TABLES

Table 16.3.1 Increase of Pollutants from 1996 to 2010 by Sub-catchment Area

-	e of BOD Increase by sub-c	atchment	Area					Sbar	e of COD faceease by subs	tchment /	Vite				
Na.	Sub catalized Area	Daxa.	bel.	Live.	Non-S.	Total	Rask	No.	Sub-est-funent Azea	Dean.	huđ.	Uve.	Non S.	Total	Rati
4	Troi River	9.6%	29.9%	0.3%	0.65	40,4%	1	4	Trei River	9.0%	24.2%	0.2%	1.87	35 2%	1
7	Hong Gui North Basin	17.6%	0.07	0.2%	0.35	18.1%	2	7	Hoog Gai North Basin	16.4%	0.1%	0.2%	0.7%	17.3%	2
8	Hong Gai South Basin	9.2%	0.0%	0.1%	0.15	9.1%	3	8	Hong Gal South Basin	8.5 %	0.0%	0.17	0.2%	8.93	3
10	Cam Pha West Basin	4.8%	137	0.1%	0.1%	6.25	4	10	Cats Pha West Basin	4.4 2	1.3%	0.1 %	0.25	5.97	4
3	Bai Chay Basin	5.19	0.0%	0.1%	0.1%	5.3%	5	6	Dien Vong River	4.6%	0.1%	0.3%	0.17	5.1%	5
6	Dien Vong River	3.4%	0.0%	0.4%	0.05	3.9%	6	3	Bai Chay Resin	4.8%	0.0%	0.1%	017	5.0%	6
9	Ha Tu Basin	2.9%	0.27	0.1%	0.2%	3.7%	7	12	Cam Pha East Basin	0.3 %	4.4%	0.1%	0.2%	5.6%	1 7
13	Qua Ong Basin	0.3%	2.6%	0.0%	0.0%	293	8	9	Ha Tu Basin	2.7%	0.7%	0.3%	0.3%	4.0%	8
11	Cam Pha Central Basin	1.07	135	0.15	0.1%	2.5%	9	5	Man River	0.3 7	1.1%	0.1%	1,4%	3.3%	9
5	Man River	0.2%	1.4%	02%	0.4%	2.2%	10	13	Cua Ong Basin	0.3%	2.5%	0.0%	0.0%	2.87	10
2	Hung Thang Basin	1.7%	0.0%	0.1%	0.3%	2.1%	11	11	Caro Pha Central Basin	1.0%	1.4%	0.1%	0.24	2.6%	<u> n</u>
12	Care Pha East Basin	0.3%	1.2%	0.0%	0.1%	1.7%	12	2	Hung Thurs Basia	1.6%	0.0%	0.25	0.6%	2.3%	12
1	Mip River	0.7%	20.0	0.4%	0.0%	1.12	13	14	Mong Duong Kiver	0.4%	0.8%	0.1%	0.15	1.4%	13
14	Mong Duong Kiver	0.4%	0.2%	0.1%	0.0%	0.74	14	1	Mip River	1.0%	0.0%	0.39	0.07	133	1.14
15	Cat Ba Mand	0.07	0.0%	0.03	0.00	0.07	15	15	Cat Ba Mard	0.03	0.0%	0.0%	0.07	0.0%	15
	Total	51.2%	38.0%	2.69	2 2 7	100.07		1	Tetal	55.1%	36.9%	2.1%	3.9%	100.0%	·

bar	t of SS Increase by subcate	anent Are						Sbar	e of T-N Increase by Sub-ci	tehneut.	1148				
No.	Sub-catchroeat Area	Dine.	hđ.	Live.	N/e 5.	Total	Rask	Na	Sub-catchinerit Area	Dora.	hai.	live.	Non S.	Total	Rank
4	Troi River	4 2 %	11.8%	0,3%	1.1%	15.2%	1	4	True River	8.8%	21.6%	0.4%	2.1%	33.0%	1
9	Ha Tu Basin	13%	1.75	0.5%	7.6%	141%	2	7	Hong Gai North Basin	16.79	0.0%	0.2%	0.6%	17.5%	2
- 14	Mong Duong River	0.2%	2.0%	0.1%	9.0%	11.3%	3	8	Hong Goi South Basia	8.7%	0.07	0.0%	0.2%	8.9%	3
10	Cam Fha West Basin	20%	0.67	0.1%	7.9%	10.6%	4	6	Dien Vong River	5.5%	0.0%	0.5%	° 2.0	6.9%	<u></u>
6	Dien Vong River	2.1%	0.2%	0.4%	7.6%	10.3%	5	10	Cam Pha West Basin	4.0%	0.7%	0.0%	0.7%	5.4%	5
5	Man River	0.1%	0.6%	0.2%	7.0%	8.0%	6	3	Bal Chay Basin	5.0%	0.0%	0.27	015	5.3%	6
12	Cara Pha East Basin	0.1%	4.8%	0.1%	2.5%	7.6%	7	9	Ha Tu Basin	2.9%	0.4%	0.3%	0.9%	4.6%	2
7	Hung Gai North Basin	187	0.1%	0.3%	0.9%	7.3%	8	13	Cua Ong Basin	0.2%	3.4%	0.0%	0.1%	3.7%	8
8	Hong Gai South Basin	412	0.0%	0.2%	0.0%	42%	9	12	Caro Pha East Basin	0.2%	3.0%	0.0%	0.4%	3.6%	3
Ē	Cars Pha Central Basin	0.45	0,8%	0.19	2.4%	3.74	10	5	Man River	0.3%	0.1%	0.1%	2.3%	3.5%	10
33	Qua Oog Rusin	0.1%	1.1%	0.0%	15%	2.8%	11	2	Using Throng Basin	1.5%	0.0%	0.2%	0.67	2.1%	<u>_ 11</u>
1	Bai Chay Basin	2.3%	0.0%	0.1%	0.0%	2.4%	12	1	Moog During River	0.27	0.3%	0.2%	1.1%	2.1 %	12
	Mig River	0.5%	6.05	0.7%	0.2%	1.3%	13	1	Can Pha Central Basin	0.8%	0.7%	0.0%	0.3%	1.7%	13
-	Hang Thang Basin	0.8%	0.0%	0.2%	0.1%	1.1%	14	1	Mip Kiver	1.0%	0.6%	0.4%	0.0%	1.45	14
1	Cat Ba Mand	0.0%	0.0%	0.0%	0.0%	0.6%	15	1	Cat Ba bland	0.05	0.0%	0.07	0.0%	0.0%	15
	forat	25.9%	26.9%	3.4%	43.8%	100.03			Tetal	55.9%	30.9%	2.5%	10.7%	100.0%	!

Sa.	Sub-catchroest Area	Dono.	hd.	Live.	Non-S.	Total	Rank
- 4	Troi River	5.8%	16.6%	1.8%	10.5%	34.8%	1
7	Hong Gai North Basin	11.5%	0.15	0.0%	2.9%	14.5%	2
5	Man River	0.0%	03%	0.9%	75%	8.8%	3
6	Diea Vong River	4.2%	0.1%	2.8%	0.8%	7.9%	4
8	Hong Gai South Basin	5.8%	0.6%	0.0%	1.24	6.9%	5_
9	Ha Tu Basip	2.3%	0.2%	1.6%	2.0%	5.5%	6
3	Bai Chay Basin	2.87	0.0%	1.0%	0.7%	45%	7
2	Hung Thang Basin	1.2%	0.6%	0.0%	2.5%	3.7%	8
10	Cam Pha West Basin	2.3%	0.2%	0.0%	D.7%	3.2%	9
1	Mip River	0.07	0.0%	2.8%	0.0%	2.8%	10
12	Carn Pha East Busin	0.0%	03%	1.0%	1.0%	2.4%	11
13	Cua Ong Basin	0.6%	2.0%	0.0%	0.1%	21%	12
14	Mong During River	0.0%	0.1%	1.0%	0.8%	2.0%	13
11	Caro Pha Central Basin	0.0%	0.2%	0.0%	0.7%	0.9%	14
\$5	Cat Ba Island	0.0%	0.0%	0.0%	0.0%	0.0%	1 15
	Total	35.8%	20.3%	12.5%	31.4%	100.0%	

. :

Source : IKA Study Team

٢

16 - 27

No	Sub-catchment Area	1	B	OD (kg/s	123)			COD	Mn (kg	(day)	
•		Dom.	Ind.	Live.	Non-S.	Total	Dom.	Ind.	Live.	Non-S.	Tetal
1	Mip River	41	0	23	0	67	95	2	30	0	127
2	Hung Thang Basin	101	o	8	15	127	151	0	15	55	224
3	Bai Chay Basin	306	1	6	4	317	466	3	10	13	49
4	Troi River	574	1,795	IJ	37	2,423	875	2,363	22	178	3,43
5	Man River	14	82	10	25	131	30	140	14	137	32
6	Dien Vong River	206	1	22	2	231	445	7	- 28	14	49-
7	Hong Gai North Basin	1,051	1	12	19	1,086	1,603	5	20	66	1,69
s	Bong Gai South Basin	550	0	6	7	563	833	1	10	22	86
9	Ha Tu Basin	174	14	26	10	224	259	69	28	32	38
10	Cam Pha West Basia	236	75	5	4	373	427	125	5	1 15	57
11	Cam Pha Central Basin	62	77	4	4	147	95	136	5	15	25
12	Cam Pha East Basin	20	71	2	6	99	28	433	5	22	45
13	Cua Ong Basin	16	153	2	0	171	28	246	0	4 I	27
14	Mong Duong River	22	10	7		40	35	71	12	11	13
15	Cat Balsland	0	0		0 0	<u> </u>	0	c c	0	0	╆╍╼╾
	Total	3,432	2,280	153	134	5,999	5,376	3,604	204	591	· ·
	12	57%	33%	3%	2%	1007	55%	37%	2%	6%	100

Table 16.3.2 Share of Pollutant Increases by Pollution Source and Sub-catchment Area

No	Sub-catchment Area	T	\$	iS (kg'd:	1)			T-)	N (kgʻd	35)	
		Dom.	Ind	Lise.	Non-S.	Total	Dym.	Inð.	Live.	Non-S.	Total
1	Mip River	160	14	231	68	473	45	0	15	L	67
2	Hung Thang Basin	266	o	70	49	385	72	0	8	27	107
3	Bai Chay Basin	791	14	45	o	350	234	Ł	8	7	250
4	Troi River	1,470	4,138	118	-399	5,327	414	1,013	21	95	1,546
5	Man River	50	219	72	2462	2,803	16	34	6	108	164
6	Dien Vong River	745	61	152	2650	3,608	255	1	24	43	324
7	Hong Gai North Basin	2,723	52	105	- 313	2,567	783	1	8	27	819
8	Hoog Gui South Basin	1,421	1	55	10.00	1,487	405	0	0	- 11	-416
9	Ha Tu Basin	445	1,652	176	2,653	4,929	135	18	16	44	213
10	Cam Pha West Basin	714	193	40	2,783	3,730	159	31	0	- 33	25
11	Cam Pha Central Basin	147	291	30	\$26	1,294	.36	- 33	0	12	8
12	Cam Pha East Basin	49	1,696	20	892	2,657	9	139	0	19	16
13	Cua Ong Basin	42	397	15	539	993	9	161	0	5	175
14		56	697	52	3,151	3,956	9	16	3	66	99
15	Cat Ba Island	0	0		0		0	0	0	0	
	Total	9,052	9,425	1,181	15,371	35,059	2,615	1,445	110	501	4,65
	5	26%	27%	374	44%	100%	56%	31%	2%	11%	1002

No.	Sub-catchment Area		Т	-P (kg d	ay)	
		Dorn.	Ind.	Live.	Non-S.	Total
1	Mip River	0	0	24	0	24
2	Hung Thang Basin	10	0	0	22	3
3	Bai Chay Basin	24	0	9	6	3
4	Troi River	50	144	16	91	30
5	Man River	0	3	3	65	7
6	Dien Vong River	36	1	24	7	6
7	Hong Gai North Basin	100	1	0	25	12
8	Hong Gai South Basin	50	0	0	10	6
9	Ha Tu Basin	20	2	9	17	4
10	Cam Pha West Basin	20	2	0	6	1
n	Cam Pha Central Basin	0	2	0	6	
12	Cam Pha East Basin	0	3	9	9	2
13	Cua Ong Basin	0	17	0	1	
H	Mong Duong River	0	1	9	7	t
15	Cat Balsland	0	0	0	0	
	Tetal	319	176	105	272	50
	%	36%	20%	12%	31%	100

