T.

TABLES

Ê

Project	Sampling month/year	Proponent/Data Source
1) Cai Lan Port Feasibility Study	12/1992	Department of Hydrology and Meteorology
2) Unknown	01/1993	Centre for Marine Environment, Survey, Research, and Consultation (CMESRC)
3) Cai Lan Port Feasibility Study	02/1994 06/1994	ЛСА
4) Water Environmental Quality of Ha Long Bay	07/1994	IDRC, VISED, MOSTE
5) Diagnostic Review of State of Coastal and Marine Environment of Gulf of Tonkin	1993	SAREC, MOSTE
6) Water Quality in Ha Long Bay	01/1997	SIDA, MOSTE
7) Pollution Study of Ha Long Bay	07/1997	World Bank, DOSTE

Table 9.1.1 Studics of Water and Scdiment Quality in Bai Chay and Ha Long Bay

Note: SIDA = Swedish International Development Agency

Physical/Biological	Nutrients	Heavy Metals	Toxics/Pesticides
 Temperature Dissolved oxygen (DO) pH Turbidity Transparency Total suspended solids (TSS) Salinity Conductivity Total sulphur (TS) Sulphate (SO4) Hydrogen sulphide (H₂S) Biochemical oxygen demand (BOD) Chemical oxygen demand (COD) 	 Total phosphorus (T-P) Phosphate (PO₄-P) Total nitrogen (T-N) Nitrate nitrogen (NO₃-N) Nitrate nitrogen (NO₂-N) Ammonia nitrogen (NH₄-N) Silicate (SiO₂) 	 Lead (Pb) Zinc (Zn) Cadmium (Cd) Iron (Fe) Copper (Cu) Mercury (Hg) Arsenic (As) 	1. PAH 2. Lindane 3. DDT
 Bicarbonate (ECO3) Total coliform Fecal coliform Oil 			

ï				Limitation Values	
No.	Parameters and Substance	Unit	Bathing and Recreation Areas	Aquatic Cultivation Area	Others
1	Temperature	°C	.30		
2	Odor		unobjectionable	6.5 - 8.5	6.5 - 8.5
3	pH		6.5 - 8.5	0.2 - 0.2 more than 5	more than 4
4	Dissolved Oxygen	mg/ℓ	more than 4	less than 10	Jess than 20
5	BOD5 (20°C)	mg/ℓ	less than 20	50	200
6	Suspended Solid	mg/ℓ	25	1. A set of the set	0.05
7	Arsenie		0.05	0.01	0.5
8	Ammonia (as N)	mg/ℓ	0.1	0.5	0.01
9	Cadmium	mg/l	0.005	0.005	
10	Lead	mg/ℓ	0.1	0.05	0.1
11	Chromium (VI)	mg/ℓ	0.05	0.05	0.05
12	Chromium (III)	mg/f	0.1	0.1	0.2
13	Chloride	mg/l	-	0.01	-
14	Copper	mg/ℓ	0.02	0.01	0.02
15	Fluoride	mg/l	1.5	1.5	1.5
16	Zinc	mg/l	0.1	0.01	0.1
17	Manganese	mg/l	0.1	0.1	0.1
18	Iron	mg/ℓ	0.1	0.1	0.3
19	(a) A second se second second sec	mg/t	0.005	0.005	0.01
20	A second s	mg/t	0.01	0.005	0.01
21	Cyanide	mg/t	0.01	0.01	0.02
22	[1] E. A.	mg/ℓ	0.001	0.001	0,002
22	and the second of the second	mg/ℓ	none	none	0.3
23	[1] The second secon	mg/l	2	1	5
24	[1] A. Martin and A. Martin		0.05	0.01	0.05
$\frac{25}{26}$	A second se Second second sec second second sec	mg/£ MPN/100ml	a second second research	1,000	1,000

Table 9.1.3 Victnam Environmental Standards for Coastal Water Quality

Source: TCVN 5943, 1995

		Entrophication	12.00		
Trophic Level Class	Saprotrophie	Pertrophic '			or
	Water Area	(severely		Eutrophic Water	Oligotrophic
	(extremely	Area with a	Area with a	Area (slightly	Water Area
Invironmental	polluted)	depth of several	depth of several	polluted)	(clean)
Parameter		meters or more	meters or less	وليسود ومحاجبة والمحاجبة والمحاجبة والمحا	غربت والتعاصيان والمتعادية
WATER QUALITY				وكالمتحدث والمتعد والتعاد فالتعاد	<u>ada an</u> an tha a
L Transparency (m)	s3	s 3		3 - 10 Sometimes	≥ 10
2. Discoloration	Blackish	Yellow, olive, bro	waish, etc.	temporal and local colouring	No colouring
3. CODMn (ppm)	≥ 10	3 - 10		1-3	≤ l
	≥ 10	3 - 10		1-3	≤1
4. BOD (ppn)	2.10			> 80%; surface	···· · · · · · · · · · · · · ·
	0 - 30%;	100 2007		and middle	
	(anaerobie	100 - 200%;	100 1000		80 - 100% in al
	condition from	surface layer	100 - 200%;	layer 30 - 80%;	layers
5. DO saturation (%)	the subsurface	(oversaturated)	surface layer		
	layer to sea bottom)	0 - 30%; bottom Tayer	(oversaturated)	deeper layer than several meters	(saturated)
6. Hydrogen sulphide	Detected at almost layers	Detectable at the bottom layer	Not detectable	Not detectable	Not detectable
7. Inorganic N compounds (µg at. N/6)	≥ 100	10 - 100		2 - 10	s 2
BOTTOM SEDIMENT					
20110.11.11.11.11.11.11	Black.			T.	
1. Cotour of mud	Oxidation layer (brownish coloured layer at the surface of	Black. Oxidation layer not found.	Blackish. Oxidation layer found.	Sometimes blackish. Oxidation fayer found.	Not blackish. Oxidation layer found.
2.COD (mg/g)	mud) not found. -	> 30		5 - 30	< 5 < 0.03
3. Sulphide (mg/g)	> 1.0	0.3 - 3.0	ana na ana ang ang ang ang	0.03 - 0.3	[<0.03
ORGANISMS	<u> 1987 - 1987 - 1987 - 19</u>		<u> 23.222377772222</u>	1	<u></u>
1. Bacteria (cells/ml)	≥ 10'	10 ³ - 10 ⁵		$10^{2} - 10^{4}$	l ≤ 10 ²
2. Phytoplankton (cells/ml)	≤ 10 ³	10 ³ - 10 ⁵		10 ³ - 10 ³	≤ 10 ²
3. Chlorophyll (mg/m²)	-	10 - 200		1 - 10	< 1
4. Primary production			-		
(mgC/m ³ /hr)		10 - 200		1 - 10	<1
(gC/m²/day)	-	1 - 10		0.3 - 1.0	< 0.3
	Very high				
5. Protozoa	abundance	Considerably hi	gh abundance	Low abundance	Low abundant
6. Crustacean zooplankton	-	Low abundance	, low diversity	High abundance, high diversity	Low abundance high diversity
7. Benthic polychaetes worm	Low abundance, low diversity	Low abundance low diversity	Very high abundance, high diversity	diversity	Low abundanchigh diversity
8. Crustacean		Low abundance	, low diversity	High abundance, high diversity	Low abundanc high diversity
9. Typical water area	The vicinity of sewcrage discharge	Enclosed bays v pollutant discha		Bays and coastal zone with a depth of 30 m or less	Offshore open water preas

 Table 9.4.4 Chemical and Biological Characteristics of Classified Coastal Waters from a Viewpoint of

 Eutrophication Level

Source: Environmental Assessment Handbook for Port Development Projects The Overseas Coastal Area Development Institute of Japan, 1993

Water Quality Variables		
Temperature	Chemical oxygen demand (COD _{cr})*	Cyanide (CN)
pH	Chemical oxygen demand (COD _{Mo})	Copper (Cu)
Salinity	Biochemical oxygen demand (BOD)	Lead (Pb)
Dissolved oxygen (DO)	Oil	Zinc (Zn)
Turbidity	Chlorophyll-a*	Cadmium (Cd)
Suspended solids (SS)	Total coliform	Nickel (Ni)
Total dissolved solids (TDS)	Fecal coliform**	Chromium (Cr)
Nitrate oitrogen (NO3-N)	Manganese (Mn)	Manganese (Mn)
Nitrite nitrogen (NO ₂ -N)	Phosphate (PO ₄ -P)	Iron (Fe)
Ammonia nitrogen (NII ₄ -N)	Total phosphorous (T-P)	Transparency**
Total nitrogen (F-N)	Mercury (Hg)	
Bottom Sediment Quality Variables		
Temperature	Ignition loss (IL)	Arsenic (As)
Composition	Chemical oxygen demand (COD)	Manganese (Mn)
Color	Total organic carbon (TOC)	Mercury (Hg)
Mixed matter	Total nitrogen (I'-N)	Zinc (Zn)
Water content	Total phosphorous (T-P)	Chromium (Cr)
pH	Hydrogen sulphide (HS)	Cadmium (CJ)
Oxidation-reduction potential (ORP)	Lead (Pb)	

Table 9.2.1 Water and Sediment Variables Measured in the Field Survey

隶

Note: * only in rivers ** only in bays

Table 9.2.2	Environmental Standards for	Conservation of the Living	Environment (Sea Area)
-------------	-----------------------------	----------------------------	------------------------

	[]			Standard Valu	e	
Classifi- cation	Applicable Level	Hydrogen Ion Concentration	Chemical Oxygen Demand (COD)	Dissolved Oxygen	Coliform Groups	N-hexane Extracts (grease, etc.)
Λ	Fishery class-1, bathing, conservation of natural environment and other items listed in B-C	7.8 - 8.3	2mg/l or less	7.5mg/l or more	1,000MPN/ 100ml or less	Must not be detected
В	Fishery class-2, industrial water and other item listed in C	7.8 - 8.3	3mg/ℓ or less	5mg/l or more	-	Must not be detected
с	Environmental conservation	7.0 - 8.3	8mg/l or less	2mg/l or more		-

Notes: 1) With regard to the water quality of fishery, class 1 for cultivation of oysters, the number of coliform groups shall be less than 70MPN/100ml.

2) Conservation of natural environment - Conservation of scenic points and other natural resources.

3) Fishery class 1 - for aquatic lives such as red sea-bream, yellow tail, seaweed and for hose of tishery class 2.

Fishery class 2 - for aquatic lives such as gray mullet, laver, etc.

4) Conservation of environment - Up to the limits as which no unpleasantness is caused to the people in their daily lives including a walk along the shore.

Source: Environmental Agency of Japan

Parameter	Unit	Standard Value
1)0	mg/l	≧4
BOD ₅	mg/ℓ	≦10
SS	mg/l	≦15
Turbidity	NTU	≦5 to ≦25
РСВ	mg/ℓ	≦0.001
Hydrocarbons	mg/ℓ	≦5
Fecal Coliform	MPN/100ml	≦200
T-P	mg/l	≦0.6
Nitrate Nitrogen (NO ₃ -N)	mg/l	≦0.5

Table 9.2.3 General Tropleat Guideline

Source: General Tropical Guideline, Clark, 1996

Table 9.2.4 Permissible Limits for Offshore and Onshore Dumping of Dredged Materials

		Offshore Dumping	5
Substance	Canada (ppm)	USA (ppm)	Japan $(mg/\ell)^3$
Mercury and its compounds	0.75	0.15	0.005
Cadmium and its compounds	0.6	0.7	0.1
Lead and its compounds	45	33	1
Chromium (IV) compounds	-		0.5
Arsenie and its compounds	5-25	12.5	0.5
Cyanogen compounds	-	-	1
Copper and its compounds	45	68	1
Zinc and its compounds	169	105	· ·
Polyaromatic hydrocarbon	1,000 ppb ¹	680 LMW ² 2,690 HMW ²	-

Notes: 1. Sum of 16 compounds

- Sum of 6 tow molecular weight (LMW) compounds; sum of 10 high molecular weight (HMW) compounds.
- 3. Contaminant concentration in dredged material usually is expressed in micrograms per kitogram ($\mu g/kg$) dry weight. The Japanese criteria uses contaminant concentration in micrograms per litre ($\mu g/L$) when calculating the necessary dilution factor for the dredged material. To convert the contaminant concentration reported on a dry-weight basis to the contaminant concentration in the dredged material, the dryweight concentration must be multiplier by the mass of dredged-material solids per litre of dredged material.

Source:

ce: Modified from United Nations Economic and Social Commission for Asia and the Pacific, 1992.

Ð

	T	Limitation	Value
Parameter and Substance	Unit	٨	B
pH value		6-8.5	5.5 - 9
BOD, (20°C)	mg/l	<4	<25
COD	mg/l	<10	<35
Dissolved oxygen	mg/l	>=6	>=2
Suspended solids	mg/l	20	80
Arsenie	mg/ℓ	0.05	0.1
Ванию	mg/l	1	4
Cadmium	mg/ℓ	0.01	0.02
Lead	mg/l	0.05	0.1
Chromium, Hexavalent	mg/ℓ	0.05	0.05
Copper	mg/f	0.1	ł
Zinc	mg/l	1	2
Mangauese	mg/l	0.1	0.8
Nickel	mg/ℓ	0.1	1
Iron	mg/ℓ	1	2
Mercury	mg/l	0.001	0.002
Tin	mg/ℓ	1	2
Ammonia (as N)	mg/ℓ	0.05	1
Fluoride	ng/ℓ	1	1.5
Nitrate (as N)	mg/ℓ	10	15
Nitrite (as N)	mg/l	0.01	0.05
Cyanide	mg/ℓ	0.01	0.05
Phenol compounds	mg/ℓ	0.001	0.02
Oil and grease	mg/ℓ	not detectable	0.3
Detergent	mg/l	0.5	0.5
Coliform	MPN/100mg	5000	10000
Total pesticides (except DDT)	mg/l	0.15	0.15
DDT	mg/ℓ	0.01	0.01
Gross alpha activity	Bq/l	0.1	0.1
Gross beta activity	Bq/ℓ	1.0	1.0

Table 9.2.5 Vietnam Standard for Inland Water Quality

Note: - Values in the column A are applied to the surface water using for source of domestic water supply with appropriate treatments.

- Values in the column B are applied to the surface water using for the purposes other then domestic water supply. Quality criteria of water for aquatic life are specified in a separate standard.

