Part VI: Data Book

GENERAL FEATURES OF THE PHILIPPINES	
Some Basic Development Indicators: Asean	66
Selected Indicators of Human Development: 1990	66
Typhoon Damage for the Past Ten Years	66
Summary of Major Indicators	67
Government Infrastructure Program for 1993-1998	68
List of Previous and Present Flood Control and Sabo Studies	69
Real Gross National Product	70
Climate Map of the Philippines	71
Frequency of Tropical Cyclones in the PAR	72
Flood Control and Drainage Projects in 12 Major River Basins	
and in Metro Manila	73
Location of Volcanoes	' 74
Frequency of Earthquake	75
DPWH Medium-Term Infrastructure Program, 1993-1998	76
MOUNT MAYON	
Mayon Volcano Alert Signals	80
Lahar Hazard Map	81
PHIVOLCS Monitoring Network at Mayon Volano	82
MOUNT PINATUBO	
Chronological Table of Volcanic Activities	83
Chemical Properties of Lahar Deposits	84
Physical Properties of Lahar Deposits	85
Bird's - Eye View of Mt. Pinatubo	86
Pinatubo Volcano Disaster Map	87
Totally Damage Houses	88
zation	
Organizational Structure of Task Force Mt. Pinatubo (1991-1992)	89
Organizational Structure of the Mt. Pinatubo Commission	90
tion Natural Condition	
Isohyetal Map of Annual Rainfall	91
Monthly Mean Rainfall	92
	Some Basic Development Indicators: Asean Selected Indicators of Human Development: 1990 Typhoon Damage for the Past Ten Years. Summary of Major Indicators. Government Infrastructure Program for 1993-1998 List of Previous and Present Flood Control and Sabo Studies Real Gross National Product. Climate Map of the Philippines Frequency of Tropical Cyclones in the PAR. Flood Control and Drainage Projects in 12 Major River Basins and in Metro Manila Location of Volcanoes Frequency of Earthquake DPWH Medium-Term Infrastructure Program, 1993-1998. MOUNT MAYON Mayon Volcano Alert Signals. Lahar Hazard Map. PHIVOLCS Monitoring Network at Mayon Volano MOUNT PINATUBO Chronological Table of Volcanic Activities. Chemical Properties of Lahar Deposits Bird's - Eye View of Mt. Pinatubo. Pinatubo Volcano Disaster Map Totally Damage Houses Pation Organizational Structure of Task Force Mt. Pinatubo (1991-1992) Organizational Structure of the Mt. Pinatubo Commission.

3.4 Socio-Economic Condition

Table 3.4.1	National Accounts by Sector of Origin (Percentage Distribution of
	GNP and GDP)93
Table 3.4.2	Major Indices of Two Provinces Related to the Study
Table 3.4.3	Estimated Change in Population in the Study Area between 1990 and 1994 95
Table 3.4.4	Agricultural Land Use before and After the Eruption in the Study Area 96
Figure 3.4.1	Land Use Map (Pre-Eruption)
Figure 3.4.2	Land Use Map (Post-Eruption)
Figure 3.4.3	Estimated Traffic in Region III in 1993
3.5 Hydrol	ogy
Table 3.5.1	List of Rainfall Station in and Around Sacobia-Bamban and Abacan River Basins
Table 3.5.2	List of Water Level Gauging Station in and Around Sacobia-Bamban
	and Abacan River Basins
Table 3.5.3	Point and basin Mean Daily Rainfall during Major Floods (1/2) 101
Table 3.5.3	Point and basin Mean Daily Rainfall during Major Floods (2/2) 102
Figure 3.5.1	Location of Hydrological Data
Figure 3.5.2	Available Rainfall Data104
Figure 3.5.3	Available Discharge Data
Figure 3.5.4	Location of Hydrological Stations Constructed by JICA 106
Figure 3.5.5	Rainfall Intensity and Track during Tropical Cyclones (1/5) 107
Figure 3.5.5	Rainfall Intensity and Track during Tropical Cyclones (2/5)
Figure 3.5.5	Rainfall Intensity and Track during Tropical Cyclones (3/5) 109
Figure 3.5.5	Rainfall Intensity and Track during Tropical Cyclones (4/5)
Figure 3.5.5	Rainfall Intensity and Track during Tropical Cyclones (5/5)
Figure 3.5.6	Comparison of Specific Discharge
3.6 Geomoi	phological Changes After Eruption
Figure 3.6.1	Geomorphological Map in East Pinatubo Pyroclastic Flow Field
	(FPPFF, April 1994, after three rainy seasons)
Figure 3.6.2	Geomorphological Sectional Analysis for Pyroclastic Flow Deposits
	(Crator) [1/3]
Figure 3.6.2	Geomorphological Sectional Analysis for Pyroclastic Flow Deposits
	(Crator) [2/3]
Figure 3.6.2	Geomorphological Sectional Analysis for Pyroclastic Flow Deposits
	(Crator) [3/3]
Figure 3.6.3	Geomorphological Changes after Eruption in Downstream Area (1/2) 117
Figure 3.6.3	Geomorphological Changes after Eruption in Downstream Area (2/2) 118

3.7 Sediment Delivery System

Table 3.7.1	Volume of Sediment Deposition in Inundated Areas of Pasig-Potrero River, 1994	19
Figure 3.7.1	Cross-Sectional Changes and Estimate of Channel Erosion from Mactan	
	to Maskup in 1994	20
Figure 3.7.2	Sediment Deposition Survey Area in Pasig-Potrero	21
Figure 3.7.3	Sediment Deposition in Upper Reach from Watching Point Delta 5 in	
	Pasig-Potrero	22
Figure 3.7.4	Volumes of Source Material, Erosion and Lahar Deposition, 1991-1994 1	23
Figure 3.7.5	Prediction of Annual Sediment Deposits from Pyroclastic Flow Deposits . 1	24
3.8 Sacobia-	Bamban River System	
Figure 3.8.1	Phase Development Plan in the Sacobia-Bamban River	25
Figure 3.8.2	Preliminary Plan of Road Dike of Route 329 Highway	26
3.9 Long Te	rm Plan	
Figure 3.9.1	Road Network Plan	27
Figure 3.9.2	Location Map of Dammed Lake at Sapang Cauayan River	28

Table 1.1 Some Basic Development Indicators: ASEAN

	Population in 1990 (million)	Average Annual population growth rate: 1980-90 (percentage)	GNP per capita in 1990 (U.S. dollars)	Average Annual growth rate of GNP per capita: 1980-92 (percentage)
Singapore	3	2.2	11,160	6.5
Malaysia	18	2.6	2,230	4.0
Thialand	56	1.8	1,420	4.4
Philippines	61	2.4	730	1.3
Indonesia	178	1.8	<i>5</i> 70	4.5

Source: World Bank, World Development Report 1992.

Selected Indicators of Human Development: 1990 Table 1.2

Country	Life Expectancy (years)	Mean Years of Schooling	Adult Literacy Rate (percent)	Real GNP Per Capita (US \$)	Human Dev't Index
Indonesia	61.5	3.9	77.0	570	0.496
Malaysia	70.1	5.3	78.4	2,320	0.789
Philippines	64.2	6.4	89.7	730	0.600
Singapore	74.0	3.9	88.0	11,160	0.848
Thialand	66.1	3.8	93.0	1,420	0.685

Source: UNDP, Human Development Report 1993.

Table 1.3 TYPHOON DAMAGE FOR THE PAST TEN YEARS (IN MILLION PESOS)

	No. of	No. of		Est	imates Cost	of Damago	;		Calami	ty Fund
Years	Typhoons Entering	Typhoons Affecting	Tot	al	All Infras	tructure	Roads	Bridges		
	the PAR	the Country	Current	1994	Current	1994	Current	1994	Current	1994
1			Price	Price	Price	Ртісе	Price	Price	Price	Price
1984	20	6	6,417.6	13,650.2	1,989.4	4,231.5	1,219.3	2,593.5	205 9	437 9
1985	17	4	1,703.2	3,595.5	204.4	431.5	85.2	179.9	226.6	477.7
1986	21	6	996.7	2,088.1	299.0	626.4	189.4	396.8	471.4	987.6
1987	16	5	3,634.0	7,333.4	872.0	1,759.7	366.2	739.0	325.6	657.1
1988	20	5	8,675.6	16,093.2	1,224.9	2,272.2	589.1	1,092.8	280.4	520 1
1989	19	7	4,529.2	7,609.1	1,221.0	2,051.3	598.5	1,005.5	649.6	1,090 8
1990	20	8	12,108.3	18,053.5	3,148.2	4,694.0	1,574.1	2,347.0	389.9	881.3
1991	19	6	4,760.2	5,969.3	1,237.7	1,552.1	618.8	776.0	580.0	727.3
1992	16	7	5,067.0	5,827.1	1,317.4	1,515.0	658.7	757.5	429.6	494.0
1993	32	10	16,276.4	17,415.7	4,231.9	4,528.1	1,953.2	2,089.9	798 5	854.4
Total	200	64	64,168 2	97,635.0	15,745.9	23,661.7	7,852.0	11,977.7	4,356.9	6,828.4
Average	20.0	6 4	6,416.8	9,763.5	1,574.6	2,366.2	785.3	1,197.8	435.7	682.8

NOTE:

Source:

PAR - Philippine Area of Responsibility
Philippine Atmospherical Geophysical and Astronomical Services Administration (PAGASA)

Table 1.4 Summary of Major Indicators

Г		Annual			TARG	ETS			Annual
ĺ	Indicators		Estimates						Average
]		1987-1992	1	1994	1995	1996	1997	1998	1994-1998
ī.	INCOME AND EMPLOYEMENT/a								
	PER CAPITA GNP (In pesos, at constant 1985 Prices) / b	11,320	11,483/m	11,537	12,024	12,661	13,470	14,541	12,847
ł	Unemployement Rate / b	9.8	9.29	9.13	8.84	8.37	7.53	6.60	8.09
ł	Jobs to be Created (000) /b	7 81	686	858	972	1,086	1,321	1,509	
ļ.,	HEALTH AND POPULATION /a	,01	555	525		1,000	1,021	1,505	-,
	Life Expectancy (in years)	64.58/c	67.9	68.3	68.7	69.1	69.4	69.7	69.04
1	Infant Mortality Rate	58.35/e	55.2	54.0	52.7	51.5	50.5	49.7	51.62
	(per 1000 livebirths)	20.5310	33.2	J4.0	32.1	ר.גר	30.3	49.7	31.02
	Crude Death Rate	7.30/e	63	6.2	6.1	5.9	<i>5</i> .8	5.7	5.94
}	(per 1000 population)	1.5010	03	0.2	0.1	ر,ر	5.0	5.7	3.74
	Crude Birth Rate							1	
	(per 1000 population)	31.68/c	27.4	268	26.2	25.6	25.0	24.5	25.63
1	Maternal Mortality Rate /c	0.81/e		0.7	0.7	0.6	0.6	0.6	0.64
1	(per 1000 livebirths)]						
	Population Growth Rate	2.39/c	2.24	2.21	2.18	2.09	2.00	1.92	2.08
ŀ	Totally fertility rate	4.04/e	3.36	3.26	3.17	3.07	2.99	2.91	3.08
	Contraceptive prevalence rate	41.4/e	40.00/d	40.58	41.14	41.7	42.25	42.79	41.69
III.	NUTRITION								
	Perentage of pre-school children with weight less than 75% of	14.0/ſ	11.9	11.2	10.5	9.8	9.1	8.4	9.8
	standards weight-for-age Percentage of school children	13.9	11.9	11.2	10.5	9.8	9.1	8.4	9.8
	aged 7-10 years old with weight less than 70% of standard								
1	weight-for-age	1.00.54		1.000	1 010			4.000	1.02.4
1	Per capita energy intake (in keals) Pecentage of households with	1, 7 35/g	1,872	1,892	1,913	1,934	1,956	1,977	1,934
	energy intake less than 100%	69.2	39.7	41.2	42.6	44.1	45.6	47.1	44.12
ł	adequacy level Prevalence of anemia among infants	7 0.4/h	67.2	66.6	66.1	65.5	65.0	64.5	65.54
ł	Prevalence of Vitamin A deficiency/	0.20/h		0.1	0.08		0.05	1	0.066
1	Bitot's spot among preschool	0.20/11	0	0	0.00	0.00	0.05	0.0-1	0.000
	Prevalence of iodine deficiency disorders/goiter	3.5/h	1.9	1.6	1.3	1.1	0.8	0.5	1.06
lt.	EDUCATION /a	!) 1						
v.		00.02	~ ~	~ ~	04.00	05.00	0000	96.51	05.00
	Literacy Rate	89.8/i 60.54/i		93.53			95.76	96.51 84.36	95.02
Ì	Functional Literacy Rate Elementary Achievement Rate	55.18		78.07 65.16			82.79 70.32	72.04	81.21 68.60
	Participation Rate	22.10	W.44	05,10	- w.oo	00.00	10.52	1±.04	00.00
	a. Elementary	91.38	85.90	88.8	4.70	92.50	93.50	94.2	92.12
	b. Secondary	54.79	h .			1	64.4	66.00	62.80
	Cohort Survival Rate	₽ 1 112	20,000	27.0	J	J.,	O 74-T	50,00	02.00
}	a. Grades I-IV	67.93	71.00	<i>7</i> 3.8	76. 5 0	78.4	80.3	82.2	78.24
	b. Years I-IV	76 01	78.86	78.9	8.50		82.71	84.13	81.17
L									

Table 1.5 Government Infrastructure Program for 1993-1998 a/
(In Million Pesos, Current Prices)

							Total	% to
SUBSECTOR	1993	1994	1995	1996	1997	1998	1993-98	Total
ENERGY, POWER &								
ELECTRIFICATION	36,668	41,614	42,996	38,917	52,320	56,517	269,032	45.24%
Energy Resource Dev't. &	ļ							
Downstream Activities	5,895	6,198	7,115	5,175	1,152	995	26,530	
Power Generation								
& Transmission	29,958	34,319	34,469	32,140	<i>5</i> 0,181	54,604	235,671	
Electrification	672	997	1,234	1,381	757	710	5,751	
Othes b/	143	100	178	221	230	208.	1,080	
TRANSPORTATION	18,660	20,574	25,847	34,105	37,896	49,599	186,681	31.39%
Land	13,808	15,225	16,825	22,828	27,605	39,664	135,955	
Water	2,426	2,674	2,948	2,923	3,352	3,217	17,540	
Air	933	1,029	1,791	2,351	3,566	6,372	16,042	
Rail	1,493	1,646	4,283	6,003	3,373	364	17,144	
COMMUNICATIONS	2,202	1,160	2,129	1,854	1,357	680	9,382	1.58%
Telecommunications	2,202	1,108	1,900	1,541	1,316	645	8,712	
Postal Communications	}	52	229	313	41	35		
WATER RESOURCES	8,354	11,114	13,980	16,497	17,838	21,432	89,215	15.00%
Irrigation	2,211	4,300	6,299	6,550	6,300	6,952	32,612	
Water Supply, Sewerage &					,		,	
Sanitation	4,318	4,864	5,471	6,506	5,879	5,115	32,153	
Flood Control & Drainage	1,799	1,826	2,116	3,360	5,595	9,297	23,993	
Other /c	26	124	94	81	64	68	457	
SUB-TOTAL/d	65,884	74,462	84,952	91,373	109,411	128,228	554,310	
SOCIAL INFRASTRUCTURE e/	4,192	7,546	9,659	5,579	6,776	6,641	40,393	6.79%
Schoolbuildings	2,301	5,784	7,055	3,167	3,853	4,938	27,098	
Health Infrastructure	50	93	890	746			4,282	
Housing	1,841	1,669	1,714	1,666	1,511	612		
TOTAL	70,076	82,008	94,611	96,952	116,187	134,869	594,703	100.00%
SOCIAL INFRASTRUCTURE e/ Schoolbuildings Health Infrastructure Housing	4,192 2,301 50 1,841	7,546 5,784 93 1,669	9,659 7,055 890 1,714	5,579 3,167 746 1,666	6,776 3,853 1,412 1,511	6,641 4,938 1,091 612	40,393 27,098 4,282 9,013	

a/ Does not include projects of LGUs and the private sector. LUGs and the private sector are expected to play a more active role in infrastructure development and thus help fill the gap between total requirements demandbased and the resources-based Infra Program. Capex program of the government infrastructure corporations do not include expected subsidies from the national government

b/ Infrastructure program of DOE (OEA), ERB, and DOST-PCIERI)

c/ Infrastructure program of LLDA and NWRB

d/ Corresponds to the infrastructure component under the MTPIP except for the investment requirements of the transportation and water resources subsector that are not yet updated based on the April 1994 resource ceilings estimates.

cl Investment requirements for social infrastructure under the Chapter on Total Human Development. Source: DPWH, DOTC, NPC, PNOC, NEDA