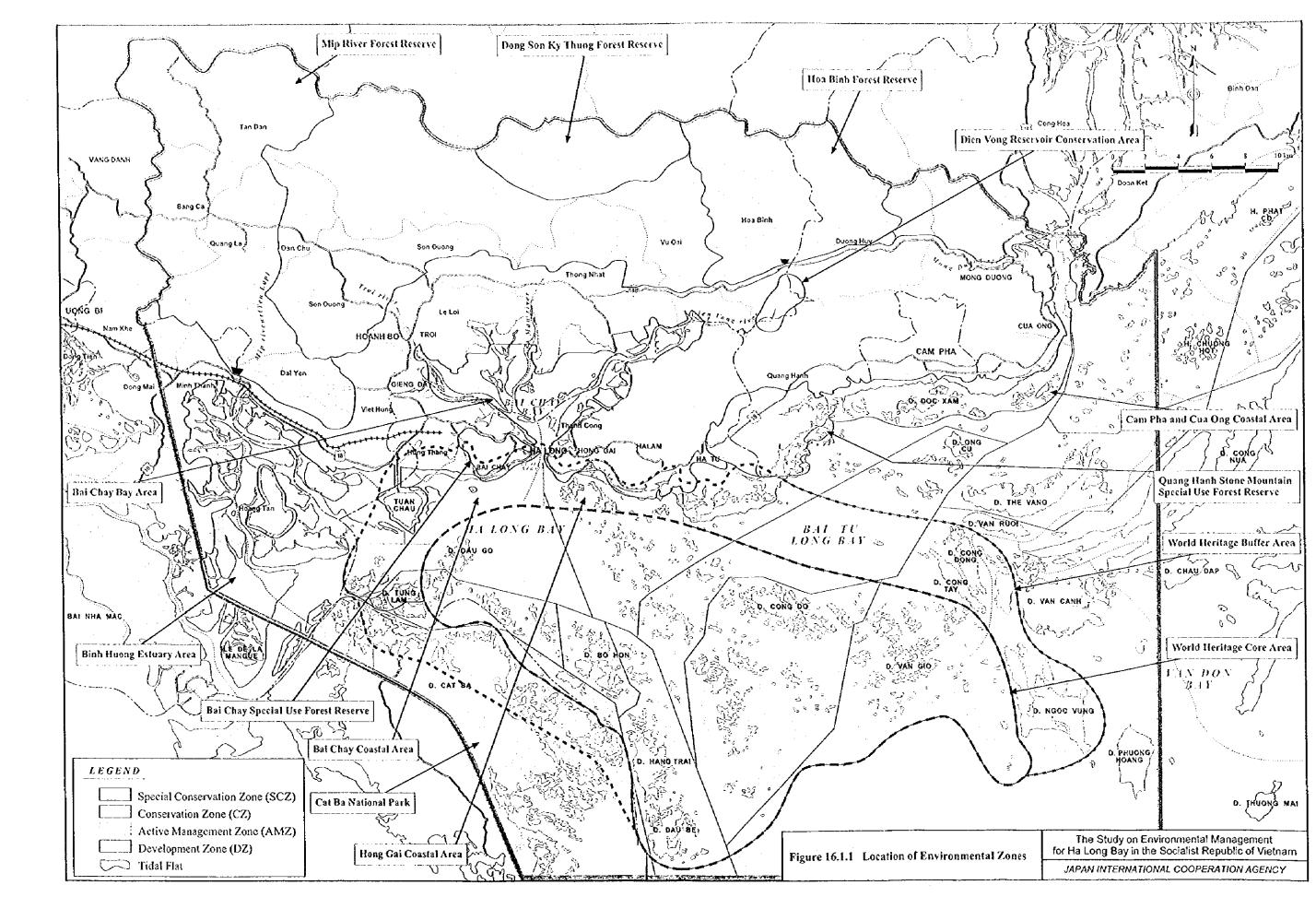
Source : JICA Study Team

111	e of BOD Increase by sub-c	atchment	Ares					Shar	e of COD Increase by subci	tencet /	V.c.				
Na	Sub-catchroent Area	Dom.	hđ.	Live.	Non-8.	Total	Rank	No.	Sub-catchinerist Area	Dien.	Eid.	Live.	Non-S.	Total	Rarik
4	Trol River	9.6%	29.9%	0.3%	0.67	40.45	1	4	Troi Kiver	9.6%	2 - 2 "	0.2%	18%	35.2%	1
7	Horg Gai North Basia	17.69	0.0%	0.25	0.3%	18.15	2	2	Hong Gal North Busin	16.19	0.19	0.2%	0.75	17.3%	2
8	Hong Gai South Basin	9.2%	0.0%	0.1%	0.1%	9.4%	3	8	Hong Giữ South Busin	8.55	0.6%	0.1%	0.2%	8,9%	3
10	Caru Pha West Basin	4.8%	13%	0.1%	0.1%	6 2 7	4	10	Care Pha West Basin	4.4%	1.3 %	012	0.2%	5.9%	4
3	Bai Chay Basin	5.1%	0.0%	0.1%	0.1%	5.3%	5	6	Dien Vong River	4.6%	0.1%	0.37	0.1%	5.1%	5
6	Lien Vong Kiver	3.4%	0.0%	0.1%	0.0%	1.97	6	3	Bai Chay Basin	4.8%	0.0%	0.1%	0.1%	5.0 %	6
9	Ha Tu Bosin	2.9%	0.2%	0.15	0.2%	3.7 %	7	12	Caru Pha Fast Basin	0.3%	4,4%	0.1%	0 2%	\$.0%	1.7
'n	Cua Oug Basin	0.3 %	2.6%	0.0%	0.6%	2.9%	8	9	Ila Tu Boin	2.7%	0.2%	0.35	0.3%	4.0%	8
11	Cun Pha Centrol Basin	1.0%	1.3%	0.1%	0.15	2.5%	9	3	Man Rives	0.1%	1.45	0.1%	1.45	3.3%	9
5	Man River	0.25	1.49	0.2%	0.4%	2.2%	10	13	Cua Ong Basin	0.3%	2.5%	0.6%	0.0%	2.8%	10
2	Thing Thing Basin	1.7%	0.07	0.1%	0.3%	2.15	11	1 H	Cam Pho Central Basin	1.0%	1.4%	0.1%	0.2 %	2.6%	1
12	Care Pha East Basin	0.3%	127	0.0%	0.1%	1.75	12	2	Hong Thing Basin	1.63	0.0%	0.2%	0.6%	2.3%	12
1	Mip River	0.75	0.077	0.1%	0.0%	1.1%	13	14	Mong Duong River	0.4%	0.8%	0.1%	0.1%	1.4%	11
14	Mong Duong River	0.4%	0.2%	017	0.07	0.7:3	L 14		Mip River	1.0%	0.0%	0.3%	0.07	135	
	Cat Ba Mand	0.0%	0.0%	0.0%	0.0%	0.0%	15	15	Cat Bu Mand	0.057	0.0%	0.0 %	0.07	0.05	1.15
	J.Mal	57.2%	38.0%	2.6%	2 2 %	100.0%	1	1	Total	55.1%	35.9%	2.1%	5.9%	100.03	1

Table 16.3.3 Increase of Pollution Loads in Sub-catchment Areas by Rank

-ter	e of SS Increase by subcutc	barent Are						<u>[58</u> 2r	e of T-N foctease by Sab-ci	tchmen).	Vrta				
No.	Sub-catchment Area	fkm.	Ind,	Lya.	Nop-S,	Tital	Rank	No.	Sub-catchment Area	DAR.	દત્ત્વ.	Live.	Non-S.	Total	Kank
4	Troi River	4 2%	11.8%	0.3%	4132	15.2%	1	4	Troi River	8.8%	21.6%	0.4%	2.1%	33.0%	I
9	ila Tu Bəsin	1.3%	4,7%	0.5%	7.6%	11.1%	2	7	Hong Gai North Basin	16.7%	0.0%	0.2%	0.6%	17.5%	2
14	Mong Duong Kiver	0.2%	2.6%	0.15	9.0%	11.3%	3	2	Hung Gai South Basin	8,7%	0.0%	0.0%	0.2%	8.9%	. 3
10	Caro Pha West Basio	204	0.6%	0.1%	19%	10.6%	4	6	Dien Vong River	5.5%	0.07	0.5%	0.95	6.9%	4
6	Dien Vong River	2.15	0.2%	0.4%	7.6%	10.3%	5	10	Caro Pha West Basin	4.05	0.7%	0.0%	0.7%	5.45	5
5	Man River	0.1%	0.6%	0.2%	7.0%	8.6%	6		Bai Chay Basia	5.0%	0.0%	0.2%	0.1%	5.3%	6
12	Cam Pha East Basin	0.13	4.8%	0.1%	2.5%	7.6%	7	5) Ita Tu Basin	297	0.47	0.3%	0.9%	4.6%	. 7
	Hong Gai North Basin	7.8%	0.1%	0.3%	0.9%	7.3%	8	1	Cua Ong Basin	0.2%	3.4%	0.0%	0.1%	3.7%	8
	Hong Gai South Basin	415	0.07	0.2%	0.0%	4.2%	9	1	Cam Pha East Basin	0.2%	3.0%	0.0%	0.47	3,6%	9
- 11	Cam Pha Central Basin	0.4%	0.8%	0.1%	2.4%	3.7%	10		Man River	0.3%	0.1%	0.19	2.3%	3.5%	К
13	Cua Obg Basin	0.15	1.1%	0.0%	1.5%	2.85	u I		Hung Thang Basin	1.5%	0.07	0.2%	0.6%	2.3%	<u>_ 1</u>
;	Bai Chay Basin	2.3%	0.0%	0.1%	0.0%	2.45	12	1	Mong Duong River	0.2%	0.3%	0.2%	1.45	2.1%	<u> </u>
1	Mip River	0.5%	0.0%	0.7%	0.2%	135	13	1	Cam Pha Central Basin	0.8%	0.74	0.0%	0.3%	1.7%	1
;	Hung Thang Basin	0.8%	0.0%	0.2%	0.1%	1.13	14	1	I Mip River	1.0%	0.0%	0.17	0.0%	1.1%	<u>1</u>
	5 Cat Ba Mand	0.0%	0.05	0.0%	0.07	0.00	15		S Car Ba Bland	0.07	0.05	0.0%	0.07	0.0%	1
	Total	25.9%	26.9%	3.4%	13.8%	100.07		T	Total	55.9%	30.97	2.5%	30.7%	100.0%	l

No.	Sub-catchment Area	Dexu.	hd.	Live.	Nog-S,	Tetal	Rani
	Troi River	5.8%	16.6%	1.8%	10.5%	34.8%	3
7	Hong Gai North Basin	11.5%	0.1%	0.0%	2.9%	14.5%	2
5	Man River	0.0%	0.3%	0.9%	7.5%	8.8%	3
6	Dien Vong River	4.2%	0.1%	2.8%	0.8%	7,9%	4
3	Hong Gai South Basin	5.8%	0.0%	0.07	1.2%	6.9%	_5
9	Ha Tu Basin	2.3%	0.25	1.0%	2.03	5.5%	6
3	Bai Chay Basia	2.8%	8.6%	1.0%	0.7%	4.5%	7
2	Hung Thang Rusin	1.2%	0.0%	0.0%	2.5%	3.7%	8
10	Caro Pha West Basin	2.3%	0.2%	0.0%	0.7%	3.2%	9
- 1	Mp River	0.65	0.0%	2.8%	0.6%	2.8%	10
12	Caru Pha Fast Basin	0.0%	0.3%	1.0%	1.0%	2.4%	1
13	Cua Oug Basin	0.0%	2.0%	0.0%	0.1%	2.1%	12
1-	Mong Duong River	0.65	0.1%	1.0%	0.8%	2.0%	13
11	Cam Pha Central Basin	0.0%	0.2%	0.0%	0.7%	0.9%	1
1	Cat Ba bland	0.0%	0.0%	0.0%	0.0%	0.0%	12
	Total	35.8%	20.3%	12.5%	31.4%	100.0%	


Source : JICA Study Team

15. 15.

FIGURES

Ţ

1

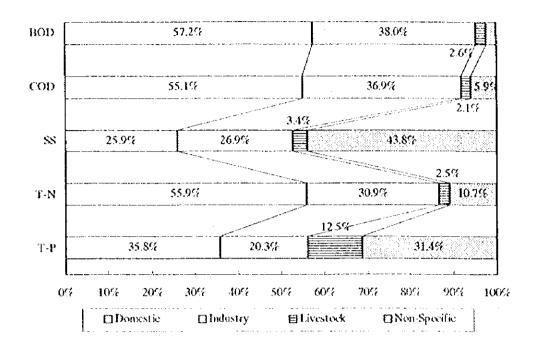
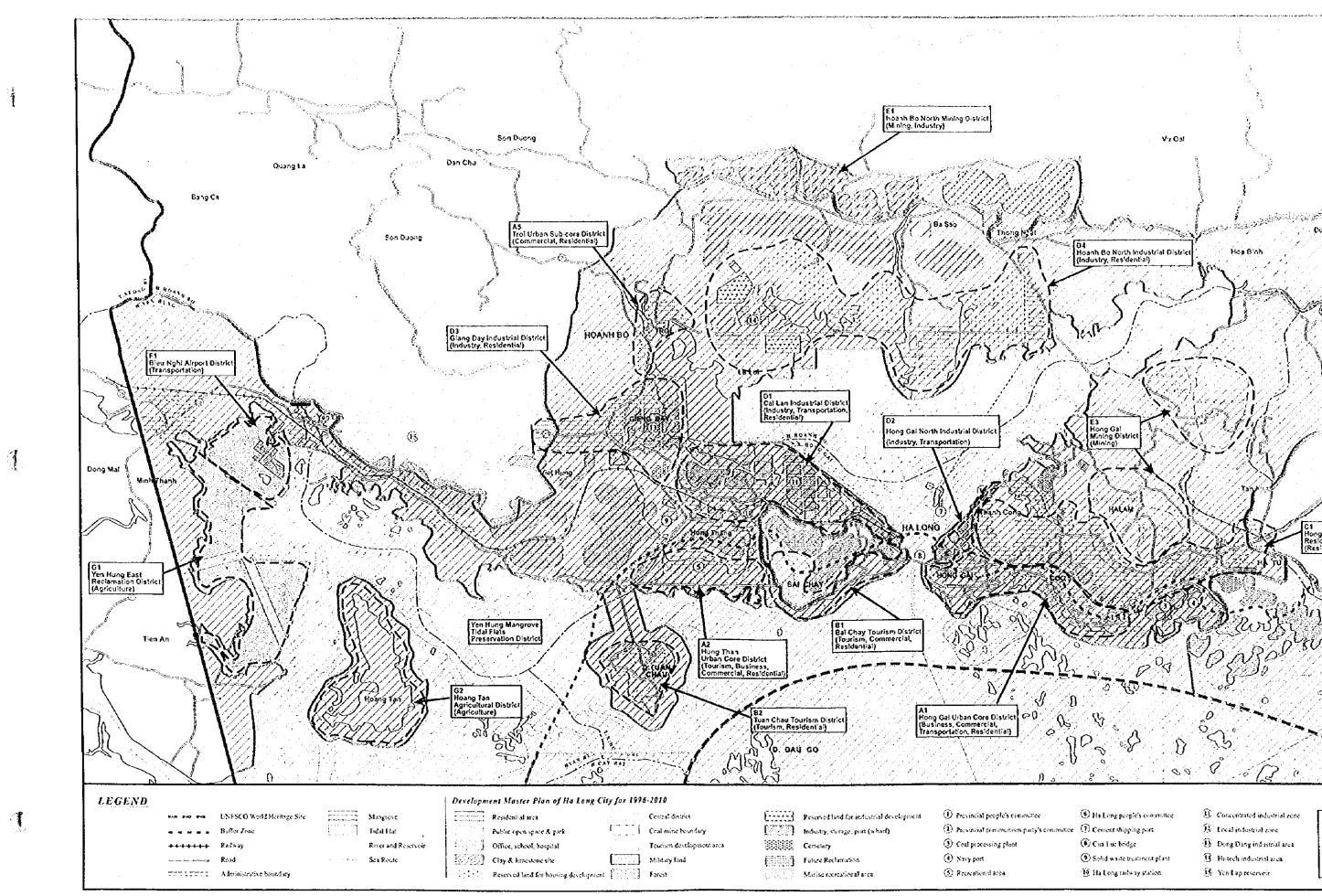
16 - 31

