Table 7.1.4.1 Risk Evaluation of Heavy Metal Intrusion

Service Arcas	Industry Categorics												TotaiWeightingPoint	Total Toxic Factory Number	Total Factory Number	Average Weight Point to One Factory	Toxic Factory Ratio to All Factores	Industrial Wastewater Ratio to Total Sewage	Toxicity Point at Present	Toxicity Index at Present	Potential Growth Index of Industrial Sector	Total Toxicity Index	Risk Ranking
	Dycing:		Machinery		Electroplating		Conmetial Tooth Paste		Battery		Printing												
Relative Rating by Industries	3		3		5																		
	(A)	(B)	(A)	(B)	(A) (B)		(A)	(B)	(A)	(B)	(A)	(B)	(C) $=\Sigma$ (B)	$(D)=\Sigma$ (A)	(E)	$\begin{gathered} \langle\mathrm{F})= \\ (\mathrm{C}) /(\mathrm{D}) \end{gathered}$	$\begin{gathered} (\mathrm{G})= \\ (\mathrm{D}) /(\mathrm{E}) \\ \times 100 \end{gathered}$	$\begin{aligned} & (\mathrm{H}) \\ & (\%) \end{aligned}$	$\begin{array}{\|c\|} \hline(\mathrm{I})= \\ (\mathrm{F}) \times(\mathrm{G}) \\ \times(\mathrm{K}) / 100 \end{array}$	$\begin{aligned} & (J)= \\ & 10 / 26 \\ & x(1) \\ & \hline \end{aligned}$	(K)	$\begin{gathered} (\mathrm{L})= \\ (\mathrm{J}) \times(\mathrm{K}) \end{gathered}$	
Si Phraya	0	0	99	297	4	20	1	1	7	7	4	12	337	115	1.040	2.9	11.1	48	15.6	9.7	2	19.4	8
Ratanakosin	0	0	68	204	44	220	1	1	11	11	7	21	457	131	1,173	3.5	11.2	30	11.7	7.3	3	21.9	6
Din Daeng	2	6	524	1572	12	60	7	7	44	44	43	129	1818	632	5.827	2.9	10.8	16	5.0	3.1	3	9.4	15
Xannawa	2	6	307	921	30	150	16	16	21	21	151	453	1567	527	5.305	3.0	9.9	31	9.2	5.7	3	17.2	9
Nong Khaem	1	3	204	612	30	150	7	7	14	14	81	243	1029	337	3,347	3.1	10.1	25	7.7	4.8	9	43.2	2
Ratburana	5	15	75	225	15	75	4	4	5	5	36	108	432	140	1.884	3.1	7.4	20	4.6	2.9	10	28.7	3
Chatuchak	1	3	148	444	4	20	3	3	17	17	2	6	493	175	902	2.8	19.4	6	3.3	2.0	3	6.1	16
Thonburi South	9	27	298	894	33	165	11	11	18	18	154	462	1577	523	5,726.	3.0	9.1	29	8.0	5.0	4	20.0	7
Thonburi Central	4	12	165	495	7	35	2	2	11	11	20	60	615	209	1,927	2.9	10.8	23	7.3	4.6	3	13.8	10
Thonburi North	0	0	95	285	2	10	1	1	8	8	14	42	346	120	857	2.9	14.0	15	6.1	3.8	3	11.4	13
Khlong Toey West	1	3	154	462	1	5	10	10	11	11	22	66	557	199	2,032	2.8	9.8	27	7.4	4.6	6	27.8	4
Khiong Toey East	1	3	236	708	9	45	10	10	12	12	51	153	931	319	2,207	2.9	14.5	22	9.3	5.8	10	58.0	1
Bang Sue	0	0	85	255	3	15	3	3	13	13	4	12	298	208	1.207	2.8	8.9	13	3.2	2.0	5	10.0	14
Huay Kwuang	1	3	105	315	0	0	7	7	4	4	9	27	356	126	681	2.8	18.5	16	8.4	5.2	5	26.1	5
Wang Thong Lang	4	12	187	561	11	55	3	3	12	12	22	66	709	239	1.512	3.0	15.3	8	3.8	2.3	5	12.7	12
Bung Kum	0	0	127	381	1	5	1	1	14	14	4	12	413	147	778	2.8	18.9	8	4.2	2.7	5	13.3	11

3) (H): Industrial wastewater amount to totai wastewater amount derived from PCD Master Plan for the existing and ongoing projects and from Tabie 6.1.3.1 for proposed schemes. 4) (K): Estimated based on Land Use Plan for the target year of 2017.
Source: JICA Study Team

Table 7.2.4.3 Standards of Heavy Metal Contents for Agicultural Use Sludge in Developed Countics (1/2)
(1) Sewage Sludge Regulation in E.C

	Max.content of sludge ($\mathrm{mg} / \mathrm{kg}$)	Max allowable content in agricultural $\begin{gathered} \text { soil } \\ \text { pH } 6.7(\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Max. loading $\text { (} 10 \text { ycars, } \mathrm{kg} / \mathrm{ha} / \mathrm{yr} \text {) }$
Cu	20-40	1-3	0.15
Cr	not specilied	100-150	not speciticd
Cu	1,000-1,750	50-140	12
Hg	16.25	1-1.5	0.1
Pb	750-1,200	50-300	15
Ni	$300-400$	30-75	3
7 n	2.500-4,000	150.300	30

(2) Maximum Content and Loading of Heavy Metats in U.K. (1989)

	Max. allowable content ($\mathrm{mg} / \mathrm{kg}$ dyy soil)				Max. loading (10 years $\mathrm{kg} / \mathrm{ha} / \mathrm{yn}$.)
	$\underset{5.0-5.5}{\mathrm{pH}}$	$\begin{gathered} \mathrm{pH} \\ 5.5-6.0 \end{gathered}$	$\begin{gathered} \mathrm{pH} \\ 6.0-7.0 \end{gathered}$	$\begin{gathered} \mathrm{pH} \\ >7.0 \end{gathered}$	
2 nn	200	250	300	450	15
Cu	80	100	135	200	7.5
Ni	50	60	75	130	3
	$\mathrm{pH}>5.0$				
cd	3300				0.5
Pb					0.15
Hg	$\begin{gathered} 1 \\ 400 \text { (tentative) } \end{gathered}$				0.1
Cr					15 (emative)
Mo	4				0.2
Se	3				0.15
As	50500				0.7
F					20

(3) Maximum Heavy Mctal Contents for Agricultural Use of Sludge

(Units: $\mathrm{mg} / \mathrm{kg}$)

Country	Year of Establishment	Cd	Cu	C	Ni	Pb	Zn	Hg
France	1988	20	1,000	1,000	200	800	3,000	10
Spain	1990	20	1,000	1,000	300	750	2,500	16
	1990	1.2	1,000	100	45	120	4,000	1.2
Denmark	1995	0.8	1,000	100	30	120	4,000	0.8
	1995	1.5	600	300	100	100	1,500	1.0
Finland	1995	4	1,000	125	80	100	1,500	5
Noway	1995	2	600	100	50	100	800	2.5

Table 7.2.4.3 Standards of Heavy Metal Contents for Agricultural Use Sludge in Developed Countries (2/2)
(4) Maximum Allowable Content of Agricullure Soil

Country	Year of Establistment	Cd	Cu	Cr	Ni	Pb	Zn	Hg
France	1988	2	100	150	50	100	300	1
Haly	(noc data)	3	100	150	50	100	300	-
Spain	1990	1	50	100	30	50	150	1
Nethertands	(no data)							
A-Value		0.8	36	100	35	85	140	0.3
C-Value		12	190	380	210	530	720	10
Demmark	1990	0.5	40	30	15	40	10,	0.5
Firland	1995	0.5	100	2601	66	60	150	0.2
Norway	1995	1	so	100	30	50	150	1
Sweden	1995	0.5	40	30	15	40	100	0.5

(5) Limitation in Scwage Sludge Use in Ontario State, Canada

Hems Heavy metals	Non polluted soil average (mg/)	Max. limit in soil (mg/)	Max. loading (kg/ha)	Min. required N/metal content	Application fimes to altain the limit	(N/metal contenl) to altain the limit by 50 application limes
As	7	14	14	100	10	48
Cd	0.8	1.6	1.6	500	6	4,200
Co	5	20	30	50	11	220
Cr	15	120	210	6	9	32
Cu	25	100	150	10	11	45
Hg	0.1	0.5	0.8	1,500	9	8,500
Mo	2	4	4	180	5	1,700
Ni	16	32	32	40	9	210
Pb	15	60	90	15	10	75
Sc	0.4	1.6	2.4	500	9	2,800
Zn	55	220	330	4	10	20

Source: Manual of the Use for Agricultural Land and Green Land of Sewage Sludge, issued by "Association of Sewage Siudge Use" in Japan (1996).

