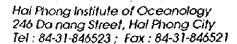
REFERENCES


IN VIETNAMESE

- Trương Ngọc An, 1993. Phân loại tảo Silic phù du biển Việt Nam. Nhà xuất bản Khoa học và Kỹ thuật Hà Nội, 1993.
- 2. Phạm Ngọc Cường (FIPI), 1998. Bản đồ đất cạn các vùng Hải Phòng, Cát Bà và Quảng Ninh, tỷ lệ 1:200,000 (dựa trên ảnh vệ tinh SPOT bay chụp năm 1996 và các ảnh máy bay khác năm 1995).
- nguyễn Hữu Dinh, Huỳnh Quang Năng, Nguyễn Văn Tiến, Trần Ngọc Bút, 1993. Rong biển Việt Nam phía bắc. Nhà xuất bản khoa học và kỹ thuật Hà Nội, 365 trang.
- Phạm Hoàng Hộ, 1969. Rong biển Việt Nam phía nam. Trung tâm học hiệu Sài Gòn, 500 trang.
- 5. Phan Nguyên Hồng, 1970. Đặc điểm sinh thái phân bố của hệ thực vật và thảm thực vật ven biển miền bắc Việt Nam. Luận án Phó Tiến Sĩ.
- 6. Phan Nguyên Hồng, 1991. Sinh thái thảm thực vật rừng ngập mặn Việt Nam. Luận án Tiến Sĩ.
- 7. Lăng Văn Kên, 1991. San hô đá và các rạn san hô ở quần đảo Cát Bà. Tuyển tập Tài nguyên và Môi trường biển, tập I. Nhà xuất bản Khoa học kỹ thuật. P: 146 151.
- 8. Nguyễn Văn Khôi, 1994. Lớp phụ chân mái chèo (Copepoda) Vịnh Bắc Bộ. Nhà xuất bản Khoa học và Kỹ thuật.
- 9. Nguyễn Văn Quân, 1997. Sơ bộ điều tra khu hệ và nguồn lợi cá Vịnh Hạ Long (Quảng Ninh). Báo cáo tập sự. Tài liệu lưu trữ tại Phân viện Hải dương học tại Hải Phòng.
- 10. Nguyễn Nhật Thi, 1971. Sơ bộ điều tra khu hệ cá vùng biển tỉnh Quảng Ninh. Tập san Sinh vật Địa học. Tập IX, số 3 4.
- 11. Sở Thuỷ sản Quảng Ninh, 1998. Báo cáo kết quả điều tra hiện trạng nguồn lợi vùng biển Quảng Ninh và định hướng quy hoạch phát triển nuôi trồng thuỷ sản giai đoạn 2000 2010. Tài liệu lưu trữ tại Sở thuỷ sản Quảng Ninh.
- 12. Nguyễn Nhật Thi, 1995. Đa dạng Sinh học Vịnh Hạ Long Phần cá biển. Tài liệu lưu trữ tại Phân viện Hải dương học tại Hải Phòng.
- 13.nguyễn Nhật Thi, 1997. Khu hệ cá vùng biển Cát Bà. Tuyển tập tài nguyên và môi trường biển, tập IV. Nhà xuất bản Khoa học và Kỹ thuật.
- 14. Nguyễn Thị Thu, 1997. Báo cáo chuyên đề "Động vật phù du Vịnh Hạ Long" Đề án SAREC - lưu Phân viện Hải dương học tại Hải Phòng.

- 15. Nguyễn Văn Tiến, 1997. Rong biển vùng triều Vịnh Hạ Long. Tuyển tập nghiên cứu biển, tập 7. Nhà xuất bản Khoa học và Kỹ Thuật.
- 16. Trung tâm Tài nguyên và Môi trường (FIPI), 1997. Bản đồ Địa lý Kinh tế Xã hội đảo Cát Bà, tỷ lê 1: 25,000.
- 17. Lâm Thanh Tùng, 1998. Ngư nghiệp Chương IV, phần thứ 3 Địa chí Quảng Ninh (tài liệu chưa công bố).
- 18. Nguyễn Hữu Tứ & Trần Thuý Vân (Viện địa lý),1997. Bản đồ thực vật cạn Uông Bí, Hoành Bồ, Cẩm Phả và thành phố Hạ Long, tỷ lệ 1:100,000 (dựa trên ảnh vệ tinh SPOT bay chụp và các quá trình khảo sát năm 1996).
- 19. Uỷ ban Khoa học và Kỹ thuật Nhà Nước, 1981. Quy phạm điều tra biển. Phần rong biển.
- 20. Viện Nghiên cứu Thuỷ sản Trung Quốc . Sổ tay điều tra nghiên cứu Hải sản. Nguyễn Hữu Phụng dịch năm 1972. Nhà xuất bản khoa học và kỹ thuật Hà Nội.
- 21. Viện nghiên cứu và quy hoạch rừng (FIPI), 1995. Bản đồ phân bố rừng Quảng Ninh, tỷ lệ 1:50,000 (Việt Nam).
- 22. Nguyễn Huy Yết, 1990. San hô và rạn san hô bờ tây Vịnh Bắc Bộ. Báo cáo của đề tài 48B. 04. 02.
- 23. Nguyễn Huy Yết et al, 1995. Nghiên cứu sử dụng hợp lý hệ sinh thái rạn san hô vùng biển ven bờ Việt Nam.
- 24. Nguyễn Huy Yết, Lăng Văn Kên, 1996. Thành phần loài và sự phân bố của san hô Vịnh Hạ Long. Tạp chí Sinh học, tập 18, số 1, trang 7 13.

IN OTHER LANGUAGES

- 25. Abbott R. T. and S. R. Dance, 1982. Compendium of seashells. E. P. Dutton inc/ New York: 410 pages.
- 26. Aubreville, A.; J. F. Leroy; Ph. Morat (redacteur) 1960-1994. Flore du Cambodge, du Laos et du Vietnam, fasc. 1-27. Paris.
- 27. Auctors, 1994. Journal Biology, vol. 16 (4) (special volume). National Centre for Science and Technology of Vietnam.
- 28. Auctors, 1995. Journal Biology, vol. 17 (4) (special volume). National Centre for Science and Technology of Vietnam. Auctors, 1996. Red Data Book of Vietnam, vol. 2, Plants. Science and Technique Publishing House. Hanoi.
- 29. Banner A. H. and D. M. Banner, 1996. The Alpheid Shrimp of Thailand. The Siam Society monograph series, N° 3: 168 pages.
- 30. Chinese Institute of botany, 1972. Inconographia cormophytorum riniccorum. Zomus I, II. Science Pub. House Beijing.

1 AND 1

- 31.Dai Ai yun and Yang Si liang, 1991. Crabs of China seas. China Ocean Press Beijing: 470 pages.
- 32. Distribution map of vegetation in Quang Ninh sea side area 1995. Institute of Geography.
- 33.Do Cong Thung, Pham Dinh Trong et al., 1997. Recovery ability of Tropical ecosystem on Catba Halong areas. The HIO's press: 109 pages (in Vietnamese).
- 34. English, S., C. Wilkinson and V. Baker, 1997. Survey manual for Tropical marine resources. 2nd edition Australian Institute of Marine Sciene, Townsville: 177-303 pages.
- 35. Fauvel, P., 1953. The fauna of India including Pakistan, Ceylon, Barma and Malaga. The Indian Press, LTD: 499 pages.
- 36. Fize, A. et R. Serene, 1955. Les pagures du Vietnam Institute oceanographique Nhatrang. 45^e Note: 236 pages.
- 37.J. R. Taylor, 1976. Dinoflagellates from the International Indian Ocean Expedition. Edited by Stuttgart.
- 38.Gomez E. D., Alcala A. C., 1984. Survey of Philipine coral reefs using transect and quadrat techniques. UNESCO, 1984. No 21, P: 57 69.
- 39.V. Konovalova et all, 1989. Atlat of phytoplankton in Japan sea. "Nauka" publishing.
- 40. Isamu Yamaji, 1973. Illustrations of the marine plankton of Japan. Hoikusha publishing Co. LTD.
- 41. Koehler R., 1922. Ophiurens of the Philippine seas and adjacent water. United State National museam, Bulletin 100 volum 5: 480 pages.
- 42.Lecomte, H. (redacteur), 1907-1952. Flore générale de l'Indo-Chine, tom 1-7. Paris.
- 43.Le Kha Ke (editor) et al., 1969-1976. Common plant of Vietnam, tom. 1-6. Hanoi.
- 44. Loya Y., 1978. Plotless and transect methods. UNESCO. Monogr. Oce. Methods, 5. P: 197 218.
- 45. Manual on harmful marine microalgae. UNESCO, 1995.
- 46. Ministry of forestry, 1971-1989. Woody forest trees of Vietnam, tom. 1-7. Hanoi.
- 47. Miyake S. 1982. Japanese Crustacean decapods and Stomatopods in Color, Vol. I Hoikusha publishing Co., LTD: 170 pages (in Japanese).
- 48. Myers F., 1991. Micronesia Reef Fishes. 2nd ed. Coral Graphies. Guam USA.
- 49. Nguyen Chu Hoi, Do Cong Thung, 1997. Assessment of axploitation ability of Typical ecosystems for Tourism activities of Catba Halong Areas. The HIOs repost: 31 pages (in Vietnamese).

Hai Phong Institute of Oceanology 246 Da nang Street, Hai Phong City Tel: 84-31-846523; Fax: 84-31-846521 1-63

- 50. Nguyen Duc Hoa, 1997. Assessment of economic and environment reformed uses of cultivated forest in Quang Ninh. Thesis.
- 51. Nguyen Khac Khoi, 1990. List of Angiosperm plant in sea side area from Quang Ninh to Thanh Hoa. Scientific report.
- 52. Nguyen Khac Khoi, 1996. Report of the trip for investigation and assessment actual state of flora and fauna in thermo-electricity factory construction project in the Thong Nhat commune, Hoanh Bo district (Quang Ninh province).
- 53. Nguyen Khac Khoi, 1997. Report of the trip for investigation plant in mangrove and biodiversity in Cai Lan port project area (Hon Gai -Quang Ninh).
- 54. Nguyen The Hung 1995. Research some ecological and biological characteristic of Savannah in Quang Ninh. Thesis.
- 55. Nguyen Van Tien, Do Cong Thung et al., 1996. Study on composition species, Distribution and development ecology of seagrass in the North of Vietnam. The HIOs report: 31 pages (in Vietnamese).
- 56.Okamura, 1936. Nippon kaiso shi Uchidaro Kakuho Tokyo, 965pp.
- 57. Phan Ke Loc, 1985. Essay to use UNESCO classification for setting UPA framework of classification of vegetation of Vietnam. Journal Biology 7 (4): 1-5.
- 58. Phytoplankton manual, UNESCO 1978. Edited by A. Sournia.
- 59. Randall E. et al., 1990. Fishes of the Great Barrier Reef and Coral sea. Crawford House Press. Australia.
- 60. Satellite photographs 1996.
- 61. Shiro Fujioka, 1990. Illustrations of the plankton in Amami Oshima Island coastal water.
- 62. Studia marine Sinica, 1965: 114 pages (in Chinese).
- 63. Takoaki Yamagishi, 1992. Plankton algae in Taiwan (Formosa). Uchida Rokakenho publishing Co. LTD.
- 64. Taylor W. R., 1960. Marine algae of the eastern tropical and subtropical coasts of the Americas Univ. of Michigan press. 870pp.
- 65. Te Trung Nhan, Lam Tri Khang, Truong Ty, 1964. Fauna of China sea (Gastropods). Scientific Press: 84 pages (in Chinese).
- 66. Tham Gia Thuy et al., 1964. Fauna of China seas crabs. Scientific Press: 142 pages (in Chinese).
- 67. Tran Dinh Ly, 1993. 1900 used plant species in Vietnam. Hanoi.
- 68. Trinh Dinh Thanh, Le Van Qui, 1985 Cat Ba National park. Hai Phong Publish House.
- 69. Truong Phuong Doanh et al., 1957. Fauna of China seas (Echinoderms). Scientific Press: 193 pages (in Chinese).

Hai Phong Institute of Oceanology 246 Da nang Street, Hai Phong City

- 70. Truong Ty et al., 1960. Bivals of the East sea. Beijing press: 274 pages (in Chinese).
- 71. Veron J. E. N., 1986. Corals of Australia and the Indo Pacific Argus and Robertson Publ. Sydney, London, P: 1 664.
- 72. Veron J. E. N., et al, 1976 1984. Seleractinia of castern Australia. Past I V. Aust. Inst. Mar. Sci. Mougr. Ser. Vol. 1 (1976), Vol. 3 (1977), Vol. 4 (1980); Vol. 5 (1982), Vol. 6 (1984).
- 73. Wiliam J. Dakin and Alan N. Colefax. The plankton of the Australia at coatal water off New South Wales. Publications of the University of Sydney.
- 74.WWF vietnam marine Conservation. Northern Survey Team, 1993. Servey report on the Biodiversity, Resourse Utilization and Conservation Potential of Catba region, Haiphong, N. Vietnam. P:1 64.
- 75.Zheng C. K., 1983. Comom seaweeds of China. Scientific publishing House Beijing.

Work Team

Hai Phong Institute of Oceanology:

- Nguyen Thi Mai Anh
 Nguyen Thi Kim Anh
- 3. Hoang Lah Anh
- 4. Do Trong Binh
- 5. Do Dinh Chien (Editor)
- 6. Doan Huyen Chau
- 7. Hoang Xuan Co
- 8. Nguyen Due Cu (Editor)
- 9. Nguyen Huu Cu
- 10. Luu Van Dieu
- 11. Nguyen Thi Phuong Hoa
- 12. Do Quang Hai
- 13. Nguyen Chu Hoi (Editor)
- 14. Dinh Van Huy
- 15. Nguyen Minh Huyen
- 16. Tu Lan Huong
- 17. Lang Van Ken
- 18. Pham Nhu Khiet
- 19. Nguyen Khac Khoi
- 20. Vu Thi Luu

21. Nguyen Dang Ngai

- 22. Nguyen Van Quan
- 23. Dang Ky Son
- 24. Nguyen Minh Son
- 25. Le Thi Thanh
- 26. Nguyen Thi Thu
- 27. Nguyen Van Tien
- 28. Nguyen Nhat Thi
- 29. Nguyen Xuan Tuyen
- 30. Pham Dinh Trong
- 31. Nguyen Quang Tuan
- 32. Tran Dinh Lan (Editor)
- 33. Nguyen Van Thao
- 34. Dam Due Tien
- 35. Chu Van Thuoc
- 36. Le Thi Thuy
- 37. Do Cong Thung
- 38. Hoang Viet
- 39. Nguyen Huy Yet (Editor)

Trainces

DOSTE and People's Committee of Quang Ninh Province:

- 1. Hoang Danh Son
- 2. Pham Quang Vinh

- 3. Vu Nam Phong
- 4. Bui Thi Cuong

Data

1. Hydrology Survey

Ĭ

Table of Contents

	Pa	ge
1.	INVENTORY ON THE SURVEY AND DATA ANALYSIS	
	ACTIVITIES 1	
1.1	Survey objectives	-67
1.2	Survey time	-67
1.3	Survey equipment and tools	-70
1.4		-70
1.5	Some results of data analysis	-72
II.	RESULTS OF WIND ANALYSIS	-85
111.	RESULTS OF ANALYSIS OF THE CURRENTS	-93
	List of Tables	
		ige
Table 1.1	Measured Sea Water Level in July, 1998	1-74
Table 1.2	Measured Sea Water Level in July, 1998	-75
Table 1.3	Tidal Level (M) at Cua Ong Station (July, 1998)	-76
Table 1.4	Tidal Level (M) at Hon Gai Station (July, 1998)	1-78
Table 1.5	Measured Wind at the Cua Luc Station	l-82
Table 1.6	Measured Wind at the Cua Dua Station	
Table 1.7	Measured Wind at the Cam Pha - Cua Ong Station	
Table 2.1	Joint Frequency Table of Wind Velocity and Direction	I-87
Table 2.2	Joint Frequency Table of Wind Velocity and Direction	1-89
Table 2.3	Joint Frequency Table of Wind Velocity and Direction	1-91
Pakla 2 1	The Frequency of Appearance of the Observed Current with a Difference	
Table 3.1	of Velocity and Direction	1.05
Table 3.2	The Frequency of Appearance of the Observed Current with a Difference	1-25
raute 3.2	of Velocity and Direction	1-97
Table 3.3	The Frequency of Appearance of the Observed Current with a Difference	• / /
13016 3.3	of Velocity and Direction	1.00
Toble 2.4		. //
Table 3.4	of Velocity and Direction	1-101
ጥ. አነ. ኃ ና		01
Table 3.5	of Velocity and Direction	1-103
Table 2.5		. 100
Table 3.6	of Velocity and Direction	1-105
	TT	

List of Figures

	· · · · · · · · · · · · · · · · · · ·	Page
Figure 1.1	Map of Locations of Stations of Hydrology Survey, Ha Long and Bai Tu Long Bays, 07/1998	1-68
Figure 1.2	Scheme of Installation of Current Meters at Cua Luc and Cam Pha-	
	Cua Ong Stations	1-69
Figure 1.3	Scheme of Installation of Current Meters at Cua Dua Station	1-69
Figure 1.4	Comparison of Water Level at Bai Chay Station	1-80
Figure 1.5	Comparison of Water Level at Cua Ong Station	
Figure 2.1	Wind Rose	1-88
Figure 2.2	Wind Rose	1-90
Figure 2.3	Wind Rose	1-92
Figure 3.1	Rose of the Observed Current	1-96
Figure 3.2	Rose of the Observed Current	1-98
Figure 3.3	Rose of the Observed Current	
Figure 3.4	Rose of the Observed Current	1-102
Figure 3.5	Rose of the Observed Current	
Figure 3.6	Rose of the Observed Current	1-106

I. INVENTORY ON THE SURVEY AND DATA ANALYSIS ACTIVITIES

1.1 Survey objectives

The survey area is Quang Ninh coastal water including Ha Long and Bai Tu Long Bays. The main objective of the survey is to conduct the current measurement at three stations in the area, which have been identified with the following coordinates and depths (referred to Chart Datum):

Station	Location	Depth (m)
Cua Luc	107°03'03", 20°57'27"	16.0
Cua Dua	107°08'03", 20°49'21"	11.5
Cam Pha - Cua Ong	107°20'55", 20°58'25"	15.4

The locations of the stations are shown in the Figure 1.1 and the schemes of the current meter instalation are shown in the Figures 1.2 and 1.3. At each station, the measurement has been conducted at surface and bottom layers.. The current meters for bottom current measurement were fixed at the depth of 2m above the bottom, while those for surface current measurement were hung at 0.8m below the water surface at the Cua Luc and Cam Pha - Cua Ong Stations and at 10m above the bottom at the Cua Dua Station (the water depth at this Station is 13.5m referred to the Mean Sea Level)

Beside, the wind speed and direction have been recorded every three hours (at 1h, 4h, 7h, 10h, 13h, 16h, 19h and 22h) at the altitude of 3m above the water surface at the three stations during the survey time period. The measured sixhourly (at 1h, 7h, 13h and 19h) water level at Bai Chay and Cua Ong Stations during this time has been collected from the Bai Chay Hydro-meteorological Station.

1.2 Survey time

The survey team departed on 12 July and conducted the preparation work and equipment check in Bai Chay on 13 July. The measurement activity has started from 14 July and planed to be completed on 29 July. Due to the event that the boatmen got serious sea-sick on the first day of the survey at the Cua Dua

Fig. 14: MAP OF LOCATIONS OF STATIONS OF HYDROLOGY SURVEY, HA LONG AND BAI TU LONG BAYS, 67/1998

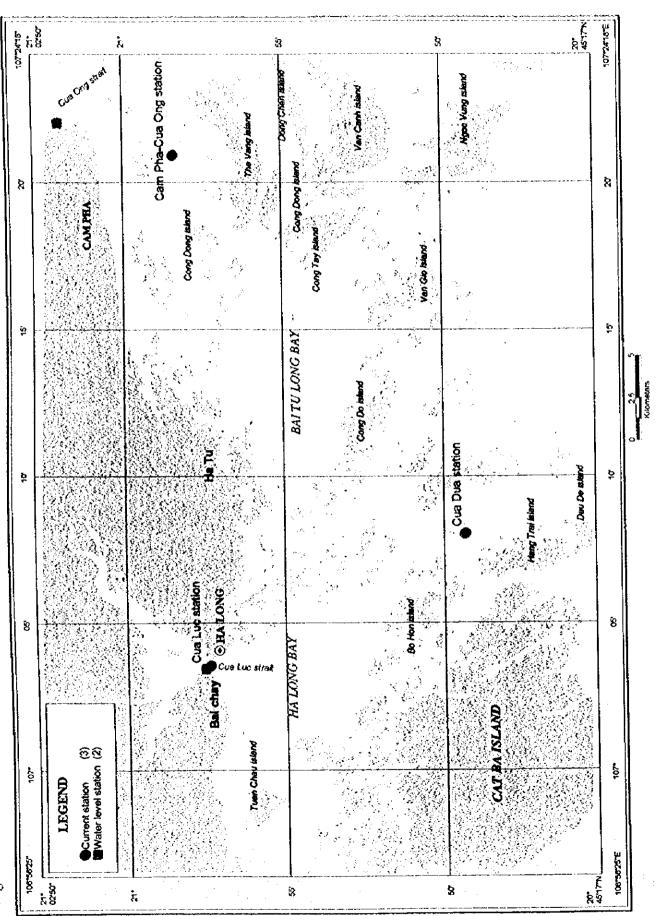
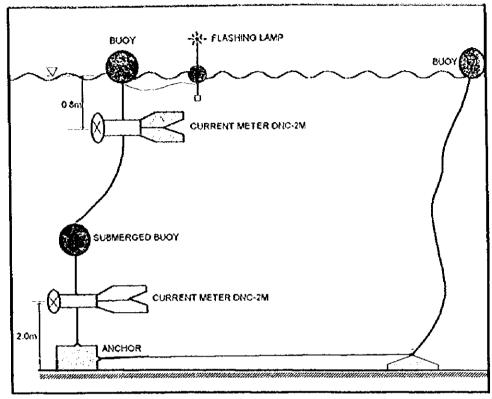
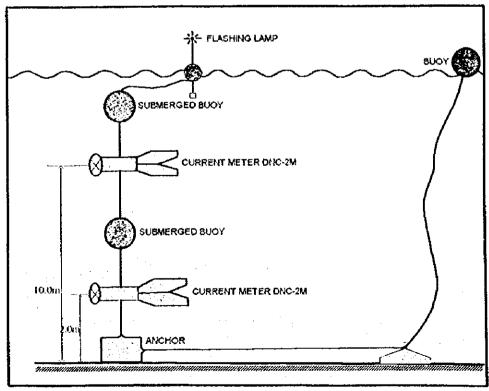




Figure 1.2: SCHEME OF INSTALLATION OF CURRENT METERS AT CUA LUC AND CAM PHA-CUA ONG STATIONS

Note: The depth (referred to Chart datum) At Cua Luc station: 16.0m At Cam Pha-Cua Ong station: 15.4m

Figure 1.3: SCHEME OF INSTALLATION OF CURRENT METERS AT CUA DUA STATION

Note: The depth (referred to Chart datum) at Cua Dua station: 11.5m

級

Station, the team member responsible for this boat had decided to bring them back to the shore and change the boat with boatmen capable for working in strong wave conditions. The current meters were pulled back for security purpose during the time period from 6h to 14h, 15 July at this Station. In consequence, the survey period has been extended for 1 day more in order to have 15-day continuous and synchronous data series for all three station (the measurement has been completed at 14h30, 30 July). The survey team left Bai Chay for Hanoi on 31 July.