Table 1.6 List of Previous and Present Flood Control and Sabo Studies

	table 1.0 List of Fig	vious and Fresci		Sabo Studie	20
No.	Name of Project	Location	Type of Study	Year Comple	Funding Source
1.	A Report on the Central Luzon Basins	Luzon Island	Basın Inventory/Water Development Plan	1966	USAID
2	A Report on the Cotabato Rier Basin	Mindanao Island	Basin Inventory	1966	USAID
3.	A Report on the Agusan River Basin	Mindanao Island	Basin Inventory	1996	USAID
4.	A Report on the Ilog-Hilabangan River Basin	Negros Island	Basin Inventory	1966	USAID
5 .	A Report on the Bicol River Basin	Luzon Island	Basin Inventory	1967	USAID
6	Planning Report on the Pasig-Potrero River Flood Control and Sabo Project	Pampanga	Master Plan	1978	NК/ЛСА
7.	Cotabato-Agusan River Basins Development Project	Mindanao	Detailed Fingineering?	1980	OECF
8	Master Plan for Mayon Volcano Sabo and Flood Control Project	Bicol	Master Plan Feasibility Study	1981 1981	NK/JICA NK/JICA
9.	Pampanga Delta Development Project	Pampanga	Detailed Engineering	1992	NK/OECF
10.	Nationwide Flood Control Plan and River Dredging Program	Nationwide	Master Plan	1982	NK/OECF
11.	Re-Study of Mayon Volcano Sabo and Flood Control Projects	Bicol	Master Plan	1983	NK/JICA
12.	Lower Agusan Development Project	Mindanao Island	Detailed Engineering	1984	OECF
13.	Study on an Effective Flood Control	Metro Manila and	Detailed Engineering	1985	JICA
	Operation System Including Telemetering and Flood Warning System in the Pasig- Marikina-Laguna Lake Comptex	Rizal Province			
14.	The Panay River Basin Wide Flood Control Study	Panay Island	Master Plan	1987	NK/JICA
15	The Master Plan Study on the Cagayan River Basin Water Resources Develop- ment	Cagayan Province	Master Plan	1990	NK/JICA
16	The Study on Flood Control and Dramage Project in Metro Manila	Metro Manila	Master Plan	1991	OECF
17.	Metro Manifa Flood Cntrol Project II	Metro Manila	Detailed Engineering	1991	JICA
18.	Study on Ilog-Hilabangan River Basin Flood Control Project	Negros Island	Master Plan ?	1992	OECF
19.	Detailed Engineering Design of the North Laguna Urgent Flood Control Development Project	Metro Manila	Detailed Engineering	1994	JiCA
20.	Study on Flood Control for Rivers in Selected Urban Centers	Nationwide	Master Plan/Feasibility	1995	IICV
21.	The Study of Agno River Flood Control	Pangasinan	Master Plan	1994	NK/OFCF
22.	Plan for the Drainage of Metro Manila and Suburbs		Feasibility Study and Detailed Engineering	1954	Bureau of Public Works
23.	Paranaque Spillway Feasibility Study	Metro Manila	Fesibility Study	1975	DMJM(World Bank)
24.	Metro Manila Integrated Urban Drainage and Flood Control Master Plan	Metro Manila	Master Plan	1983	Fingg Science Inc. & Basic Team, IBRD
25.	Flood Control and Drainage Project in Metro Manila	Metro Manila	Feasibility Study	1990	CTI/JICA
26.	Planning and Detailed Engineering Design for Flood Control and Drainage Project	Metro Manila	Detailed Engineering	1985	Asiatic Consultants (GOP)
27.	North Laguna Lakeshore Urgent Flood Control and Drainage Project	Metro Manila	Detailed Engineering	1993	OFCF
28.	Development of Laguna Lake Source: DPWH	Metro Manila	Feasibility Study	1975	DMJM, SOGREAH and INGELDOM (World Bank)

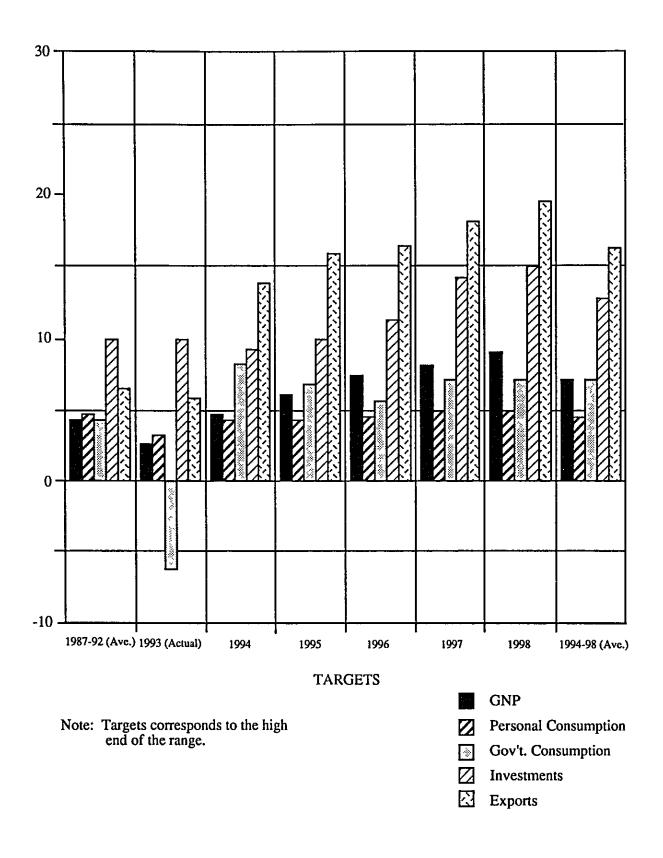


Figure 1.1 Real Gross National Product (Growth rates, in percent)

Source: NEDA

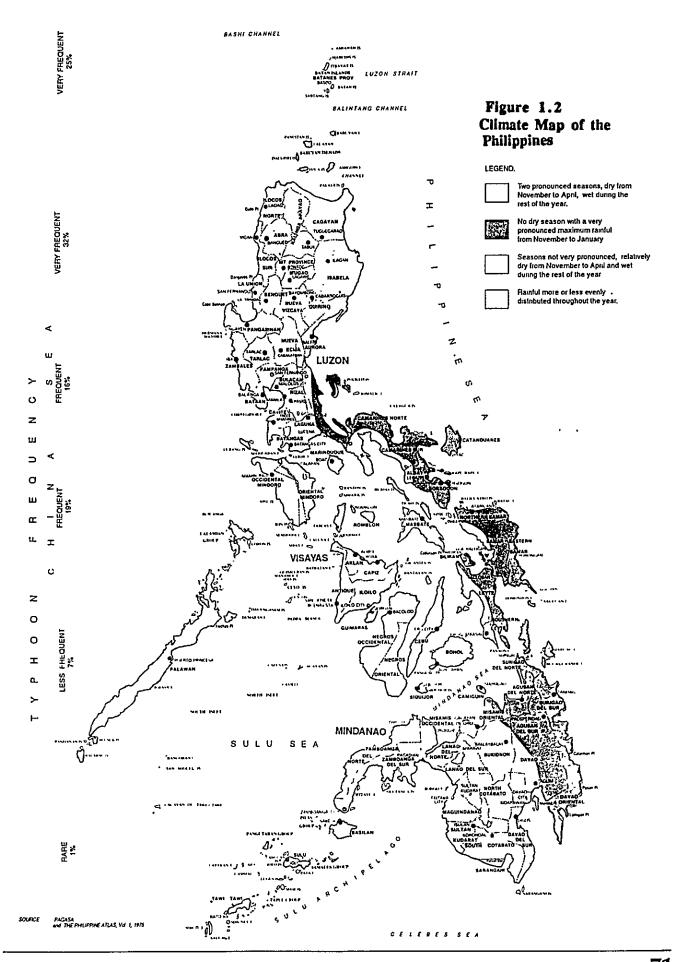
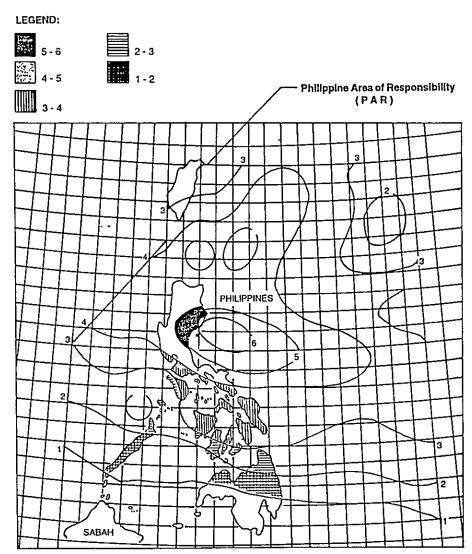



Figure 1.3 Frequency of Tropical Cyclones in the PAR

													·
1984	0	0	0	0	0	1	2	8	1	4	3	1	20
1985	1	0	0	0	1	2	2	3	4	3	0	1	17
1986	0	1	0	1	1	2	3	2	1	4	3	3	21
1987	1	0	0	0	0	1	4	3	2	2	2	1	16
1988	1	0	0	0	1	3	3	0	3	6	2	1	20
1989	1	0	0	0	1	2	6	1	2	3	2	1	19
1990	0	0	0	0	3	3	2	3	4	1	3	1	20
1991	0	0	1	1	1 1	1	4	2	4	2	3	0	19
1992	0	0	0	0	0	2	3	5	1	3	2	0	16
1993	0	1	0	2	1	2	5	5	6	4	2	4	32
			 		 	 	 	├	 	ļ			
TOTAL.	4	2	1	4	9	19	34	32	26	32	22	13	200
MEDIAN	04	02	0.1	04	09	1.9	3 4	32	28	32	22	1.3	20 0

5 - YEAR AVERAGE FREQUENCY OF TROPICAL CYCLONE PASSAGE

Sources:

Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA)

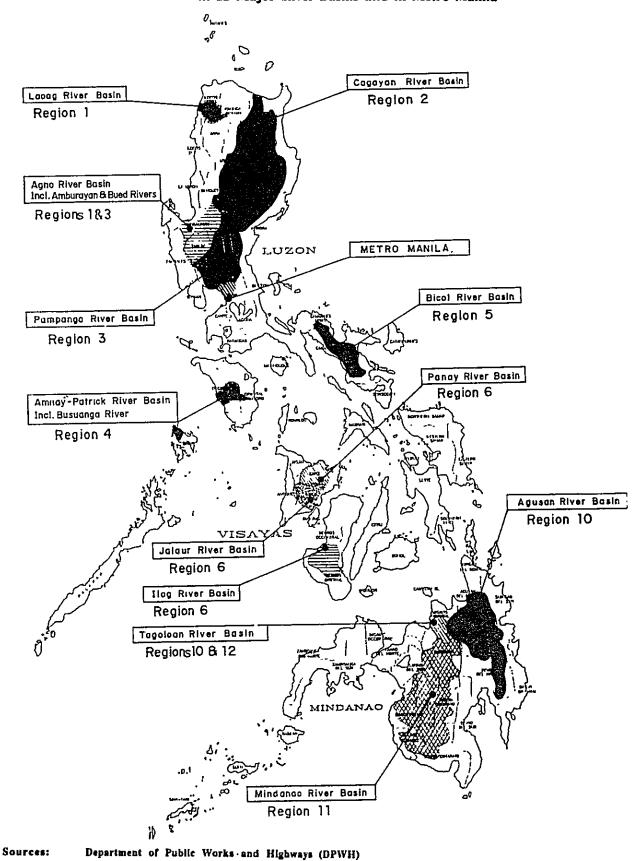


Figure 1.4 Flood Control and Drainage Projects in 12 Major River Basins and in Metro Manila

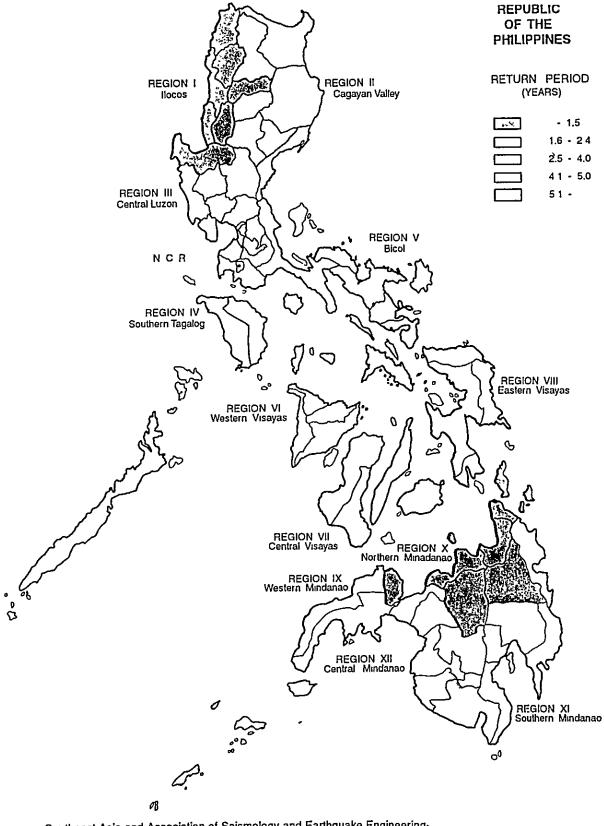


Figure 1.5 Location of Volcanos

Source: PAGASA Geologic Hazards and Disaster Preparedness, 1987

Note: Volcanic Belts Supplemented From "Geology and Mineral Resources", 1981

Source:

Southeast Asia and Association of Seismology and Earthquake Engineering; Series of Seismology Vol.I, Earthquake Hazard Mitigation Programme in Southeast Asia, April 1986

Attachment 1.1

DPWH MEDIUM TERM INFRASTRUCTURE PROGRAM, 1993-1998

PROGRAM THRUSTS

As a major component of the overall Medium-Term Philippine Development Plan (MTPDP) for 1993-1998, the medium-term infrastructure program of the Department of Public Works and Highways (DPWH) has been framed to achieve the following thrusts:

- a. Rehabilitation/improvement/construction of the national road network, with emphasis on the arterial road system, to provide for more efficient flow of people and goods among regions and between principal production and consumption areas.
- b. Provision of flood control works in the major river basins, to mitigate losses from flooding thereby inducing greater production.
- c. To a lesser extend, the provision of potable rural water supply (Level 1 or wells) for improved health and production, but limited to on-going foreign-assisted projects, considering that rural water supply has been devolved to Local Government Units (LGUs).
- d. To a similar limited extend, the provision of small urban community infrastructure under on-going foreign-assisted projects to help improve the economic base of the country's urban centers.

INVESTMENT LEVELS

The DPWH medium-term infrastructure program calls for a total investment of P 166.1 billion from 1993-1998. The bulk of the investments at P 127.7 B, or 76.9% of the total, is allocated for roads or highways, while P 24.1 B or 14.5% is earmarked for flood control. The rest, about P 14.3 B or 8.6 % of the total, is intended for foreign-assisted rural water supply and urban community infrastructure, and for other public works.

TRANSPORT POLICIES AND STRATEGIES

The DPWH medium-term road infrastructure program is based on the following policies and strategies for the overall transport sector under the MTPDP:

- a. Provide the transport infrastructure requirements of the productive sector (principally agriculture and industry), with priority given to those supportive of the designated growth centers/networks.
- b. Strengthen the arterial road network for efficient nationwide mobility.
- c. Intensity maintenance and upgrade service standards to prolong the economic life of the transport infrastructure and reduce user cost.
- d. Enhance the participation of the private sector (e. g., thru the Build-Operate-and-Transfer scheme), and of the LGUs.
- e. Provide deregulation of transport utilities (in entry/pricing), decentralization, and improve institutional and inter-agency coordination.
- f. Incorporate safety, environment, and socio-economic concerns in transport projects.

ARTERIAL ROADS

The main focus of the road infrastructure program lies on the arterial road network, totalling 15,848 km. This includes the following:

- a. Roads connecting regional and provincial capitals and other urban areas.
- b. Roads leading to planned growth centers, in areas of significant economic development potentials.
- c. Roads leading to regional industrial and tourist centers.
- d. Roads traversing the principal agriculture production areas.
- e. Roads leading to major national ports and airports.
- f. Other roads of strategic importance for regional development and emergencies.

Supporting the arterial road network are complementary secondary roads totalling 10,706 km which seek to facilitate the distribution/collection of traffic to/from the hinterlands.

