付 録

付録	5-1	調査対象地域の既設 66 kV 送電線リスト	•
----	-----	------------------------	---

- 付録 5-2 ダマスカス市及び郊外の 20 kV フィーダーリスト
- 付録 5-3 20/0.4 kV 変圧器の現地調査結果
- 付録 5-4 電力計測スケジュール

付録5-1 調査対象地域の既設66 kV送電線リスト(1998年12月現在)

no.	name	name	Voltage (kV)	cet	Туре	Size (mm2)	Length (km)	Note
1	iNabek	Kotaifa	66	1	OH	240	34.8	
2	Kotaifa	Sydanaya	65	1	OH	240	23.8	
	Kotaifa	Adra 2	66	1	OH	240	19.2	
4	Sydanaya	Al Faihaa	65	l	OH	240	16.0	
5	Adra 2	Izaa	66	1	OH	240	5.0	
6	Adra 2	Izaa	66	2	OH	240	5.0	
7	Adra 2	Adra Cement	66	1	OH	240	5.0	
8	Adra Cement	Oaboon 2	65	1	Oll	240	35.0	
9	Adra 2	Adra 1	66	1	OH	240	2 3	
10	Adra 1	Duma	66	1	ОН	240	10.5	
ii	Duma	Qaboon 2	66	<u> </u>	OH	240	10.6	
12	Al Faihaa	Qaboon 2	66	i	OH	240	6.0	
13	Qaboon 2	Zamalka	66	i	OH	300	4.0	• • • • • • • •
		Erbeen	66	<u> </u>	UC	300	2.0	
14	Zamalka	Al Maarad	66	- 	OH	95	23.0	
15	Qaboon 2			'i	OH	240		
16	Al Maarad	Izas	66		1		30.0	
	Izaa	Al Matar	66	!	ОН	240	16.9	
	Al Matar	Mutamarat Palace	66	1	OH	240	6.8	
19	Al Maarad	Mutamarat Palace	66	1	OH	240	2.5	
20	Mutamarat Palace	Kisweh	66	1	OH	240	23.0	
21	Qaboon 2	Bab Sharki	66	1	OH	240	9.0	
22	Bab Sharki	Dawar Al Matar	66	1	UC	300	1.2	-
23	Bab Sharki	Dawar Al Matar	66	2	UC	300	1.2	
24	Qaboon 2	Al Thawra	65	1	UC	300	18.2	
25	Qaboon 2	Al Thawra	66	2	UC	300	11.2	
	Al Thawra	Ersal	66	1	UC	300	1.3	
27	Qaboon 2	Mazzrha	66	- i -	UC -	300	4.8	
28	Qaboon 2	Mazzrba	66		ÜC	300	4.8	
		Al Thawra	65	<u>i</u>	1- 00	300	3.0	
29	Mazzrha					300		
30	Mazzrha	Amaween	65	1	UC		3.9	
31	Mazzrha	Amaween	66	2	UC	300	3.9	
32	Amaween	Al Jamhaa	66	1	UC	300	2.5	
33	Amaween	Al Jamhaa	66	2	UC	300	2.5	
34	Amaween	Dummar	66	1	UC	300	3.5	
35	Amaween	Dummar	66	2	UC	390	3.5	
36	Dummar	Al Hameh	66	ì	OH	240	5.0	
37	Dummar	Al Hameh	66	2	OH	240	5.0	
	Al Jambaa	Fursan	66	1	UC	300	15.0	
39	Al Jamhaa	Fursan	66	2	UC	300	15.0	
40	Ersa1	Al Jambaa	66	i	UC	300	6.0	
41	Al Jamhaa	Kafersusch	66	i	UC	300	2.2	
42	Midan 1	Kafersuseh	66	-i-	UC	300	1.2	
43	Midan 2	Kafersuseh-Switch	66	i	OH	240	5.5	
- v							0.5	
44	Kafersuseh-Switch	Kafersuseh	66	!	UC	300	3.0	
45	Dawar Al Matar	Midan I		11	UC	300		
46	Dawar Al Matar	Midan 2	66	1	UC	300	15.0	
47	Al Ashmar	Midan 2	65	1	UC	300	4.0	
48	Bab Sharki	Al Hajar Al Aswad	66	<u> </u>	OH	240	6.0	
49	Al Hajar Al Aswad	Midan 2	66	1	ОН	240	2.8	
50	Midan 2	Fursan	65	1	ОН	240	10.5	
51	Al Hameh	Qasr Al Shab	66	1	ОН	240	6.5	
52	Qasr Al Shab	Midan 2	66	1	ОН	240	18.0]	
53	Al Hameh	Mazzhe	66	1	ОН	240	11.5	
54	Mazzhe	Fursan	66	1	OH	240	8.5	
55	Al Hameh	Kudseia	66	<u>i</u>	OH	240	4.0	
56	Al Hameh	Dimas	66	i	OH OH	240	15.0	
57	Kudseia	Dimas	66	i	OH	240	16.0	
	1		66	· <u>1</u>		240	20.0	
58	Dimas	Zabadani			HO			
59	Zabadani	Switching Station	66		ОН	240	10.0	
60	Dimas	Switching Station	66	1	ОН	240	10.0	
61	Switching Station	Anjar (Lebanon)	66	1	ОН	240	20.0	
62	Switching Station	Anjar (Lebanon)	66	2	ОН	240	20.0	
63	Midan 2	Kisweh	66	1	OH	240	10.0	
64	Fursan	Kisweh	66	1	OH	240	18.0	