Due to the long period of survey, for the sake of equipment, data and team members health security, the midtern mission of technical group has been conducted to check the working condition of the three stations on 21 July (from 6h40 to 7h10 at Cua Luc, 16h40 - 17h15 at Cam Pha - Cua Ong and from 10h50 to 11h15 at Cua Dua).

1.3 Survey equipment and tools

Survey equipment and tools include:

Item	Quantity
Self-recorded current meter DNC-2M (UK)	6
Anemometer	3
Compass	3
Global Positioning System KGP 912 (Japan)	1
Buoy for current meters	12
Security jacket, hat and attire	9
Flashing lamp	9
Other, such as leads, rope,	

All the equipment have been well checked before the survey activity started. Beside, they were also been checked again during the midterm mission of the Technical Group.

1.4 Survey results

Current: The data series were obtained with the frequency of 15 minutes. The details are as follows:

• At Cua Luc Station: Two data series were obtained: from 13h45, 14. July to 6h30, 21 July and from 7h30, 21 July to 14h30, 30 July. During the

time period from 6h40 to 7h15, 21 July, the two current meters at the Station were stopped working for midtern equipment check. The missing data at 6h45, 7h00 và 7h15, 21 July have been interpolated and added to the data series prepared for the harmonic analysis.

- At Cam Pha Cua Ong Station: Like for the Cua Luc Station, two data series were obtained: from 14h45, 14 July to 16h30, 21 July and from 17h30, 21 July to 14h00, 30 July. The two current meters at the Station were stopped working for midterm equipment check from 16h40 to 17h15. The missing data are those at 16h45, 17h00, 17h15, 21 July and have also been interpolated for the harmonic analysis purpose.
- At Cua Dua Station: Due to the boat replacement as presented above (Survey time) and the midterm equipment check, three data series were obtained at this Station including those:
 - * from 11h00, 14 July to 4h30, 15 July
 - * from 15h15, 15 July to 10h45, 21 July
 - * from 11h30, 21 July to 14h00, 30 July

For the surface current, the missing data at 11h00 and 11h15, 21 July have been interpolated, hence the two last data series formed the continuos one of almost 15 days, which will be served for the harmonic analysis. The first series can be used for reference.

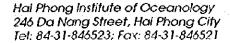
The status of data recorded by the bottom current meter is as follows:

At 10h50, 21 July, the meters were pulled back for a check. The meter of bottom layer was in normally working condition, but a little of algae had been detected on it. The algae were removed before putting down the meters again at 11h15. At 14h00 30 July, when the measurement completed, the meter was checked again and it appeared in normally working condition. However, some algae again were found on the equipment. The meter could be stuck by algae, seaweed, garbage, . . . , which could be removed after that and the weak current at this layer could be the reasons of the zero values of speed recorded from 22h15, 16.07 to 2h45, 24.07 and from 15h45, 27.07 to 14.00, 30.07, white all the other parameters were measured normally, including the current direction.

Therefore, the data collected for these periods at the bottom layer (from 22h15, 16.07 to 2h45, 24.07 and from 15h45, 27.07 to 14.00, 30.07) are recommended not to be used.

The original data on current at two layers, three stations are given in the Appendix.

Wind: As mentioned above, the wind has been measured every three hours at 1h, 4h, 7h, 10h, 13h, 16h, 19h and 22h at the three stations Cua Luc, Cua Dua, Cam Pha - Cua Ong during the period from 13h, 14 July to 13h, 30 July (except at 13h, 14 July at Cam Pha - Cua Ong Station because the boat has not been reached the station and at 7h, 10h, 13h, 15 July at the Cua Dua Station during the boat replacement time).


1.5 Some results of data analysis

Water level: The measured sea water levels on July at the Bai Chay and Cua Ong Stations are presented in the Tables 1.1 and 1.2. The tidal levels in July at the stations derived from the Tidal Table, 1998 are shown in the Table 1.3 and 1.4. The comparison of these levels during the survey time from 14 July to 30 July is illustrated in the Figures 1.4 and 1.5. It can be seen that the difference is small in general and it is larger at Bai Chay compared with that at Cua Ong.

Wind: The wind data measured during the survey period are given in the Tables 1.5, 1.6 and 1.7. The analysis on the wind roses has been conducted. The Tables 2.1 - 2.3 and Figures 2.1 - 2.3 represent the frequency tables and wind roses at the three stations for the period from 14 to 30 July 1998. It is shown that the wind direction and magnitude are in agreement with the S and SE dominant summer wind field in the study area. The direction with the highest frequency of occurrence is the S composed of 51.9% at the Cua Luc, 71.9% at Cam Pha-Cua Ong and 65.1% at Cua Dua Station. The wind magnitude increases from the shore seaward.

Station	Vmax(m/s)	Direction
Cua Luc	7.8	S
Cam Pha - Cua Ong	8.1	S
Cua Dua	11.0	S

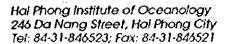
Current: From the data series recorded by the current meters, the current roses have been drawn. Like for the wind roses, the statistic method has been applied for calculating the frequency (%) of the velocity ranges in different directions and then the total frequency (Total %) for every direction and total frequency for velocity ranges (F%). Beside, the average and maximum current speeds (Vmed, Vmax) for the directions were also derived. Some results of analysis are given in the Tables 3.1 - 3.6 and Figures 3.1 - 3.6, which represent the frequency table and current roses at three stations and at surface and bottom layers. Due to

the morphological feature of the area, the current has two dominant contravesary directions. The flow regime is strongly affected by the tide. Current speed decreases from the surface to the bottom.

- At Cua Luc Station: The surface current was rather strong. The strongest one has been recorded of about 130cm/s during the ebb tide in SW direction. Two dominant flow direction are N and SW at the surface and N and S at the bottom (see the Tables 3.1, 3.2 and Figures 3.1, 3.2).
- At Cam Pha Cua Ong Station: The average current speed is about 20cm/s at the bottom and 45 cm/s at the surface. The maximum value is 81.1 cm/s in SW direction at the surface and 47 cm/s at the bottom. The dominant flow directions are E, SE, N and SW (see the Tables 3.3, 3.4 and Figures 3.3, 3.4).
- At Cua Dua Station: The flow has two main directions N S with Vmax of 65 cm/s at the surface and 35 cm/s at the bottom (see the Tables 3.5, 3.6 and Figures 3.5, 3.6)

In general, the recorded flow in the study area in the combination of tidal and non - tidal components with the main role of the tidal one. Therefore, the flow direction varies in time during a day and has two contravesary dominant directios depending on the tide phase. The current speed also varies in time and decreases from the surface to the bottom. In space, the variation level of the current speed depends on the morphological character of the locality where the station is. At the Cua Luc Station, the strong current has been recorded (130 cm/s), which is the result of the discharging water through the Cua Luc Strait

The results of current analysis for the harmonic analysis at three station and two layers are given in the Appendix. The north used in current data is the magnetic north, which has the declination to the geographic north of 0.75 degree for the Ha Long Bay and Bai Tu Long area


TABLE 1.1 MEASURED SEA WATER LEVEL IN JULY, 1998

Cua Ong Station

Unit: cm

Day	1h	7h	13h	19h	ТВ	Max	Min
1	249	148	186	298	220	298	148
2	253	154	204	277	222	277	154
3	242	198	230	268	235	268	198
4	223	210	268	231	233	268	210
5	211	209	296	265	245	296	209
6	166	184	305	274	232	305	166
7	138	134	320	306	225	320	134
8	116	122	323	329	223	329	116
9	109	118	312	355	224	355	109
10	118	103	298	392	228	392	103
11	149	86	259	400	224	400	86
12	187	93	229	393	226	393	93
13	226	111	207	380	231	380	111
14	253	127	187	342	227	342	127
15	261	144	170	296	218	296	144
16	264	176	178	244	216	264	176
17	249	189	209	215	216	249	189
18	205	215	261	209	223	261	205
19	179	205	302	219	226	302	179
20	152	195	328	246	230	328	152
21	122	164	333	294	228	333	122
22	117	131	340	334	231	340	117
23	119	105	312	366	226	366	105
24	132	89	277	382	220	382	89
25	145	96	234	388	216	388	96
26	178	103	200	377	215	377	103
27	211	122	195	348	219	348	122
28	225	132	185	327	217	327	132
29	231	163	184	288	217	288	163
30	241	184	214	251	223	251	184
31	223	195	249	-	-	-	-
MEAN	190	149	251	310	224	400	86

Source: Bai Chay Hydrometeorological Station

TABLE 1.2 MEASURED SEA WATER LEVEL IN JULY, 1998

Bai Chay Station

Unit: cm

						`	Jan. Car
Day	1h	7h	13h	19h	TB	Max	Min
1	239	133	183	291	212	219	133
2	234	144	196	272	212	272	144
3	229	177	202	252	215	252	177
4	216	194	220	236	217	236	194
5	200	198	258	262	230	262	198
6	182	164	294	274	229	294	164
7	154	158	302	276	223	302	154
8	136	134	310	306	222	310	134
9	129	96	298	324	212	324	96
10	132	79	286	332	207	332	79
11	135	70	254	359	205	359	70
12	150	75	232	388	211	388	75
13	179	80	200	352	203	352	80
14	206	111	184	336	209	336	111
15	238	136	172	316	216	316	136
16	255	144	179	284	216	284	144
17	247	157	188	226	205	247	157
18	216	180	200	198	199	216	180
19	185	197	238	178	200	238	178
20	150	185	280	226	211	280	150
21	128	165	319	269	220	319	128
22	122	142	346	296	227	346	122
23	113	100	338	334	221	338	100
24	128	79	316	346	217	346	79
25	151	64	278	355	212	355	64
26	166	99	256	346	217	346	99
27	189	108	232	324	213	324_	108
- 28	206	148	200	270	206	270	148
29	218	154	192	263	207	263	154
30	216	166	186	254	206	254	166
31	216	194		-	:	-	_
MEAN	183	136	246	293	213	388	64

Source: Bai Chay Hydrometeorological Station

TABLE 1.3 TIDAL LEVEL (M) AT CUA ONG STATION

(July, 1998)

					İ								Hour	ig			}		-	-	-	-	-	╁
	Dav	6		2	w	4	w	9	2	00	6	10	I	12	13	14	15	16	17	81	19	20 2	21 2	22 23
	-	0 0	2 5	23	2.0	1.7	1.5	4.	1.3	1.4	1.4	1.6	1.7	1.8	2.0	2.1	2.2	2.4	2.5	2.6	2.7 2.	8.	9 2	9 2.8
	,	27	2 5	23	2.1	1.8	1.6	1.5	1.5	1.5	1.6	1.7	6.1	0.	7.7	2.3	2.3	2.4	2.5	2.5	2.5 2.	6.	9.	12
	3 6	2.5	2 4 5	2 2 2	2.0	1.9	1.7	1.6	1.6	1.6	1.7	1.9	2.0	2.2	2.4	2.5	2.5	2.5	2.5	2.5	2.4 2	4,	3 2	3 23
	, 4	2.2	1.5	2.0	1.9	1.8	8.	1.7	1.7	1.7	1.8	2.0	2.2	4.9	2.6	2.7	2.7	2.7	2.7	5.6	2,4	(J)	ci	0.20
		0 -	1 0	8	8	1.7	1.7	1.7	1.7	<u></u>	1.9	2.1	2.3	2.6	2.8	2.9	3.0	3.0	2.9	2.7	2.5 2	ι. 2	-	.9 1.7
	ر د	1 6	1 9	1.5	1,5	1.5	1.6	1.6	1.7	1.8	2.0	2,	4	2.7	2.9	3.1	3.2	3.2	3.1	3.0	2.7 2	4. C1	p.ad	6
	2	4.	1.3	1.3	1.3	1.3	1.3	1:4	1.5	1.7	0.5	2, 2	2.5	2.7	3.0	3.3	3.4	3.5	3.4	3.2	3.0 2.	7	6	6
_ـــــــــــــــــــــــــــــــــــــ	×	- 3	1 1	1.0	1.0	0:1	1.1	1.2	1.3	1.5	1.8	2.1	4.9	2.7	3.1	3.3	3.6	3.7	3.7	3.6	3.3 3	0.	9	ci
		1 4		60	80	0.8	0.8	6.0	1:	5.	1.6	1.9	2.3	5.6	3.0	3.3	3.6	3.8	3.9	3.8	3.6 3	3 2	6	5 2.
	, -	1.1	1.	000	_	90	90	0.7		0:1	1.3	1.6	2.0	2.4	2.8	3.2	3.5	3.8	0.4	4.0	3.9 3	6.3	ci cı	8. 2.4
	11	-		} =		0.6	9.0	9.0		0.8	0.1	1.3	1.7	2.1	2.5	2.9	3.3	3.6	3.9	4.0	4.0 3	8.	5.3	.1 2.7
	12	23	8	4			0.7	9.0	9.0	0.7	8.0	1.0	4.	1.7	2.2	2.6	2.9	3.3	3.6	3.8	3.9 3	6.0	7.	4 3.0
<u> </u>	1 2	2.6	2.2	8.			6.0	8.0	0.8	8.0	8.0	1.0	1.2	1.5	1.8	2.2	2.6	2.9	3.2	3.5	3.7 3	7 3	6 3	4 3
	14	2.8			1.8	1.5	1.3	1.1	0:1	2:	0:1	1=	1.2	1.4	1.6	1.9	2.2	2.5	2.8	3.0	3.3	4.	4. 8	w
	2	2.9				1.8	1.6	1.5	1.4	1.4	1.3	1.4	1.4	1.5	1.6	1.8	2.0	2.2	2.4	2.6	2.8 2	6.	3.0 3	0; 0;
	2				-1																			

Source: Tidal Table, 1998, Tom I.

Hai Phong Institute of Oceanology 246 Da Nang Street, Hai Phong City Tel: 84-31-846523; Fax: 84-31-846521

(Name)

TABLE 1.3 TIDAL LEVEL (M) AT CUA ONG STATION (CONTINUED) (July, 1998)

() () 5 8 8 5.6 2.6 5 13 13 ∞ 7 4 1.5 0 5 2.5 ... C! 23 7.0 ∞. 25 3.0 3.1 3.0 ∞ 73 5 () () 2.6 1.9 1.6 ri ci % 7 1 8 3. 7 S ю С ω 4 ю (С 25 싆 2.6 6: C) ci Ci 50 3,2 3.1 S 77 2.2 6:1 0 <u>()</u> 50 3.0 ω ω 3.5 3.6 3.6 3.4 . 5 8 2.5 3.1 2 77 8 3.4 23 3.4 3.8 3.1 7 2.5 4 7 C. 2.5 3.0 3.8 3.7 5 3.7 19 2.6 <u>(1</u> 3.9 3.6 3.3 50 () 선 23 2.5 2.9 33 3.7 3.9 4.0 53 7 8 3.7 4.0 3.0 25 23 3.4 53 <u>5</u> 3.6 3.9 0.4 12 건 건 () () 2.7 3.1 17 4.0 2; 4 3.4 2.7 2.5 6 23 0.4 3.8 2 2.5 5 6 7 ω 4 3.1 7 3.7 16 2.4 3.1 2.4 0 2.3 2.6 3.0 3.7 3.4 2.7 23 000 c) 3.5 300 3.9 15 4.4 3.6 3.4 4.5 () () 7 6.1 3.0 7 디 2.7 3.1 3.5 3.7 77 7 3.0 2.6 07 2.7 3.1 4.6 23 6:1 6: را 0 <u>C</u>! 4.7 3.3 . 8. 승 3.4 13 1.7 1.7 6:1 .; 8: 3.0 3.1 1.9 1.7 77 () () 2.7 <u>5</u> 2.5 c) 53 3.1 12 Hour 1.6 1.6 1.5 1.5 つださ .. 8: 20 2.2 5.6 . 8 13 8. ∞. Ci Ci 6 2.5 بر دن 11 1.5 4.5 7. 1.9 2.2 2.6 0 1.3 ∞: 2.5 5.0 1.7 1.3 1.2 1.7 2.1 10 1.5 1:1 ~~~~ 1.9 2.0 0.1 7 7 7 1.3 1.7 1.7 2.3 2.3 1.7 1.4 9 0.0 1.0 1.9 9:1 رز دا 1.7 4 0.0 1:2 1.4 | 1.4 1.7 1.8 1.7 . 0 10 22 . 0. 10. 1.1 00 0.7 1.5 1.8 6.0 1.2 000 20 4 6.0 0.8 1.7 1.7 ~ 1.0 0: 1.6 0.8 7:7 1.5 1.8 2.0 1.5 6.0 <u>.;</u> 2.0 ∞. <u>.</u> 8.0 Ø 0.1 7. 7. 1.5 1.7 2.0 0.7 1.7 6.0 0.8 6.0 5 .. 8: 1.9 0.8 S .. 8: 0.8 1.5 1.6 2.0 1.9 0: 6:0 0.0 7.7 1.3 2.1 1:9 1:7 1.3 80 2.1 4 22 20 1.6 1.3 1.0 6.0 6.0 0.1 1.5 1.7 ... 8: 1.9 4 0.8 3 , 12 12 1:9 2.3 0.0 1.6 1.3 0. 1.2 1.5 1.7 2.1 4 6.0 6.0 (1) 2.3 | 2.2 20 1.5 8: () () 2.3 2.6 1.3 0.1 1.3 23 2; 4 7 1.7 1.6 2.2 2.5 7 7 4. <u>6:1</u> 2.5 2.5 % ∞ • 2.5 1.7 7. 1.2 2 0 31 Day 13 20 2 25 36 8 53 16 17 2 22 8 39 23 2

Source: Tidal Table, 1998, Tom 1.

Hai Phong institute of Oceanology 246 Da Nang Street, Hai Phong City Tel: 84-31-846523; Fax: 84-31-846521

TABLE 1.4 TIDAL LEVEL (M) AT HON GAI STATION (July, 1998)

												Hour	ür											
Day	0	H	2	m	4	S	9	7	∞	6	101	11	12	13	14	15	16	17	18	19	92	21	22	23
-	2.6	2.3	2.1	1.9	1.6	1.5	1.3	1.3	1.3	1.3	4.1	4:1	1.6	1.8	1.9	2.1	2.3	2.5	2.6	2.7	80 10 10 10 10 10 10 10 10 10 10 10 10 10	2.8	2.7	2.6
2	2.5	2.3	2.1	1.9	1.7	1.6	1.5	4.	1.4	1.5	1.6	1.7	8.1	1.9	2.0	2.2	2.3	2.4	2.5	2.5	2.5	2.5	2.5	4.7
8	2.3	2.2	2.0	1.9	1.8	1.7	1.6	1.6	1.6	1.7	8	1.9	2.0	2.1	2.2	2.2	2.3	2.3	2.4	2.4	4.2	2.3	2.3	2.2
4	2.1	0.0	1.9	1.8	1.7	1.7	1.7	1.7	1.7	8.1	1.9	2.1	2.2	2.3	4	2.4	2.4	2.4	2.3	2.3	2	17.	0.0	0.7
in	1.9	1.8	1.7	1.7	1.6	1.6	1.6	1.7	1.8	6:1	2.1	2,2	4	2.5	2.6	2.6	2.6	2.5	2.4	2.3	2.2	2.0	1.9	1.7
9	1.6	1.6	1.5	1.5	1.5	1.5	1.6	1.7	1.8	2.0	2.2	4.5	2.6	2.8	2.9	2.9	2.8	2.7	2.6 2	2.4	2.2	2.0	1.8	1.6
7	1.4	1.3	1.3	13	1.3	1.3	4.	1.5	1.7	0.5	2.2	2.5	2.7	2.9	3.1	3.2	3.1	3.0	2.8	2.6	2.3	0.7	8.1	1.5
∞	1.3	1.1	1.1	1.0	1.0	1:1	1:2	1.3	1.5	1.8	2.1	2.5	2.7	3.0	3.2	3.4	3.4	3.3	3.1 2	2.9	2.5	2.2	1.9	1.6
6	1.3	11	6.0	0.8	0.8	0.8	6.0	1:1	1:3	1.6	1.9	2.3	2.7	3.0	3.3	3.5	3.6	3.6	3.4	3.2	2.9	2.5	2.1	1.8
10	1.4	1.1	6.0	0.7	0.7	0.7	0.7	8.0	0.1	1.3	1.6	2.0	2.5	200	3.2	3.5	3.7	3.8	3.7	3.5	3.2	2.8	2.4	2.0
II	1.7	1.3	1.0	0.8	9.0	0.6	9.0	9.0	0.7	0.1	1.3	1.7	2.1	2.6	2.9	3.3	3.6	3.8	3.8	3.7	3.4	3.1	8.	2.4
12	2.0	1.6	1.3	1.0	0.7	9.0	9.0	9.0	9.0	0.8	0:1	4:1	1.8	2.2	26	3.0	3.3	3.6	3.7	3.7	3.5	3.3	3.0	2.7
13	2.3	1.9	1.6	1.3	1.0	0.8	0.7	0.7	0.7	0.7	6.0	1.2	1.5	1.9	2.2	2.6	2.9	3.2	3.4	3.5	3.5	3.3	3.1	2.9
14	2.6	2.2	1.9	1.6	1.4	1.1	0:1	6.0	6.0	6.0	6.0	1.1	1.3	1.6	1.9	2.2	2.6	2.8 2.8	3.0	3.2	3.3	3.2	3.1	2.9
15	2.7	2.4	2.2	1.9	1.7	1.5	1.3	1.2	1.2	1.2	1.1	1.2	1.3	1.5	1.7	2.0	2.2	2.4	2.6 2	2.8	2.9	2.9	2.9	2.7
	į	T. J., T. L.	7.0	70007	7.00																			

Source: Tidal Table, 1998, Tom 1.