ROAD IMPROVEMENT REQUIREMENTS

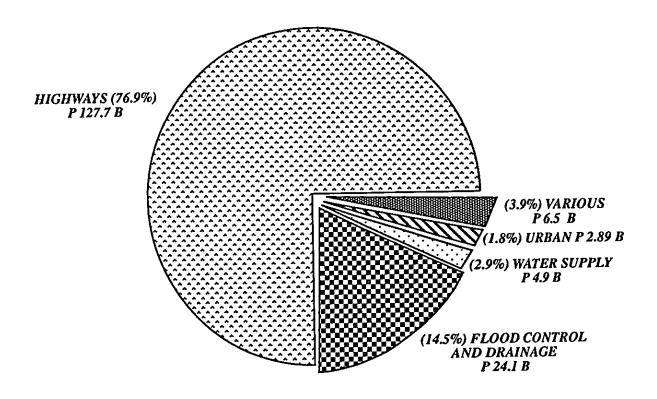
Of the national road network totalling 26,554 km, 7,166 km (27%), are already improved, leaving 19,388 km (73%) still to be improvement/rehabilitated. The cost of such improvement is P 146.9 B. Out of this, P 108.9 B was proposed for projects under the 1993-1998 program, covering the rehabilitation of 4,962 km of damaged paved roads and the paving of 9,616 km of unpaved roads. Of this P 108.9 B program, P 32.0 B has "committed" funding thru approved foreign Official Development Assistance (ODA) and the required Philippine Government counterpart, leaving an uncommitted balance of P 76.9 B.

For the national arterial roads alone totalling 15,848 km, about 4,778 km (30%) are already improved, leaving 11,070 km (70%) which required improvement at a cost of P 88.2 B. Of this, P 77.8 B was proposed for projects under the 1993-1998 program covering the rehabilitation of 3,212 km of damaged paved arterial roads and the paving of 5,740 km of unpaved arterial roads. Of this P 77.8 B program, P22.0 B has been committed under approved ODA and the Philippine Government counterpart, thereby leaving a P 55.8 B in uncommitted balance.

ROAD PROGRAM TARGETS

Under its medium-term road infrastructure program, the DPWH has set the following targets:

- a. For the national arterial roads totalling 15,848 km, the improved/paved sections shall be increased from the present 30% of the total length to 87% by the end of 1998, while all-weather roads will increase from 80% at present to 100% by end of 1998.
- b. For national secondary roads totalling 10,706 km, the improved/paved sections will be extended from the current 22 % to 75% by end of 1998, while all-weather roads will rise from 73% to 89%.
- c. For bridges along national roads, the length of permanent structures will increase from the present 88% to 100% by end of 1998.


1993-1998 MEDIUM TERM PUBLIC INVESTMENT PROGRAM (In Million Pesos, Current Prices)

SUMMARY

			1993	1994	1995	1996	1997	1998	Years~	1993- 1998	1999	2000
1.1	Highways	P	12,940	11,809	16,019	21,835	26,601	38,526	44,961	127,729	24,933	9,765
	Artenal Roads	P	6,775	7,112	10,681	13,704	16,247	23,338	10,315	77,857	10,315	
	Secondary Roads	P	4,653	2,852	3,020	5,041	6,336	9,161	28,138	31,062	10,618	7,257
	Urban Roads/	P	1,512	1,845	2,318	3,090	4,018	6,027	6,508	18,810	4,000	2,508
	Expressways											
2	Flood Control	P	1,799	1,907	2,116	3,360	5,595	9,297	22,906	24,074	8,192	7,345
	and Drainage											
3	Water Supply	þ	795	660	847	1,055	<i>7</i> 82	713	0	4,851		
4	Urtxin	P	603	519	360	437	450	520	0	2,889		
	Infrastructure											
_5	Various Projects	P	913	5,605	0	0	0	0	0	6,517		
	TOTAL	Р	17,049	20,500	19,341	26,686	33,427	49,056	67,866	166,060	33,125	17,110

Includes program for Ports, Detailed Fing'g, and National Buildings

1993-1998 DPWH INFRASTRUCTURE PROGRAM BY PROJECT CATEGORY TOTAL = P 166.1 BILLION

Table 2.1 Mayon Volcano Alert Signals (As revised, Feb. 1993)

The "Alert and Warning Signals for Mayon" was revised at the start of the Volcano's unrest in February 1993

ALERT LEVEL	CRITERIA	INTERPRETATION
No Alert (NORMAL)	Background, quite	No eruption in foreseeable future
1 (ABNORMAL)	Low level seismicity fumarole, other unrest	Magnetic, Tectonic or hydrothermal disturbance; no eruption imminent
(ALARMING)	Low to moderate level of seismicity, other unrest (ash, puffs, rocks falls) with positive evidence	(A) Probable magnetic intrusion; could eventually lead to an eruption
	of involvement of magna (crater glow and/or lava trickles)	(B) If trends shows further decline, volcano may soon go to level 1
3 (CRITICAL)	Relatively high unrest including increasing occurrence of low frequency earthquakes, frequent observance of	(A) If trends is one of increasing unrest, cruption is possible within days to weeks
	lava trickles and/or occasional small ash explosions	(B) If trends is one of decreasing unrest, volcano may soon go to level 2.
4 (ERUPTION IMMINENT)	Intense unrest, including harmonic tremor and/or "long period" (=low frequency) earthquakes or quiet lava emissions and/or frequent small ash explosions	Hazardous explosive eruption is possible within hours to days
ERUPTION)	Eruption in progress with pyroclastic flows and/or eruption columns reaching 6 km or 20,000 feet above sea level	Hazardous eruption progress. Hazards in valleysand downwind

Source: Operation Mayon (PHILVOLCS)

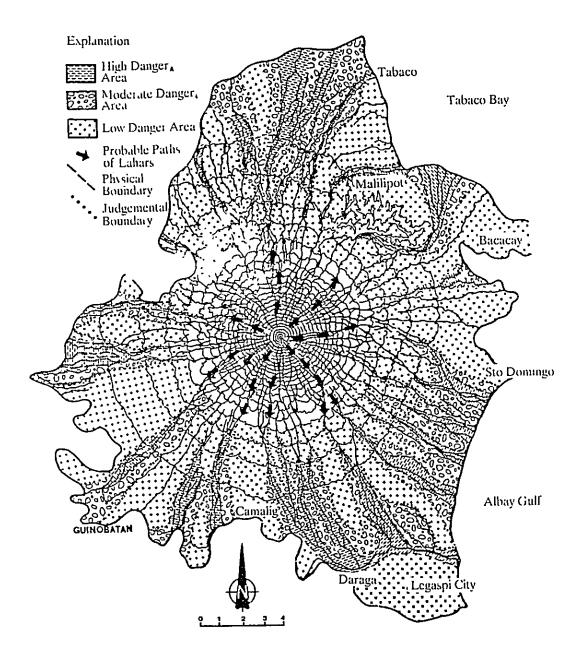


Figure 2.1 Lahar Hazard Map

Source: Operation Mayon (PHILVOLCS)

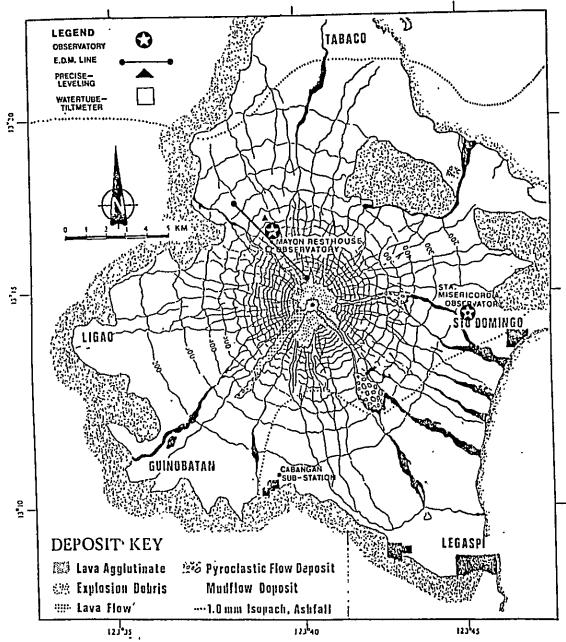


Figure 2.2 PHIVOLCS Monitoring Network at Mayon Volcano PHIVOLCS monitoring network at Mayon Volcano showing the location of volcanological stations, EDM lines and precise leveling benchmarks

Source: Operation Mayon (PHILVOLCS)

Activities
of Volcanic
Table of
Chronological
3.1.1
Table

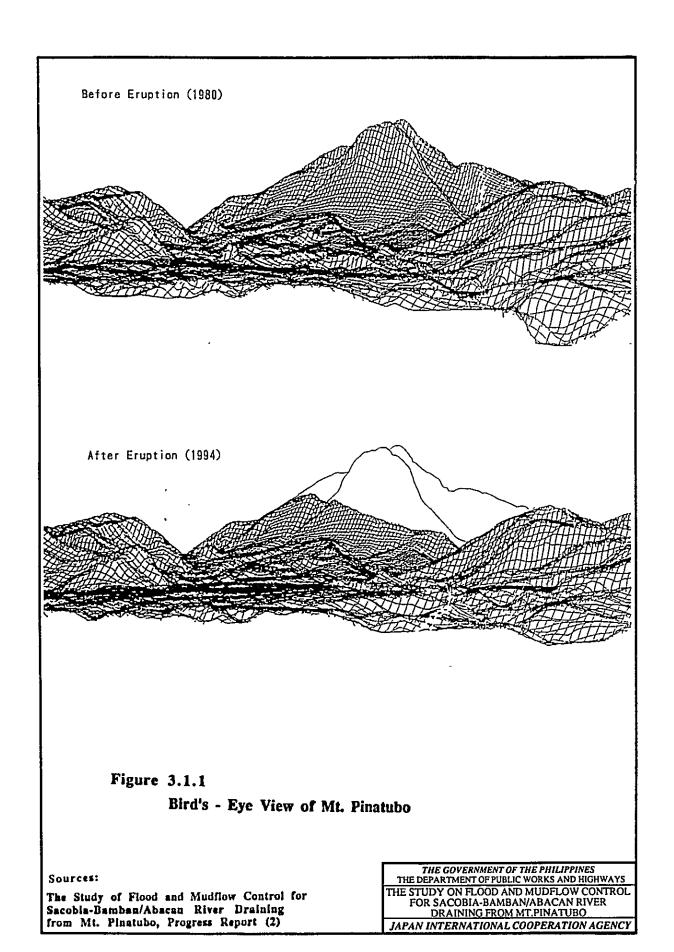
Year	Date	Volcanic Activities	Seconadary Explosion Lahar	Warning Evacuation	ĺ
و مطا	April 02	The renewal of volcanic activity at Mount Pinatubo began.			
	April 05	High-frequency volcanic earthquakes were observed by PHIVOLCS		PHIVOLC'S recommended precautionary evacuation of areas within a 10km radius of the summit	
	Apr -May	A radio-telemetered network of 7 seismic stations was installed by PHIVOLCS USGS			
				A volcanic hazard map was prepared indicated that previous pyroclastic flow had reached Clark Air Basi. The volcanowas Alert Level 2.	
	May 30	Almost all carthquakes occurred in a cluster roughly 5km 88W of the summit and from 2 tab km deep.			
	June 05 June 07 June 09	- -		Alert Level was raised to 3 (June 05). Alert Level was raised to 4 (June 07). Alert Level was raised to 5. The radius of evacuation was increased to 15km, then 20km and 20 (00) people moved in evacuation.	
	June 10	** ·		camps(June 09)—At the Clark Air Base, more than 14 000 military personnel were evacuated to Subic Naval Station (June 10)	
1991	June 12	Major explosive cruptions produced substantial pyroclastic fall and flow deposits on the slope of Mount Pinatubo	Lahars occurred as soon as the major eruptionbegan one was recorded on the Sacobia River another on the northeast side of the Mountain		
	June 15		A number of multiple-pulsed lahars of varying size and rheology were inggered by heavy rainfall on all side of Mount Pinatubo		
	June 17	Tephra emission decreased and no more primary flows were produced. A succession of major explosive emptions produced pyroclastic fall deposit (0.1 to 0.2 km3) and pyroclastic flow deposit (1.0 to 1.0 km3) on the eastern slope of Mount Pinatubo.			
	June to		The Abacan-River captured sometimes the upstream reach of the Sacobia River. The Sacobia River produced lahar 183 times for the period of July 17 to september 4 at the lahar observation point of Mactan Gate.		; ;
	Aug. to Sept		The aggradation of Sacobia River was terminated by rapid downcutting of 6 to 7m and widening of 30 to 5m in late. August to September Lahars in 1991 may be mainly organized into the secondary movement of pyroclastic fall deposit.		
	Nov. 05		DPWH commenced the construction of saho dams During the construction of sabo dams, no lahar was observed in the Sacobia Bamban and Abacan rivers.		
	April 04	}	Secondary pyroclastic flow had caussed the aggradation of about 5m in the reach of 2.5 to 3 0km downstream from the piracy point of Abacan and Sacobia tivers. Salso dam (No.2) in the Sacobia River copped completely the secondary pyroclastic flow.	í	Control for
1992	July 13	Volcanic carthquakés were observed 8 times for 0600h of July 13 to 0600h of July 14 Ashfall observed in the Clark Air Base	During the heavy rainfall, the secondary pyroclastic flow occurred in the upstream reach of Pasig River Lahar was observed in the Pasig River at 1854 to 1927h. At 1830 to 1937h, the lahar was observed in the downstream reach of the Sacobia River		Mudflow
	Sept 20 to 21		After a heavy runfall for a few days, the lahars were observed on all side of Mount Pinatubo. At 0957h.on tept 21, the ash column of 18km high was observed at Clark Air Base. Ash fall was also observed in wide areas including Metro Manifa.		Flood and
	765 23 to 24		Seconadary pyroclastic flow occurred in the upstream reach of Bucao and O'donnell rivers and in the middle reach of the Sacobia River		•
	July to Lug		In the Sacobia River the tertiary pyroclastic flow occurred from the deposition area of secondary pyroclastic flow		The Cendu
1993	Oct.05 10 0n		During the passage of typhoon Kadrang the large-scale secondary pyroclastic flow occurred in the uppermost reach of the Sacobia River. As a result, the Pasig-Potrero River captured the upstream reach of the Sacobia River. In the morning, Jahar resulted in 4 to 5m of deposition at Mancalian Bridge in Pasig-Potrero River. Lahar nearly overlopped the drike in the		:
			afternoon. In the Sacobia/Bamban River lahar resulted in 5m deposition along the river course at Macapagal Village, the active channel shifted about 100m northward from the south bank.		Sources

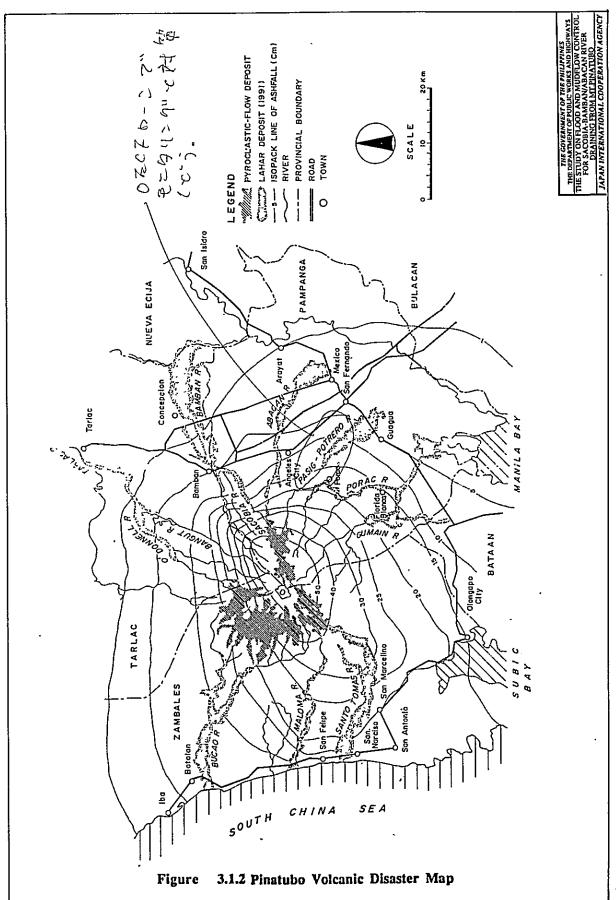
The Study of Flood and Mudflow Control for Sacobla-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Table 3.1.2 Chemical Properties of Lahar Deposits.

