meter
2. BOD	Azide Modification at 20 ° celceus, 5 days
3. Suspended Solids	Glass Fibre Filter Disc
4. TDS	Dry Evaporation 103-105 ° celceus, 1 hour
5. Settleable Solids	Imhoff cone 1,000 cm ³ , 1 hour
6. Sulfide	Titrate
7. Total Kjeldahl Nitrogen	Kieldahl
8. Fat, Oil and Grease	Sovent Extraction by Weight

Remark: Based on: Standard Methods for Examination of Water and Wastewater Recommended by APHA, AWWA and WEF of America

4. Surface Water

A. face Water Quality Standards; Classification and Objectives.

_		Caratrat -	S	tandard '	Value for (Class***	
Parameter	Unit	Statistic	1	2	3	4	5
1. Color, Odor and Taste	- 1	-	N	១	a	0	-
2. Temperature	~	-	N	n'	Ð,	n'	•
3. pH Value	-	-	N	5-9	5-9	5.9	-
4. Dissolved Oxygen	mg/l	P20	N	6	4	2	-
5. BOD (5 day, 20 °C)	nig/i	P80	В	1.5	2.0	4.0	-
6. Coliform Bacteria			ļ				
- Total Coliform	MPN/100 ml	P80	n	5,000	20,000		-
- Fecal Coliform	MPN/100 ml	P80	n	1,000	4,000		-
7. NO ₃ -N	mg/l	Max. allowance	n	5.0	5.0	5.0	•
8. NH ₃ -N	46	п	n	0.5	0.5	0.5	-
9. Phenols	a	tt	n	0.005	0.005	0.005	-
10. Cu	n	**	n	0.1	0.1	0.1	-
11. Ni	н	н	В	0.1	0.1	0.1	-
12. Ma	11	a	n	1.0	1.0	1.0	-
13. Zn	#	n	n	1.0	1.0	1.0	-
14. Cd	"	*	a	0.005*	0.005*	0.005*	-
	11	a	1	0.05**	0.05**	0.05**	
15. Cr hexavalent	"	Ħ	n	0.05	0.05	0.05	-
16. Pb	"	14	l n	0.05	0.05	0.05	-
17. Total lig	m m	n	ո	0.002	0.002	0.002	-
18. As	21	n	n	0.01	0.01	0.01	-
19. CN	*	91	a	0.005	0.005	0.005	-
20. Radioactivity	,		1				
- Gross alpha	Becqurel/I	и	l a	0.1	0.1	0.1	_
- Gross beta	, n	n	B	1.0	1.0	1.0	
21. Organochlorine Pesticides (total)	mg/l	Ħ	n	0.05	0.05	0.05	-
22. DDT	μg/l	17	n	1.0	1.0	1.0	-
23. α BHC	""	и	l n	0.02	0.02	0.02	-
24. Dieldria		н	n	0.1	0.1	0.1	-
25. Aldrin	10	Ħ	n	0.1	0.1	0.1	-
26. Heptachlor & Heptachlo	,,	w	n	0.2	0.2	0.2	-
epoxide	·						•
27. Endrin	н	10	l n	none	пове	none	-

Note: P = Percentile value

Baturally

naturally but changing not more than 3°C when water hardness not more than 100 mg/l as CaCO,

when water bardness more than 100 mg/l as CaCO,

Water Classification

Classifications	Objectives/Condition & Benificial Usages
Class 1	Extra clean fresh surface water resources used for:
	(1) conservation not necessary pass through water treatment processes require only ordinary process for pathogenic destruction
Class 2	(2) ecosystem conservation where basic organisms can breed naturally Very clean fresh surface water resources used for:
Class 2	
	(1) consumption which requires ordinary water treatment processes before use
	(2) aquatic organism of conservation
	(3) fisheries
	(4) recreation
Class 3	Medium clean fresh surface water resources used for:
	(1) consumption, but passing through an ordinary treatment process before using
	(2) agriculture
Class 4	Fairly clean fresh surface water resources used for:
	(1) consumption, but requires special water treatment process beforeusing
	(2) industry
Class 5	The resources which are not classification in class 1-4 and used for
	Navigation

Parameter	Methods for Examination of Surface Water Quality
1. Water Temperature	Thermometer
2. pH Value	Electrometric pH Meter
3. Dissolved Oxygen	Azide Modification
4. BOD	Azide Modification at 20 °C, 5 days
5. Total Coliform Bacteria and Fecal Colifrom Bacteria	Multiple Tube Fermentation Technique
6. NO ₃ -N	Cadmium Reduction
7. NH ₃ -N	Distillation Nessterization
8. Phenol	Distillation, 4-Amino antipyrene
9. As	Atomic Absorption-Gaseous Hydride
10. CN	Pyridine-Barbiturie Acid
11. Cu, Ni, Mn, Zn, Cd, Cr hexavalent and Pb	Atomic Absorption-Direct Aspiration
12. Total Hg	Atomic Absorption-Cold Vapor Technique
13. Radioactivity	Low Background Proportional Counter
14. Total Organochlorine	Gas-Chromatography
pesticides, DDT, α-BHC,	
Dieldrin, Aldrin, Endrin,	
Heptachlor and Heptachlor epoxide	

Remark: Based on Standard Methods for Examination of Water and Wastewater Recommended by APHA AWWA and WEF of America

Source: Notification of the National Environmental Board, No. 8, B.E. 2537 issued under the Enhancement and Conservation of National Environmental Quality Act, B.E. 2535, published in the Royal Government Gazette, Vol. 111, Part 16, dated

February 24, B.E. 2537 (1994).

B. Chao Phraya River Water Quality Standards (Figure 1).

Control Areas (km. from River Mouth)	Water Quality Standards (Same as Standards of Water Classification)
7 - 62	Class 4
62 - 142	Class 3
142 - 379	Class 2

G. ANALYSIS OF KHLONG WATER QUALITY SURVEYS

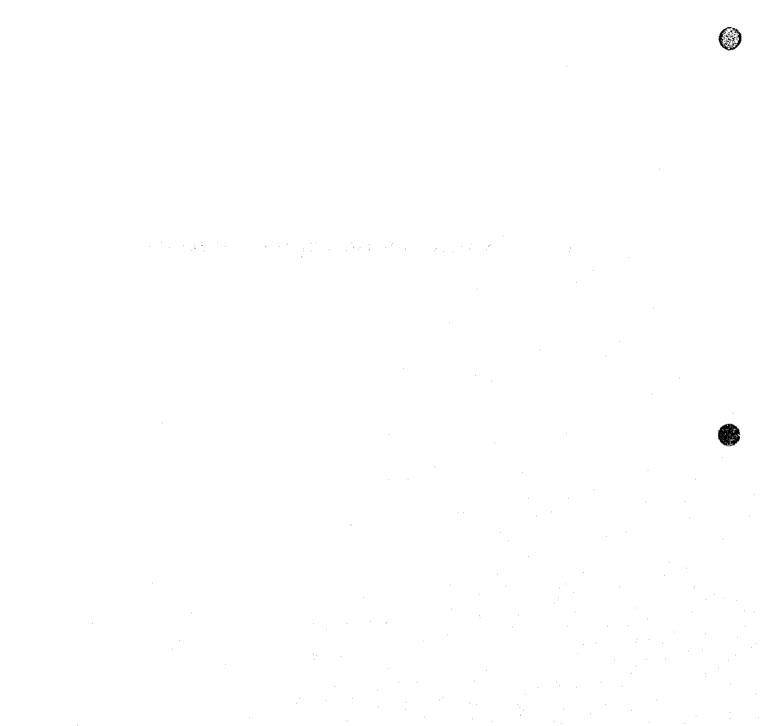


Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (1/10)

Proposed Service Area	Year	Sample	No. of	Average	Average
Proposed Service Avea	1631	Location	Samples	BOD	BOD of all
		Ref	Bumpaco	DOD	Samples
j		••••		(mg/l)	(mg/l)
Khlong Toey West	1993	91	6	43	40
limong rooy most		92	0		
		98	0		
		101	7	26	
		271	4	32	
		303	4	52	:
		351	1	54	
		373	0		
i		501	3	33	
{		611	0		
ĺ		612	0		
		651	0		
	1994	91	3	23	31
		92	0		
Ì		98	0		
•		101	3	25	
		271	3	22	
1]	303	4	28	
		351	0		
		373	0		
		501	2	59	
	1	611	0		
	1	612	0		
	1004	651 91	5	24	27
	1996	91	0	24	21
		98	0		
		101	5	27	
		271	4	24	ļ
		303	6	39	i
]		351	2	24	İ
		373	0		
		501	5	22]
		611	,0		
ł		612	0		
	L	651	0	<u> </u>	<u></u>
	1977	91	9	16	20
		92	9	14	
		98	0		
		101	6	20	
		271	8	13	
		303	9	33	•
,		351	9	26	
		373	0		
	l	501	0		
		611	0		
		612	0		
	ļ	651	L o	L	70
	Averag	e over whole	belied		30

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (2/10)

Proposed Service Area	Year	Sample	No. of	Average	Average
		Location	Samples	BOD	BOD of all
		Ref			Samples
	<u> </u>		<u></u>	(mg/l)	(mg/l)
Khlong Toey East	1993	271	4	32	38
		272	0]
		281	3	44	
		282	0		i
		365	0		1
		481	0		
	1994	271	3	22	32
		272	0		
		281	i	42	
		282	0		
		365	0		!
		481	_ 0		
	1996	271	4	24	27
		272	0		ì
		281	5	30	l
	j i	282	0		
		365	0		
		481	0		
	1997	271	8	13	15
		272	8	13	
		281	1	16	
		282	5	21	1
		365	3	7	1
	ļ	481	1	20	<u> </u>
	Average	over whole	period		28

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (3/10)

Proposed Service Area	Year	Sample	No. of	Average	Average
		Location	Samples	BOD	BOD of all
1		Ref	•		Samples
1				(mg/l)	(mg/l)
Thonburi North	1993	369	0		
		491	0		
		521	0		
		527	0		
	j l	531	0		
	i l	551	0		
]	561	0		i i
		591	0		İ
	1994	369	0		
		491	0		
		521	0		
		527	0		
1		531	0		
		551	0		
	1	561	0		
		591	0		
	1996	369	0		
	1	491	0		
		521	0		•
		527	0		
		531	0		[
		551	0		
e e		561	0		
		591	0		
	1997	369	0		32
		491	2	29	
		521	2	35	
		527	0		
		531	2	40	
	<u> </u>	551	2	28	
1		561	2	27	
		591	0		
	Average	e for whole pe	riod		32

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (4/10)