Table 7.2.6.1 Sludge Mass Transition in Sludge Treatment Steps

Siudge Treatment Steps	Unit	Sludge Treatment Options						
		Option 11	OptionL2	Optical3	Optien L4	Option A1	Option 12	
		Landill	Landifll	Lamifil	tansfili	Agricultural Use	$\begin{gathered} \text { Agriculturl } \\ \text { Use } \end{gathered}$	
		Ashafict Digestion	$\begin{gathered} \text { Dewatered } \\ \text { Sludge after } \\ \text { Digestion } \end{gathered}$	Ach nilbout Digestion	Dewatered Sludge uithout Digestion	$\begin{gathered} \text { Conpest } \\ \text { aftet } \\ \text { Digestion } \end{gathered}$	Compest withoul Digestion	
Inlel of Thickening (from Wastewater Treatment Plant)								
Dry Sludge	(DS / d)	20.0	20.0	20.0	20.0	20.0	20.0	
Organic Sludge	($1 \mathrm{DS} / \mathrm{d}$)	9.6	9.6	9.6	9.6	9.6.	9.6	
Inorganic Sludge	(DS / d)	10.1	10.1	10.3	10.1	10.1	10.1	
We: Sludge	(t/d)	2,000	2,000	2,000	2.000	2,000	2,000	
Outlet of Thickening								
Dry Sludge	(1 DS/d)	20.0	20.0	20.0	20.0	20.0	20.0	
Organic Sludge	(1DS/d)	9.6	9.6	9.6	9.6	9.6	9.6	
Inorganic Sludge	($1 \mathrm{DS} / \mathrm{d}$)	10.1	10.1	10.1	10.1	10.1	10.1	
Wel Studge.	($1 / \mathrm{d}$)	400	400	400	400	400	400	
Dry Sluge	(DS / d)	14.9	14.9	\square		14.9		
Organic Sludge	(DS/d)	4.8	4.8		$/$	4.8 10.1		
Inorganic Sludge Wet Sludge	(t DS/d) (t/d)	10.1 298	10.1	-	$/$	10.1 298		
Wet Sludge		298						
Outel of Dewatering								
Dry Sludge	(DS / d)	14.9	14.9	19.7	19.7	14.9	19.7	
Organic Sludge	(1 DS , d)	4.8	4.8	9.6	9.6	4.8	9.6	
morganic Studge	($1 \mathrm{DS} / \mathrm{d}$)	10.1	10.1	10.1	10.1	10.1	10.1	
Wet Sludge	($/ \mathrm{d}$)	74.6	74.6	98.6	98.6	74.6	98.6	
Outes of licineration								
Dry Sludge	($1 \mathrm{DS} / \mathrm{d}$)	10.3		10.6	\checkmark			
Organic Sludge	($108 / d$)	0.2			-			
Inorganic Sludge	(1 DS/d)	10.1						
Wet Sludge	(1/d)							
Organic Sludge in Raw Sludge	(1 DS/d)	-				2.4	4.8	
Incrganic Sludge in Raw Sludge	($1 \mathrm{DS} / \mathrm{d}$)					10.1	10.1	
Product Volume including Bulking Material	(1/d)					74.6	98.6	

Note:
The comparison is undertaken based on the following onditions:
VS ratio of raw sludge: 48%,
Raw sludge dry solids: 20 ld ,
VS removal ratio in digester: 50%,
Dewatered sludge meisture: 80%,
VS removal in comproling: 50%,
Raw sludge concentration: 1.0%,
Ash moisture content: 5%,
Remaining erganic in ash: 5%.
Table 7.2.6.2 Detail Cost of Sludge Treatment Options

Sludge Treatment Steps	Unit	Option L1	Option L2	Option L3	Option La	Option AI	Option A2
		Landtill	Landtill	Landinll	Laddill	Agricultural Use	Agricultural Usc
		Ash after Digestion	Dewatered Sludge after Digcstion	Asb without Digestion	Dewatered Sludge without Digestion	Compost after Digestion	Compos: without Digestion
1. Thickeaing	(US\$/d)	$\begin{array}{ll}382 & \\ 307 & \\ & 587 \\ & 280\end{array}$	382 307 587	382	382	382	382
2. Digestion	(US\$/d)					307	
- Treatment Cost	(US\$/d)					587	
- Recovered Cost	(US\$/d)					280	
3. Dewatering	(US\$/d)	606	606	744	744	606	744
4. Incincration	(US\$/d)	7,005	1,454	8.633	1,923		
5. Landill	(USS/d)	125		128			
5. Compost	(US\$/d)					- 32	A 1,463
- Treatment Cost	(US\$/d)					3.696	3,468
- Recovered Cost	(US\$/d)					3,728	4.931
6. Siudge Transportation	(US\$/d)	76	371	78	491	580	767
Treatment Cost (without Recovery)	(US\$/d)	8.780	3,400	9.965	3.540	5.850	5.361
		1)	:)			7)	2)
Net Cost (with Recovery)	(US\$/d)	8.500	3.120	9.965	3,540	1.843	430

Note: The assumed capacity of sludge treatment for the purpose of cost comparison is $20 \mathrm{t} \mathrm{DS} / \mathrm{d}$ at the inlet of thickening..
1): The net costs are computed by the deduction of the recovered cost by power generation.
2): The net costs are computed by the deduction of the recovered costs by compost selling.

Table 7.2.6.4 Cost Calculation Basis for Alternative Sclection

Table 7.3.3.2 Detail Cost of Sludge Transportation Alternatives

Central WWTPs	Sludge generation $(\mathrm{IDS} / \mathrm{d})$	Distance (km)	Expenses of transportation (US\$/d)			Expenses of sludge treatment (US\$/d)			Total expenses (=Transportation+ Sludge treatment) (USS/d)		
			Truck (80% Moisture cake)	Barge (80% Moisturc cake)	Pumping (1\% slurry)	Sludge thickening for Central WWTPs		$\begin{gathered} \text { Sludge } \\ \text { dewatering } \end{gathered}$	Truck (T1)	$\begin{aligned} & \text { Barge } \\ & \text { (T3) } \end{aligned}$	Pipcline (X 2$)$
			(1)	(2)	(3)	(4)	(4)'	(5)	$\sim(1)+(4)+(5)$	$\cdots(2)+(4)+(5)$	$=(3)+(4)^{\prime}$
Khlong Tocy East Ratburana Kaloag Tocy West Huay Kwuang Ratanakosin Thonburi South Si Pbraya Nong Kacm STC	15.6 12.0 17.9 16.6 5.6 24.1 1.0	$\begin{aligned} & 35 \\ & 21 \\ & 30 \\ & 32 \\ & 16 \\ & 16 \\ & 15 \end{aligned}$	443 223 446 437 85 364 14	347 201 363 350 83 356 14	2.311 1.505 2.050 2.152 723 866 1.035		2.835	1.703 1.381 1.905 1.791 775 2.436 257	$\begin{array}{r\|} \hline 2.700 \\ 2.051 \\ 2.972 \\ 2.811 \\ 1.100 \\ 3.596 \\ 335 \end{array}$	2,604 2,028 2.889 2.724 1.098 3.589 335	2.311 1.505 2.050 2.152 723 866 1.035 2,835
Total (Ratio)	92.8	165	2.011	1.714	10.641	3.305		10,249	$\begin{array}{r} 15,566 \\ (100) \end{array}$	15.268 (98)	13.476 (87)

Table 8.1.2.1 List of Unit Costs

6		US\$ 3 as is		Baht Basis	
8	Wastewater Treatment Plant Exchange rate Construction cost Annual O\&N cost WV treatnent charge	$\begin{gathered} (\mathrm{B} / \mathrm{USS}) \\ \left(\mathrm{USS} / \mathrm{m}^{3} / \mathrm{d}\right) \\ \left(\mathrm{USS} / \mathrm{m}^{3} / \mathrm{d}\right) \\ \left(\mathrm{USS} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{array}{r} 36 \\ 1,000 \\ 15 \\ 0.139 \\ \hline \end{array}$	$\begin{gathered} \left(\mathrm{B}^{\prime} \mathrm{m}^{3} / \mathrm{d}\right) \\ \left(\mathrm{B}^{\prime} \mathrm{m}^{3} / \mathrm{d}\right) \\ \left(\mathrm{B} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{array}{r}36,000 \\ 540 \\ 5.00 \\ \hline\end{array}$
	Wastewater Sludge				
	Compest DS ratio (Non-digested, 1:0.5)	(t comporth DS	5.0		
	Plant construction (20 year depreciation)		21	(B'Uday)	767
	incuneration (ash ijpr)	(USSIUday) (USSA DS)	21 41	(13/DS)	1,464
	Digestion Compost	(USSA DS) (USSADS)	41 29	(B/t DS)	1.035
	Production/treatmentorm cost	(US5/43y)	21	(B'Uday)	758.7
	Incineration (ash type)	(USS/4ay) (USSA DS)	21 34.8	(B,4 ${ }^{\text {(B) }}$ (DS)	1,254
	Digestion Composl	(USSA DS) (USS/A DS)	34.8 83.3	(B)t DS) (B/ DS	3,254
	Unit revenue fron digestion	(US\$/ DS	55.0	(B/a DS)	1,980
	Distance from WVIP to Ste	(km)	25.0		
	Distance fromSTC to Landfill	(km)	15.0		
	Distance from Composi Factory to Market	(kni)	10.0		
	Distance from WWIP to Comperst Factory	(km)	100.0		
	L andill (controlled type)	(US\$/1)	7.30	(B^{\prime})	263
	Weight reduction by incineration: cakefash		12.5		
	Bulking materials density	(USS 7	0.2		
	Bulking materials cost	(USSA)	2	$\left(B^{\prime}\right)$	75
	Compost saks price	(USS/I)	42	$(\mathrm{B} / \mathrm{I})$	1,500
	Wastewater Reelained Water				
	Watering public parks and gardens				
, ${ }^{3}$	and plants along read (everyday)	$\left(m^{3} / 100 \mathrm{ha}\right)$	30		
	Road sprinkling (once a week)	($\mathrm{m}^{3} / 100 \mathrm{ha}$)	10		
	Cost of additional facility installation	(USS/unit)	88,972	(13'Unit)	3,203,000
	O\&M for additional facitity	(USS/m ${ }^{3}$)	0.025	($\mathrm{B}^{\prime} \mathrm{m}^{3}$)	0.89
	Reclaimed water sales price	(USS/m)	0.139	($\mathrm{B} / \mathrm{m} 3$)	5.00
	Reclaimed water production cost	(US\$ $/ \mathrm{m}^{3}$)	0.067	($\mathrm{B}^{\prime} \mathrm{m}^{3}$)	2.40
	Transporiation cost (6 lon truck)				
	Hauting distance 2 km	(USS/m3)	1.075	$\left(\mathrm{B} / \mathrm{m}^{3}\right)$	38.70
	13auling distance 4 km	(USS/m)	1.372	($\mathrm{B} / \mathrm{m}^{3}$)	49.39
	Hauling distance 6 km	(USS/m m^{3})	1.669	($\mathrm{B} / \mathrm{m}^{3}$)	60.07
	llauting distance 8 km	(US\$/m3)	1.965	($\mathrm{B} / \mathrm{m}^{3}$)	70.75
	Hauling distance 10 km	$\left(\mathrm{US} \$ / \mathrm{m}^{3}\right)$	2.262	$\left(\mathrm{B} / \mathrm{m}^{3}\right)$	81.44
	Night Soil Treatnent Plant				
	Plant construction	($\mathrm{US} \$ / \mathrm{m}^{3} / \mathrm{d}$)	9,723	$\left(\mathrm{B} / \mathrm{m}^{3} / \mathrm{d}\right)$	350,000
	O\&M	(USS/ $/ \mathrm{m}^{3} / \mathrm{d}$)	2,600	($\mathrm{B} / \mathrm{m}^{3} / \mathrm{d}$)	93,600
	Charge coskbill	(USS/oillnonth)	0.078	(B,billmonth)	2.8
	No. of people hrouse	(People/house)	5		
	Charge rate	(USS/m ${ }^{3}$)	1.389	($\mathrm{B}^{\prime} \mathrm{m}^{3}$)	50
	Transpertation of collection (20 km)	(USS/ $/)^{3}$)	3.000	$\left(\mathrm{B} / \mathrm{n}^{3}\right)$	108