(note: OH: overhead line, UC: underground cable)

		Substation		ank			Feeder	Remarks
Gov.	No.	Name	No.	Cap. (MVA)	Gov.	No.	Name	
City	101	Mazzrha	#1	20	City	101	Jameh	
City	101	Mazzrha	#1	20	City		Salhie 1	
City	101	Mazzrha	#1-	20	City		Salhie 2	
City		Mazzrha Mazzrha	#1	20	City		Madrase Epn Nafis	
City City	101	Mazzrha	#1	20	City		Safara	
City	101	Mazzrha	#2	20	City	•	Kikie	<u> </u>
City		Mazzrha	#2	20	City		Maysat	
City		Mazzrha	#2	20	City	203	Charki	
City		Mazzrha Mazzrha	#2	20	City City	204	Malaap Hayat	
City_		Mazzrha	#2	20	City	206	Riadien	
City		Mazzrha	#3	20	City	301	Maspah	
City	101	Mazzrha	#3	20	City	302	Nasr	
City		Mazzrha	#3	20	City	303	Fayhaa	- · · · · · · · · · · · · · · ·
City		Mazziha	#3	20	City		Mouspk 1 Mouspk 2	
City		Mazzrha Mazzrha	#3	20			Haffar	
City	101	Mazzrha	#3	20		307		
City		Mazzrha	#3	20	City	308	Serafi	
City		Mazzrha	#3	20		+	Hamolaila	
City		Amaween	#1	20		101	Malki	
City		Amaween -	#1	20		102	Nadi Abdo	
City City		Amaween	#1	20		104	Yousof	-
City	1	Amaween	#1	20		105	Mendian	
City		Amaween	#1	20		106	Rawda	
City	4	Amaween	#1	20		107	Вахт	
City		Amaween	#2	20		201	Jamaa	
City_		Amaween	#2	20		202	Wadi Jamarek	-
City		Amaween Amaween	#2	20		204	Tahwile	<u> </u>
City		Amaween	#2	20			Hachmi	
City	102	Amaween	#2	20		206	Al Dah	
City	102	Amaween	#3	20			Samah	
City		Amaween	#3	20			Cheraton	<u> </u>
City	*	Amaween	#3	20		303	Mouwasat Alfal	<u> </u>
City		Arnaween Amaween	#3	20		305	Chami	-
City		Amaween	#3	20		306	Maklabeh	
City	102		#3	20		307	Hawakir	
City		Amaween		20		308	Hadika	
City	+	Amaween	#3	20		309 101	K. Tichrin Al Ashbat	
City City	103	Mazzhe Mazzhe	#1	20		102		
City	103		#1	20		103		
City		Mazzhe	#1	20		104		
City	103	Mazzhe	#1	20			Sahli	
City	103		#1	20			Mazze 86	
City		Mazzhe	#2	20			8ahth 1 8ahth 2	
City	103		#2	20			Aolostrad	
City		Mazzhe	#2	20			Jameiya	
City		Mazzhe.	#2	20	City	205	Hatef	
City		Mazzhe	#3	20			Horeh	
City	103		#3	20			Madaka Jabal	
City	103	Mazzhe Mazzhe	#3	20			Kasr	
City City		Mazzhe	#3	20			Azhar	
City		Mazzhe	#3	20	City	306	Chafei	1
City	103	Mazzhe	#3	20	City		Saraya	
City		Mazzhe	#3	20	City		Somarira	
City		Mazzhe	#3	20			Forsan Mazze 15	
City		Mazzhe Midan 1	#3	20			Moukahede	<u>-</u>
City		Midan 1	#1	20			Chakour	
City		Midan 1	#1	20	City	103	Komech	
City	104	Midan 1	#1	20	City		Nahr Echa	
City		Midan 1	#1	20			Kafr Sousa	
City City		Midan 1	#1	20			Baramke Bouktiar	
	1 104	Midan 1	1 #2	. 20	/I UTY	1 201	LOCULUM	