D10 A		C 1-	N26	A.,,,,,,,	Average
Proposed Service Area	Year	Sample	No. of	Average BOD	BOD of all
		Location	Samples	BOD	
		Ref		(m. n/1)	Samples
	1007			(mg/l)	(mg/l)
Thonburi Central	1993	251	5	19	19
]	252	0		
	<u> </u>	261	3	18	
		262	0		
		332	0	[
	1	333	0		
		391	0	1	
		394	0		
	1994	251	3	25	26
		252	0		ļ .
		261	3	26	1
		262	0		
	1	332	0		
		333	0		
		391	0		
		394	0		
	1996	251	4	14	16
	1	252	0		
		261	4	17	
	1	262	0		
	1	332	0		
		333	0		
	1	391	0		
	1	394	0		
	1997	251	7	10	12
		252	10	11	
		261	5	7	
		262	10	9	
		332	6	30	
		333	0		1
		391	5	10	
		394	5	7	
	Averag	e over whole	period	•	18

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (5/10)

()

Proposed Service Area	Year	Sample	No. of	Average	Average
•		Location	Samples	BOD	BOD of all
		Ref			Samples
				(mg/l)	(mg/l)
Thonburi South	1993	132	0		42
	1	151	2	57	
	1	152	0	1	
		161	3	56	
		191	3	56	
	i	201	3	34	
		202	0	l	
		211	1	19	
		231	0		
	•	291	0	i	
		341	2	29	1
		342	0		
		631	0		
		641	0		
		642	0		
	1994	132	0		31
		151	2	60	
		152	0		
		161	2	39	
		191	2	21	
		201	2	17	
		202	0		
		211	0		1
		231	0		
		291	0		
		341	1	16	
		342	0		
		631	0		
		641	0		
		642	0	<u> </u>	<u> </u>

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (6/10)

Proposed Service Area	Year	Sample	No. of	Average	Average
		Location	Samples	BOD	BOD of all
		Ref	-		Samples
	1			(mg/l)	(mg/l)
Thonburi South	1996	132	0		31
(Centinued)		151	3	35	
,	\	152	0		
		161	3	52	<u> </u>
		191	3	33	1
		201	3	18	
		202	0		
		211	3	16	Ļ
		231	0		1
	1	291	0	j	
	1	341	3	32	
		342	0		1 1
		631	0		
	I	641	0		
	1	612	0		
	1997	132	7	29	18
		151	8	42	
		152	3	23	
	Į.	161	7	21	
	1	191	4	18	1
		201	4	9	
		202	7	13	
1	1	211	10	11	
	1	231	5	9	
		291	3	24	1
		341	3	8	
		342	6	10	1
		631	0		j
		641	0		1
	<u></u>	642	0	<u></u>	
	Averag	e over whole	period		31

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (7/10)

Proposed Service Area	Year	Sample	No. of	Average	Average
		Location	Samples	BOD	BOD of all
		Ref		ļ	Samples
				(mg/l)	(mg/l)
Nong Bon	1993	273	4	28	28
•		461	0		
	1994	273	3	19	19
		461	0		
	1996	273	3	15	15
	1	461	0	0	l
	1997	273	2	9	10
	i	461	8	10	
	Average	over whole	period		18
Bang Sue	1993	113	4	43	28
-		114	4	30	
		121	4	23	
		381	0		
		511	6	24	Ī
	1	512	5	18	
		523	0		
•		571	0		
		572	0		
	1994	113	5	22	21
	1	114	5	18	
	İ	121	5	30	Į
		381	0		
		511	5	22	
		512	5	15	
	ļ	523	0	ļ	
		571	0	•	
	<u> </u>	572	0		ļ
	1996	113	6	29	21
		114	6	22	
		121	5	26	
		381	0		
		511	6	13	
	Ì	512	6	14	
		523	0		
		571	0		
j		572	0		12
:	1997	113	5	19	12
	1	114	5	12	
	}	121	7	14	
	1	381	4	4	1
		511	9	10	
		512	9	12	
		523	0		
		571	0		
	}	572	0		20
	Averag	e over whole	bettoq		ţ 20

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (8/10)

Proposed Service Area	1	Sample Location	Samples	BOD	DOD -6-11
			Campica	DOD 1	BOD of all
		Ref			Samples
				(mg/l)	(mg/l)
Huay Kwuang	1993	85	4	40	40
		91	6	43	Ì
ļ		92	0		
		98	0] [
		123	3	39	1
		171	4	57	
		181	0		
		182	4	27	
1		501	3	33	
	1994	85	5	25	26
		91	3	23	
		92	5	23	
1		98	0		
L		123	3	30	
		171	5	33	
		181	0		
		182	5	22	
		501	2	27	
	1996	85	5	29	28
		91	5	24	
		92	0		
	1	98	0		ļ
		123	5	33	1
		171	5	42	
	ŀ	181	0	19	
	l	182	5	22	
	1997	501	5	40	23
	1997	85 91	9	16	2.3
		92	9	14	
		92	0	14	
		123	3	18	
		171	6	47	
	•	181	1	11	
	l	182	6	13	1
		501	0	'.'	1
	Averag	e over whole		·	29

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (9/10)

Proposed Service Area	Year	Sample	No. of	Average	Average
		Location	Samples	BOD	BOD of all
1		Ref			Samples
ł				(mg/l)	(mg/l)
Wang Thong Lang	1993	33	0		27
		94	5	27	1
		181	0		
1		182	4	27	
	1994	33	0		21
		94	5	19	i
		181	0		
		182	5	22	
	1996	33	0		18
		94	5	16	
		181	0		
		182	5	19	
	1997	33	0		12
		94	10	13	
		181	1	11	
		182	6	13	
	Average	20			
Bung Kum	No data				
Don Muang	No data				
Lak Si	1993	514	6	26	<u> </u>
	1994	514	5	20	
	1996	514	- 6	38	<u> </u>
	1997	514	9	13	
	Average	e over whole	period		24
Bang Khen	1993	183	0		
-		581	0		
	[]	582	00		
	1994	183	Ö		
		581	0		
		582	0		
	1996	183	0		
		581	0		
		582	0		
	1997	183	4	11	
		581	0		
		582	0	<u> </u>	
	Average	over whole	period		11

Table G.1 Analysis of Khlong Survey Annual Data from DDS, BMA (10/10)

Proposed Service Area	Year	Sample	No. of	Average	Average
Treptoes Ett Me ter-		Location	Samples	BOD	BOD of all
]]	Ref	•	[Samples
	i l	••••		(mg/l)	(mg/l)
Sai Mai	No data	, ·		1	<u> </u>
241 24104	, ne data				
Lad Phrao	No data				
Nong Jok	No data				
Eastern Corridor	1993	90	0		26
		92	0		1
	ļĺ	95	5	26	. [
	1994	90	0		20
		92	0		1
		95	5	20	
	1996	90	0		17
		92	0		
		95	5	17	
	1997	90	0		16
		92	10	14	
		95	10	17	
	Average	Average over whole period			
City South West	1993	211	1	19	20
,		221	4	26	1
		431	0		1
		432	2	16	_1
	1994	211	0	1	24
	- 1	221	3	23	į.
		431	0	l	1
		432	4	24	
	1996	211	3	16	16
		221	4	17	
		431	0	1	
	l	432	5	14	_
	1997	211	10	11	12
F .		221	10	14	İ
				1 6	1
		431	4	9	}
		431 432	4	13	
	Averag		4		18

H. UNIT COSTS

Table II.1 Labour Wages (Basic Wage Rate)

Exchange Rate, 36.0 Baht/US\$

				e,36.0 Baht/US\$
				age Rate
No.	Description	Unit	L/C	F/C
			(Baht)	(Equiv.US\$)
1	Foreman			
	Foreman	MD	600	16.67
	Mechanic	MD	400	11.11
ļ	Electrician	MD	400	11.11
2	Operator and driver			
j	Heavy equipment operator	MD	350	9.72
	Assistant operator	MD	225	6.25
1	Dump truck driver	MD	300	8.33
	Cargo truck driver	MD	300	8.33
3	Civil worker			
	Rigger	MD	200	5.56
	Welder	MD	200	5.56
	Steel worker	MD	200	5.56
	Reinforcement worker	MD	175	4.86
	Pipe fitter	MD	200	5.56
	Plumber	MD	225	6.25
	Carpenter	MD	200	5.56
	Mason	MD	225	6.25
	Concrete worker	MD	200	5.56
	Plaster	MD	225	6.25
	Pavement worker	MD	175	4.86
	Painter	MD	200	5.56
4	Labour			
	Skilled labour	MD	300	8.33
1	Common labour	MD	175	4.86

Table H.2 Unit Prices of Construction Materials (1/4)

Exchange Rate US\$1.00 = 36.0 Bahi

1750 OF OCCUPANT 4770	(Λ	s of	October	, 1998
-----------------------	-----------	------	---------	--------

			Site	٨		f Unit Price	
			Delivery	Allocatio		Allocated	
No.	Commodity	Unit	Price	F/C	1/C	F/C	I/C
			(Baht)	(%)	(%)	(US\$)	(Baht)
	Cement and admixture		L_ <u>\-</u>		\		
ı	Ordinary portland cement, (50kg)	· · · · · · · · · · · · · · · · · · ·	2,150	0	100	0	2,150
		Litre	14	80	20	0.3	2.8
	Water reducing Agent	Litre	30	80	20	0.7	6
	Air entraining Agent	LAUC					
			L	L		1	
2	Aggregate and ste	3	300	ol	100	0	300
	Sand		800	0	100	0	800
	Gravel	m³	250	0	100	0	250
	Cobble and rubble stone	11	230	- 4	100		2.50
	Crushed stone	,	250		100	o	250
	Split stone, (10 mm to 20 mm)	m²	250	0		0	250
	Split stone, (25 mm to 40 mm)	m²	250	0	100	<u>v</u>	
	Purchased aggregate			ا ا	100		100
	Concrete aggregate (Fine)	m ³	400	0	100	0	400
	Concrete aggregate (Coarse)	3	400	0	100	0	400
			l	L			
3	Steel materials						15.000
	Reinforcement bar (Round)	t	15,000	0	100	0	15,000
	Reinforcement bar (Deformed)	<u> </u>	14,000	0	100	0	14,000
	Steel plate	1	20,000	80	20	444	4,000
İ	Steel shee pile, U-II (48 kg/m)	1	20,000	80	20	444	4,000
	Steel shee pile, U-III (60 kg/m)	<u>l</u>	20,000	80	20	444	4,000
	Steel shee pile, U-IV (76.1 kg/m)	t	20,000	80	20	444	4,000
l	Galvanized pipe (w/socket), D-50 mm	lia.m	820	0	100	0	820
	Galvanized pipe (w/socket), D-75 mm	Lio.m	1,500	0	100	0	1,500
ĺ	Galvanized pipe (w/socket), D-100 mm	Lin.m	2,500	0	100	0	2,500
	Annealed iron wire	kg	30	0	100	0	30
	Nail	kg	20	0	100	0	20
	Angle		15,000	80	20	333	3,000
		\$	to			to	to
l			19,000			422	3,800
	Galvanized wire	kg	35	0	100	0	35
•	Checkered plate		18,000	80	20	400	3,600
		t	to			10	to
			20,000	!		444	4,000
l	H-shape steel		20,000	80	20	444	4,000
	11-Shape Sieci	t	to			to	jo
l]	24,000			533	4,800
	Channel steel		14,000	80	20	311	2,800
	Chainer seet	1	to			to	to
		'	20,000			444	4,000
İ	Steel pipe, (25 mm) L = 6m	No.	420	0	100	0	420
	Steel pipe, (25 mm) L = 6m Steel pipe, (40 mm) L = 6m	No.	580	0	100	0	580
1			740	0	100	0	740
	Steel pipe, (50 mm) 1 = 6m	No. No.	980	0	100	0	980
	Steel pipe, (65 mm) L = 6m			0	100	0	1,250
1	Steel pipe, (80 mm) L = 6m	No.	1,250			0	
	Steel pipe, (100 mm) L = 6m	No.	1,850	0	100	1	1,850
	Steel casing pipe, 50*50*3 L = 6m	No.	650	<u> </u>	100	0	650
L_		<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	L	L	L
1	Timber materials	T - 'Z		1	1	T	
1	Plank, 10 inch (Yang Wood)	Cuft	310			0	310
1	Square, 1 inch *3 inch	Lin.m	42	1			42
	Plywood waterproof, 10mm *1.2m *2.4m	Sheet	800				 .
ı	Plywood waterproof, 15mm *1.2m *2.4m	Sheet	1,200				
	Timber pile, D-150 mm. L=3m	No.	350	0	100	Ō	350
	1137001 1780, 12 130 11111. 12-3111						
	Timber log, L=4m	No.	360				360