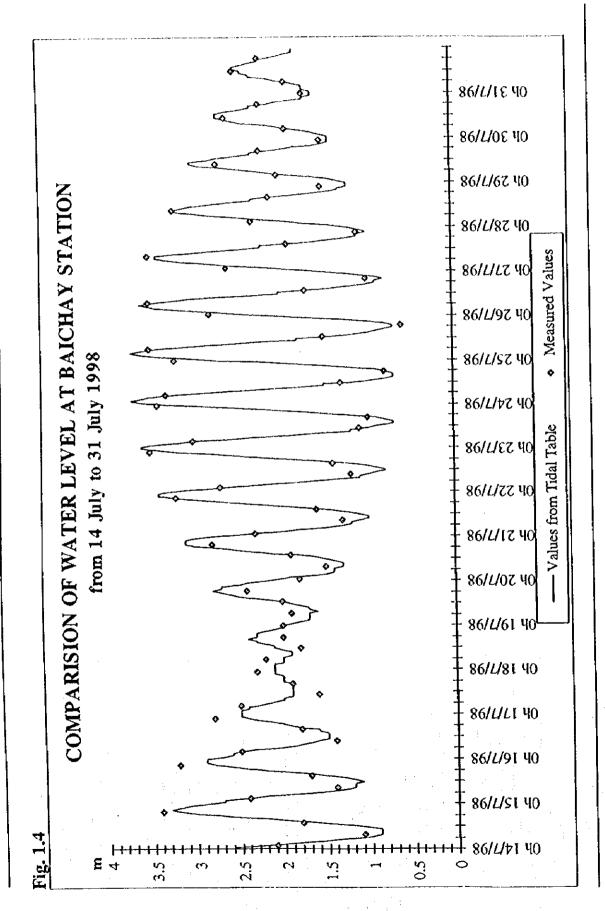
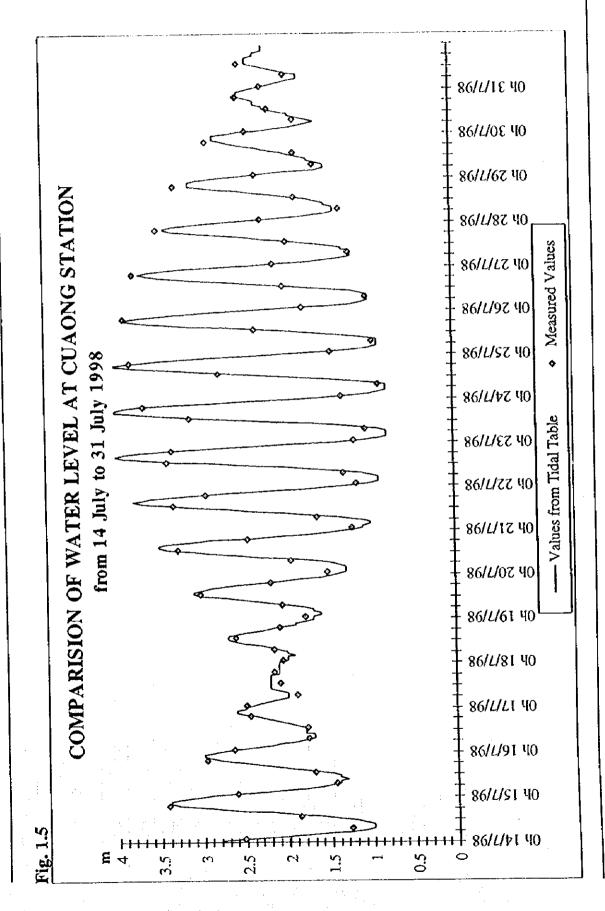

Hai Phong Institute of Oceanology 246 Da Nang Street, Hai Phong City Tel: 84-31-846523; Fax: 84-31-846521 · (2)

TABLE 1.4 TIDAL LEVEL (M) AT HON GAI STATION (CONTINUED) (July, 1998)


										الو	, ,,,,	-	ć						ļ					
												Ħ	Hour					!						
Dav	0		2	6	4	w	9	1	∞	6	92	11	12	13	14	15	16	17	18	19	20	21	22	23
16	2.6	2.5	2.3	2.1	1.9	1.8	1:7	1.6	1.5	1.5	1.5	1.5	1.6	1.6	1.8	1.9	2.0	2.1	2.3	2.4	2.5	2.5	2.5	2.5
17	2 4	23	2,2	2.1	2.0	2.0	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	2.0	2.0	2.0	2.0	2.1	2.1	2.1	2.1	57	17.
18	20	2.0	2.0	1.9	1.9	1.9	2.0	2.1	2.1	2.2	2.3	2.3	4.5	23	2.3	2.3	2.2	2.1	2.0	2.0	1.9	1.8	1.7	7:
19	1.7	1.7	1.6	17	1.7		1.9	2.0	2.2	2.3	2.5	2.6	2.7	2.8	2.7	2.7	2.5	2.4	2.2	2.0	1.9	1.7	1.5	4.
20	1.4	1.3	1.3	1.3	1.4	1.5	1.6	1.8	2.1	2.3	2.5	2.7	3.0	3.1	3.1	3.1	3.0	2.8	2.5	2.3	5.0	8.	5.1	17
21	1.2	1.1	1.0	1.0	1.1	1.2	1.3	1.5	1.8	2.1	2.4	2.7	3.0	3.2	3.4	3.4	3.3	3.1	2.9	2.6	2.3	2.0	7:1	4.
22	1.1	1.0	6.0	0.8	0.8	0.9	1.0	1.2	1.5	1.8	2.2	2.5	2.8	3.2	3.4	3.6	3.6	3.5	3.2	3.0	2.6	2.3	1.9	1.6
23	5.	1.0	6.0	0.8	0.7	0.7	8.0	6.0	1.2	1.5	1.8	2.2	2.6	3.0	3.3	3.6	3.7	3.6	3.5	3.2	2.9	2.6	2.2	1.8
24	1.5	1.2	1.0	0.8	0.7	0.7	0.7	0.8	6.0	1.2	1.5	1.9	2.3	2.7	3.0	3.4	3.6	3.7	3.6	3.4	3.1	2.8	2.5	77
25	1.8	1.4	1.2	1.0	0.9	0.8	0.7	0.7	8.0	1.0	1.3	1.6	2.0	4.2	2.7	3.1	3.4	3.5	3.6	3.4	3.2	3.0	2.7	2.4
7	2.0	1.7	1.4	1.2	1.0	0.9	6.0	0.8	6.0	1.0	1.2	1.5	1.8	2.1	2.5	2.8	3.1	3.3	3.4	3.4	3.2	3.0	2.8	2.5
27	2.2	1.9	1.6	1.4	1.2	1:1	1.1	1.0	0.1	1.1	1.2	1.4	1.7	1.9	2.2	2.5	2.8	3.0	3.2	3.2	3.1	3.0	2.8	2.6
78	2.3	2.1	1.8	1.6	1.4	1.3	1.3	1.2	1.2	1.2	1.3	1.4	1.6	1.9	2.1	2.3	2.5	2.7	2.9	3.0	3.0	2.8	2.7	2.5
29	2.3	2.1	1.9	1.8	1.6	1.5	1.4	1.4	1.4	1.4	1.5	1.6	1.7	1.9	2.0	2.2	2.4	2.5	2.6	2.7	2.7	2.7	2.6	4.1
30	2.3	2.1	2.0	1.9	1.7	1.7	1.6	1.6	1.6	1.7	1.7	1.7	1.8	1.9	2.0	2.1	2.3	2.3	2.4	2.4	2.5	2.5	• 1	
31	2.2	2.1	2.0	1.9	1.8	1.8	1.8	1.8	1.8	1.9	1.9	2.0	2.0	2.1	2.1	2.2	2.2	2.3	2.3	2.3	2,2	2.2	2.2	2.1
,	7.1.	Trabla		7007	Tom 1																			

Source: Tidal Table, 1998, Tom I.

Hai Phong institute of Oceanology 246 Da Nang Street, Hai Phong City Tel: 84-31-846523; Fax: 84-31-846521

Hai Phong Institute of Oceanology 246 Da Nang Street, Hai Phong City 7el: 84-31-846523; Fax: 84-31-846521

Hai Phong institute of Oceanology 246 Da Nang Street, Hai Phong City 191, 84, 31,84,523; Fax: 84-31-84652

TABLE 1.5 MEASURED WIND AT THE CUA LUC STATION

F										.,								
22	Direc.	SE	SE	SSE	SSE	SSE	SSE	S	SSE	SSE	0	0	Z	ESE	SE	SSE	SSE	
2	Speed	1.7	1.4	3.3	3.7	2.1	1.1	2.9	3.9	2.8	0	0	1.1	2.8	1.4	2.6	3.9	
19	Direc.	SE	SSE	S	SSE	S	SSE	SSE	S	SSE	SSE	MSS	SSW	ESE	SSE	SSE	SSE	
1	Speed	4.4	5	2.7	4.4	2.3	3.4	3.3	4.2	3.2	1.9	3.3	2.6	2.3	2.8	3.6	4.2	
16	Direc.	SSE	ESSE	SSE	ESS	ESS	SSE	S	S	S	SSW	MSS	Z	SSE	SSE	SSE	SSE	
1	Speed	4.7	4.5	5	4.5	3.5	3.5	3.9	4.6	4	3.6	5	1.5	6.2	4.6	4.2	3.9	
13	Direc.	SSE	SSE	SSE	S	SSE	SSE	SSE	S	SSW	MSS	SSW	MSS	SSE	SSE	SSE	SSE	SSE
_	Speed	7.2	2.5	4	2.3	4.8	4.5	3.7	4.4	4.6	4.7	1.8	2.8	4.7	4.3	5.9	6.3	5
10	Direc.		ESS	SSE	S	0	S	S	S	SE	MSS	SW	ΜS	SSE	SSE	SSE	SE	SSE
Ĭ	Speed		4.5	3.6	3.4	0	6.0	3.7	5.2	1.6	6.7	3.6	1.6	5.9	4.7	4.3	5.1	4.8
_	Direc.		SE	S	S	တ	SSE	SSE	S	z	SSW	SSW	Z	S	SSW	SSE	S	SSE
	Speed		5.4	3.8	2.9	1.4	6.0	2.5	3.5	1.3	4.4	1.9	2.7	3	4.7	3.3	2.3	4.7
4	Direc.		SE	S	S	S	SSE	SSE	S	S	S	SSW	NNE	S	NNN	S	S	MSS
	Speed		5.2	3.6	4.6	1.7	2.4	4.5	3.5	7.8	2.7	2.7	1.9	4.5	1.8	4.2	3.2	4.3
1	Speed Direc.		띬	0	SSE	S	SSE	SSE	S	S	SSE	NNE	NNE	SSE	NNW	MSS	S	MSS
	Speed		5.6	0	2.9	1.6	2.9	4.7	5.4	5.8	5.4	1.4	2.1	1.4	1.3	3.6	4.2	5.3
Hour	Day	14	15	16	17	18	61	20	21	22	23	24	25	26	27	28	29	30

Hai Phong Institute of Oceanology 246 Da Nang Street, Hai Phong City Tel: 84-31-846523; Fax: 84-31-846521

FIELD SURVEY OF THE STUDY ON ENVIRONMENTAL MANAGEMENT PLAN FOR HA LONG BAY, VIETNAM

1

TABLE 1.6 MEASURED WIND AT THE CUA DUA STATION

	ان]		ر,,		Ť		[,,]	Ī	Ī			اج	>	[13]	<u> </u>	<u> </u>	
22	Dire	S	S	SSE	SS	S	S	SSE	S	S	S	SW	SSW	SSW	SSE	S	S	
7	Speed Direc.	4	3.5	5	3.5	4	4	1	1	7	9	m	4	-	7	61	4	
9	Direc.	S	S	S	S	S	S	SSE	SSE	S	S	SW	SSW	SE	SE	S	S	
19	Speed	4	4	4	4	ω.	4	4	7	2	9	3	4	63	Ĭ	C1	3	
9	Direc.	S	S	SE	SW	SSW	S	S	SSW	S	S	SW	0	S	SE	S	SSE	
16	Speed	∞	4.5	4	3	6	3	10	4	Ţ	7	4	0	7	3	3	<i>C</i> 1	
3	Direc.	S	0	SSE	MS.	S	S	S	S	S	S	S	SW	SSW	SSW	SSE	SSE	S
13	Speed	4	0	-	4	9	11	4	10	9	9	4	T	5	3	5	4	4
0	Direc.		0	SSE	S	S	S	S	S	S	S	MSS	SW	S	MSS	SSE	SSE	R
100	Speed		0	3	4	5	ы	8	9	4	9	4	c1	9	2	Ţ	4	5
	Direc.		0	SE	SSE	S	S	S	S	S	SSW	SS	SW	AS.	SSE	SSE	S	SE
7	Speed		0	4	4	4	4	∞	5	7	5	'n	3	3.5	7	3	7	3
	Direc.	:	S	S	SSE	S	S	S	SSE	≥	SSW	S	SW	SW	S	SSW	S	S
4	Speed Direc.		7	∞	4	61	0	S	4	4	6	∞	2	63	23	٦	3	2
	Speed Direc.		S	S	SS	SS	S	S	SSE	S	S	S	SW	MSS	0	MSS	0	S
	Speed	-	4	4	5	1	7	7	7	9	10	7	4	-	0	-1	0	9
Hour	Dav	14	15	16	17	18	19	30	21	22	23	24	25	36	27	28	29	30

Hai Phong Institute of Oceanology 246 Da Nang Street, Hai Phong City 7el: 84-31-846523; Fax: 84-31-846521

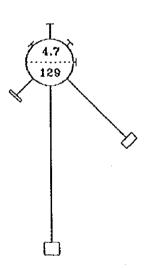
TABLE 1.7 MEASURED WIND AT THE CAM PHA - CUA ONG STATION

	·			· · · · · · ·					r	·				1	T		т		
7	Direc.	SE	SE	S	S	S	S	S	S	S	S	S	0	0	S	S	()		
22	Speed	1.6	8.0		1.9	61	CI	2.8	1.5	3	2.4	2.3	0	0	B	C1	71		
	Direc.	SE	SE	SE	S	S	S	S	S	S	S	S	S	S	S	S	S		
19	Speed	2.3	3.2	3	3.2	2.4	3.1	C.8	2.5	3.4	2.5	4	2.3	2.3	2	2.5	3.5		
	Direc.	SE	SSE	SE	S	S	S	S	S	S	S	S	0	S	S	S	S		
16	Speed	9	3.8	5	5	4.9	4	4.7	4.2	9	5.4	5.2	0	4	4.5	n	2		
	Direc.		SS	R	S	S	S	S	S	S	S	S	≋	S	S	S	S	S	
13	Speed		4	6.2	4	4.5	4.6	8	7	5.2	9	4.5	1.2	5.5	3.4	5.2	4.4	4.5	
0	Direc.		SS.	SE	SE	S	S	S	S	S	S	S	×	S	SE	S	S	S	
97	Speed		5.1	5.3	3.6	9	4	6.3	9	4	5.7	5.1	4.2	4.5	3.5	4.6	4.2	4.2	
	Direc.		SE	SE	S	S	S	S	S	S	S	S	S	S	SS	0	S	S	
7	Speed		7.8	6.2	4.5	3.1	3.5	4.5	3.7	CI	7	5	6.5	5.4	21	0	æ	4.2	
	Direc.		SE	SE	SE	S	S	S	S	S	v	S	S	S	SE	SE	SW	SW	
4	Speed Direc.		6.5	S	9	3.5	5.7	6.4	7	6.5	4 5	ي (2.5	9	2.4	2.5	m	4	
	Direc.		SE	0	SE	S	S	V.	S	v	V) V	0	S	S	S	S	SW	
	Speed		3	0	4	3.5	4.4	5.5	8.5	63	6.1	5.5	1.4	4	1.5	3	2.8	8	
Hour	Dav	14	15	19	17	8	19	000	216	22	23	ζ. Δς	25	9%	27	28	29	30	

Hai Phong Institute of Oceanology 246 Do Nang Steet, Hai Phong City Tel: 84-31-846523; Fax: 84-31-846521

II. RESULTS OF WIND ANALYSIS

JOINT FREQUENCY TABLE OF WIND VELOCITY AND DIRECTION Table 2.1


Station : Cua Luc Time : 14/7/1998 - 30/7/1998

wind vel. Wind direction Calm P N F interval (m/s) N NE S SW W NW SW N F 1 - S 4.7 4.7 4.7 4.7 4.7 4.0 \$ 1 - S 4.7 1.6 0.8 25.6 48.1 7.0 - 0.8 - 7.0 95.3 11 - 15 - - - - - - 7.0 - 7.0 - - 7.0 - - 7.0 - - 7.0 - - 7.0 - - 7.0 - - - 7.0 - - - 7.0 - - - - - - 7.0 -													
Sylvar N NE E SE S SW W NW NW 100. -5 4.7 1.6 0.8 25.6 48.1 7.0 - 0.8 - 7.0 9 7.0 129	ld Vel.			;		irection	τ			٦ ر ر		Þ	£1.
Caml Caml 7.0	m/s)	Z	NE	យ	SE	တ	SW	W	NW				1 0/0
- 5 4.7 1.6 0.8 25.6 48.1 7.0 - 0.8 - 88.4 114 95. - 10 2.3 3.9 0.8 - 7.0 9 7.0 9 7.8 1 129 129 129 129 129 129 129 129 129 1					Caml					4.7		Ģ	00
10 - 2.3 3.9 0.8 - 7.0 9 7.0 129 1.5 1.6 0.8 27.9 51.9 7.8 - 0.8 4.0 - 1.8 4.0 129 1.8 4.0 - 1.8		4.7	7.6	0.8	25.6	•	7	ı	•	ı		H	•
- 15		. 1	ı	,	2.3	•	0	ı	ı	1		ത	٠
Lal 4.7 1.6 0.8 27.9 51.9 7.8 - 0.8 4.7 100.0 129 (m/s) 2.7 1.9 2.8 6.2 7.8 6.7 - 1.8	رط ا	ı	ţ	•	ı	•	1	•	ı	ı	,		,
Lal 4.7 1.6 0.8 27.9 51.9 7.8 - 0.8 4.7 100.0 129 (m/s) 2.7 1.9 2.8 6.2 7.8 6.7 - 1.8	i	1	ı	ŧ	1	ı	ı	ı	ı	1	1	1	I
Lal 4.7 1.6 0.8 27.9 51.9 7.8 - 0.8 4.7 100.0 129 (m/s) 2.7 1.9 2.8 6.2 7.8 6.7 - 1.8	ı	ı	ı	,	ı	1	1	1	ı	1	1	1	1
31 - </td <td>ì</td> <td>,</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>	ì	,	ı	ı	ı	ı	ı	ı	1	1	1	1	1
tal 4.7 1.6 0.8 27.9 51.9 7.8 - 0.8 4.7 100.0 12 (m/s) 1.7 1.6 2.8 3.7 3.8 4.0 - 1.8 4.0 - 1.8 (m/s) 2.7 1.9 2.8 6.2 7.8 6.7 - 1.8	ന	,	ì	•	ţ	1	-	•		ı	1	ı	ŀ
(m/s) 1.7 1.6 2.8 3.7 3.8 4.0 - 1. (m/s) 2.7 1.9 2.8 6.2 7.8 6.7 - 1.	otal	4.7				•	•	1			00.	129	7
(m/s) 2.7 1.9 2.8 6.2 7.8 6.7 - 1.	(s/m) p	1.7					•	1	٠				**
		2.7	•			•	•	ı	•				

WIND ROSE

Station: Cua Luc

Time : 14/7/1998 - 30/7/1998

LEGEND:

Scale : 11.2 %

m/s 1 - 5 6 -10 11-15 16-20 21-25 26-30 >31

JOINT FREQUENCY TABLE OF WIND VELOCITY AND DIRECTION Table 2.2

Station : Cua Ong Time : 14/7/1998 - 30/7/1998

		0	<u>ம</u>	ເດຸ -	·· I	··	1	 I			*
ļ(t.	1 0/2	100.0	φ 4,	ი 							
≱	1	7	96	25	ı	ı	i	ı	1	128	
ρ	4 c/o	•	75.0	٠	, i	1	١	ı	•	100.0	
<u>۽</u> ۾ ر	3)	5.5	ŧ	l	•	1	ı	1	ł	5.5	
	NW		ı	ı	1	ı	ı	1	t	1 1	ı
	W		7.6	ŀ	1	ı	1	1	1	9.I	
	SW		2.3	ı	1	ì	1	ı	1	2.3	
Wind direction	တ		•	14.8	1	1	ı	1	(71.9	, w , w
Wind di	SE	Caml	14.1	4.7	1	ì	ì	1	ł	18.8	
	ഥ		•	i	•	ì	ı	ı	ì		1 1
	NE		1	Þ	1	ì	t	1	ı	B	1 1
	Z		1	• 1	1	ı	1	ı	1	1	; ;
Wind Vel.	mrerval (m/s)		į	01 - 9	11 - 15	ı	21 - 25	1	> 31	rotal	Vmed(m/s)

WIND ROSE Station: Cua Ong Time : 14/7/1998 - 30/7/1998 128 LEGEND: Scale: 1 - 5 6 -10 11-15 16-20 21-25 26-30 Calm