Source: TCVN 5942, 1995

								-				2				i	;								5
	ר No	Lawes	Depth 1	÷	Tans.	N H	>.							<u>></u> .	•								ĥ	u,	104
	-			-	٤	•	-+	<i>i/d</i> m	┤	-		-	×.	м́н	-+-	ла ш	a l	-du						4	ļ
	-	Upper			+	7.9			83.7		•			161		0.017	0.11	57:0		0.00	100'0	0.920	8	2	
<u>ی</u>	_	ower		31		3.1			25.8			_	6 11	Ş.		0:030	01.0	0.3		0.52	58 8 0	0.517	1.57	01.1	0.10
İ	0	Upper	1	ļ	+	5.5					7.2 6.5	5 1.5	e 2	sc.1		510.0	0.10	0.35		0.73	0.007	0.713	1.73	8	9 r.
<u>ų</u>		ower	Ŧ			сл 59		- 					6	1.36		\$10.0	80	65-0		S4-0	0.000	1/1/	3.55	2.50	8
1	n N	Phor.	1	1	1.5	S.1	<u> </u>	<u> </u>	103.0		5.4 4.9		د د	171		0.011	0.09	0.37		0.85	0.00	0.841	99. 1	3	0.71
~		ower				5.2							و 	1,47		0.017	0.12	0.30		00	0.005	0.795	1.5.1	0% 1	0.1
	7	Poser-	┢		1.8	3,1	1		113.5	-		ļ 	0	10.1	—-	0.009	0.05	0.37		0.00	0.011	0.559	112	9 9	06'1
		ower				s, L	.						•	1.51		0.019	0.0¢	0.30	i	1.15	0.006	1.174	ន	970	1.30
1	s lu	DOCT		+	0.5	5.2	5.4	1.4	50.7	-	[5 9.5		0.81		0.032	0.10	0.14		0.34	0:020	0.320	2.38	9	1.40
<u>ئ</u>		ower				3.1								0.8		0.034	0.10	0.14		0.13	0.047	0.333	112	5.60	0. 20
1	5	nocr	<u> </u>	-	0.6	5.2	-	<u> </u>	<u> </u>		<u>i</u>			8		0.03.3	\$; \$	0.17		0.14	0.051		15.1	81	0.60
		OWER				8.1								1.03		0.039	0.03	0.0		62.0	0.095	0.432	5	8.6	9 1 0
1	5	Upper	0.5	10.1	0.6	3.1				0.9	7.4 8.2	10	14	81	50 50 50	0.005	0.0	0.12	0.00	0.77	0.024		271	9 7	8
<u>ਦ</u>	1,1m) [Lc	ower				5.1					-			1.05		0.011	0.07	0.10		100	1.0.0	0.500	ž	2	0.0
i	2 2	pper	<u> </u>	<u> </u>	1.6	8.2	<u> </u>		312.9				о •	1.56		0.005	0.05	0.05		0.00	0.030		\$13	2.30	1.10
÷,	0. LM)	OWEr				5.1		- 0. 1					• •	1.99		0.053	0.05	0.13	_	0.41	0.012	0.375	4.85	2.60	0.0
1	0	pper	0.5	16		3.3	<u> </u>		<u></u>	1			s 0	514		0.01.1	0.0	12.0		0.75	0.009	0.741	2.85	8	о сі
<u>е</u>		ower		30.9		5.5 2.8							s s	2.13		0.005	83	0.23		417	0.003	111	787	2	ឡ
1	10	ppcr	0.5	┡	1.6	5.2		1.7		5.1	7.S 5.		¢ 2	<u>-</u>		0,000	0.10	0.37		0.94	0.011	0.929	ŝ	8	07.7
<u>و</u>		ower		30.9		5.2							6	261		0.016	0.05	0.33	1.59	ទ	0.005	1.215	5	2.50	9 1 -1
•		hper	<u> </u>	<u> </u>	1.8	5	<u> </u>	1	-	 		ι	¢	1.62		0.014	0.0	C.34		1.12	0.010	1.110	1.45	ç ri	4.70
<u>.</u>	- 1) 1	Ower				8,2				 .			5 S	1.95	0.15	0.015	8.0 0.0	0.26		77	0.007	1233	1.60	0 1 1	21
1	10	pper	 	<u> </u>	1.7	<u>s.</u> 2	<u> </u>	<u> </u>		Ĺ	·		\$ +	1.55		0.005	0.0	0.05		0.67	0.144	0.526	12-1	9 11	8
ť	4.6m) [L	ower				8.1	•••••						~ ~	1.55		0.003	0.03	80		0.15	210.0	0.313	5.37	2.80	0.50
	10 U	Upper	╞	-	2.8	5.2	-	-					5	0.74		0.009	0.0	0.12		072	0.225	0.092	F.	1.90	2
5	7.7m) L	ower				8.2	···· -						9	0.82	0.0	0.025	8°0	0.15		0.30	0.030	0.770	1.02	200	0-0
: l	5	Upper	0.5	31.5	5.6	5.5	<u> </u>			.			•	0.45		10.0	0.05	0:0	0.36	9.0	0.060	0.300	Ň	202	0.00
<u>-</u>	5.6m) LL	ower		39.6		۲. %							\$ 0	St-0	0.04	0.021	0.0	0.14	-+	0.61	0.136	0.474	<u>8</u> 0	s S	0.40
1	15 U	¹ pycr	<u> </u>	-	1.5	8,4	<u> </u>		-			0 2 2 2 9	10	1.65		0.023	0.0	0.11		0.73	0.034	0.696	ñ	8	0.50
<u>.</u>	(1, 0m) Lo	ower		29.5		5.3							71 5	1:26	0.02	0.029	0.0	0.11	1.15	0.35	0.0.11	01540	4	9 1	0.20
<u> </u>		pper	+	<u> </u>	54	8.3		<u> </u>	-		13.2 6.6		r- -	7.7		0,00%	0.02	0.06		0.43	10.034	0.396	2.5	2 2 2	0+0
<u></u>		ower			-	5.3						5°7	6		0 ⁰	0.00 0.00	800	0.0		0.57	0.060	0.5.0	1 96	5, 5	010
-	17 0	Upper	0.5		7 7	7.5	<u> </u>	4.5	53.0		4.7		\$	0.69		C10.0	0.02	0.05		0.40	0.023	0.46%	7 7 7 7	9. ri	0.10
<u>ې</u>		ower	5.7	31.4		4.K						6 <u>0.9</u>	0	1.05		0.008	10:0	50		0.65	0.066	0.614	8	22	0.0
1	13	Upper	0.5	–	14	5.3	8	5.8	20.5	. 0.0	4.5 4.5	\$ 0.4	+	1.87	0.02	0.007	0.01	0.06	1.81	0.40	0.039	0.361	÷0.4	1,70	0.70
	(3.1m) L4	Lower	7.1	31.8	-	5.5							ہ ۲	162	_	0.007	0.03	0.0		S+0	0.025	0.455	90 9	1.80	0.30

Table 9.2.6 Water Quality in the Bays by the Field Survey (1/2)

(7,7) (7,7)
Survey
Field
the Bays by the)
à
Bay
the
.9
Quality
L-
Wate
2.6
e 9.2.(
Table

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			t					1.0	400	-2027	Ìè		Turbidity	N.F	スキモダ	NO2 N	N-TON	~		T-P	P04-P	- 4-0	O N.T	Chie-1	ö
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jemp.		E.	ź	1 1			- neon						mell	"ma/	19th	//am	me/f	/am	mø/	mp/f	. <i>1/3</i>	T.P 11	n, m, m	ne/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>ب</u>		ε	1	-†	8	Jan 1	2	ya u	NA E	2			220	100	0.006	80	000	94 94	8.0	0.023	0.352	2 34'X	9.0	0.00
N2 N3 N3 07 N3 N3<	0.5 32.2 2.1		31		ę.,	z	٩٠٢	9.9 20	S. 0	4	2	1 2 2	3 0	080	000	0.005	0.07	0.10	0.50	<u>0</u>		0.367	55	2.80 0	0.50
N3 33.5 5 34.0 0.0 3.0 3.0 0.0 3.0 0.0 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	1.55	_		+	5.2	5	0;5	20.5	0.7	•	30	3			100	0.007	0.0	80	13	0.63	0.030	0.600		2.67 1	23
N3 335 445 100 55 114 000 000 000 100	0.5 25 20		••		5.3	24.5	s :	0.12	0.1		с. 5 с. т	1.	. =		0.03	0.005	0.02	0.0	S	0.57	0.021	0.549	2.84	2.67 0	0.00
No. 21.4 000 3.0 1.0 2.0 1.0 1.00 0.00 0.00 0.01 1.00 1.01<	2			Ť	5.8	5.12	* *	5	8.0	0.1		4	: ,	4	20.0	800.0	800	0.0	5051	0.26		0.237	4.38		0.30
N3 25 N6 224 U05 11 101 001 0001 0001 0001 001 1001 101 N3 12 6.7 10024 1.5 5.1 7.4 4.3 111 001 0001 0001 0001 001 1001 1001 105 N3 1.15 5.1 7.3 2.3 6.0 1.1 1.1 0.01 0.001 0.001 0.01 0.01 1.1 N3 1.15 5.1 7.3 2.3 6.0 1.4 1.1 0.01 0.001 0.00 0.01 1.1 N3 2.15 5.0 1.1 7.1 1.1 2.2 1.1 0.01 0.001 0.00 0.01 0.00 0.01 1.1 0.1 0.1 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.5 32.2	32.2		 - 1 - 7	すざ	20.V		41.4	0.0	2:		, r , r	⇒ ⊆	98.1	200	0.001	0.02	50	1.82	0.15	0.056		10.33 2	2.30 0	0.10
No. No. <th></th> <th>31.1</th> <th>- 1</th> <th></th> <th>\$.3 </th> <th></th> <th>2</th> <th></th> <th>ŝ :</th> <th></th> <th></th> <th></th> <th>s</th> <th>I III</th> <th>10'0</th> <th>0.00.3</th> <th>0.00</th> <th>0.10</th> <th>10.1</th> <th>0.49</th> <th>0.019</th> <th>1470</th> <th>а 51 1</th> <th></th> <th>0.40</th>		31.1	- 1		\$.3 		2		ŝ :				s	I III	10'0	0.00.3	0.00	0.10	10.1	0.49	0.019	1470	а 51 1		0.40
X3 14.5 6.7 102.4 1.5 5.1 7.4 4.3 11 0.39 0.01 0.004 0.02 0.01 1.17 X3 X3.5 5.9 X1.2 0.3 4.5 X.6 0.6 9 1.39 0.01 0.006 0.07 0.07 0.07 0.07 1.17 X3 Z3.5 5.9 X1.2 0.3 4.5 X.6 0.6 9 1.39 0.01 0.006 0.07 0.09 1.17 X3 Z3.5 5.9 X1.2 0.3 4.5 1.1	0.5 .1.4	+		1	4 C	ų ž	1.0	0.71	0.3	2) ° ,	10.6	2	1	0.01	0.004	0.02	50.0	1.45	0.29	0.018	0.272	-		0.0
3.3 3.5 5.3 1.5 <th>+</th> <td></td> <td></td> <td>4</td> <td></td> <td>14 5</td> <td>6.7</td> <td>102.4</td> <td>5</td> <td>1.2</td> <td>3.4</td> <td>4.3</td> <td>11</td> <td>0.59</td> <td>0.01</td> <td>0.014</td> <td>0.02</td> <td>50</td> <td>0.85</td> <td><u>;;</u></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td>	+			4		14 5	6.7	102.4	5	1.2	3.4	4.3	11	0.59	0.01	0.014	0.02	50	0.85	<u>;;</u>					0.0
3.7 225 5.9 31.2 0.3 4.5 1.1 4.9 4.5 1 1.2 2.33 0.01 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.05 1.80 2.25 3.1 2.15 5.8 20.6 1.1 4.9 4.5 1 1.1 2.15 0.01 0.00 0.06 0.05 0.05 1.80 3.1 2.5 5.0 2.0 0.9 3.3 4.9 7 1.97 0.01 0.00 0.05 0.05 1.80 2.25 3.1 2.5 5.3 2.77 0.7 3.7 2.1 2.9 2.9 1.1 2.9 2.9 1.1 2.9 2.0 0.01 0.00 0.01 0.07 0.05 1.05 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.05 1.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05		9		3		31.5	Ŷ	15.8	1.2	3.3	х С	6,9	7	121	0.01	0.00%	0.05	0.07	1.17		+			+	0.50
X3 Z15 S.3 Z06 1.1 4.9 4.5 1 1.2 Z33 0.01 0.006 0.06 0.08 Z25 3.3 Z5 6 Z40 1 3.1 A.1 4.8 8 1.85 0.02 0.06 0.05 1.80 3.3 Z5 5 Z50 0.0 3.3 9.3 4.0 7 1.97 0.01 0.05 0.05 1.80 8.1 Z5 6.3 34.3 1.1 Z.9 5.1 1.97 0.01 0.02 0.05 0.05 1.80 8.1 IS 5.3 Z77 0.7 3.7 2.0 1.9 0.02 0.07 0.07 0.05 1.95 8.1 IS S1 I.1 Z 2.9 L.5 0.7 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 <	╉			25	1 2 2	12	\$	13.2	0.8	4.5	5.6	0.6	ه	1.39	10.0	0.006	0.07	0,00	02 ⁻¹						0.30
3.3 25 6 25.0 1 3.1 4.8 5 1.85 0.02 0.01 0.02 0.05 1.86 3.1 25 5.9 20.9 0.0 3.3 0.3 4.0 7 1.97 0.01 0.02 0.07 0.02 1.95 3.1 2.5 5.3 277 0.7 3.7 5.1 2.9 6 1.37 0.02 0.007 0.02 0.07 0.03 1.12 3.2 2.1 3.7 3.1 4.1 1 1 5 1.05 0.01 0.007 0.02 0.07 0.03 1.12 3.1 1.5 5.1 2.0 2.9 1.1 1 5 0.01 0.007 0.02 0.07 0.03 1.12 3.1 1.5 3.1 1 5 0.10 0.01 0.00 0.02 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07		1		ļ		2.15	\$3	29.6	1.1	4.9	4.5	-	ដ	233	0.01	0.009	0.0	0.0	អ៊	0.27	+	<u> </u>		-+-	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	╉	2	1	1 5		5.		0.42	1	3.1	3.1	4.5	×	1.35	0.02	0.011	0.02	0.05	1,30	0.52					0.50
31 27 6.1 34.3 1.1 2.9 2.6 1.3 5 1.05 0.04 0.007 0.02 0.07 0.03 0.02 0.07 0.03 0.02 0.05 1.22 1.22 1.22 1.37 0.02 0.007 0.03 0.02 0.03 0.05						łź	\$0	0.02	0.0	8. 8	9.8	4.9	7	1.97	0.01	0:001	10:0	0.02	1.95	0.72	0.024		22		0.50
3.2 2.4.5 5.8 2.77 0.7 3.7 2.9 6 1.37 0.02 0.009 0.02 0.05 0.74 3.1 15 5.8 3.13 0.9 3.7 4.1 1 5 0.79 0.02 0.009 0.02 0.05 0.74 3.1 15 5.6 3.7 4.1 1 5 0.79 0.02 0.009 0.05 0.74 3.1 5.6 3.50 1 2.9 2.9 1.5 6 0.30 0.01 0.07 0.74 3.2 3.1 1.9 2.9 2.9 1.5 1.9 1.93 0.01 0.07 0.74 3.1 2.4 3.5 1.1 2.73 0.01 0.007 0.02 0.04 0.74 3.1 2.4 2.71 2.7 1.1 2.73 0.1 2.09 0.02 0.04 0.07 3.1 2.1 2.1 2.1 2.1 2.4 2.71 2.73 0.01 0.00 0.02 0.04 3.1 3.1 2.73 3.1 2.73 0.01 0.00 0.02 0.04 0.71 3.1 3.1 <t< th=""><th></th><td></td><td></td><td></td><td>, - , -</td><td></td><td></td><td>1</td><td>11</td><td>01</td><td>50</td><td>1.3</td><td>s</td><td>1.05</td><td>ちっ</td><td>0.007</td><td>0.02</td><td>0.07</td><td>0.95</td><td>0.79</td><td>0.017</td><td>0.773</td><td></td><td></td><td>1.10</td></t<>					, - , -			1	11	01	50	1.3	s	1.05	ちっ	0.007	0.02	0.07	0.95	0.79	0.017	0.773			1.10
1 1 5 0.79 0.02 0.009 0.02 0.079 0.07 0.01 0.07 0.07 </th <th></th> <td></td> <td></td> <td></td> <td></td> <td>i v</td> <td></td> <td>5</td> <td>0.7</td> <td>27</td> <td>v,</td> <td>o ci</td> <td>•</td> <td>1.37</td> <td>0.02</td> <td>0.009</td> <td>20:0</td> <td>0.05</td> <td>ध</td> <td>0.60</td> <td>150.0</td> <td>0.569</td> <td> +</td> <td>2.80</td> <td>80</td>						i v		5	0.7	27	v,	o ci	•	1.37	0.02	0.009	20:0	0.05	ध	0.60	150.0	0.569	+	2.80	80
Zi 31 1 56 350 1 29 15 6 0.86 0.02 0.009 0.04 0.07 0.79 0.8 8.3 24 3.8 10 1 29 1.5 6 0.86 0.02 0.009 0.04 0.97 0.79 1 1 8.1 23 3.8 10 0.78 0.01 0.006 0.02 0.004 0.79 0.6 8.3 8.3 10 1.98 0.01 0.007 0.02 0.04 2.69 0.6 8.2 255 4.7 257 3.8 11 2.73 0.01 0.007 0.02 0.04 2.69 0.6 8.2 255 4.7 27.1 23 1.81 0.02 0.008 0.01 0.01 2.69 0.6 8.2 255 4.4 27.1 23 1.81 0.02 0.008 0.01 0.01 0.10 1.71 </th <th></th> <th>010</th> <th>+</th> <th>ľ</th> <th></th> <th></th> <th></th> <th></th> <th>*0</th> <th>1.7</th> <th></th> <th></th> <th>5</th> <th>0.79</th> <th>0.02</th> <th>0.009</th> <th>0.02</th> <th>0.05</th> <th>0.74</th> <th>0.65</th> <th>0.020</th> <th>0.0.0</th> <th><u>1</u></th> <th>0 97 2</th> <th>0.70</th>		010	+	ľ					*0	1.7			5	0.79	0.02	0.009	0.02	0.05	0.74	0.65	0.020	0.0.0	<u>1</u>	0 97 2	0.70
0.8 8.3 24 3.3 19.0 0.7 3.5 5.0 27.3 19 1.98 0.01 0.006 0.02 0.04 1.94 1 8.1 2.3 3.8 21.0 0.3 2.5 8.3 8.5 11 2.73 0.01 0.07 0.02 0.04 2.69 0.6 8.2 2.55 4.7 2.55 8.3 8.5 <t< th=""><th>0.5 32.4</th><td></td><td></td><td>1</td><td></td><td>9 7</td><td></td><td>0.10</td><td>; -</td><td></td><td>1</td><td>2</td><td>¢</td><td>0.50</td><td>0.02</td><td>0.000</td><td>0.04</td><td>0.07</td><td>0.79</td><td></td><td>0.017</td><td>0.623</td><td>2.1</td><td>250</td><td>0.0</td></t<>	0.5 32.4			1		9 7		0.10	; -		1	2	¢	0.50	0.02	0.000	0.04	0.07	0.79		0.017	0.623	2.1	250	0.0
0.8 0.4 2.4 2.5 8.3 8.3 11 2.73 0.01 0.007 0.02 0.04 2.69 1 8.1 2.3 3.8 11 2.73 0.01 0.007 0.02 0.04 2.69 0.6 8.2 2.5 4.7 2.5 8.3 8.3 11 2.73 0.01 0.007 0.02 0.04 2.69 0.6 8.2 2.55 4.4 27.1 2.3 1.51 0.02 0.003 0.07 0.10 1.71 0.6 8.2 2.5 4.4 27.1 2.3 1.51 0.02 0.003 0.07 0.10 1.71 0.6 8.2 7.8 3.4 27.1 2.3 3.1.8 0.1.2 0.45 2.92 0.6 8.4 1.0 1.45 5 0.45 5 0.45 5.02 0.01 0.01 0.02 0.04 1.01 1.71 1.01 1.31	-		1							31	i v	25	10	1.98	0.01	0.006	20.0	50	1.94	0.16	0.024	0.136	200		0.10
I 8.1 2.3 7.8 2.1.0 0.3 2.5 8.3 8.3 11 2.73 0.01 0.007 0.02 0.04 2.69 0.6 8.2 2.55 4.7 2.73 0.8 3.5 4.4 27.1 2.3 1.51 0.02 0.04 2.69 2.69 0.6 8.2 2.55 4.7 2.7 3.5 1.51 2.3 1.51 0.02 0.003 0.07 0.10 1.71 5.6 8.4 3.15 3.15 3.5 0.4 2.7 3.13 0.72 0.01 0.02 0.10 1.71 0.5 7.9 4.5 3.5 0.4 5 0.45 0.01 0.01 0.02 0.04 5.92 0.44 1.71 2.1 5.2 2.5 0.4 5 0.45 0.01 0.02 0.04 0.02 0.04 0.04 0.02 0.04 0.04 0.04 0.04 0.04	172 S.0			\$0		ŧ,	2	~~~ ^~*1	ì	1	2	1													
1 8.1 2.3 3.8 21.0 0.3 2.5 8.3 8.3 11 2.7.5 0.01 0.00 0.01 0.01 0.01 0.6 8.2 2.55 4.7 2.7.8 0.8 3.5 4.4 27.1 2.3 1.81 0.02 0.003 0.07 0.10 1.71 0.6 8.2 2.55 4.7 2.7 3.4 27.1 2.3 1.81 0.02 0.003 0.07 0.10 1.71 5.6 8.4 3.1.5 3.1.7 3.7 3.67 2.3 3.1.8 0.72 0.01 0.01 0.45 2.92 0.5 7.9 4.5 3.8 1.4 9.3 2.5 0.4 5 0.45 0.01 0.01 0.02 0.34 2.1 5.2 2.4 1.0 1.45 0.07 0.015 0.02 0.04 0.014 1.31 2.1 5.2 2.4 1.0 1.45 0.01 0.015 0.02 0.14 1.31 2.1 5.2 5.4 1.0 1.45 0.01 0.015 0.02 0.04 0.04 2.1 5.2 2.4 1.0 1.45			1													-000	500	100	07 0	0 : 6	0.01%	1 241.0	17.06	0	0.70
0.6 8.2 2.5 4.7 2.7.1 2.3 1.81 0.02 0.008 0.07 0.10 1.71 5.6 8.4 31.5 7.1 23 3.1.8 0.02 0.008 0.07 0.10 1.71 5.6 8.4 31.5 7.1 33 3.4.4 27.1 23 3.1.8 0.02 0.008 0.12 0.45 2.92 5.6 8.4 31.5 7.0 4.5 3.5 0.4 5 0.45 0.01 0.01 0.02 0.045 2.92 0.5 7.9 4.5 3.5 0.4 5 0.45 0.01 0.01 0.02 0.04 0.34 1.31 2.1 5.2 5.5 0.4 5 0.45 0.01 0.01 0.02 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	1.51 2.0			1	3.1	ភ	3,8	012	0.3	ri	S	5.5	2		10'0	222		 }	 }	 }					"
0.6 8.2 2.5 4.7 27.1 2.4 27.1 2.4 27.1 2.4 2.7.1 2.4 2.7.1 2.4 2.7.1 2.4 2.7.1 2.4 2.7.1 2.4 2.7.1 2.4 1.4 0.01 0.01 0.02 0.04 0.14 1.3 1.3 2.1 5.2 5.4 1.0 1.45 0.01 2.01 0.01 0.01 0.02 0.04 0.14 1.3 2.1 5.2 2.4 1.0 1.45 0.07 0.013 0.02 0.04 0.02 0.04 0.04 1.31 2.1 5.2 2.4 1.0 1.46 0 1.47 0.01 0.01 0.02 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04				-													500			110	700	0.116	2021	270	0.00
5.6 8.4 31.5 7.1 332.9 2.6 13.2 2.8.7 36.7 23 3.1.8 0.1.2 0.0.2 0.45 2.92 0.5 7.9 4.5 3.8 14.9 0.3 2.5 2.4 5.6 0.45 5.92 0.44 5 0.45 0.01 0.01 0.01 0.02 0.34 1.31 2.1 5.2 5.4 5.5 0.4 5 0.45 6.01 0.01 0.02 0.34 1.31 2.1 5.2 5.4 1.0 1.45 0.07 0.013 0.02 0.14 1.31 2.1 5.2 5.4 1.0 1.45 0.07 0.013 0.02 0.14 1.31 2.1 5.2 5.4 1.0 0.14 0.02 0.009 0.06 0.14 1.31	0.5 14.2	E E		0.6	22	ŝ	4.7	27.8	0.8	3.5	7.7	172	ř1	1.51	20.0	0.003		2							
5.6 8.4 31.5 7.1 332.9 2.6 13.2 28.7 36.7 28 3.1.8 0.1.2 0.0.8 0.1.2 0.50 0.1.2 0.50 0.1.2 0.50 0.1.2 0.50 1.51 1.51 21 32 25 34 40 0 1.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50				_			-										4		5		9250	1.15		-	1
70 4.5 3.8 14.9 0.3 2.5 2.4 5 0.45 6.01 0.001 0.01 0.02 0.34 3.2 2.02 5.4 5.3 6.4 10 1.45 0.07 0.013 0.02 0.34 1.31 3.2 2.02 5.4 1.2 6.2 5.3 6.4 10 1.45 0.07 0.013 0.06 0.14 1.31 3.2 2.02 5.4 1.0 1.45 0.07 0.013 0.06 0.14 1.31 3.2 2.02 1.0 1.45 0.07 0.013 0.06 0.14 1.31	5.15	1 T		5.6	4.2	31.5	7.1	332.9	2	13.2	38.7	36.7	ล	3,18	110	0.058	1	(†) 0							
3.2 20.2 5.4 1.2 6.2 5.8 6.4 10 1.45 0.07 0.013 0.06 0.14 1.31 5.2 5.4 1.2 6.2 5.8 6.4 10 1.45 0.07 0.013 0.06 0.14 1.31 5.2 5.4 1.0 4.0 0 1.39 0.02 0.009 0.06 0.06 1.21	- 20.5	ŝ		50	7.0	5.4	3.5	14.9	0.1	X 1	3	0.4	v,	0.45	10:0	100.0	0.01	сі 60 0	7. 0	41.0		500.0	2		
	. 315	31.5		17	3.2	20.2	÷.	55.4	4	, Li	5.3	6 .4	ò	1.45	0.07	0.013	8.0	0.14		0.59		2320	4 2 19 7		 1 2
	\$ 12	315		8	12	ព័	5.6	31.2	1.1	5.6	4.9	4.0	9	1.19	0.02	0.009	<u>0.8</u>	6.0	1	0.57	0.024	0150		-	3