Table H.2 Unit Prices of Construction Materials (2/4)

Exchange Rate US\$1.00 = 36.0 Bahi

/Ac	of October	1008)

						(As of Octo	
		-	Site		Ulocation of	of Unit Price	
ļ., .	O Yw.	11-5	Delivery	Allocatio	n Ratio	Allocated	Unit Priœ
No.	Commodity	Unit	Price	F/C	I/C	F/C	1/C
			(Baht)	(%)	(%)	(USS)	(Baht)
5	Concrete produce		<u> </u>		<u> </u>		<u> </u>
`	Mortar	113	1,875	0	100	0	1,875
			2,380	0	100		2,380
	Ready mixed concrete, type A. 415 kg/cm ²	n	2,270		100	0	2,270
	Ready mixed concrete, type B, 300 kg/cm ²		2,160	0	100		2,160
	Ready mixed concrete, type C, 240 kg/cm ²	n	2,110	0	100	0	2,110
	Ready mixed concrete, type D, 210 kg/cm ²	<u></u>		0	100	0	2,060
	Ready mixed concrete, type E, 180 ke/cm ²	m ³	2,060				2,100
	Ready mixed concrete, type F, 150 kg/cm ²	<u>m</u> 3	2,100	0	100	0	
	Hume pipe, class 2, type B, D300 *1.0m	No.	295	0	100	0	295
	Hume pipe, class 2, type B, D400 *1.0m	No.	350	0	100	0	350
1	Hume pipe, class 2, type B, D500 *1.0m	No.	410	0	100	0	410
	Hume pipe, class 2, type B, D600 *1.0m	No.	530	0	100	0	530
	Hume pipe, class 2, type B, D800 *1.0m	No.	910	0	100	0	910
1	Hume pipe, class 2, type B, D1,000 *1.0m	No.	1,500	0	100	0	1,500
	Hume pipe, class 2, type B, D1,200 *1.0m	No.	1,960	0	100	0	1,960
	Hume pipe, class 2, type C, D1,500 *1.0m	No.	3,200	0	100	0	3,200
	Hume pipe, class 2, type C, D1,750 *1.0m	No.	6,400	0	100	0	6,400
	Hume pipe, class 2, type C, D2,000 *1.0m	No.	16,300	0	100	0]	16,300
	Hume pipe, class 2, type C, D2,500 *1.0m	No.	21,500	0	100	0	21,500
	Pipe fitting, class 1, type T, 200 * 150 *600	No.	2,700	0	100	0	2,700
	Pipe fitting, class 1, type T, 250 * 150 *600	No.	4,500	0	100	0	4,500
l i	Pipe fitting, class 1, type T, 300 * 150 *600	No.	7,200	0	100	0	7,200
l	Pipe fitting, class 1, type T, 350 * 150 *600	No.	8,300	of	100	0	8,300
1	Pipe fitting, class 1, type T, 400 * 150 *800	No.	9,500	0	100	0	9,500
li	Pipe fitting, class 1, type T, 450 * 150 *800	No.	10,600	0	100	0	10,600
ı	Pipe fitting, class 1, type T, 250 * 200 *600	No.	4,900	0	100	0	4,900
1 1	Pipe fitting, class 1, type T, 300 * 200 *600	No.	7,900	0	100	0	7,900
l i	Pipe fitting, class 1, type T, 350 * 200 *600	No.	8,900	0	100	0	8,900
1 1	Pipe fitting, class 1, type T, 400 * 200 *800	No.	10,500	0	100	Ö	10,500
	Pipe fitting, class 1, type T, 450 * 200 *800	No.	11,000	0	100	0	11,000
	Pipe fitting, class 1, type 1, 450 * 200 * 600	No.	4,700	0	100	0	4,700
		No.	7,900	0	100	0	7,900
1	Pipe fitting, class 1, type Y, 250 * 150 * 600	No.	9,500	0	100	0	9,500
	Pipe fitting, class 1, type Y, 300 * 150 * 600			0	100	0	13,200
	Pipe fitting, class 1, type Y, 350 * 150 *600	No.	13,200	0		0	15,000
	Pipe fitting, class 1, type Y, 400 * 150 * 800	No.	15,000		100		
	Pipe fitting, class 1, type Y, 450 * 150 * 800	No.	17,000	0	100	0	17,000
	Pipe fitting class 1, type Y, 250 * 200 *600	No.	8,400	0	100	0	8,400
	Pipe fitting class 1, type Y, 300 * 200 *600	No.	10,100	0	100	0	10,100
	Pipe fitting class 1, type Y, 350 * 200 *600	No.	14,000	0	100	0	14,000
	Pipe fitting class 1, type Y, 400 * 200 * 800	No.	16,200	0	100	0	16,200
	Pipe fitting class 1, type Y, 450 * 200 *800	No.	18,200	0	100	0	18,200
	Pipe fitting, class 1, Bend, 30, 150	No.	1,800	0	100	0	1,800
	Pipe fitting, class 1, Bend, 30., 200	No.	2,500	0	100	0	2,500
	Pipe fitting, class 1, Bend, 45., 150	No.	2,100	0	100	0	2,100
	Pipe fitting, class 1, Bend, 45., 200	No.	2,800	0	100	0	2,800
	Pipe fitting, class 1, Short, D150 *200 mm	No.	1,300	0	100	0	1,300
]	Pipe fitting, class 1, Short, D200 *200 mm	No.	1,700	0	100	0	1,700
	Centrifugal RC pile, D300 *60t *8m	No.	2,296	0	100	0	2,296
	Centrifugal RC pile, D300 *60t *12m	No.	3,444	0	100	0	3,444
	Centrifugal RC pile, D350 *65t *10m	No.	3,680	0	100	0	3,680
	Centrifugal RC pile, D350 *651 *14m	No.	5,152	0	100	0	5,152
1	Centrifugal RC pile, D400 *70t *10m	No.	4,580	0	100	0	4,580
	Centrifugal RC pile, D400 *70t *15m	No.	6,870	0	100	Ö	6,870
	Centrifugal RC pile, DS00 *80t *10m	No.	6,920	o	100	ŏl	6,920
1	Centrifugal RC pile, D500 *80t *15m	No.	10,380	o	100	ŏ	10,380
	Centrifugal RC pile, D600 *90t *10m	No.	9,380	0	100	0	9,380
	Commission AC PRODUCTOVO JOI 1001	116.	7,500	VI	100		-,-,-,-,-
	Centrifugal RC pile, D600 *90t *15m	No.	14,070	0	100	O	14,070

Table H.2 Unit Prices of Construction Materials (3/4)

Exchange Rate US\$1.00 = 36.0 Baht

(As of October, 1998)