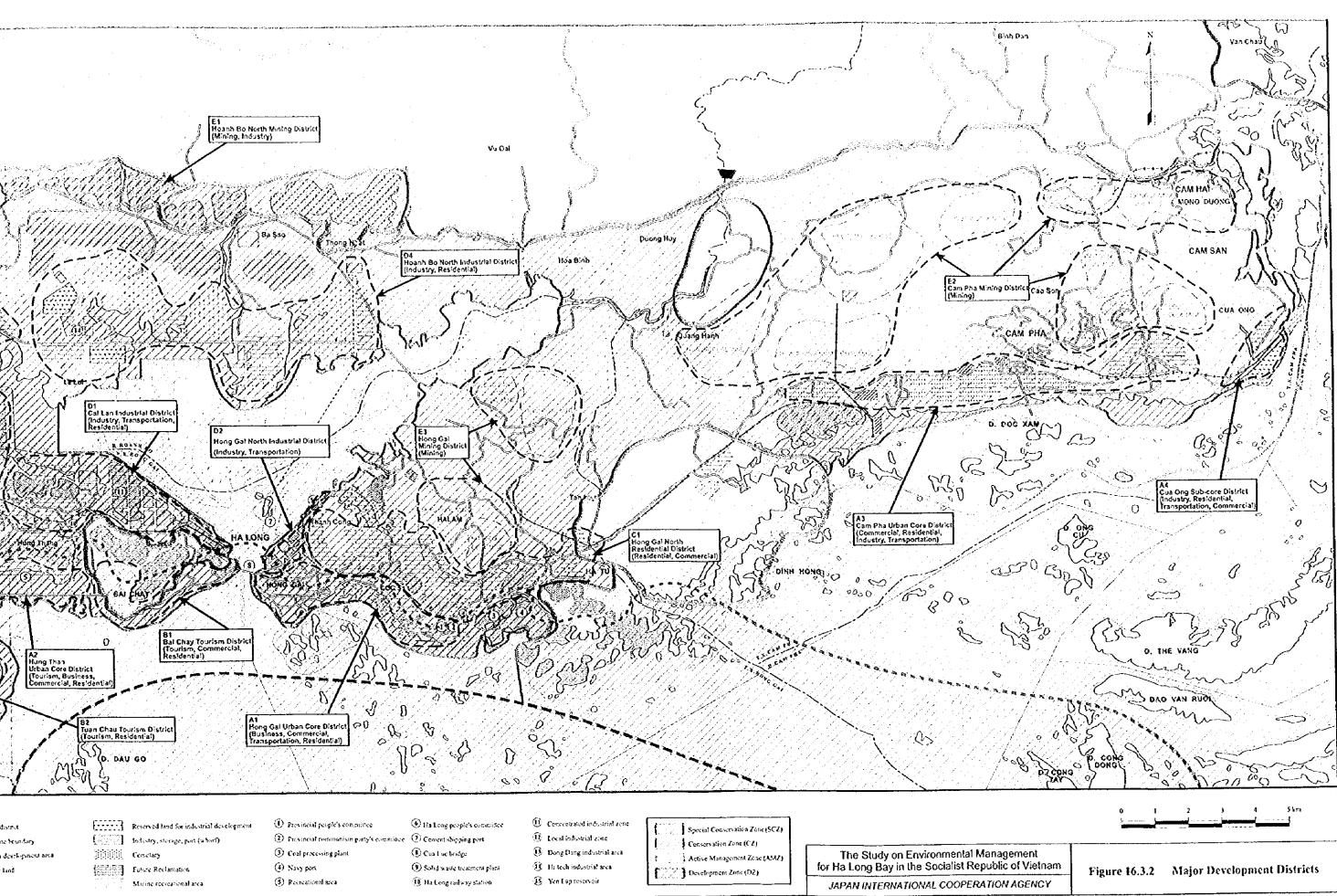
10 - 31

·

Ð

.


Figure 16.3.1 Share of Pollutant Increases by Pollution Source

.

Carlor and the second second

and the second second

district	Reserved land for industrial development		Ha Long people's committee	Concentrated industrial sene	Special Conservation Zone (SC2)		
ine beundary n devekipinent area	Industry, storage, port (a hort)	O Provincial communism party's committee O Coal processing plant Navy port	Cus Lue bridge	 Use Local Industrial zone Dong Dang industrial area Ha tech industrial area 	Conservation Zone (CZ) Active Management Zone (AMZ)	The Study on Environmental Management for Ha Long Bay in the Socialist Republic of Vietnam	
y Band	Future Reclamation Marine recreational area	 Recreational area 	 Ha Long radway station 	B Yen Lapreservoir	Development Zone (DZ)	JAPAN INTERNATIONAL COOPERATION AGENCY	Fig

16 - 35

•

Ð

CHAPTER 17

CHAPTER 17 TARGET CONSERVATION CRITERIA

17.1 Management Targets

17.1.1 Targets Management Items

Selection of target management items and setting of conservation criteria are essential, and the proposed projects should be implemented to attain these criteria. The target management items for Goal I: Absolute Protection of the World Heritage and Goal II: Achievement of Environmental Protection for Sustainable Economic Growths can be categorized into 2 groups namely, water quality, environmental resources including national environment and landscape, while management items for Goal III: Establishment of Enforcement Capability of Environmental Management consist of technical, institutional and financial capacities. Considering the approaches and strategies of the EMP, target items were selected for formulating the EMP as follows.

(1) Water Quality

The ambient water quality is one of the important indicators which can be a representative of the environment conditions in the EMP area. Thus, conservation of water quality in the bays is indispensable in the EMP area. In order to establish countermeasures to keep the water quality in good condition, clarification of water quality parameters and setting their allowable levels or loads are required. Key target items for management are selected from the water quality indicators.

- (2) Environmental Resources
- 1) Natural environment

Normally, forests, and fish and shellfish are defined as renewable natural resources. Also, tidal flats, mangrove swamps, and coral reefs can be considered to be environmental resources in the EMP area, because they are playing important roles in maintaining a rich environment. Thus, target items are selected from the components of natural environment.

Ţ

Ĩ

2) Landscape

To keep the beautiful and attractive landscape of the World Heritage area is an essential element of the EMP. Landscape in the EMP area is composed of shape and conditions of islands, water conditions surrounding islands, and their combination. For keeping the landscape of the World Heritage area in good condition, conservation of natural impression without artificial landscape is very important. In order to establish countermeasures to keep attractive and unique landscape, clarification of landscape elements and setting their desirable levels are required. Thus, the elements of landscape in the World Heritage area are selected as target for the EMP.

(3) Technical, Institutional, and Financial Capacities

For an effective EMP, it is essential to strengthen the technical, institutional, and financial capacities of responsible and executing agencies. Although it is hard to set rigid numerical indexes, target items must be selected and their desirable levels for capacity building set. Thus, the target items were selected for each component of capacity building such as manpower, skills, quality, responsibility demarcation, and budget and funding sources.

17.1.2 Target Items and Indicators

In line with the establishment of goals and approaches, the following are selected as main target items and indicators for each goal set for formulating the EMP.

Approach	Target Items	Indicators
Goal 1: Absolute Protection of the	World Heritage	
a) Keeping clean and clear water quality of the World Heritage area	water quality	transparency, BOD, COD, SS, T-N, T-P, oil, floating solid wastes
b) Conserving natural ecosystem and seascape of the World	water quality	transparency, BOD, COD, SS, T-N, T-P, oil, floating solid wastes
Heritage area	natural environment	coral reefs, tidal flats and mangrove swamps, fish and shellfish
	landscape	shape and conditions of islands, natural impression
c) Managing solid wastes disposal	water quality	floating solid wastes
Goal II : Achievement of Environm	nental Protection for Su	stainable Economic Growth
a) Controlling area wide pollution load		BOD, COD, SS, T-N, T-P
b) Conserving natural coast and tidal area	water quality	transparency, BOD, COD, SS, T-N, T-P, oil, floating solid wastes, coliform bacteria
	natural environment	tidal flats and mangrove swamps, fish and shellfish
c) Protecting forest and water	water quality	SS
quality	natural environment	forests coverage
Goal III : Establishment of Enforce	ement Capability of Env	
a) Capacity building of the responsible agency	technical capacity	monitoring activity, database quality, level of public awareness
	institutional capacity	responsibility demarcation, conservation criteria
	financial capacity	amount of budget, number of staff and equipment
b) Institutional set up for enforcement of the EMP	technical capacity	inspection quality, management level of measures
	institutional capacity	control power, licensing system
	financial capacity	funding sources, cost recovery system

Target Items and Indicators for Each Goal of the EMP

17.2 Basic Concept for Setting Conservation Criteria

First, examination of environmental conservation level in terms of water quality for the whole EMP area was implemented by comparison of scenarios. Secondly conservation criteria of each target item by environmental zones were examined. The procedure applied for setting conservation criteria is shown in Figure 17.2.1.

17.2.1 Examination of Environmental Conservation Level

(1) Setting Scenarios for Environmental Management Level

The following three scenarios of environmental management in the future (2010) are set for water quality in the bays. The scenarios were considered based on the

1

17 - 3

current progress of countermeasures and assumed assimilative capacity in the bays. Scenario I considers only the current progress of environmental controls including planned project which will have been done by 2010, namely "without the Environmental Management Plan (without the EMP). Scenarios II and III consider the levels of the pollution loads comparable to the assumed assimilative capacity of the bays. Scenarios set are as follows:

- Scenario I: Present progress of environmental control (without the EMP).
- Scenario II: Environmental control to keep pollution loads at the present level. This scenario also includes pollution control for specific areas such as the Bai Chay beach, Hong Gai and Cam Pha areas.
- Scenario III: Environmental control to reduce the present level of pollution loads (organic and inorganic pollutants, nutrients) in order to alleviate progress of eutrophication in the bays.

(2) Possible Projects of Each Scenario

Based on the sociocconomic frame and alternatives of countermeasures set above, the possible countermeasures set for each scenario are shown below and listed in Table 17.2.1.

- Scenario I: Sewage construction and management project in the Bai Chay area,
 - First stage of Ha Long City Water Supply and Sanitation Project (HWSSP),
 - Present practices of sanitation improvement,
 - Wastewater treatment to attain effluent standards for new industrial development projects including mining,
 - Present reforestation activities, and
 - Present pollution control for coal mining activities by VINACOAL.
- Scenario II: Projects mentioned in Scenario I,
 - Additional sewage and solid wastes control,
 - Wastewater treatment of existing factories to attain effluent standard,

。 う一般

- Imposition of stringent effluent standard to the new factories
- Additional reforestation of coal mining area and other bare areas, and
- Additional pollution control for coal mining activities
- Scenario III: Projects mentioned in Scenario I and II,
 - Additional sewage and solid wastes control,
 - Wastewater treatment of existing and future factories to attain more stringent effluent standards,
 - Additional reforestation of coal mining area and other bare areas, and
 - Additional pollution control for coal mining activities.
- (3) Future Pollution Loads by Scenarios

100

T

Projected future runoff pollution loads of Scenarios II and III are shown in Table 17.2.2-3 (for Scenario 4, see Table 14.3.1). Summarized projected runoff pollution loads are shown below:

					(Uni	ts: tons/da
	Items	BOD	COD _{Mp}	SS	T-N	T-P
Present (1996)	7.2	21.9	241	15.5	6.0
Future	Scenario I	12.9	30.2	272	20.0	6.8
(2010)	Scenario II	8.7	23.7	233	18.0	6.4
	Scenario III	6.4	21.3	168	14.7	5.9

Future Runoff Pollution Loads of Scenarios

Compared with the present pollution load, total runoff pollution load in 2010 of Scenario I will be 1.8 times in BOD, 1.4 times in COD, 1.1 times in SS, 1.2 times in T-N, and 1.1 times in T-P. While, Scenario III, total runoff pollution loads in 2010 will be about 0.9 times in BOD, COD, T-N, and T-P, and 0.7 in SS.

(4) Future Water Quality by Scenarios

The predicted water quality of Scenario I is shown in Figure 14.3.5 ~ 14.3.14 in Chapter 14 as that of "without an Environmental Management Plan". As for the predicted water quality of Scenario II and III is shown in Figure 17.2.2 ~ 17.2.5.

1) Water quality of Scenario I (without the EMP)

The causeway toward Tuan Chau island clearly separated the distributions of all water quality parameters by Scenario I. The distribution of such separated water quality parameters showed that the causeway prevented the water exchange through the northern channel of Tuan Chau island resulting in higher concentrations in castern side of the separated sea where pollution loads were distributed more than the western side.

1

2) Water quality of Scenario II (current pollution load conditions)

The concentrations of water quality parameters were lower than those by Scenario I inside and near the mouth of Bai Chay bay. No significant difference of the concentration was found in other areas between the results by Scenario II and those by Scenario I.

3) Water quality of Scenario III (reduced pollution load conditions)

The concentrations of all water quality parameters by Scenario III were the lowest in three scenarios inside and near the mouth of Bai Chay bay. The high concentrations of SS around the load points of Cam Pha by Scenario I and II were not found in the results by Scenario III. In offshore area, no significant difference of the concentration was found in all water quality parameters by Scenario III compared to those by Scenario I and II.

(5) Indicative Costs of Possible Projects by Scenarios

For comparative analysis of scenarios, environmental measures which will reduce runoff pollution load directory were selected among the several possible measures. Selected measures were domestic and industrial wastewater management (sanitation exclusive solid wastes management), and measures for mining, tourism and environmental resources.

Indicative costs for the possible projects by scenario relating to the water quality directly are compared in the next table by scenarios. Some costs differ by scenarios, while the others are common for all scenarios. Total indicative costs of the projects range from US\$ 35×10^6 of Scenario I to US\$ 191×10^6 of Scenario III.

17 - 6

Cost Items	Scenaria I	Scenario II	u: US\$ × 10 Scenario II
1. Sanitation	5.5	64,3	132.0
2. Environmental Measures for Mining	23.1	28.5	40.8
3. Environmental Measures for Tourism	1.2	1.2	1.2
4. Environmental Measures for Natural Environment	5.5	7.5	17.0
Total	35.3	101.5	191.0

(6) Comparison of Scenarios

The projected future water quality by the simulation model revealed effectiveness of each scenario to the ambient water quality in the bays. In the case of Scenario 1, the water quality for example COD_{Mn} in Bai Chay bay was estimated to increase from 4 mg/ ℓ to 5 or 6 mg/ ℓ in upper layer. The increase in COD_{Mn} will be most pronounced in the coastal area from Tuan Chau to Hong Gai areas, and it will extend out to the World Heritage core area. Thus, the projects in Scenario I are not enough to prevent water quality deterioration in the World Heritage core area, so more stringent countermeasures are required. In Scenario II, almost same level of the water quality as the present was projected.

In case of Scenario III with nearly the double cost of Scenario II, little changes of water quality were identified compared with Scenario II. These almost full-scale countermeasures can not improve the water quality in the bays drastically, especially in the World Heritage core area. This is because more than 50% of runoff pollution loads, SS and nutrients, arise from non-specific pollution sources which can hardly be control. It follows from this that the Scenario II level is relatively efficient one to conserve water quality in the bays.

Therefore, it is recommended that the Scenario II level, namely current pollution load level, be applied to establish management level of the whole MEP area from the viewpoint of efficiency of the projects.

17.2.2 Basic Considerations of Conservation Criteria by Target Items

Based on the examined management level, the conservation criteria is set corresponding to the utilization of the areas. For example, relatively stringent criteria may be required for Special Conservation zone (SCZ) such as the World Heritage core area. Those of CZ are also necessary to set stringent criteria next to SCZ. Therefore, applicable levels and classifications for setting the criteria should be based on the environmental zones. The following are basic concepts for setting conservation criteria of target items.

(1) Water Quality

In Vietnam, there is a set of ambient water quality standards authorized by GOV, such as the Coastal Water Quality Standard. However, they can not be directly applied to the conservation criteria for the EMP area due to their rather weak strictness of water quality values. Thus, an appropriate conservation criterion should be determined based on suitable water utilization of each environmental zone in the bays. The next table shows applicable level of water quality corresponding to the environmental zones.

Environmental zone	Applicable level	Main applied area
SCZ	Conservation of aesthetic and coosystem	World Heritage core area, coral reef
SCZ, AMZ	Conservation of bathing and fishery ground	World Heritage buffer area, fishery grounds, and bathing beaches
DZ, CZ	Conservation of living environment	Other areas

As a result of comparative analysis of scenarios, the present water quality levels could be applied for the management criteria on the whole. This is also grounded on the fact that the present water quality level in the bays was one of reasons to be inscribed in the World Heritage list.