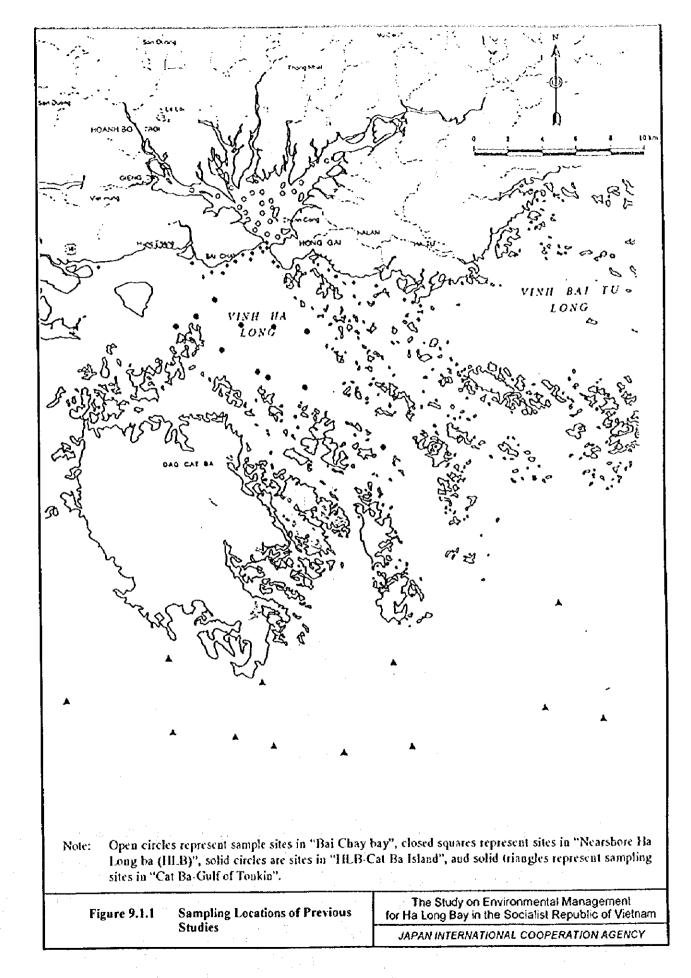
Ţ

NI -	Water content	ORP	COD	T-N	Т-Р	Ignition Loss
No.	%	mv	mg/g	mg/g	mg/g	1/2
2	29.5	-317	51.0	0.50	0.20	2.6
3	60.1	-332	146.5	3.02	0.32	10.1
6	36.5	-322	55.9	2.04	0.27	3.6
7	60.6	-321	107.9	3.02	0.32	6.8
10	63.5	-339	98,5	2.18	0.45	11.5
14	43.6	-308	72.8	0.78	0.30	5.0
15	57.5	-315	82.0	0.84	0.30	5.9
18	55.5	-229	104.5	1.15	0.32	7.2
22	36.6	-258	81.1	0.64	0.31	4.0
25	35.7	-295	42.4	1.04	0.30	6.6
28	39.3	-304	68.9	3.02	0.15	23.5
29	27.7	245	53.1	2.46	0.12	22.3
30	31.1	-303	47.3	1.48	0.12	11.7
Ave.	44.4	-261	77.8	1.71	0.27	9.3

Table 9.4.1 Bottom Sediment Quality

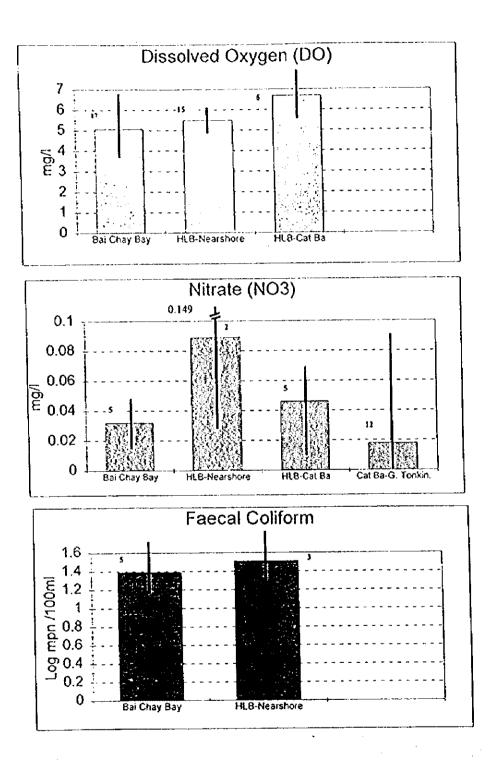
.

Source: Field Survey by JICA study team

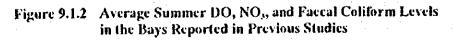

to state of

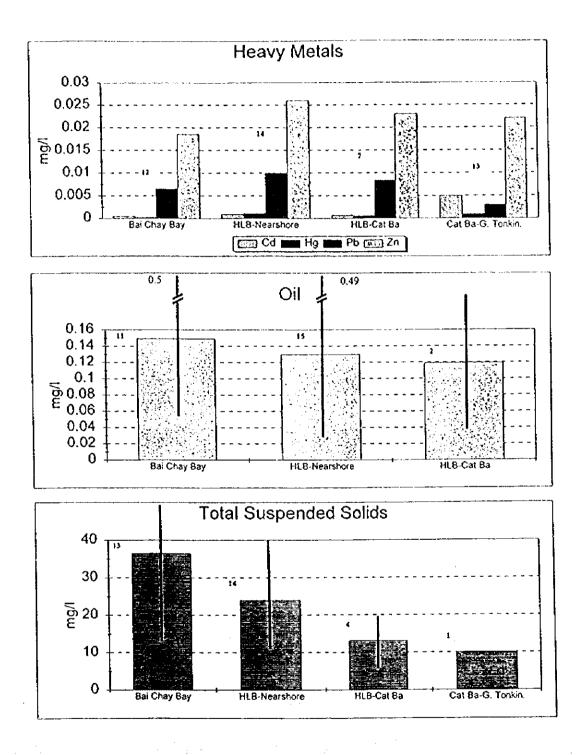
(Internet of

FIGURES

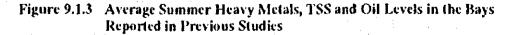

Providence of

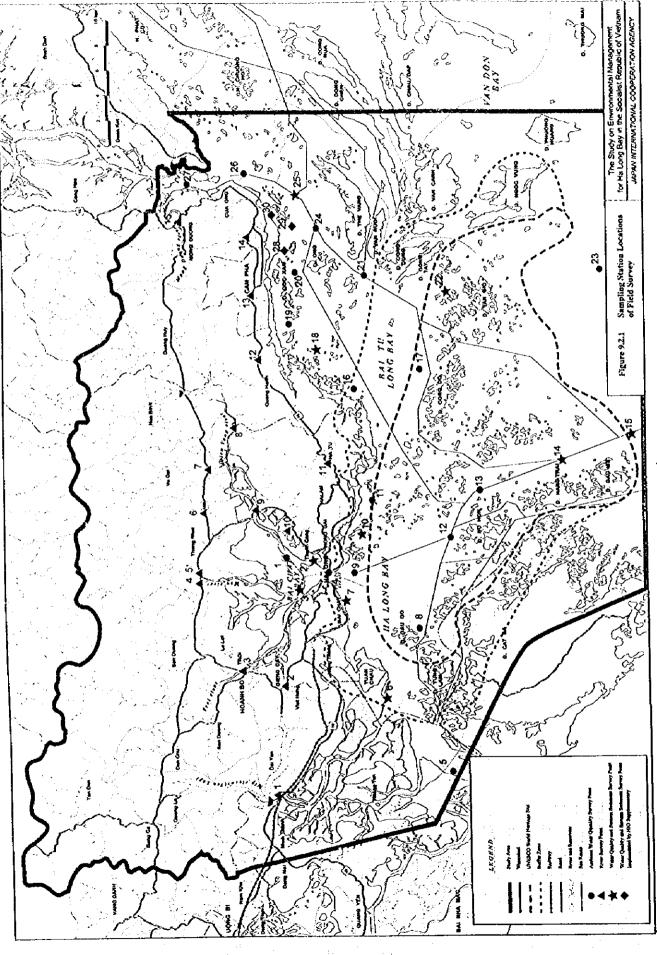
Ţ




×.