						As of Octob		
ļ			Site	Allocation of Unit Price Allocation Ratio Allocated Unit Price				
No.	Commedity	Unit	Delivery					
			Price	F/C	1/C	F/C	1/C	
_			(Baht)	(%)	(%)	(US\$)	(Babt)	
6	PVC materials			ат				
	PVC pipe, (Class 8.5), D=25 mm	No.	85	0	100	0	85	
į	PVC pipe, (Class 8.5), D=55 mm	No.	180	0	100	0	180	
l	PVC pipe, (Class 8.5), D±80 mm	No.	350	0	100	0	350	
ſ	PVC pipe, (Class 8.5), D=100 mm	No.	410	0	100	0	410	
ſ	PVC pipe, (Class 8.5), D=125 mm	No.	620	0	100	0	620	
Ī	PVC pipe, (Class 8.5), D=150 mm	No.	880	0]	100	0	880	
ı	PVC pipe, (Class 8.5), D=200 mm	No.	1,390	0	100	0	1,390	
Ì	PVC pipe, (Class 8.5), D=250 mm	No.	2,010	0	100	0	2,010	
Ì	PVC pipe,(Class 8.5), D=300 nim	No.	2,850	0	100	0	2,850	
	PVC pipe, (Class 8.5), D=400 mm	No.	5,250	0	100	0	5,250	
	PVC Waterstop, W-200 mm	Lin.m	211	0	100	0	211	
. }	PVC Waterstop, W-200 mm	Linm	460	0	100	0	460	
	FVC Waterstep, W-300 timit	4,4(5.11)	400		100			
_	P 1		L,			1		
1	Fuel	£ 24==	11.54	80	20	0.3	2.3	
	Diesel	Litre		80	20	0.3	2.6	
	Gasoline	Litre	13.05					
	Kerosine	Litre	12.01	80	20	0.3	2.4	
	Lubricant	Litre	40.00	80	20	0.9	8.0	
,	Electricity	kWh	3.00	0	100	0	3.0	
		L	L					
8	Gas							
	Oxegen gas (6m³)	Cylinder	80	0	100	0	80	
	Acetylene gas (5.5 kg)	Cylinder	350	0	100	0	350	
		<u> </u>						
9	Road and bridge materials							
	Road handrail	Linm	900	0	100		900	
	Bitumen, 80/100	t	4,600	80	20		920	
	Bitumen, MC30	t	7,250	80	20	161	1,450	
	Asphalt emulsion	kg	5.45	80	20	0.1	1.1	
	Guard rail	Lin.m	5,000	0	100	0	5,000	
	Guard post, & 4 inc *1.2m	No.	1,000	0	100	0	1,000	
	1-steel grider		18	80	20	0.4	3.6	
	J. S. C. C. C. C. C. C. C. C. C. C. C. C. C.	kg	to			to	to	
		"	22			0.5	4.4	
	High tension bolt	kg	33	80	20	1	6.6	
	Paint, (primer)	Gallon	380	80	20		76	
	Paint, (finish)	Gallon	700	80	20		140	
		Gancii			20		35	
		Lina			100	n		
	Anchor cap, 19mm *600mm	Linm	35	0				
	Anchor cap, 19mm *600mm Welded iron net	nı²	35 150	0	100	0	150	
	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet	m² m²	35 150 1,100	0 0 0	100 100	0	150 1,100	
	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire	m² m² kg	35 150 1,100 50	0 0 0	100 100 100	0 0	150 1,100 50	
	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet	m² m²	35 150 1,100	0 0 0	100 100 100	0 0	150 1,100	
	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent	m² m² kg	35 150 1,100 50	0 0 0	100 100 100	0 0	150 1,100 50	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent Form materials	m² m² kg kg	35 150 1,100 50 260	0 0 0 0 80	100 100 100 20	0 0 0 5.8	150 1,100 50 52	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent	m² m² kg	35 150 1,100 50 260	0 0 0 0 80	100 100 100 20	0 0 0 5.8	150 1,100 50 52	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent Form materials	m² m² kg kg	35 150 1,100 50 260	0 0 0 0 80	100 100 100 20 100 100	0 0 0 5.8	150 1,100 50 52 14.0 5.8	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent Form materials Form tie, 9mm *210 mm	m² m² kg kg	35 150 1,100 50 260	0 0 0 0 80	100 100 100 20 100 100 100	0 0 0 5.8	150 1,100 50 52 14.0 5.8	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent Form materials Form tie, 9mm *210 mm Washer	m² m² kg kg No.	35 150 1,100 50 260 14.00 5.80	0 0 0 0 80	100 100 100 20 100 100 100	0 0 0 5.8	150 1,100 50 52 14.0 5.8 6.0	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent Form materials Form tie, 9mm *210 mm Washer Cone, (Steel) Crip	m² m² kg kg No.	35 150 1,100 50 260 14.00 5.80 6.00	0 0 0 80 80	100 100 100 20 100 100 100	0 0 0 5.8	150 1,100 50 52 14.0 5.8 6.0 5.0	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent Form materials Form tie, 9mm *210 mm Washer Cone, (Steel) Crip Separator, 8-10 mm *20 mm	m² m² kg kg No. No. No. No.	35 150 1,100 50 260 14.00 5.80 6.00 5.00	0 0 0 80 80	100 100 20 20 100 100 100 100	0 0 0 5.8 0 0 0 0	150 1,100 50 52 14.0 5.8 6.0 5.0	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent Form materials Form tie, 9mm *210 mm Washer Cone, (Steel) Crip Separator, 8-10 mm *20 mm Metal form, 300 * 150	m² m² kg kg No. No. No. No. No. No.	35 150 1,100 50 260 14.00 5.80 6.00 5.00 50 325	0 0 0 80 80 0 0 0 0 0	100 100 20 100 100 100 100 100	0 0 5.8 0 0 0 0 0 0	150 1,100 50 52 14.0 5.8 6.0 5.0 50 325	
10	Anchor cap, 19mm *600mm Welded iron net Rubber Joint filler, -10 mm *3 feet *6 feet Welding wire Adhesive agent Form materials Form tie, 9mm *210 mm Washer Cone, (Steel) Crip Separator, 8-10 mm *20 mm	m² m² kg kg No. No. No. No.	35 150 1,100 50 260 14.00 5.80 6.00 5.00	0 0 0 80 80 0 0 0 0 0	100 100 20 100 100 100 100 100 100	0 0 5.8 0 0 0 0 0 0 0 0 0	150 1,100 50 52 14.0 5.8 6.0 5.0 50 325 280	

Table H.2 Unit Prices of Construction Materials (4/4)

Exchange Rate US\$1.00 = 36.0 Baht

(A	s of	October,	<u>1998)</u>

			Site	Allocation of Unit Price			
		ປກຳເ	Delivery	Allocatio	n Ratio	Allocated Unit Price	
No.	Commodity	Unit	Price	F/C	1/C	F/C	1/C
1 1			(Baht)	(%)	(%)	(US\$)_	(Baht)
							<u></u>
11	Other materials				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Bentonite	kg	7.0	0	100	0	7.0
l	Palm fibre, 7 inch	m²	90	0	100	0	90
	Sand bag	Pc.	3.5	0	100	0	3.5
Ιi	Welding rod, 20kg	Pack	900	0	100	0	900
	Plastic mat, 30 mm * 1.5 m	LU ₂	2,800	0	100	0	2,800
	Electrode for mild steel	Pack	300	0	100	0	300
	Electric cable, 2*2.5 VAE	Lin.m	9.7	0	100	0	9.7
	Electric cable, 2*1.5 VAE	Lin.m	6.1	0	100	0	6.1
	Chisel for hand	Pc.	200	80	20	4.4	40

Table II.3 Investigated Unit Cost

No	Description	Formula
1	Collector System for WWTP	
	Shield Slurry Type	$y = 0.0006 x^2 - 1.5555 x + 5,778$
	Earth Pressure Balancing Pipe Jack	y = 0.6936 x + 1,357.1
	Slurry Shield Pipe Jacking	y = 0.6743 x + 1,372.3
	Microtunneling	y = 0.7000 x + 1,356.7
2	Construction Unit Cost for Collector System (Jap	ancse)
	Shield Slurry Type	$y = \{(7.54 \times 10^{6})x^{2} - (5.35 \times 10^{3})x + 57.48\}$ $\times (113.2/90.1) \times (10^{4}/125)$
	Pipe Jacking Method	$y = (0.027x) \times (113.2/90.1) \times (10^4/125)$
3	Transportation Cost of Sludge Cake by Dump Tr	nck
	For 10 ton class	y = 3.2807x + 38.405
	For 6 ton class	y = 5.3415x + 28.020
	For 4 ton class	y = 8.2026x + 41.813
4	Transportation Cost of Ash and Compost by Dur	np Truck
	For 10 ton class	y = 2.6279x + 30.584
	For 6 ton class	y = 4.2898x + 22.088
	For 4 ton class	y = 6.5657x + 32.723
5	Transportation Cost of Sludge Cake by Self-prop	oelled Barge, 180m³ class
	For 10 km	90 Bahl/m³
	For 50 km	203 Baht/m³
	For 100 km	341 Baht/m³
	For 200 km	627 Bahl/m ³
6	Transportation Cost of Chaff by 10 ton class Du	
	For 2.5 km	237 Baht/m³
	For 5.0 km	301 Baht/m³
	For 7.5 km	326 Baht/m ³
	For 10 km	358 Baht/m ³
	For 20 km	512 Baht/m ³
7	Transportation Cost of Night Soil by 9kl Vacuus	m Car
	•	y = 4.0101x + 35.073
8	Transportation Cost of Reclaimed Wastewater R	Reuse by 12 m³ Water Tanker
		y = 1.648x + 19.052
.— <u> </u>	Excavation Cost of Common	79 Baht/m³

Table II.4 Overall Construction Cost for Sewerage System

Thousand US\$ Capacity Construction Work Item No. DWF m³/d Cost Collector System 180,800 103,931 Thoaburi South 157,900 90,804 Tonburi Central Tonburi North 77,900 44,791 165,000 95,270 Khlong Toey West 106,588 185,400 Khlong Toey East 72,524 126,100 Bang Sue 71,429 124,300 Huay Kwuang 81,115 Wang Thong Lang 141,100 81,856 147,800 Bung Kum 751.308 1,306,300 Sub-total DWF m³/d Cost 2. Wastewater Treatment Plant 76,840 180,800 Thonburi South 157,900 67,108 Tonburi Central 33,108 77,900 Tooburi North 70,125 165,000 Khlong Toey West 78,795 185,400 Khlong Toey East 126,100 53,593 Bang Sue 124,300 52,828 Huay Kwuang Wang Thong Lang 141,100 59,968 147,800 62,815 Bung Kum 555.180 1,306,300 Sub-total $m^3/4$ Cost Reclaimed Wastewater Reuse Facilities 15,450 4,712 Tanks and Water Supply System 4,712

Table 11.5 Overall Construction Cost for Option No. L2

Estimation Condition

· Digesting with Gas Generating, Odor Removal, Dewatering and Leachet Treatment

Total

• Simple Landfill

Thousand US\$

1.311,200

No.	Work Hem	Capacity	Construction
1.	Nong Khaem Sludge Treatment Center	t DS/d	Cost
	1) Digesting Plant, 4,000 m3 @4 tanks	52.8 t DS/d	7,945
	2) Gas Generating Equipment, 440 kW @4	1,760 kW	10,400
	3) Odor Removal Apparatus	Ł.S.	2,380
	11) Dewatering Equipment	52.8 t DS/d	10,870
	5) Leachet Treatment Plant	1,000 m³/d	1,670
	Sub-total		33.265
2.	Simple Landfill	m ³	Cost
_	Landfill Yard	1,500,000	4,500
	Sub-total		4,500
	Total		37,765

Table H.6 Overall Construction Cost for Option No. A2

Estimation Condition

- Composting
- Order Removal

Thousand US\$

No.	Work Item	Capacity	Construction
1.	Compost Factory	t DS/d	Cost
	North Factory	98.5	24,800
	East Factory	83.0	17,700
	West Factory	68.7	16,000
	Total	250.2	58,500

Table H.7 Transportation Cost of Materials by Dump Truck

Dump	Distance	Solid Slu	dge Cake	A	sh	Com	post
Truck	(km)	Baht/m³	Baht/t	Baht/m³	Baht/t	Baht/m³	Baht/t
	2.5	75	65	60	100	60	92
4 tons	5.0	95	82	75	125	75	115
(2 m^3)	7.5	104	90	83	138	83	128
1 ' '	10.0	115	99	90	150	90	138
	12.5	145	125	115	192	115	177
	15.0	165	142	130	217	130	200
İ	20.0	190	164	150	250	150	231
	25.0	230	198	185	308	185	285
•	30.0	285	246	230	383	230	354
	40.0	380	328	305	508	305	469
	50.0	460	397	365	608	365	562
	2.5	50	43	40	67	40	62
6 tons	5.0	63	54	50	83	50	77
(4 m ³)	7.5	69	59	55	92	55	85
` ′	10.0	75	65	60	100	60	92
	12.5	95	82	75	125	75	115
	15.0	108	93	86	143	86	132
	20.0	125	108	100	167	100	154
	25.0	150	129	120	200	120	185
	30.0	185	159	150	250	150	231
	40.0	250	216	200	333	200	307
	50.0	300	259	240	400	240	369
	2.5	46	40	37	62	37	57
10 tons	5.0	59	51	47	78	47	72
(7m^3)	7.5	64	55	51	85	51	78
	10.0	70	60	56	93	56	86
	12.5	78	67	62	103	62	95
1	15.0	88	76	70	117	70	108
	20.0	100	86	80	133	80	123
	25.0	116	100	93	155	93	143
	30.0	140	121	112	187	112	172
	40.0	175	151	140	233	140	215
	50.0	200	172	160	267	160	246