	,	Substation	E	Bank			Feeder	Remarks
Gov.	No.	Name	No.	Cap.	Gov.	No.	Name	
City	104	Midan 1	#2	20	City	203	Mansour	
City		Midan 1	#2	20	City		Midan	
City		Midan 1 Midan 1	#2	20	City City		Boustan Hamadani	
City City		Midan 1	#2	20	City	207	Srija	
City		Midan 1	#3	20	City		Atika	
City		Midan 1	#3	20	City		Al Tob	
City		Midan 1	#3	20	City	303	Walid	
City		Midan 1	#3	20	City City	304	Fnoon Halawi	
City		Midan 1	#3	20	City	306	Kaysari	
City		Midan 1	#3	20	City	307	Ersal A	
City		Midan 1	#3	20	City	308	Ersal B	
City		Midan 2	#1	20	Rurai	101	Rasheed	
City City		Midan 2 Midan 2	#1	20	Rural		Matahen 1 Daraya	
City		Midan 2	#1	20	Rural		Staina	
City		Midan 2	#1	20	Rural		Mokayibia	
City		Midan 2	#1	20	Rural		Sawameh	
City		Midan 2	- #1	20	Rural		Al Awaa	
City		[Midan 2 [Midan 2	#1	20	Rural Rural		Sahnaia Zogag 2	
City City		Midan 2	#1	20	Rural		Debs 1	
City		Midan 2	#1	20	Rural		Al Sogsad	
City	105	Midan 2	#1	20	Rural		Cabel 2	
City		Midan 2	#2	30	Rural		Barada	
City		Midan 2 Midan 2	#2	30 30	Rural Rural	202	Dair Ali	
City City		Midan 2	#2	30	Rural	203	Khyata Debs 2	_
City		Midan 2	#2	30	Rural	•	Semex	<u> </u>
City		Midan 2	#2	30	Rural		Al Bourak	
City		Midan 2	#2	30	Rural		Zogag 1	
City		Midan 2 Midan 2	#2	30	Rural Rural	208	Keswa Bweda	
City City		Midan 2	#2	30	Rural	210	Cabiat 1	
City		Midan 2	#2	30	Rural		Seka	
City		Midan 2	#2	30	Rurai		Matahen 2	
City		Midan 2	#3	30	Crty		Maaden	
City		Midan 2 iMidan 2	#3	30 30	City City		Achmar Kaah	
City		Midan 2	#3	30	City		Hajar	
City		Midan 2	#3	30	City		Esali	
City		Midan 2	#3	30	City	306	Kadam	
City		Midan 2	#3	30	City	307	Bawabeh	
City City		Midan 2 Midan 2	#3	30 30	City City		Dahadife Janoubi	
City		A) Asivnar	#1	20	City		Palastin	
City		Al Ashmar	#1	20	City		Klaydya	
City		AJ Ashmar	#1	20	City	103	Tanzimiya	
City		Al Ashmar	#1	20	City		Esthiakiya	
City		Al Ashmar Al Ashmar	#1	20 20	City		Zahira Siada	
City		A Ashmar	#1	20	City		Zftie	
City		Al Ashmar	#1	20	City	108	Dakak	
City		Al Ashmar	#1	20	City		Deryasin	
City		Al Ashmar	#2	20	City		Badileh	
City City		Al Ashmar Al Ashmar	#2	20	City		Sakp Pattariat	<u> </u>
City		Al Ashmar	#2	20	City		Thoraya	
City	106	Al Ashmar	#2	20	City	205	Hozam	
City		Al Ashmar	#2	20	City		Yarmouk	
City		Al Ashmar	#2	20	City		Tadamon Kwakbi	
City City		Al Ashmar Ersal	#2 #1	20 20	City City		Kotmeh	
City		Ersal	#1	20	City		Mailes	
City	107	Ersal	#1	20	City	103	Baki	
City		Ersal	#1	20	City		Awkaf	
City		Ersal	#1	20	City		Asima	· · · · · · · · · · · · · · · · · · ·
City City		Ersal Ersal	#1	20 20	City City		Bondok [Cham	<u> </u>
		Ersal	#1	20			Dawii	
City				20	City		Yalboka	