TARRAGE N

rable 2.3 JOINT FREQUENCY TABLE OF WIND VELOCITY AND DIRECTION

Station : Cua Dua Time : 14/7/1998 - 30/7/1998

Wind Vel.				Wind di	Wind direction	ď			ر د 1		'n	ſ1.
interval (m/s)	Z	NE	ſΩ	SE	S	SW	W	NW		4 0/0	•	, 0/,0
				Caml					2.4	2	m	
ر د د	1	·	1	14.3	o.	14.	ω. 0	1	1	•	ω -1	
6 - 10	٠,	1	,	٦.6	21.4		1	ı	ı	24.6	ന്	25.4
-	1	ı	ı	,		ŀ	,	ı	1	•	⊢ ₹	
16 - 20	ı 	,	1	ı	,	ı	1	•	1	•	ı	1
21 - 25	1	1	1	,	1	ı	ı	1	ı	1	1	ŀ
26 - 30	ı	1	ŧ	,	ı	ı	1	ı	1	l	1	1
де х	•	ı	ı	- ·	1	1	ŀ	-	1	1	ı	ì
Total	1	,	,	٠.			8.0	1	2.4	0.001	126	
Vmed (m/s)	١	,	ı	3.4	4.8	რ რ	0.4					
Vmax (m/s)	1	t	1	•	•		•	1				

WIND ROSE Station: Cua Dua Time : 14/7/1998 - 30/7/1998 LEGEND: 11.2 % Scale:

III. RESULTS OF ANALYSIS OF THE CURRENTS

Table 3.1

THE FREQUENCY OF APPEARANCE OF THE OBSERVED CURRENT WITH A DIFFRENCE OF VELOCITY AND DIRECTION

Station : Cua Luc Layer : Surface Time : 14/7/1998 - 30/7/1998

ቡ	(%)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Z		w г ч г г г г г г г г г г г г г г г г г г	1542
ţı,	⟨%⟩	~ woodudoda .w & r w w d d d d d d	100.0
Still		ო • ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	ო ო
	NW	0.7 1.0	0 0 m
	×	40 	1.7 2.7 0.11
	SW	WH000VH4W 040770467	15.9 59.6 126.0
	S	4w000000 wumnvrmuv	11.3 26.6 120.0
irection	SE	04.0 0	4.14 6.15 0.00
Ω	ច	St. 1 2 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1	8.9 13.6 27.0
	NE	4.00000 800 42444	21.3 17.1 119.0
	Z	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32.5 23.3 125.0
terv	ot Vel. [cm/s]	8 8 1 2 8 8 8 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total (%) Vmed(cm/s) Vmax(cm/s)

Fig. 3.1

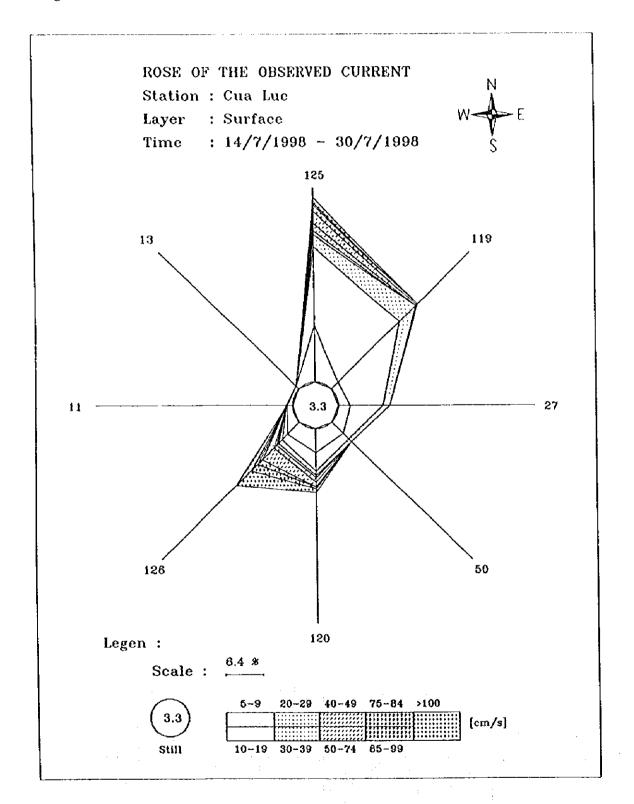


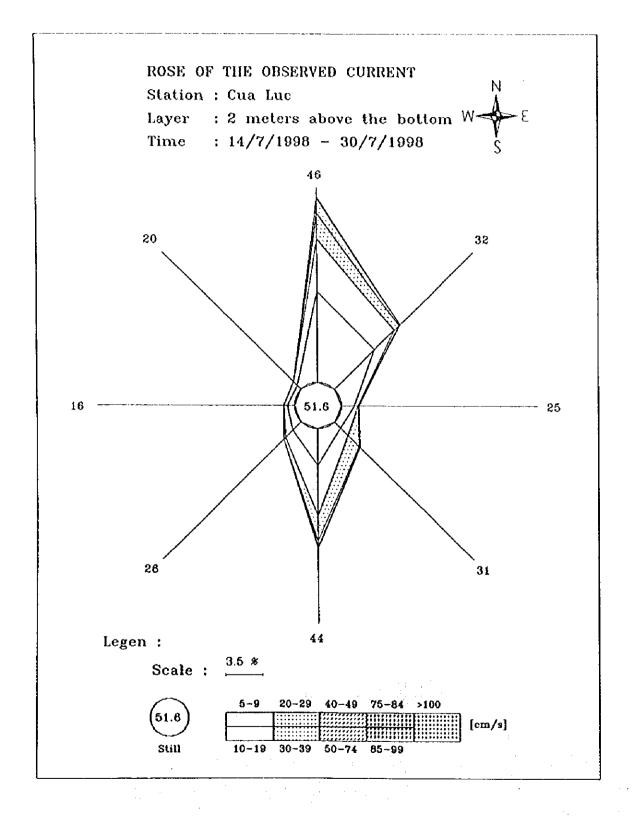
Table 3.2

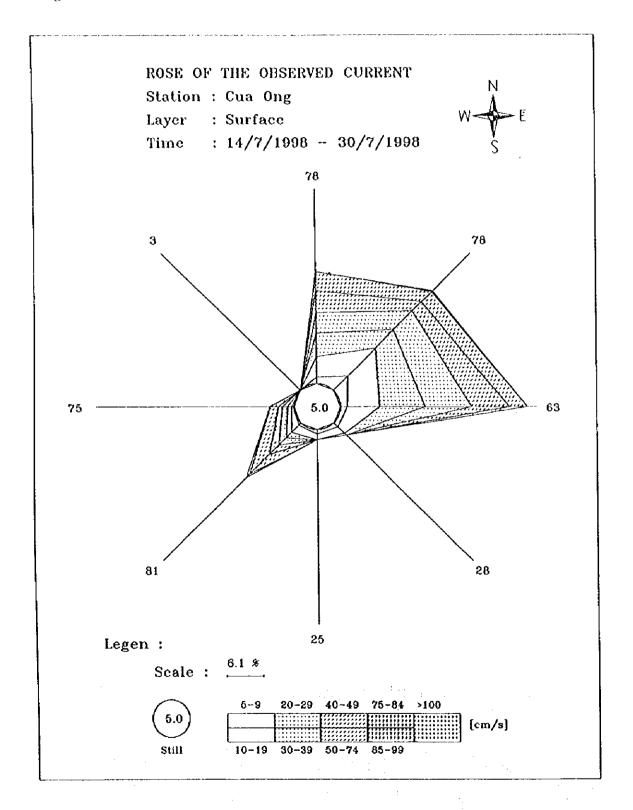
THE FREQUENCY OF APPEARANCE OF THE OBSERVED CURRENT WITH A DIFFRENCE OF VELOCITY AND DIRECTION

Station : Cua Luc Layer : 2 meters above the bottom Time : 14/7/1998 - 30/7/1998

ሲ	6%	0404044444 080000000 0404 4	
×		7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1542
ţτι	(%)	000 100 100 100 100 100 100 100 100 100	100.0
S+11		51.6	51.6
	MN	000 	4.01 20.02
	×	00	18.0 16.0
	SW	400 	2.5 11.4 26.0
	S	W4400 	11.6 15.0 44.0
Direction	SE	оччо 	3.5 17.1 31.0
Dj	(1)	8 1 1 1 1 1 1 1 1 1 1	20 N 20 N 20 N
	NE	2000 47.00	8 8 .9 3 2 .0 .3
	z	& N N H O	0.84 0.94 0.0
Interval	of Vel. [cm/s]	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Total (%) Vmed(cm/s) Vmax(cm/s)

Fig. 3.2




Table 3.3

THE FREQUENCY OF APPEARANCE OF THE OBSERVED CURRENT WITH A DIFFRENCE OF VELOCITY AND DIRECTION

Station : Cua Ong Layer : Surface Time : 14/7/1998 - 30/7/1998

ը	(%)	о о о о о о о о о о о о о о	·
Z		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1534
ξτ.	(%)	00000044 	100.0
7 - 1	t !)	o	5.0
	MM		1 1 m
	W	0004040 	44. 0.4.0 4.0.
	MS	0444040 	44.8 94.8
	ຜ	000 000 000	110 120.0 15.0
Direction	SE	440 	12.9 28.0 8.0
Di	ы	Still 1.1 7.5 7.5 2.9	31.0 31.5 63.0
	NE	พด44UVO พพ4พปพฯ	23.5 26.2 78.0
	Z	1888800 0404781	18.8 34.0 78.0
er	of Vel. [cm/s]	2 1 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total (%) Vmed(cm/s) Vmax(cm/s)

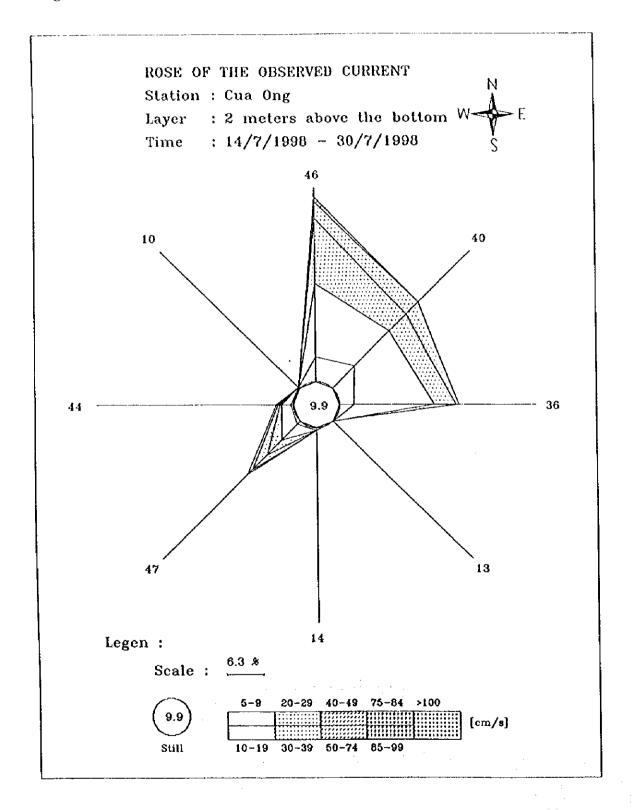
THE FREQUENCY OF APPEARANCE OF THE OBSERVED CURRENT WITH A DIFFRENCE OF VELOCITY AND DIRECTION Table 3.4

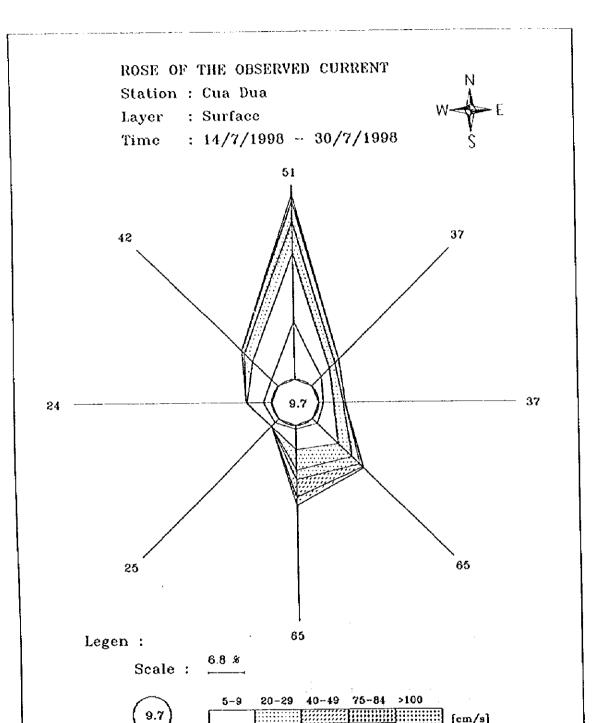
· comment

Station : Cua Ong Layer : 2 meters above the bottom Time : 14/7/1998 - 30/7/1998

ſų	(%)	H W W W W W W W W W W W W W W W W W W W	
7		40004 504566 1111 600004	7534
£r.	(%)	. 4404 040WOU 	o . o o o d
ρ. Γ.: 1	t t	on • 1 1 1 1 1 1 1 1 1 1	ω
	MN	мн ••••••••	0.3
	M	04000 	3.0 19.3
	МS	O W W W Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	12.9 24.7 47.0
	တ	(사건 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	0.0 2.7 0.4
Direction	ES	н •!!!!!!!!	7.5
Ü	ជា	Still 13.8 0.4	20.3 15.8 36.0
	NE	νω4400 ναμφη	21.0 16.6 40.0
; ; ;	Z	424 waaec	8.61 9.3 9.3
terv	of Vel. [cm/s]	8 448 000 000 000 000 000 000 000 000 00	Total (%) Vmed(cm/s) Vmax(cm/s)

Fig. 3.4




Table 3.5

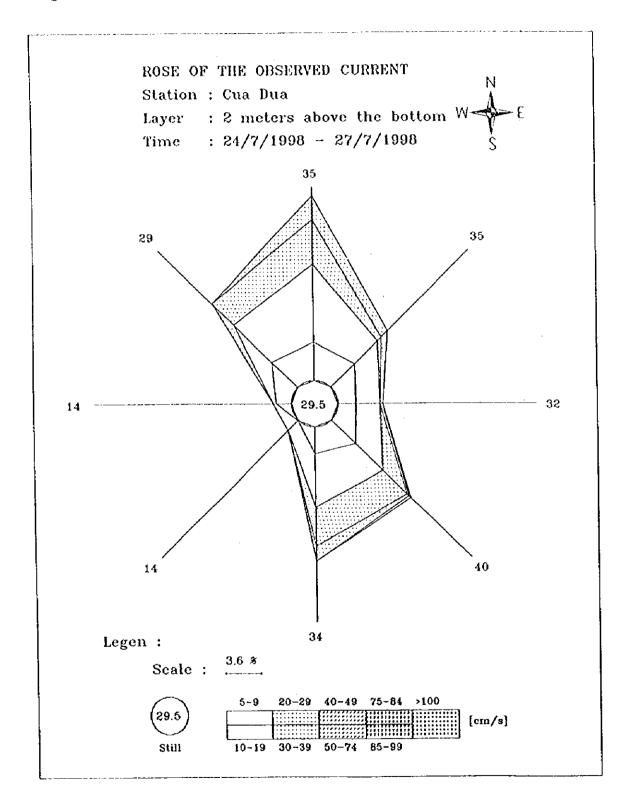
THE FREQUENCY OF APPEARANCE OF THE OBSERVED CURRENT WITH A DIFFRENCE OF VELOCITY AND DIRECTION

1.

Station : Cua Dua Layer : Surface Time : 14/7/1998 - 30/7/1998

te l			jū	Direction	1				Ω Γ.: Τ	Çz.	Þ	U
ot Vel. cm/s]	z	NE	E	SE	S	SW	М	MN	1 1	(%)		(%)
			Still						9.7	σì	ന	0
ı	0	•	8.0	•	•	٠	•	η ω	ı	20.8	200	90.3
1	•	•	6		•	•	•	•	ı	4	$\boldsymbol{\sigma}$	σ,
ر ا	ខ្ម	1 4	7.7		•	다. 0	ტ.	2.7	ı	ω.	$\boldsymbol{\varphi}$	വ
1 (1		•	. m			- 1	1	•	· ·		\mathbf{c}	Ġ
1	•)))	•	•	ŀ	1	•	1	•		
# [10	ţ	ı	0	9.	1	,	1	ı			
75 - 84		ı	ŀ	- 1	- 1	ľ	ı	ı	ı	j	ı	•
85 1 99	ı	ı	,	•	,	,	ı	ı	ı	1	1	ŀ
100	1)	ı	•		•	ı	1	ı	,	1	1
Total (%)	4.		4.7	2.	•	2.	4. Q.	<i>و</i> ري	7.6	100.0	1436	
m.	16.6	16.3	17.4	21.5	30.0	77.0	د. د. د	•				
~	;	~	37.0	ഗ	ហ	'n	4	i				

10-19 30-39 50-74


Table 3.6 THE FREQUENCY

THE FREQUENCY OF APPEARANCE OF THE OBSERVED CURRENT WITH A DIFFRENCE OF VELOCITY AND DIRECTION

Station : Cua Dua Layer : 2 meters above the bottom Time : 24/7/1998 - 27/7/1998

ሱ	6%)	0.00	0	; ;	Ö	٠	•	1		1		
z		رن م	S)	о о	ស	∞ - 1	 r-1	ι		ι	··	336
Çī4	(%)	29.5	ი ი	ey •	ហ	•	٠	ı	1	ı	1	0.001
Still		29.5	1	(,		ı	1	ı		ı	29.5
	NW		9. 9.	٠	•	1	•	•	•	1	1	11.0 29.1 10.0
	×		٦. د	•	ı	1	1	l.	1	ı	•	9.6 9.7 0.4
	SW		,	٦ د	1	1	,	1	,	•	ı	4.44 0.41
	S		•		თ		- 1	•	ì	i	ı	13.4 17.7 34.0
Direction	SE		•	•	•	•	m. 0	- 1	1	1	•	40.0 0.0
Ü	យ	Still	8.	2.4	. !	0.3		1	i	ı	ì	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	NE		ო. ო		0	•		ı	ı	,	ı	94 K 0 K O
	Z	†	ტ ტ		· 4 · · ጥ	•	• 1	i	ı	,	1	18.5 17.7 35.0
l ou i	or vel. [cm/s]		ı	; ;	7 F)) C) C	75 - 84	ை ப ப	×100	Total (%) Vmed(cm/s) Vmax(cm/s)

Fig. 3.6

2. Water Quality Survey

Table of Contents

		Page
2.1	Result of the Environmental Parameters for Ambient Water Quality in the Bays	. I-107
2.2	Result of the Water-Quality Parameters for Ambient Water Quality in the Bays	
	(1/2)	. 1-108
2.3	Result of the Water-Quality Parameters for Ambient Water Quality in the Bays	
	(2/2)	. 1-109
2.4	Result of Nutrients Parameters for Ambient Water Quality in the Bays	. 1-110
2.5	Result of Heavy Metal for Ambient Water Quality in the Bays	. [-111
2.6	Result of the Environmental Parameters for Water Quality in the River	
2.0	on Fine Days	. 1-112
2.7	Result of the Environmental Parameters for Water Quality in the River	
2.,	on Rainy Days	. 1-113
2.8	Result of Water Quality Parameters in the Rivers on Fine Days	. 1-114
2.9	Result of Water Quality Parameters in the Rivers on Rainy Days	1-115
2.10	Result of Nutrients Parameters for Water Quality in the River on Fine Days	1-116
2.10	Result of Nutrients Parameters for Water Quality in the River on Rainy Days	1-117
2.12	Result of Heavy Metal in River on Fine Days	1-118
2.12	Result of Heavy Metal in River on Rainy Days	1-119
2.13	Result of the Environmental Parameters for Water Quality	
2.14	in Industrial Wastewater	1-120
2.16	Result of the Water Quality Parameters in Industrial Wastewater	1-120
2.15	Result of Nutrients Parameters for Water Quality	120
2.16	in Industrial Wastewater	L.121
2.12	Result of Heavy Metal in Industrial Wastewater	1-121 5-121
2.17	Result of the Environmental Parameters for Water Quality in Domestic	., 1-121
2.18	Wastewater (4 times sampling points)	1-122
2.10	Results of the Environmental Parameters for Water Quality in Domestic	1 122
2.19	Wastewater (2 times sampling points)	L-122
2.20	Result of the Environmental Parameters for Water Quality in Domestic	(-122
2.20	Wastewater (4 times sampling points)	1.123
2.21	Result of the Environmental Parameters for Water Quality in Domestic	1 123
2.21	Wastewater (2 times sampling points)	1.123
2.22	Result of Nutrients Parameters for Water Quality in Domestic Wastewater (4	1 145
2.22	times sampling points)	1-124
2.22	Result of Nutrients Parameters for Water Quality in Domestic Wastewater (2	: 121
2.23	times sampling points)	1_124
2.24	Industrial Wastewater Discharge	1.125
2.24	nausinal Wasicward Discharge	I-125
2.25	Domestic Wastewarter Discharge	1-120 1 127
2.26	River Water Discharge	1-127 1.128
2.27	The Time Set Up to Settlement Test (1998)	1-140 1-170
2.28	Settlement Test Result of the Productivity Test	1~140 1 122
2.29	Result of the Productivity 16st	1-133 1 124
2.30	Results of Decomposition Test	1-130 1 120
2.31	Results of Elution Test	1-130
2.32	Result of Measuring National Temperature and Dedit by \$1 D Micks	1-137