Table 8.1.2.2 Cost Recovery by Generating Power in Digestion Process

Specificalion Capacity Gencration capacity	$\begin{gathered} (\mathrm{DS} / \mathrm{d}) \\ (\mathrm{kWh}) \end{gathered}$	$\begin{array}{r} 160 \\ 8.000 \\ \hline \end{array}$
Cost		
Construction cost	(US\$)	18,500,000
O.EM cost	(US\$/y)	500,000
Total cost for 20 years	(USS)	28.500.000
Revenue		
Generation efficioncy	(\%)	88
Daily generated power	(kWh/d)	140,800
Annual operation days	(d / y)	320
Annual generated power	(kWh/y)	45,056,000
Total power for 20 years	(kWh)	901,120,000
Unit sales price	($\mathrm{B} / \mathrm{kWh}$)	2.25
Unit sales price	(US\$/kWh)	0.063
Total revenue for 20 years	(US\$)	56,320,000
Unil revenue		
Total revenue for 20 years	(US\$)	56,320,000
Unit revenue per capacity	(US $\$ / \mathrm{DSS} / \mathrm{d})$	352,000
Unit revenue per capacity	(B/L DS/d)	12,672,000
Unit revenue per $\mathrm{I}_{\text {DS }}$	(US\$// DS)	55.00
Unit revemue pert DS	(B/t DS)	1,980

Note: The estimation of unit cost recovery here is calculated based on assumption of treatment capacity of $160 \mathrm{tDS} / \mathrm{d}$.

Table 8.1.2.3 Cost Estimation for Digestion Plant and Composting Plant

Digestion cost at STC Dry solid capacily Construction cost Digestion Gencration Odor removal Dewater Leachet Sub total Sub-unit cost O\&M Digestion Generation Odor removal Dewater Leachet Sub-total Sub-unil cost Unit cost	$\begin{gathered} \text { (IDS/d) } \\ \text { (US\$) } \\ \text { (US\$/t DS) } \\ \text { (US\$/y) } \\ \text { (USS/y) } \\ \text { (USS/y) } \\ \text { (USS/y) } \\ \text { (US\$/Y) } \\ \text { (USS/y) } \\ \text { (US\$/4 DS) } \\ \text { (US\$/4 DS) } \\ \hline \end{gathered}$	160 $7,500,000$ $18,500,000$ $7,000,000$ $9,500,000$ $5,000,000$ $47,500,000$ 41 140,000 500,000 800,000 550,000 45,000 $2,035,000$ 35 76
Composting cost at centralized plant Dry solidi capacity Construction Composting process Odor removal Sub-total Sub-unit cost O\&M Composting process Odor removal Sub-total Suls-unit cost Unil cosi	($1 \mathrm{DS} / \mathrm{J}$) (US\$) (US\$) (US\$) (US\$/L DS) (US\$/y) (US\$/y) (US\$/y) (US\$/LDS) (US\$/LISS)	112 $16,500,000$ $7,000,000$ $23,500,000$ 29 $2,607,000$ 800,000 $3,407,000$ 83 112

Note: The estimation of unit cosi recovery for STC is calculated based on assumption of treatment capacity of 160 t DS/ 0.
The estimation of composting unit cost is calculated based on assumption of treatment capacily of 112 I DS/s.

Table 8.1.2.4 Mixing Process of Composting (non-digested sludge)

	Inorganic substances	Organic substances	Water	Tolal	$\begin{aligned} & \text { Water } \\ & \text { contents } \end{aligned}$
Original contents					(\%)
Dewatered sludge	0.07	0.13	0.80	1.00	80.00
Bulking materials	0.08	0.77	0.15	1.00	15.00
Mixed ratio					
Dewatered sludge	1.00				
Pulking materials	0.50				
Contents after composting					
Dewatered sludge	0.07	0.13	0.80	1.00	80.00
Bulking materials	0.04	0.39	0.08	0.50	15.00
Mixed sludge	0.11	0.52	0.88	1.50	58.33
Contants change ratio in composting process					
Dewatered sludge	1.00	0.50	0.50		
Bulking materials	1.00	1.00	0.50		
Finsl ratio in compost					
Dewatered sludge	0.07			0.54	74.77 8.11
Bulking materials	0.04	0.39	$0.0+$	0.46	8.11
Compost	0.11	0.45	0.44	1.00	43.86
$0.2 \mathrm{~kg} \mathrm{DS} \longrightarrow 1 \mathrm{~kg} \mathrm{dewatered} \mathrm{sludge} \longrightarrow 1.00 \mathrm{~kg}$ compost					
Ratio of compost to DS in kg 5.0					

Table 8.1.3.1 local Cost Based Comparison Anong Studge Treatment Options

Option No.		$\left[\begin{array}{c} \text { Agriculturas } \\ \text { use } \\ \text { A2 } \end{array}\right]$	Landfill disposal L2	Landfill dispossl I. 1	Landifil disposs! 14
Option Name		compust without Digestion	Dewatered sludge after Digestion	Ash after Digestion	$\begin{array}{\|c\|} \hline \text { Dewatered } \\ \text { sludge } \\ \text { without } \\ \text { digestion } \\ \hline \end{array}$
Cost					
Dewater at on-site					
Dry solid capacity	(DSS^{\prime} d)	10	10	10	10
Construction	(USS)	2,038,000	2,038,000	2,038,000	2,038,000
O\&M	(USS/y)	253,000	253,000	253,000	253,000
Unit cost	(USS/t DS)	97	97	97	97
Transport					
Unit cost	(uss/t DS)	5.09	1.67	1.67	0.00
Incineration					
Unit cost of construet.	(USSA DS)			106.54	
Unit cest for O\&M	(USS/h DS)			105.38	
Unit cost	(US\$/L DS)			211.92	
Digestion					
Dry solid capacity	(1 DS / $\mathrm{c}^{\text {d }}$		160	160	
Construction unit cost	(USS/h DS		41	41	
ORM unit cost	(USS/ADS)		35	35	
Composting Unincost					
Dry solid capacity (tDS/ $/$) 112					
Construction unit cost	(USS/iDS)	29			
O\&M unit cost	(Uss $A D S$	83			
Production					
Bulking materiss					
Bukking materia's cost					
Transportation (USS/1) 0.79					
Production unit cost (USS/ DS) 7.18					
Unil cost(eacl. construction,	(USSIt DS)	91			
Compost preduction					
Unit cost	(USS/t DS)	0.99	1.22	0.16	2.16
Landill					
Revenue					
Sales income of composi	(USS/T DS)	208		0	0
Cost recover by generation	(USS/4 DS)		55.00	55.00	0.00
Total revenue	($1 \mathbf{1 S S / A D S \text {) }}$	208	55	55	,
Treatment cost induding Dewater(zCost-Revenue)					
Overall dry sludge					
treatiment cost	(USS/t DS)	15		334	136
	($1 / \mathrm{T}$ DS)	531	5,657	12,039	4.899
Halance after WWTP					
(Excluding dewater)		. 82	60	237	39
	$\text { (} \mathrm{B} / \mathrm{D} \mathrm{DS} \text {) }$	$.2,969$	2,156	8,539	1,399
Batance alier composting ($=$ Revenue-Cost)					
(Anmont of profit)	($\mathbf{1 S S} / 1 \mathrm{DS}$)	87.56			

Table 8.2.1.1 Operation Data Analysis for Si Phraya Wastewater Treatment Plant (1)