		Substation	8	ank			Feeder	Remarks
Goy.	No.	Name	No.	Cap.	Gov.	No.	Name	
Çity		Ersal	#i	(MVA) 20	City	110	Siyaha	
City		Ersal	#1	20	City		Barid	
City		Ersal	#1	20	City		Mojamah	
City_		Ersal	#1	20	City		Marad	
City City		Ersal Ersal	#2	20	City City		Miyah Horieh	
City		Ersal	#2	20	City		Modarjat	·
City		Ersal	#2	20	City	204	Jabha	
City	107	Ersat	#2	20	City		Assasa	
City		Ersal	#2	20	City_ City	206	Daman	
City City	107	Ersal Ersal	#2	20	City		Sepki .	
City		Ersal	#2	20	City	209	Ha'boni	
City	4	Ersal	#2	20	City	210	Saha	
City		Ersal	#2	20	City	211	Habachi	
City		Ersal	#2	20	City	212	Hoja	
City_ City	107	Ersal Ersal	#2	20 20	City City	213	Rakim Samir	
City	107	Ersal	#2	20	City		Mouassas	
City	108	Bab Sharki	#1	20	Rural	101	Nokoosh	
City	108	Bab Sharki	#1	20	City		Kamsee	
City		Bab Sharki	#1	20	City	103	Mahao	
City		8ab Sharki 8ab Sharki	#1	20 20	City City	104	Kebrit Handasa	
City_ City		8ab Sharki	#1	20	Çity	106	Boulos	
City		Bab Sharki	#1	20	City	107	Jallad	
City		Bab Sharki	#2	20		201	Younesiah	
City			#2	20	Rural	1	Hadeethah	
_City		Bab Sharki	#2	20	Rural	203	Konserwah	
City City	108	Bab Sharki Bab Sharki	#2	20	City City	204	Der Owelaa	
City	108	Bab Sharki	#3	20	Rural	301	Hashas	
City	108	Bab Sharki	#3	20	City	302	Bab Tourna	
City	+	Bab Sharki	#3	20	City	303	Chark	
City	108	Bab Sharki	#3	20	City	304	Karamah	70% Rural
City	108	Bab Sharki Bab Sharki	#3	20	City	305 306	Altaf Nazihin	<u> </u>
City_ City		Bab Sharki	#3	20		307	Zeuct	
City	108	Bab Sharki	#3	20		308	Masiar	
City	108	Bab Sharki	#3	20	City	309	Kabas	
City	109	Qasr Al Shab	#1	20	a	101	C1	_
City_ City	109	Qasr Al Shab Qasr Al Shab	#1	20		102	C3	
City	109	Qasr Al Shab	#1	20		104	C4	
City	109	Qasr Al Shab	#1	20		105	C5	
City			#1	20	City		C6	
City		Qasr Al Shab	#1	20	City	107	<u>C7</u>	
City		Qasr Al Shab	#1	20		108		
City City		Qasr Al Shab Qasr Al Shab	#1	20		103	C10	
City		Qasr Al Shab	#1	20			C11	
City	109	Qasr Al Shab	#1	20	City	112	C12	
City		Qasr Al Shab	#1	20			C13	·
City		Qasr Al Shab Qasr Al Shab	#1	20			C14 C15	
- City City		Qasr Al Shab	#1	20			C16	
City		Ossr Al Shab	#1	20			C17	
City	109	Qaşr Al Shab	#1	20	City	118	C18	
City		Qaboon 1			City		Ersal 1	Line
City		Osboon 1		- 44	City		Ersal 2	Line
- City City	110	Qaboon 1	#2	40	Rural City		Dabagat Mihani	
City		Qaboon 1	#2	40			Jobar	
City		Qaboon 1	#2	40			Barlaman	
City	110	Qaboon 1	#2	40	City		Mehdi	
City		Qaboon 1	#2	40			Machatel	
City		Qaboon 1	#2	40			Sironics . Acadimieh	
City City		Qaboon 1	#2	40			Nahlawi	
City		Qaboon 1	#2	40			Moalimin	
City		Qaboon 1	#2	40	Crty	211	Emadieh	
City	110	Qaboon 1	#2	46	Rural	1 212	Hazza	i -