2.1 Result of the Environmental Parameters for Ambient Water Quality in the Bays

[!					Parameters			- arror
No.	Point	Layer	T	εH	Salinity	DO	Turbidity	SS	TDS
			(°C)		(%)	(mg/ℓ)	(FTU)	(mg/l)	(g/f)
1	1	Surface	32.0	7.94	16.5	5.98	7	4.16	18.444
		Bottom	31.0	8.09	22.0	4.04	13	14.92	24.101
2	2	Surface	32.0	8.18	16.5	5,85	6	1.54	18,164
	i	Bottom	31.9	8.16	17.5	4.52	7	4.00	19.048
3	3	Surface	31.2	8.14	15.5	6.76	8	1.27	17.076
•	3 FR	Surface	31.2	8.14	15.5	6.75	7 .	1.36	17.108
ı,		Bottom	31.0	8.17	22.0	3.96	6	1.12	23.112
4	4	Surface	32.5	8.14	14.0	6.67	9	3.09	15.452
"]	, T	Bottom	30.5	8.10	22.0	4.52	9	8.57	25.864
5	5	Surface	31.1	8.16	4.0	4.05	20	9.54	4.620
.	.,	Bottoni	31.3	8.09	5.0	3.78	22	18.87	5.624
		Surface	30.9	8.24	6.0	6.24	28	27.92	6.240
6	6		30.2	8.11	8.5	5.99	28	36.73	9.000
	<u></u>	Bottom							
7	7	Surface	30.3	8.07	14.0	6.67	14	16.00	15.624
		Bottom	31.2	8.09	16.0	6.98	15	16.40	16.972
8	8	Surface	32.3	8.19	12.0	7.02	9	4.40	13.324
	.,,	Bottom	31.1	8.08	27.0	4.57	9 8	7.80	28.392
9	9	Surface	31.0	8.25	15.0	5.98	8	7.90	16.548
	<u> </u>	Bottom	30.9	8.15	21.5	3.97	8	6.00	24.444
10	10	Surface	31.2	8.18	15.0	4.68	6	2.45	16.600
		Bottom	30.9	8.18	20.5	4.41	6	4.46	21.864
11	11	Surface	31.3	8.18	19.5	6.51	6	2.18	19.748
	ł l	Bottom	31.2	8.15	21.5	4.98	5	2.70	22.510
12	12	Surface	32.7	8.23	12.5	5.75	6	2.39	14.14
		Bottom	30.2	8.13	27.5	4.39	8	2.77	32.948
13	13	Surface	32.4	8.22	17.5	5.06	8	1.77	18.703
1.,	1 **	Bottom	30.0	8.18	31.0	4.73] 9	1.46	30.020
14	14	Surface	31.5	8.20	23.0	5,44	9	5.20	25.43
14	14	Bottom	29.6	8.23	27.5	5.02	lŏ	8.47	34.05
15	15	Surface	31.3	8.37	18.7	4.79	9 10	3.22	18.63
13	13	Bottom	29.5	8.28	30.5	5.23	14	9.57	34.580
36	16	Surface	32.1	8.29	23.0	5.81	7	4.25	25.90
16	110	Bottom	31.7	8.29	24.5	5.77	 	4.48	27.952
				8.38		4.45		0.62	27.540
17	17	Surface	31.6		23.0 24.0		8 9	0.85	26.920
	15.55	Bottom	31.4	8.37		4.12	9	0.89	26.96
	17 FR	Bottom	31.4	8.37	24.0	4.13			
18	18	Surface	31.8	8.31	23.0	5.76	7	0.42	25.78
		Bottom	31.8	8.18	24.0	5.74	9	0.81	26.25
19	19	Surface	32.2	8.27	24.0	6.12	6	1.00	26.54
		Bottom	32.1	8.20	24.0	5.87	9	6.50	27.21
20	20	Surface	32.0	8.27	24.0	5.00	1 .9	2.20	26.71
		Bottom	32.0	8.27	24.0	4.75	11	2.80	27.10
21	21	Surface	32.2	8.38	22.0	6.21	8	0.57	23.65
	1	Bottom	31.1	8.30	24.0	5.62	10	2.70	27.92
22	22	Surface	31.4	8.37	21.0	6.65	8	2.50	22.45
	1	Bottom	30.1	8.23	24.0	4.35	12	10.64	32.50
23	23	Surface	31.5	8.25	16.0	6.96	11	4.33	15.38
	1	Bottom	29.8	8.20	32.0	5.17	14	6.83	35.37
24	24	Surface	32.3	8.32	23.5	5.93	9	0.62	25.51
4-1	" 7	Bottom	31.6	8.26	24.0	5.82	12	1.00	27.00
25	25	Surface	32.1	8.28	24.0	6.04	8	4.80	27.18
43	43	Bottom	31.3	8.28	24.5	5.92	l ž	4.90	27.81
9£	1 32					6.29	7	1.80	25.78
26	26	Surface	32.5	8.12	23.0				26.94
		Bottom	31.8	8.16	24.0	5.75	6	2.90	
27	27	Surface	32.4	8.12	16.0	5.82	5	1.00	17.98
		Bottom	31.5	8.18	22.0	5.60	6	1.50	24.14
28	28	Surface	32.1	8.26	24.0	3.82	19	22.30	26.98
29	29	Surface	33.1	8.06	24.0	3.77	11	8.80	26.49
30	30	Surface	34.2	8.22	24.0	4.65	23	27.10	26.20
		Surface	34.2	8.21	24.0	4.64	23	27.28	26.28

Note: FR: Field replicate sample

2.2 Result of the Water-Quality Parameters for Ambient Water Quality in the Bays (1/2)

	I	T		*********		Para	meters			
		.			~			Fecal-		Obseral
No.	Point	Layer	COD _{Ma}	BOD _s	Oil	Chlorophyll - a		coliform	CN	Phenol
]		ļ	(mg/ℓ)	(mg/t)	(mg/ℓ)	(mg/m³)	(CoL/100m/)	(Cot./100m <i>t</i>)	(µg/t)	$(\mu g/\ell)$
	1	Surface	10.0	1.14	7.2	2.39	8820	21	6.8	1.02
•	•	Bottom	7.0	1.49	6.8	3.28	2160	13	6.4	1.3
		Blank	0	0	0	0	0	0	0	0
2	2	Surface	7.2	1.06	3.4	2.60	9940	63	5.5	1.3
L		Bottom	7.4	1.38	1.0	2.47	940	19	6.4	1.3
3	3	Surface	6.4	1.33	1.3	2.40	16480	62	6.4	1.3
	3 FR	Surface	6.2	1.35	1.4	2.40	1940	59	6.3	1.3
	SEK	Bottom	7.0	1.47	1.3	2.60	1980	18	7.8	1.1
4	4	Surface	7.6	1.12	1.9	2.47	40840	412	6.2	1.1
4	4 FR	Surface	7.6	1.11	1.8	2.48	41440	390	6.1	1.1
	4 FK	Bottom	7.8	1.91	1.8	2.40		306	7.2	1.3
	5	Surface	5.6	1.60	1.4	2.53	1620	7	6.5	2.1
5	5 FR	Surface	5.7	1.58	1.5	2.50	320	8	6.7	2.2
	3 PK	Bottom	5.2	1.32	0.7	2.60	3.20	3	10.4	1.25
6	6	Surface	4.8	1.46	0.6	2.93	1960	12	6.9	1.80
U	ľ	Bottom	5.0	1.72	0.4	2.47	400	0	6.5	0.95
7	7	Surface	7.4	0.91	2.0	2.33	3460	15	7.6	1.50
1	l '		8.5	1.31	0.8	2.33	1920	8	7.6	1.50
0	0	Bottom		1.69	1.1	2.33	260	11	6.9	2.05
8	8	Surface	4.8 12.2	1.82	0.5	2.60	0	0	10.4	1.05
9	9	Bottom		0.97	2.1	2.00	3080	12	7.6	1.60
9	9 LR	Surface Surface	11.7 11.5	0.97	2.2	2.00	1260	11	7.5	1.60
	y LK		10.3	1.12	1.2	2.33	1200	4	7.2	1.55
		Bettom Blank	0	0	0	0	0	0	0	0
10	10		7.8	1.48	1.4	2.47	56520	316	7.4	1.60
10	10	Surface Bottom	8.6	0.31	1.4	2.53	37320	212	7.6	1.30
4.6				0.88	4.7	2.60	20260	96	7.6	2.45
11	11	Surface	11.1 9.9	1.94	2.1	2.20	9440	47	7.6	1.80
13	12	Bottom	5.6	1.59	2.0	2.40	960	7		
12	112	Surface	6.0	1.67	0.5	2.80	140	4	6.9	0.60
	1.3	Bottom		1.76	1.2	1.93	840	4	6.5	1.80
13	13	Surface	4.8		1.2	1.91	040	4	6.5	1.80
	13 LR		4.8 8.0	1.75	0.4	2.60	60	0	6.9	0.35
		Bottom		2.55	0.9	2.80	780	2	9.1	2.00
14	14	Surface	9.6 9.4	2.33	0.9	2.82	1 700	2	9.5	2.10
	14 FR	•	6.4	1.01	0.4	2.93	0	0	8.9	0.35
	1419	Bettom	6.5	1.05	0.4	2.90	l ő	ŏ	8.9	0.35
	14 LR	Bottom Blank	0	0	0.4	0	ő	ŏ	0	0
16	15			1.73	0.5	2.47	120	3	6.9	2.00
15	1,3	Surface Bottom		1.73	0.3	2.47	0	0	9.4	0.60
16	16			2.03	0.4	2.60	1300	6	9.5	2.00
16	16 16 FR	Surface Surface		1.92	0.4	2.62	1300	1	9.4	2.10
	LOFK	Bottom		1.62	0.4	2.67	220	i	10.8	0.60
	16 LR		1	1.60	0.4	2.65	1	l î	10.09	0.60
17	17			0.88	0.3	2.47	820	6	6.8	2.0
17	1''	Surface Bottom		0.84	0.3	2.67	60	0	10.8	0.60
	17 FR			0.82	0.3	2.64		0	11.0	0.60
10				0.87		2.67	580	13	9.5	2.05
18	18	Surface					60	11 :	10.4	0.89
	1	Bottom		0.88		1.80	41 🏚 . 6 t 1 eur - europe 1 d - 40 e - 40 e -	ga	6.9	1.6
19	19	Surface		0.49		2.47	200	6	7.4	1.0
		Bottom		0.69		2.80	20	1 0	0	0
	20	Blank Surface	3.7	0	1.2	0 2.67	240	2	6.9	1.60
20		L Stretone		0.71	1 1/	1 207	: 2413		1 0.9	1.00

2.3 Result of the Water-Quality Parameters for Ambient Water Quality in the Bays (2/2)

	TI	1				Para	meters			
No.	Point	Layer	COD _{Mo} (mg/f)	BOD _s (mg/l)	Oil (mg/f)	Chlorophyll - a (mg/m³)	Coliform (Col./100mt)	Fecal- coliform (Col./100mf)	(Ν (μg/ℓ)	Phenol (µg/l)
21	21	Surface	4.5	0.90	0.3	2.87	60	0	9.4	0.8
		Bottom	3.1	0.83	0.3	2.80	0	0	10.4	0.90
22	22	Surface	4.3	1.69	0.4	2.53	80	0	9.6	8.0
		Bottom	3.9	0.77	0.3	2.53	0	0	6.9	0.90
23	23	Surface	5.1	1.47	0.5	2.80	20	0	9.6	1.6
		Bottom	3.3	1.20	0.8	2.87	0	0	8.6	0.60
24	24	Surface	4.5	0.77	0.8	2.87	160	6	9.6	0.80
	24 1.R	Surface	4.3	0.76	0.9	2.87		6	9.5	0.82
1		Bottom	4.9	1.08	0.9	2.97	20	1	6.9	0.85
25	25	Surface	3.1	0.98	0.8	2.60	280	10	7.9	0.8
	25 FR	Bottom	8.1	0.92	0.8		40	4	9.6	0.85
		Bottom	8.8	0.94	0.8	2.53	[4	9.4	0.83
26	26	Surface	2.9	1.07	1.1	2.47	300	12	7.9	1.8
		Bottom	3.7	0.66	0.5	2.80	20	8	9.6	0,85
27	27	Surface	3.7	0.86	0.7	2.37	520	17	7.6	1.6
	27 LR	Surface	3.5	0.87	0.7	2.36	140	17	7.4	1.5
•	1	Bottom	2.9	1.02	0.5	2.47		5	10.4	0.90
ļ	i	Blank	0	0	0	0	0] 0	0	0
28	28	Surface	3.5	0.72	0.3	2.33	40	6	6.9	2.05
29	29	Surface	2.5	0.31	0.7	2.80	160	3	7.9	2.05
30	30	Surface	3.5	0.81	0.9	2.67	380	13	6.9	1.80
	30 FR	Surface	3.6	0.86	0.8	2.64	18	13	6.8	1.75

Note: - FR: Field replicate sample; - LR: Lab. replicate sample

1

2.4 Result of Nutrients Parameters for Ambient Water Quality in the Bays

1	I	1			Paran	neters		
No.	Point	Layer	N-NO ₁ (pg/l)	N-NO, (pgN/Q)	N·NΗ ₄ (μgN/ℓ)	T-N (mgN/f)	P-PO ₄ . ³ (μgP/ℓ)	$T-P$ (rigP/ ℓ)
	1	Surface	16.76	106.58	3105	1.92	4.1	0.96
٠	*	Bottom	20.43	96.60	319.5 188.2	2.53	3.4	0.52
2	2	Surface	14.60	95.57	260.5	1.28	7.1	0.72
~	-	Bottoni	14.95	93.92	279.5	1.86	8.9	0.48
3	3	Surface	10.95	91.03	268,0	1.41	8.5	0.85
*	3 FR	Surface	10.98	95.80	274.5	1.92	8.7	0.86
		Bottom	17.01	117.63	156.0	1.47	4.6	0.80
4	4	Surface	8.54 19.43	84.11 55.88	275.5	1.01	11.0	0.90
		Bottom	19.43		220.0	1.51	6.2	1.18
5	5	Surface	31.95	100.46	12.8	0.81	204	0.34
	5 LR	Surface	31.87	99.14	12.6	0.85	203	0.34
		Bottom	34.15	96.53	13.8	0.80	47	0.38
6	6	Surface	32.7	62.16	26.9	1.06	51	0.14
7	7	Bottom	38.65	33.36	20.5	1.08	98.4	0.53 0.77
7	7	Surface	7.56	86,02	15.1 19.0	1.02 1.05	23.5 31.0	0.77
		Bottom	11.16	69,04 53.95	16.8	1.56	30.1	0.29
8	8	Surface	8.33 58.4	33.93 45.01	20.1	1.99	32.0	0.41
9	9	Bottom Surface	12.50	43.01 64.64	135.2	2.14	8.62	0.75
y	,	Bottom	5.18	85.04	164.9	3.18	7.8	1.12
10	10	Surface	8.71	101.52	258.0	1.21	10.7	0.94
10	***	Bottom	16.11	83.97	225.0	1.92	4.7	1.22
11	11	Surface	13.87	92.32	239.0	1.62	10.1	1.12
		Bottom	14.64	86.53	153.0	1.98	6.9	1.24
12	12	Surface	5.46		23.7	1.55	14.4	0.67
		Bottom	8.40	21.02 31.30	24.1	1.88	36.9	0.75
13	13	Surface	8.80	59.97	58.7 57.9	0.74	22.8	0.32
*** *******		Bettem	25.3	64.14	57.9	0.82	30.3	0.48
14	14	Surface	14.06	49.25	25.3	0.45	59.8	0.36
	14 FF	Surface	14.00	48.82	25.9	0.53	59.9	0.35
		Bettem	20.66	75.36	41.1	0.48	136.4	0.61
15	15	Surface	23.20	58.67	29.4	1.65	34.3	0.73
	1	Bottom	29.06	58.55	21.0	1.26 1.26	30.7 29.9	0.88 0.89
	15 1 R		28.99	58.58	20.7	1.20	33.9	0.43
16	16	Surface	8.31 6.49	20.63 55.66	26.4 20.4	1.40 1.12	60.0	0.43
17	17	Bottom Surface	12.28	17.08	23.1	0.69	21.7	0.49
17	17	Bottom	7.58	11.85	19.8	1.08	66.2	0.68
	17 FR		7.50	12.43	19.6	1.05	66.5	0.69
18	18	Surface	7.44	29.92	23.6	1.87	38.6	0.40
	1.	Bottom	6.97	27.79	22.7	2.91	24.9	0.48
19	19	Surface	5.69	56.04	15.1	0.55	27.8	0.38
		Bottom	4.93	7.18	20.3	0.89	32.8	0.40
20	20	Surface	6.89	21.19	29.6	1.28	30.1	0.63
		Bottom	7.68	20.62	31.1	1.62	20.7	0.57
	20 LR		7.71	20.75	31.7	1.59	21.0	0.58
21	21	Surface	7.5	60.16	19.6	1.14	23.2	0.26
	1	Bottom	1.26	19.38	24.1	1.86	86.4	0.78
22	22	Surface	2.6 3.9	91.53 18.64	13.6 8.7	1.11 1.48	18.7 16.7	0.49 0.59
23	23	Bottom Surface	13.67	15.05	9.0	0.89	22.5	0.39
23	2.5	Bottom	7.75	45.43	10.0	1.24	18.5	0.22
24	24	Surface	6.38	67.00	11.9	1.39	25.6	0.46
~ T	~ ~	Bottom	8.67	58.00	13.4	2.33	29.5	0.47
25	25	Surface	10.26	21.11	19.4	1.82	20.7	0.82
	1	Bottom	4.31	8.65	11.2	1.97	23.7	0.92
26	26	Surface	7.05	22.80	36.8	1.05	17.1	0.79
	1.	Bottom	8.95	23.23	18.8	1.37	31.3	0.90
27	27	Surface	8.95	22.75	22.3	0.79	19.6	0.65
	1	Bottom	9.15	39.13	21.4	0.86	16.7	0.64
28	28	Surfaœ	6.12	23.75	14.4	1.98	24.1	0.16
29	29	Surface	7.40	20.86	13.6	1.98 2.73	17.6	0.16
30	30	Surface	7.95	72.36	15.1	1.81	23.5	0.14
	30 FR	Surface	7.89	68.22	15.9	1.78	23.9	0.14

Note: - LR: Laboratory replicate; - FR; Field replicate

2.5 'Result of Heavy Metal for Ambient Water Quality in the Bays

r	г	1				***	Paramete	re (matt)				···-
No.	Point	Layer	Cu	Pb	Zn	Cd	Ni	()**	Mn	Fe	As	T-Hg
140.	1 Cult	ואנגו	(μg/ ()	(ρg/f)_	(98/9)	(µg/€)	(µg/f)	(µg/f)	(11g/t)	$(\mu g/\ell)$	(μg/θ)	(19/5)
1	1	Surface	6.58	2.32	11.90	0.18	2.15	1.02	20.03	23.34	1.98	0.16
1 1		Bottom	6.83	2.88	13.61	0.25	3.71	1.42	26.88	30.21	2.34	0.36
2	2	Surface	6.81	2.36	11.94	0.18	2.31	1.06	20.81	23.47	1.97	0.25
		Bottom	6.62	2.42	12.21	0.23	3.42	1.34	24.00	26.34	1.98	0.40
3	3	Surface	5.83	1.98	11.68	0.20	1.75	0.97	18.84	20.13	1.99	0.12
	3 FR	Surface	5.91	2.09	11.70	0.19	1.72	0.99	19.67	21.07	2.04	0.12
		Bottom	6.85	2.78	13.68	0.24	3.81	1.43	26.88	30.41	2.12	0.15
4	4	Surface	5.88	1.74	10.09	0.21	1.15	0.81	17.71	21.02	2.26	0.19
ł		Bottom	8.31	3.01	14.30	0.26	4.24	1.56	33.04	31.44	2.37	0.18
5	5	Surface	3.14	2.98	5.81	0.10	2.13	0.87	15.20	16.19	2.34	0.21
		Bottom	3.14	2.94	6.60	0.10	2.01	0.97	15.60	16.24	2.34	0.35
6	6	Surface	3.48	1.78	7.02	0.12	2.26	1.02	16.82	15.81	2.36	0.19
I		Bottom	3.42	1.98	8.30	0.18	2.30	0.98	18.30	17.18	2.36	0.82
7	7	Surface	4.09	1.81	9.80	0.21	1.34	0.86	18.38	20.26	2.04	0.13
1		Bottom	5.91	2.13	11.60	0.22	2.06	0.95	19.94	23.33	2.18	0.14
8	8	Surface	4.24	2.32	8.04	0.13	2.31	1.75	18.41	22.10	2.12	0.27
	}	Bottom	6.81	2.61	12.21	0.25	3.16	1.79	25.10	28.34	2.58	0.32
9	9	Surface	5.07	2.02	11.40	0.18	1.52	0.78	16.07	19.91	2.12	0.23
,		Bottom	6.92	2.90	13.80	0.25	3.80	1.48	28.14	34.31	2.34	0.25
10	10	Surface	5.48	2.12	11.60	0.21	1.58	0.82	20.24	24.22	2.31	0.22
	<u> </u>	Bottom	6.98	2.81	13.01	0.24	3.22	1.42	20.42	24.68	2.69	0.27
11	13	Surface	6.44	2.48	12.70	0.23	2.98	1.41	24.32	25.06	2.08	0.21
	ļ	Bottom	6.60	2.54	13.30	0.24	3.61	1.46	34.34	26.17	2.17	0.22
12	12	Surface	4.26	2.46	9.03	0.13	2.38	1.79	18.92	21.22	2.17	0.24
	<u> </u>	Bottom	7.02	3.02	13.20	0.32	3.12	1.85	31.02	33.02	2.18	0.22
13	13	Surface	5.07	2.51	10.12	0.11	1.94	1.12	17.96	20.19	1.84	0.21
		Bottom	6.92	2.74	12.71	0.28	2.97	1.42	28.51	30.19	2.42	0.15
14	14	Surface	6.12	2.08	14.22	0.18	2.72	1.18	21.12	24.02	1.99	0.19
	14 FR	Surface	6.26	3.07	14.60	0.21 0.27	2.68	1.17 1.18	21.02 32.01	25.31 27.12	2.02 2.48	0.24 0.34
	14 LR	Bottom Bottom	7.12 6.81	3.13	13.71 14.60	0.27	3.4 <u>1</u> 3.14	2.02	33.02	26.31	2.50	0.34
15	15	Surface	7.28	3.06	9.36	0.33	3.10	1.92	18.3	20.48	2.13	0.29
1.3	13	Bottom	7.34	4.06	14.91	0.36	3.72	1.92	32.61	34.08	2.97	0.48
16	16	Surface	5.08	3.11	10.33	0.17	2.91	2.86	21.5	22.62	2.21	0.30
1 '0	1.0	Bottom	6.41	3.12	11.07	0.25	3.06	2.96	25.12	28.39	2.63	0.25
17	17	Surface	6.20	2.81	10.21	0.11	2.97	1.71	21.5	24.51	2.42	0.19
	1	Bottom	6.22	2.86	10.21	0.24	3.12	2.12	24.01	27.20	2.68	0.27
18	18	Surface	6.24	2.76	10.42	0.22	3.12	1.92	22.43	27.34	2.61	0.26
	1."	Bottom	6.26	2.81	10.46	0.23	3.24	1.94	23.31	27.40	2.71	0.32
19	19	Surface	6.26	2.52	10.45	0.25	3.84	2.03	22.58	25.58	2.33	0.24
		Bottom	6.43	2.90	10.18	0.26	3.22	2.34	24.34	27.38	2.42	0.25
20	20	Surface	6.44	2.72	10.20	0.24	3.69	1.91	22.73	26.12	1.97	0.19
	1	Bottom	6.42	2.78	10.52	0.24	3.34	2.62	24.18	28.20	2.18	0.19
21	21	Surface	6.58	2.82	9.47	0.19	2.88	1.81	19.61	20.17	2.02	0.25
	1	Bottom	6.68	2.86	10.18	0.25	3.18	1.86	24.36	27.10	2.18	0.34
22	22	Surface	6.62	3.01	9.50	0.19	3.01	3.03	18.74	21.03	2.36	0.22
	1	Bottom	7.01	3.03	12.01	0.3	3.72	3.31	30.21	32.96	2 38	0.29
23	23	Surface	6.17	2.52	7.08	0.13	2.74	2.88	17.01	20.19	1.84	0.20
		Bottom	7.35	2.89	12.18	0.35	4.02	3.13	34.02	36.37	2.78	0.24
24	24	Surface		2.54	10.30	0.21	3.06	1.92	16.83	19.18	2.77	0.27
		Bottom		2.63	10.60	0.23	3,88	2.49	23.31	27.29	2.78	0.30
25	25	Surface		2.54	10.62	0.23	3.72	1.84	23.18	25.32	2.66	0.22
		Bottom		2.57	10.81	0.24	3.88	2.17	24.92	26.04	2.73	0.23
26	26	Surface		2.88	10.51	0.22	3.14	1.82	22.51	25.18	2.01	0.26
j		Bottom		2.86	10.51	0.22	3.74	2.64	23.34	26.64	2.61	0.28
27	27	Surface		1.96	5.20	0.13	3.92	2.16	18.10	20.19	3.02	0.21
		Bottom		2.90	8.72	0.20	3.96	2.71	20.18	22.38	3.33	0.29
28	28	Surface		3.02	10.42	0.22	3.66	2.15	22.50	25.34	2.98	0.23
29	29	Surface		2.41	10.08	0.21	3.68	2.42	23.06	26.41	2.76	0.23
30	30	Surface		2.73	10.48	0.22	3.65	2.44	22.43	23.31	2.21	0.22
L		Surface		3.00	10.39		3.73	1 2.57	23.70	24.02	2.25	0.24
Made	UD.	Field repl	lianta car	anda. I	D. Lab	continut	a camel	.)				