Cost stmuture	1945 Ottoner (Banc)	19045 Nowemher (Bant)		$\begin{aligned} & \text { loven } \\ & \text { Sonvary } \\ & \text { (Sinant) } \end{aligned}$	$\begin{gathered} 1 \text { PMM } \\ \text { Femmury } \\ \text { (Rame) } \end{gathered}$	$\begin{aligned} & \text { 1 Wow } \\ & \text { March } \\ & \text { (Batr) } \end{aligned}$	$\begin{aligned} & 19 \times 6 \\ & \text { April } \\ & \text { (Baht) } \end{aligned}$	$\begin{aligned} & 190 \% \\ & \text { May } \end{aligned}$ (Baht)	$\begin{aligned} & \text { 19YK } \\ & \text { June } \\ & \text { (Busy) } \end{aligned}$	$\begin{aligned} & \text { iqux } \\ & \text { July } \\ & \text { (Bahn) } \end{aligned}$	$\begin{aligned} & 1(4 \times 6) \\ & \text { Nogust } \\ & \text { (Rath) } \end{aligned}$	\qquad		1990 Novemher (Bahr)	1996 Deceminer (Bant)	1007 January (Bany)	1097 Femunry (Bam)	$\begin{gathered} 1907 \\ \text { March } \\ \text { (Bancy } \end{gathered}$
1 Eleatricty	197.5900	140.277	205.605	215,5sM	20.059	223.502	210,9,3	224.511	213.083	219.654	199.449	277.482	30.2 .293	204,412	305.594	373.053	102, 0×0	222,958
2 Cherisal	88, 800	72.290	*7.590	67,820	Sthiso	71.015	70.625	71,800	7..360	73,415	7245	75.25	111,445	12.566	113.965	12.505	57,265	528051
3 Water sunply	550	405,25	040,05	905.3	8.\%.25	774.9	Kx5. 6	55.3	964.2	S64.2	604.2	774.09	774.9	719.55	100, 85	608,85	600, 25	498.15
4 Maintenanve \& operntion	68,400	21x.200	213.2m	21820	218.20n	218.200	2:8200	218,200	218,200	218,200	218.200	218.200	240,800	240,400	240.800	20,922	26.922	26,922
Mect. Repair	0	103,300	103.300	103.300	103.300	103.300	103.300	103.300	103,300	103,300	103,300	103,400	108. 300	10x.400	10×1.300	12,065	12,068	12088.
Luth oil and spare parts	85000	33.3000	33.400	33,300	33.400	33.300	33.400	33.400	33,300	33.300	31,400	33.200	50,000	50,000	50.000	11.654	11,654	11,654.
Repairing eleatris	0	50,000	30,06)	50,0(0)	50.000	50,000	50,000	50,000	50,000	50,000	50.000	50.000	50,000	50,000	50.000			
Repairing electric system S Inceceppor constrution	6.400	31,500	31.600	\$1.600	31.56)	31,500	31,400	32,100	31,800	31.600	31.600	31.600	32.500	32.500	32.500	$\begin{array}{r} 3,200 \\ 1 \times 6.250 \end{array}$	$\begin{array}{r} 3.200 \\ 289,250 \end{array}$	$\begin{array}{r} 3.200 \\ 286.250 \end{array}$
6 Dumping sludge 7 Wagie	247.740	23x,620	259.740	253.40	241.6.0	242.630	238,800	234,070	239,580	24E.110	237,865	254.940	279.800	274.740	2×1.600	27x,600	273,340	281.980
Permanent stale Part time staft Over time																		
8 Miscellaneous	37,006	17.000	17,000	17,000	17,000	17,000	17.000	17,000	17,000	17.000	17.000	17,000	25.000	25.000	25,000	25,000	25.000	25,000
Monthy totat	\$90, 560	705.x $\times 2$	789,016	772.544	745,489	773.172	752.444	775,135	761,445	771,443	745,043	843,563	1.021.203	1,018,237	1.027,62s	1,003,024	769,076	786,554
Exclute ftem	509.850	745.x82	789,016	775.584	745.459	772.172	752.464	775.135	761,446	771.44,	745.643	843,561	1.021.203	1,018,237	1.027.02s	817.674	582.820	600,204
Exclude bem $\leq * 9$	35.110	504.262	529,276	519.274	504, $\times 39$	5, 3 , 552	523.604	537.085	521,88\%	529,333	507,778	588,621	741.31.	743,497	745.968	S3x.734	309,486	318.034
Treated water																		
	8×00	8. 490	8700	X,650	8.640	8,720	8880	8 COO	8500	8400	8150	8780	28100	19200	19000	19100	7600	9600
$2 \mathrm{BOD} \mathrm{inf}$. (mgh)	66	s*	46	57	59	58	$\triangle 7$	61	65	70	64	75	∞	66	69	75	78	62
3. BOD removal (\%)	92.4	93.12	91.3	94	92.4	93.1	*9.4	93.4	92.3	92.9	90.6	93.3	91	93	94.2	84.7	93.6	93.5
No. of sticte																		
1 Pemmanent statt	10	10	10	10	10	10	10	10	10	10	12	10	12	12	12	12	12	12
\pm Part time statt	13	18	12	1 k	17	17	17	17	17	17	20	17	26	16	16	16	16	15
3 Driver																\checkmark	*	
Unit cost to treat waste water (Bant/m ${ }^{3} / \mathrm{d}$)																		
1 Inctude all sost	2.28	2.x2	2.91	2.86	2.79	2.85	2.78	2.94	2.89	2.96	2.95	3.10	1.82	1.71	1.74	2.70	258	2.64
2 Exctude Hems	2.28	2.82	2.91	2.8x	2.79	2.86	2.78	294	2x9	2.96	2.95	3.10	1.82	1.72	1.74	1.88	1.96	2.02
3 Excluce liem 5 \& 7	1.34	2.92	1.95	1.94	2.8\%	7.9	2.91	2.04	1,98	2.03	2.01	2.16	1.32	1.25	1.27	0.91	1.04	1.07
Unit cost for tabor (Bant/mont/min)	x.R.sak	8.522	9.27s	9.050	X,940	$x, 0 \times 8$	8,844	8.817	8.873	8,967	7,433	9,442	9.923	9.812	10,059	8,9\%	8,817	9.095
Sludge (I/month) Sludge content in wastewiter(g/m')																		

[^0]Table 8.2.1.1 Operation Data Analysis for Si Phraya Wastewater Treatment Plant (2)

Table 8.2.1.2 Operation Data of the Nong Khaem Night Soil Treatment Plant

	Operator	$\begin{gathered} 2535 \\ 1992 \\ \text { As3n } \end{gathered}$	$\begin{gathered} 2536 \\ 1893 \\ \text { Acsno } \end{gathered}$	$\begin{aligned} & 2537 \\ & 1994 \\ & \text { Asano } \end{aligned}$	$\begin{array}{r} 2533 \\ 1995 \\ \text { Assno } \\ \hline \end{array}$	$\begin{gathered} 2539 \\ 1995 \\ \text { Worachak } \end{gathered}$	$\begin{aligned} & 2540 \\ & 1997 \end{aligned}$ Worachak	$\begin{aligned} & \text { Total } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$	Average $\left(\mathrm{m}^{3} / \mathrm{d}\right)$
Night soil	(m)	89,041	100,745	89,446	98,659	106,957	103,840	585.688	269
Leachate	(m^{3})	9,136	50,467	53,351	42.892	43,603	30,648	230,107	105
Total	(in')	98,177	351,212	142,807	141,551	150,560	134,488	$\begin{gathered} 818,795 \\ \text { (Butitn') } \end{gathered}$	374
Salary	(Baht)	19,251,736	28,015,656	27,641,768	26,107,024	27,739,840	28,477,854	192	56.65
Electricity	(B3hl)	1,879,236	2,658,013	2,371,467	2,105,654	2,117,200	1,699,226	16	4.58
Wates	(Bshl)	149,320	214,917	298,490	282,421	255,452	194,747	2	0.50
Chemuicals	(B3hl)	6,207,200	12,706,930	3,378,148	6,189,919	2,401,522	2,799,639	44	1201
Labor	(Bahl)	9,432,370	6,819,000	9,305,981	7,763,128	9,037,640	7,735,079	$6)$	\% 17.8
Majntenance	(B3hl)	3,322,190	4,443,640	4,446,928	4,280,229	4,620,798	4,098,036	31	8.59
Total	(B3ht)	40,242,052	54,858,156	47,448,782	46,728,386	46,172,451	45,004,581	343	100.00
Nighl soil	$\left(\mathrm{m}^{3} / \mathrm{d}\right)$	44	36	245	$\mathbb{N}, 4 \%$, \% 2 23\%	284		
Leachate	($\mathrm{m}^{3} / \mathrm{d}$)	25	138	146	118	119	84		
Tolal	($\mathrm{m}^{3} / \mathrm{d}$)	269	414	391	388	412	368		
Treatment unit cost ($\mathrm{B} 3 \mathrm{~h} \mathrm{~m}^{3}$)		410	363	332	330	307	335	, , , , 343	

Note
Plant is in non-stop operation, 24 hours and 365 d 3 s .
Salary is Worachak adm'tectistaff and Labor is Worachak workers, not including BMA slaff.
Beachate is leaked water frommarby gartage dumping site, pumped up to the plant.
Previous amplys stow low level of beavy metal contain in slafge, even nixed up with leachate.
Chemical expenditure fixcliated greatly since as large amounted were imporied.
Latory and mairite nance for 1993 to 1996 are estimated fron data for 1991 to 1992.
There is leachate treatment plant in On Nut, managed by DDS.
Gartage Disperal Div. of DPC manages compost incincrator al On Nut and landitl site at Lal Kiratang.