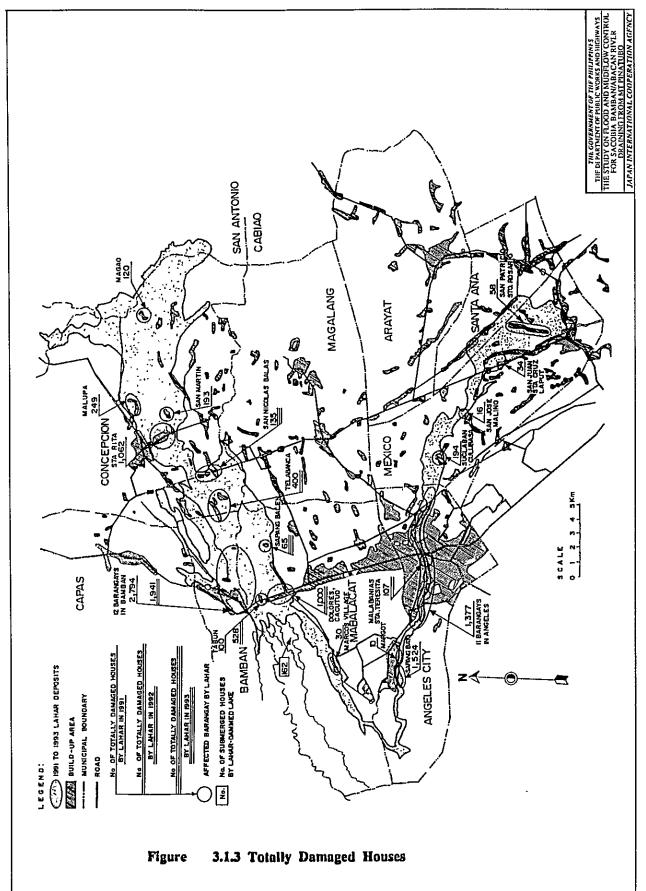
							CHO							
	·		EXCHANGEA	EABLE BA	BLE BASES (meg/100g soil	'100g soil)	(med/	BSP	c.	S S	M	RONUTR	MICRONUTRIENTS (ppm)	a)
LOCATION	pH	OM (%)	ొ	Mg	Na	አ	100g soil)	(%)	(mdd)	(mdd)	Zn	ਹੋ	F.	Mn
ABACAN RIVER										•				
1. Sapalibutad, Angeles City	64	0.52	1.00	0.18	0.03	90.0	2.39	53.97	13.20	0	0.60	2 60	41 80	4.00
2. Sapalibutad, Angeles City	6.2	0.19	0.85	0,17	0.03	0.05	3.80	28.95	6.00	101	0.20	5.40	17.60	3.20
3. Capaya Is, Angeles City	5.9	600	0.70	0.26	000	90:0	2 69	40.52	0.50	297	0.20	2.80	6.80	200
4. Sapalibutad, Angeles City	6.5	0.14	0.65	010	003	9.0	16.1	42.40	0.30	0	0.40	2.88	5.60	1.40
5. San Juan, Magalang	6.4	0 02	29.1	0.15	0.07	0.04	1.90	100.00	5.23	0	0.25	288	5.28	7.93
6. Purok 4, S. Bato	9.9	H	1.08	0.03	0.05	0.02	1.18	100.00	1.55	0	0.82	2.45	35.91	868
SACOBIA-BAMBAN						•								· •
1. Bamban River	6.5	0.14	1.05	0 03	90.0	0.05	4.43	26.86	0.10	0	0.20	2.20	4.40	1.00
2. Culatingan	6.4	0.19	0.70	0 26	9.0	0.09	325	33.54	4.90	0	0.60	4.80	28.60	0.80
3. Culatingan	6.2	1.46	2.60	1 10	0.11	0.34	6.35	6535	8.80	0	1.20	15.40	92.40	22 00
4. Dotores, Magalang	57	0.02	1.75	800	0.14	90.0	3.65	55.62	0.10	830	0.20	2.20	90.9	13.20
5. San Vicente, Concepcion	67	038	3.56	0.39	0.21	0.26	9.37	47.17	9.71	88	0.27	12.98	142.78	53.53

The Study of Flood and Mudflow Control for Sacobla-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

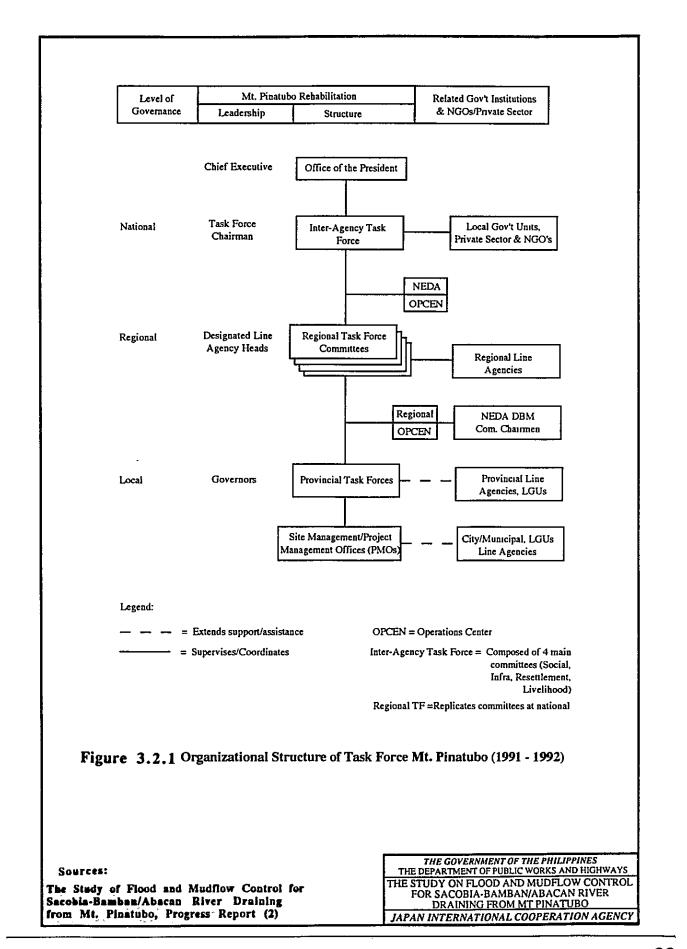

Sources:

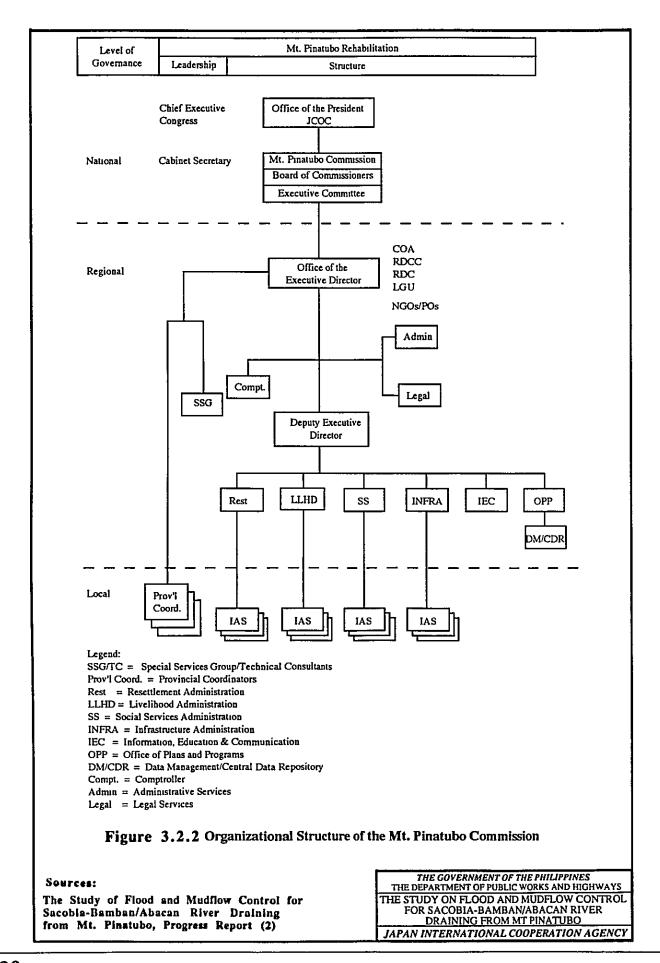

Table 3.1.3 Physical Properties of Lahar Deposit.

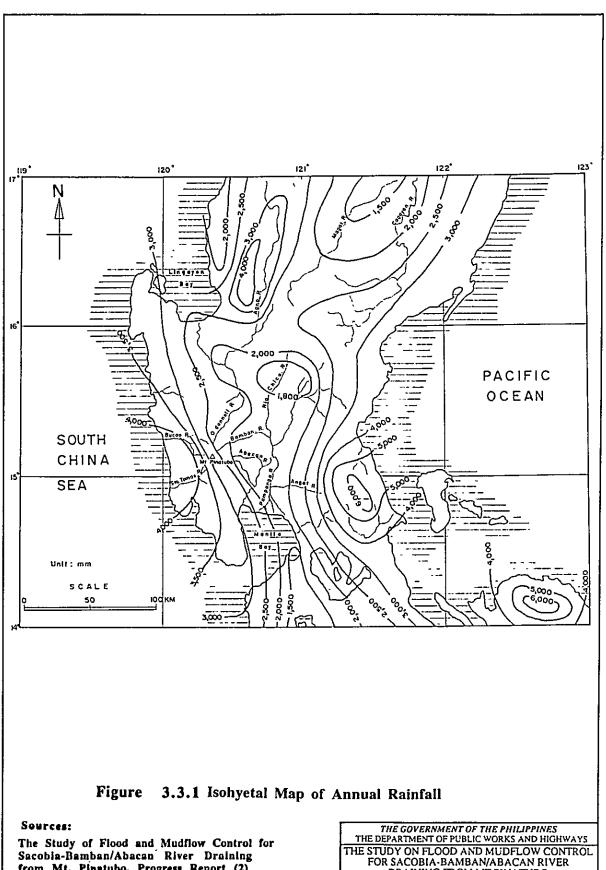
		PERCENT		TEXTUAL GRADE	BULK DENSITY	AVAILABLE MOISTURE	HYDRAULIC CONDUCTIVITY	HYDRAULIC ONDUCTIVITY
LOCATION	Sand	SıH	Clay		(gm/cc)	(%)	ma)	(cm/sec)
ABACAN RIVER								
1. Sapalibutad, Angeles City	86.4	5.6	8.0	SJ	0.98	11.58	2.6x10 ⁻²	Very Fast
2. Sapalibutad, Angeles City	86.4	9.9	7.0	LS		11.88		,
3. Capaya	87.4	4.6	8.0	SJ	1.83	6.36	9.7x10 ⁻⁴	Medium
4. Sapalibutad, Angeles City	95.4	9.0	4.0	S	1.40	6.12		Very Fast
SACOBIA-BAMBAN RIVER								
1. Bamban River	86.4	4.6	9.0	LS	1.69	8.04	2.0x10-2	Fast
2. Culatingan River	80.4	10.6	9.0	SL	1.78	1.89	1.2x10-4	Medium
3. Culatingan River	20.4	53.6	26.0	SiL				
4. Dolores, Magalang	82.4	9.6	8.0	SiL		23.70		


Sources:

The Study of Flood and Mudflow Control for Sacobla-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)






Sources: The Study of Flood and Mudflow Control for Sacobla-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Sources: The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

from Mt. Pinatubo, Progress Report (2)

THE STUDY ON FLOOD AND MUDFLOW CONTROL FOR SACOBIA-BAMBAN/ABACAN RIVER DRAINING FROM MT PINATUBO JAPAN INTERNATIONAL COOPERATION AGENCY

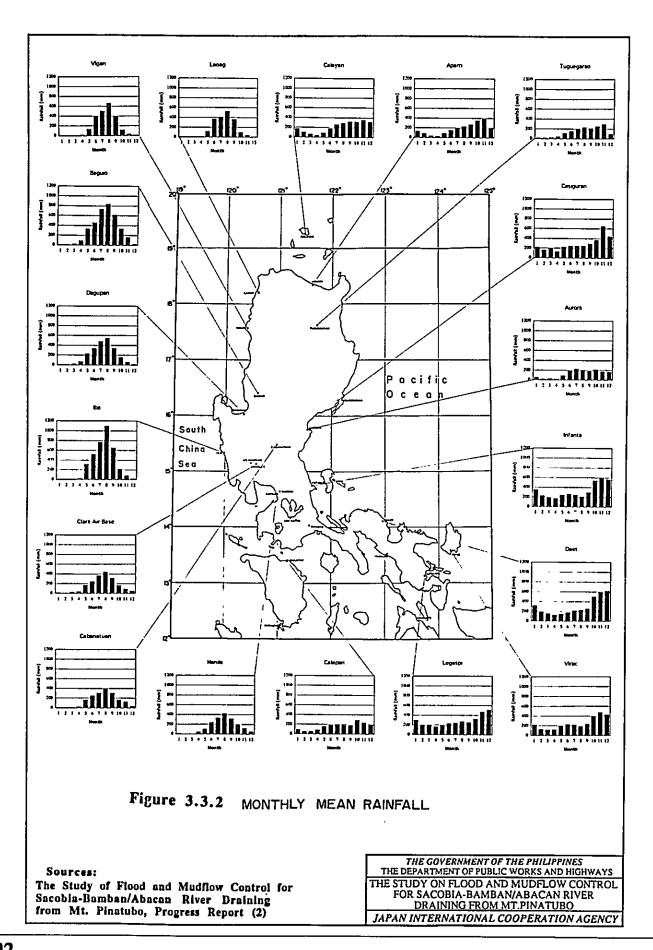


Table 3.4.1 National Accounts by Sector of Origin (Percentage Distribution of GNP and GDP)

(Unit: billion pesos) Current Constant 1985 Prices 1988 1990 1991 1992 1992 1987 1989 Sector 290.3 160.7 160.5 159.9 150.4 155.3 160.0 Agriculture, Fishery & Forestry (21.9)(21.2)(23.8)(23.2)(22.3)(22.2)(24.7)232.5 251.6 258.1 248.7 247.5 446.7 215.1 Industry (35.7)(36.5)(35.8)(34.4)(33.9)(32.6)(35.5) 11.2 11.7 11.4 11.1 108 11.3 16.2 Mining and Quarrying 329.9 Manufacturing 154.6 167.7 178.4 184.0 183.1 181.3 66.9 42.6 35.7 36.0 Construction 31.7 33.2 41.4 20.4 20.6 20.4 33.7 20.4 19.9 Electricity, Gas and Water 18.6 606.0 253.1 270.6 286.8 298.5 303.1 305.3 Services (44.2)(41.6)(41.5)(41.6)(41.4)(42.0)(41.8)77.9 414 42.1 Transportation 35.1 37.9 40.2 41.2 104.5 185.4 101.4 102.9 99.3 Trade 90.0 94.6 69.8 139.9 70.1 69.4 66.3 Finance and Housing 56.2 60.5 202.8 866 86.1 85.8 Other services 71.8 77.6 81.0 1,342.5 619.6 658.4 698.4 717.3 712.3 712.7 Gross Domestic Product (GDP) (98.0) (101.0)(101.3)(99.5)(98.6)(97.7) (101.8)(00.1)(063)(06.1)(02.7)-(00.7) Growth of GDP (% p.a.) 10.0 17.1 27 5 -6.2 -87 3.7 -11.0 Net Factor Income from Abroad 608.6 6522 689.7 721.0 722 3 729.8 1,3700 Gross National Product(GNP) (100.0)(100.0)(100.0)(100.0)(100.0)(100.0)(1000)Growth of GNP (% p a.) (07.2)(05.7)(04.5)(00.2)(01.0)

Source: National Statistical Coordination Board

Inception Report of Master Plan Study for West Central Luzon Development Program

Sources:

The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Table 3.4.2 Major Indices of Two Provinces Related to the Study

$\overline{}$			Provi	nces		
l			Pampanga	Tarlac	Region III	Philippines
l 1.	Arca	sq.km	2,181	3,053	18,230	
	Population (1990)	thousand	1,532 6	859.2	6,198.5	60,685.0
-	Density (1990)	/sq.km	703	281	340	202
l	Growth rate (1970-80)	%rpa.	2.54	2.09	2 88	
Ì	(1980-90)	54-p.a.	2.63	2,24	2.57	2 32
l	Urban population (1990)	%	70.5	29.8	60.3	48.5
	Employment in agriculture	%	22,9	54.9	35 4	44.5
I 3.	Economic structure (1990)					
**	Agriculture	%	16.0	31.6	22 8	22.7
l	Industry	%	42.2	32.0	39.2	35.4
l	Services	%	41.2	36.5	38.0	41.9
4.	Gross regional domestic products (1990)	mill.Peso	22,650	10,614	94,158	1,066,224
"	Per capita GRDP (1990)	P	14,779	12,353	15,190	17,570
l 5.	Land classification - A & D land	ha (%)	164,912 (75.6)	184,975 (60.6)	1,051,908(57.7)	
-	Land use (1991) - Agriculture land	ha (%)	104,421 (47.9)	137,400 (45.0)	635,345 (34.9)	
l	Grass/shrub lands	ha (%)	(90)	(27.8)	(33.2)	
l	Wood lands	ha (%)	(7.3)	(17.8)	(19.8)	ļ
l	Paddy harvested area	ha	42,800	97,990	499,870	
l	Paddy yield	t/ha	3.91	2 54	3.50	
l	Irrigation service area	%	70.7	55.2		
6.	Physical infrastructure					
	Road density (1990)	km/sq.km	1.07	0.80 (0.89)	0 72	0.54
	Household electrification	%	82.9	68.1	ĺ	
1	Access to improved water supply (1990)	%	80.4	61.8	63.0	
ł	No of telephones (1990)	/100 popul'n	0.63	0 34	0 49	
7.	Social infrastructure					
	Population per hospital bed		903	1,197	896	
	Enrollment ratio - Primary	%	111	111	111	
	Secondary	%	. 75] 78,	76'	
8	Major towns		San Fernando (157			
	(urban population in 1990)	thousand :	Angeles (236)			
l			Mabalacat (111)		İ	
	+		Guagua (88)	1		•
			Apalit (62)			
1			Macabebe (55) Bacolor (50)			Į
1			Bacolor (50)	! i		}
ĺ						
l				j l	İ	
1						
İ				!		