Note: - FR: Field replicate sample; - LR: Lab. replicate sample)

2.6 Result of the Environmental Parameters for Water Quality in the River on Fine Days

						Parameters			
No.	Point	Layer	T		Salinity	ĐO	Turbidity	SS	TDS
		ĺ	(°C)	рH	(%)	(mg/ℓ)	(FTU)	(mg/f)	(g/ℓ)
1	1	First time	30.7	7.46	-	6,65	11	0.83	0.032
	ŀ	Second time	31.9	7.30		6.34	36	18.50	0.063
	1 FR	Second time	31.9	7.30	-	6.35	36	18.00	0.066
2	2	First time	30.1	6.54	*	7.62	29	26.81	0.170
	2 FR	First time	30.1	6.52		7.61	35	25.90	0.174
		Second time	33.1	6.68	_	6.35	30	38.00	0,165
3	3	First time	29.5	7.22	0.1	6,14	13	9.40	0.188
•	ļ -	Second time	32.1	7.32		6.70	13	6.00	0.129
4	4	First time	27.3	7.40	-	6.81	7	0.40	0.078
·	-	Second time	29.6	7.45	-	6.84	8	0.50	0.074
5	5	First time	30.4	7.42	-	7.00	7	1.60	0.048
-	"	Second time	35.6	7.28		6.68	7	1.73	0.039
6	6	First time	30.2	7.62	_	6.62	8	7.30	0.126
	ľ	Second time	31.9	7.65	-	6.25	7	0.93	0.125
7	7	First time	30.2	7.49	-	8.20	13	6.00	0.052
•	1	Second time	32.9	7.34	-	6.35	7	0.30	0.048
8	8	First time	31.0	6.85	-	7.20	14	5.40	0.228
-	1"	Second time	31.2	6.94	1 -	6.28	11	5.13	0.362
9	9	First time	29.2	3.82	-	7.30	42	57.60	0.176
•	1	Second time	32.8	3.84	-	6.45	10	30.79	0.178
10	110	First time	35.8	2.68	0.2	4,64	24	82.62	0,878
		Second time	34.9	6.64	0.3	4.25	84	162.40	1.015
11	111	First time	30.2	7.17	0.4	9,93	24	40.83	0.782
		Second time	34.9	7.08	0.4	4.45	15	28.40	0.700
12	12	First time	28.5	6.91	-	7.25	60	156.00	0.336
		Second time	30.4	6.80	-	5.20	288	463.83	0.302
13	13	First time	34.2	7.68	0.2	7.01	26	44.00	0.352
	1	Second time	37.1	8.10	0.4	6.75	16	10.10	0.460
14	14	First time	33.2	3.20	-	6.30	51	91.80	0.778
		Second time	33.1	6.05	0.4	4.72	20	58.00	0.661
15	15	First time	29.6	3.56		6.25	72	111.40	0.208
•••		Second time	30.6	3.80	-	6.8	39	67.10	0.199

Note: FR: Field replicate sample, -: < 0.1

2.7 Result of the Environmental Parameters for Water Quality in the River on Rainy Days

	T	[Parameters			
No.	Point	Layer	T	ti	Salinity	100	Turbidity	SS	TDS
		l	(°C)	pH	(7e)	(mg/t)	(FIU)	(mg/l)	<u>(g/l)</u>
1	1	First time	27.4	7.41	•	6.85	25	0.0529	0.9150
	İ	Second time	26.1	7.10	-	7.53	37	0.0675	1.657
2	2	First time	29.4	6.90	•	5.27	94	0.1368	0.5790
		Second time	26.3	5.65	-	7.37	219	0.2483	0.1000
3	3	First time	31.0	7.24	-	6.82	19	0.0345	2.488
		Second time	25.6	6.36	-	7.40	162	0,1935	0.203
4	1	First time	30.2	6.77	*	7.53	16	0.0107	0.064
·		Second time	25.6	7.03	-	7.86	49	0.0725	0.077
	4 FR	Second time				i		0.0624	0.085
5	5	First time	31.4	7.14	-	6.55	27	0.0043	0.075
	5 FR	First time						0.0079	0.047
		Second time	26.1	6.83		8.10	84	0.1066	0.069
6	6	First time	29.3	6.80	-	5.07	15	0.0248	0.212
		Second time	27.1	7.04	-	7.41	39	0.0597	0.118
7	7	First time	30.1	5.95		5.70	18	0.0243	0,054
•	1	Second time	26.5	6.43	-	7.58	21	0.0341	0.072
8	8	First time	30.9	7.35	-	5.22	19	0.0397	6.733
•		Second time	26.0	4.49	_	7.43	1755	1.9779	0.273
9	9	First time	31.4	3.25	-	5.57	27	0.0131	0.18
		Second time	27.3	3.38	-	7.54	1015	2.0537	0.151
10	10	First time	32.8	6.45	-	6.45	29	0.0376	1.469
••	1	Second time	26.4	4.11	-	5.58	694	1.2677	0.535
11	11	First time	30.8	6.75	+	6.22	26	0.0414	0.080
		Second time	27.3	7.42		4.18	678	0.8517	0.374
12	12	First time	26.3	7.15	4	6.30	461	0.0751	0.245
		Second time	27.6	6.80	-	5.83	504	0.2027	0.162
13	13	First time	28.7	7.68	-	3.03	220	0.2215	0.606
•••		Second time	26.8	6.96	-	4.68	540	0.8423	0.293
14	14	First time	27.3	4.32	-	6.92	3765	27.4489	0.733
• •	1''	Second time	29.6	3.4		5.20	584	0.3561	0.870
15	15	First time	28.7	7.15	-	5.99	111	0.1037	0.212
	1.5	Second time	27.0	4.42	_	5.58	633	1.1168	0.147

Note: FR: Field replicate sample, -: < 0.1

2.8 Result of Water Quality Parameters in the Rivers on Fine Days

1	i					Parameters	<u> </u>		
No.	Point	Time	CODMa	CODer	BOD5	Oil	Coliform	CN	Phenol
			(mg/ℓ)	(mg/ℓ)	(mg/ℓ)	(mg/ℓ)	(Col./100mQ)	$(\mu g/\ell)$	(j\g/{)
1	1	First time	2.60	3.03	0.49	2.4	7480	0.36	0.16
2	I I.R	First time	2.50	3.15	0.50	2.3		0.35	0.15
,	ì	Second time	5.70	6.25	2.04	1.2	7840	6.50	1.32
3	1 LR	Second time	5.80	6.30	2.06	1.1		7.10	1.26
4	1 FR	Second time	5.80		2.26	1.3		7.12	1.28
5	2	First time	4.65	5.84	0.35	1.1	36580	6.80	0.60
6	2 FR	First time	6.10	5.78	0.36	1.2	38360	6.75	0.65
7		Second time	6.40	7.25	3.54	0.7	38720	13.0	1.25
8	3	First time	4.46	4,84	1.10	1.7	72500	6.80	0.60
	1	Second time	4.30	5.16	1.75	0.8	73500	10.50	0.90
9	4	First time	1.91	2.45	0.71	1.6	12240	0.40	0.22
		Second time	3.40	3.54	1.20	0,6	10960	9,80	0.90
10	5	First time	1,64	1.98	0.64	2.0	10360	0.40	0.30
	5 FR	First time	1,68	2.01	0.65	2.1	10160	0.40	0.32
l		Second time	1.40	1.78	0.82	2.4	10560	9.80	0.92
11	6	First time	2.19	2.80	1.40	0.5	7840	6.80	0.60
	FR 6 FR	First time	2.17	2.84	1.45	0.6	6320	6.76	0,65
	i	Second time	1.80	2.02	0.91	1.3	8040	13,60	0.90
12	7	First time	3.19	3.78	1.53	2.4	4360	0.40	0.30
ļ		Second time	1.60	2.43	0.84	1	4320	9.80	0.92
13	8	First time	5.19	5.33	0.18	3.1	7520	6,80	0.60
	ł	Second time	2.00	2.34	0.95	1.7	7680	9.80	0.60
14	9	First time	4.19	5.79	0.13	1.3	3280	5.20	1.20
	1	Second time	0.80	0.98	0.69	2.6	3640	9.50	0.66
15	10	First time	5.47	8.63	0.13	0.5	4220	6.40	1.90
1	101.R		5.52	8.60	0.14	0.6	1	6.45	1.87
<u> </u>	l	Second time	11.70	12.81	1.96	1.0	4120	13.00	0.62
16	11	First time	6.10	6.84	0.77	0.6	21600	6.80	1.20
		Second time	4.10	5.25	1.80	0.9	25600	9.80	0,60
17	12	First time	7.56	8.94	0.50	0.8	6380	6.40	1.30
l	1	Second time	11.20	13,46	2.07	1.1	6960	10.50	0.60
18	13	First time	8.84	8.90	1.51	1.0	16500	6.80	1.50
1		Second time	3.20	4.68	2.06	0.8	16800	10.50	0.85
19	14	First time	7.93	8.90	0.23	1.4	640	6.40	2.20
]	Second time	7.90	8.97	1.98	1.0	840	13.60	0.65
20	15	First time	7.38	8.83	1.01	1.2	1680	5.40	1.10
		Second time	5.70	6.32	1.37	0.6	1720	10.20	0.85

Note: - FR: Field replicate sample; LR: Laboratory replicate sample

- B: Blank sample

2.9 Result of Water Quality Parameters in the Rivers on Rainy Days

	I					Parameters			
No.	Point	Time	CODMa	CODer	BODs	Oil	Coliform	CN	Phenol
, , , ,	• (-1)		(mg/ℓ)	(mg/ℓ)	(mg/ℓ)	(mg/ℓ)	(Col/100m/)	$(\mu g/\ell)$	$(\mu g/\ell)$
1	1	First time	3.12	4.20	0.54	2.5	8480	6.2	0.30
ż	ilR	First time	3.14	4.22	0.56	2.6			
3]	Second time	4.51	4.64	0.90	2.3	87200	7.3	0,60
4	LER	Second time	4.50	4.66	0.88	2.4			
5	2	First time	7.21	8.62	2.13	3.0	44320	7.3	0.32
6	i -	Second time	9.52	9.87	2.04	2.0	44800	6.2	0,65
7	3	First time	3.91	6.95	1.23	1.3	78500	7.3	0.34
8		Second time	9.72	9,73	1.32	2.9 2.2	79360	8.1	0.62
9	4	First time	2.51	7.25	1.50	2.2	13720	6.2	0.30
10		Second time	6.31	6,66	0.96	1.7 2.7	12730	7.3	0.45
11	4 FR	Second time	6,40	6,54	0.64	2.7	12720	7.3	0.60
12	5	First time	2.21	8.95	1.76	1.8	12240	7.4	0.39
13	5 FR	First time	2.32	8.84	0.91	1.9	12280	7.6	0.30
14	1	Second time	8.12	11.52	1.30	1.3	12360	7.4	0.60
15	6	First time	2.31	8.90	0.80	1.9	9600	7.8	0.30
16	l .	Second time	4.91	5.66	0.55	1.5	10400	7.8	0.66
17	7	First time	2.91	8.50	1.57	2.4	6480	7.3	0.36
18	1	Second time	5.31	5.65	1.08	2.2	6720	7.8	0.76
19	8	First time	5.71	8.70	0.75	2.2	9920	6.2	0.34
20	1	Second time	13.79	14.66	1.13	2.4	10320	8.1	0.22
21	19	First time	1.20	9.25	0.31	2.0	4240	7.3	0.30
22		Second time	18.54	20.11	1.17	2.6	4640	7.8	0.92
23	10	First time	4.21	8.20	1.26	2.6	4840	6.2	0.34
24	10LR	First time	4.27	8.24	1.28	2.5			
25	i	Blank	0	0	0	0	5500		
26	l	Second time	16.53	18.20	1.50	2.7	5600	8.2	0.80
27	111	First time	2.81	9.11	0.81	2.2	25600	6.0	0.30
28	<u> </u>	Second time	16.53	23.25	1.12	1.8	24640	8.4	0.90
29	12	First time	21.7	22.8	1.34	1.8	8400	7.3	0.60
30		Second time	5.91	6.46	1.65	1.9	8640	8.4 7.8	0.60
31	13	First time	21.10	23.81	8.1	2.4	20200	7.8	0.68
32		Second time	15.53	16.66	4.26	1.7	20500	9.8	0.86
33	14	First time	29.50	30.85	0.54	2.0	1240	7.3	0.60
34		Second time	29.84	31.69	0.58	1.8	1360	10.8	0.40
35	15	First time	7.91	8.45	0.95	2.5	2160	6.2	0.30
36	ĺ	Second time	16.73	17.18	0.90	1.9	2400	7.8	0.65

Note: - FR: Field replicate sample; LR: Laboratory replicate sample - B: Blank sample

2.10 Result of Nutrients Parameters for Water Quality in the River on Fine Days

	[T	Parameters N.NO. N.NO. N.NH. T.N P.PO. ³ T.P										
No.	Point	Layer	N-NO ₂	N NO,	N NII,	T-N	P-PO ₄ ⁻³	T-P					
]		(µg/ℓ)	$(\mu g N/\ell)$	$(\mu g N/\ell)$	(mgN/f)	(μgP/ <i>ℓ</i>)	(mgP/ℓ)					
1	ī	First time	16.93	150.16	268.0	2.20	21.2	0.69					
2	LLR	First time	16.87	105.69	271.0	2.27	20.9	0.71					
		Second time	16.54	145.89	263.5	2.75	34.2	0.86					
3	1 LR	Second time	15.99	147.37	270.1	2.67	33.9	0.85					
4	LFR	Second time	17.01	115.04	263.9	2.50	30.8	0.87					
5	2	First time	24.24	119.63	337.5	2.11	25.9	0.87					
6	2 FR	First time	28.08	125.44	322.7	2.23	26.8	0.84					
7	2 B	First time	22.83	121.19	323.9	2.20	27.1	0.85					
	l	Second time	23.27	122.67	330.5	2.10	38.3	0.89					
8	3	First time	10.08	127.70	147.5	3.57	36.4	0.43					
	1	Second time	8.88	112.66	96.4	11.59	32.2	0.67					
9	4	First time	27.16	75.79	365.0	2.20	25.4	0.78					
		Second time	24.98	71.34	351.9	2.12	36.7	0.77					
10	5	First time	15.20	74.20	165.4	2.24	26.5	0.48					
		Second time	6.12	97.34	147.9	2.64	52.0	0.68					
11	6	First time	10.98	88.13	164.2	1.70	23.9	0.52					
	1	Second time	7.80	78.57	159.7	1.70	62,6	0.75					
12	7	First time	9.79	116.87	102.0	1.92	34.2	0.39					
		Second time	6,54	106.11	99.1	2.81	68.6	0.33					
13	8	First time	8.93	66.62	14.5	2.09	25.1	0.28					
	1	Second time	6.70	71.54	19.9	1.99	33.1	0.39					
14	9	First time	21.32	65.10	215.0	5.12	23.8	0.79					
	.	Second time	14.57	71.90	187.3	2.99	34.5	0.82					
15	10	First time	25.94	117.07	639.0	2.79	11.6	1.12					
		Second time	21.89	130.56	509.7	2.18	29.0	1.37					
16	11	First time	26.02	103.66	373.5	2.62	17.7	0.98					
		Second time	23.12	109.87	343.6	2.26	72.4	1.16					
17	12	First time	20.98	110.32	252.5	2.05	21.3	0.88					
		Second time	18.09	98.03	254.1	6.67	33.6	0.99					
18	13	First time	735.50	504.93	1645.0	12.49	87.6	1.37					
		Second time	808.00	432.20	1209.4	11.05	12.45	1.44					
19	14	First time	19.54	77.21	486.0	11.26	18.8	0.91					
	<u> </u>	Second time	21.70	75.82	431.7	11.48	29.0	0.58					
20	15	First time	25.71	97.56	492.5	3.19	39.4	0.97					
	1	Second time	24.09	93.86	403.9	2.60	24.2	0.57					

Note: - FR: Field replicate sample; LR: Laboratory replicate sample; B: Blank sample

2.11 Result of Nutrients Parameters for Water Quality in the River on Rainy Days

					Paran	icters		
No.	Point	Layer	N-NO ₂	N-NO;	N-NH	T-N	P-PO ₄ 3	T-P
		ĺ	(µg/Q	$(\mu g N/\ell)$	(µgN/ℓ)	(mgN/ℓ)	(µgP/£)	(mgP/f)
1	i	First time	19.93	166.7	242.5	2.95	19,8	0.73
2	•	Second time	25.51	179.67	347.5	3,5	23.7	0.94
3	2	First time	25.60	95.2	293.0	3.13	24.1	1.02
4	1	Second time	27.13	141.74	316.5	2.62	35.3	1.06
6	3	First time	17.30	160.0	161.0	3.10	32.1	0.57
8	[]	Second time	28.91	120.16	203.2	3.68	41.7	1.19
9	4	First time	21.27	86.97	291.5	3.95	29.3	0.92
10	'	Second time	29.73	79.97	345.0	3.67	33,9	1.37
ιĭ	4 FR	Second time	29.90	80.01	344.5	3.64	34.5	1.41
12	5	First time	19.90	81.9	262.5	9.17	21.9	0.69
13	5 FR	First time	20.03	82.10	264.0	9.21	22,10	0.70
14	""	Second time	28.07	76,59	310.6	8.82	27.8	1.85
15	6	First time	14.51	82.8	205.0	2.64	24.7	0.74
16	"	Second time	24.96	78.51	219.5	2.88	21.9	1.37
17	7	First time	18.39	104.4	203.0	2.18	37.6	0.49
18	ľ	Second time	19.28	142.24	236.0	4.10	39.1	0.84
19	8	First time	25.73	142.5	297.1	1.87	20.0	0.37
20	1	Second time	39.27	101.03	368.5	4.32	27.3	0.89
21	9	First time	18.93	68.2	309.3	2.24	24.9	0.90
22		Second time	16.51	80.65	334.7	5.77	27.7	1.16
23	10	First time	27.20	140.9	386.5	3.20	27.7	1.37
24	10 LR		27.84	142.6	379.8	3.24	27.9	1.32
25	1	Second time	25.74	152,96	500.5	3.90	29.4	1.88
26	11	First time	30.12	110.18	364.5	5.19	21.9	1.44
27	1	Second time	20.01	122.32	390.0	4.46	25.1	1.83
28	12	First time	25.98	130.03	291.0	4.32	34.5	1.20
29	1	Second time	37.29	122.9	317.0	6.23	37.2	1.86
30	13	First time	799.3	527.4	899.1	10.95	163.0	1.98
31		Second time	878.0	1292.1	993.0	13.12	197.7	2.07
32	14	First time	24.59	81.53	493.0	9.79	25.6	1.50
33		Second time	99.1	111.33	700.6	11.42	34.9	1.95
34	15	First time	31.27	117.49	297.5	3.29	43.4	1.17
35		Second time	14.67	124.92	396.0	5.33	49.1	1.87

Note: - FR: Field replicate sample; LR: Laboratory replicate sample; B: Blank sample