Period	$\begin{aligned} & \text { Targel } \\ & \left(\mathrm{m}^{3} / \mathrm{d}\right) \end{aligned}$	Actual $\left(\mathrm{n}^{3} / \mathrm{d}\right)$	Remark
95.12.16-96.12.15	480	412	
96.12.16-97.12.15	500	368	
97.12.16-98.12.15	530	542	(Data in Dec.)
98.12.16-99.12.15	600		
99.12.16-00.12.15	600		

Worachak Ralance		
Item	1996	1997
Reveruse	32,370,400	28.914.920
Fxpentiture	41,398,277	40,310,969
Profit \& Loss	-9.027.877	-11,396,049
Note:		
Revente $=$ fotal treated wolume (m3) $\times 215$ (B3hts'm3		
Experxiture $=$ Salary + Lator + Maintenance		

Table 8.2.2.2 Financial Analvsis for WW Sludge Treatment

Sludge distribution																								
		$2(x)$	2001	$2(k)=$	20×13	$2(x) 4$	2(1)5	20×6	$2(x) 7$	20015	2(0)9	2010	2011	2012	2013	2014	2015	2016	2017	2015	$20: 9$	2020	Total	(\%)
High-Kisk CWTP Sludge	Tibs/d	5.5	5.6	21.5	$21 . \times$	22.	27.3	3x, 9	39.4	41.0	53.0	62.6	63,4	04.1	64.9	65.6	80.6	91.0	92.9	94,3	99.7	107.2	1.150.8	${ }^{35.87 \%}$
Low-Risk CWTP Siudge	1 DS/d	16.8	40.7	10.7	40.7	51,4	51.0	51.9	62.1	09.2	69.7	70.2	32.8	83.5	93, 1	98.9	99.8	105,6	122.7	125	${ }^{14,5}$	74.6	150.6	55.9%
Community WWIP, Sludge	t DS / d	7.0	7.6	7.8	7.8	2.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.0	\%	7.6	22.7	20.	258.2	2.9×3.9	100.0\%
Than in RMA	10 id	29.9	53.91	69.8.	70.1	81.1	81.6	9x.3	109.1	116.8	130.3	140.5	153.8	155.2	170.6	172.1	187.9	20.1	22.1		29,	2072		5.s\%
Sludge to Non Khasm STC:	tis/d	55	5.6	21.5	21.8	22.1	22.3	38.9	39.4	40	53.0	62.6	03.4	04.1	\%4,9	${ }_{106.5}^{05}$			$\begin{array}{r} 92.9 \\ 130.3 \end{array}$	133.4	149.4	151.0	1.527.0	61.2%
Sludye to Composting	: DS / d	24.4	48...3.	45.3	LS.3.3	59.0	59.2	S0..	69.	70.5	$7 .$.													

[^1]Table 8.2.2.3 Cost Comparison of Reclaimed Water Reuse with Public Supply Water (In casc of 6 tons truck)

Additional transportation distance	(km)	1	2	3	4	5	6	7	8	9	10
Additional time	(hr)	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
Additional driver's labor cost	(B)	4.50	9.00	13.50	18.00	22.50	27.00	31.50	36.00	40.50	45.00
Additional fuel cost	(B)	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00
Additional consumables	(B)	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00
Total additional cost	(B)	11.50	23.00	34.50	46.00	57.50	69.00	80.50	92.00	103.50	115.00
Additional unit cost of transportation	($\mathrm{B} / \mathrm{m}^{3}$)	1.92	3.83	5.75	7.67	9.58	11.50	13.42	15.33	17.25	19.17
Final unit cost of reuse water	($\mathrm{B} / \mathrm{m}^{3}$)	4.32	6.23	8.15	10.07	11.98	13.90	15.82	17.73	19.65	21.57
Public water price	(B/m)	14.31	14.31	14.31	14.31	14.31	14.31	14.31	14.31	14.31	14.31
Benefit to use reclaimed water	($\mathrm{B} / \mathrm{m}^{3}$)	9.99	8.08	6.16	4.24	2.33	0.41	-1.51	-3.42	-5.34	-7.26

[^2]Table 8.2.2.4 Financial Analysis for Reclaimed Wastewater Reuse (1)

	Catchment arca	Capacity	$\begin{aligned} & \text { Max demand } \\ & \text { for tree } \\ & \text { watering } \\ & \hline \end{aligned}$	Max demand for road sampling	Max annual demand	No. of additional facility	Additional investment cost	Annual O\&M cost
	(km^{2})	($\mathrm{m}^{3} / \mathrm{d}$)	$\left(\mathrm{m}^{3} / \mathrm{d}\right)$	($\mathrm{m}^{2} / \mathrm{d}$)	($\mathrm{m}^{3} / \mathrm{y}$)	(Unit)	(Mil. B)	(Mil. B/y)
1 Si Phraya	2.7	30.000	461	154	134,229	2	6.406	0.12
2 Ratanakosin	4.1	40.000	544	181	158,358	2	6.406	0.14
3 BKK Central Phase 1	37.8	341,500	752	251	218,948	3	9.609	0.20
BKK Central Phase 2		122,000			0		0	0.00
4 Yanuawa Phase 1	28.5	200,000	1107	369	322,282	4	12.812	0.29
Yannawa Phase 2		160,000			0		0	0.00
5 Nong Khaem	42.9	157.000	2520	840	733.650	8	25.624	0.66
6 Ratburana Phase 1	42.3	65,000	835	278	243,077	3	9.609	0.22
Ratburana Phase 2		65,000			0		0	0.00
7 Chatuchak	33.4	150,000	987	329	287,346	3	9.609	0.26
8 Klong Tocy West	25.7	166,000	767	256	223,315	3	9.609	0.20
9 Klong Tocy East	31.9	155,000	1016	339	295,806	3	9.609	0.26
10 Tomburi North	11.4	78,000	341	114	99,293	1	3.203	0.09
11 Tomburi Central	17.5	156,000	544	181	158,358	2	6.406	0.14
12 Tomburi South	22.3	213,000	1699	566	494,614	6	19.218	0.44
13 Bang Sue	19.7	126,000	347	116	101,040	i	3.203	0.09
14 Bung Kum	42.8	148,000	1612	537	469.286	5	16.015	0.42
15 Huay Kwang	15.3	124,000	451	150	131,283	2	6.406	0.12
16 Wang Thong Lang	35.7	141,000	1467	489	427.089	5	16.015	0.38
Total	414.0	2.637 .500	15,450	5.150				
Annual supply and demand		962.687.500	4.229.438	268.536	4,497,973	53	169.76	4.03
Ratio (\%)		100.00	0.44	0.03				
Ratio of total demand (\%)			0.47					
Note: Annual demand for tree watering is calculated by (Total demand) $\times 365 \times 0.75$, since the demand in rainy season is half. Annual demand for road sampling is calculated by (Total demand) $\times 365 \times 1 / 7$, because it is done only once a week.								

Table 8.2.2.5 Financial Analysis for Reclaimed Wastewater Reuse (2)

Table 8.2.2.6 Financial Analysis for Incidental Water Use

Ouantity of Reciaimed Wastewater			($\mathrm{B} / \mathrm{m}^{3}$)		Ratio			laimed demand	Supply cost	$\begin{gathered} \text { Sales } \\ \text { revenue } \end{gathered}$	Balance	Accumulated profit up to 2000
Distance	$\begin{gathered} 900 \\ \left(\mathrm{~m}^{3} / \mathrm{d}\right) \end{gathered}$	$\begin{gathered} 1800 \\ \left(\mathrm{~m}^{3} / \mathrm{d}\right) \end{gathered}$	$\begin{aligned} & \hline 2700 \\ & \left(\mathrm{~m}^{3} / \mathrm{d}\right) \end{aligned}$		(\%)	$7.163 .000$	($\mathrm{m}^{3} / \mathrm{d}$)	($\mathrm{m}^{3} / \mathrm{y}$)	(Mil/B/y)	(Mil/3/y)	(Mil/B/y)	($\mathrm{Mil} / \mathrm{B} / \mathrm{y}$)
				Population in Catchment area								
1 (km)	4.4	3.9	3.7	No. of user in 2001	1.00	71.630	5.501	2,007.932	10.04	16.06	6.02	30.12
2 (km)	4.9	4.5	4.2	No. of user in 2006	2.00	143.260	11.002	4,015.864	20.08	32.13	12.05	60.24
3 (km)	5.3	5.0	4.6	No. of user in 2011	3.00	214.890	16,504	6.023,796	30.12	48.19	18.07	90.36
4 (km)	5.7	5.6	5.2	No. of user in 2016	4.00	286.520	22.005	8.031.729	40.16	64.25	24.10	120.48
5 (km)	6.2	5.9	5.4								Total	301.19

Sales charge	8	$\left(\mathrm{~B} / \mathrm{m}^{3}\right)$
Water use of public water	256	$(\mathrm{l} / \mathrm{c})$
Amount replaced by reclaimed w.	76.8	$(1 / \mathrm{c} / \mathrm{d})$
Financial bencitit of individual peoplc		
for 20 years, compared to public	3.538	(B/capita/20 years)

Table 8.2.2.8 Financial Analysis for Nightsoil Treatment

													(2)1	2012					,	$1{ }^{1}$	(1)	20.2	
Ch-Risk NSTP sludge Low-Risk NהTTP Sludge Nightsoil collection Subtota Population to te treate Fismity numpines.		\square																					
Cast Bitl enwring soss Coliection sost hy truck Plant O.kM Landtill for high risk slud illatatal																5.38 21.31 75.20 2.28 10.4 .9		(5.94					
$\begin{aligned} & \text { Compost tor low risk siuds } \\ & \text { Sicrvice charge } \\ & \text { Suhtrotat } \end{aligned}$				$\begin{gathered} 21.1 .85 \\ 0.86 \\ .0 .81 \end{gathered}$	$\left.\begin{array}{c} 323 \\ 9.90 \\ 3.012 \end{array}\right]$	$\begin{aligned} & 30 \times \infty \\ & \substack{0,86 \\ 3.202} \end{aligned}$	$\begin{array}{r} 24.60 \\ 9.46 \\ \mathbf{3 . 4 . 4 6} \end{array}$	$\begin{array}{r} 25.10 \\ 9,86 \\ 34,96 \\ \hline \end{array}$			$\begin{gathered} 20.50 \\ 0.908 \\ -2.4 .40 \end{gathered}$	$\begin{aligned} & 28.78 \\ & 9.78 \\ & \text { 38. } 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 29.8 \\ & 9.802 \\ & 30202 \\ & \hline \end{aligned}$	$\begin{gathered} 29.90 \\ \substack{298 \\ 30.85 \\ \hline 3 \\ \hline} \end{gathered}$	$\begin{aligned} & 20.59 \\ & \text { a.96 } \\ & 40.46 \end{aligned}$	$\begin{gathered} 3.200 \\ .2 .80 \\ 4.1000 \end{gathered}$	$\begin{aligned} & 3.08 \\ & 3.86 \\ & 4.8 .4 \\ & \hline \end{aligned}$	$\begin{gathered} 32,43 \\ .4 .80 \\ 42.20 \end{gathered}$	$\begin{gathered} 33,13 \\ 9.88 \\ 42.29 \end{gathered}$		$\begin{aligned} & 3,55 \\ & 3.45 \\ & 2409 \end{aligned}$	(20.12	590.7 307.1 80.8 .8
	(Mati bm	± 20	-280		«<.s.	-10,0s	. 52.28	-38.10	-3593	SS7\%	-ss	. 5921	-60,21	. 6.22	66222	-6,32	6739	.7200	73,30	9460	. 75.91	.85720	