T


Note: Numbers at top of bars indicate sample size; this vertical bars show range of maximum and minimum concentrations; and NO₃ plot represents winter data.



Note:

Numbers at top of bars indicate sample size; thin vertical bars identify range of maximum and minimum concentrations; and metals plots represents all historic data.

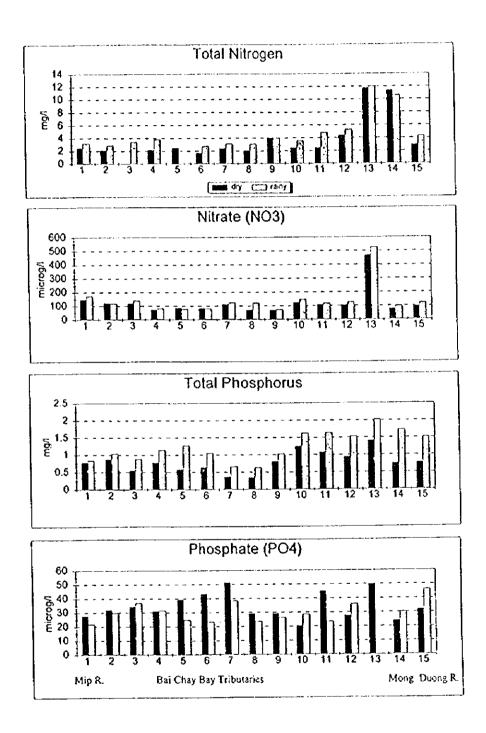


Figure 9.2.2 Water Quality Indicators in Tributaries in Dry and Rainy Conditions

÷

No.

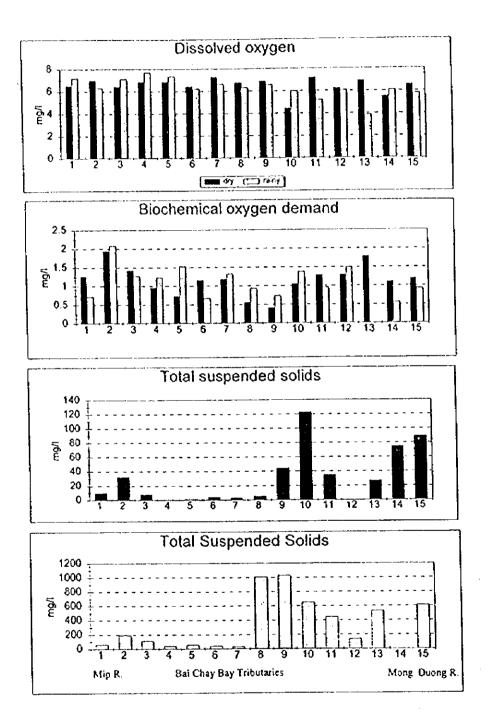
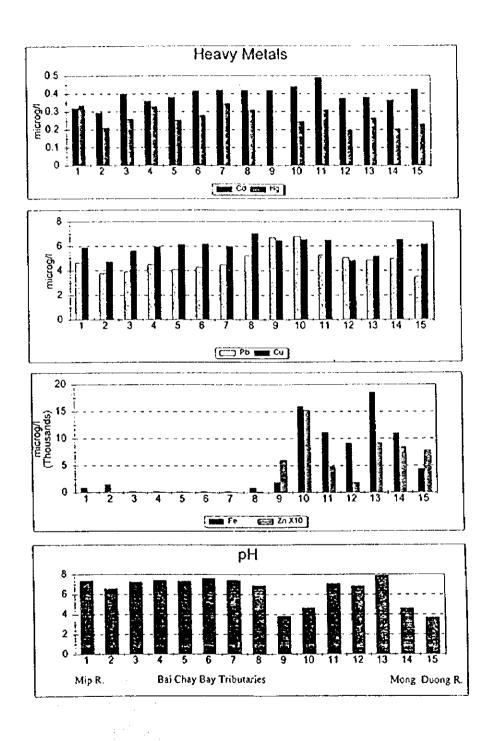
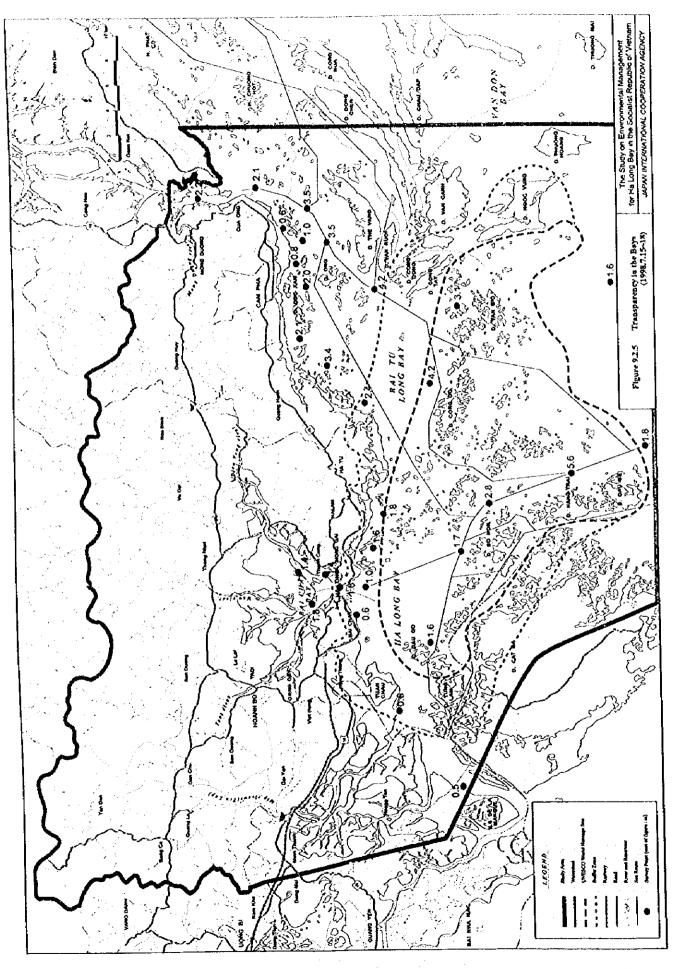
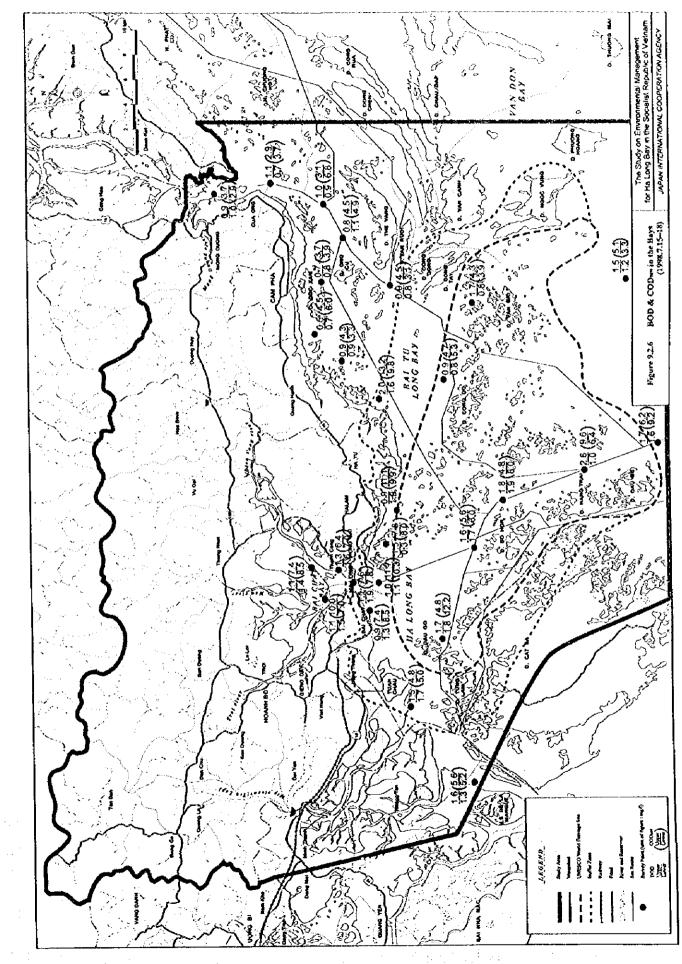
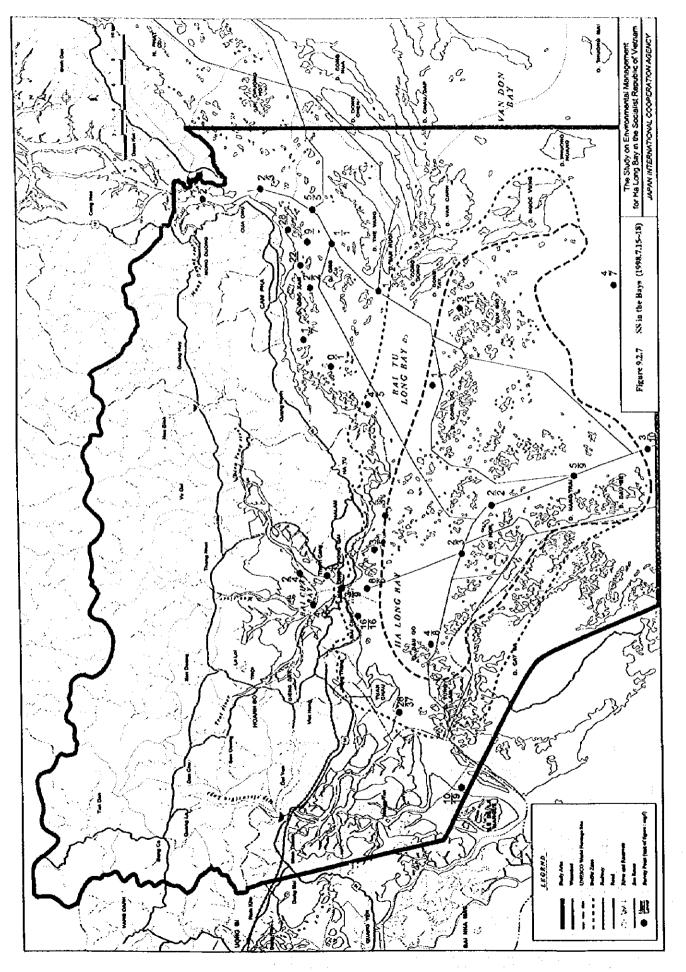


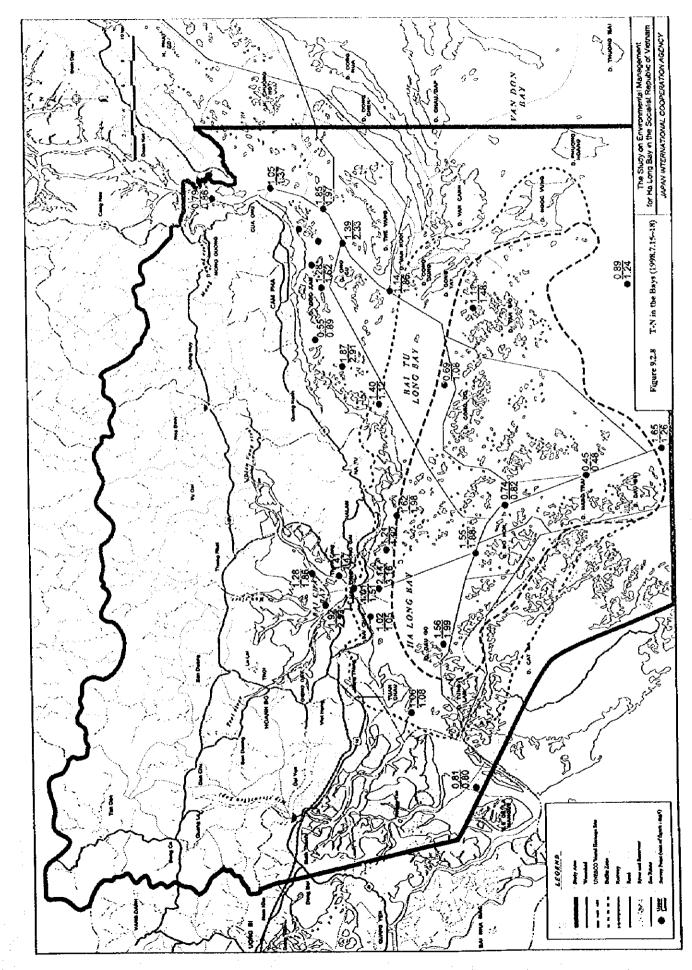
Figure 9.2.3 Water Quality Indicators in Tributaries in Dry and Rainy Conditions

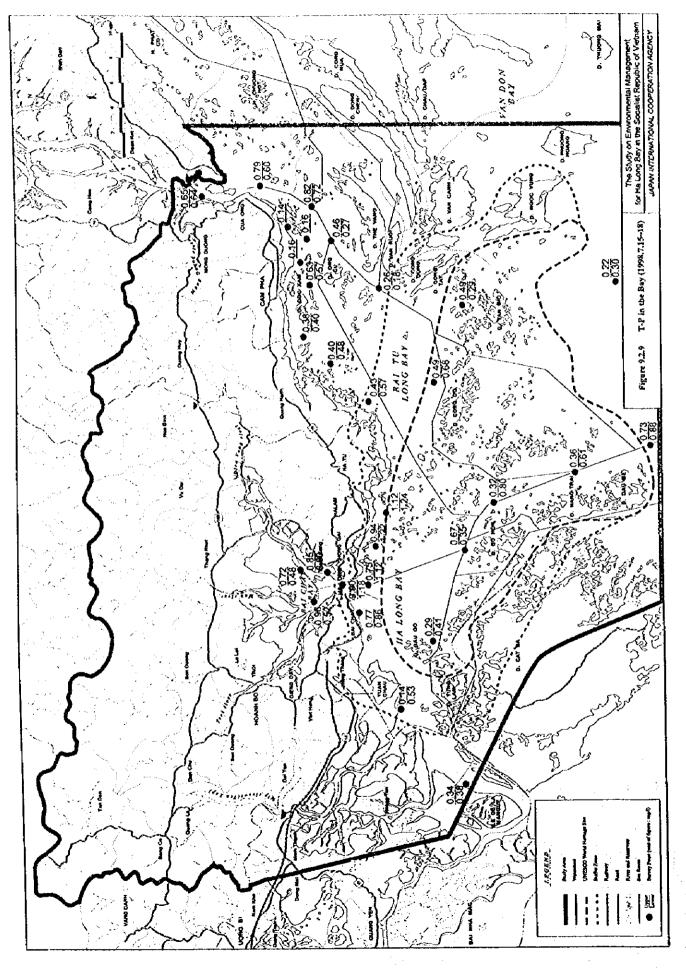





Figure 9.2.4 Water Quality Indicators in Tributaries in Dry and Rainy Conditions

Ţ

9 - 45





÷ +

I

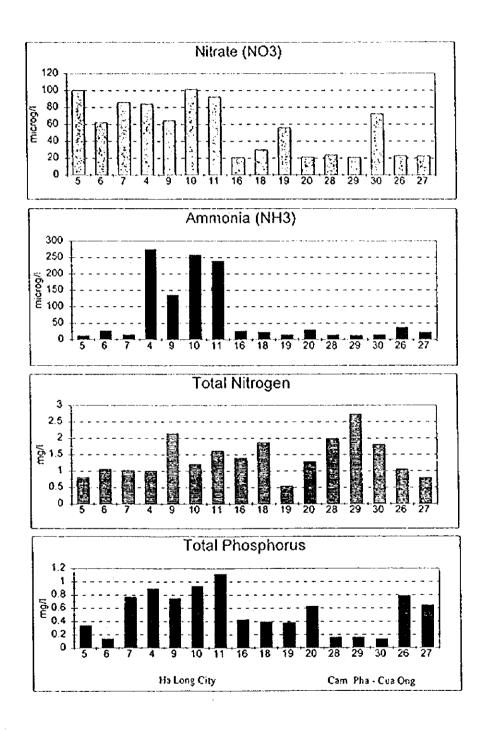


Figure 9.2.10 Surface Water Quality Indicators at Shoreline Sampling Stations in Ha Long Bay and Bai Tu Long Bays