More stringent criteria compared with the present water quality levels, however, are needed for some specific items and areas. For examples, floating solid wastes and oil slick should be controlled more strictly in order to conserve the beautiful seascape. For the areas such as Bai Chay area where a bathing beach is located, and Hong Gai and Cam Pha coastal areas where the present water is rather deteriorated by domestic or coal mining wastewater, the water quality should be improved. In particular, the water quality of the Bai Chay beach area shall be improved so it has good sanitary conditions and is more attractive for tourists.

(2) Environmental Resources

1) Natural Environment

a) Forest

The forest areas having significant functions of conservation of water resources and biodiversity are designated as the protected forest. The protected forest is managed in the same way as the present by the management of the Forest Protection Agency (FPA) and the Department of Agriculture and Rural Development (DARD). Other forest should be managed to conserve current forest vegetation ratio. The ratio can be discussed from the aspect of controlling SS runoff.

b) Tidal flats and mangrove swamps

The results of the Field Survey suggests that the tidal flats and mangrove swamps in the EMP area have a high productivity, and functions of purifying water quality and providing nursery ground. Considering these roles in the bays, it is proposed that management criteria be set so as to keep or increase these functions.

c) Coral reefs

Management criteria shall be on the basis of the distribution, species composition, and living coral cover considering the present conditions of coral reefs in the EMP area. It is recommended to manage the coral reefs so as not to worsen the current condition.

d) Fish and shellfish

Since fish and shellfish can be regarded as indexes of marine environment as well as economical values, it is recommended that their management shall be based on species composition and the amount of catches. Considering their present conditions, management criteria shall be set so as not to worsen the current condition.

2) Landscape

The landscape elements of the World Heritage area should be conserved as they are by preventing degradation activities and pressures. Therefore, the present levels and quality of the elements are regarded as the criteria.

(3) Technical, Institutional, and Financial Capacities

To judge the efforts taken for environmental management and see the progress, it is necessary to set clear target items and management criteria. At present, technical, institutional, and financial capacities for environmental management on Ha Long bay are not enough. Thus, the criteria should be set based on the desirable levels of each component. In particular, a scope of required monitoring activities including skills, equipment, financial back support should be taken into consideration.

17.3 Items and Classification of Conservation Criteria

In order to set target conservation criteria of the EMP area, the following items related to water quality and environmental resources are selected as the actual and quantitative management indexes considering the environmental zones. As for criteria of technical, institutional, and finical capacities, a qualitative approach is considered to be suitable for setting criteria.

17.3.1 Water Quality

(1) Management Indicators

The water quality is to be the most important and indispensable index for setting conservation criteria. The following 9 water quality indicators are selected as the actual index of the EMP.

1) Transparency

Transparency is an integrated index of clearness, visibility, turbidity, SS, and plankton numbers, and is easy to monitor by a Seechi disk. However, it has some

limitations to apply to shallow waters and to detect differences by water layer of the bay.

2) BOD and CODMa

1

BOD and COD_{Mn} are indexes of organic pollution mainly caused by human activities in the hinterland area and by primary production in the bay. These two indexes are also important for pollution load calculation.

3) T-N and T-P

T-N and T-P are indexes of nutrients causing eutrophication, and have close implication with primary production of the bay.

4) SS

SS is also an index of clearness, visibility, turbidity, and plankton numbers, and is an important substance of pollution load calculation. Moreover, it can make up for limitations of the transparency.

5) DO and pH

DO and pH are indexes standing for general conditions of water especially of habitat conditions for aquatic organisms.

6) Oil, Floating Solid Wastes, and Coliform Bacteria

These are indexes standing for nuisance issues of the bay from usage of natural resources, such as tourism, bathing, recreation, and landscape.

(2) Implication with Environmental Zones

1) SCZ

SCZ in the bays corresponds to the World Heritage core and buffer areas. The current mass balance of pollution loads of BOD, T-N, T-P and SS in this area revealed that the amount of load flowing into the bays from surrounding areas is fairly small, compared with the load of a primary production, recovery, or stirring up from the bottom as shown below. These are almost less than 1% in BOD, T-N, and SS. This means that the current water quality conditions of the bays are under the wide scale of natural dynamic balance, and there could be little room to

improve the water quality by controlling man-made pollution loads from the hinterland area.

			(Onn. tons, uay)
Substance	Pollution load inflow	Primary production, elution and others	Total load
BOD	10 (0.5%)	1,480 (99.5%)	1,490 (100.0%)
T-N	16 (1.1%)	1,414 (98.9%)	1,430 (100.0%)
T-P	6 (6.0%)	94 (94.0%)	100 (100.0%)
SS	200 (0.1%)	137,800 (99.9%)	138,000 (100.0%)

Although the bay's water quality of SCZ would be mesotrophic state, the current environmental status is considered in rather good condition because of the existence of coral reefs and fishing grounds in it. Moreover, a result of questionnaire survey conducted by the JICA study team shows that more than 80% of tourists interviewed are satisfied with the current water quality and landscape of the World Heritage area. Therefore, the current water quality conditions of the bay is to be a conservation criteria in SCZ.

Since the current water quality conditions of the World Heritage core and buffer areas are quite different from the western and eastern part of the area as shown below, the water quality conservation criteria should be set for the two areas.

Substance	Western part	Eastern part
Transparency (m)	2.7	3.7
BOD (mg/ ℓ)	1.7	1.1
COD (mg/ ℓ)	7.3	4.6
T-N (mg/f)	1.24	1.09
T-P (mg/ ℓ)	0.54	0.49
SS (mg/l)	4.8	4.0

2) CZ

CZ is mostly located in the eastern part of the bay surrounding the World Heritage core and buffer areas. This means that CZ is to be an area to protect SCZ and to keep almost same water quality level of the eastern part of the bay. Moreover, it also has the same characteristics of pollution load inflow as in SCZ as shown below. Therefore, the conservation criteria of CZ should be set based on the current water quality level of the bay.

			(Unit: tons/day)
Substance	Pollution load inflow	Primary production, elution and others	Total load
BOD	2 (3.5%)	55 (96.5%)	57 (100.0%)
T-N	4 (2.5%)	153 (97.5%)	157 (100.0%)
T-P	1 (8.3%)	11 (91.7%)	12 (100.0%)
SS	72 (0.0%)	147,186 (99.9%)	147,258 (100.0%)

3) AMZ

AMZ in the bay consists of five important areas, namely a) Bai Chay coastal area, b) Hong Gai coastal area, c) Bai Chay bay, d) Cam Pha and Cua Ong area, and c) Binh Huong estuary area mostly located along the coastal line. The conservation eriteria should be set considering the location, characteristics of pollution mechanism, and current and planned development activities of these areas.

a) Bai Chay coastal area

This area is about 25 km² which includes the Bai Chay beach, Hong Thang area, and Tuan Chau island up to a causeway to the Tuan Chau island, and it will be mainly used for tourism development. International and domestic tourists will be easy to contact seawater directly from beach and boat. The conservation criteria must be set to keep and enhance the tourism potential of the natural environment such as sea bathing, clean and clear coastal beach, beautiful land and seascape. It is also a part of the World Heritage buffer area. Therefore, the conservation criteria should be more stringent than those of other areas in AMZ such as the Hong Gai, and the Cam Pha and Cua Ong coastal areas.

Considering the current water uses for bathing during the summer season, the current water quality in this area could be acceptable for recreational uses. In fact, the current water quality meets the Coastal Water Quality Standard in Vietnam (TCVN5943). However, the current water quality is not suitable for bathing especially for coliform number, compared with the international standards such as the Japanese Standards of Bathing Purpose Water (less than 1,000 MPN/100 ml). This is mainly caused by the leakage of wastewater along the wharves, and it will require enough disinfection of treated wastewater. Moreover, solid wastes are floating on the sea and washing on to the shore. Thus, improvement of sanitary conditions is strongly required in this area as well as pollution load control.

According to the result of current mass balance of pollution loads in this area, the load flowing into this area is mostly coming from the Cua Lue strait by sea current. This means that the current water quality conditions of this area fully depend on the water quality of Bai Chay bay, and they could be manageable by controlling the loads from the strait. Thus, the conservation criteria in this area should have close relationship with the conservation criteria of Bai Chay bay.

Transparency and SS would be difficult to improve because of stirring up seabed sediment by waves and navigation boats. Considering actual sea bathing activities in the area, the current transparency and SS values would not strongly affect the local people and domestic tourists. Therefore, the conservation criteria of transparency and SS are set based on the current water quality.

				(Unit: tons/day)
Substance	Pollution load inflow from hinterland	Pollution load inflow from Cua Luc strait	Primary production, elution and others	Total load
BOD	0.3 (1.0%)	4.2 (14.7%)	24.1 (84.3%)	28.6 (100.0%)
T-N	0.3 (0.9%)	5.7 (16.7%)	28.1 (82.4%)	34.1 (100.0%)
T-P	0.1 (1.1%)	2.3 (26.1%)	6.4 (72.8%)	8.8 (100.0%)
SS	0.3 (0.0%)	14.7 (0.3%)	1,780.0 (99.7%)	1,795.0 (100.0%)

b) Hong Gai coastal area

This area is about 20 km² which includes Hong Gai beach, Cot 5 coal port area, and Nam Cau Trang coal port area, and it will be mainly used for urban development and coal shipping.

Since the current water quality has been degraded mainly due to the discharge of domestic wastewater from densely populated area, the first priority should be put on water quality improvement in the near shore area especially in organic substance such as BOD. This area is also a part of the World Heritage buffer area. Thus, the conservation criteria should be set at a similar level of the Bai Chay coastal area to prevent the water quality

deterioration in the buffer area. However, a water quality level of sea bathing is not required because of no plans to use the area for tourism purpose.

Since the current mass balance of pollution loads in this area shows same characteristics as the Bai Chay coastal area as shown below, its specific conservation criteria is to be set considering the criteria of the Bai Chay coastal area and Bay Chay bay.

				(Unit: tons/day)
Substance	Pollution load inflow from hinterland	Pollution load inflow from Cua Luc strait	Primary production, elution and others	Total load
BOD	0.5 (1.7%)	2.1 (7.2%)	26.7 (91.1%)	29.3 (100.0%)
T-N	0.5 (1.4%)	2.8 (8.0%)	31.7 (90.6%)	35.0 (100.0%)
T-P	0.1 (1.0%)	1.2 (12.1%)	8.6 (86.9%)	9,9 (100.0%)
SS	2.7 (0.8%)	7.3 (2.2%)	327.0 (97.0%)	337.0 (100.0%)

c) Bai Chay bay

This area is about 47 km^2 which includes whole Bai Chay bay and its coastal areas. Many development projects are planned to be implemented in this area, so the environment will be threaten by the impacts of pollution load increase and purification capacity decrease.

According to the current mass balance of pollution loads shown below, the amount of loads flowing into this area account for 5% in BOD, 12% in T-N, 15% in T-P, and 10% in SS. This means that the water quality conditions could be changeable by controlling man-made pollution load from the development activities in its hinterland.

				(Unit: tons/day
		Pollution load inflo	W	Pollution load
Substance Pollution load inflow from hinterland		Primary production, Total load clution and others		outflow through the Cua Lue strait
BOD	2.9 (4.6%)	59.6 (95.4%)	62.5 (100.0%)	6.3
TN	7.0 (12.0%)	51.5 (88.0%)	58.5 (100.0%)	8.5
T-P	2.9 (14.8%)	16.7 (85.2%)	19.6(100.0%)	3.5
SS	94.0 (10.2%)	828.0 (89.8%)	922.0 (100.0%)	22.0

Although the current water quality of the bay is rather good, it is easily degraded due to its semi-closed geographic condition. Moreover, the water quality of the bay has close link with that in the Bai Chay coastal area and the Hong Gai coastal area because of the pollution load from the Cua Luc

17 - 15

strait. In order to attain the conservation criteria set for the Bai Chay coastal area and the Hong Gai coastal area, the current pollution load to the bay can not be allowed to increase. Consequently, the conservation criteria of the bay is set based on the present water quality level.

豪

8

d) Cam Pha and Cua Ong coastal area

This area is about 45 km² which includes the coastal area of Quang Hanh, Cam Pha, and Cua Ong including Vung Due and Cua Ong coal ports, and the Mong Duong river mouth area. This area will be mainly used for urban development and coal shipping.

The current water quality in the offshore area is in rather good condition. In the near shore area, however, the water quality is fairly degraded by the pollution load from coal mining areas especially in SS. The values of SS usually exceed the Coastal Water Quality Standard in Vietnam in the near shore area. Although most SS load is expected to be derived from stirred up activities by waves, it is necessary to control SS run off caused by coal mining activities and to prevent expansion of water areas which have exceeding SS values in this area.

Much stringent conservation criteria would not be required for this area because it is apart from the World Heritage buffer area. Therefore, its conservation criteria should be set considering that of CZ.

			(Unit: tons/day
Substance	Pollution load inflow	Primary production, elution and others	· Total load
BOD	2.0 (7.8%)	23.8 (92.2%)	25.8 (100.0%)
T-N	3.5 (3.2%)	105.5 (96.8%)	109.0 (100.0%)
З-Р	1.0 (20.0%)	4.0 (80.0%)	5.0 (100.0%)
SS	72.0 (1.2%)	5,944.0 (98.8%)	6,016.0 (100.0%)

c) Binh Huong estuary area

The Binh Huong estuary area is about 110 km² which includes the Mip river mouth area, Minh Thanh, Hoang Tan, and the western part of the Tuan Chau island. The tidal flats in this area, including mangrove swamps, keep good ecological conditions at present. Not so many development projects are planned in this area, however, reclamation of tidal flats for expansion of agricultural lands could have major environmental impacts in future. Therefore, the conservation criteria should be set mainly for protection of precious ecosystem and biodiversity considering current water quality conditions.

According to the current mass balance of pollution loads, this area receives relatively small amount of pollution load inflow.

(Unit: tons/day)

Substance	Pollution load inflow	Primary production, elution and others	Total load
BOD	0.8(1.0%)	81.5 (99.0%)	82.3 (100.0%)
T-N	2.3 (2.8%)	199.5 (97.2%)	201.8 (100.0%)
ТР	1.2 (3.6%)	32.5 (96.4%)	33.7 (100.0%)
SS	32.0 (2.7%)	1,148.0 (97.3%)	1,180.0 (100.0%)

It should be noted that it seems to have more room for self-purification capacity compared with other areas in AMZ, because the balance of pollution loads shows surplus in BOD, T-N, and T-P. Since a large scale development is not planned at present, this situation will last as long as there are no significant decrease of natural tidal flats.

				(Unit: tons/day)
Агеа	Substance	(1) Pollution	(2) Pollution	Balance
		load inflow	load outflow	(1)-(2)
a) Bai Chay Coastal Area	BOD	4.5	3.0	1.5
, ,	T-N	6.0	3.2	2.8
	T-P	2.4	2.7	-0.3
b) Hong Gai Coastal Area	BOD	2.6	2.0	0.6
, .	T-N	3.3	3.4	-0.1
	T-P	1.3	1.8	-0.5
c) Bai Chay Bay	BOD	2.9	6.3	-3.4
,	T-N	7.0	8.5	-1.5
	T-P	2.9	3.5	-0.6
d) Cam Pha and Cua Ong	BOD	2.0	5.5	-3.5
Coastal Area	T-N	3.5	2.1	1.4
	T-P	1.0	0.9	0.1
c) Biab Huong Estuary	BOD	0.8	0.7	0.1
Area	T-N	2.3	1.8	0.5
	T-P	1.2	0.6	0.6

4) DZ

I

DZ is located on the hinterland of the bays. The Inland Water Quality Standard of Vietnam (TCVN5942-1995) can be applied to the surface water there as well as SCN and CZ.