θ
(3)
Table 8.2.2.9 Overall Financial Analysis Balance

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	Total	Share (\%)
WWTT Balance	355.9	475.6	475.6	532.1	532.1	539.7	545.2	548.8	557.4	568.2	578.6	578.6	586.7	586.7	595.1	618.2	632.3	633.8	645.7	647.6	647.6	11.881 .3	93.83\%
WW nludge Balance	23.0	52.0	46.9	47.3	56.0	56.6	48.1	59.5	67.4	61.2	57.0	74.2	75.2	91.3	92.4	85.5	86.9	104.8	107.4	121.7	119.2	1.533.5	12.11\%
Reclaimed water reuse Babance	12.1	12.1	12.1	12.1	12.1	12.1	19.1	19.1	19.1	19.1	19.1	28.3	28.3	28.3	28.3	28.3	35.8	35.8	35.8	35.8	35.8	488.4	3.56\%
NS	-42.2	42.8	-47.2	-47.9	-48.5	-51.7	-52.5	-53.3	-54.1	-55.0	-58.5	-59.5	-60.5	-61.5	-62.5	-66.6	-70.8	-72.1	.73.3	-74.6	-85.7	-1.241.0	-9.80\%
Overall cash fow Batanes	3.88 .7	496.8	487.4	543.7	551.7	556.6	559.8	574.1	589.8	593.6	596.1	621.5	629.6	644.7	653.3	665.5	684.2	702.2	215.5	730.5	716.9	12.662.2	100.00\%

Table 8.2.2.10 Breakeven Cost Analysis

	$\begin{gathered} \begin{array}{c} \text { Sct } \\ \text { Value } \end{array} \\ \left(\mathrm{B} / \mathrm{m}^{3}\right) \end{gathered}$	Accumulated Surplus up to 2020 (Mil. B)
WWTP System		
WW treatment charge rate		
Original rate $+40 \%$	7.00	37,229.48
Original rate $+20 \%$	6.00	24,555.37
Original rate	5.00	11,881.25
Original rate - 20%	4.00	-792.86
Original tate -40\%	3.00	-13,466.98
Estimated Breakeven rate	4.06	0.00
NSTP System		
NS charge rate	($\mathrm{B} / \mathrm{m}^{3}$)	(Mil. B)
Original rate $+1000 \%$	500.00	607.94
Original rate $+600 \%$	300.00	-220.61
Original rate	50.00	-1,256.29
Estimated Breakeven rale	353.00	0.00
Compost sales price	(B/I)	(Mil. B)
Original rate $+100 \%$	3,000.00	216.91
Original rate $+50 \%$	2,250.00	-519.69
Original rate	1,500.00	-1,256.29
Estimated Breakeven rate	2,780.00	0.00
Overall System		
WW Ireatnent charge rate	($\mathrm{B} / \mathrm{m}^{3}$)	(Mil. B)
Original rate	5.00	12,182.68
Original rate -20\%	4.00	-491.43
Original rate -40\%	3.00	-13,165.54
Estimated Breakeven rate	4.04	0.00

Table 8.2.3.1 Estimation of WW and NS Sludge Production by Years under Scenario 1

(1 DS/d)																							
Cricratedsudge(Dry Nudge)		2(6)	201	2 CO	2003	2045	2005	2066	2007	2008	2009	2010	2015	2012	2013	2014	2015	2016	2017	2018	2018	2020	$\begin{gathered} \text { Sharce (\%os) } \\ \text { in } 2020 \end{gathered}$
Nong Kaemstic Tothl	t-DS/d	5.5	5.6	23.8	2.4 .1	24.4	24.9	41.5	42.1	42.7	55.8	65.6	66.5	67.2	68.1	68.8	84.1	97.0	98.4	100.0	105.5	114.2	37.8\%
East plant																							
Bung Kum	tos/d																				${ }^{15.7}$	15.5	5.1\%\%
Wang Thong Lang	1DS/d																10.6		88.3	8.5	8.7	10.4	3.4\%
On-Nut (Nilges Soil)	$\begin{aligned} & 1 D S / d d \\ & i D S / d \end{aligned}$	7.4 2.5	2.5	$\underline{6.9}$	7.0 2.5	7.1 -2.5	7.7 2.5	2.5	8.5	2.5	8.5	2.15	2.5	8.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	0.8\%
Sultotal		9.9	10.0	9.4	9.5	9.7	10.3	10.4	10.6	10.7	10.9	11.6	11.8	12.0	12.2	12.3	13.1	30.7	24.9	25.4	41.0	43.5	14.4\%
North Pant															14.0	14.1	14.3	14.5	14.6	14.8	14.9	15.1	5.0\%
Bang Suc	10S/4					10.7	10.9	11.2	11.4	11.6	11.8	12.0	12.3	12.5	12.8	13.0	13.3	13.3	13.3	13.3	13.3	13.3	4.4\%
Din Dieng	1 DS/d		23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	35.8	35.8	35.8	35.8	35.8	35.8	35.8	35.8	35.8	35.8	11.8\%
Community WWTP	: DS/d	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	0.8\%
Sultatai		2.5	26.4	26.4	26.4	37.2	37.4	37.6	37.8	38.0.1	3 x .2	38.5	30.6	50.9	65.1	65.5	65.9	66.1	66.2	66.4	66.5	66.7	22.1\%
West Plant																							
Thouluri North	10S/d									6.6	6.7	6.8	6.9	8.9	7.0	7.1	7.2	7.3		$\begin{array}{r} \\ 15.6 \\ \hline 8\end{array}$	9.7		5.5\%
Thonturi Central	1 DS/d								10.1	10.3	10.5	10.8	11.1	11.4	11.7	12.0	12.3	12.6	15.6	15.9 8.5	${ }_{8.7}^{18.3}$	16.7 9.3	3.5%
Noug Khacm (Night wil)	- DS/d	7.4	7.5	6.9	7.0	7.1	7.7	7.9	8.1	8.2	8.4	0.1	9.2	9,4	9.6	9.8	10.6	88.2	${ }_{7} 8.3$	8.5	8.7 220	9.3	
Yannawa (Sevage)	$1 \mathrm{DS} / \mathrm{d}$	16.5	16.8	16.8	26.8	16.8	16.8	16.8	16.8	16.8	16.8	16.8	16.8	16.8	16.8	16.8	16.8	22.0	22.0	22.0	22.0		5.3\%
Yamava (Night woil)	t DSM ${ }^{\text {d }}$	6.9	7.0	6.4	6.5	6.7	7.2	7.4	7.5	7.7	7.8	8.4	${ }^{8 .} 8$	8.8 8	9.0	9.2	$\underline{7.9}$	${ }_{2}^{13.5}$	$\stackrel{1}{2}$	${ }_{2} 1.5$	14.5	17.3	0.8\%
Community WWTP	tDS/d	2.5	23.9	32.5	-2.5	33.5	3.5	24.5	45.0	52.1	52.5	54.4	55.1	55.9	56.7	57.5	59.4	66.3	69.7	72.7	73.7	77.8	25.7\%
Toctal	TDEA	+6.0.	70.3	68. 5	68.8	99.9	N1.9	82.6	93.3	(00.9	101.9	104.4	117,5	$11 \mathrm{~K}, 7$	134.0	135.3	138.4	143.1	$1810 . x$	180.6	1×1.3	18\%.0)	62.2\%
Grand total (Total Lemeraleds	t 1 NS/d	51.6	76.0	92.3	93.1	104.4	1 10, 9	125.1	135.4	143.6	157.7	170.0	1 84.0	186.0	202.1	208.1	222.5	2+10,	259.3	200.6	2×6.7	302.2	$\underline{1(x) .0 \%}$

Table 8.2.3.2 Pre-Feasibility Study of Sludge Treatment for Scenario 1

Table 8．2．3．3 Pre－Feasibility Study of Sludge Treatment for Scenario 2

5					
䂞					
敋		8			
$\frac{5}{6}$		8		号	\％ 0
8		8			$4{ }_{4}^{8}$
$\stackrel{5}{6}$		8			${ }^{7} 8$
		$\underset{0}{7}$		㳓	
$\frac{5}{5}$		8		（2）	－0
E		8		¢ ${ }_{6}$	3 C
E		8		\％ 0_{0}	9 ${ }_{6}$
$\frac{1}{2}$		8		$\vec{\circ}$ 合	
5	 	8		$\cdots{ }_{\sim}^{5}$	${ }^{\text {E }}$
$\stackrel{b}{5}$		8			88
令	gig8	$\stackrel{\square}{5}$			－
8		8		\％	5F．
S	Fs\％8\％	8		\cdots	
若	－${ }_{6}$	$\stackrel{9}{\square}$ \％		A ${ }_{0}^{\text {cta }}$	吕茄
8		8			寺 ${ }^{\text {a }}$
8		8		88	98，
E		8		3）${ }_{6}$	${ }_{6}{ }_{5}$
共		8		\％ $\begin{array}{ll}\text { \％} \\ 0\end{array}$	5
寿		8		$3{ }^{3}$	盛
E				\cdots	\％
					（8）

Table 8.2.3.4 Pre-Feasibility Study of Sludge Treatment for Scenario 3

Table 8.2.3.6 Summary of Pre-Feasibility Study for 3 Scenarios

Table 11.1.1.1 Requirements Regarding the Environmental Impact Assessment (EIA) (1/2)