2.12 Result of Heavy Metal in River on Fine Days

			[Parameters								
No.	Point	Time	Ni	Cr ⁶⁴	T-Hg	Λs	Pb	Zn	Ci	Mn	Cu -	l'e
	L		$(\mu g/f)$	$(\mu g/\ell)$	$(\mu g/\ell)$	$(\mu g/\ell)$	(µg/l)	(pg/ℓ)	(µg/l)	(pg/0)	$(\mu g/\ell)$	$(\mu g/\theta)$
1	1	First time	3.42	1.86	0.18	1.54	4.51	7.51	0.32	82	5.62	606
		Second time	3.18	1.98	0.49	1.81	4.79	7.24	0.32	90	6.22	1250
2	2	First time	3.12	2.12	0.18	1.92	2.32	2.92	0.24	105	3.27	1532
	2 FR	First time	3.26	2.34	0.16	2.07	3.32	2.94	0.26	103	3,02	1549
		Second time	4.12	2.62	0.24	2.02	5.29	8.33	0.35	112	6.180	1601
3	3	First time	3.48	2.42	0.19	1.76	3.75	9.32	0.38	119	4.98	230
		Second time	3.21	2.13	0.33	2.32	4.08	6.42	0.42	29	6.33	292
4	4	First time	3.4	2.46	0.18	2.31	4.83	8.91	0.34	119	4.94	116
	1	Second time	3.47	2.18	0.48	3.26	4.21	8.48	0.38	96	6.98	281
5	5	First time	3.43	3.01	0.25	1.8	3.12	8.73	0.39	126	5.18	98
	1	Second time	4.02	2.41	0.26	2.15	5.06	8.64	0.37	16	7.12	225
6	6	First time	2.96	2.96	0.27	1.85	3.47	9.31	0.42	143	5.02	137
	1	Second time	3.94	2.17	0.29	1.84	5.09	8.62	0.41	60	7.34	275
7	7	First time	3.12	2.13	0.28	2.54	4.41	9.62	0.44	145	5.61	186
		Second time	3.86	3.02	0.41	2.11	4.55	8.22	0.4	37	6.31	186
8	8	First time	3.15	2.42	0.22	2.14	5.57	11.9	0.41	237	6.02	1267
ļ	1	Second time	3.25	2.18	0.4	1.73	4.86	18.64	0.43	60	8.08	471
9	9	First time	26.5	3.01	0.96	1.85	6.16	661	0.38	1373	5.84	2297
		Second time	4.18	3.12	0.42	2.13	7.26	553.1	0.46	1220	7.12	1533
10	10	First time	1715	3.86	27,6	2.25	8.75	2675	0.46	4909	6.14	28790
ļ		Second time	4.02	2.41	0.22	2.03	4.83	369.21	0.42	567	6.93	3148
11	11	First time	29.7	3.12	0.28	2.11	3.85	263	0.40	1257	5.78	20700
		Second time	3.94	2.69	0.34	2.28	6.67	693.34	0.58	1416	7.21	1678
12	12	First time	23.1	2.96	0.25	3.05	6.19	236	0.45	1442	5.46	18130
		Second time	2.06	1.54	0.14	2.05	3.96	124.16	0.30	68	4.17	0206
13	13	First time	18.2	2.84	0.25	2.14	3.64	1134	0.34	249	4.37	1150
	1	Second time	3.13	2.98	0.28	2.3	6.07	696.42	0.42	1215	6.02	36071
14	14	First time	56.9	2.72	0.26	2.25	3.73	1632	0.35	2189	6.92	11310
	1	Second time	3.21	1.92	0.15	2.27	6.25	56.01	0.38	1303	6.15	10640
15	15	First time	49.1	3.03	0.21	2.15	3.17	978	0.41	1151	5.11	4841
]	1	Second time	3.81	2.31	0.25	2.46	3.89	583.2	0.44	871	7.21	3889

Note: - FR: Field replicate sample; LR: Laboratory replicate sample

- B: Blank sample

2.13 Result of Heavy Metal in River on Rainy Days

	r						Paran	neters				
No.	Point	Time	Ni	Cré	T-Hg	As	Pb	Zn	Cd	Mn	Cu	Fe
			(109/6)	$(\mu g/\ell)$	$(\mu g/\tilde{t})$	$(\mu g/\ell)$	(pg/t)	(119/6)	(µg/f)	(µg/f)	(pg/ <u>(</u>)	$(\mu g/\ell)$
1	1	First time	2.13	1.03	0.31	2.30	2.94	15.00	0.42	21.4	5.32	1132
		Second time	2.02	1.28	0.31	1.60	2.76	8.06	0.42	53.3	4.26	2964
2	2	First time	1.89	0.98	0.46	1.59	3.04	15.14	0.50	16.2	4.34	2497
		Second time	1.94	1.96	0.33	1.88	2.98	10.23	0.37	43.1	5.11	3205
3	3	First time	2.02	0.67	0.28	1.41	2.19	14.85	0.47	27.6	3.91	40.7
	l	Second time	1.86	0.87	0.19	2.70	3.01	8.17	0.42	52.2	3,94	2996
4	4	First time	2.71	1.34	0.21	1.31	3.12	14.79	0.51	17.1	3.62	70.9
		Second time	2.14	0.91	0.14	2.11	3.10	8.71	0.42	48.2	3.62	2110
	FR	Second time	2.12	0.86	0.20	1.96	2.97	8,96	0.41	50.0	3.81	2120
5	5	First time	2.64	1.26	0.26	2.21	2.84	14.89	0.43	22.9	4.78	49.3
	FR	First time	2.38	1.08	0.27	1.36	4.01	15.18	0.39	25.6	3.84	70.5
		Second time	2.96	0.79	0.17	1.58	3.04	9.03	0.39	49.2	4.18	2104
6	6	First time	2.33	0.88	0.26	1.51	3.88	14.70	0.32	24.7	4.15	70.8
		Second time	2.38	0.61	0.18	2.11	3.16	9.41	0,40	49.7	5.15	2043
7	7	First time	2.49	1.26	0.23	1.16	3.16	14.75	0.51	31,3	4.21	34.5
		Second time	3.02	0.88	0.24	2.32	3.27	8.39	0.31	179	4.02	6939
8	8	First time	2.81	1.25	0.34	1.26	4.04	1144	0.40	1484	5.15	1959
		Second time	2.87	1.31	0.24	1.80	4.13	8.32	0.52	1068	4.81	4815
9	9	First time	3.01	1.31	0.22	1.43	3.98	806	0.43	1055	5.20	2431
		Second time	2.92	1.28	0.24	2.31	4.21	943	0.43	2981	4.26	8527
10	10	First time	3.12	1.12	0.15	1.31	3.92	830	0.50	1820	4.86	2378
		Second time	2.30	0.88	0.20	1.66	4.01	1991	0.32	851	4.74	8303
11	11	First time	3.86	1.18	0.24	1.46	3.81	13.62	0.51	733	4.72	13875
		Second time	1.82	1.44	0.13	1.41	3.84	11.79	0.40	59.0	3.97	4198
12	12	First time	2.19	0.96	0.16	1.26	3.67	15.70	0.38	28.9	3.78	1772
		Second time	1.81	1.31	0.15	1.85	3.67	10.32	0.51	44.3	4.88	3046
13	13	First time	3.13	1.21	0.32	1.46	4.26	3974	0.49	3744	4.92	24166
		Second time	3.02	0.98	0.13	1.31	4.02	2709	0.53	3049	5.02	33933
14	14	First time	2.71	1.13	0.21	1.34	3.94	776	0.51	802	3.76	2246
		Second time	2.36	1.17	0.16	1.52	4.09	13.28	0.51	973	4.84	6319
15	15	First time	1.81	1.24	0.26	1.38	2.84	12.9	0.50	29.9	4.18	94.8
	1	Second time	1.92	1.16	0.18	2.03	4.03	18.12	0,43	141	4.79	1857

Note: - FR: Field replicate sample; I.R: Laboratory replicate sample

- B: Blank sample

er leggenerate

2.14 Result of the Environmental Parameters for Water Quality in Industrial Wastewater

						Parameters			
No.	Point	Layer	T		Salinity	DO	Turbidity	SS	TDS
			(°C)	На	(%c)	(mg/ℓ)	(FTU)	(mg/ℓ)	(g/ℓ)
1	1	Surface	32.7	5.76	< 0.1	6,09	817	6811.80	0.128
2	2	Surface	31.1	3.36	0.4	5,92	20	77.80	0.704
3	3	Surface	28.2	7.74	0.2	6.05	1	12.20	0.230
4	4	Surface	31.1	7.48	1.1	2.02	586	712.13	1.592
5	5	Surface	31.2	5.31	0.1	4.58	101	245.27	0.552
6	6	Surface	33.8	8.00	19.0	6.32	15	66.13	24.514
8	7	Surface	33.6	7.35	2.8	2.80	34	116.07	3.188
9	8	Surface	34.7	6.44	0.3	5.80	406	212.33	0.636
10	9	Surface	32.4	7.35	0.1	5.58	115	329.27	0.254
11	90	Surface	32.4	7.36	0.1	5.56	116	353.60	0.308
12	10	Surface	32.8	7.47	0.5	6.40	610	617.40	0.932
13	111	Surface	37.0	7.79	0.3	5.60	35	22.00	0.196
14	12	Surface	32.3	7.74	0.2	2.30	128	36.13	0.386
15	13	Surface	31.1	7.37	0.2	2.85	19	71.13	0.458
16	14	Surface	30.7	7.36	0.2	0.75	68	60,40	0.644
17	15	Surface	31.2	5.73	0.7	1.15	186	154.40	1.044
18	16	Surface	30.5	7.42	0.1	3.86	23	25.27	0.492
19	16D	Surface	30.5	7.44	0.1	3.86	24	28.20	0.518
20	17	Surface	29.4	7.59	10.3	4.21	110	362.13	12.052
21	18	Surface	31.1	7.48	0.1	11.25	7	22.20	0.366
22	19	Surface	33.8	8.01	11.2	5.20	23	42.67	13.080
23	20	Surface	30.8	7.56	0.1	1.32	17	26.73	0.358

Note: F.: First time

S.: Second time

D: Duplicate sample

2.15 Result of the Water Quality Parameters in Industrial Wastewater

						Parameters			
No.	Point	Layer	COD_{Mn}	CODC	BOD ₃	Oil	Coliform	CN ⁻	Phenol
		, i	(mg/ℓ)	(mg/ℓ)	(mg/ℓ)	(mg/ℓ)	(Col/100ml)	$(\mu g/\ell)$	$(\mu g/\ell)$
1	1	Surface	367.81	741.65	197.4	3.6	4400	6.0	7.2
2	2	Surface	36.04	98.08	6.20	2.3	3200	12.0	15.0
3	3	Surface	12.12	18.82	6.01	3.3	5080	18.0	12.0
4	4	Surface	425.42	531.28	215.0	3.1	130000	360.0	185.0
5	5	Surface	550.54	766.27	275.1	2.1	24200	60.0	69.0
6	6	Surface	6.51	49.04	2.17	2.2	14400	6.6	18.0
7	7	Surface	43.04	59.26	5.54	0.9	16800	6.8	15.0
8	8	Surface	42.04	64.52	6.74	2.0	3720	40.0	15.0
9	9	Surface	13.01	132.82	5.24	1.1	4800	16.2	18.0
10	9 FR	Surface	12.55	138.13	5.23	1.1	4480	16.0	17.0
11	10	Surface	52.05	69.47	8.97	2.4	3040	840	339.0
12	11	Surface	24.34	31.63	7.13	2.0	4680	6.6	15.0
13	12	Surface	50.05	73.56	28.55	0.9	120000	43.2	110.0
14	13	Surface	12.61	16.35	9.93	0.5	340000	10.2	8.0
15	14	Surface	21.69	28.39	13.94	1.3	220000	11.8	57.0
16	15	Surface	324.91	386.07	120.0	1.0	58300	66.0	102.0
1 17	16	Surface	44.04	81.74	4.98	1.5	51250	9.6	54.0
18	16 FR	Surface	42.54	84.86	4.62] 1.4	52000	9.2	54.0
19	16 L.R	Surface	43.54	83.75	4.74	1.5		9.3	54.0
20	17	Surface	74.17	79.52	36.0	6.5	9320	7.2	36.0
21	18	Surface	14.54	19.17	7.54	0.8	8440	6.6	12.0
22	19	Surface	10.54	16.13	4.57	2.0	14960	6.6	48.0
23	19LR	Surface	10.04	16.13	4.52	2.1] .	6.5	47.0
24	20	Surface	18.07	19.13	9.88	0.3	1680	13.2	36.0

Note: - LR: Laboratory replicate sample - FR: Field replicate sample

2.16 Result of Nutrients Parameters for Water Quality in Industrial Wastewater

]	T			Paran	neters		
No.	Point	Layer	N-NO ₂	N-NO,	N-NII,	T-N	P-PO ₄ ⁻³	T-P
			(mgN/ℓ)	(mgN/ℓ)	(mgN/ℓ)	(mgN/ℓ)	(mgP/ℓ)	(mgP/ℓ)
1	1	Surface	0,018	0.114	0.18	15.52	0,60	1.20
2	2	Surface	0.026	0.081	1.38	12.82	0.13	0.23
3	3	Surface	0.046	0.062	0,45	2.87	0.40	0.94
4	4	Surface	0.129	0.457	14.0	124.84	3,48	4.84
5	5	Surface	0.037	0.053	0,59	20.83	3.36	4.96
6	6	Surface	0,026	0.068	0.42	5.47	0.05	1.04
7	7	Surface	0.038	0.272	1.43	6.83	0.46	1.32
8	8	Surface	0.026	0.059	0.83	4.68	0.05	0.61
9	9	Surface	0.174	0.241	0.63	4.26	0.06	0.30
10	9 FR	Surface	0.178	0.259	0.67	4.23	0.05	0.31
11	10	Surface	0.018	0.068	0.44	4.13	0.02	0.84
12	11	Surface	0.022	0.072	0.38	3.75	0.32	1.58
13	12	Surface	0.035	0.047	3.96	29.98	4.0	5.42
14	13	Surface	0.095	0.122	1.96	19.15	1.57	2.21
15	14	Surface	0.035	0.058	2.66	35.58	1.10	1.65
16	15	Surface	0.032	0.063	0.97	28.55	1.90	2.54
17	16	Surface	0.085	0.081	7.68	30.87	0.01	0.39
18	16 FR	Surface	0.086	0.206	7.73	30.76	0.01	0.41
19	17	Surface	0.062	0.102	2.75	129.45	2.75	3.10
20	18	Surface	0.023	0.079	0.34	30.47	0.51	0.61
21	19	Surface	0.023	0.078	0.20	2.37	0.47	0.69
22	20	Surface	0.020	0.078	1.59	26.55	0.10	1.38

Note: FR: Field replicate sample

2.17 Result of Heavy Metal in Industrial Wastewater

							Paranie					
No.	Point	Layer	Zn	Mn	Cu	Fc	Pb	T·Hg	Cd	Ni	Cr ⁶⁺	As
			$(\mu g/\ell)$	$(\mu g/\ell)$	(ug/f)	(µg/t)	$(\mu g/\ell)$	(µg/()	(µg/l)	(µg/l)	(µg/ℓ)	(pg/t)
1	1	Surface	1208	441	9.81	51822	3.26	0.19	0.34	2.88	2.12	1.38
2	2	Surface	1834	784	8.12	36175	3.84	0.39	0.41	3.12	2.19	2.09
3	3	Surface	592	25.3	6.18	45.1	2.91	0.32	0.34	2.18	2.03	2.48
4	4	Surface	448	28.2	6.32	3203	3.13	0.27	0.36	3.03	1.96	3.02
5	5	Surface	816	26.1	6.34	3178	3.02	0.2	0.28	2.24	2.42	1.68
6	6	Surface	14.2	26.2	6.42	42.3	2.86	0.28	0.37	2.13	1.84	2.11
7	7	Surface	18.8	28.3	5.98	43.4	2.75	0.18	0.41	3.01	1.42	1.71
8	8	Surface	1770	945	7.32	11445	3.13	0.21	0.34	8.12	2.38	3.38
9	9	Surface	13.3	38.1	6.45	36.5	3.19	0.28	0.28	2.94	1.94	2.10
10	9 FR	Surface	12.9	38.1	6.61	35.9	3.14	0.28	0.26	2.82	1.86	1.97
11	10	Surface	409	29.2	6.96	40.1	2.89	0.17	0.26	3.27	0.98	1.92
12	11	Surface	12.6	181	7.03	27.2	2.84	0.19	0.39	2.34	1.47	1.71
13	12	Surface	509	21.3	6.15	36.2	3.16	0.2	0.36	2.84	1.47	1.23
14	13	Surface	323	160	6.31	32.7		0.22	0.26	3.36	1.43	2.45
15	14	Surface	14.0	39.7	7.62	4050	3.29	0.33	0.33	2.94	1.86	2.05
16	15	Surface	705	24.5	9.82	1886	3.18	0.18	0.31	2.96	1.41	3.00
17	16	Surface	14.8	117	6.98	6019	2.88	0.35	0.35	3.08	2.13	1.95
18	16 FR	Surface	14.6	116	6.96	6038	2.86	0.34	0.34	3.03	2.12	1.96
19	17	Surface	339	328	7.34	6492	4.02	0.19	0.29	3.13	2.02	1.96
20	18	Surface	10.5	23.6	6.98	40.6	3.21	0.24	0.24	2.77	2.31	1.30
21	19	Surface	13.8	25.9	7.13	38.3	3.17	0.31	0.31	2.78	1.64	1.87
22	20	Surface	561	142	5.84	2262	3.15	0.28	0.28	2.96	2.41	2.21

Note: - FR: Field replicate sample

2.18 Result of the Environmental Parameters for Water Quality in Domestic Wastewater (4 times sampling points)

	I				Paramete	rs	
No.	Point	Time	T.	рH	DO	SS	TDS
			(°C)		(mg/ℓ)	(mg/ℓ)	(g/l)
1	1	First time	31.1	7.18	1.56	26.47	0.734
2		Second time	29.1	7.21	1.55	30.07	0.744
	Ĭ	Third time	28.2	7.25	1.48	41.80	0.952
3	1	Fourth time	28.2	7.30	1.20	211.27	0.912
5	2	First time	36.8	7.47	2.82	38.40	0.866
6		Second time	31.4	7.39	1.14	18.13	0.908
7	2 FR	Second time	31.4	7.40	1.15	19.53	0.914
7 8		Third time	28.7	7.27	1.28	28.80	0.844
9		Fourth time	30.0	7.28	2.18	19.20	0.858
10	3	First time	36.9	6,48	1,90	14.60	0.462
11		Second time	27.7	5.29	5.15	368.73	4.420
12		Third time	27.5	5.03	6.24	259.87	0.450
13	ļ	Fourth time	27.3	4.96	6.18	152.47	0.490
14	4	First time	29.2	7.23	0.96	32.27	0.620
15		Second time	29.9	7.08	0.80	61.53	0.552
16	ł	Third time	31.3	6.94	0.54	90.40	0.566
17	4 FR	Third time	31.3	6.98	0.56	94.53	0.502
18		Fourth time	29.7	6.93	0.82	63.60	0.612
19	5	First time	29.1	7.58	0.50	49.67	0.452
20		Second time	29.7	7.55	0.74	81.13	0.512
21		Third time	29.1	7.50	0.84	65.33	0.438
22		Fourth time	29.5	7.46	0.53	67.00	0.894
23	6	First time	27.2	7.28	3.78	36.60	0.348
24	l	Second time	28.1	7.15	3.18	32.47	0.402
25		Third time	28.1	7.16	2.93	60.13	0.386
26	_1	Fourth time	27.6	7.11	2.28	38.33	0.348

Note: FR: Field replicate sample

2.19 Results of the Environmental Parameters for Water Quality in Domestic Wastewater (2 times sampling points)

					Parameters		
No.	Point	Time	T	pH	DO	SS	TDS
	ļ		(°C)	<u> </u>	(nig/ℓ)	(mg/ℓ)	(g/ℓ)
1	1	First time	31.5	5,90	5.25	231.67	0.454
2	1	Second time	29.7	5.59	5.58	199.20	0.404
3	2	First time	32.8	7.24	0.40	141.27	0.666
4		Second time	30.9	7.45	0.38	178.60	0.574
5	3	First time	32.2	4.68	5.08	152.60	0.420
6		Second time	29.7	4.12	5.71	191.27	0.404
7	4	First time	29.4	6.99	1.14	253.67	14.552
8	i	Second time	31.6	7.18	0.92	168.87	10.714
9	5	First time	30.0	7.18	0.30	62.13	3.126
10		Second time	30.6	7.07	0.26	41.33	2.960
11	6	First time	31.2	7.51	2.77	239.80	9.810
12	6 FR	First time	31.2	7.52	2.76	226.73	9.940
13	}	Second time	31.4	7.88	6.04	197.40	9.560
14	7	First time	29.7	7.23	1.26	223.47	10.092
15	7 FR	First time	29.7	7.22	1.28	202.41	10.294
16	_	Second time	30.1	7.25	0.94	184.60	8.910
17	8	First time	30.2	7.63	3.09	201.40	5.886
18	1	Second time	30.3	7.25	0.70	141.20	4.244

Note: FR. Field replicate sample

2.20 Result of the Environmental Parameters for Water Quality in Domestic Wastewater (4 times sampling points)

					Paramete	rs	
No.	Point	Time	COD_{Mo}	COD	BOD _s	Oil	Fecal coliform
			(mg/t)	(mg/ℓ)	(mg/ℓ)	(mg/ℓ)	(col./100ml)
1	1	First time	18.02	18.39	10.21	1.4	44000
2		Second time	17.02	23.50	6.33	1.2	48000
3	1	Third time	19.02	20.20	5.20	2.0	52000
4		Fourth time	28.03	30.43	13.67	1.3	52000
4 5	2	First time	14.95	16.43	5.18	0.8	13400
6		Second time	15.95	17.11	5.27	0.8	22200
7	2 FR	Second time	15.86	17.40	5.29	0.7	22200
8		Third time	15.95	22.59	6.63	0.9	22600
9	1	Fourth time	14.95	16.27	6.32	0.6	22000
10	13	First time	7.98	8.16	5.99	1.3	15800
11		Second time	31.9	37.51	10.21	1.6	12200
12		Third time	29.85	32.86	7.75	3.0	13400
13		Fourth time	16.95	18.32	8.54	3.0	16600
14	4	First time	12.96	15.40	7.87	2.6	76000
	41R	First time	16.96	18.38	7.72	2.5	
15	1	Second time	47.86	63.67	17.62	2.6	92000
16		Third time	83.75	102.04	23.48	4.9	84400
17	4 FR	Third time	83.78	98.59	21.50	3.8	84400
18	1	Fourth time	93.72	172.52	27.55	4.2	84000
19	5	First time	21.02	28.61	9.31	0.9	36000
20		Second time	76.07	175.73	20.54	1.4	52000
21	1	Third time	37.04	57.21	14.49	1.5	68000
22		Fourth time	52.05	59,04	16.73	1.9	44000
23	6	First time	18.51	19.39	11.07	0.9	64000
24	1	Second time	30.51	32.26	17.22	0.5	84000
25	6 LR	Second time	30.01	32.26	17.08	0.6	
26		Third time	37.04	77.65	17.66	1.3	68000
27		Fourth time	37.54	38.80	16.41	2.5	36000