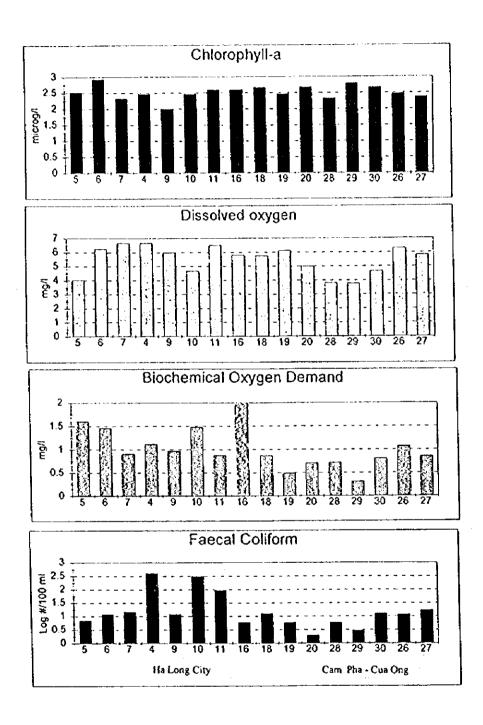
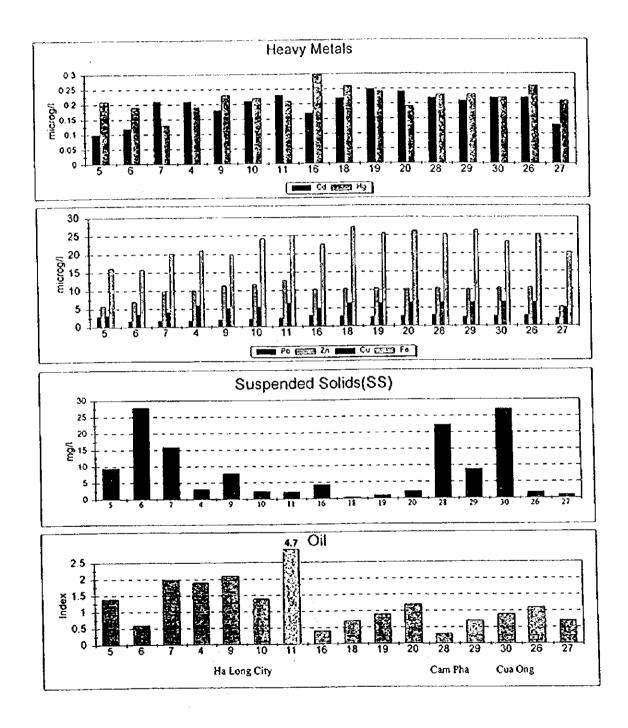



Figure 9.2.11 Surface Water Quality Indicators at Shoreline Sampling Stations in Ha Long and Bai Tu Long Bays

Ľ

Figure 9.2.12 Surface Water Quality Indicators at Shoreline Sampling Stations in Ha Long and Bai **Tu Long Bays**

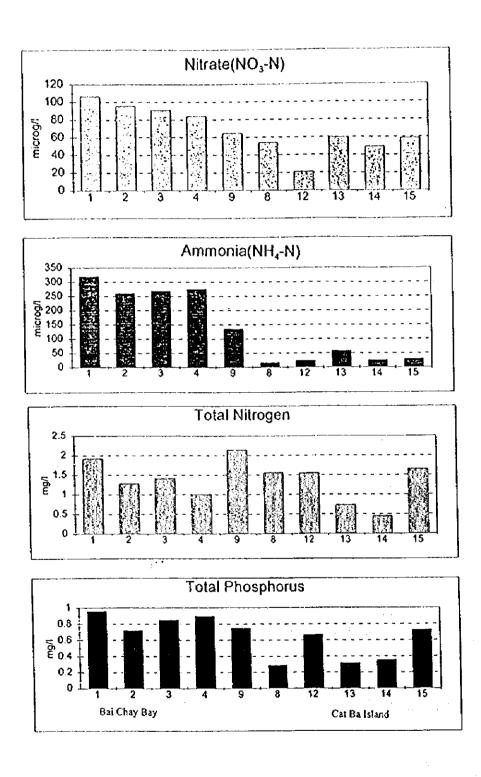
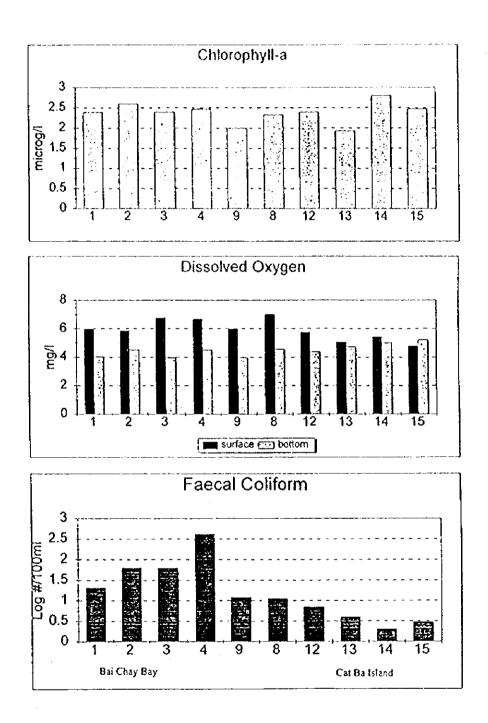
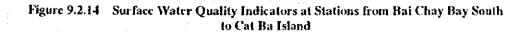




Figure 9.2.13 Surface Water Quality Indicators at Stations from Bai Chay South to Cat Ba Island

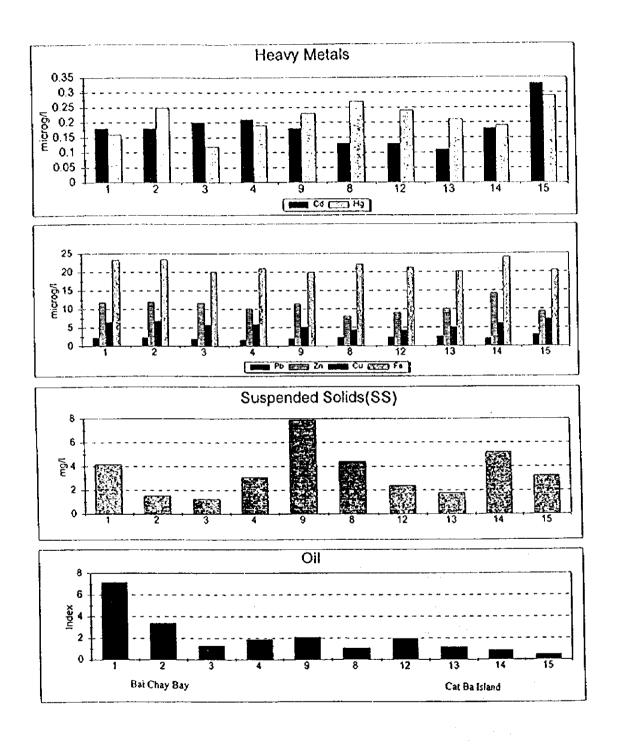
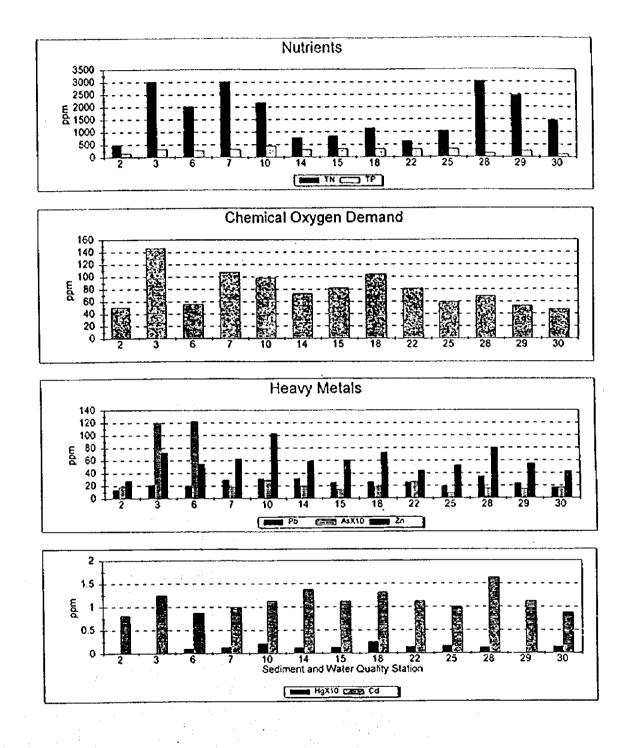
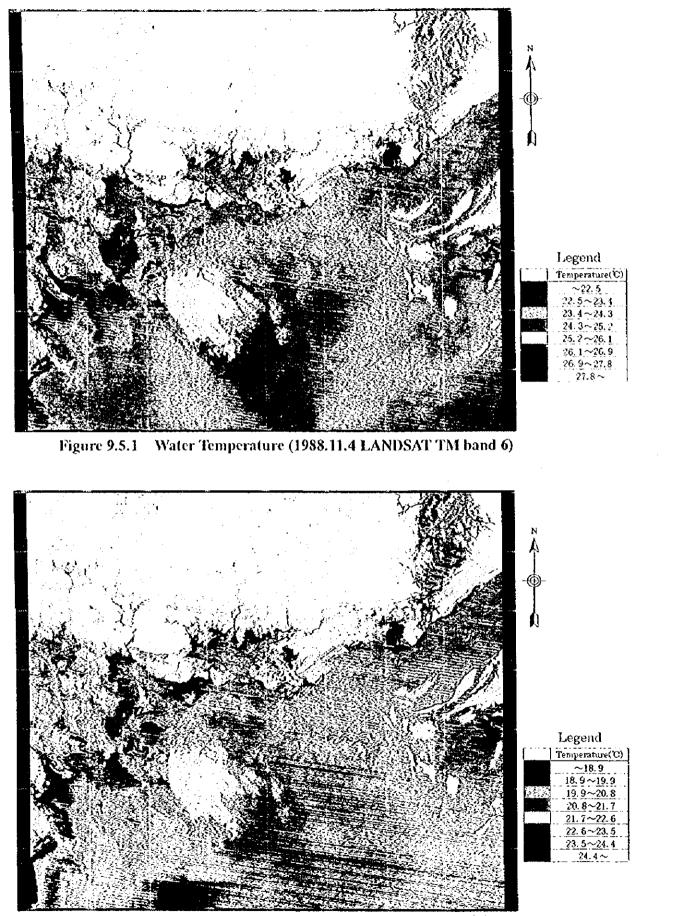



Figure 9.2.15 Surface Water Quality Indicators at Stations from Bai Chay Bay South to Cat Ba Island

\$

J


9 - 56

Ţ

Figure 9.4.1 Sediment Variables at Water Quality Stations

9 - 57

(Sections)

Ĩ

J

Figure 9.5.2 Water Temperature (1992.12.1 LANDSAT TM band 6)

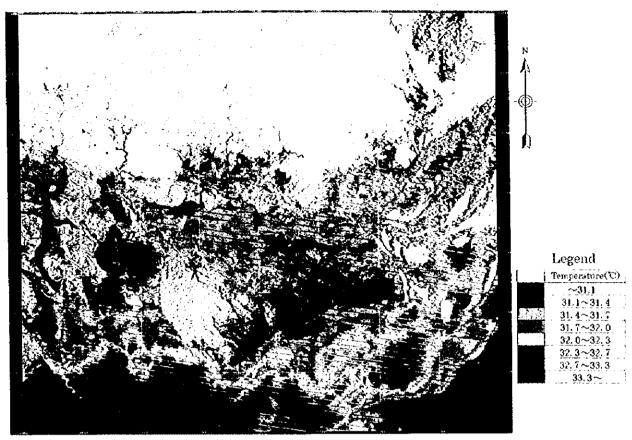


Figure 9.5.3 Water Temperature (1997.6.6 LANDSAT TM band 6)

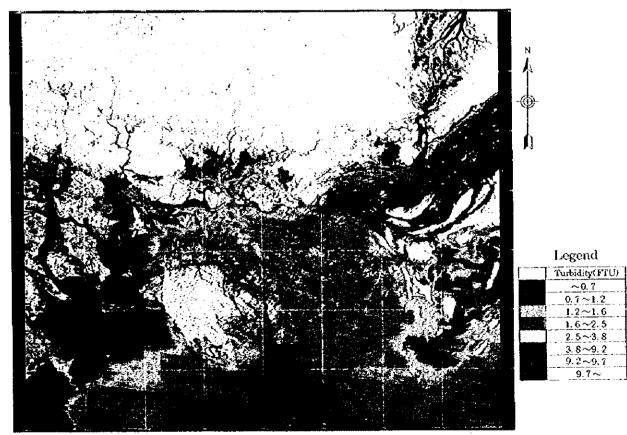
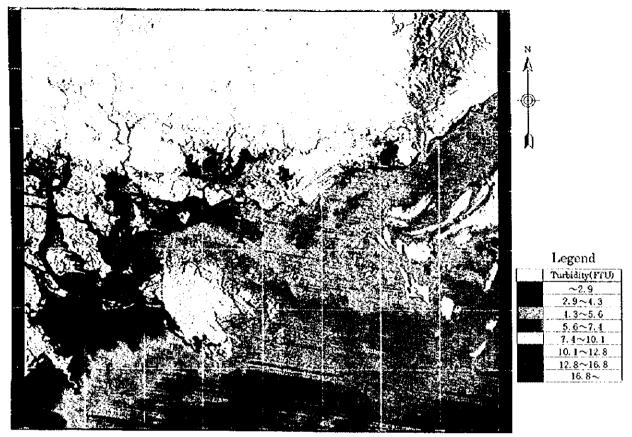
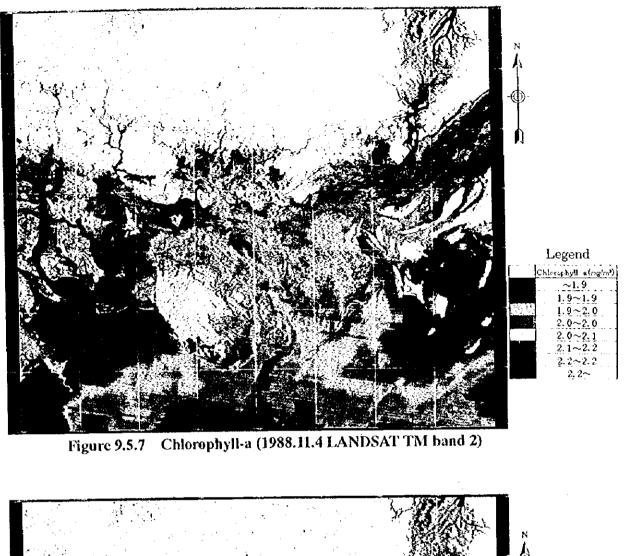



Figure 9.5.4 Turbidity (1988.11.4 LANDSAT TM band 1)

S

9 - 59


(Witter

J

Figure 9.5.5 Turbidity (1992.12.1 LANDSAT TM band 1)

Figure 9.5.6 Turbidity (1997.6.6 LANDSAT TM band 1)

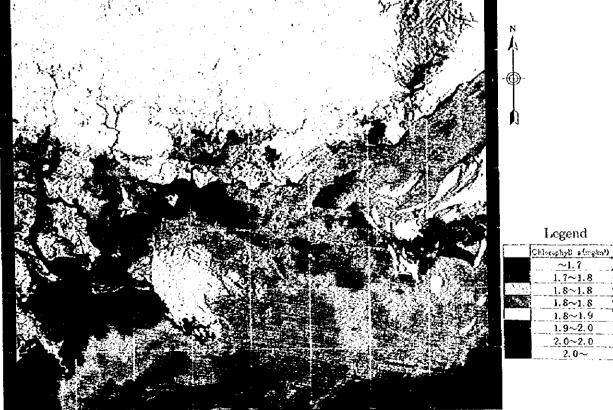


Figure 9.5.8 Chlorophyll-a (1992.12.1 LANDSAT TM band 2)