Source: Prepared based on "Inception Report of the Master Plan Study for West Central Luzon Development Program" JICA, Nov. 1993

Sources:

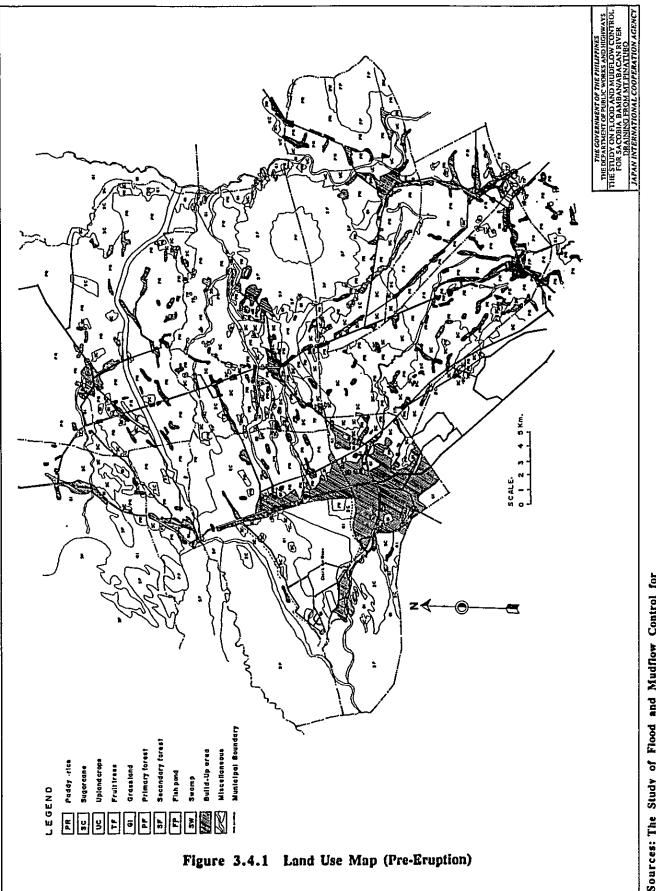
The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Table 3.4.3 Estimated Change in Population in the Study Area between 1990 and 1994

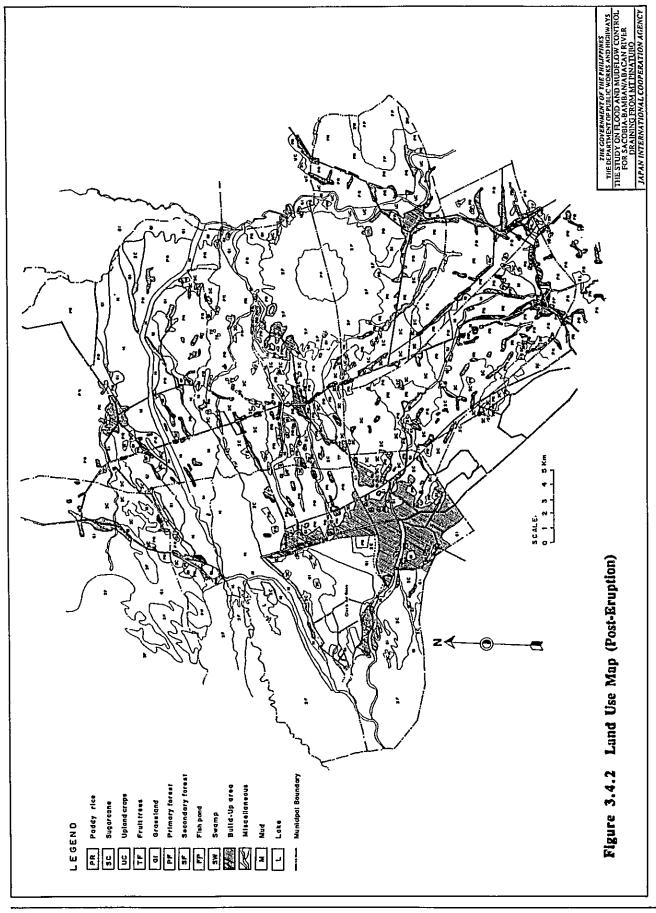
_	Population	on	Change in	Ratio of
City/Municipalities	1990	1994	90-94	Change (%)
I. Pampanga Province				
Angeles (20/33)	236,700	210,000	-26,700	88.7
Arayat (9/30)	73,200	77,500	4,300	105.9
Mabalacat (20/27)	121,100	105,400	-15,700	87.0
Magalang (12/27)	43,900	44,600	700	101.6
Mexico (15/43)	69,400	69,300	-100	99.9
Sta. Ana (7/14)	32,500	33,700	1,200	103.7
Pampanga Total (83/174)	576,900	540,400	-36,500	93.7
II. Tarlac Province				
Bamban (13/15)	35,600	18,000	-17,600	50.6
Capas (7/8)	25,800	20,000	-5,800	77.5
Concepcion (24/43)	97,800	100,500	2,700	102.8
Tariac Total (44/66)	159,200	138,500	-20,700	87.0
Pampanga and Tarlac Total (127/240)	736,100	678,900	-57,200	92.2

Sources: Same as Table 5.1

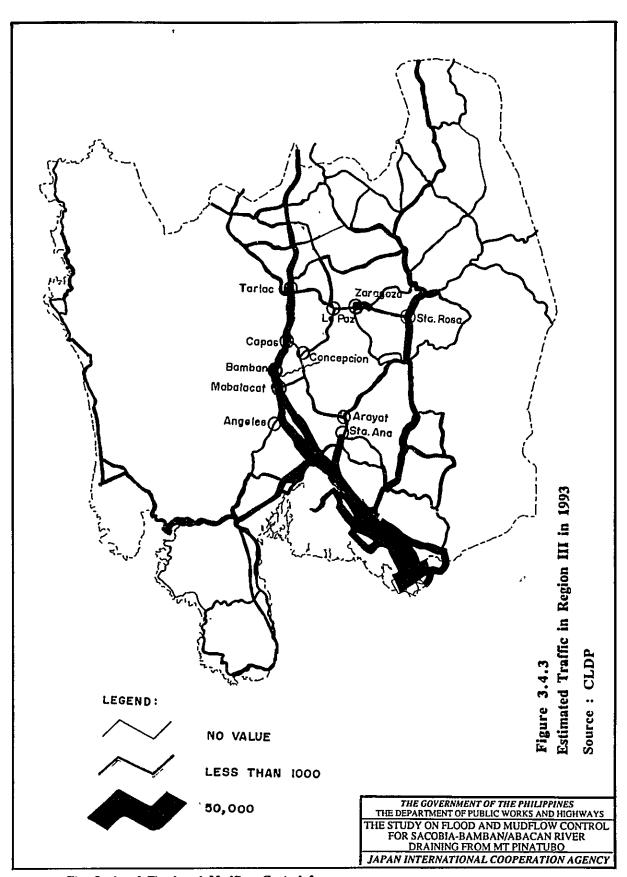
Notes: Figures in parentheses show the number of barangay whose population decreased in the period of 1990-1994 toward the total number of barangay in the city/municipalities.


Sources:

The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)


Table 3.4.4 Agricutural Land Use Before and After the Eruption in the Study Area

Town/City		Imigated	, i	Rainfed	8.	Sugarcane	<u>ء</u>	Cassava	- F	Rootcrops	ž.	Som		Legumes		Fishponds		Commercial		Fruit Trees	8	Other		
•	Year	Rice	•	Rice	U		:		•						ļ			Crops				Crops		Total
		(ha)	(%)	(ha)	(a ₂)	(ha)	(_%)	(ha)	(%)	(ha)	(%)	(ha)	(%)	(ha)	(%)	(ha)	(%)	(ha)	(%)	(Fg)	(%)	(Fa	(%)	(<u>E</u>
Concepcion	1980	14,820	t 3	2198	19	3,490	<u>s</u> 8	750	7	22	0			<u>s</u>	-	91	0	263	6			98	w	19,176
Ватрап	1990	2,326	무경			<u>1</u> 8	35			65 65	- 61	30		≌ 4						1,640	29 45			5,583 3,647
Angeles City	1988	265 190	ដ ដ	1 δ	- 0	1 024	55 55	75		85 7	8 3			38	4 N			8 21	e -					1,996
Mabalacat	1985	993	32	226	Ŋ	1,400	83	28	-	334	0, ∞							*	0 -					4,652 4,310
Mexico	1661	4,742	8	2.791	អ	700	61	1.074	0	0.	0			116	00			130						11,892
Magalang	1993	2.889	7	1,892	7.7	1 885	36									81	9							7,114
Santa Ana	1993	2.300	8			9	0	15	-					9	0	11	-							2,348
Sources:	Ţ	The Study of Flood and Mudflow Control for) o	pool:	bar 5	Mollow	Cont	rol for																


rces: The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Plaatubo, Progress Report (2)

Sources: The Study of Flood and Mudflow Control for Sacobla-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Sources: The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Plaatubo, Progress Report (2)

Sources: The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Table 3.5.1 List of Rainfall Station in and Around Sacobia-Bamban and Abacan River Basins

-		Location		Type of		
Agency	Station	Latitude	Longitude	Equipment	Remarks	
OCD						
	Dolores			T		
	Sapang Bato			T		
	Pasig Potrero			T		
	Porac			T		
	Gumain			T		
PAGASA						
- Hydromet	Balucoc	14deg 58min	120deg 52min	М		
•	Becuran	15deg 00min	120deg 34min	M and A		
	Cansinala	14deg 58min	120deg 46min	M and A		
	Lubao	14deg 56min	120deg 33min	М		
	San Agustin	15deg 09min	120deg 46min	Α		
	Sta. Cruz	15deg 05min	120deg 33min	Α		
- Pampanga	Arayat	15deg 10.10min	120deg 46.93min	A and T		
FFWS	Candaba	15deg 06.98min	120deg 51.02min	A and T		
	San Isidro	15deg 18.82min	120deg 54.15min	A and T		
	San Rafael	14deg 58.80min	120deg 55.60min	A and T		
	Sulipan	14deg 56.37min	120deg 45.52min	A and T		
	Zaragoza	15deg 26.60min	120deg 45.05min	A and T		
- Climate	BAI Magalang	15deg 13min	120deg 42min	M		
	Hacienda Luicita	15deg 26min	120deg 36min	M		
	Masantol	14deg 52min	120deg 42min	М		
	San Julian Subd.	15deg 02min	120deg 42min	M		
PHIVOLCS						
	Cuadrado	15deg 02.59min	120deg 21.22min	T	A/201	
	O'Donnell-Upper Bacco	15deg 13.78min	120deg 20.61min	T	G/207	
	Piz	15deg 13.26min	120deg 25.03min	T	C/203	
	Sacobia	15deġ 09.10min		Υ	F/206	
	Summit Rim	15deg 09.13min	120deg 21.55min	Т	F-200 **	

Note: *A: Automatic Recorder, T: Telemeter, M: Manual

Table 3.5.2 List of Water Level Gauging Station in and Around Sacobia-Bamban and Abacan River Basins

			Catchment	Location		Type of	
Agency	River	Station	Area (km2)	Latitude	Longitude	Equipment	
DPWH	Bamban	San Nicolas	148	15deg 15.63min	120deg 33,43min	M (2)	
		San Francisco				M (3)	
	Abacan	San Juan				M (3)	
	Pasig-Potrero	Cabetican	242	15deg 59.40min	120deg 38.83min	M (2)	
	5	HDA-Dolores	28	15deg 06.65min	120deg 31.97min	M (2)	
	O'Donnell	Palublub	240	15deg 23.78min	120deg 30.08min	M (2)	
		Patling	112	15deg 21.37min	120deg 26.45min	M (2)	
	Bangut	Sta, Lucia	90	15deg 22.17min	120deg 29.18min	M (2) and A	
	Tarlac	Tibag	872	15deg 29.92min	120deg 34.00min	Α	
	Porac	Del Carmen	111	14deg 59.57min	120deg 32.08min	M (3)	
		Valdez	118	14deg 58.92min	120deg 32.10min	M (3)	
		Nasudeco	119.1	14deg 59.57min	120deg 32.08min	M (3)	
PAGASA	Tarlac	Tibag			120deg 34.00min		

Note: * A: Automatic recorder, M: Manual

Figures in parenthesis after M indicates times of staff reading a day.

Sources: The Study of Flood and Mudflew Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

^{**:}In 1991 and 1992, this code was used for Gumain Station

Table 3.5.3 Point and Basin Mean Daily Rainfall during Major Floods (1/2)

(Unit'mm) Basin Rainfall Point Rainfall Sacobia-Pız Sacobia Zaragoza Arayat Bamban Abacan Remarks Yr Date 171 220 189 74 Aug 15 (285)(197)122 280 (328)203 169 276 16 (282)54 141 148 103 17 (235)(86)(289)(20)13 173 144 66 Nov. 2 75 Aug. 9 (152)(233)(78)92 172 191 105 130 108 20 (174)(109)68 Oct. 120 78 107 138 (125)76 May 22 (178)23 (398)(143)89 238 249 172 Mav 198 223 167 (154)96 Sept. 29 (331)(192)119 111 171 167 77 Nov 14 (184)251 282 78 Oct. 26 (220)(346)(104)132 220 (28)(307)190 18 148 79 May 12 49 6 144 116 Aug 15 (240)(9) 155 0 110 175 21 0 (250)Aug. (210)200 238 80 Nov. 5 (142)(250)155 72 109 107 4 76 81 Jul. (119)(122)8 (75)(143)89 (108)110 133 Jul. 181 233 201 15 (302)(210)130 82 Jul. 24 (124)1 75 58 23 83 Jul. (1)47 83 88 (77)(106)66 Aug. 14 39 39 57 55 Aug l 16 (63)(62)84 Oct (28)(242)150 18 119 175 28 73 41 92 100 Oct. 29 (152)(65)300 85 Jul. 5 (233)(368)(110)140 267 397 86 May. (306)(489)(138)183 353 18 146 116 194 200 87 Aug. (193)(235)18 190 125 (201)(164)159 88 Oct. 24 (111)90 Jun. 14 (149)(261)162 (220)210 249 7 (169)(294)182 (251)237 281 Aug.

Rainfall in parenthesis indicates estimated rainfall.