Note: FR: Field replicate sample

LR: Laboratory replicate sample

2.21 Result of the Environmental Parameters for Water Quality in Domestic Wastewater (2 times sampling points)

	T		<u> </u>		Paramet	ers	
No.	Point	Time	COD_{Mn}	CODec	BOD,	Oil	Fecal coliform
			(mg/l)	(mg/ℓ)	(mg/ℓ)	(mg/ℓ)	(col./100mℓ)
1	1	First time	18.13	19.20	7.42	0.4	18600
2		Second time	20.14	24.09	7.56	1.0	22000
3	2	First time	86.60	99.41	18.73	2.0	84000
4	1	Second time	92.65	102.11	19.26	2.0	88000
5	1	Blank	0	0	0	0	0
6	13	First time	56.18	68.17	21.31	1.2	28000
7		Second time	55.39	64.12	19.34	1.0	34000
8	4	First time	14.10	16.02	6.31	0.6	76000
9		Second time	22.66	25.33	11.07	2.2	94000
10	5	First time	26.12	27.13	12.05	3.3	36600
11		Second time	11.08	11.24	5.14	2.0	40200
12	6	First time	10.57	11.24	5,03	2.1	38800
13	6 FR	First time	15.11	17.15	4.17	2.6	38800
14		Second time	15.08	17.15	4.04	2.5	41200
15	7	First time	14.10	15.19	6.24	1.9	68000
16	7 FR	First time	19.13	23.28	10.35	1.0	•
17		Second time	43.30	53.50	11.06	2.6	76300
18	8	First time	20.57	21.02	8.17	0.8	52000
19		Second time	43.23	45.24	15.86	2.4	108000

Note: FR. Field replicate sample

2.22 Result of Nutrients Parameters for Water Quality in Domestic Wastewater (4 times sampling points)

			[<u>-</u>		Parame	ters		
No.	Point	Time	N-NO,	N·NO,	N-NH,	T-N	P-PO ₄ ⁻³	T-P
	1 1		(mgN/ℓ)	(mgN/ℓ)	(mgN/ℓ)	(mgN/ℓ)	(mgP/ℓ)	{mgP/ℓ}
l	1	First time	0.030	0.124	3.99	16.99	2.97	3.16
2	}	Second time	0.039	0.131	3.28	17.82	3.12	3,60
3		Third time	0.029	0.126	3.87	18.62	2.69	3.70
4	ļ	Fourth time	0.033	0.193	2.98	26.90	3.01	3,60
4 5	2	First time	0.296	0.342	1.75	13.37	0.97	2.94
6		Second time	0.293	0.360	1.97	9.23	0.87	2.56
7	2 FR	Second time	0.271	0.249	1.95	9,31	0.85	2.58
8		Third time	0.167	0.151	0.81	7.85	0.70	1.94
9	ł	Fourth time	0.301	0.455	1.17	9.85	0.61	1.98
10	3	First time	0.154	0.272	0.93	12.23	0.07	1.36
11		Second time	0.137	0.306	1.29	6.25	0.10	1.08
12		Third time	0.117	0.269	1.02	6.33	0.09	0.34
13		Fourth time	0.191	0.261	1.37	6.94	0.12	0.46
14	4	First time	0.045	0.302	3.08	19.13	1.52	2.74
15		Second time	0.101	1.009	5.78	25.80	2.03	3.94
16		Third time	0.079	0.877	7.81	40.14	1.55	1.91
17	4 FR	Third time	0.071	0.858	7.76	41.03	1.54	1.90
18		Fourth time	0.098	0.753	5.91	27.66	1.78	2.11
19	5	First time	0.042	0.222	3.92	30.31	1.00	2.46
20	1	Second time	0.061	0.218	4.72	29.09	2.69	3.28
21	i	Third time	0.088	1.367	3.80	18.54	2.19	2.89
22		Fourth time	0.049	0.257	7.12	44.83	3.14	3.32
23	6	First time	0.090	0.621	4.84	9.87	0.97	1.81
24		Second time	0.087	1.341	7.77	7.94	0.90	1.64
25		Third time	0.108	0.570	4.86	10.40	0.70	1.58
26	<u>.l</u>	Fourth time	0.102	0.232	1.26	10.26	0.81	1.62

Note: - FR : Field replicate sample

2.23 Result of Nutrients Parameters for Water Quality in Domestic Wastewater (2 times sampling points)

	T				Parame	ters		
No.	Point	Time	N-NO ₂	N·NO ₃	N-NH	T-N	P-PO ₄ ³	T-P
			(mgN/ℓ)	(mgN/ℓ)	(mgN/ℓ)	$(nigN/\ell)$	(mgP/ℓ)	(mgP/ℓ)
1	1	First time	0.590	0.310	1.38	3.42	0.03	1.4
2	1	Second time	0.670	0.303	1.54	3.53	0.09	1.29
3	2	First time	0.130	0.197	4.38	39.60	5.20	5.97
4	j	Second time	0.157	0.310	4.05	72.45	4.87	5.01
5	3	First time	0.152	0.502	1.04	14.09	0.21	1.50
6	Į	Second time	0.129	0.452	1.17	12.42	0.09	1.07
7	3 FR	Second time	0.130	0.459	1.17	12.32	0.09	1.08
8	4	First time	0.159	0.732	3.62	20.59	1.49	1.66
9		Second time	0.187	0.573	4.07	29.55	1.57	1.12
10	5	First time	0.036	0.257	2.8	15.68	1.66	1.66
11		Second time	0.091	0.250	3.37	16.24	1.59	1.98
12	6	First time	0.089	0.350	1.46	8.65	0.09	1.42
13	6FR	First time	0.087	0.357	1.48	8.50	0.10	1.45
14		Second time	0.138	0.841	1.81	6.08	0.73	1.86
15	7	First time	0.054	0.227	3.36	21.60	2.28	1.62
16		Second time	0.087	0.352	1.96	45.07	2.39	1.57
17	8	First time	0.069	0.191	2.56	21.29	1.33	1.68
18	ł	Second time	0.055	0.234	3.60	31.45	2.45	2.27

Note: FR: Field replicate sample

2.24 Industrial Wastewater Discharge

	[]	N	[Flow		W	ind	
No.	Date	Time	Sample	Point	Name of pollution	S	V	Q	Direc-	V	Remarks
	1		ID	İ	source	<u>(m²)</u>	(m/s)	(m³/s)	tion	(m/s)	
1	July 27	10,15,	l ₂	2	Coc 6 and Deo Nai	6.0938	0.775	4.7227	SW	2.5	
	Ť		1		Coal Mines				l	l	
2	July 22	15*50'	I,] 3	Cam Pha Center	0.0875	0.023	0.0021	SE	0.6	
	,				Mechanical Co.				1		
3	July 27	11h40'	I,	4	Cam Pha Center	0.0048	0.143	0.0007	SW	0,4	
				l	Market						
4	July 27	13530	I,	5	Cam Pha Beer Factory	0.0051	0.091	0.0005	SW	1.3	
5	July 27	1410	ı,	7	Quang Hanh Mineral	0.0245	0.125	0.0031	SW	0.4	
			i		Water Plant			ļ .			
6	July 27	1450	l _a	8	Tan Lap Coal Mine	0.1465		0.0523	SW	0.6	
7	July 27	16°00'	[I ₉	9	Ha Lam Coal Mine	0.0928	0.588	0.0546	SW	1.2	l
8	July 27	15,525,	I_10	10	Ha Tu coal Mine	0.4053		0.2533	SW	1.1	
9	July 27	16*40'	I ₁₂	12	QNPC Guest House	0.0104	0.140	0.0015	SW	0.6	
10	July 23			13	QN Provincial Hospital	0.0159	1.000	0.0159	SE	1.8	
11	July 24			14	Vuon Dao Market	0.0197	0.044	0.0009	SE	0.5	
12	July 23	11h	I _I	15	QN Beer Factory	0.0378	0.255	0.0096	SE	0.8	ł
13	July 26	18520	i ,6	16	Deo Sen Waste	0.0174	0.144	0.0025	SW	0.5	two
				ļ	Dumping Site						profiles
14	July 24	15 ^h	1,8	18	Ha Long Ship Building	0.0020	0.118	0.0002	E	1.4	
					Fac. (1)					ļ <u>.</u>	
15	July 24	10545	130	20	VINAFOUR Wheat	0.0182	0.107	0.0020	Е	1.0	l .
	1				Powder Mill			1			
16	July 23	14,50	՝ հո	11	Nam Cau Trang Coal	ļ	ļ	0.0125	SE	2.0	
		1			Processing Fac.			0.0005			
17	July 24	17h15	l ₁₇	17	Frozen sea Products			0.0005	E	1.1	
ļ. <u></u>				1	Processing Plant						
18	July 22	12h00	' I ₁	1	Cua Ong Coal	1		NA			
 	1	1	: ;		Processing Plant			N1 A			
19	July 27	11005	I ₆	6	Vung Duc Coal			NA	!		
	1, , , ,	1,63.45	.	1	Shipping Port	• • • • • • • • • • • • • • • • • •		N. A			
20	July 24	1545	1,9	19	Ha Long Ship Building	1		NA			
1	l	_i		L	Factory (2)	<u> </u>	<u> </u>	1	<u> </u>	.1	 _

2.25 Domestic Wastewarter Discharge

,		₁		<u> </u>		Flow Wind			nd		
No.	Date	Time	Sample	Point	Name of pollution	S	v 1	Q	Direc-	V	
IXO.	Date	Time	10	rome	source		(ni/s)	(m³/s)	tion	(nı/s)	j
						(m²)					
1	July 28	11124	D_{1+1}	!	Cua Ong, fishing	0.0219	0.480	0,0105	SW	5.2	
	i 1		,		harbour - Lo Voi						
2	July 28	17530	D_{t-2}		lake area, near-by Cua	0.0266	0.600	0.0159	SW	2.0	
	_		· -		Ong market						
3	July 28	22,45	$D_{1/3}$!		0.0270	0.600	0.0162		0.0	
4	July 29	6*15	$D_{1\cdot 4}$			0.0104	0.250	0.0026		0.0	
	July 28			2	Cam Pha, Coe 6	0.0082	0.100	0.0008	SW	1.3	
5	July 28	11,20	\mathbf{D}_{t+1}	2		0.0002	0.100	0.0008	311	1.5	
					Bridge, near-by the					<u>-</u>	
6	July 28	17555	$D_{2\cdot 2}$		Cant Pha market	0.0094	0.179	0.0017	SW	0.1	
7	July 28	23115	D ₂₊₃			0.0311	0.227	0.0071	l	0.0	!
8	July 29	6150	$D_{2,4}$	Į.		0.0188	0.250	0.0047	SW	1.2	
9	July 28			3	Cam Pha, Trang Bridge	0.1794	0.392	0.1645	SW	0.4	
_	1.2.7.2.		,.1		on the old						
10	July 28	18 ^h 25	D		18 Road	0.1104	0.222	0.0245		0.0	
					10 Ktaa	0.1826	0.211	0.0385		0,0	ł
11	July 28									the second of the second	
12	July 29	7,50				0.1676	0.250	0.0419	SW	0.1	
13	July 26	5515	D_{i-1}	4	Hon Gai near-by	0.0930	0.107	0.0100		0.0	!
1	l				Halong II Market				1		.
14	July 26	12,00	D ₃₋₂			0.0848	0.094	0.0080	SW	2.1	
15	July 26					0.0836	0.100	0.0084	SW	1.0	l
16	July 26					0.0691		0.0069		0.0	
17	July 25	5 ^h 30	4	5	Bai chay, near by the	0.0718	0.100	0.0072	SW	0.4	\ -· · · · · - · · · · · · · · · · · · ·
1 ''	July 23	3.30	D_{i-1}	'		0.0710	0.100	0.0072	3"	0.4	
1-2	1	1			Post Office	0.0000	0.003				I
18	July 25					0.0772	0.093	0.0071		0.0	} [
19	July 25					0.0898	0.114	0.0102	SW	2.8	
20	July 25	23,30	D_{5-4}		l	0.0557	0.100	0.0056	1	0.0	
21	July 25	515'	D_{6-1}	6	Bai chay, near by the	0.0084	0.333	0.0028		0.0]
	1		6-1		Thanh Nien	1		1		1	1
22	July 25	11335	D6.2		Hotel	0.0116	0.600	0.0070		0.0	1
23					33040	0.0088	0.500	0.0044	SW	0.5	
				-		0.0081	0.430	0.0035	3''	0.0	ļ
24	July 25										
25	July 28	10,36	H_{k-1}	ì	Cam Pha, Cau 1 gate	0.0811	0.556	0.0450	SW	0.8	i l
		1			on the 18				. [
26	July 28	16°40	$B_{1,2}$	i	Road	0.0772		0.0406	SW	0.7	
27	July 28	12 ^h 45		2	Cam Pha, far from	0.0565	0.050	0.0028	SW	0.4	ļ
1	['		'''		Center cross	l		1		1	
28	July 28	18 ^b 50	112.2	-	100m	0.0537	0.046	0.0025		0.0	· [- · · · · · · · · · · · · · · ·
29			11 11 11	3	Cam Pha, Ba Toa	0.0405		0.0149		0.5	
1 29	Juny 28	110.10	113.1	,		10,0403	0.307	0.0149	3"	1 0.5	
		1-23			Bridge, near by	0.0430	0.303	0.0170		- 7.7	
30	July 28	16°20		1	the Sport Ground of the	0.04.50	0.393	0.0169	sw	0.6	
				_	Cam Pha town					_	ļ
31	July 26	6 40) II ₄₋₁	4	Inside the Children	0.1770	0.033	0.0059	1	0.0	
l		1	1	1	Culture Hall]	l		.L	.[
32	July 26	10,50) H ₁₋₂	1	area	0.1875	0.110	0.0206	SW	1.3	1
33				5	Hon Gai, Bridge 1, Cao					0.0	
`^`	1.07,00	` · ^:	` `` ⁵⁻¹	1	Xanh street		1	1	1	","	
1		1183	-)		Traini socci	01073	0.070	17077	CUI	2.2	-1
34					1,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.1872	0.078		_ •		-
35	July 26	5 7 7 50	H_{6-1}	6	Hon Gai, Bridge II, Cae	0.1235	0.111	0.0137	' [0.0	1
					Xanh			_ [
36	July 26	6 1110	O']_H ₆₋₂	_	street	0.1065	0.086	0.0091		2.1	
37			0 H, ,	7	Hon Gai, inside the	0.0794	0.071	0.0057		1.1	
	' "		""		Hon Gai harbour		1	1	j		1
38	July 20	5 100				0.0850	0.111	0.0094	SW	1.7	- [
					D.: O						
39	July 25	612	0' H ₈₋₁	8	Bai Chay, Opposite the	0.0139	0.286	0.0040	SW	0.8	
		-		_	Heritage	.		-		_ [
40	July 25	112 3	0 $H_{s,2}$	1	Halong Hotel	0.0086	0.750	0.0065	SW	1.6	J

2.26 River Water Discharge

	[_ 		1			Flow	1	Wi	nd	
No	Date	Time	Sample ID	Point	Name of poliution source	S	ν	Q	Direc	v	Remarks
						(m²)	(n\'s)	(m³/s)	tion	(m/s)	
<u> </u>	July 13	154	$P_{1,1}$		Yen Lap Dum	12.0648	1.023	12.3387			two profiles
2	July 18	15'20'	P _{1.2}		Note that the second control of the second control of the	0.0648	0.300	0.0195	S	2.3	
3	August 7	8,30,	P _{1.3.}		111, post plane () and () an	0.0618	0.300	0.0195	*********	0.0	
4	August 8	9,30,	PLL		and the state of t	1.6520	0.463 0.860	0.7614 0.3355		0.0	two profiles
5	July 16	9,30,	<u></u>	2	Buyt Xe Bridge	0.3901	0.316	0.3333	s	1.8	and the second of the second
66	July 18	11,00,	P2:2.			0.3901	0.310	V.1233			Not flowing
7	August 7	91351	Pala		***************************************	36 1000	0.538	14.1900		0.0	nornowing
8	August 8	10,30.	Pa		The Park St.	26.4000 9.8488	0.559	5.5063		00	nine profites
9	July 13	13 ^h	Park	3	Troi Bridge	6.9093	0.527	3.6431	SE	1.7	nine profiles
10	July 18		P3. 2.			14.0153	0.114	1.5991		0.0	seven profiles
11	August 7	10 ⁵ 25' 11 ⁵ 25'	P3:3			66.9540	2.148	143.810		0.0	nine profiles
12	August 8	11-23	P3.4			00.9540	2.140	7		0.0	mik presides
13	July 13	10,00.	P ₄₋₁	4	Da Trang over-flowing Dam	3.0469	0.580	1.7672		0.0	
34	July 18	8,10 ,	P4.2			3.6269	0.232	0.8427	SE	2.7	two profiles
15	August 7	14'25'	P4.3	B		15.7184	0.054	0.8439		0,0	three profiles
16	August 8	14,12,	Pe	1		36.6720	0.182	6,7572		0.0	three profiles
17	July 15	17'00'	P ₃ 1	5	Du Trang Cho over	0.7039	0.978	0.6884		0.0	two profiles
l					flowing Dam						
18	July 19	15,10,	P _{5.2}			0.6453	0.881	0.5682	SE	0.7	two profiles
19	August 7	14,00	P _{5 3}			1.2817	0.645	0.8266	NW	1.9	two profiles
20	August 8	15'15'	P _{s. s}			11.1048	0.139	15.4693		0.0	two profiles
21	July 15	16,00.	P _{5.1}	6	Dong Vai	6.9180	0.144	0.9976	N-NW	1.0	
22	July 19	155051	P6. 2			5.2520	0.086	0.4517	N-NW	1.0	mark a sance il marco omice il consecuti del acco
23	August 7	16,00.	P6.3.			3.0176	0.170	0.5130		0.0	
24	August 8	16,42,	Pala			10.9180	0,600	6.5508		0.0	
25	July 15	14,30,	P _{1.1}	7	Vu Oai over-flowing Dam	3.1641	0.505	1.5987	S	2.3	
26	July 19	145251	P2.2			2.2695	0.443	1.0013	<u> </u>	2.7	
27	August 7	15,2,	P, ,			1.3027	0.350	0.4556		0.0	
28	August 8	15'50'	P7. 4			12.1641	1.800	21.8954		0.0	
29	July 15	12,00,	Pan	8	Vu Oai Coal Harbour	59,4920	0.015	2.7039	SE	1.9	
30	July 19	10,12,	P _{1.2}			140.9180	0.015	2.1420	SE	2.6	
31	August 7	12,10,	Pg. 3.			151.3590	0.011	1.5999			
32	August 8	12,45,	P _B			176.9340	0.450	79.6203			
33	July 16	16,12,	P _{9.1}		Ha Khanh River	0.1904	0.580	0.1105	E	1.3	
34	July 19	11 20'	P _{9.2}			0.1665	0.590	0.0982	<u>E</u>	0.8	
35	August 7	13'00'				0.1157	0.390	0.0451	E	2.1	
36	August 8	13,32,	Р,		to and the contract of the same of the sam	3.8369	1.800	6.9065	E-SE	1.1	·
37	July 16	14'00'		10	Hoa Chat Bridge	0.0981	0.520	0.0510	SE	2.5	
38	July 17	16°30'				0.0844	0.480	0.0405	SE	3.5 0.0	
39	August 7	10'55'				0.0319	0.120	0.0038	en		
40	August 8	10,30,		<u> </u>		1.8496	0.920	0.5307	<u>St</u>	1.1	
41	July 14	18,00,		111	Ha Phong Bridge	0.8091	0.667	0.5397	SE	2.2	
42		15,50,		<u> </u>		0.7129	0.739	0.5268 0.1442	SE	0.0	
43		11,42,		Ł. 		0.4507	1.900	0.1112	1	0.0	
44		16,30,		Ļ.			***	0.9270	NW	0.5	
45		16'50'		i	VL. ct., p.24	0.1031	0.700	0.0722	S	0.2	
46		14,12,			Khe Sim Bridge	0.1028	0.054			0.0	· · · · · · · · · · · · · · · · · · ·
1 47	August 7	16'35'			, , , , , , , , , , , , , , , , , , ,	0.0488	1.077	0.0171		0.0	
48		16,00,				0.1023	0.310	0.0741	s	3.1	two profiles
49		14,20			Non C C			0.0295	SE	2.8	two profiles
50		13'10'			Nam Cong Gale	0.1226	0.241	0.0293	36	0.0	170 Profits
51		15,50				1.7500	0.637	1.1094		0.0	two profiles
52		15*30	ed 12 10 10 10 10 10 10 10 10 10 10 10 10 10			1.6045	0.476	0.7642	SE	4.9	two profiles
53		13,10			Bridge № S	1.1846		0.3199	SE	4.4	two profiles
51		10*45		i 14	DUNEC IV- 3	9.5098	0.251	2.3837	J. SE	0.0	two profiles
55		15,00		ł		4.3331	0.265	1.1463	+	0.0	two profiles
56	* * * * * * * * * * * * * * * * * * * *	15,00		L.		9.9613	0.237	2.3608	SE	1.1	Sas Profiles
57		10,30			Mana Duana Bádas	14.4038	0.183	2.6359	SE	3.1	
58		9,50		<u>1 15</u>	Mong Duong Bridge	12.3538		2.0384	3E	0.0	
59		14,120		·		18.0913	0.105	6.7842	NE	2.1	
60	August 8	14'30	Pıs	Щ.		10.0713	1 0.575	0.70-72	. NE	1 6.1	