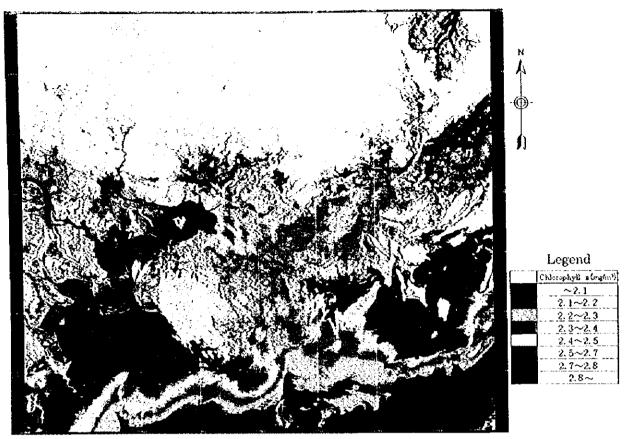
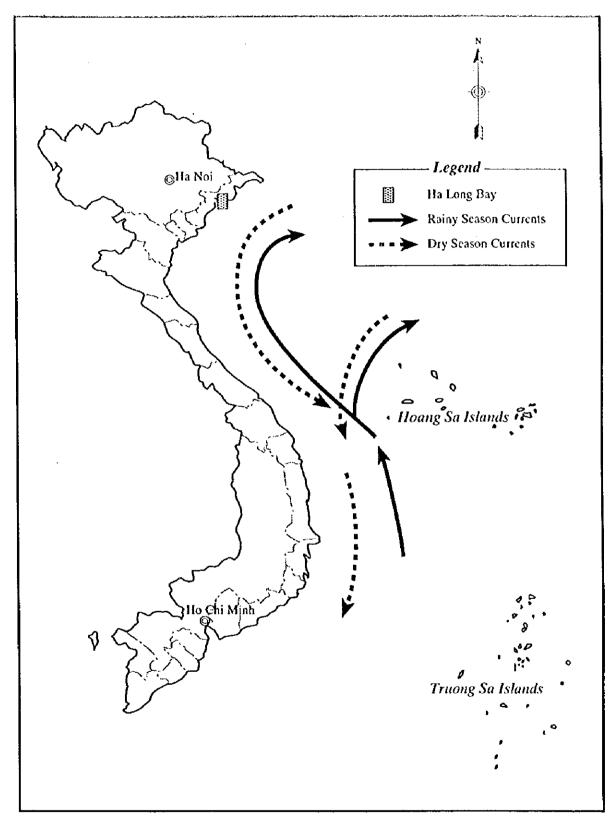



Figure 9.5.9 Chlorophyll-a (1997.6.6 LANDSAT TM band 2)

I

Source: Resources and Environment State Committee for Sciences

Figure 9.6.1 Tidal Current of the Gulfs of Toukin

徽

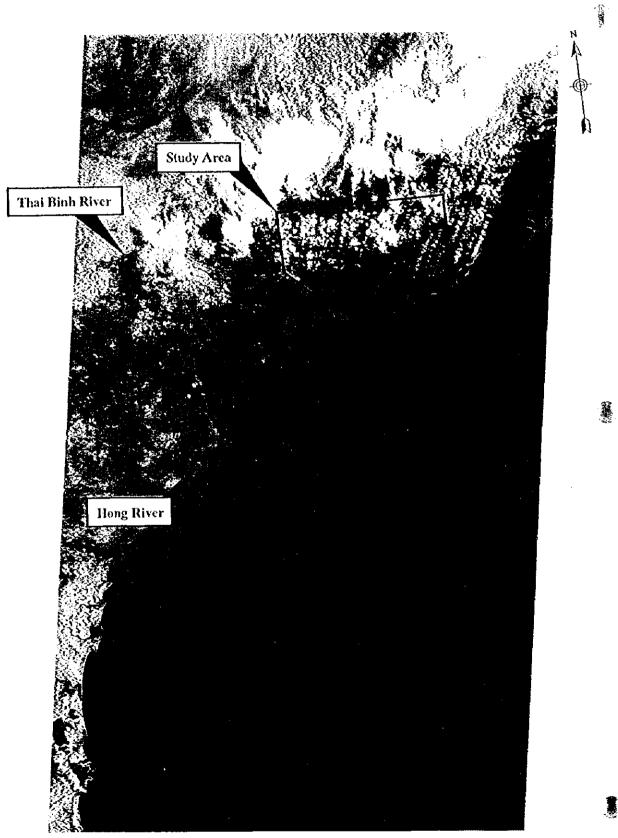


Figure 9.6.2 LANDSAT False Color Image of Gulf of Tonkin (June 6, 1997)

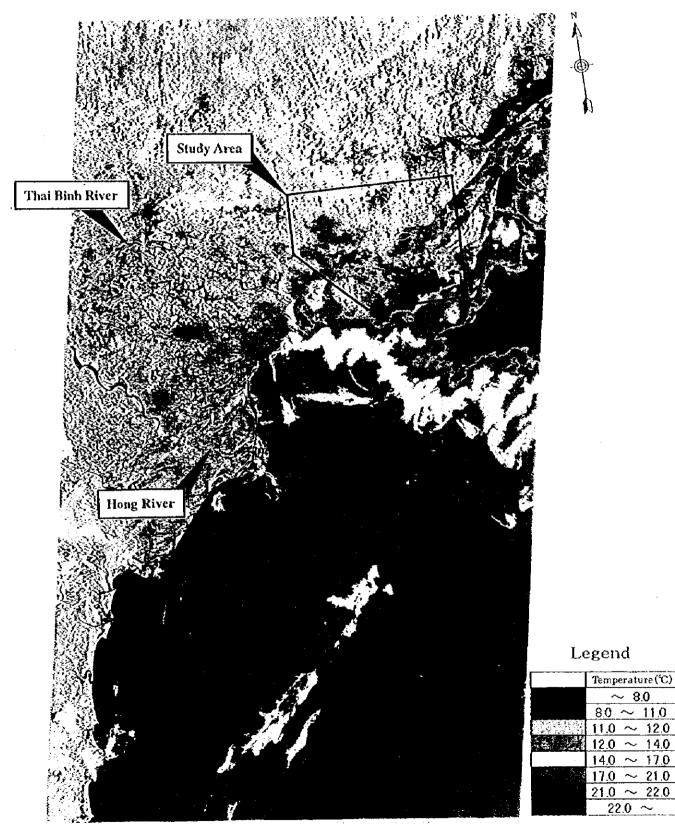
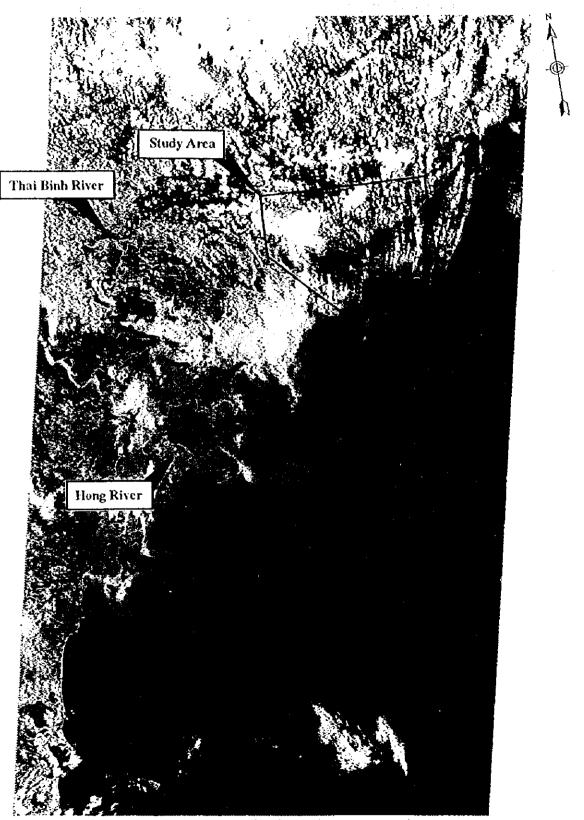



Figure 9.6.3 Water Temperature Distribution of Gulf of Tonkin (June 6, 1997)

J

Figure 9.6.4 LANDSAT False Color Image of Gulf of Tonkin (July 11, 1998)

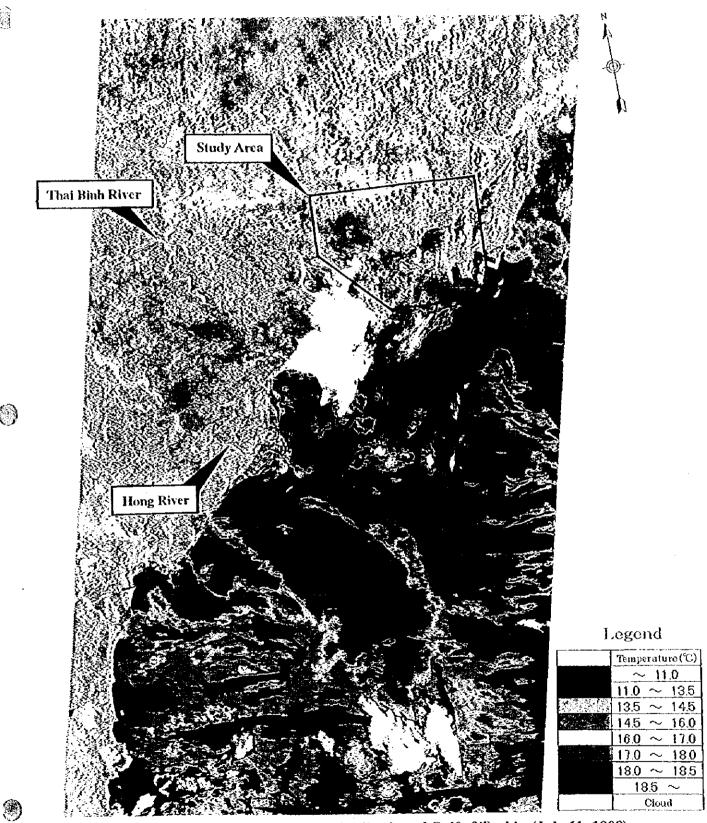


Figure 9.6.5 Water Temperature Distribution of Gulf of Tonkin (July 11, 1998)

.

CHAPTER 10

Ŕ

CHAPTER 10 POLLUTION SOURCE INVENTORY AND DATABASE

10.1 Pollution Source Inventory

(1) Objectives

There are a great number of pollution sources deteriorating the water quality of the Ha Long bay area. These include industrial wastewater discharges, siltation mainly caused by deforestation, agrochemical, oil pollution from shipping and port facilities, and urban solid waste and wastewater discharge. A first-cut analysis of the water pollution mechanisms is attempted by identifying pollution sources in the Ha Long bay area through establishment of a pollution source inventory.

The pollution source inventory to be developed in the study contributes to the following:

- a) Grasp of principal water pollution sources in the EMP area;
- b) Estimation of present and future pollution loads from the pollution sources; and
- c) Plan of pollution source control for the pollution sources.

In addition to collection of existing data, a questionnaire survey was conducted to obtain detailed data and information for the pollution source inventory in the following manners.

(2) Identification of Potential Pollution Sources

Based on the existing information and field reconnaissance in the Study, types of potential pollution sources in the EMP area were assumed as shown in Table 10.1.1. Information of the potential pollution sources, especially land-based specific pollution sources, (name, address, and type of activity) in the EMP area was collected and listed by DOSTE. Within the list, pollution sources to be surveyed were identified and selected with consideration on types of their activities and feasible number. Also, discussion were made with DOSTE as to whether there is any other type of pollution sources, and whether the classification of pollution sources is suitable in the EMP area.

Ð

Among the potential pollution sources, factories (e.g. brewery) and coal related industries (coal mines, coal processing plants, coal shipping port) as industrial pollution sources, hotels and restaurants as commercial pollution sources, and hospitals as institutional pollution sources were selected to distribute questionnaires.

(3) Preparation of Questionnaire Forms

Different kinds of questionnaire forms for different types of the pollution sources were prepared by the study team. Basically the questionnaire form consists of 4 to 6 sections: general information on the pollution sources, water use, wastewater including its treatment, solid waste (overburden for coal mine), pollution control activity. Some specific questions were customized for different types of the pollution sources and added into the questionnaire form. The questionnaire forms for different types of the pollution sources written in English were completed after discussion on their contents with DOSTE. Then, the questionnaire forms were translated into Vietnamese by DOSTE to distribute to the pollution sources. The questionnaire forms are attached in Part III of the Data Book, Volume V.

(4) Distribution of the Questionnaire

The questionnaires in Vietnamese attached with an introductory letter from DOSTE were sent by DOSTE to 127 pollution sources in the EMP area by mail, through relevant agencies and by delivering directly to the pollution sources at the beginning of May, 1998.

(5) Collection of the Questionnaire

The questionnaires were filled out by staff in each pollution source and sent back to DOSTE mostly from middle of May to June, 1998. DOSTE requested for its submission to responsible staff of the pollution sources which was not responded by the submission deadline, and visited to the pollution sources directly to collect the questionnaires sometimes. Finally the questionnaires from 99 pollution sources were collected, which accounted for around 80% of the total number of distributed questionnaires. Statistics of the questionnaires collected is shown below.

10 - 2

	Type of Pollution Sources	Sent	Reply	(%)
1)	Coal mine	-48	-40	83
2)	Coal processing plant	2	2	100
<u>3</u> j	Coal shipping port	6	2	33
4Ĵ	Lime stone exploitation site	1	1	100
5)	Factory	42	31	74
6)	Hotel	16	11	69
7)	Restaurant	1	1	100
8)	Oil port	1	1	100
9)	Hospital	10	10	100
	Total	127	99	78

Results of Questionnaire Collection

(6) Input of Questionnaire Survey Data into the Pollution Source Inventory

After translated from Vietnamese into English, the answers of the questionnaires have inputted into a personal computer and processed to create a Pollution Source Inventory Sub-database. While inputting data, the study team and DOSTE carefully checked whether it is reasonable data. The Pollution Source Inventory Sub-database is combined into the Environmental Database with other sub-database as explained in Section 10.2.

(7) Water Sampling in Major Pollution Sources

Around twenty major pollution sources such as coal mining and seafood processing factory were selected to conduct wastewater sampling at the end-ofpipe of the each selected facility to obtain data on wastewater quality. The Haiphong Institute of Oceanology (HIO) conducted the wastewater sampling in the middle of July in course of the Field Survey. The results of the analysis for the wastewater samples are applied for estimate of the pollution load for similar type of the industrial facilities (see Part III of the Data Book, Volume V for the results).

(8) Results of the Questionnaire Survey

Data in the replied questionnaires inputted into the database. Statistical results of the questionnaire survey, especially focusing on the data related to the pollution load estimation, are shown as follows.

1) Coal mine

Forty coal mines, which include most of the major-scale open pit and underground coal mines such as Cao Son, Coc 6, Deo Nai, Ha Tu, and Ha Lam replied the

questionnaire. Table 10.1.2 shows data on pollution load from each coal mine. Figure 10.1.1 shows monthly total volume of pumped water from the coal mines. July and August is the rainy season in the EMP area. Therefore, volume of pumped water from coal mines, especially open pit coal mines, are supposed to be largest in those months, but in September. The reason is assumed that some coal mines are closed from June to August based on the answer in the questionnaires.

1

T

Data on pollution load from coal mines in each basin is summarized in Table 10.1.3 and Figure 10.1.2. These table and figure show regional characteristics on the coal mines mainly from the geomorphologic point view. For instance, coal production in the basin no.14 is largest since large coal mines such as Cao Son, Coe 6, Deo Nai are concentrated. However, wastewater from those large coal mines is pumped and discharge into basin no.12. These figures do not include the coal mines which stopped exploitation activity or are abandoned.

2) Factory

Answers from 29 factories are summarized in Table 10.1.4. Most of the factories did not answer the questions on the wastewater treatment. Only one factory (Cai Lan Oils and Fats Industries company) applies the bio degradation method though the factory principally does not use water in the manufacturing process, but for cleaning the floor in the factory. Water quality of the wastewater in the most of the factories are unknown.

3) Hospital

All ten major hospitals that were sent the questionnaire responded as shown in Table 10.1.5. Most of the hospitals have septic tank for wastewater and incinerate their medical waste. However, water quality of wastewater discharged and disposal places of the medical wastes which can not be incinerated should be treated in appropriate manner in future.