There is also the Industrial Wastewater Effluent Standard (TCVN 5945-1995) in Vietnam. Values of parameters and maximum allowable concentration of substance in industrial wastewater before being discharged into the water bodies are stipulated in it. There are three levels from A to C in the Effluent Standers Standard A is most stringent one that is imposed on the wastewater to be discharged into the water bodies used for sources of domestic water supply. Standard B is relatively weak than A, which applied to the wastewater discharged into the water bodies used for navigation, irrigation, bathing, aquatic breeding and cultivation. These effluent standards should be applied to the industries as conservation criteria.

1

Basically, Standards B can be applied in the EMP area. However, if planned two industrial zones, such as Cai Lan and Hoanh Bo zones, discharge their wastewater with Standard B, total runoff pollution load into Bai Chay bay will exceed the present level by that from them. Therefore, more stringent effluent standard will be required on industries in Bai Chay bay catchment. Considering technically possible treatment level, Standard A could be applied in Bai Chay bay catchment.

In terms of treated domestic wastewater by sewerage system, the Vietnamese standard should be attained too, exclusive of Bai Chay bay catchment. As indicated by pollution mechanism in Bai Chay bay such as pollution loads moving out through the Cua Lue strait is bigger than that from catchment, primary production should be controlled to prevent increasing in pollution load from the Cua Lue strait. For that, treatment of nutrients is required in Bai Chay bay catchment considering technically practical treatment level.

17.3.2 Environmental Resources

(1) Natural Environment

The following four components of the natural environment are selected as the management indexes of the EMP:

- Forest coverage ratio of the hinterland area
- Acreage of tidal flats in the coastal area
- Distributions species composition, and living coal cover

- Species composition and amount of catches of fish and shellfish of the fishery grounds
- 1) Forest coverage ratio

Forest coverage ratio is an index of soil erosion, SS runoff, biodiversty, and conservation of water resources of the hinterland area. It is also one of the provincial environmental targets set by QNPC. For setting forest coverage ratio as conservation criteria, the present and projected future conditions of forest coverage including scrub and grass lands, namely green coverage, were identified. Based on the projected future land use pattern, necessary green coverage area to prevent increasing runoff SS by each sub-catchment were estimated and summarized below.

dian bach

	ົດ	rrent condition	ns	F	uture condition	5
Sub-eatchment	ə) Basin area	b) Present forest area	% = b) / a}	c) Future green area without the EMP	d) Green area to protect SS runoff	c) Ares to be recovered
1) Mip river basin	254	183	72	183	183	0
2) Hung Thang basin	8	7	88	7	7	0
3) Bai Chay basin	6	4	67	3	3	0
4) Troi river basin	197	162	82	154	156	2
5) Man river basin	120	98	82	91	93	2
6) Dien Vong river basin	251	209	83	199	209	10
7) Hong Gai north basin	13	8	62	4	5	i
8) Hong Gai south basin	7	3	43	2	2	0
9) Ila Tubasin	29	18	62	13	16	3
10) Cam Pha west basin	31	26	84	24	25	1
11)Cam Pha central basin	15	4	27	3	4	1
12)Cam Pha cast basin	11	4	36	3	4	1
13)Cua Ong basin	9	6	67	6	6	0
14) Mong Duong basin	82	61	74	55	61	6
15)Cat Ba island	130	126	97	126	126	0
Total	1,163	921	79	873	900	27

Note: 1) Forest area includes scrub and grass lands

2) Present forest area was obtained by satellite image analysis by JICA study team.

Looking at green coverage area by environmental zone, the present area and its ratio are as follows:

SCZ:464 km² (green coverage ratio in SCZ:94%)CZ:208 km² (green coverage ratio in CZ:85%)DZ:249 km² (green coverage ratio in DZ:59%)

Since most green coverage loss by development projects, expansion of coal mining areas, and urbanization, will happen in DZ, the present green coverage in SCZ and CZ are assumed to be kept at present level for setting conservation eriteria. Total loss of the green coverage will be about 48 km². Thus, attention for recovering green coverage should be paid on DZ. As total required green coverage to prevent increasing runoff SS is 900km², the proposed conservation criteria of green coverage in DZ is 228km², and green coverage ratio in DZ is 52%.

*

2) Acreage of tidal flats and mangrove swamps

Relatively rich biomass was observed in the tidal flats and mangrove swamps in the EMP area. They purify the water and provide nursery grounds for fishery resources. But because the coastal area is relatively narrow, there has been extensive land reclamation for urban development and as well as dike construction for expansion of agricultural land or aqua-cultural ponds on tidal flats and mangrove swamps. They will be also reclaimed especially in Bai Chay bay and along Ha Long bay in the future. Therefore, management shall be focused on acreage of tidal flats and mangrove swamps. The current condition and area to be lost by 2010 are as follows:

		Curr	ent couditi	ons	Projec	ted futur	e condition	<u>Jnit: h</u> Is
Environ- mental Zonc	Агса	a) Tidal flats	b) Mangrove swamps	%= b)∕a)	c) Area to be rectaimed by 2010	d) Tidal flats	e) Mangrove swamps	%= c)/d)
1. SCZ	Quang Hanh	1,100	30	3	0	1,100	30	3
	Cat Ba island	20	20	100	0	20	20	100
2. AMZ	Binh Huong estuary	10,100	1,800	18	200	9,900	1,600	16
•	Bai Chay coastal arca	1,700	10	1	200	1,500	0	(
	Bai Chay bay	4,700	1,400	30	950	3,750	1,000	26
	llong Gai coastal area	650	10	2	40	610	10	2
	Cam Pha and Cua Ong coastal area	2,400	10	0	280	2,120	10	(
	Total	20,670	3,280	16	1,670	19,000	2,640	1.

Note: 1) Tidal flat area means emergence which was obtained by topographic maps.

2) Mangrove swamp area was obtained by satellite image analysis by JICA study team.

For setting conservation criteria of tidal flats, they were classified into three categories and conservation criteria were set as shown below:

- Tidal flats in SCZ : class A
- Tidal flats with relatively high coverage ratio by mangrove swamp, more than 16% (present average mangrove coverage ratio) : class B
- Other tidal flats : class C

In tidal flats in SCZ (class A), no land reclamation is permitted so that the present area could be protected. Since tidal flats of class B also are playing important roles on marine ecosystem, fishery, and water purification in the EMP area, only existing planed land reclamation is permitted. Considering planned and proposed land reclamation area in future, 75% of present area is set as conservation criteria on other tidal flats to keep room for further plans.

As for mangrove swamps, at least the present acreage in each area should be protected to conserve their functions. In terms of mangrove swamps with relatively low coverage ratio, less than 16% which is the average coverage ratio in the EMP area, conservation criteria in these areas were set at the present average coverage ratio of 16% to improve their function together with tidal flats.

Considering these matters, conservation criteria of tidal flats and mangrove swamps set were summarized as follows:

		T	idal Nats	Man	grove Sw	amp
Environ- mental Zone	Area	Class	a) Couservation criteria (ba)	b) Conscrvation criteria (ha)	%= b)/a)	c) Required rehabilitation area (ha)
1. SCZ	Quang Hanh	٨	1,100	380	17	150
	Cat Ba island	٨	20	20	100	0
2. AMZ	Binh Huong estuary	В	9,900	1,800	18	200
	Bai Chay coastal area	С	1,300	210	16	210
	Bai Chay bay	В	3,800	1,400	37	400
	Hong Gai coastal area	С	500	80	16	70
:	Cam Pha and Cua Ong coastal area	с	1,800	300	17	290
,	Total		18,420	4,000	22	1,320

3) Protection of coral reef

Coral reef is a symbol of clean and clear seawater condition. However, the most current coral reefs in the EMP area are distributed in the southern part of SCZ only and they are categorized as poor reef with living coverage less than 25%. As discussed in Section 5.1.1, the water quality in SCZ mainly depends on natural dynamics. Thus, drastic improvement of coral reefs habitats are not expected. Considering these matters, management criteria shall be set on the basis of the present distribution, species composition, and living coral cover.

4) Protection of fish and shellfish of the fishery grounds

Since fish and shellfish can be regarded as indexes of marine environment as well as economic value, their management need to be based on species composition and the amount of catches. However, there is not enough information to grasp actual species composition and the amount of catches within the EMP area at present. Thus, attention should be paid on protecting fishing grounds including water quality to protect fish and shellfish in the EMP area. It is recommended that management criteria should be carried out by controlling of illegal fishing at the fishery grounds.

(2) Landscape

Beautiful landscape of the World Heritage area corresponding to SCZ is considered invaluable, and it is the essence of tourism potential. Since the landscape itself consists of various elements, the following four major elements are selected as indexes for the EMP.

- Shape and surface of islands
- Color and clearness of seawater
- View of natural resources
- Natural scenery

The landscape elements of the World Heritage area should be conserved as they are by preventing degradation activities and pressures. Therefore, the present levels and quality of the elements are regarded as the criteria, except for the water quality that is selected as the water quality criteria, and obstacles against natural scenery such as ships anchored in the World Heritage core area.

17.3.3 Technical, Institutional, and Financial Capacities

Built up capacities of technology, institution, and finance is essential to implement the EMP effectively and appropriately. The current situations of these capacities of DOSTE and other relating agencies, however, are not enough to implement the EMP. Thus, it is recommended that their capacities should be built up so that they can manage environment in the EMP area by themselves. The following aspects are selected:

- Technical capacity: monitoring, database management, public awareness,
- Institutional capacity: responsibility demarcation, control power, licensing system
- Financial capacity: budget, number of staff, funding sources, cost recovery system

17.4 Conservation Criteria by Environmental Zones

The conservation criteria by environmental zones are proposed for water quality, environmental resources, and landscape. They are summarized below. As for criteria of technical, institutional, and finical capacities, they should be set without regard to the environmental zones.

It should be noted that the proposed conservation criteria are not standards for the whole Vietnam, but just for the EMP area. It is recommended that QNPC and agencies concerned for implementation of the EMP should authorize the proposed conservation criteria. However, it shall be also stressed that the proposed conservation criteria are not absolute ones, so they should be revised based on reliable data to be obtained by the future monitoring activities.

17.4.1 Water Quality Conservation Criteria

(1) Sea area

Considering the significance of each environmental zone, and the current water quality and beneficial uses of water in each zone, the water quality conservation criteria are set as shown in Figure 17.4.1 and table below:

Environ.	Amatin I ana	Тганзратевсу	BOD	CODMa	T-N	T-P	SS
Zone	Applied area	(m)	(mg/ℓ)	(mg/l)	(mg/ℓ)	(mg/ℓ)	(mg/ℓ)
SCZ	Western Part	3.0	1.5	7.0	1.3	0.6	5
	Eastern Part	3.5	1.0	4.5	1.1	0.5	4
CZ	•	3.0	1.0	4.5	1.1	0.5	5
AMZ	Bai Chay coastal	0.5	1.3	7.5	1.6	0.7	15
	Hong Gai coastal	1.5	1.3	7.5	1.6	0.7	5
	Bai Chay bay	1.5	1.3	7.5	1.6	0.7	5
	Cam Pha and Cua	1.5	1.1	5.0	1.6	0.7	7
	Ong coastal						
	Binh Huong estuary	0.5	1.3	7.5	1.6	0.7	15

Water Quality Conservation Criteria (Sea area)

Conservation criteria of DO, pH, oil slick, floating solid wastes, and feeal coliform are set based on the Japanese Coastal Waster Quality Standards. They are summarized as follows:

1	laviroa. Zone	DO (mg/ℓ)	pH	Oil slick	Floating solid wastes	Fecal coliform (MPN/100 mℓ)
	SCZ	5	7.0-8.3	nd	nd	nd
	CZ	5	7.0-8.3	nd	nd	nd
	AMZ	5	7.0-8.3	nd	nd	1,000

Note: 1) nd shows not detectable.

2) Fecal coliform is applied to sea bathing area.

(2) Catchment Area

The Inland Water Quality Standard of Vietnam (TCVN5442, see Table 17.4.1) can be applied to the surface water for all environmental zones.

In terms of effluent standard, the following conservation criteria, which is maximum allowable concentration of pollutants, should be applied to the effluents from industrial plants and other places of business in DZ.

Environ. Zone	Applied Area	BOD (mg/l)	CODM5 (mg/l)	T-N (mg/ℓ)	T-P (mg/l)	SS (mg/l)
DZ	Bai Chay bay catchnicat	20	30	30	4	50
	Others	50	65	60	6	100

Note: CODMn was set based on the ratio of CODcr and CODMn which was obtained by the Field Survey by the JICA Study team.

As for discharge of treated water from the sewerage system, the following effluent discharge standards were set on the basis of technically possible treatment level.

Environ. Zone	Applied Area	BOD (mg/l)	CODма (mg/ℓ)	T-N (mg/t)	T-P (mg/f)	SS (mg/l)
DZ	Bai Chay bay catchment (treatment level 2)	10	15	15	2	15
	Others	25	35	-	•	35
	(treatment level 1)				L	l

Note: 1) Treatment level-1 is a basic secondary treatment.

 Treatment level-2 is one with nitrification/denitrification and enhanced biological phosphorus removal.

(3) Intermediate Conservation Criteria

The proposed conservation criteria of the seawater are rather more stringent than the existing coastal water quality standards in Vietnam. In order to attain the proposed conservation criteria, building up technical, institutional, and financial capacities of DOSTE and other relating agencies is prerequisite because of their weakness. Thus, it will take a certain time to attain the proposed conservation criteria. Considering required time to build up their capacities, it is reasonable to set intermediate conservation criteria of the seawater quality.

The intermediate conservation criteria were set at the year of 2005. They are set based on the equilibrium of progress of planned projects and possible environmental measures.

Firstly, the projects that will have been completed by 2005 were identified. Next, run-off pollution loads from them were estimated taking the possible environmental measures until then into account. The intermediate conservation criteria were set as a realizable water quality in the bays. It should be noted that the intermediate criteria were not developed in SCZ and CZ, because once the water quality there is deteriorated, it is difficult to retrieve former water quality. Table below summarizes the intermediate conservation criteria set.

Environ. Zone	Applied area	Transparency (m)	BOD (mg/ℓ)	CODма (mg/l)	T-N (mg/ℓ)	T-P (mg/ℓ)	SS (mg/l)
AMZ	Bai Chay coastal	0.5	1.6	9.2	1.8	0.8	17
	Hong Gai coastal	1.0	1.6	9.2	1.8	0.8	6
	Bai Chay bay	1.0	1.6	9.2	1.8	0.8	6
	Cam Pha and Cua Ong	1.0	1.1	5.0	1.6	0.7	8
	Binh Huong estuary	0.5	1.3	7.5	1.6	0.7	15

Intermediate Water Quality Conservation Criteria (Sea area)

Note: Since no intensive development project is planned in Binh Huong estuary by 2005, intermediate criteria are same as those of 2010.