Table H.8 Transportation Cost of Various Materials

	Sludge Cake	Night Soil	Reclaimed Water	Chaft
Hauling	Self-Propelled		112 . 25 1	Danier Tourn
Distance	Barge	Vacuum Car	Water Tanker	Dump Truck
	180 m ³	9 m ³	12 m ³	10 t
km	Baht/m³	Baht/m³	Baht/m ³	Baht/t
2.5		50	23	237
5.0	İ	63	29	301
7.5		68	32	326
10.0	90	75	35	358
12.5		84	39	397
15.0		94	44	448
20.0	119	108	50	512
25.0		126	58	
30.0	146	151	70	
40.0	173	188	88	
50.0	203	251	100	
60.0	229			
70.0	256			
80.0	287			
90.0	314			
100.0	341			
125.0	411			
150.0	478			
175.0	547			
200.0	627			
250.0	753			
230.0	100			

Table H.9 Transportation Unit Cost of Sludge Cake from WWTP to Disposal Site

Wastewater	Tha	raeng	Nong	Khaem	On	-Nut
Treatment	Distance	Unit Cost	Distance	Unit Cost	Distance	Unit Cost
Plant	(km)	(Baht/m³)	(km)	(Baht/m³)	(km)	(Baht/m³)
Si Phraya	37	160	30	137	<u>'</u>	
Ratanakosin	36	157	26	124		
BKK Central	30	137	32	143		
Yannawa	35	153	33	147		
Nong Khaem	52	209	-	-		
Ratburana	53	212	34	150		
Huay Kwuang(Existing)	28	130	34	150		
Chatuchak	28	130	18	97	24	117
Khlong Toey West	22	111	27	127	13	81
Khlong Toey East	27	127	32	143	16	91
Thonburi North	28	130	21	107	27	127
Thonburi Central	31	140	21	107	30	137
Thonburi South	32	143	20	104	29	134
Bang Suc	21	107	28	130	32	143
Huay Kwuang	19	101	22	111	18	97
Wang Thong Lang	13	81	36	157	16	91
Bung Kum	6	58	44	183	15	88

Note: Transportation unit costs of the Sludge Cake are computed by the following formula;

y = 3.2807 x + 38.405

where;

x is Transportation distance by km to the disposal site

y is Transportation cost in Baht

Table H.10 Construction Cost of Simple Landfill

On the basis of;

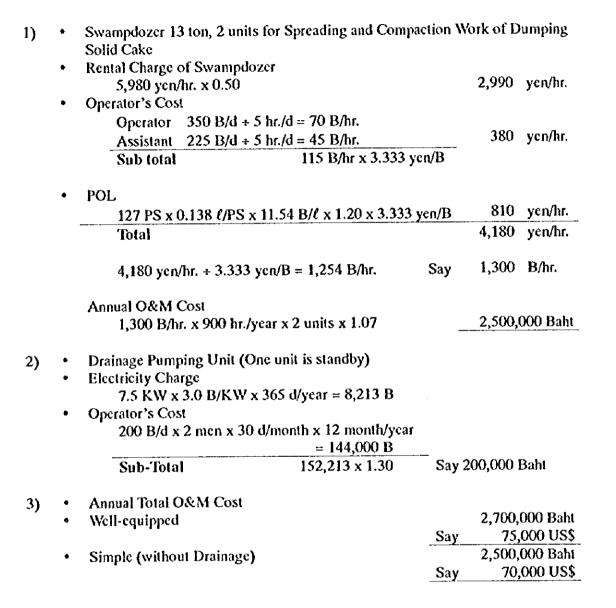
Excavation Volume;

1,500,000 m³

Excavation Depth:

10 m

Mean Excavation Area;


150,000 m² (400 m x 400 m)

[0	Unit Cost	Amount
No.	Work Item	Unit	Quantity	US\$	x 10 ³ US\$
1	Access Road, Macadam, We = 7.5 m	m	1,500	110	165
2	Excavation, Common, L = 500 m	m ³	1,500,000	2.2	3,300
1	Miscellaneous, 5% of above	L.S.			175
	Sub-total	Į			3,640
7	Overhead and Others, 25% of above	L.S.			910
	Total				4,550

Construction Unit Cost

 $4,550,000 \text{ US} \div 1,500,000 \text{ m}^3 = 3.0 \text{ US}/\text{m}^3$

Table H.11 Annual Operation and Maintenance Cost of Landfill Yard (Well-equipped)

103,931 (x1,000 US\$)

103,931 (x1,000 US\$)
Total Construction Cost

x1,000 US \$ 73,169 73,169

344

212,700

700 to 150

Sub-Total

US\$/m³/d Cuit

Amount

DWF p/¿m

Diameter mm

Pipe Ref. No.

Slurry Shield Pipe Jacking for 300, 400, 500, 600 and 700

Microtunneling for 150,200 and 250

Construction Method

ファニン・ファン・フロ・マ	ומוסטוומס	Conscion rips size	A DELICA	Collect actions cost	
S	Diameter	Length	Unit	Amount	
	(mm)	(km)	US \$/m	x1.000 US \$	
1	1,000	6.0	2.050	1.845	Earth Pressure Balancing Pipe Jacking
6	1,000	1.3	2,050	2,665	Earth Pressure Balancing Pipe Jacking
3	1,400	0.3	2,330	669	Earth Pressure Balancing Pipe Jacking
4	1.200	1.5	2,190	3,285	Earth Pressure Balancing Pipe Jacking
S	2,000	1.4	2,740	3.836	Earth Pressure Balancing Pipe Jacking
9	1,000	1.5	2,050	3,075	Earth Pressure Balancing Pipe Jacking
7	2.200	9.0	2,880	1.728	Earth Pressure Balancing Pipe Jacking
æ	1,000	2.1	2,050	4,305	Earth Pressure Balancing Pipe Jacking
Ó	1.400	1.1	2,330	2,563	Earth Pressure Balancing Pipe Jacking
10	2,400	0.5	3,020	1,510	Earth Pressure Balancing Pipe Jacking
11	008	1.2	1,910	2,292	Slurry Shield Pipe Jacking
12	1,000	9.0	2,050	1,230	Earth Pressure Balancing Pipe Jacking
13	1,600	0.7	2,470	1,729	Earth Pressure Balancing Pipe Jacking
14					
15					
16					
Sub-Total		13.7		30,762	

()

Table H.12 Cost Estimate of Collector System, Thonburi South Scheme, 180,800 m³/day

Table H.13 Cost Estimate of Collector System, Thonburi Central Scheme, 157,900 m³/day

Pipe Reference	Collector	Collector Pipe Size	Constru	Construction Cost	Construction Method
Š.	Diameter	Length	Unit	Amount	
	(mm)	(km)	m/\$ S/m	x1,000 US \$	
	800	1.9	1.910	3.629	Slurry Shield Pipe Jacking
2	009	1.5	1.780	2,670	Slurry Shield Pipe Jacking
2	009	1.4	1.780	2,492	Slurry Shield Pipe Jacking
4	1.400	2.6	2.330	850'9	Earth Pressure Balancing Pipe Jacking
V	1.200	2.8	2.190	6,132	Earth Pressure Balancing Pipe Jacking
9	2,000	2.0	2,740	5,480	Earth Pressure Balancing Pipe Jacking
7	1,000	3.1	2,050	6.355	Earth Pressure Balancing Pipe Jacking
×	2.200	1.8	2.880	5.184	Earth Pressure Balancing Pipe Jacking
6	800	2.9	1,910	5,539	Slurry Shield Pipe Jacking
10	2,400	2.9	3,020	8.758	Earth Pressure Balancing Pipe Jacking
Sub-Total		22.9		52,297	

Pipe Ref. No.	Diameter	DWF	Unit	Amount	Construction Method
	mm	m³/d	US\$/m³/d	×1.000 US \$	
	500 to 150	155,900	247	38.507	Microtunneling for 150,200 and 250
Sub-Total				38,507	38,507 Slurry Shield Pipe Jacking for 300, 400 and 500

Total Construction Cost

90,804 (x1,000 US\$)

SSO
8
Ž
1,791
4

Slurry Shield Pipe Jacking for 300 and 400

Microtunneling for 150,200 and 250

×1,000 US \$

US\$/m³/d Unit

m³/d 77.900

400 to 150

Sub-Total

Total Construction Cost

DWF

Diameter EE

Pipe Ref. No.

198

15,424

Amount

Construction Method

Pipe Reference	Collector	Collector Pipe Size	Construe	Construction Cost	Construction Method
Š	Diameter	Length	Unit	Amount	
	(mm)	(km)	m/\$ SO	×1,000 US \$	
	1,000	2.2	2,050	4.510	Earth Pressure Balancing Pipe Jacking
۲۱	1.400	1.5	2,330	3,495	Earth Pressure Balancing Pipe Jacking
3	800	2.6	1,910	4,966	Slurry Shield Pipe Jacking
4	500	6.0	1,710	1,539	Slurry Shield Pipe Jacking
S	1,600	1.9	2,470	4.693	Earth Pressure Balancing Pipe Jacking
9	800	1.4	1.910	2.674	Slurry Shield Pipe Jacking
7	800	1.0	1.910	1,910	Slurry Shield Pipe Jacking
×	2,000	1.2	2,740	3,288	Earth Pressure Balancing Pipe Jacking
6	800	1.2	1,910	2,292	Slurry Shield Pipe Jacking
Sub-Total		13.9		29.367	

()

()

/day
65,000 m ³ /day
, 16
ong Toey West Scheme
Toey
3
System, F
f Collector Sy
0
Cost Estimate
Cost
le H.15
Tab

	COMPACE	Collector ripe Size	Constru	Construction Cost	Construction Method
.02.	Diameter	นุาสินจา	Unit	Amount	
	(mm)	(km)	m/\$ SU	×1.000 US \$	
	800	1.6	1.910	3.056	Slurry Shield Pipe Jacking
6)	800	1.6	1,910	3,056	Slurry Shield Pipe Jacking
3	1,400	2.7	2,330	6,291	Earth Pressure Balancing Pipe Jacking
4	1,000	2.6	2,050	5,330	Earth Pressure Balancing Pipe Jacking
S	1.800	2.2	2,610	5.742	Earth Pressure Balancing Pipe Jacking
9	1,000	2.7	050'Z	5.535	Earth Pressure Balancing Pipe Jacking
7	1,400	2.0	2,330	4.660	Earth Pressure Balancing Pipe Jacking
×	009	8.0	1,780	1.424	Slurry Shield Pipe Jacking
Ó	2,200	1.6	0887	4,608	Earth Pressure Balancing Pipe Jacking
10	909	1.8	1,780	3.204	Slurry Shield Pipe Jacking
11	009	6.0	1,780	1,602	Slurry Shield Pipe Jacking
12	1,400	3.0	2,330	066'9	Earth Pressure Balancing Pipc Jacking
13	2,600	6.0	3,160	2,844	Earth Pressure Balancing Pipe Jacking
Sub-Total		24.4		54,342	

Pipe Ref. No.	Diameter	DWF	Unit	Amount	Construction Method
	mm	m³/d	US\$/m³/d	x1,000 US \$	
•	500 to 150	165.700	247	40,928	Microtunneling for 150,200 and 250
Sub-Total				40,928	Slurry Shield Pipe Jacking for 300, 400 and 500

Total Construction Cost

95,270 (x1,000 US\$)

106,588 (x1,000 US\$)

Slurry Shield Pipe Jacking for 300, 400 and 500

38,260 38,260

Microtunneling for 150,200 and 250

x1.000 US \$

US\$/m³/d Unit

247

154,900 m³/d DWF

500 to 150

Sub-Total

Diameter mm m

Pipe Ref. No.