4) Hotel

Eleven large hotels responded to the questionnaire. As shown in Table 10.1.6, total annual guest number for the hotels is around 194,000 in 1997. All hotels have septic tank to treat wastewater though maintenance activity for septage is

doubtful based on the Field Survey. Tendency of the guest number in 1997 is shown in Figure 10.1.3. The figure shows that there are three peaks of the tourist season in a year.

(9) Update of the inventory

The data in the inventory need to be updated timely to grasp the latest pollution load generation from each specific pollution source and each sub-catchment. Regarding to the specific pollution sources, when new facility or any change of existing facility concerned as a pollution source is registered with Quang Ninh province, DOSTE obtains the information on the facility and should revise the inventory. Data on non-specific pollution sources such as land area for agricultural activities are reviewed at least once a year. Required data on non specific pollution sources is described in Chapter 11.

10.2 Development of Database

(1) Components of the Database

An environmental database (database) is developed in course of the Study as a decision making support tool for the environmental management for Ha Long bay. The database is designed to contribute the following components.

1) Pollution source inventory

The inventory of pollution sources, which principally affect water quality in the EMP area, is stored in the database. The data of the pollution source inventory is utilized for estimation of pollution load from both specific and non specific pollution sources, and for planning pollution control.

2) Hydrology and water pollution analysis

Based on the existing data, pollution source inventory and monitoring data, pollution load from both specific and non specific pollution sources is estimated by using water pollution mechanism module in the database, which is being developed by the study team. Pollution load from each basin is exported into the tide and water quality simulation model.

3) Environmental monitoring

Results of the environmental monitoring, which are mainly water quality relevant data, are recorded at each monitoring activity on the basis of the monitoring plan proposed in the study.

4) Natural environmental and landscape analysis

Existing and monitoring data on the natural environment and landscape is stored.

5) Socioeconomic data analysis

Socioeconomie data which consists of statistical demographic, economic, and social data as basic data for the regional environmental management is collected and stored in the database.

The database consists of four sub-databases: a) Pollution Source Inventory Subdatabase, b) Water quality Sub-database, c) Natural Environment Sub-database, and d) Regional Socioeconomic Information Sub-database. The Pollution Load Estimation Module was integrated into the database as the above mentioned. The components of the database are shown in Figure 10.2.1. Data list is shown in Table 10.2.1.

1

(2) Pollution Load Estimation Module

Based on the estimation of the pollution load from specific and non-specific pollution, a pollution load estimation module was integrated into the database by linking with the pollution source inventory. The module is allowed for users to get latest pollution load generation in each sub-catchment when the pollution source inventory is updated. Also the estimated pollution load generation from each sub-catchment is checked whether it is satisfied with criteria for each sub-catchment. The results of the estimated pollution loads of sub-catchment were applied for the water quality simulation model as input data.

10 - 6

10.3 Utilization of Database

(1) Operation of Database Software

Main features of the database software established in the Study are selective button menu and hyperlink function. Users move from higher rank menu to its sub-menu by clicking the menu button to jump to specific data or information in the same workbook or in another file as shown in Figure 10.3.1. Various types of data forms are used in the database such as table, graph, map, satellite image, and photo. However, the data can be easily edited, revised, exported, and printed out by users since the database software is designed mainly by using basic functions of Microsoft Exeel, which DOSTE staff is familiar with.

(2) Updating Data

It is desirable that database be updated periodically to provide users latest data and information, to accumulate data, and to analyze time-series changes of the data. Relevant to the statistical data such as population, it would be updated periodically when new statistics are issued. On the other hand, some data such as pollution source inventory data should be updated as soon as possible when new facility or any change of existing facility concerned as a pollution source is registered or informed. It is recommended that at least one person who is in charge of the database be assigned to update timely and secure the database. Also one computer should be assigned to keep the original database with the latest (updated) data.

(3) Customizing Database

Hyperlink-base structure of the database software allows users to easily edit, revise, and add to the database. When user wants to add data sheet or file, user only add menu button on the appropriate sub-menu and set the hyperlink on the button to link the data sheet or file. Detail information on the database software such as system requirements, installation guide, and customizing method is attached with the package of database software files as a Read Me First file.

No.

TABLES

(1) Specific Pollution Source (Point Source)		······
1) Domestic Wastewater		
a) Residents in the catchment area	b) 1	Residents on the sea
2) Industrial pollution source	•	
a) Coal mining industry		
a-1) open pit mine*, **		
a-2) underground mine*, **		
a-3) coal processing (screening) plant*, **		
a-4) overburden and coal waste dumping site	•	
a-5) coal shipping port*, **		
a-6) coal reloading place on the sea		
b) Construction material industry		
b-1) lime stone exploitation site*		
b-2) cement factory*		
b-3) brick factory*		
b-4) ceramics factory*		
c) Food industry		· · · · ·
c-1) sea food processing/packing factory*, **	L.	
c-2) vegetable oil factory*		
c-3) brewery*, **		
d) Other industries		
d-1) steel factory*		
d-2) fertilizer factory*		
d-3) chemical factory*		
d-4) others*		
3) Commercial and Institutional pollution source		
a) Tourism		
a-1) hotel including mini-hotel*, **	a-3)	tourist boat
a-2) large restaurant*	,	
b) Market**		
c) Shipping		
c-1) freighter for coal, oil, and multi-goods		
e-2) gas station on the sea		
c-3) oil port		
c-4) multi-goods port		
d) Institutional facilities		
d-1) hospital/clinic*, **	d-31	governmental office
d-2) school		
4) Livestock and Culture pollution source		
a) Livestock		
a-1) livestock farm	a-3)	pasturage
a-2) slaughter house	5-7	
b) Aquaculture		
5) Solid Waste Disposal Site**		
		······································
1) Land runoff	~	Bare land (denuded area by coal mining)
a) Forest and grass landb) Agricultural land	- c) - ძ)	Urban area

Table 10.1.1 Classification of Pollution Sources in the EMP area

ુ

(L

Note: *: Questionnaire Survey was conducted. **: Wastewater sampling was conducted.

(The results of the sampling are shown in Part III of the Data Book, Volume V.)

÷.