58° C 1

17.4.2 Environmental Resources

(1) Natural Environment

Figures 17.4.2 and 17.4.3 show the conservation criteria of forest (green) coverage, tidal flats, and mangrove swamps of each environmental zone. Summarized conservation criteria of natural environment are shown below:

Environ. Zone	Forest (green)	Tidal flats	Mangrove swamps	Coral reefs	Fish and shellfish
SCZ	464km² (94%)	1,120ha	200ha	Present conditions	No illegal fishing at fishing grounds
CZ	208km² (85%)	-	-	-	ditto
AMZ	-	17,300ha	3,800ha	-	ditto
DZ	228km² (52%)	•	-	-	-

Note: Present conditions of coral reefs are distribution, species composition, and living coral reefs.

(2) Landscape

The present condition of landscape of the World Heritage area (SCZ) should be absolutely protected. This requires that the elements producing high value of landscape, such as shape and the surface conditions of islands as well as color and clearness of scawater should be conserved as the present conditions. As for natural scenery, artificial obstacles should be controlled strongly in SCZ. Therefore, the following conservation criteria are proposed on the sea area in SCZ.

Eaviron.	Shape and surface	Color and clearness	View of natural	Natural scenery
Zone	of islands	of seawater	resources	
SCZ	No islands changed artificially	To be controlled as water quality	 No islands having bald spots To be controlled as tidal flats and mangrove swamps 	No cargo ships anchored in the World Heritage core area and deviated from the courses

As for the sea areas in CZ and AMZ, landscape there should be controlled as water quality and tidal flats and mangrove swamps management. In terms of inland landscape, it is controlled by green coverage ratio. In DZ, landscape concern should be taken into consideration by development projects and urban designing.

TABLES

Ĩ

Location Projects SC Projects d area Gien Day WWTP (20.000) 3.4 Gien Day WWTP (76.000) d area Gien Day WWTP (20.000) 7.8 Deo Sen WWTP (166.000) Deo Sen WWTP (45.000) 7.8 Deo Sen WWTP (50.000) Deo Sen WWTP (45.000) 7.8 Deo Sen WWTP (50.000) Deo Sen WWTP (45.000) 7.8 Deo Sen WWTP (50.000) Deo Sen WWTP (45.000) 7.8 Deo Sen WWTP (50.000) Deo Sen WWTP (45.000) 7.8 Deo Sen WWTP (50.000) Deo Sen WWTP (45.000) 7.8 Deo Sen WWTP (50.000) Deo Sen WWTP (45.000) 7.8 Deo Sen WWTP (50.000) Deo Sen WWTP (45.000) 7.3 Trated (4.10.000) Deo Sen WWTP (45.000) 7.3 Trated (5.000) Deo Sen Vertage system 3.4.7.3 Trated to Effluent Standard B Deo Sen Vertage system 3.4.7.3 Trated to Effluent Standard B Secory (Others) no Trated to Effluent Standard B Secory (Cold mining areas. Soff treated by severage system 3.4.7.3 Soff treated by severage system		Pollution Sources	Scenario I		Seenario II		Scenario III	
Sewered area Cien Day WWTP (76,000) 3.4 Cien Day WWTP (76,000) Deo Sen WWTP (45,000) 7.8 Deo Sen WWTP (50,000) Cam Pia WWTP (50,000) Deo Sen WWTP (45,000) 7.8 Deo Sen WWTP (50,000) Cam Pia WWTP (50,000) Others no cam Pia WWTP (50,000) cam Pia WWTP (50,000) Cam Pia WWTP (50,000) Others no no cam Pia WWTP (50,000) no cam Pia WWTP (50,000) Existing Factory (sewered area) no no no no no Existing Factory (sewered area) no no no no no New Factory no 3.4.7.3 treated by sewerage system no New Factory no no no no no New Factory (others) no treated to Effluent Standard A no no no no New Factory no no treated to Effluent Standard A no	Sources	Location	Projects	SC	Projecta	sc	Projects	SC
Dee Sen WWTP (45,000) 7.8 Deo Sen WWTP (166,000) Cam Pha WWTP (50,000) Cam Pha WWTP (50,000) Others no no Chisting Factory (sewered area) needed by sewerage system Existing Factory (others) no no Existing Factory (others) no no New Factory 3.4.7.8 treated by sewerage system Matewater (coal mining areas. cristing treatment system 3.4.7.3 New Factory No no Pigs (sewered area) no no Others no no Others no no No obsersing plants, coal ports) 20% treated by sewerage system Pigs (sewered area) no no Others no no Others no no Others no no	Domestic	Sewered area	Gien Day WWTP (20.000)	3,4	Gien Day WWTP (76.000)	2.3.4	Gien Day WWTP (106.000)	2,3,4
Cam Pha WWTP (50,000) Others no Existing Factory (severed area) reated by severage system Existing Factory (others) no Existing Factory (others) no Existing Factory (others) no New Factory 3.4.7.8 Retreated to Effluent Standard B treated to Effluent Standard B Wastewater (coul mining areas. existing treatment system Others no Pigs (severed area) fo Dotters no Others no Others no Pigs (servered area) fo Pare land no Others no Others no Pare land no Others no Coal mining area no	-		1	7,8	Deo Sen WWTP (166.000)	6.7.8	Deo Sen WWTP (196.000)	6.7,8
Others no Others no Existing Factory (sewered area) treated by sewerage system Existing Factory (sewered area) no Existing Factory (others) no Existing Factory (others) no Kester 3.4.7.8 treated by sewerage system 3.4.7.8 Existing Factory (others) no New Factory no New Factory treated to Effluent Standard B Vastewater (coal mining areas. existing treatment system vastewater (coal mining areas. existing treatment system New Factory 3.4.7.8 No out processing plants, coal ports) freated to Effluent Standard B Pigs (sewered area) S0% treated by sewerage system No no no Others no Bare land no Coal mining area no no Reforestation (300ha) no no			n gen en samt en ste entre entre entre de la de annel esta de antenne mentenement des proje este entre entre en		Cam Pha WWTP (50.000)	10	Cam Pha WWTP (77.000)	6,10
Others no no Existing Factory (sewered area) treated by sewerage system 3.4.7.8 Existing Factory (sewered area) treated by sewerage system 3.4.7.8 Existing Factory (sewered area) treated by sewerage system treated to Effluent Standard B Existing Factory treated to Effluent Standard B treated to Effluent Standard A Wastewater (coal mining areas. existing treatment system 3.4.7.8 severade to Effluent Standard B New Factory treated to Effluent Standard B treated to Effluent Standard B treated to Effluent Standard B New Factory treated to Effluent Standard B treated to Effluent Standard B treated to Effluent Standard B New Factory treated to Effluent Standard B treated to Effluent Standard A Wastewater (coal mining areas. existing treatment system 3.4.7.8 foot 3.4.7.8 50% treated by sewerage system Piges (sewered area) no no Others no no Bate land no Reforestation (1.00ha) A no no no					مريست ويستعدن فرخر والمحكم ومقدول والمحكمين والمحتور والمحتور والمحتور والمحتور والمحتور والمحتور والمحتور والم	a de la companya de l	Ha Tu WWTP (32.000)	6.9
Others no Cothers no Existing Factory (sewered area) treated by sewerage system Existing Factory (others) no Existing Factory (Others) no Existing Factory (Others) no Stating Factory (Others) no New Factory 3.4.7.8 Vastewater (coul mining areas. existing treatment System Wastewater (coul mining areas. existing treatment system Types (sewered area) 50% treated by sewerage system Pigs (sewered area) no Others no Soff treated by sewerage system 3.4.7.8 Soff treated by sewerage system 3.4.7.8 Others no			n mar en fange en an antiken en en en antiken affekte en		a na bar an		Cam Phu WWTP (12.000)	11
Others no no Existing Factory (sewered area) treated by sewerage system 3.4.7.8 treated by sewerage system Existing Factory (Others) no 3.4.7.8 treated to Effluent Standard B Existing Factory (Others) no treated to Effluent Standard B New Factory treated to Effluent Standard B treated to Effluent Standard B Wastewater (coul mining areas. existing treatment system 3.4.7.8 Yastewater (coul mining areas. So% treated by sewerage system 3.4.7.8 Pigs (sewered area) So% treated by sewerage system no Others no No No Bare land no Reforestation (300ba) coal mining area no Reforestation (1000ba)							Cun Ong WWTP (12.000)	12.13
Existing Factory (sewered area) treated by sewerage system 3.4.7.8 treated by sewerage system Existing Factory (Others) no treated to Effluent Standard B New Factory treated to Effluent Standard B treated to Effluent Standard A New Factory treated to Effluent Standard B treated to Effluent Standard B Wastewater (cool mining areas, cost ports) existing treatment system 3.4.7.8 Pigs (sewered area) 50% treated by sewerage system 3.4.7.8 Pigs (sewered area) no no Start and no Reforestation (300ha) Bare land no Reforestation (1.000ha)		Others	00		βQ		DO	
Existing Factory (Others) no treated to Effluent Standard B New Factory treated to Effluent Standard B treated to Effluent Standard B Wastewater (coul mining areas. existing treatment system treated to Effluent Standard B Wastewater (coul mining areas. existing treatment system treated to Effluent Standard B Pigs (sewered area) S0% treated by sewerage system 3.4.7.8 50% treated by sewerage system Pigs (sewered area) no no no Bare land no Reforestation (300ha) Coal mining area no Reforestation (1000ha)	Industry	Existing Factory (sewered area)	treated by sewerage system	3.4.7.8	treated by sewerage system	2.3,4,6,7,8,10	2.3.4.6.7.8.10 Ireated by sewerage system	2-4.6-13
New Factory treated to Effluent Standard B treated to Effluent Standard A Wastewater (coul mining areas. existing treatment system treated to Effluent Standard B Wastewater (coul mining areas. existing treatment system treated to Effluent Standard B roal processing plauts, coal ports) for existing treatment system 3.4.7.8. Pigs (sewered area) 50% treated by sewerage system 3.4.7.8. Others no no Bare land no Reforestation (300ha) coal mining area no Another station (1.000ha)		Existing Factory (Others)			treated to Ethuent Standard B			
Wastewater (coul mining areas. existing treatment system treated to Effuent Standard B (coal processing plants, coal ports) 60% treated by severage system 3.4.7.8 50% treated by severage system Pigs (severed area) 70% treated by severage system 3.4.7.8 50% treated by severage system Pigs (severed area) 0 no no Bare land 10 10 Reforestation (300ba) Cool mining area 10 10 100		New Factory .	treated to Eifluent Standard B		treated to Effluent Standard A		Scenario II x 70%	
(coal processing plants, coal ports) 3.4.7.8 50% treated by sewerage system Pigs (sewered area) 50% treated by sewerage system 3.4.7.8 50% treated by sewerage system Others no no no Bare land no Reforestation (300ha) Coal mining area no no	Coal Mining	Wastewater (coal mining areas.	existing treatment system		treated to Effuent Standard B		Scenario II x 50% (SS)	
red area) SO% treated by sewerage system 3.4.7.8 50% treated by sewerage system no no no no Reforestation (300ha) ac Reforestation (1.000ha) no		coal processing plants, coal ports)					Scenario II x 70% (Other items)	
ao ao Reforestation (300ha) ao Agarca no Reforestation (1.000ha) ao Agarca no ao Agarca no ao Agarca no ao	Livestock	Pigs (sewered area)	50% treated by sewerage system	3'1'Y	50% treated by sewerage system	234678.10	2.3.4.6.7.8.10 50% treated by sewerage system	2-4.6-13
ao Reforestation (300ba) ng arca no Reforestation (1.000ha) no no		Others	no		ou		DO	
no Reforestation (1.000ha)	Non-Specific	Bare land	03		Reforestation (300ha)		Reforestation (1,500ha)	
	•	.Coal mining area	110		Reforestation (1.000ha)		Reforestation (4.300ha)	a de la constante de la constan
	:	Others	no		10		0 <u>0</u>	

Table 17.2.1 Possible Projects by Scenarios

Notes:1) SC means sub-catchment, WWTP means Wastewater Treatment Plant.
2) Figures in parenthesis of WWTP mean sewered population.
3) Effluent Standard A, B are from Vietnamese Effluent Standard (TCVN5945-1995)

Standard A; BOD 20mg/l, COD_{Mn} 30mg/l, SS 50mg/l, T-N 30mg/l, T-P 4mg/l (COD_{Mn} was set by the JICA study team) Standard B; BOD 50mg/l, COD_{Mn} 65mg/l, SS 100mg/l, T-N 60mg/l, T-P 6mg/l (COD_{Mn} was set by the JICA study team)

							Table 17.2.	17.2.2		off Pol	Runoff Pollution Loads into the Bays in 2010 (Scenario II)	Loads	into tl	he Bay	s in 20	10 (See	inario	ID							ſ
												8	SS rke/dav)				L L	T-N (kg/day)) 	T-P (ku/dav)		Ī
Net T		¥	HOD (kg/dav)	<u></u>	- 	1	- international contractions of the second s	Live. No	Non-S.	Tetal	Dom.	Ind.	Live. Non-S.	ļ	Total	Dom.	1 Lind	Live. Non-S.		Total	Dom. I	Ind. L	Live. No	N-tox	Total
Ş.	Don.	,pur	Trve.	TIVE DOT	101		-			0000			FT2 201 9182		2 100 1 2	176 -	 ==	705	1.661	015-0	18	 0	1:0	1 208	071.1
	1:1	1	117	5	88	514	4	×ç,) 	3				4-	2.5	NO1	- -	4	36	050	11	0	۲I	15.	8
(1	3	0	51	52	150	50	0	8	165	250	3	- 2	1/1	200	3	3		1	-	92	51	0	ខ	2	8
-	8	(1) (1)	8	5	160	Ŧ	7	ç	115	022	8	: : :			344	401 707	4		┿	1400	75	116	151	774 1	120
+	556	574	163	11-	1,910	836	1,206	235	2166	110	1.317	0/172	1.237		N0.7	5		27.	÷	1 250	6		11		620
ŝ	41	8	191	139	027	50	8	នុ		1 660	15	11	1, 625 15, 15, 252		00001 XX X00	0.57	5 14	- 		2.670	62	0	190	- 	80
¢	915	۳.	213	346	330	790	2	621	1402	22			`Ł	·}	NOO X	1.20		4	195	022.1	116	:	9	S,	50
2	711	e.	58	1 65	860	1.054	17	138	8	8	2001			<u> </u>	005	S.S.	- 0	92	101	670	z	0	20	ţ	2021
~	ы.	1	\$	\$	ខ្ម	488	F,	ŕ	131	10	270		-1-	÷		94	15		E	ŝ	FI	5	171	115	,
•	218	7	314	8	670	12	ឆ្ក	412	419	092-1	- 9	2		-+-	3 8		12		111	000	2	-	2	:	
9	5	37	33	101	650	679	8	10	<u>ş</u>	1,330	1 07.1	- 6		+	11400			ļ		00	8		13	011	50
	155	3	4	76	470	247	8	6	055	740	555	142	_ L.		3						9	0	15	9	2
	9	23.6	8		170	116	1,293	9	345	1.700	259 1 10.575	0.575			13.100	F ²	+ +	 5			2			5	0
*	1	¥	8	ļ	992	110	5	9	142	410	2	- 20	-+		1,700	ដ	115	3	3	NIV.	2 5			No.5	0.7
	8	5	011		22	110	212	153	570	1,350	51 	ž	ų	Ť	88	ß	\$. L .	_		3 <		<	001	087
:			\$		130	c	0	0	1.311	1.310	0	0	0	9.769	9.300	\$	-	0	-∔	M			1	-	
			0.4	_ [_	8 660	\$ 160	1300			23.680	S.600	14.500	14,400	195,200 233,000	33,000	1.170	1.510	0.000 10.050	1	17,960	250	160	• 0/ 1 1	0	
Total			7007						1																
	. :	. :						1	1	Ì			4		David	Coons	Lin UL								
		•					Ta	Table 17.	7.2.3	Kunol	Runoli Pollution Loads into the Days (Section 10 11)	T uoi	0405 1									r.p	T.P (ke/dav)		
100		P.O.	ROD (kg/day)	(va			Ö	CODMn (kg/day)	Wei				SS (ke/day)											Ļ	ł
catch	d d	Гъф	Live.	Live. Non-S.	Total	Dom,	Įnd	Live.	Non-N	Total	Dom.	Ind.	ž,	Non-V	Total	Dom.	Ind.	Live, Non-S.	Nor S.						
ů Z							ſ	23	01.0	0.0	001	 -	3.516	26.540	30,900	176	1	70% V	1.679	2,720	51	•	3		
-	151	•	2 Z	-	ŝ			2			5	c	15.		000	¥1	0	4	56	160	 20	0	- 2	21	2
64	2	0	9	1	2	£.	0,	83	101	2			310	115	1,300	8	-	55	z	160	.	ò	2		8
ج.	\$		J,	5	3	Ξ		3				2.2	+	1	W 5 %-	Ş	975	315	1.752	2900	4	18	ž	100	3