Amount

Construction Method

No. Diameter (km) US \$/m X1,000 US \$ 1 (km) US \$/m x1,000 US \$ 1 800 1.9 1,910 3,629 Slurr 2 800 1.8 1,910 3,438 Slurr 3 1,200 1.3 2,190 2,847 Earth Press 4 600 1.9 1,780 3,382 Slurr 5 1,400 3.1 2,190 2,847 Earth Press 6 1,000 2.1 2,050 4,505 Earth Press 7 1,800 1.8 2,610 4,698 Earth Press 8 1,000 2.9 2,050 5,945 Earth Press 9 2,200 1.4 2,880 4,032 Earth Press 10 800 2.2 1,910 4,202 Slur 12 1,200 2.190 4,380 Earth Press 13 2,200 1.3 2,180 Earth Press <th>Pipe Reference</th> <th>Collector</th> <th>Collector Pipe Size</th> <th>Construc</th> <th>Construction Cost</th> <th>Construction Method</th>	Pipe Reference	Collector	Collector Pipe Size	Construc	Construction Cost	Construction Method
(mm) (km) US \$/m x1.000 US \$ 800 1.9 1,910 3,629 800 1.8 1,910 3,438 1.200 1.3 2,190 2,847 1.000 1.9 1,780 3,332 1,400 3.1 2,330 7,223 1,000 2.1 2,050 4,698 1,000 2.9 2,050 5,945 800 2.9 2,050 5,945 1,000 2.9 2,050 5,945 1,000 2.9 2,050 5,945 1,000 2.9 2,050 6,970 1,000 3.4 2,050 6,970 1,000 2.0 2,190 4,380 1,000 2.3 2,050 4,380 1,000 2.3 2,050 4,380 1,000 2.3 2,050 4,380 1,000 2.3 2,050 4,380 1,000 2.3 2,050	Š	Diameter	Length	Unit	Amount	
800 1.9 1,910 3,629 800 1.8 1,910 3,438 1,200 1.3 2,190 2,847 600 1.9 1,780 3,382 1,400 3.1 2,330 7,223 1,000 2.1 2,050 4,305 1,000 2.9 2,050 4,698 1,000 2.9 2,050 5,945 800 2.2 1,910 4,698 1,000 3.4 2,880 4,032 800 2.2 1,910 4,202 800 2.2 1,910 4,202 800 2.2 1,910 4,380 1,000 3.4 2,050 6,970 1,000 2.3 2,190 4,715 600 1.8 1,780 3,204 600 1.8 1,780 3,204 1,200 2,190 2,190 2,190		(mm)	(km)	US \$/m	×1,000 US \$	
800 1.8 1,910 3,438 1,200 1.3 2,190 2,847 600 1.9 1,780 3,382 1,400 3.1 2,330 7,223 1,000 2.1 2,050 4,305 1,000 2.9 2,610 4,698 1,000 2.9 2,650 5,945 800 2.2 1,910 4,032 800 2.2 1,910 4,032 800 2.2 1,910 4,380 1,000 3.4 2,050 6,970 1,000 2.0 2,190 4,380 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 2,190 1,200 2.3 2,050 4,715	1	800	1.9	1,910	3,629	Slurry Shield Pipe Jacking
1,200 1.3 2,190 2,847 600 1.9 1,780 3,382 1,400 3.1 2,330 7,223 1,000 2.1 2,050 4,305 1,000 2.9 2,050 4,698 1,000 2.9 2,050 5,945 800 2.2 1,910 4,032 800 2.2 1,910 4,032 1,000 3.4 2,050 6,970 1,000 3.4 2,050 6,970 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 600 1.0 2,190 2,190 1,200 2.3 2,050 4,715	6	800	1.8	1,910	3,438	Slurry Shield Pipe Jacking
600 1.9 1.780 3.382 1.400 3.1 2.330 7.223 1.000 2.1 2.050 4.305 1.800 1.8 2.610 4.698 1.000 2.9 2.050 5.945 800 2.2 1.910 4.032 800 2.2 1.910 4.202 800 3.4 2.050 6.970 1.200 3.4 2.050 6.970 2.200 1.1 2.880 3.168 1.000 2.3 2.050 4.715 600 1.8 1,780 3.204 1.200 1.8 1,780 3.204	3	1.200	1.3	2,190	2,847	Earth Pressure Balancing Pipe Jacking
1,400 3.1 2,330 7,223 1,000 2.1 2,050 4,305 1,800 1.8 2,610 4,698 1,000 2.9 2,050 5,945 800 2.2 1,910 4,032 800 2.2 1,910 4,202 1,000 3.4 2,050 6,970 1,200 2.0 2,190 4,380 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	4	009	1.9	1.780	3.382	Slurry Shield Pipe Jacking
1,000 2.1 2,050 4,305 1,800 1.8 2,610 4,698 1,000 2.9 2,050 5,945 800 2.2 1,910 4,202 1,000 3.4 2,050 6,970 1,200 2.0 2,190 4,380 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	S	1.400	3.1	2,330	7.223	Earth Pressure Balancing Pipe Jacking
1.800 1.8 2.610 4.698 1,000 2.9 2,050 5,945 2,200 1.4 2,880 4,032 800 2.2 1,910 4,202 1,000 3.4 2,050 6,970 1,000 2.0 2,190 4,380 2,200 1.1 2,880 3,168 6,00 1.8 1,780 3,204 1,200 1.0 2,190 2,190	9	1,000	2.1	2,050	4,305	Earth Pressure Balancing Pipe Jacking
1,000 2.9 2,050 5,945 2,200 1.4 2,880 4,032 800 2.2 1,910 4,202 1,000 3.4 2,050 6,970 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	7	1.800	1.8	2,610	4,698	Earth Pressure Balancing Pipe Jacking
2,200 1.4 2,880 4,032 800 2.2 1,910 4,202 1,000 3.4 2,050 6,970 1,200 2.0 2,190 4,380 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	*	1,000	2.9	2,050	5,945	Earth Pressure Balancing Pipe Jacking
800 2.2 1,910 4,202 1,000 3.4 2,050 6,970 1,200 2.0 2,190 4,380 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	6	2,200	1.4	2,880	4,032	Earth Pressure Balancing Pipe Jacking
1,000 3.4 2,050 6,970 1,200 2.0 2,190 4,380 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	10	008	2.2	1,910	4,202	Slurry Shield Pipe Jacking
1,200 2.0 2,190 4,380 2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	11	1,000	3.4	2,050	6.970	Earth Pressure Balancing Pipe Jacking
2,200 1.1 2,880 3,168 1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	12	1.200	2.0	2,190	4,380	Earth Pressure Balancing Pipe Jacking
1,000 2.3 2,050 4,715 600 1.8 1,780 3,204 1,200 1.0 2,190 2,190	13	2,200	1.1	2,880	3,168	Earth Pressure Balancing Pipe Jacking
600 1.8 1,780 3,204 1,200 1,0 2,190 2,190	14	1,000	2.3	2,050	4,715	Earth Pressure Balancing Pipe Jacking
1,200 1.0 2,190 2,190	15	009	1.8	1,780	3,204	Slurry Shield Pipe Jacking
	16	1,200	1.0	2,190	2,190	Earth Pressure Balancing Pipe Jacking
Sub-Total 32.0 68.328	Sub-Total		32.0		68.328	

()

Table H.16 Cost Estimate of Collector System, Khlong Toey East Scheme, 185,400 m³/day

Total Construction Cost

0 m ² /day
E
Ō
2
7
\approx
 i
6
ğ
E
Ę
χ,
(4)
, Bang Sue
Ś
P.
č
ú
8
- 2
೪
્છ
System
٠.
5
당
త
등
۲۲,
ည်
of
نه
걸
- 62
.⊆
77
Ğ
_
<u> </u>
Cost Es
ŭ
-
\rightarrow
<u> </u>
le H.17 C
Table
ō
Tabl
-