Items	Types of Projects or Activities	Size
1.	Dam or reservoir	Storage volume of 100 million cubic meter (MC) of more or storage, surface area of 15 square kilomelers or more
2.	luigation	Irigated area of 80,000 rais ($12,800 \mathrm{ba}$) or more
3.	Conmercial airpor	All sizes
4.	Ilotel or resont	80 roons or more
5.	Mass Iransit system and expressway as defined by the Mass Transit System and Expressway Act, or projects similar to expressway or tail type mass Iransit system	All sizss
6.	Miniog as defined by the Mineral Act	All sizes
7.	Industrial estate as defined by the industrial Estate Authority of Thailand Act, or project similar to industrial estate	All sizes
8.	Commercial port and harbor	With capacity for vessets of 5001 -gross or more
9.	Tbesmal power plant	Capacity of 10 MW or more
10.	Industries:	
	(1) Petrochemical Industry (2) Oil refinery (3) Natural gas scparation of processing (4) Cbloro-alkaline industry requiring NaCl as raw material for production of $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaOH}, \mathrm{JICl}$, $\mathrm{Cl}_{2}, \mathrm{NaOCl}$ and bleacbing power (5) Iron and/or steel Industry (6) Cement Industry (7) Smelting Industry other than iron and steel (8) Pulp Industry	Using raw materials which are produced from oil refinery and/or natural gas separation with production capacity of $100 \mathrm{~V} / \mathrm{d}$ or more All sizes All sizes Production capacity of each or combided products or $1001 /$ d or more. Production capacity of $100 \mathrm{1} / \mathrm{d}$ or more (production capacity calculated by using production capacity of furnace in thour nulliplice by 24 hours) 100 t/day or using furnaces with combined capacity greater than 5 t/batcb All sizes Production capacity of $50 \mathrm{t} / \mathrm{d}$ or more Production capacity of $50 \mathrm{t} / \mathrm{d}$ or more
11.	All projects in watershed area classificd as \$B by the Cabiact Resolution	All sizes

Table 11.1.1.1 Requirements Regarding the Envimonmental Impact Assessment (EIA) (2/2)

Items	Types of Projects or Activities	Size
12.	Coastal reclamation	All sizes
13.	Building in areas adjacent to nivers, coastal areas, lakes or beaches or in the vicinity of national parks or bistorical parks	Building 1. $\quad 23.00 \mathrm{~m}$ bright or more. 2. Total area of all floors or area of any floor in the same building is $10,000 \mathrm{~m}^{2}$ or more
14.	Residential buildiog as defined by the Building Ant	80 units or more
15.	Land appropriate (or housing development)	Number of land plots is 500 plots or more Tolal land area is more than 100 rais (16 ha)
16.	Hospital which is located: (1) in area adjacent to rivers, coastal areas, lakes, or beaches (2) In area other than (1)	(1) 30 beds or more (2) 60 bids or more
17.	Pesticide iodustry or industry producing active ingredient by chemical process	All sizes
18.	Cbemical fertilizer industry usiog chemical process in production	All sizes
19.	Highway or road as defined by Slighway Act passing through following area: (i) Wildife sanctuaries and wildlife non-bunting arca as defined by Wildife Conservation and Protection Act (2) National parks as defined by National Park Act (3) Watersbed class 2 as approved by the cabinet (4) Mangove forests designated as National Forest Preserves (5) Coastal area withio 50 meters of maximum sea level	All projects which are equivalent to or above the minimum sfandard of rural highway, iscluding roadbed expansion.
20.	Central waste freatment plants as defined by the Factory Act	All sizes
21.	Sugar Indusiry (1) producing raw sugar, white sugar, refined sugar (2) producing glucose, dextrose, fruclast or the like	All sizes production capacity of $20 \mathrm{t} / \mathbf{\$ 5 5}$ or more
22.	Petroleum Developmed (I) Geophysical drilling explotation and/or production (2) Oil and gas pipoline sysicm	All sizes All sizes

Source:
(1) The Ministry of Scieace. Technelogy and Eavitonament Re: Specifying lypes and sizes of projects or activities of geverament agency, state enterprise or privale ferson u bich are required to prepare reports on environmentat ingact assessment.
(2) The Ministry of Science, Technolegy and Environment Re: Sperifying ypes and sizes ef projects or activities of government agency, slate enilerprise or privote person which are required to preprere regorts on ensiroamental imgact assessmend No.2, B.E. 2535 (1992).
(3) The Ministy of Science. Technology ams Eavironnent Re: Sperifying types and sizes of projects ef activities of government agency. state entegrice or privale gerson which are required to prepare reports on eavironmental impact assessment No.3, B.E. 3539 (4996).

Tabte 11.3.1.1 Format for Screening (Option A)

No.	Environmental ltem	Description	Evaluation
Social Environment			
1.	Resettement	Resettlement due to land ocupancy (Ifansfer of the rights of residence and land ownership)	$[\mathrm{Y}] \mathrm{N}][$]
2.	Vomemic Activities	Lass of production base and change of eommic struture	[Y] (N) ${ }^{\text {] }}$
3.	Traffic and Public Facilities	Impacts on schools, hospitals, and present traflic conditions, such as traffic janss and accidents	(Y) [N][?]
4.	Split of Communities	Separation of regional cammunities by hindrance of regional trafic	[Y] (1) ${ }^{\text {a }}$
5.	Cultural Propetiy	Less or decrease of the value of cultural assets, such as temples, shrines and archaeological assets	[Y] N] [?]
6.	Water Rights and Rights of Conmon	Obstruction of fishing rights, water right, and rights of ommon	[Y] (N) [?]
7.	Public Ileath Condition	Wersening of health and sanitary ondition due to the generation of garbage and pathgenic insecis	$[\mathrm{Y}]$ (N][?]
8.	Waste	Generation of construction waste, surplus soils, sludge, and donestic waste	(Y) [N][?]
9.	Hazards (Risk)	Increase in risk of cave-ins, ground failure and acidents	[Y] Ni]?
Natural Environment			
10.	Tepography and Gecology	Change of valuable topography and geology due to excavation and eathfill	[Y\|N]I?]
11.	Soil Irosion	Topsoil erosion by rainfall afier land rectamation and de forestation	ITN: ${ }^{\text {a }}$]
12.	Groundwater	Exhaustion of groundwater caused by over-drafi, and water pollution by leachate	(Y) $\{\mathrm{N}][$? $]$
13.	Ifydrological Situation	Changes of river discharge and riverbed condition due to filling work and drainage inflow	[Y]@] ${ }^{\text {P] }}$
14.	Coastal 7me	Ceastal erosion and change of noastal vegetation due lo change of littoral drift and rectanation	[Y] N$\}$! $]$
15.	Fauna and Fiora	Ohstruction of breeding and extincrion of species due to the changes of habitat condilions	$[\mathrm{Y} \mid \mathrm{NT}]$]
16.	Meteorolcgy	Change of micro-cimate, such as temperature, wind, ete, due to large-scale reclamation and construction	[Y] NfI$]$
17.	landscape	Change of topography and vegetation due to reclanation. Deterimation of acsthetic hafnony by structures	[Y]@I?]
Pollution			
18.	Air Pollution	Potlution caused by exhaust gas or texic gas from veicicles and factories	[Y] Nl$]$
19.	Water Pollution	River and groundwater pollution caused by inflow of dranage and sludge froms water treatnent facilities	$[\mathrm{Y}](\mathrm{N}](1)$
20.	Soil Comtamination	Contamination caused by discharge or diffusion of waste water drainage or texic materials	[Y] ${ }^{\prime} \mid$ (1)
21.	Noise and Vibration	Noise and vibration generated by vehicles and eporation of water treament plants	(Y) [N] ${ }^{\text {[}}$]
22.	Land Subsidence	Land deformation and land subsidence caused by the lowering of water table	[Y] (1)]?
23.	Oflensive Olm	Gencration offensive oder and exhausted gas	(Y) $(\mathrm{N}][$?
Overall Evaluation: Either IEE or E1A is necessary for the Prejeet Implententation?			Y)[N]

Table 11.3.1.2 Format for Screening (Option B)

No.	Envirommental Item	Description	Evaluation
Social Environment			
1.	Resettement	Resetllement due to land cocupancy (Iransfer of the rights of residence and land ownership)	[$\mathrm{Y}^{(1)}$ [?]
2.	Eomomic Adivilies	Leos of production base and change of economic structure	[Y) N$)$ (?
3.	Traffic and Public Facilities	Inipacts on schools, hespitals, and present taffic conditions, such as traffic janss and aceidents	(Y) $[\mathrm{N}][$?
4.	Split of Communities	Separation of regional ommunities by hindrance of regional traffic	
5.	Cultural Property	lass or decrease of the value of culiural assets, such as tenpipes, shrines and archaeological assels	$[\mathrm{Y}]$ N] $\{?$
6.	Water Rights and Rights of Commen	Obstruction of fishing rights, water rights, and rights of common	[Y] (N) [?]
7.	Public 3fealh Condition	Worsening of health and sanitary condition due to the generation of gabage and pathegenic insects	$[\mathrm{Y}][\mathrm{N}](21)$
8.	Waste	Generation of construction waste, surplus soils, siudge, and domestic waste	(Y) N$][$ [$]$
9.	Hazards (Risk)	Increase in risk of cave-ins, ground failure and accidents	$[Y] N$ [?]
Natural Emironment			
10.	Tepography and Gedogy	Change of valuable topography and geology due toexcavation and eanthill	[Y] (N) $?$]
11.	Scil Eraion	Topsoil erosion by rainfall after land reclamation and deforestation	[Y] (N)[?]
12.	Groundwater	Exhaustion of groundivater caused by over-draft, and water pollution by leachate	[Y]\{N](?)
13.	Hyurological Siluation	Changes of river discharge and riverbed condition due to filling work and drainage inllow	(Y)(N)[?]
14.	Coastal Zone	Coastal errsion and change of coastal vegetation due to change of littoral drift and reclamation	[Y](N) [?]
15.	Fauna and Flya	Obstruction of brecting and exinction of species due to the changes of habitat onditions	$[\mathrm{Y}][\mathrm{N}](7)$
16.	Meterrology	Change of micro-clinate, such as tempcrature, wind, etc., due to large-scate rectanation and onstruction	$[\mathrm{Y}]$ NT $?$?
17.	Landscape	Change of teprography and vegetation đue to reclamation. Deterioration of arsthetic harmeny by structures	$[\mathrm{Y}][\mathrm{N}](3)$
Pollution			
18.	Air Polution	Pollutime caused by exhaust gas er toxic gas from wehicles and factories	[Y] N$)[$?]
19.	Water Pollution	River and grotndwater pollution caused by inflow of drainage and sludge from water treatment facilitics	[Y][N](1)
20.	Soil Conlamination	Conlamination caused by discharge or diffusion of waste water drainage or foxic naterials	[Y][N][?]
21.	Noise and Vibsation	Noise and vibration generated by vehicles and operation of water Irealment plants	(19) $[\mathrm{N}][?]$
22.	Iand Subsidence	Land de formation and land subsidence caused by the lowering of water table	[Y](N) ${ }^{\text {P }}$]
23.	Offensive Odor	Generation offensive odor and exhausted gas	[Y]N](?)
Overall Evaluation: Bither IEE or EA is necessary for the Project Implementation?			(Y) [N]