																						T.P. (ko/day)	Ś	
		1						CODMs (kaldav)	\$			¥.	SN (ke/day)		-		ARDIAL A	1460.3						
192		21-	HOD (Kg/day)	s		4			1	Total	Dom.	Ind.	Live.	Non-S. T	Total D	Dom.	ind. Li	Live. Non-S.	-S. Total	at Dom.	n Ind.		Live. Non-S.	Total
2	Ë	d S	TUVE. 100-5.	0.00		- mon			-	╡	_ I			-			•	661 1 610	0-1 01	-	18	0 1 320	662 . (1.1.40
Š			L	1		1		144	CUT C	0.00	001	-;	3,816 - 2	9. 49 9. 740	006.02	1/0		.1	+			Ì	ļ	1
	1.11	0	4 1	326	ŝ	ŝ		÷	+				1	1 516 3	000 r	v.	0	4	20 20	160	8 :	3 - 0	2	
c	2	0	ş	£.	ទ	\$	0	2		2			- -	+-	2	- 5	-	13)(17	160		0 ·	2 2	8
, , 		-	i i	1.1	110	111	e.	8	11.	200	11	0]	010	1	,	2	1	4.	Ľ	ļ	2	145	760	1.040
-	2		,	ĺ					2 1 5 4	UTSE	350 C	\$25	1.251 12	112 X68 - 13.	26,500	19	240	1 212				-		1.
4	363	612	162	314		11						5	0	11 501 13	13,000	Ş	2	22 - 22 - 22 - 22	853 1.170	20	0	1		010
.	41	ភ័រ	101	15.5	410	8		230	1.284	070				T	204.04	115	-		1.686 2.460		61	0 : 153	1 315	000
	356	5	206	E	310	816	9	8	2465	08.9	A=1-1		ч.	+	3	- 631	ļ.,	- 1		W.	- 99	SC . 0	S	51
, ,	1 411	4	۶	3	99;	80	3	133	082	1.350	702	2	120	<u>L</u>	3,2		4 4		-	Ļ.		01	0.3	110
×	177		4	\$7	270	ę.		- 02 2	180	<u>8</u>	\$ \$			-+-	8017	t i			1			ļ	97 I 130	3
, . 	. <u>v</u>	E.	174	97	320	1.	[4]	212	ş	<u>8</u>	105	9	Ξ1.	-	000	2 2 2			1.	-	- 22	8 - 0	021 - 5	30
9	S.C		5	104	57	184 1	0	2	Į į	980 7	88		101	_	00.7	ł	5		-	ļ.,			0 105	130
=	2	-	Ŀ	75	180	169	00	1	319	<u>8</u>	92	<u>8</u>	- I- Se	-+-	304	2	1.1		1				8 0	100
				5	270	2	208	31	31	1.270	101	1.111	121	+	8								2	99
				ų į		8	- 98	ន	138	22	8	141	149	2.298 3	875	F			4		-		[]-
-							5	2	1.5	1.290	33	5	22 1	11.131 12	12:50	2	2		4	ļ	2	-		4-
1	8	5	1	CH.		1	1				<	6	c	0 0 0 0 0 0	0.800	0	0		1.100 1.100	8	0	- 0	0 47	4400
¥.	•	•	;	0 153	130	- - -		-ł								-) - UOU -	0-10 010-	14.670		11 002	110 1 1.150 1	09174 - 0	0103 1 0
Total	1.9	020	1.930 950 1.430 2.000	.2.000	6,400	4.210	2260 2130	2130	12,630	21.270	÷:8	000		2000 1 17 000 111 000 111 000 1		4							i	
	l	ži – m	Domesi	ic. Ind	bal =.	ustry. I	Dom. = Domestic. Ind.= Industry, Live.= Livestock, Non-S.= Non-specific sources	ivestor	ik. No	1-S-0	Von-spi	scific s	ources											

17 - 28

		Unit	Limitatio	n Values
No.	Parameter and Substance	Unn	Λ	B
1	IIq	-	6 - 8.5	5.5 - 9
2	BOD, (20°C)	mg/ℓ	<4	<25
3	COD	mg/ℓ	<10	<35
4	Dissolved oxygen	mg/l	>=6	>=2
5	Suspended solids	mg/ℓ	20	80
6	Arsenie	mg/ℓ	0.05	0.1
7	Barium	mg/ℓ	l	4
8	Cadmium	mg/ℓ	0.01	0.02
9	Lead	mg/ℓ	0.05	0.1
10	Chromium, Hexavalent	mg/ℓ	0.05	0.05
11	Copper	mg/ℓ	0.1	1
12	Zinc	mg/ℓ	1	2
13	Manganese	mg/ℓ	0.1	0.8
14	Nickel	mg/ℓ	0.1	1
15	Iron	mg/l	l	2
16	Mercury	mg/ℓ	0.001	0.002
17	Tin	mg/l	1	2
18	Ammonia (as N)	mg/ℓ	0.05	1
19	Fluoride	mg/l	1	1.5
20	Nitrate (as N)	mg/ℓ	10	15
21	Nitrite (as N)	mg/l	0.01	0.05
22	Cyanide	mg/ℓ	0.01	0.05
23	Phenol compounds	mg/ℓ	0.001	0.02
24	Oil and grease	mg/ℓ	Not detectable	0.3
25	Detergent	mg/ℓ	0.5	0.5
26	Coliform	MPN/100 mℓ	5,000	10,000
27	Total pesticides (except DDT)	mg/ℓ	0.15	0.15
28	DDT	nıg/ℓ	0.01	0.01
29	Gross alpha activity	Bq/ℓ	0.1	0.1
30	Gross beta activity	Bq/ℓ	1.0	1.0

Table 17.4.1 Inland Water Quality Standard in Vietnam

Notes: 1) Values in the column A are applied to the surface water using for source of domestic water supply with appropriate treatments.

2) Values in the column B are applied to the surface water using for the purposes other than domestic water supply.

Source: TCVN 5942, 1995

Į

a share

FIGURES

T.

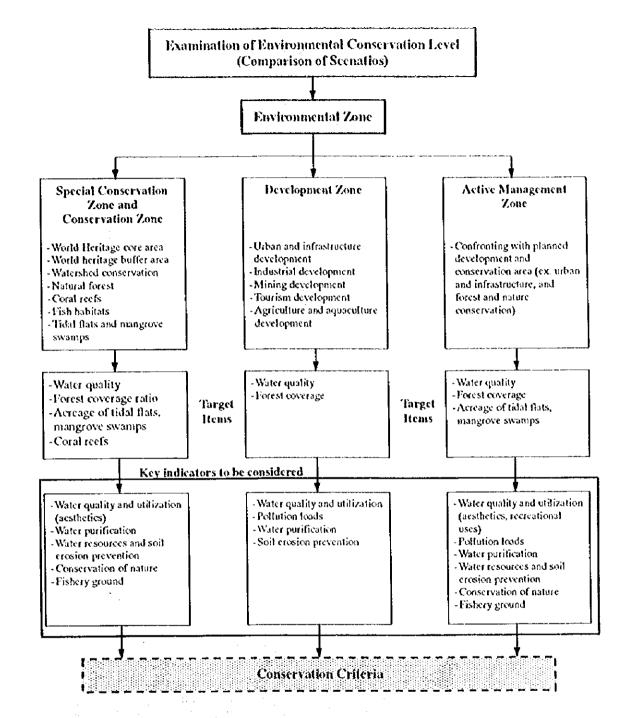
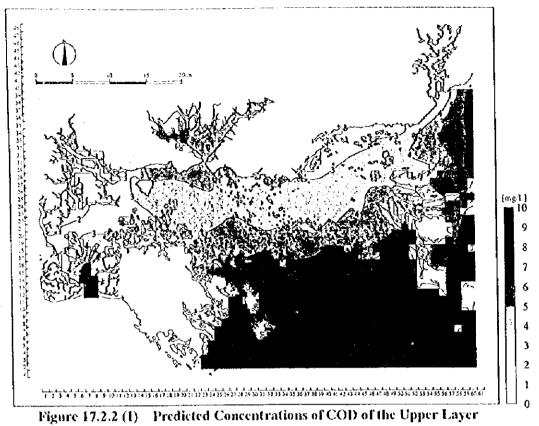



Figure 17.2.1 Schematic Procedure for Setting Conservation Criteria of the Environmental Zone

by Scenario II

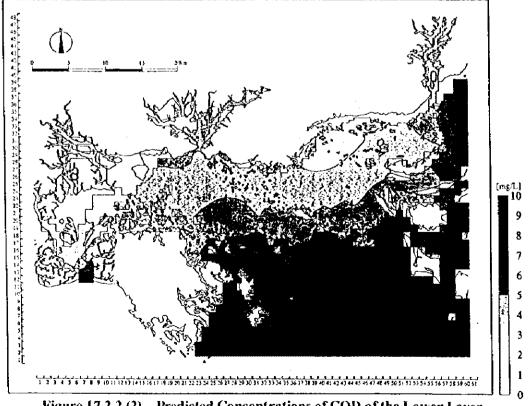
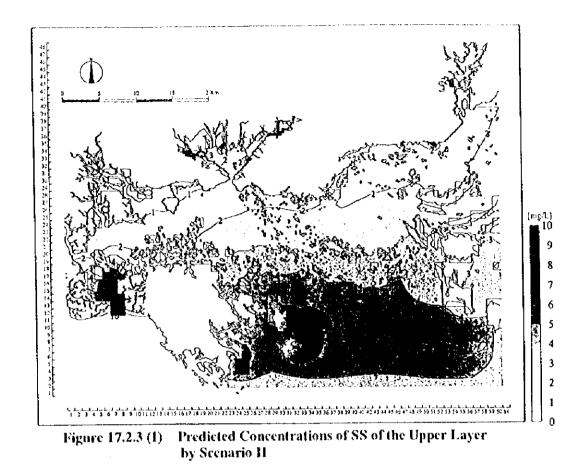



Figure 17.2.2 (2) Predicted Concentrations of COD of the Lower Layer by Scenario II

diversity of

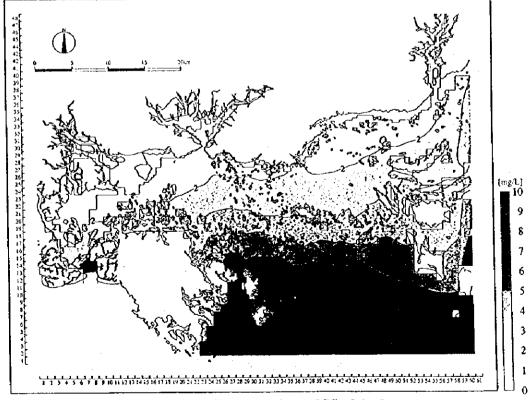


Figure 17.2.3 (2) Predicted Concentrations of SS of the Lower Layer by Scenario II

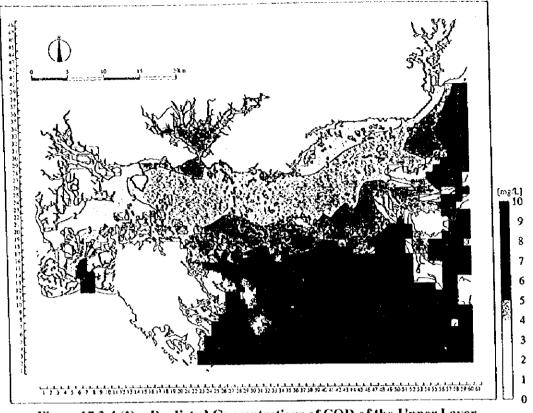


Figure 17.2.4 (1) Predicted Concentrations of COD of the Upper Layer by Scenario III