Diameter Length Unit Amount (mm) (km) US \$/m x1.000 US \$ 1,200 1.1 2.190 2.409 800 0.7 1,910 1,337 800 0.8 2,330 1,864 1,000 2.0 2,050 4,100 1,000 1.9 2,190 1,971 1,200 0.9 2,190 1,971 1,200 1.7 2,050 3,485 1,200 2.0 2,190 4,380 800 0.9 1,910 1,719 800 0.9 1,910 1,719 1,400 0.5 2,330 1,165 1,400 0.5 2,330 1,165 1,400 0.5 2,330 1,165 1,400 0.5 2,330 1,165 2,400 0.5 3,020 1,510	Dine Believen	Collector	Collector Pine Size	Construc	Construction Cost	Construction Method
(mm) (km) US \$/m x1.000 US \$ 1.200 1.1 2.190 2.409 800 0.7 1,910 1.337 800 0.8 2.350 1.864 1.400 0.8 2.350 1,864 1.000 2.0 2.050 4,100 2.000 1.9 2.190 1,971 1.200 0.9 2.740 5,206 1.200 1.7 2.050 3,485 1.200 2.0 2.190 4,380 800 0.9 1.910 1,719 800 0.5 2,330 1,165 2,400 0.5 3,020 1,510 2,400 0.5 3,020 1,510	S. S. S. S. S. S. S. S. S. S. S. S. S. S	Diameter	Length	Unit	Amount	
1,200 1,1 2,190 2,409 800 0,7 1,910 1,337 1,000 2,0 2,050 4,100 1,000 2,0 2,190 1,971 1,200 0,9 2,740 5,206 1,000 1,7 2,050 3,485 1,000 1,7 2,050 3,485 1,200 2,0 2,190 4,380 800 0,9 1,910 1,719 800 0,9 1,910 1,719 2,400 0,5 2,330 1,165 2,400 0,5 3,020 1,510		(mm)	(km)	US \$/m	×1.000 US \$	
800 0.7 1,910 1,337 1,400 0.8 2,330 1,864 1,000 2.0 2,050 4,100 1,200 0.9 2,190 1,971 2,000 1.9 2,740 5,206 1,000 1.7 2,050 3,485 1,200 2.0 2,190 4,380 800 0.9 1,910 1,719 800 0.5 2,330 1,165 1,400 0.5 3,020 1,510 2,400 0.5 3,020 1,510		1.200	1.1	2,190	2,409	Earth Pressure Balancing Pipe Jacking
1,400 0.8 2,330 1,864 1,000 2.0 2,050 4,100 1,200 0.9 2,190 1,971 2,000 1.9 2,740 5,206 1,000 1.7 2,050 3,485 1,200 2.0 2,190 4,380 800 0.9 1,910 1,719 800 0.5 2,330 1,165 2,400 0.5 3,020 1,510	C1	008	0.7	1,910	1,337	Slurry Shield Pipe Jacking
1,000 2.0 2,050 4,100 1,200 0.9 2,190 1,971 2,000 1.9 2,740 5,206 1,000 1.7 2,050 3,485 1,200 2.0 2,190 4,380 800 0.9 1,910 1,719 1,400 0.5 2,330 1,165 2,400 0.5 3,020 1,510	m	1,400	0.8	2,330	1,864	Earth Pressure Balancing Pipe Jacking
1,200 0.9 2,190 1,971 2,000 1.9 2,740 5,206 1,000 1.7 2,050 3,485 1,200 2.0 2,190 4,380 800 0.9 1,910 1,719 1,400 0.5 2,330 1,165 2,400 0.5 3,020 1,510	4	1,000	2.0	2,050	4,100	Earth Pressure Balancing Pipe Jacking
2,000 1.9 2,740 5,206 1,000 1.7 2,050 3,485 1,200 2.0 2,190 4,380 800 0.9 1,910 1,719 1,400 0.5 2,330 1,165 2,400 0.5 3,020 1,510	S	1.200	6.0	2,190	1.971	Earth Pressure Balancing Pipe Jacking
1,000 1,7 2,050 3,485 1,200 2.0 2,190 4,380 800 0.9 1,910 1,719 1,400 0.5 2,330 1,165 2,400 0.5 3,020 1,510	9	2,000	1.9	2,740	5,206	Earth Pressure Balancing Pipe Jacking
1,200 2,0 2,190 4,380 800 0,9 1,910 1,719 1,400 0,5 2,330 1,165 2,400 0,5 3,020 1,510	7	1.000	1.7	2,050	3,485	Earth Pressure Balancing Pipe Jacking
800 0.9 1,910 1,719 1,400 0.5 2,330 1,165 2,400 0.5 3,020 1,510	œ	1.200	2.0	2,190	4,380	Earth Pressure Balancing Pipe Jacking
1,400 0.5 2,330 1,165 2,400 0.5 3,020 1,510	6	800	6.0	1.910	1,719	Slurry Shield Pipe Jacking
2.400 0.5 3.020 1.510	10	1,400	0.5	2.330	1.165	Earth Pressure Balancing Pipe Jacking
	11	2,400	0.5	3.020	1.510	Earth Pressure Balancing Pipe Jacking
6 11						
13.0	Sub-Total		13.0		29,146	

Construction Method		Microtunneling for 150,200 and 250	Slurry Shield Pipe Jacking for 300, 400, 600 and 700
Amount	×1.000 US \$	43,378	43,378
Unit	US\$/m ³ /d	344	
DWF	m³/d	126,100	
Diameter	mm	700 to 150	
Pipe Ref. No.			Sub-Total

Total Construction Cost

72,524 (x1,000 US\$)

71,429 (x1,000 US\$)

Slurry Shield Pipe Jacking for 300, 400, 500, 600 and 700

Microtunneling for 150,200 and 250

x1,000 US \$ 42,725 42,725

344

124.200

700 to 150

Sub-Total

Total Construction Cost

USS/m³/d Unit

Amount

DWF p/¿ш

Diameter mm

Pipe Ref. No.

Construction Method

Pipe Reference	Collector	Collector Pipe Size	Constru	Construction Cost	Construction Method
ćZ	Diameter	Length	Unit	Amount	
	(mm)	(km)	US S/m	x1,000 US \$	
	1.200	3.1	2,190	6,789	Earth Pressure Balancing Pipe Jacking
71	908	0.7	1,910	1,337	Slurry Shield Pipe Jacking
3	1,400	0.4	2,330	932	Earth Pressure Balancing Pipe Jacking
7	800	2.2	1,910	4,202	Slurry Shield Pipe Jacking
v,	800	1.0	1,910	1,910	Slurry Shield Pipe Jacking
9	1.800	1.1	2.610	2,871	Earth Pressure Balancing Pipe Jacking
7	1.000	2.8	2.050	5.740	Earth Pressure Balancing Pipe Jacking
x	008	1.4	1,910	2,674	Slurry Shield Pipe Jacking
S	1.400	0.1	2,330	233	Earth Pressure Balancing Pipe Jacking
10	2,200	0.7	2,880	2,016	Earth Pressure Balancing Pipe Jacking
-		•			
Sub-Total		13.5		28,704	

()

Table H.19 Cost Estimate of Collector System, Wang Thong Lang, 141,100 m³/day

	A GOLD A STATE	****		ć	
Pipe Reference	Collector	Collector Pipe Size	Construc	Construction Cost	Construction Method
ėZ.	Diameter	Length	Unit	Amount	
	(mm)	(km)	US \$/m	×1,000 US \$	
	800	2.3	1.910	4.393	Slurry Shield Pipe Jacking
71	800	1.9	1,910	3.629	Slurry Shield Pipe Jacking
3	1,200	0.2	2,190	438	Earth Pressure Balancing Pipe Jacking
4	9009	1.0	1,780	1,780	Slurry Shield Pipe Jacking
ν,	009	1.3	1,780	2,314	Slurry Shield Pipe Jacking
S	1,400	1.5	2,330	3,495	Earth Pressure Balancing Pipe Jacking
7	008	1.7	1,910	3,247	Slurry Shield Pipe Jacking
x	1.600	1.2	2,470	2,964	Earth Pressure Balancing Pipe Jacking
Ó	009	1.1	1.780	1,958	Slurry Shield Pipe Jacking
10	2,000	2.8	2,740	7,672	Earth Pressure Balancing Pipe Jacking
11	800	1.2	1.910	2,292	Slurry Shield Pipe Jacking
12	900	1.3	1,910	2,483	Slurry Shield Pipe Jacking
13	1,400	1.1	2,330	2,563	Earth Pressure Balancing Pipe Jacking
14	800	1.7	1.910	3.247	Slurry Shield Pipe Jacking
15	1.600	8.0	2,470	1.976	Earth Pressure Balancing Pipe Jacking
16	2.400	9.0	3,020	1.812	Earth Pressure Balancing Pipe Jacking
Sub-Total		21.7		46.263	

Pipe Ref. No.	Diameter	DWF	Unit	Amount	Construction Method
	mm	m³/d	US\$/m³/d	×1.000 US \$	
3	500 to 150	141,100	247	34,852	Microtunneling for 150,200 and 250
Sub-Total				34,852	Slurry Shield Pipe Jacking for 300, 400 and 500

Total Construction Cost

81,115 (x1,000 US\$)

(x1,000 US\$)

Slurry Shield Pipe Jacking for 300, 400 and 500

Microtunneling for 150,200 and 250

×1.000 US \$

US\$/m³/d Unit

247

147,800 p/_sm DWF

500 to 150

Sub-Total

Diameter шш

Pipe Ref. No.

36,507 36,507

Amount

Construction Method

Ξ
84,856 (
¥
st
Š
ction
Sta
Con
Total Con

Pipe Reference Collector Pipe Size Construction No. Diameter Length Unit 1 (mm) (km) US \$/m) 2 1,000 1.7 1,910 3 1,600 1.4 2,330 4 1,800 3.1 2,050 5 800 1.6 2,610 6 1,000 1.7 2,050 7 800 1.8 2,330 8 1,400 1.5 1,780 9 2,200 1.5 1,780 10 800 2.1 1,780 10 800 2.1 1,780 11 600 1.2 1,780 12 1,200 2.330 12 1,400 2.4 3,160	ruction / X1.	Earth Pressure Balancing Pipe Jacking Earth Pressure Balancing Pipe Jacking
Diameter Length Unit (mm) (km) US \$/m 1,000 1.7 1,910 1,000 1.4 2,330 1,800 3.1 2,050 800 1.6 2,610 1,000 1.7 2,050 800 1.8 2,330 1,400 1.5 1,780 800 2,200 1.0 2,880 800 2.1 1,780 600 1.2 1,780 1,200 1.0 2,330 1,400 2.1 1,780		Earth Pressure Balancing Pipe Jacking Earth Pressure Balancing Pipe Jacking
(mm) (km) US \$/m 1,000 1.7 1,910 1,000 1.4 2,330 1,800 3.1 2,050 800 1.6 2,610 800 1.7 2,050 800 1.8 2,330 1,400 1.8 2,330 2,200 1.5 1,780 800 2.1 1,780 800 1.2 1,780 600 1.2 1,780 1,200 1.0 2,330 1,400 2.1 1,780 1,200 1.2 1,780 1,400 2.4 3,160		Earth Pressure Balancing Pipe Jacking Earth Pressure Balancing Pipe Jacking
1,000 1.7 1,000 1.2 1,600 1.4 1,800 3.1 800 1.6 1,000 1.7 800 1.8 1,400 1.5 2,200 1.0 600 1.2 600 1.2 1,200 1.0 1,400 2.1		Earth Pressure Balancing Pipe Jacking Earth Pressure Balancing Pipe Jacking
1,000 1.2 1,600 1.4 800 1.6 1,000 1.7 800 1.8 1,400 1.5 800 2.1 800 2.1 600 1.2 1,200 1.0 1,400 2.4		Earth Pressure Balancing Pipe Jacking
1,600 1.4 1,800 3.1 800 1.6 1,000 1.7 800 1.8 1,400 1.5 2,200 1.0 800 2.1 600 1.2 1,200 1.0 1,400 2.4		Double Describes Delication Diago Sections
1,800 3.1 800 1.6 1,000 1.7 800 1.8 1,400 1.5 800 2.1 600 1.2 1,200 1.0 1,400 2.4		Early Fiessure Dalancing Fibe Jacking
800 1.6 1,000 1.7 800 1.8 1,400 1.5 2,200 1.0 800 2.1 600 1.2 1,200 1.0 1,400 2.4	050 6.355	Earth Pressure Balancing Pipe Jacking
1.000 1.7 800 1.8 1.400 1.5 2.200 1.0 800 2.1 600 1.2 1.200 1.0 1.400 2.4	610 4,176	Slurry Shield Pipe Jacking
800 1.8 1,400 1.5 2,200 1.0 800 2.1 600 1.2 1,200 1.0 1,400 2.4	050 3,485	Earth Pressure Balancing Pipe Jacking
1,400 1.5 2,200 1.0 800 2.1 600 1.2 1,200 1.0 1,400 2.4	330 4,194	Slurry Shield Pipe Jacking
2.200 1.0 800 2.1 600 1.2 1.200 1.0 1.400 2.4	780 2.670	Earth Pressure Balancing Pipe Jacking
800 2.1 600 1.2 1.200 1.0 1.400 2.4	880 2,880	Earth Pressure Balancing Pipe Jacking
600 1.2 1.200 1.0 1.400 2.4	780 3,738	Slurry Shield Pipe Jacking
1,200 1.0 1,400 2.4	780 2.136	Slurry Shield Pipe Jacking
1,400 2.4	330 2.330	Earth Pressure Balancing Pipe Jacking
	160 7.584	Earth Pressure Balancing Pipe Jacking
Sub-Total 21.7	48.349	