Table 11.4.1.1 Envirommental Issues Raised by IEE

Option 1	Option 2
Social Environment	Social Environment
1) Traffic and Public Facilities	1) Traftic and Public Facilitics
2) Waste	2) Public Health Condition
Natural Environment	3) Waste
1) Ground Water Natural Environment 1) Ground Water Pollution 2) Fauna \& Flora 1) Water Pollution 3) Landscape 2) Soil Contamination 1) Water Pollution 3) Noise and Vibration 2) Noise and Vibration 4) Oftensive Odor 3) Oftensive Odor	

Table 11.4.1.2 Summary of IEE

Environmental Item	Option A	Option B	Problem	Countcrmeasure
1. Traffic and Public Facilities	S	S	Trallic will increase	Route and time of transport have to preplanned.
2. Public Hoalth Condition	N	X	In case of land application, a health risk is prevailing	Proper reuse plan in to be developed. final disposal should be monitored carefully.
3. Wasts	S	S	Gencration of waste	No problem it final disposal conducted properly and regulatory.
4. Ground Water	M	S	Leachate can pollute ground water resources	Sanitary landfill with leachate treatment is recommended. If not possible, ground water use should be restricted.
5. Fauna \& Flora	N	X	Trace toxic can change flora \& fauna	Controlled land application should be adopted.
6. Landscape	N	X	Use of comport may change crop patiern	Controlled land application should be adopted.
7. Water Pollution	X	S	Groundwater pollution can lead to wide-spread water pollution	Sanitary landfill is recommended.
8. Soil Contamination	X	N	May cause pollution by trace toxic substances	Sanitary landfill and controlled land application is required.
9. Noise and Vibration	S	S	Will generate during transportation	Route and time of transport have to be preplanned.
10. Offensive Odor	S	S	May cause some odor during transport and disposal	Closed truck should be used for transport. agriculiural area should be chosen carefully.

M: Major, S: Small. N: Nonc, X: Not clear

0

Figures

O

Station for Water Dilution Systems

No.	Name of Pump Station \& Gate
System 1 k 2	
1	Bang Khen Ghao P.S.
2	Bang Khen Mai P.S.
3	Bang Sue P.S.
4	Sam Seb P.S.
5	Tavale P.S.
6	Bau Lumpbug
7	Pbra Pbiuklao G
8	Pak K. Talad G.
9	Ong Ang G
10	Knug kasem P.S.
11	Phra Kbauoug P.S.

System 3	
12	Salboru P.S.
13	Choug Non Sit Temporary P.S.
14	RamalVP.S.
System 4	
15	K. Toey P.S.
16	Baug Cbak P.S.
17	Badg Or P.S.
18	Bang $\mathrm{Na}^{\text {P P }}$ S.
Acrated lagoon Systcmis	
No.	Name of A frated Lagrou Systems
A. 1	Makkasan Poud
A. 2	Rama IX Poud
A. 3	Buddamoulton Sai2

TIIE STUDY FOR MASTER PLAN ON
SEWAGE SLUDE TREATAENT/DISPOSALAND RECLAIMED WASTEWATER REUSE IN BANGKOK

Figure 2.15.1
LOCATION OF KIILONG WATER IMPROVEMENT FACILITIES

Source: MWA Anmual Repori 1997

TIIE SIUDY FOR MASTER PLAN ON sEWAGE SLDDGE TREATAENT / DISPOSABAND RECLAMED WASTEWATER REUSE IN BANGKOK
PANINIERNATIONAL, (OOPDERATIONAGENCY

Figurc 2.2.3.1
GROWTII IN MWA WATER SERVICES

Sectional View of a Septic Tank
 (Outlet is Connected to the Combined Sewer)

Source: 1998 AIT Feasibitity Study on Agricultural Use and Land Applicalion of Sewage aud Night Soil Sludge for Bangkok Metropolitan

THE STUDY FOR MASTER PLAN ON
SEWAGESLUDE TREATAENT DISPOSALAND
RECIAIAIED WASTEWATER REUSE IN BANGKOK
JABN INTERNATIONAL COOPERATIONAGENCY

Figure 3.1.2.1
TYPICAL SEPTICTANK ARRANGEMENTS IN BANGKOK

[^3]\longrightarrow Process Water

[^4]

F. 14

 1

11
1
1
1

周 11亚
葠 ＝

 Pubsio Pat表 II绽
 $\stackrel{+}{\square}$ ＝ $=$ II Divisiog E ＝ ＂ 은
 놀

$]$

7
0
0
8
8

8

$\begin{array}{r}8 \\ \hline\end{array}$量
 iil
相
 \qquad

（4）

101
4
－

THE STUDY FOR MASTER PLAN ON
SEWAGE SLUDGE TREATMENT／DISPOSAL AND
RECLAIMED WASTEWATER REUSE IN BANGKOK
JAPAN INTERNATIONAL COOPERATION AGENCY

Figure 5．1．1．1
EXISING ORGANTZATION OF
BANGKO METROPOLITAN
BANGKOK METROPOLITAN

THE STUDY FOR MASTER PLAN ON	Figure 5．1．1．1
SEWAGE SLUDGE TREATMENT／DISPOSAL AND	EXISTING ORGANX
RECLAIMED WASTEWATER REUSE IN BANGKOK	BANGKOK METRO
JAPAN INTERNATIONAI COOPERATION AGENCY	ADMINISTRATION

8
8
0
5
$\frac{8}{4}$

B8
（11）
훈 \qquad

静

别
4
nworsula qis

$\left.\begin{array}{|c|l|}\hline \text { THE STUDY FOR MASTER PLAN ON } & \text { FigURe S3.1.1 } \\ \text { SEWAGE SLUDGE TREATMENT/DISPOSAL AND } \\ \text { ORGANIAATIONAL NETWORK OF THE } \\ \text { RECLAIMED WASTEWATER REUSE IN BANGKOK } & \text { GOVERNMENT ON WASTEWATER }\end{array}\right\}$

CURRENT WASTEWATER LEVELS IN COMBINED DRAINS

EXPECTED FUTURE WASTEWATER LEVELS IN COMBINED DRAINS

StormOutfail
to Khione
(C)
BIOLOGICAL TREATMENT
Treated
Flow Cascide and

Modified Sequential
Batch Reactor
Activated Sludge
Plant

SLUDGE
TREATMENT
PRELIMINARY TREATMENT

Plant
Sludge
Liquor
Return

wuse3s pue
and
Separaiton
Grit
Disposal
off Site

DAF
Sludge
Thickeners

Disposal
off Site

Vashing
and
Compaction
Screenings
Skipped for
Disposal
off Site
off Site
Inlet
pumping
Station-

(\$)

[^0]: Note: Data or Oct. and Des. in 1997 are missing
 Snterceptor construction started in Jan. 1997, which is not related to wastewater treatment operntion.
 Interceptor construction started in Jan. 1997, whi
 Souve: Monthly Operation Recond of si Phraya WWTP

[^1]:

[^2]: | Uriver's labor cost | $(\mathrm{B} / \mathrm{hr})$ | 45 |
 | :--- | :---: | ---: |
 | Fuel cost | $(\mathrm{B} / \mathrm{l})$ | 10 |
 | Fuel consumption of 6 ton truck | $(\mathrm{km} / \mathrm{l})$ | 2 |
 | Avcrage spced | $(\mathrm{km} / \mathrm{hr})$ | 10 |
 | Consumables | $(\mathrm{B} / \mathrm{km})$ | 2 |

[^3]: | THE STUDY FOR MASTER PLAN ON |
 | :--- |
 | SEWAGE SLUDGE TREATMENT / DISPOSAL AND |
 | RECLAIMED WASTEWATER REUSE IN BANGKOK |
 | JAPAN INTERNATIONAL COOPERATION AGENCY |

[^4]: | THE STUDY FOR MASTER PLAN ON | Figure 3.2.3.2 |
 | :---: | :--- |
 | SEWAGE SLUDGE TREATMENT / DISPOSAL AND | FLOW DLAGRAM OF ON-NUT |
 | RECLAIMED WASTEWATER REUSE IN BANGKOK | NIGHT SOIL TREATMENT PLANT | RECLAIMED WASTEWATER REUSE IN BANGKOK IAPAN INTERNATIONAL COOPERATION AGENCY NIGHT SOIL TREATMENT PLANT