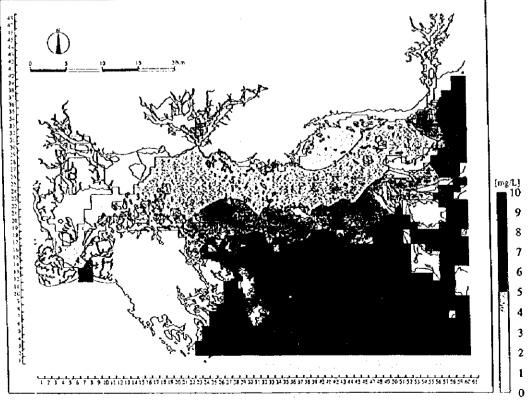
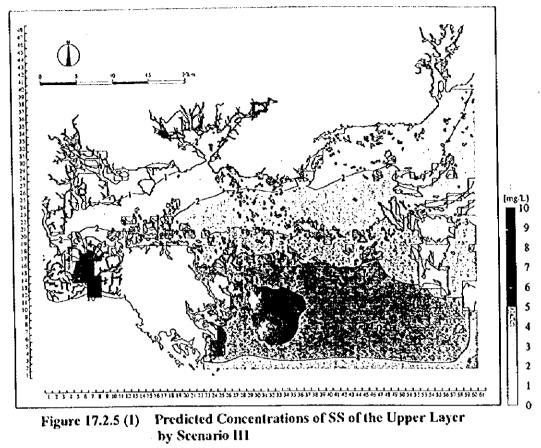
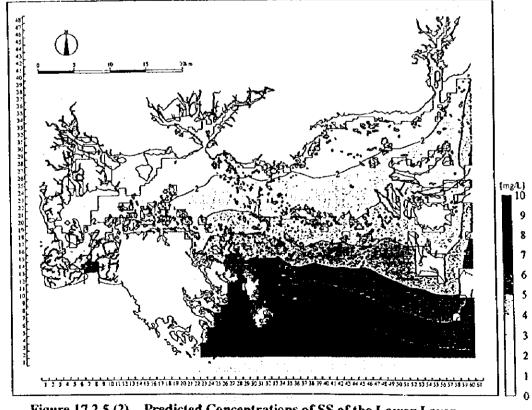
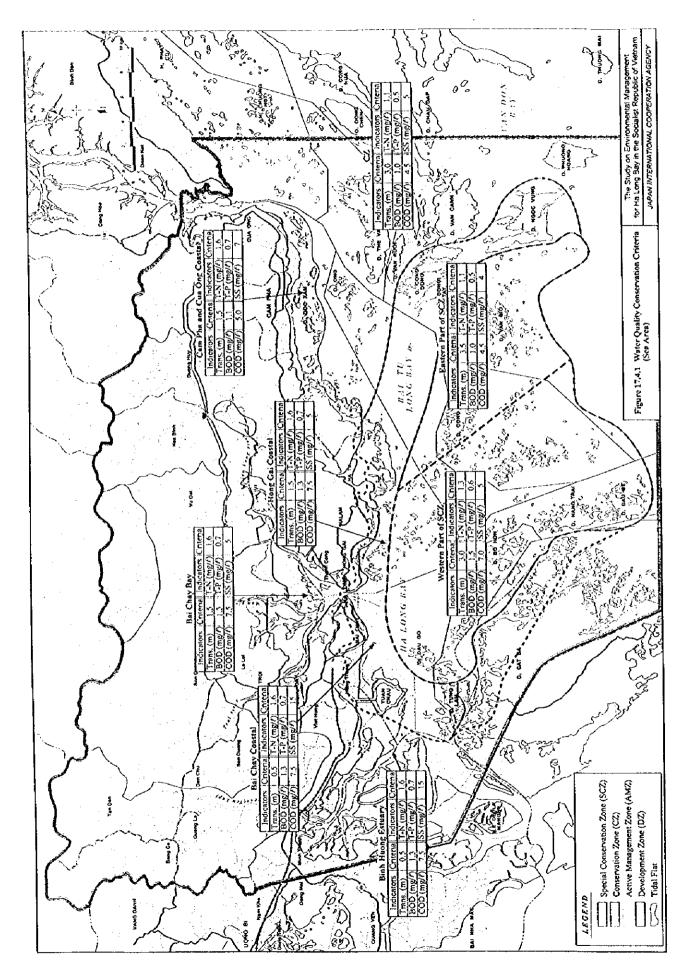
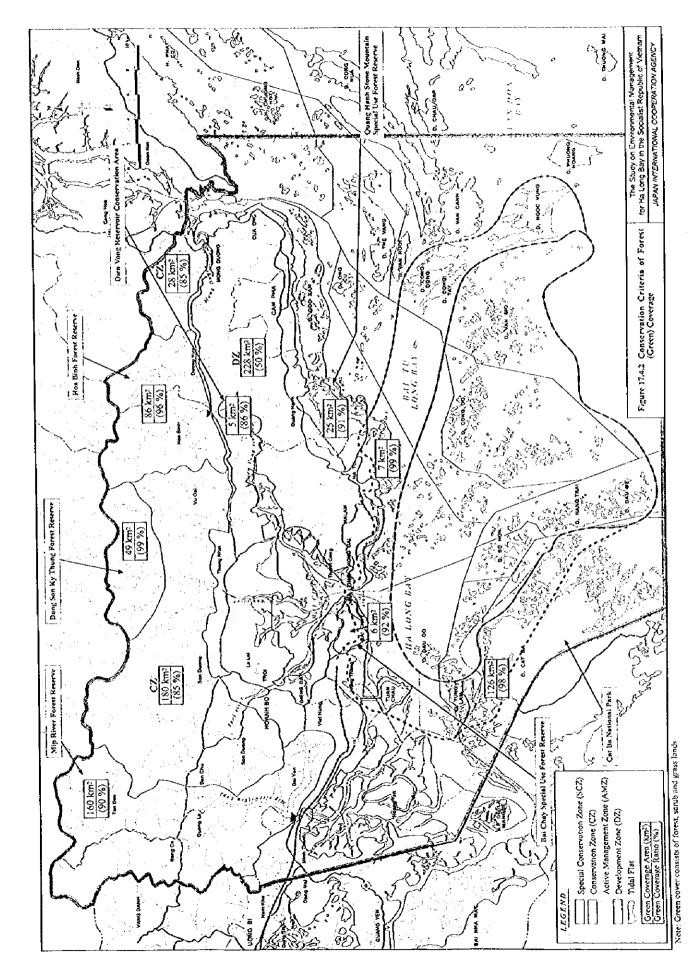
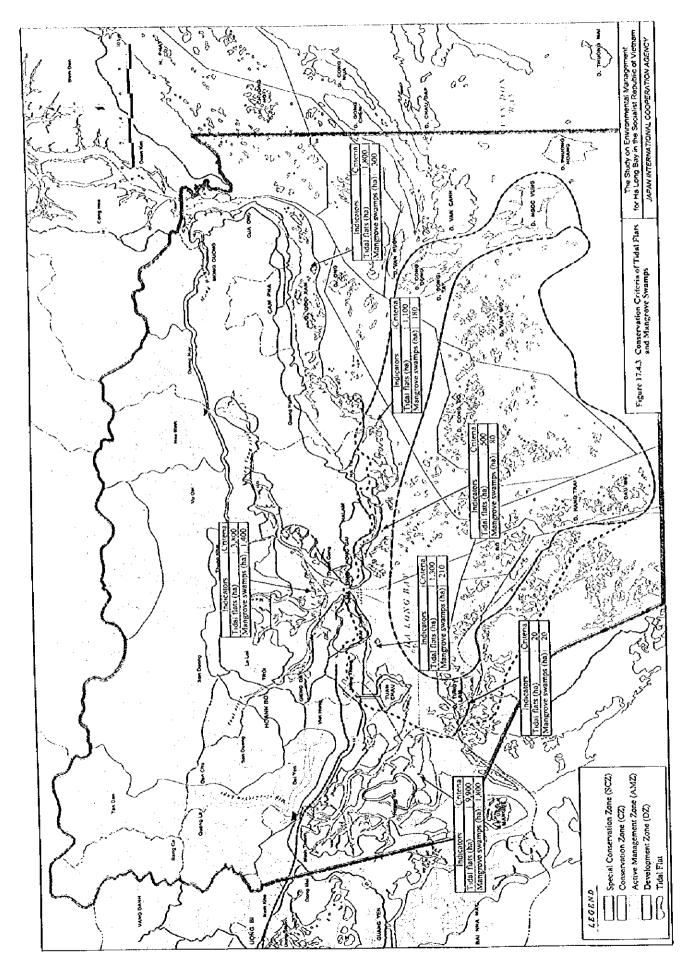




Figure 17.2.4 (2) Predicted Concentrations of COD of the Lower Layer by Scenario III


A TANK



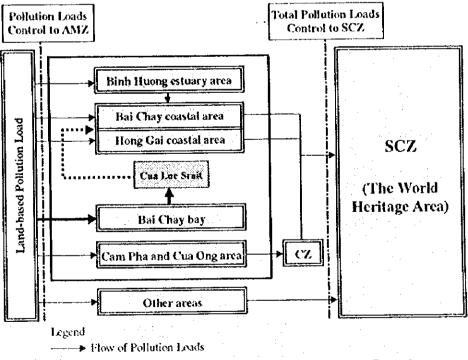

a.

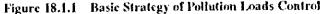
Predicted Concentrations of SS of the Lower Layer Figure 17.2.5 (2) by Scenario III

(1869) (1869)

CHAPTER 18

CHAPTER 18 ENVIRONMENTAL MEASURES TO ATTAIN CRITERIA


18.1 Basic Concept of Environmental Measures


18.1.1 Management Method of Each Target

- (1) Management Method of Water Quality
- 1) Basic strategy of pollution loads control

To achieve the conservation criteria of water quality, total pollution load control is required in addition to the concentration control. The sea area in the EMP area was divided into three environmental zones; Special Conservation Zone (SCZ), Conservation Zone (CZ), and Active Management Zone (AMZ). Among them, AMZ is located along the coastal line of the hinterland where most of the future development activities are planed. Thus, the pollution loads flowing into AMZ should be controlled firstly, to control total pollution loads flowing into the bays.

To achieve the conservation criteria of AMZ is prerequisite to achieve those of CZ and SCZ. Basic strategy of pollution loads control is show below.

2) Allowable pollution load

In order to achieve the conservation criteria of AMZ, allowable runoff pollution loads flowing into each area in AMZ were calculated by mass balance analysis. Allowable runoff pollution loads are summarized below:

Envito. Zone	Applied area	BOD (kg/day)	T-N (kg/day)	T-P (kg/day)	SS (kg/day)
AMZ	Bai Chay coastal area	170	240	100	2,300
	Hong Gai coastal area	420	670	150	2,500
	Cam Pha and Cua Ong area	1,550	3,100	820	56,800
	Bai Chay bay area	3,300	7,200	2,900	93,000
	Binh Huong estuary area	950	2.500	1,200	37,800

Allowable	Pollution	Load
-----------	-----------	------

3) Management method

For the water quality management especially pollution loads control, wastewater control for specific pollution sources is required in the first place. This is because that effects of measures for specific sources are clear and quick works. Most management measures for specific pollution sources are sewerage system and/or individual wastewater treatment system such as industrial wastewater treatment. Most livestock are being raised in agricultural land and/or near markets and farmers houses. It is assumed that the wastewater of livestock will be treated by sewerage system together with domestic or market wastewater if it is in a sewered area.

In addition to this, measures for nonspecific pollution sources such as greening are required especially for control of SS. To control runoff SS from coal mining areas, the conservation criterion for the mining area was set based on the size of denuded area.

(3) Management Method of Environmental Resources

1) Management method of natural environment

In order to manage environmental resources, implementation of monitoring and inspection are required. Hardware type measures such as reforestation, or revegetation of denuded areas, and rehabilitation of mangrove swamps are also required as mitigation to compensate for the lost environment. In addition to this,

indispensable software type measures such as land use and land reclamation controls and enforcement of regulation should be taken into consideration.

Since responsible organizations for the coal mining areas and other areas are different, it is recommended that reforestation or revegetation of denuded areas in and outside of coal mining areas be carried out by each responsible organization. VINACOAL has a responsibility of management of coal mining areas, while the Forest Protection Agency (FPA) and the Department of Agriculture on Rural Development (DARD) have responsibilities of forest management excluding coal mining areas.

2) Management method of landscape

To achieve the conservation criteria on landscape, preparation of landscape management guideline, and enforcement of patrol and inspection capability will be required.

18.1.2 Required Measures by Environmental Zones

In the EMP area, most of human origin pollution loads are generated in DZ. Lots of development projects and socioeconomic growth together with increase in population are planned there in the future. Therefore, to control total pollution loads from them into the bays, sewerage system and/or individual wastewater treatment system are required in DZ before the generated pollution load flowing into the bays through AMZ. Similarly, rehabilitation of coal mining areas as well as treatment of mine wastewater is also required mainly in DZ.

Domestic and industrial solid wastes management is also required mainly in DZ. The collection of floating solid wastes, however, should be carried out in SCZ, CZ, and AMZ.

Measures for tourism and landscape are mainly required in SCZ to improve sanitation conditions there, and keep attractive and beautiful landscape. In case of natural environment, its management measures should be implemented based on the distribution of each resource, for example measure for tidal flats and mangrove

swamps are should be developed in AMZ, and those for fish and shellfish are in SCZ and CZ, while reforestation is necessary for the whole catchment area.

The required measures by environment zones are summarized below.

Environ. Zones	Conservation Criteria	Necessary Actions	Required Measures
SC	 Water quality Trans.: 3.0~3.5m BOD: 1.0~1.5 mg/l COD: 4.5~7.0 mg/l T-N: 1.1~1.3 mg/l T-P: 0.5~0.6 mg/l SS: 4~5 mg/l Forest coverage : 464 km² Tidal flats: 1,120 ha Mangrove swamps: 200 ha Coral reefs: present condition Fish and shellfish: no illegal fishing Landscape: no island changed artificially, no islands having bald spot, no cargo ship anchored in the Word Heritage area 	 Keeping attractive and beautiful landscape Water quality control Solid wastes control Landscape element management Conservation of natural environment (forest, tidal flats, mangrove swamps, coral reefs) Sustainable use of fishing ground 	 Sea area Improvement of sabilation condition (management of wastewater and solid wastes of islands and tourist boats) Reinforcement of patrolling capability Fishing activity control Measures for landscape Catchment area Forest reserve area
CZ	 Water quality Trans.: 3.0m BOD: 1.0 mg/l COD: 4.5 mg/l T-N: 1.1 mg/l T-P: 0.5 mg/l SS: 5 mg/l Provision the second state of the second state o	 Keeping good water quality Water quality control Solid wastes control Conservation of natural environment (forest) Forest protection Reforestation Sustainable use of fishing ground 	 Sca area Water quality: to be controlled in AMZ and DZ Fishing activity control Catchment area Reforestation in bare areas

Required Measures by Environmental Zones

Environ. Zones	Conservation Criteria	Necessary Actions	Required Measures
AMZ	 Water quality Trans.: 0.5~1.5m BOD: 1.1~1.3 mg/ℓ COD: 5.0~7.5 mg/ℓ T-N: 1.6 mg/ℓ T-P: 0.7 mg/ℓ SS: 5~15 mg/ℓ Environmental resources Tidal flats: 17,300 ha Mangrove swamps: 3,800 ha Fish and shellfish: No illegat fishing 	 Water quality control aimed at control in SC and CZ Protection of decrease in tidal flats coverage Upgrading of mangrove swamps Conservation of natural environment Sustainable use of fishing ground 	 Water quality: keeping a water purification capacity Reclamation control at tidal flats Rehabilitation of mangrove swamps Fishing activity control
DX.	1) Water quality - TCVN (5942) 2) Environmental resources - Forest coverage: 228 km ²	 Total pollution loads control flowing into AMZ Wastewater treatment Solid wastes management Reforestation Upgrading forest coverage Reforestation Preventive measures for soil erosion Reforestation 	 Development of sewerage system Drainage system WWTP Development of industrial WWTP Solid wastes management Collection vehicles and equipment Landfill sites Incineration of clinical and hazardous wastes Measures for mining Mine wastewater treatment Measures for coal processing plants Rehabilitation of dumping sites and river basins Dredging Measures environ. resources Reforestation in bare

Note: Trans. means transparency.

Î

1

With regard to measures in rural areas and/or in the upper stream areas in the eatchment of the bays, the present progress of the measures such as installation of a septic tank for domestic wastewater treatment are enough to attain the conservation criteria due to the relatively small runoff pollution loads from these areas into the bays. It should be noted, however, that the forest reserve areas should be managed strictly, so illegal deforestation activities there should be prohibited.