H-21

Table H.21 Cost Estimate for Integrated Anaerobic Digesting and Composting Plants

	Dry Solid		Digesting	Gene	Generating	Odor Removal	emoval	Dewa	Dewatering	Lea	Leachet	Sub-	Comp	Composting	Total
Š		· 			,			(by Be	(by Belt Press)	i		Total			
	Capacity	Cap.	Cost	Cap.	Cost	Cap.	S	Cap.	Cost	Cap.	Cost	Cost Cost Cap. Cost	Cap.	Cost	Cost
	P/SQ 1		m³/d × 10³ USS	l	< 10' USS	m³/min	× 10° USS	t DS/d	× 10° USS	b/m	$\times 10^3 USS$	× 10° USS	t DS/d	× 10' USS	× 10° USS
					C c	(-		(000	9		200 1 3711 01 010 7	Ç	1 715	7 003
-	10.0	200	1.490		440 1.950 L.S 447	S.	\top	0:/	7.0 2.058 190	787		0.20	?	7.742	Co./
C!	80.0	1,600	1.600 4.700	3.520	520 12.500 L.S 3.500 56.0 6.000 1.520 2.500 29.200 56.0 9.500 38.700	LS	3.500	56.0	6.000	1.520	2.500	29.200	56.0	9.500	38.700
					,							9		0000	000
က	160.0	3.200	3.200 7.500	ř	340 18.500 L.S. 7.000 112.0 9.500 3.040 5.000 47.500 112.0 16.500 64.000	L.S	7.000	112.0	9.500	3,040	5.000	47.500	112.0	10,500	94.000

Table H.22 Breakdown of Cost Estimate for Integrated Anaerobic Digesting and Composting Plant (Dry Solid Capacity = 10 t DS/d)

Planning Coudition Ds = 10 t/4 Output; 440kW Ds = 7 t/4 Cake Moisture; 80 %	ģ	o. Work Item	Digesting	Generating	Odor Removal	Dewatering (by Belt Press)	Leachet	Sub-Total	Composting	Total
2 Construction Cost Civil and Architecturr 625,000 300,000 94,000 76,000 110,000 110,000 Civil and Architecturr 625,000 1,650,000 76,000 76,000 110,000 62,000 62,000 Charles Charles Charge 4,300 0 0 0 0 0 0 15,000 110,000 Charles Charge 4,300 14,000 75,000 15,000 15,000 15,000 Charles Charge 14,000 42,000 75,000 15,000 15,000 15,000 Charles Charge 14,000 75,000 15,000 15,000 15,000 Charles Charge 14,000 75,000 75,000 15,000 15,000 Charles Charge 14,000 75,000 75,000 15,000 15,000 Charles Charge 14,000 75,000		1 Planning Condition	Ds = 10 t/d	Output; 440kW		Ds = 7 t/d	Cake Moisture; 80 %		Ds = 7.0 t/d	
2 Construction Cost Civil and Architecture 625,000 300,000 94,000 842,000 110,000 110,000 Electric 300,000 1,650,000 76,000 788,000 110,000 62,000 Sub-Total 1,499,000 1,950,000 447,000 2,038,000 313,000 62,000 Chemical 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			$Qd = 200 \text{ m}^3/d$	Oty: 1 Unit		Cake O'ty; 35 m3/d	Dry Solid: 20 %		Padding Fermentor	
2 Construction Cost 300,000 94,000 842,000 141,000 Civil and Architecture 565,000 1,650,000 277,000 788,000 110,000 Blectric 300,000 1,950,000 447,000 2,038,000 513,000 50,000 Sub-Total 1,490,000 1,950,000 447,000 2,038,000 313,000 50,000 Sub-Total 0 0 0 0 0 0 0 Fuel 0 0 0 0 0 0 0 0 Restric Charge 4,300 42,000 4,200 10,500 10,500 10,500 10,500 4,800 Sub-Total 23,800 52,500 56,000 56,000 4,800 4,800 4,800							$Ow = 160 \text{ m}^3/d$			
Civil and Architecture 625,000 300,000 94,000 842,000 141,000 Machinery 565,000 1,650,000 277,000 76,000 408,000 110,000 Sub-Total 1,490,000 1,950,000 447,000 2,038,000 313,000 62,000 3 Annual O&M Cost 0 0 207,000 1,250 0 0 Fuel 0 0 0 0 0 0 0 Electric Charge 4,300 42,000 4,200 10,500 10,500 10,500 Personnel 10,500 10,500 55,600 55,000 4,800 4,800		2 Construction Cost								
Machinery 565,000 1,650,000 277,000 788,000 110,000 Electric 300,000 1,950,000 447,000 2,038,000 62,000 3 Annual O&M Cost 1,490,000 1,950,000 447,000 2,038,000 313,000 5,000 Pruct 0 0 0 0 0 0 0 Electric Charge 4,300 42,000 50,800 15,000 2,500 Maintenance 14,000 42,000 55,000 253,000 253,000 48,000 Sub-Total 28,800 52,500 55,000 253,000 48,000 48,000	_	Civil and Architectur		300,000	94,000	842,000	141,000		835,000 (1)	
300,000 1,950,000 447,000 2.038,000 62,000 50,000 313,000 50,000 313,000 50,000 313,000 50,000 313,000 50,000 313,000 50,000 313,000 50,000 11,250 11,250 0		Machinery		1.650.000		788,000	110,000		620,000 (2)	
3 Anmual O&M Cost 1,490,000 1,950,000 447,000 2,038,000 313,000 513,000 513,000 513,000 513,000 513,000 513,000 513,000 1,250 1,250 1,250 1,250 0		Electric	300,000			408,000	62,000	, , , , , , , , , , , , , , , , , , , 	290,000	
ge 4,300 0 0 1,250 10,500 10,500 10,500 12,000 12,000 28,800 10,500 55,000 253,000 4,800		Sub-Total	1,490,000	1,950,000	447,000	2.038,000	313,000	5.238,000	1,745,000	1,745,000 7,983,000
uical 0 0 0 1,250 ric Charge 4,300 0 0 0 0 0 ric Charge 4,300 0 50,800 15,000 2,500 tenance 14,000 42,000 4,200 19,000 1,050 nunel 10,500 52,500 55,000 4,800		3 Annual O&M Cost								
ric Charge 4,300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Chemical	0	•		207,000	1,250		0	
tenance 4,300 0 50,800 15,000 2,500 1,050 1,050 1,050 1,050 10,500 52,500 55,000 55,000 4,800 4,800	-	Fuel	0	0		0	0		77,000	
tenance 14,000 42,000 4,200 19,000 1,050 1,050 10,500 0 12,000 0 4,800 253,000 4,800		Electric Charge	4,300	• 	50,800	15,000	2,500		76,000	
nanel 10,500 10,500 0 12,000 0 28,800 0 28,800 4,800	 	Maintenance	14,000	42,000		19,000	1,050		24,000	
28.800 52.500 55.000 4.800		Persoanel	10,500	10,500		12,000			26,000	
		Sub-Total	28.800	52,500	55,000	253,000	4.800	394,100	203.000	597.100

Note: (1) Composter (2) Dryer

Table H.23 Breakdown of Cost Estimate for Integrated Anaerobic Digesting and Composting Plant (Dry Solid Capacity = 80 t DS/d)

Š	Work Item	Digesting	Generating	Odor Removal	Dewatering (by Belt Press)	Leachet	Sub-Total	Composting	Total
1	Planning Condition	Ds = 80 v/d	Output: 3.540kW		$D_S = 56 t/d$	Cake Moisture; 80 %		$D_S = 56.0 \text{ t/d}$	
		Od = 1,600 m³/d O'ty; 1 Unit	O'ty: 1 Unit		Cake O'ty; 280 m³/d Dry Solid; 20 %	Dry Solid; 20 %		Padding Fermentor	
						$Ow = 1,280 \text{ m}^3/d$			
7	Construction Cost								
	Civil and Architecture	2,130,000	1.900,000	750,000	3,900,000	1,125,000		4,215,000	
	Machinery	1,720,000	10.600.000	2,150,000	1,400,000	875,000		3.700.000	
	Electric	850,000		000,000	700,000	200,000		1,585,000	
	Sub-Total	4,700,000	12,500,000	3,500,000	6,000,000	2,500,000	2,500,000 29,200,000	9.500,000	38,700,000
er,	Annual O&M Cost								
	Chemical	0	0	0	163,000	7,100		0	
	Fuel	0	0	0	0	0		000'859	
	Electric Charge	35,000	0	406,000	119,000	16,300		496,000	
	Maintenance	41,000	268,000	34,000	34,000	9,600		100,000	
	Personnel	10,500	67,000	0	25,000	0		146,000	-
	Sub-Total	86,500	335,000	440,000	371,000	30,000	1,262,500	1,400,000	2,662,500

Table H.24 Breakdown of Cost Estimate for Integrated Anaerobic Digesting and Composting Plant (Dry Solid Capacity = 160 t DS/d)

, oʻ	Work Item	Digesting	Generating	Odor Removal	Dewatering (by Belt Press)	Leachet	Sub-Total	Composting	Total
~	Planning Condition	Ds = 160 t/d	Output; 7,040kW		Ds = 112 t/d	Cake Moisture; 80 %		Ds = 112.0 t/d	
		Qd = 3,200 m ³ /d Q'ty; 1 Unit	Q'ty; 1 Unit			Dry Solid: 20 %		Padding Fermentor	
						$Qw = 2.560 \text{ m}^3/d$			
7	Construction Cost								
	Civil and Architectus	3,400,000	2,800,000	1,500,000	6,200,000	2,250,000		7,300,000	
	Machinery	2,700,000	15.700.000	4,300,000	2,200,000	1,750,000		6,450,000	
	Electric	1,400,000		1,200,000	1,100,000	1,000,000		2,750,000	
	Sub-Total	7.500.000	18,500,000	7,000,000	9,500,000	5,000,000	5,000,000 47,500,000	16.500,000	64,000,000
171	Annual O&M Cost								
	Chemical	0	0	•	242,000	10,500		0	
	Fuel	0	0	0	0	0		1,236,000	
	Electric Charge	57,000	0	738,000	176,000	24,500		931,000	
	Maintenance	000'99	400,000	62,000	20,000	10,000		189,000	
	Personnel	17.000	100,000	0	82,000	0		274,000	
	Sub-Total	140,000	500,000	800.000	\$50,000	45,000	2,035,000	2,630,000	4.665.000