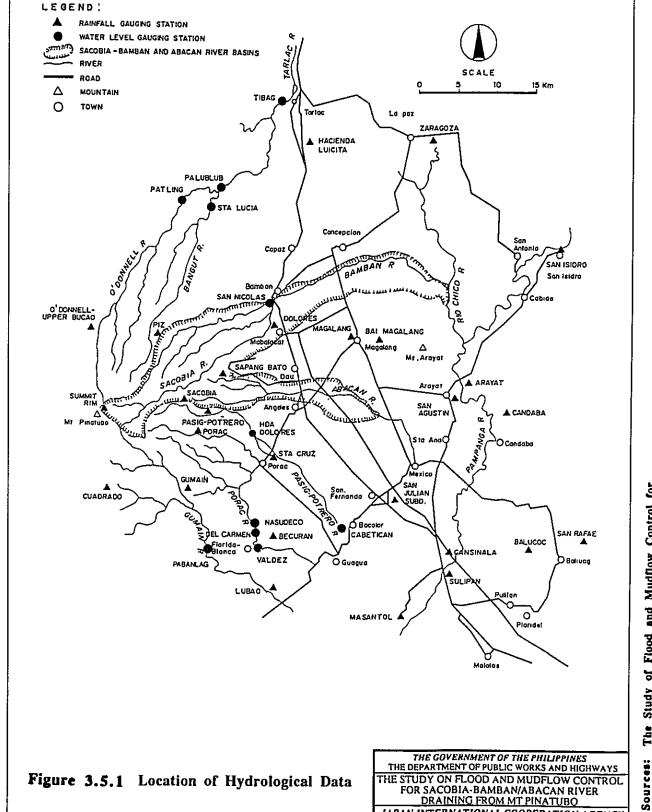

Sources: The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Table 3.5.3 Point and Basin Mean Daily Rainfall during Major Floods (2/2)

Init:mm)	((C !!	D' P			<u> </u>				
		untall	Basin Ra		infall	Point Ra		_		
			Sacobia-		_					
Remark	an	Abac	Bamban	Arayat	Zaragoza	Sacobia	Piz		Date	Yr.
T.Dıdını	110)	69	2	97	(156)	(1)	14	Jun.	91
T.Dıdin <u>ı</u>	148	!	102	17	127	(205)	(26)	15	Jun.	
T.S.Helming	35	;	68	8	29	(46)	133	22	Jul.	
T Luding	21		41	15	15	(23)	79	13	Aug.	
	23	,	46	7	19	(30)	91	20	Aug.	
	40	•	56	54	22	(35)	86	25	Aug.	
	0)	30	0	0	0	85	7	Sept.	
	65	}	48	0	(19)	93	25	16	Sept.	
	55	;	58	0	(19)	78	70	19	Sept.	
T.Trining	48	;	56	5	(22)	67	75	28	Oct.	
T.S. Yayang	107 .	3	98	(55)	(80)	129	(88)	17	Nov.	
	0	1	3	0	113	0	0	19	May	92
T.Asiang	15	<u>, </u>	36	(15)	0	15	77	28	Jun.	
T.S.Konsing	71	?	72	(39)	0	84	83	11	Jul.	
	71	ļ	54	(39)	0	85	30	13	Jul.	
	42	3	53	(26)	0	48	79	26	Jul.	
	46	3	63	(28)	(34)	54	96	18	Aug.	
	49)	80	(30)	(36)	57	140	20	Aug.	
	172	5	135	(84)	(130)	210	76	28	Aug.	
	140	2	112	(70)	(106)	170	69	29	Aug.	
	64	7	57	(36)	(48)	76	48	30	Aug.	
T Goring	209)	200	108	180	252	193	26	Jun.	93
	76	5	46	7	0	105	l	2	Jul,	
T.D.Luming	9	3	13	10	82	8	(14)	22	Jul.	
	43	5	56	33	15	47	84	27	Jul.	
	53	l	61	10	10	72	80	30	Jul.	
T.S.Rubing	136	3	153	115	90	(145)	(191)	18	Aug.	
	99)	70	26	I	130	30	28	Aug.	
	17	}	43	0	i	24	94	30	Aug.	
T.S.Kadian	147	2	112	65	93	182	57	4	Oct.	
T.S.Kadian	202	2	162	97	131	247	102	5	Oct.	
T.D.Epan	33	7	47	7	10	44	76	7	Oct.	
T.S.Husing	78		85	81	94	76	97	I	Nov.	

Rainfall in parenthesis indicates estimated rainfall.

Sources: The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

JAPAN INTERNATIONAL COOPERATION AGENCY

THE GOVERNMENT OF THE PHILIPPINES
THE DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS

THE STUDY ON FLOOD AND MUDFLOW CONTROL

FOR SACOBIA-BAMBAN/ABACAN RIVER DRAINING FROM MT PINATUBO JAPAN INTERNATIONAL COOPERATION AGENCY

Figure 3.5.2 Available Rainfall Data

92 16 જ્ઞ 88 83 85 86 귫 8 77 78 79 80 81 82 73 74 75 76 72 17 07 69 88 5 65 66 67 Water Level Station San Francisco * HDA-Dolores Cabetican ** San Nicolas San Juan * Del Carmen Nasudeco Pafublub Sta Lucia Patling Valdez Tibag Tibag DISCHARGE DATA 2 Abacan 3 Pasig Potrero 4 O'Donnell і Ватрап SYSTEM 5 Bangut PAGASA 6 Tarlac 7 Porac 1 Tarlac DPWH

As rating curve has not established, discharged data are not available ** In Cabetican Station, only water level data is available after 1970

-Incomplete

Complete

Legend:

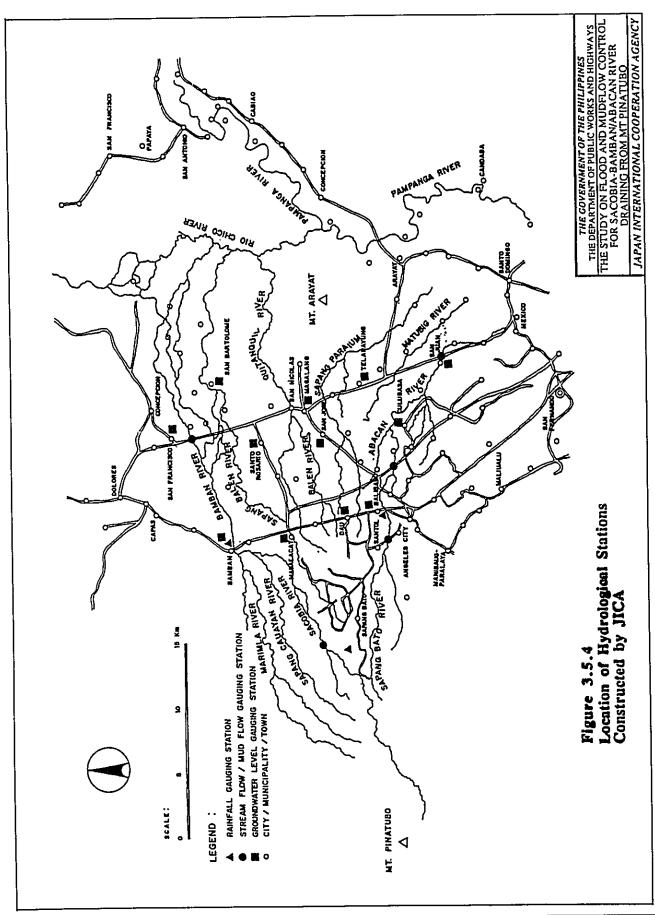
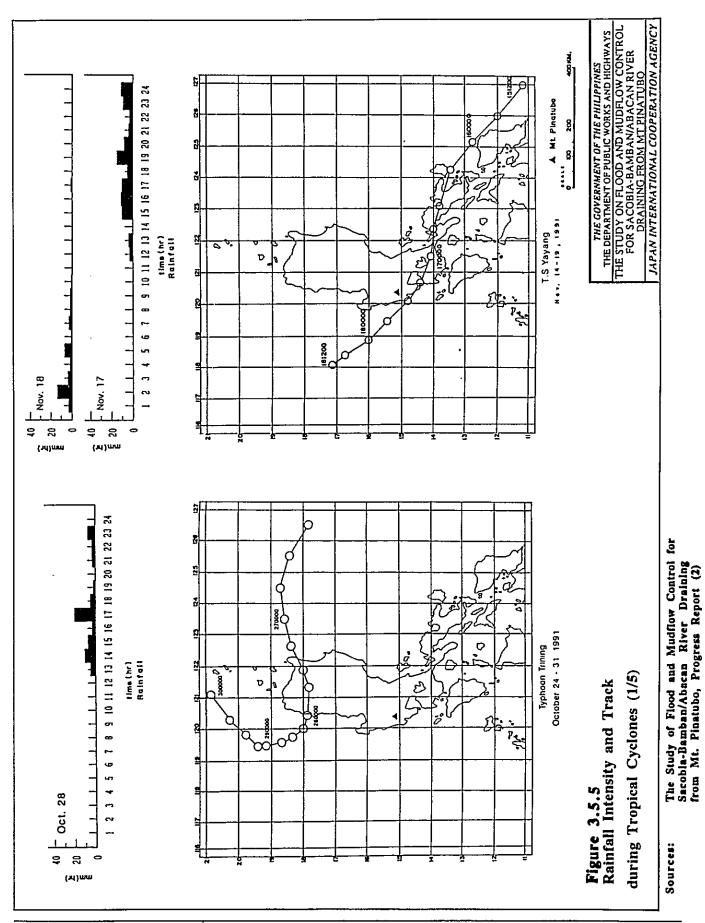
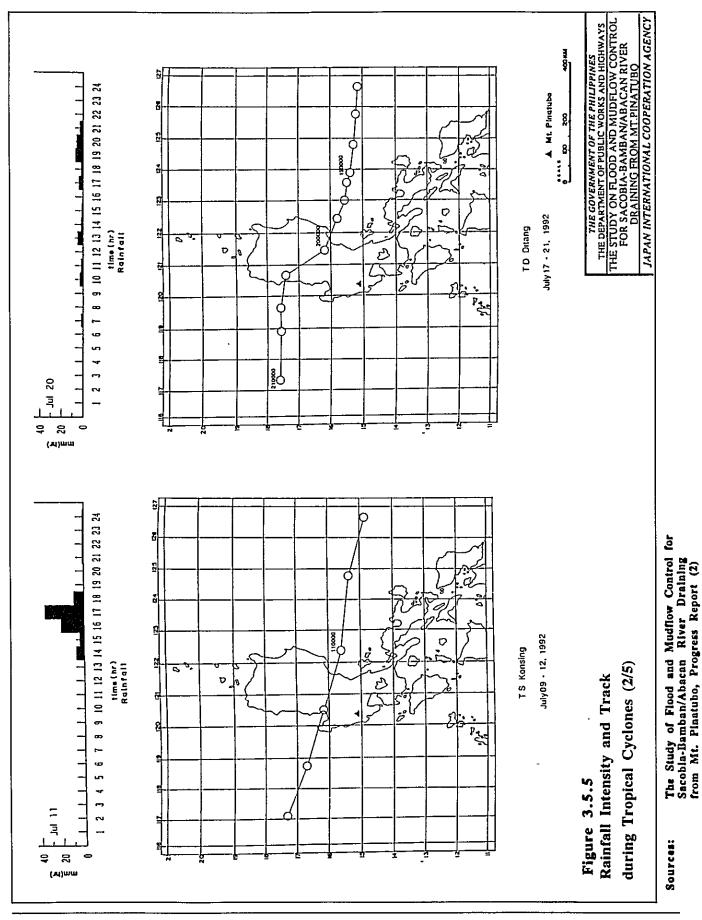
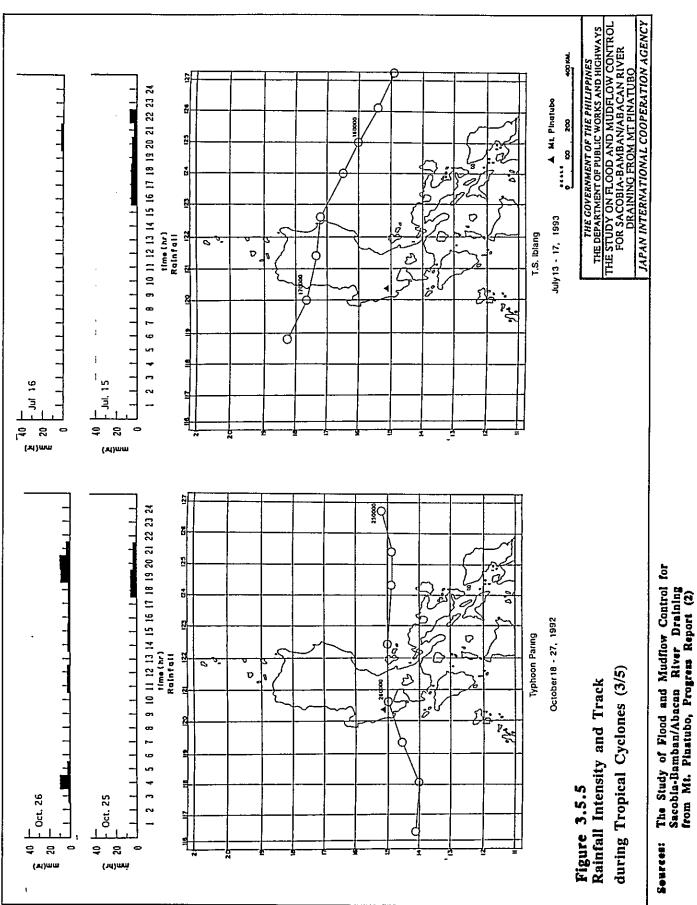
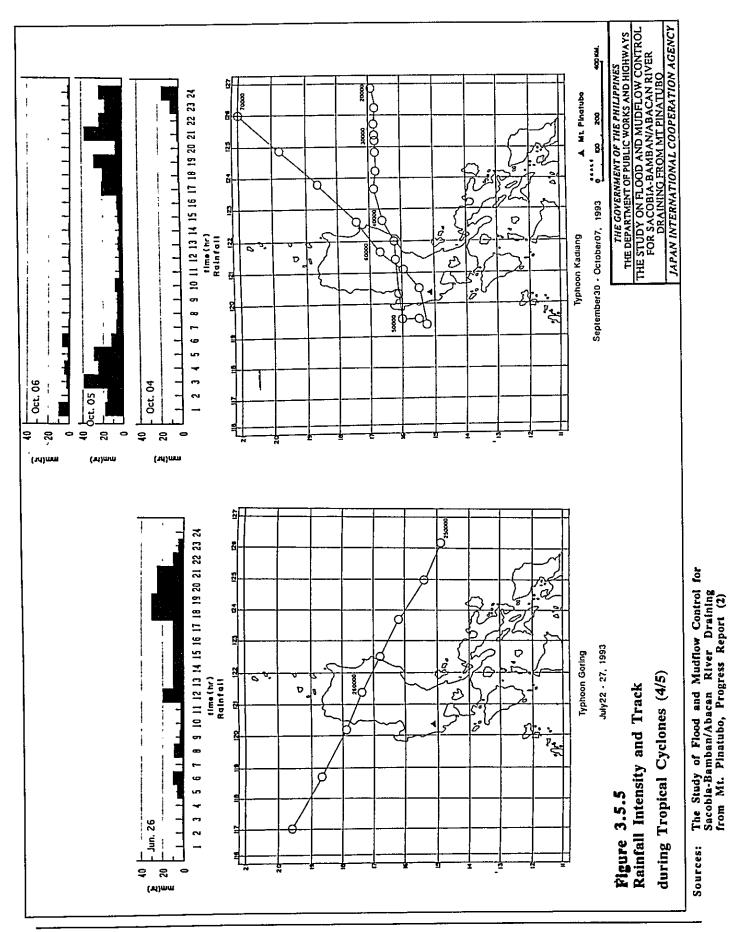

THE DEPARTMENT OF THE PHILIPPINES
THE DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS
THE STUDY ON FLOOD AND MUDFLOW CONTROL
FOR SACOBIA-BAMBAN/ABACAN RIVER
DRAINING FROM MT. PINATUBO JAPAN INTERNATIONAL COOPERATION AGENCY

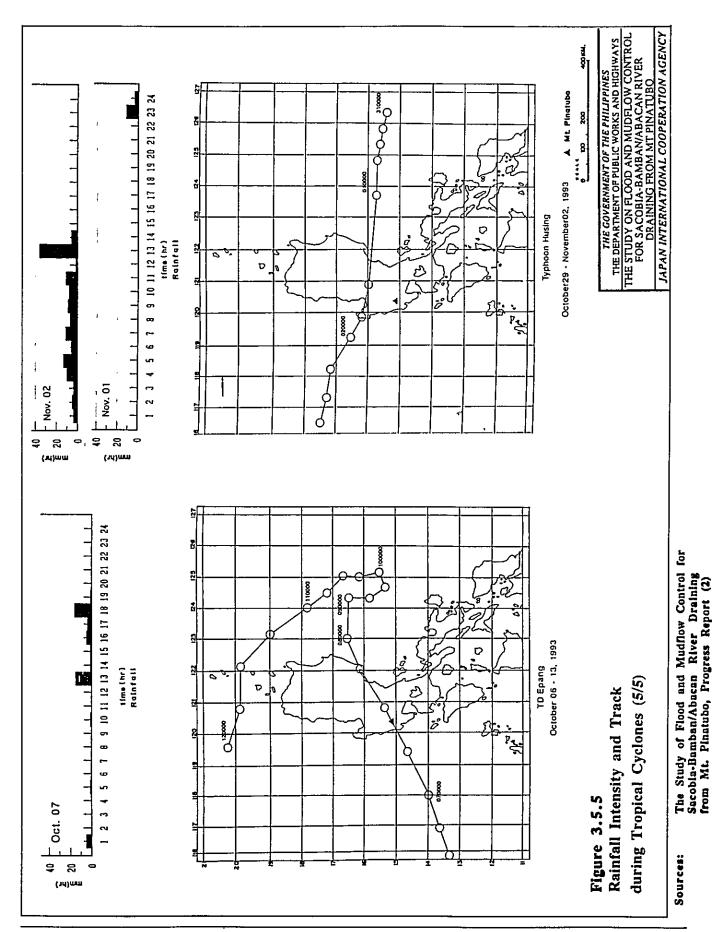
Figure 3.5.3 Available Discharge Data

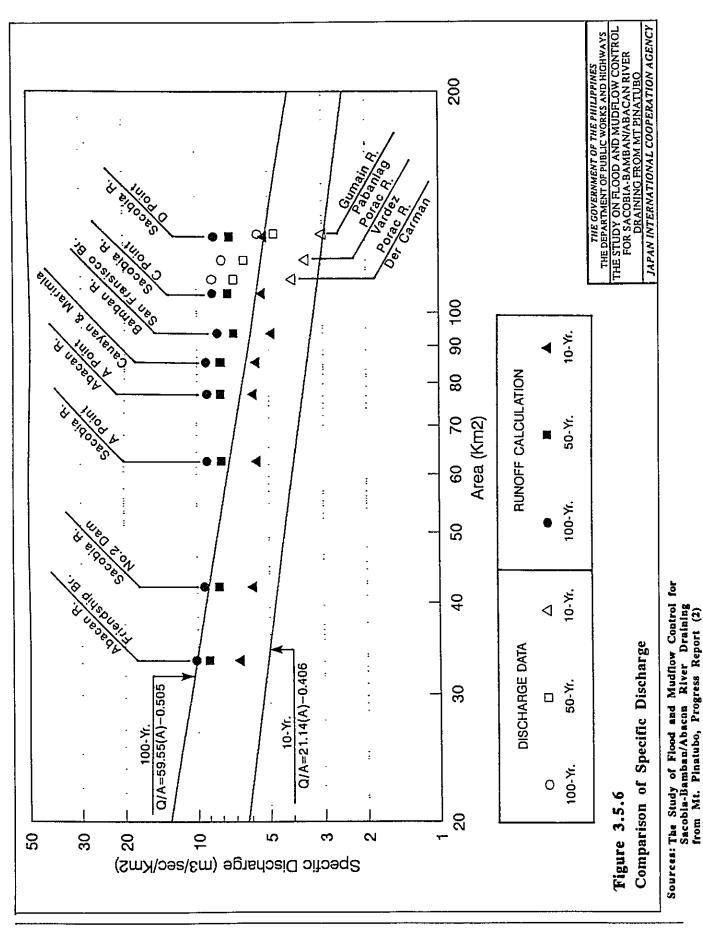

Sources:

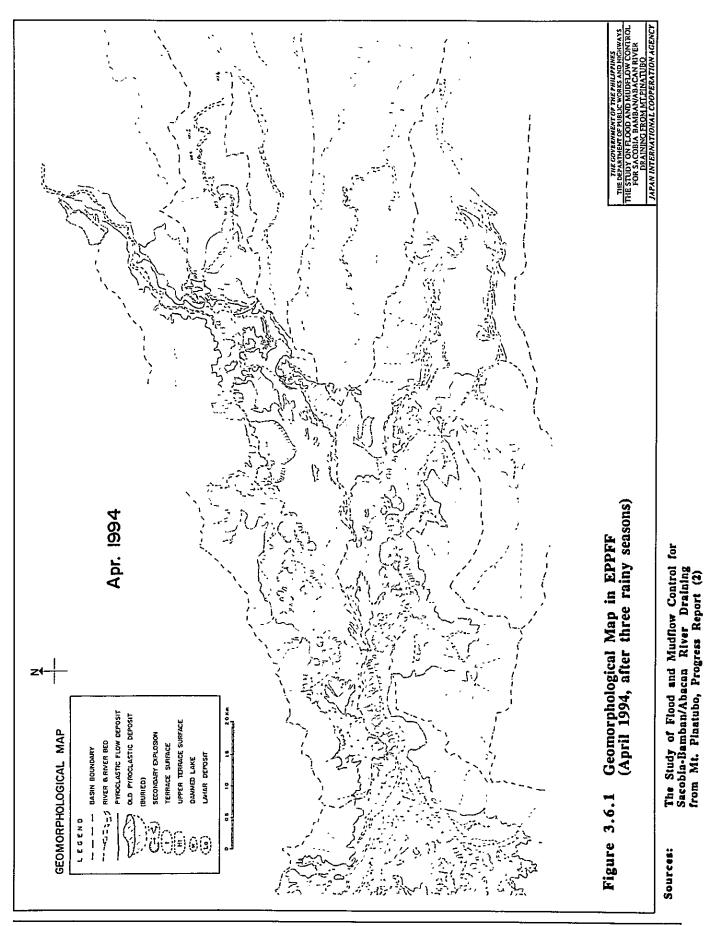

The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

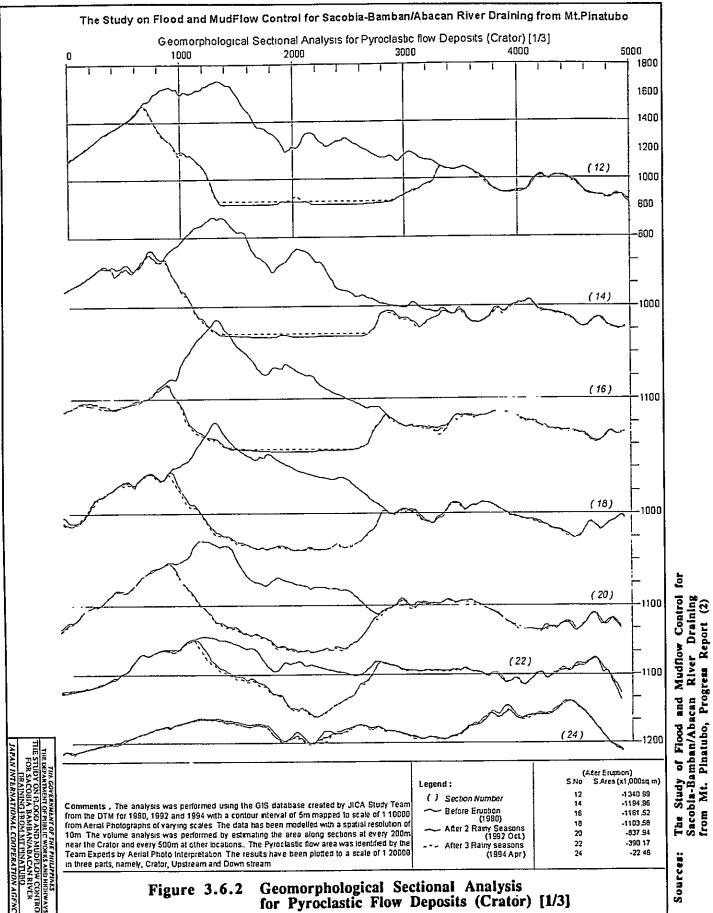

105

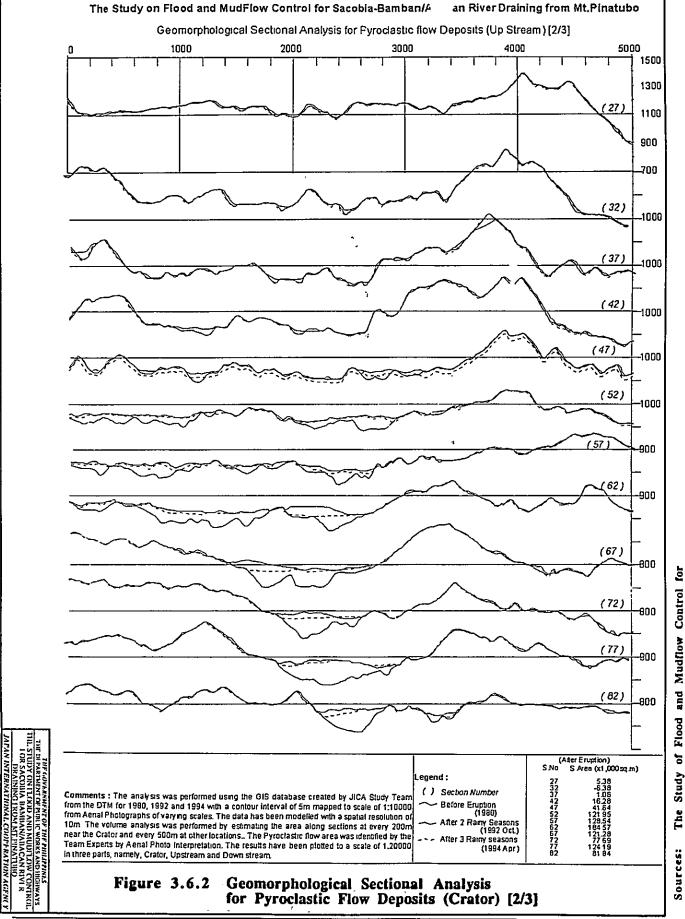

Seurces:

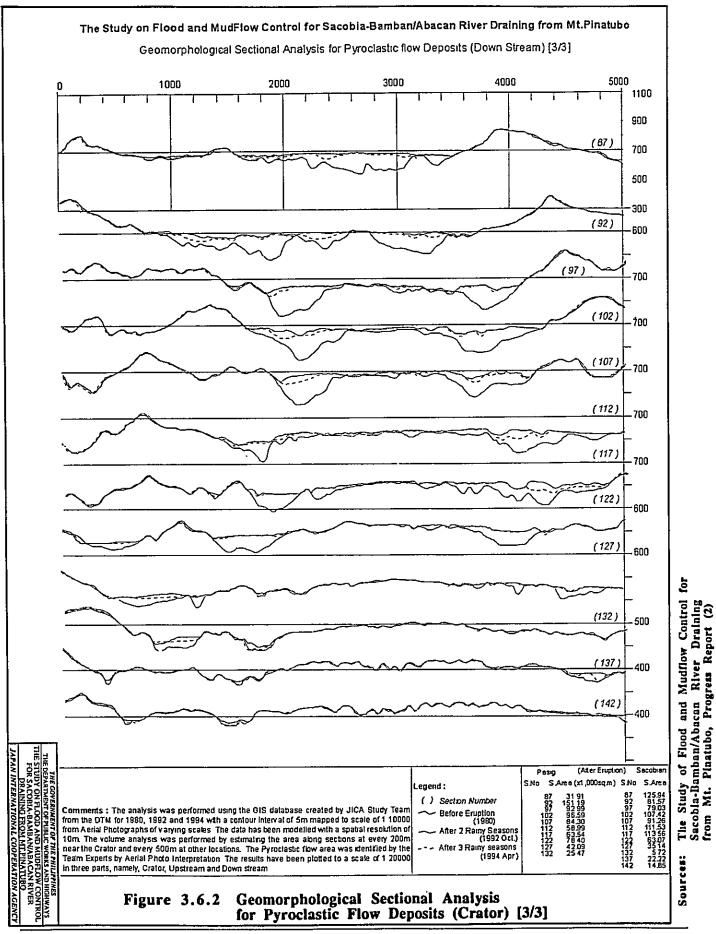


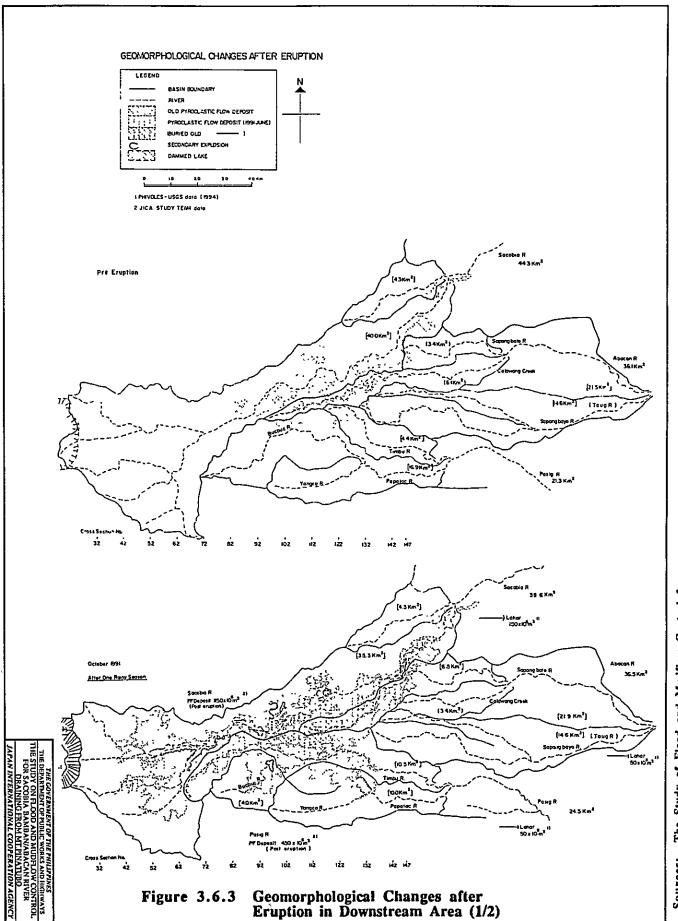


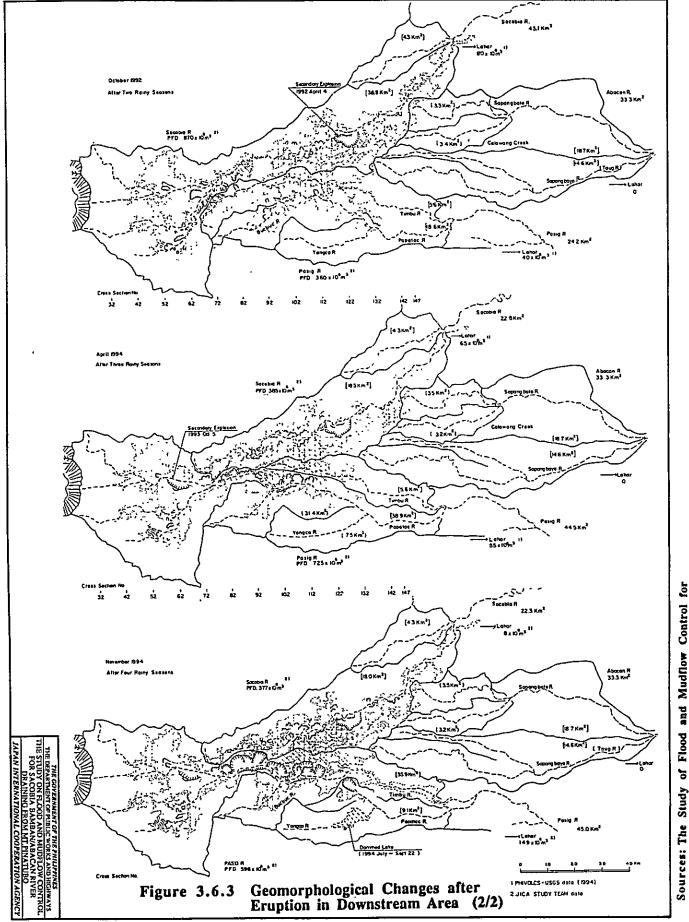


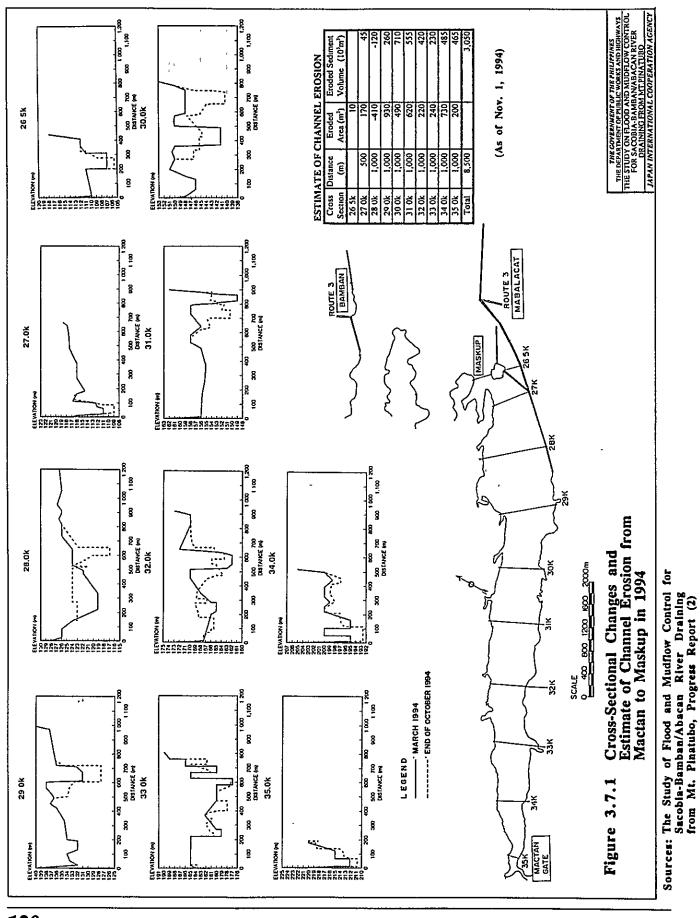

Sourcest

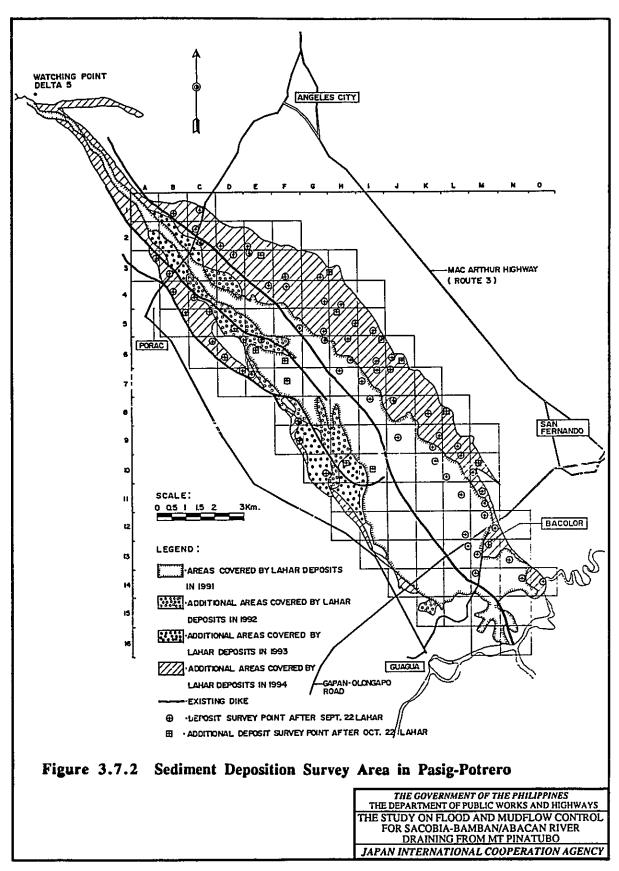






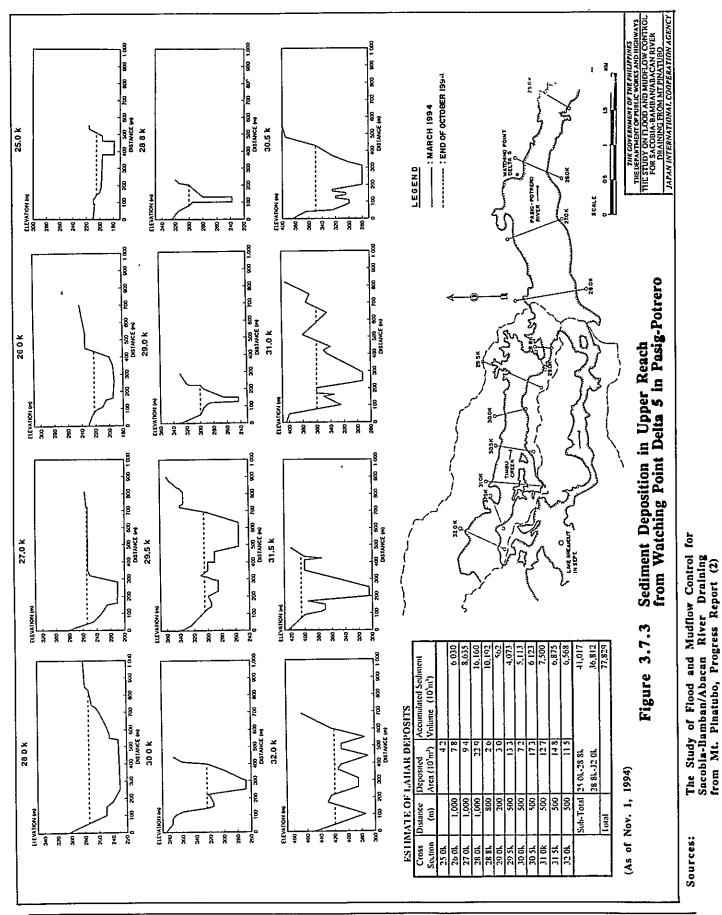


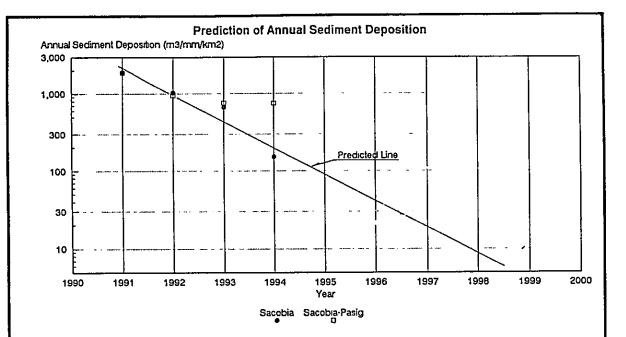

Sources: The Study of Flood and Mudflow Control Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)


Table 3.7.1 Volume of Sediment Deposition in Inundated Areas of Pasig-Potrero River, 1994

Causes	Sub-	A ====	A s ornon	Volume	Square	Sub-	Агеа	Average	Volume
Square No	No	Area (km²)	Average Depth(m)		No No	No	(km²)	Depth(m)	(10 [°] m³)
	140				6 -H		0.53	4 0	2 12
1 -A	-	0.05	11			2		36	1.73
1 -B	 	0.58	2,2	1 06			0 48	2.5	2 45
1 -C	 	0.50	21	1.05			0 98		0 12
2 -B	1	0 10	23		6 -I*	-	0.20	06	
	2	0 10	22		6-3	ļ	0 23	11	0 25 0 08
2 -C	1	0.30	2,3		6 -J*	1	0 13	06	0 08
<u> </u>	2	0 60	2.1	1 26	7 5	2	0 08	10	
2 -D	_	0 88	11				0 08	0.6	0.05
2 -D*		0 08	06			-	0.35	06	0 21
2 -E		0.53	0.8	0 42	7 -F*		0.80	0.5	0 40
2 -E*		010	0.6		7 -H		0 70	06	0.42
2 -F	-	0 06	0.8	0 05	7 -1	1	0 55	4.5	2 48
2 -F*	<u> </u>	0.05	06	0 03		2	0.45	1.5	0 68
3 -A		0.15	2.1	0 32			0 90	2 9	261
3 -B	lacksquare	0 30	2.0		7 -J*		0 13	10	0 13
3 -C	$oxed{oxed}$	0.15	2.3		7 -K	لـــــا	0 05	1.5	0 08
3 -D	1	0 28	23		7 -K*		0 30	10	0.30
	2	0 45	2 1		8 F		0.20	09	0 18
3 -D*		0.10	06	0 06	8 -1		0.50	18	0 90
3 -E		1 00	2 0	2 00	8 -J	I	0 80	20	1 60
3 -E*		0.35	06	0 21		2	0.20	1 8	0.36
3 -F		0 98	18	1 76	8 -K		0 78	1.5	1.17
3 -F*		0 73	0.6	0 44	8 -K*		0.20	10	0.20
3 -G		0.53	0.7	0 37	8 -L		0 15	1.5	0 23
3 -G*	1	0.53	0.6		8 -L*		0 05	06	0.03
	2	0 25	10		9 -F		0 30	0.9	0 27
3 -H		0.01	0.7	0.01			0 83	12	1 00
3 -H*		0.15	10		9 -K	1	0.58	30	1 74
4 -B		0.53	2 0	1 06		2	0 42	2 1	0.88
4 -C		0.28	12	0.34	9 -L		0 73	3.0	2 19
4 -E		0.10	2.3		9 -L*		0 03	0.6	0.02
	2	0.35	16		9 -M*		0.08	06	0.05
4 -F		0 90	16		10-G		0 65	0.6	0.39
4 - G		1 00	2 0		10-H*		0 60	0.5	0.30
1-G*		0.50	10		10-1*		0 80	0.5	0.40
4 -H		0.80	0.6		10-K		0.70	21	1 47
4 •H*	- 1	0.80	10		10-L	1	0.43	3 0	1 29
 '''	2	0.05	06	0 03		2	0.57	15	0.86
4 -1	┝╼┋	0.05	0.6		10-M		0 23	1.5	0 35
4 -[*	\vdash	0.05	0.6		10-M*		0 23	0.6	0 14
5 -B		0.08	0.6		11-L	\vdash	0 80	1 2	0 96
5 -C		0.85	0.9		H-M	1	0 23	1.5	0.35
5 -D		0.30	0.6	0.18		2	0 40	18	0.72
5 -F	 	0.30	3 0		11-M*		0 03	0.1	0 03
5 -G	$\vdash \vdash$	1 00	33		12-L		0.40	21	0.84
₹ -H	$\vdash \vdash \vdash$	1.00	10		12-M		0.80	21	1 68
5 -H*	 	0.53	09	0.48		2	0 17	06	0 10
5 -n · 5 -l	 	0.58	0.5		12-N		0 13	06	0 08
2 -1*	 	0.68	0.5		13-L	- 	0.50	12	0.60
$\overline{}$	 	0.25	06		13-E	\vdash	1 00	10	1 00
6 -C		0.38	06		13-M 13-N		0 60	07	0 42
6 - D 6 - E					13-N 14-L		0 13		
	 	0.38	06				0.75	10	0 13 0 75
6-E*	 	0.80	10		14-M			1.0	
6 -F*		0.30	0.5		14-N 14-O	 	0 83	06	0.50
6 •G		0.63	3 6	2.27			0 53	06	0 32
					Total		47.56		71.88

The Study of Flood and Mudflow Control for Sacobla-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)


Note * Additional Survey Results to October 22 Lahar


Sources:

The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

<u>122</u>

Sources:

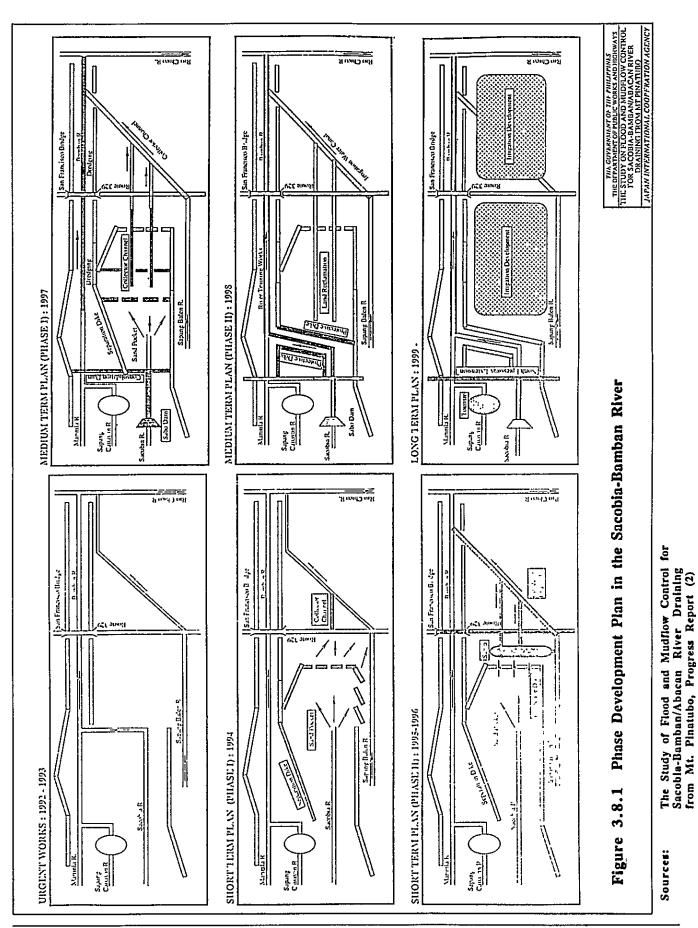
Volume of Source Material, Lahar Deposition, Rainfall and Catchment Area

Year	Volume of Pyroclastic Flow Deposits (10 ⁶ m ³)				Volume of Lahar Deposits (10 ⁶ m³)			Annual Rainfall	-	hment Ar dwaters (ed Sedimer n³/mm/km²	
	Sacobia- Abacan	Pasig	Total	Sacobia	Abacan	Pasig	Total	(mm)	Sacobia	Pasig	Total	Sacobia	Pasig	Total
1991	1,100	500	1,600	150	50	50	250	2,250	35.3	24.5	598	1,889	907	1,858
1992	•	•	-	80	0	40	120	2,000	38 8	24.2	63 0	1,031	826	952
1993	870	360	1,230	65	0	55	120	2,500	38 8	24 2	63.0	670	909	762
1994	385	725	1,110	8	0	129	137	2,900	180	45 0	63.0	153	989	750

Note 1) Volume of pyroclastic flow deposits and lahar deposits is obtained by combination of PHIVOLCS-USGS & DPWH data and the results of the Study

Prediction of Lahar Deposits from P.F.D in Sacobia River

Үеаг	Volume of Lahar Deposits (106m3)	Accumulation Volume(106m3)
1995		4.1 (8.9)
1996	1.8 (4.0)	5.9 (12.9)
1997	0.9 (1.8)	6.8 (14.7)
1998	0.4 (0.9)	7.2 (15.6)
1999	0.4 (0.9)	7.6 (16.5)
2000	0.4 (0.9)	8.0 (17.4)


<u>Note</u>

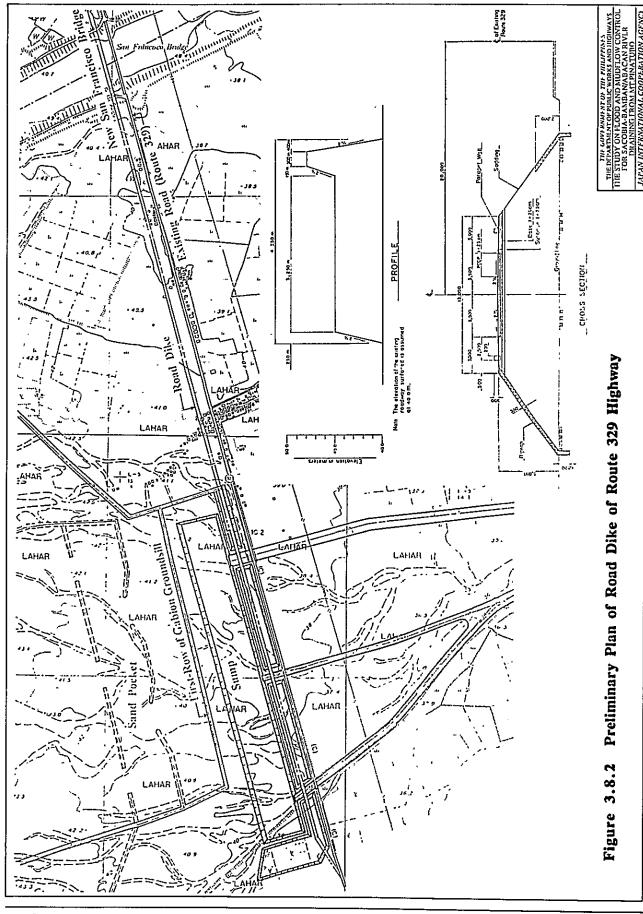

Values in the parentheses show the case of recapturing the headwaters by the Sacobia River.

Figure 3.7.5 Prediction of Annual Sediment Deposits from Pyroclastic Flow Deposits

THE GOVERNMENT OF THE PHILIPPINES
THE DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS
THE STUDY ON FLOOD AND MUDFLOW CONTROL
FOR SACOBIA-BAMBAN/ABACAN RIVER
DRAINING FROM MT.PINATUBO
JAPAN INTERNATIONAL COOPERATION AGENCY

²⁾ Annual rainfall from 1991 to 1993 is refered to PHIVOLCS-USGS data, the value of 1994 is refered to PHIVOLCS observation data at Upper-Sacobia gauge

The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Sources:

126

127

Sources:

JAPAN INTERNATIONAL COOPERATION AGENCY

s: The Study of Flood and Mudflow Control for Sacobia-Bamban/Abacan River Draining from Mt. Pinatubo, Progress Report (2)

Acknowlegment

hile no man-made structure in the world could possibly prevent any natural disaster from occurring, at least timely and well-conceived man-made measures and structures could help mitigate the effects of such disasters.

This publication therefore is an attempt to document to the extent possible past and current efforts, as well as future plans, both in the Philippines and in Japan, in minimizing the catastrophic effects of volcanic and other geologically induced disasters.

Jorsure, the preparation and completion of this publication was not an easy task. And it would not have been possible without the unstinting support, cooperation and assistance of the people and agencies who have all helped in putting this together.

I am particulary indebted to both the Philippine Department of Public Works and Highways (DPWH) and the Japan International Cooperation Agency (JICA) for the opportunity to serve in the Philippines as JICA Sabo Expert. I am especially grateful and proud to have worked with their very highly professional officials and personnel, as well as those of the other government departments and agencies which I have dealt with during my two-year-and-three-month assignment in the Philippines. I would like to especially mention Undersecretary Teodoro Encarnacion and Assistant Secretary Manuel M. Bonoan of the DPWH for their assistance and support.

Last, but not least, I would like to express my sincerest thanks and gratefulness to the Jilipino and Japanese peoples whose hardy and deep faith in themselves amid life's difficulties and natural disasters have inspired me no end. To them I dedicate this work.

HTROYUKT OHNO

TJCA Sabo Expert

Manila, Philippines March 1995