 No. Name of Coal Mine(Company) M-17 Heanh Bo Coal Factory (ON Coal Company) M-1 917 Factory (Hon Gai Coal Company) M-3 Cao Thang mine (Hong Gai Coal Company) M-13 Cao Thang mine (Hong Gai Coal Company) M-13 Suoi Lai Mine (VINACOAL) M-13 Cai Da (Hong Gai Coal Company) M-16 Resources Exploitation & survey (Geography and Mineral Factory for exploitation & survey (Geograph) M-16 Resources Exploitation & survey (Geograph) M-16 Resources Exploitation Company) M-18 Factory (Geography and Mineral Ad Mineral Resources Exploitation Company) M-21 Khe Tam Mine (ON Coal Company) M-22 Harang Mine (ON Coal Company) M-34 Nam Khe Tam Mine (ON Coal Company) M-35 KTT 14S Factory (Dong Bac Company) M-36 Dong Khe Sim (Dong Bac Company) M-40 Tay Bai Nga Hai M-40 Tay Bai Nga Hai M-41 Banh Minh Cong Bac Company) M-42 Ha Lan Mine (ON Coal Company) M-15 Gao Xanh Coal Mine (VINACOAL) M-15 Gao Xanh Coal Mine (VINACOAL) M-15 Gao Xanh Coal Mine (VINACOAL) M-15 Mine Cong Bac Company) M-15 Cao Xanh Coal Mine (VINACOAL) M-6 Mine (VINACOAL) M-6 Mine (VINACOAL) M-6 Mine (VINACOAL) M-6 Mine (VINACOAL) 	(ynamo) (Ynamo)	515	bronneron							
Honnh Bo Coat Subtotal Subtotal Suoi Lai Mine (Suoi Lai Mine (Suoi Lai Mine (Suoi Lai Mine (Suoi Lai Mine (An Da (Hong Ga Can Dany (Resources Exploi Factory (Resources Exploi Factory (Rhe Tam Mine (Nam Khe Tam Mine (Nam Khe Tam Mine (Nam Khe Tam Mine (Nam Khe Sim (Dong Khe Sim (Subtotal Binh Minh Coat I Binh Minh Coat Min Cao Xanh Coat Min Cao Xanh Coat Min Nui Beo Mine (Nui Mune (Nui Mune (Nui Mune (Nui	actory (ON Coal Company)	ment	amount (ton/vcar)	(m ³ /ycar)	from mine (m ³ /ycar)	(m ³ /ycar)	treatment	(m ³ /year)	(m²)	(in 1997)
 Frounn Do Cout Subrotal Subrotal Suoi Lai Mine (Suoi Lai Mine (Suoi Lai Mine (P16 Company (G) Resources Exploi Factory for exploi Factory for exploit Resources Ex		-	168,000			-	none	-		C19
المراجع المراجع المراجع وينزعني كالمجنب بمحديث تمن المراجع بمصحاط المتناكر المتكار المتكار		-		c	с	0		0	c	642
		-	~~~~~	20 20 20	,			878 70	300.000	320
	rai Coal Company)	و	59.000	CH6705		•			2017 1221	1 074
	lone Gai Coal Company)	9	122.700	122.50	•	•	nonc	•	0547107	1.0
	INACOAL)	9	514'59	•		468	JUOU	12.480	1.180.000	217
	Coal Company)	Q	000'15	2.630	78.000	78,000	dam, climinating NH4 by lime clean liquid		172.100	4 1
	graphy and Mineral tion Company)	9	22,113	450	•		•	67.080	2.892.000	055.
	Factory for exploitation & survey (Geography and Mineral Resources Exploitation Company)	v	7,000	36,000		13,200	PORC		4.640.000	60
	l Coal Company)	6	000*68	16.000	7.000	000"2	sedimentation pond. dykes	270.000	2.761.850	578
	Tool Commun	4	00795	14.670	,		septic hole	4.992	2.800.000	380
	o (Done Bac Company)	0	285,811	00%.0	с	c	•	411.840	10,066	582
	Done Bac Company)	0	80,000	6.000	0	0	none	42.000	100.000	250
	Coal Exploitation Factory 35 (Cong Ty Dong Rac)	6	106.000	961-2	o	O	Done	0087501	600.000	366
		6	72,000	2,000	1.120	021.1	gas hole	•	200,000	906
	ng Bac Company)	6	(see basin no.11)	no.11) (see basin no.11)	•			124,800	(see basin no.11)	(see basin no.11)
		9	899.010	110.022	86.120	129.788		1.152.840	16.773_514	662.4
	ction Site -	- ۱	20,000	31,200	3.320	2.170	ponc	866	160.000	120
	ACOAL)	r~	467.000	35.000	36.900	72.000	none	300.000	1,680,000	26.0
	Binh Minh Coal Factory (ON Coal Company)	7	54,000	3.000	Þ	9.360	,	156.000	13,000	
<u>~</u>	ON Coal Company)	7	30.000	6.000	20.000	25.000	Done			255 X25
	Cao Xanh Coal Mine Factory (VINACOAL)	7	70.000	1.900	-	78.000	none	20111	000 mm 2	944
		2	154.000	10.900	20.000	112.360		101.101	0.012.000	0+0+
	COAL)	9	830.000	200.000	5.100.000	2.500,000	•	10000		0-0-
	IACOAL)	6	279,498	120.000	1.17.000	1.200,000	•	148.000	0000000	- LO C
	Tan Lap Coal Mine (Hong Gai Coal Company)	9	470.266	545.17	144.000	235,000	Done		0.00000	2.25
Subtotal		6	1.579.764	391.543	6,461.000	000°675'5		0000000	00-21	015
M-33 Khe Sim Factory (Dong Bac Company)	Jong Bac Company)	10	50.000	45,000	1.700	1./00	direo		00000	212
Subtotal		10	50.000	45.000	1.700	1.700		>	1 /	140
M-27* Deo Nai (VINACOAL)	VL)	11	(see basin no.14)	(see basin no.14)	(see basin no.14) (see basin no.12) (see basin no.12)	(see basin no.12)	sedimentation pond	2.700.000	(see basin no.14) (see basin no.14)	(see basin no.14

Table 10.1.2 (1) Results of the Questionnaire Survey (Coal Mine)

10 - 10

Í.

		Sub-	Annual		Pumped water	11.	Wenterstor		CARA LAR	Employee
No.	Name of Coal Mine(Company)	cutch Ment No.	production amount (ton/year)	Water use (m ³ /year)	from mine (m ³ /year)	wastewater (m ³ /year)	wastewater treatment	(m ³ /year)	(m^2)	(in 1997)
16-M	Thone Nhat	11	332,000	15.000		15,000	none	11.856	300.000	1.858
M-58*	M-58* Doag Khe Sim (Dong Bac Company)	11	25,000	360,000		•	•	(see basin no.6)	3,800	400
	Subtotal	11	357.000	375,000	0	15,000		2.711.856	303,500	8500
•92-M	M-26* Coc 6 Mine (VINACOAL)	12	(see basin no.14)	(see basin no.14)	000'005'1	7.500,000	JUC	(see basin no.11	(see basin no.11] (see basin no.14) (see basin no.14)	(see basin no.1
M-27*	M-27+ Deo Nai (VINACOAL)	12	(see basin no.14)	(see basin no.14)	5.312.960	5.312.960		2.700.000	(see basin no.14) (see basin no.14)	(see basin no.)
07-10 M	Xi Nehuo Than Cau 20 (Bai Tu Long)	12	•	C	•	¢	-	•	1	200
	Subtorn	12	0	0	12.812.960	12.812.960		2.700.000	c	001
M-32	Quang Loi Coal Expolitation Factory (Dong Bac Company)	13	160.100	10,800	1	0	one	748,800	39.000	139
ST-W	Via 9 Ouyet Thang Khu Bac Ouang Loi (Dong Bac Company)	: 13	5127911	005"1	10.300	10,300	ouc	•	375.000	400
	Subtotal	13	276.313	12,300	10.300	10,300		748.800	414,000	539
N: N: N: N: N: N: N: N: N: N: N: N: N: N	M-25 Cao Son Mine (VINACOAL)	14	1.027.910	113,150	687,000	687.000	none	1,992.000	4.500.000	3,365
92-W	M-26 - Coc 6 Mine (VINACOAL)	14	1.455,000	150,000	(see basin no.12)	(see basin no.12)	none	4.992.000	7.340.487	5,164
M-27	M-27+ Deo Nai (VINACOAL)	4	1.100.763	693,400	(see basin no.12)	(see basin no.12) (see basin no.12)		(see basin no.11)	922,834	3.367
60-W	M-29 Khe Cham Mine (VINACOAL)	7	352,000	64,800	338,400	376.560	none	1.082.016	3,490,000	2:043
0E-M	Mong Duong Coal Mine (VINACOAL)	4	328.458	80,000	1,517,200	1,530.700	sedimentation	750.000	5.100.000	1,862
M-37	Thane I one (Done Bac Company)	-1 1	50,000	30,000	57.000	24,000	none	009'512	11.000	120
	397 Factory (Dong Bac Company)	14	115.000	1,560	4.800	008'7	dykes	021.942	300.000	135
		14	124,000	3.000	1	•		6,300	11.000	285
05-M	M-50 Cam Pha Coal Factory (ON Coal Company)	14	137,000	6.600	•	1	,	1.322.880	000,036	510
M-57	Tay Bac Da Mai (ON Coal Company)	14	000°0†	18,000	1	5.200	sedimentation tank	266.198	30,000	100
	Subtoral	14	4,730,131	1.163.510	2,604,400	2.628.260		\$19.012.41	22.665.321	17,423
						10 6 16 260		CT2 163 64	52 K X 22	223 L2

Table 10.1.2 (2) Results of the Questionnaire Survey (Coal Mine)

Source: Questionnaire Survey by JICA study team, 1998 Note : - : not available

M-26 : Coc 6(wastewater=> No.12, production & overburden=>No.14) M-27 : Deo Nai(wastewater=>No.12, overburden=>No.11:50% & No.12:50%), Production=>No.14) M-58 : Dong Khe Sim (production=>No.11, Wastewater=>No.6:50% & No.11:50%, overburden=>No.6)

うない

Į,

Sub- catchment No.	Coal Production (ton/year)	Water use (m³/year)	Wastewater (m³/year)	Pumped Water (m³/year)
1	168,000	0	0	0
6	899,000	236,200	129,800	86,100
7	154,000	10,900	112,400	20,000
9	1,579,800	391,500	3,935,000	6,461,000
10	50,000	45,000	1,700	1,700
11	357,000	375,000	15,000	0
12	0	0	12,813,000	12,813,000
13	276,300	12,300	10,300	10,300
14	4,730,100	1,163,500	2,628,300	2,604,400
Total	8,214,200	2,234,400	19,645,500	21,996,500
Ratio	1.0	0.3	2.4	2.7

Table 10.1.3 Coal Exploitation Activities in Each Basin

1

Source: Questionnaire Survey by JICA study team, 1998

		Table 10.1.4 F	tesults of	Results of the Questionnaire Survey (Factories)	naire Surv	cy (Factor	ics)				
, Ż	Name of company	Products	Sun- catchmenet	Annual production amount	Water use (m²/year)	Wastewater (m ³ /year)	Treated matters	Treatment method Recycle (m ² /wear)	Recycle (m [*] /wear)	Land area (m')	Employee
			ļ	A state		30,600		Iseptic tank	00CN	300,000	1,200
2	Ha Long Ship Building Factory	ship building and mpaining Suboral			44,000	30,600			00019	200,000	002.1
ī	Cailan Oils and Fats Industries Company Ltd	vegetable oils refinery(vegetable cooking oils and shortening)	+	62,400mil.ton	23,664	1,095	oits and grease. suspended solids	hio-degradation	Q	000'0+	607
	LULTATIO VILLE DI LA LOS DAVIDÃO MARIE	wheat movider wheat mash	4	4,476100	2,400	c	·	UU.	ST.	70,000	2
1	HAMPLAYMER WIEN COMMERCIAL	handicraft(plvwood)	4	100003	0	0	,	-			201
ŝ	1-	aur.	-7	2.013mil.vnd	() () () ()			•	90	8 000	3
र्द त	Hounh Bo Brick Factory	construction materials(air Pricks)	4	1,000,000,000 KK	220	001	sediment	septic tank	•	10,000	9
8 <u>-</u>	Hoanh Bo Printing & Paper Factory	ponting cards, producing relies parer construction materials (baked clay,		30.000.000bricks	1,900	,	•	•	1	16,000	СП Т
A-4	ON Oteng Day 1 rotery - China ractory	soil, hrick)			12 0.14	204 -			0	155,350	1.005
U		Numoral	,	TR. MAN (MA) HALLER	1000 S	0	.			80.000	330
2	ON Gieng Day 3 Fortery - China Factory	bruck, file benck-bencked of the		12,300,000 hriels	3,000	005'1		90	•	N0 000	Ē
	Ha Nhou Brick-Lile Factory Com Fna Coal Company. ON Giene Day 2 Pottery - China Factory	construction materials brick tile.	7	26,600,000 bricks	5,700	,	•	QU		77,000	401
	-	wood processing for construction	6	800 m3/year	,	¢	•	QU	,	17.000	340
3		and various wooden products	ſ	A SOUTION LINE	000	0001		septic tank		200.000	406
+		Industrial explosive		UD case/these	0.1	0	,	UL		12,000	171
2	ON Car Engineering Factory	car engineering and repairing		S.000 mil.liter	17,000	11,200	•	septic tank	Q4	14.521	104
2	ON Meet Company	New Oracle	¢		42,820	13.820			c	145.52	
۲ نا		herth medicine	\$	I hil. vnd		1	•	ę		(¥)	\$ \$
	Т	terry operation	×		•	•		-			
2		fresh frezen and dry sea products.	8	1.350 ton/year	30,000	30,000	•	septic tank	•	7.000	2
		cool mine's equipments repaining and	~	550 ton/year	5,600	7,600	,	Q	0001	26.92	8
2	Hongai Mechanical Company	manufacturing	, ,		33,600	37,600			2,000	AL 243	401-1
		Sulfactor	5					septic fank			
F-27		manutacturing spare parts for deiling exploring repairing facilities	10	38 eqipment/year	8	8	sludge	Redimentation	150	20-00 20-00	105
13	Hautory of Electric Appliance Manutacturing in Cam	electric appliance, construction of the nower station&electric line	10	70,815 unit/year	4,680	936	-	Q	468	199171	424
E.A.		coal mine's equipment repairing and	01	13,264 ton/year	51'9'NS	20.000	•	•	65.735	220,000	1.973
	-	teverage producing (mineral water	2	10,000,000	360,000	20,000	•	•	ç	3.500	- 051
Ī	Cump have where water a take	with gas)	6	routes 0. Nitreat	19,512	20,986			AN. 453	258,164	2.657
5) Beruery Soft Drink Factory	brewery	:1	1,700,000 liter/vear	31,685	29.000	-	septic tank	•	3,434	81
I. d		repairing big ram, truck and diesel	1			1	•			19.560	ŝ
8	—	engineering processing, power	11	SO ton/year	<u>89</u>	2005	•	PO	1	70.000	4
5		munitimery assertions minit binding books, lining paper)	=	1,000,000,000vnd/			•	•	t	192	ទ
	-1		=		32,185	20,500			0	41.2.16	976 1
	a look onto that are it. Described by there	Survey Livin building and monified	2	320 ton/vear	•	•		•	•	26.070	2
1 2		civil and industnal construction (private & public house, office and	ជ	•	800	•	•		•	27012	150
1		workshop)	2		2005	0			0	28142	112
1		Putricular Treet			296 219	153,801			76.55.	1.55 055	800°0
]õ2	Source: Questionnaire Survey by JICA study team, 1998 Note: - : not available	dý ieam, 1998									
} •											

10 - 13

No.	Name of Hospitals	Sub- catch mcat No.	Annual patient number (person)	(m ³ /year)	Wastewater (m ¹ /year)	Wastewater treatment method	Medical waste (kg/year)	Treatment for medicat waste	Land area (m²)	Fmploye
115-1	Bai Chay Hospitat	2	960	2,000	1,800	septic tank	18,000	incineration	5,000	70
HS-6	Heanh Bo Health Center	1	2,929	5,100	5,400	septic tank	-	incineration	14,000	50
HS-3	Anti-TB-Lung Discase Center	7	900	18,000	15,600	no	18,000	incineration	45,000	138
HS-5	QN Traditional Medicine Hospital (Herb)	7	1,112	7,200	4,680	septic tank & sedimentation pond	120	no	10,000	65
	Subtotal	7	2,012	25,200	20,280		18,120		55,000	203
US-2	Hon Gai Ceal Area Health Center	8	185	4,000	300	septic tarde	18,000	incineration	30,000	129
HS-4	QN Provincial Hospital	8	-	60,000	21,840	no	12,000	incineration, sterifization	45,000	434
	Subtotal	8	185	64,000	22,140		30,000		75,000	563
HS-7	ON Suoi Khoang Sanatorium Station	10	260	1,800	1,800	septic tank	24	incineration	19.000	23
HIS-8	Psychiatric Prevention Center	10	1,807	3,600	3,276	septic tank	3,600	nð	15,879	68
	Subtotal	10	2.067	5,400	5,076		3,624		34,879	91
HS-10	Cam Pha Health Center	11	13,237	5,580	4,056	septic tank, sedimentation pond, refining	624	incineration, burying	24,000	181
HS-9	Cam Pha Ceol Area	12		3,600	15,000	septic tank	-	incineration		200
	Total		21,390	111,180	73,752					1,358

Results of the Questionnaire Survey (Hospitals) Table 10.1.5

Source: Questionnaire Survey by JICA study team, 1998 Note: -: not available

Table 10.1.6 R	lesults of the (Questionnaire	Survey (Hotels)
----------------	------------------	---------------	-----------------

No.	Name of Hotel	Sub- catch ment No.	Annusi guest number (persops/year)	Water use (m³/year)	Wastewater (m³/year)	Treatment method	Lond area (m²)	Employee
IJT-2	Bach Dung	3	7,376	9,569	7,300	septic tank	4,160	58
117-3	ON Tourism Company	3	73.237	60,800	83,220	septic tank	104,824	385
117-5	Heritage Halong	3	10,802	23,127	22,995	septic tank	6,392	210
111-6	Halong Plaza	3	705	25,000	25,550	septic tank, sedimentation pond	6,500	1.38
HI-7	Ha Yen Botel	3	5,634	10,200	10,950	septic tank, sedimentation pond	4,000	15
IIT-9	Suoi Mo(Dream Stream)	3	17,000	10,200		•	4,470	46
HL-11	Thang Long Hotel	3	1,142	1,727	49,275	septic tank	10,000	13
111-12	Tien Long Hotel	3	13,026	12,000	7,300	septic tank, sedimentation pond	36,000	42
HT-14	Vuon Duo Hotel	3	29,357	30,000	-	septic tack, sedimentation pond	23,991	26
NT-16	Bai Chay Trade Union Tourism Company	3	31,451	39,484	39,420	sedimentation pond	25,000	87
	Subtotal	3	189,737	222,107	246,010		225,337	1,020
HT-8	Hoag Ngoe Hotel	8	4,013	961	· · ·	septic tank, sedimentation pond	545	21
	Subtetal	8	4,013	961	: : 0		545	· 21
	Total		193,750	223,068	246,010		225,882	1,041

Source: Questionnaire Survey by JICA study team, 1998 Note: - : not available

T;

Table 10.2.1 Data List

Categorized Item	Name of Data
1) Socioeconomie Sub-database	
1) Population	Population of Ha Long City
	Population of Cam Pha Town
	Population Growth of Ha Long City and Cani Pha Town
2) Climate	Monthly Average Rainfall in the Study Area and the Vicinity in 1996
	Monthly Average Temperature in the Study Area and the Vicinity in 1996
	Monthly Average Humidity in the Study Area and the Vicioity in 1996
	Monthly Average Hours of Sunlight in the Study Area and the Vicinity in 1996
3) Land Use	Existing Land Use Pattern in the Study Area in 1996
	Classified Area in 1988, 1992 and 1997
	Area Change of Mangrove Forest, Tidal Land and Coal Mining
	Land Use of the Study Area as of 1996
	Land Use Mao
	Porest land in Quang Ninh Province in 1996
4) Economic and Financial Indices	
	GDP Share of Districts in the Study Area in 1994
	GDP of Study Area in 1995
	Employment by Sector in Ha Long City and Province
	Household Groups by Expenditure in Ha Long City and Cam Pha Town
	Economie Indicators of National Level
	Retail Prices of Typical Commodifies in Specific Locations
	Typical Service Prices in Hanoi and Quang Ninh Province
	Public Expenditures for Environmental Projects/Programs
	Collected Amount of Water-Supply Levy in the Quang Ninh Province
	Revenue and Expenditures of Quang Ninh Province
5) Tourism	Indicators Related to Tourism in Quang Ninh Province (1990-1997)
	Recent Trends of Tourism in Quang Ninh Province
6) Coal Mine Activities	Estimated Production, Overburden and Mine Wastewater to 2010
	Estimated Coal Production in Quang Ninh by Region
7) Agriculture	Major Agricultural Products of the Study Area in 1996
	Number of Livestock in the Study Area in 1996
8) Sanitary Condition	Estimated Total Amount of Waste
	Coverage of Various Types of Collection in the Main Regions of the Study Area
(2) Natural Environment Sub-datab	ase Ter 110 - 7 - D - 20 D
 Wetland coosystem 	Tidal flat in Bai Chay Bay
	Tidal flat in Ha Long Bay
- Mangrove	Mean Height of Dominant Species of Mangrove
	Species Composition of Mangroves in Quang Ninh Province
- Coral Reefs	Location of Survey Sites of Coral Reef in the Study Area
	Number of Species and Coral Cover at Each Survey Site in the Study Area
2) Aquatic Ecosystem	
- Plankton	Survey Points of Plankton in the Study Area
	Number of Species and Cell Number of Phytoplankton
· · · · · · · · · · · · · · · · · · ·	Number of Species and Individual Number of Zooplankton
- Zoobenthos	Survey Points of Zoobenthos in the Study Area
	Number of Species, Individual Number and Biomass of Zoobenthos in Mangrove
	Swamps
	Number of Species, Individual Number and Biomass of Zoobenthos in Sublittoral in
	the Soft Bottom
	Number of Species, Individual Number and Biomass of Zoobenthos in Sublittoral id
· · · · · · · · · · · · · · · · · · ·	Corol Reefs
- Fish and shellfish	Main Species of Fish and Shellfishes in Main Fishing Grounds in Ila Long Bay
	Survey Site and Fishing Ground in the Study Area
· · · · · · · · · · · · · · · · · · ·	
(3) Water Quality Sub-database	
1) Filed Survey by JICA study	Water and Sediment Variables Measured in Field Survey
team in 1998	
	Water Quality in the Bays
	Bottom Sediment Quality
	Result of Productivity Test
	Result of Decomposition Test
	Result of Settlement Test
	Result of Elution Test

Categorized Item	Name of Data
	Water Quality Indicators in Tributatics in Dry and Rainy Conditions
	fransparency in the Bays (1998.7.15~18)
	BOD & CODMn in the Bays (1998.7.15~18)
	SS in the Bays (1998.7.15~18) T-N in the Bays (1998.7.15~18)
	T-P in the Bays (1998.7.15-18)
	Surface Water Quality Indicators at Shoreline Sampling Stations in Ha Long Bay
	and Bai Tu Long Bays
	Surface Water Quality Indicators at Shoreline Sampling Stations in Ha Long Bay
	and Bai Tu Long Bays
	Surface Water Quality Indicators at Shoreline Sampling Stations in Ha Long Bay
	and Bai Tu Long Bays
	Surface Water Quality Indicators at Shoreline Sampling Stations from Bai Chay
	South to Cat Ba Island
	Surface Water Quality Indicators at Shoreline Sampling Stations from Bai Chay
	South to Cat Ba Island
	Surface Water Quality Indicators at Shoreline Sampling Stations from Bai Chay
	South to Cat Ba Island Sediment Variables at Water Quality Stations
	Results of Analysis of Domestic Wastewater Samples from Field Survey
	Results of Analysis of Industrial Wastewater Samples from Field Survey
	Industrial Wastewater Pollution Loads from Points Sampled in Field Survey
	Results of Dust Survey
2) I ANDSAT Satellite Image	Current Tendency on November 4, 1988
2/174100/11 obtenite intege	Current Tendency on December 1, 1992
	Current Tendency on June 6, 1997
	Locations of the Current Measuring Stations and Water Level Measuring Stations
	Water Temperature (1988.11.4 LANDSAT TM band6)
	Water Temperature (1992.12.1 LANDSAT TM band6)
	Water Temperature (1997.6.6 LANDSAT TM band6)
	Turbidity (1988.11.4 LANDSAT TM band6)
	Turbidity (1992.12.1 LANDSAT TM band6)
	Turbidity (1997.6.6 LANDSAT TM band6)
	Chlorophyll-a (1988.11.4 I ANDSAT TM band6)
	Chlorophyll-a (1992.12.1 LANDSAT TM band6)
	Chlorophyll-a (1997.6.6 LANDSAT 1M band6)
3) Monitoring Data	A ha hauttad
- Water and Sediment Quality	(to be inputted) (to be inputted)
- Biological Indicators	(to be inputied)
4) Pollution Source Inventory Sub-	
database	Results of Questionnaire Survey for Factorics
	Results of Questionnaire Survey for Coal Mines
	Results of Questionnaire Survey for Coal Processing Plants
	Results of Questionnaire Survey for Coal Shipping Ports
	Results of Questionnaire Survey for Hotels
	Results of Questionnaire Survey for Hospitals and Clinics
	Results of Questionnaire Survey for Restaurants
(5) Pollution Load Estimation	Land Use at Each Sub-catchment as of 1996
Module	Date Definition of and all Unions Definition
	Unit Pollution Load of Human Deing Unit Pollution Load of Livestock
	Unit Pollution Load of Investorx Unit Pollution Load of Non-specific Pollution Sources
	$\mathbf{D}_{\mathbf{r}} = \mathbf{C}_{\mathbf{r}} \mathbf{D}_{\mathbf{r}} \mathbf{H}_{\mathbf{r}} \mathbf{C}_{\mathbf{r}} \mathbf{T}_{\mathbf{r}} $
	Pollution Load Generated by Tourists
	Pollution Load Generated by Factories
	Pollution Load Generated by Pactories
	Pollution Load Generated by Coal Processing Factories
	Pollution Load Generated by Coal Processing Factories
	Pollution Load Generated by Industries
	Pollution Load Generated by Livestock
	Pollution Load Generated by Non-specific Pollution Sources
	Total Pollution Load Generated
	TAXABLE FOR TAXES TO TAXE TAXES TO TAXE TAXES
	Run-off Ratics of Pollution Loads

- News