		Substation	E	lank			Feeder	Remarks
Gov.	No.	Name	No.	Cap. (MVA)	Gov.	No.	Name	
City	110	Qaboon 1	#2	40	City		Kousour	
City	110	Qaboon 1	#2	40	C.A.	214	Hindi	l
City	110	Qaboon 1 Qaboon 1	#2	40 40	City City		Koumasia Macazel 1	One customer One customer
City City		Qaboon 1	#2	40	City		Mokbar	One customer
City		Qaboon 1	#2	40	City		Zabiatani	1010 0030101
City	110	Qaboon 1	#2	40	City		Abasien	I .
City	110	Qaboon 1	#2	40	City		Kwadri	
City		Qaboon 1	#2	40	City		Adami	
City	110	Qaboon 1	#2	40 40	City City		Tropikana Barzeh	
City City	110	Qaboon 1	#2	40			Technia 3	One customer
City	110	Qaboon 1	#3	40	Rural	301	Reef	TONG CUSIONIEL
City	110	Qaboon 1	#3	40	City	302	Macazel 2	One customer
City	110	Qaboon 1	#3	40	City		Tijara	
City		Qaboon 1	#3	40	City	304	Jandali	
City City		Qaboon 1 Qaboon 1	#3	40	City City	305 306	Maamel Manara	
City	110	Qaboon 1	#3	40	City	307	Kourieh	
City		Qaboon 1	#3	40	City	308	Ferdoos	
City		Qaboon 1	#3	40	City	309	Kassaa	
City		Qaboon 1	#3	40	City	310	Bayrouni	
City		Qaboon 1	#3	40	City		Saha	
City		Qaboon 1 Qaboon 1	#3	40	City	312	Kouzbari Tahrir	·
City City		Qaboon 1	#3	40	City City		Faris	
City	111	Qaboon 2	#1	30	City		Jaber	
City	\$11	Qaboon 2	#1	30	City		Tansik	
City	111	Qaboon 2	#1	30	City	103	Talim	
City	111	Qaboon 2	#1	30	City		Komasie	
City	111	Qaboon 2	#1	30	City		Warwar	
City	111	Qaboon 2 Qaboon 2	#1	30 30	City City		Tohrin 1 Tohrin 2	
City	111	Qaboon 2	#1	30	City		Kasem	
City	111	Qaboon 2	#1	30	City		Hamich	
City	111	Qaboon 2	#1	30	City	110	Zraa	
City	111	Qaboon 2	#1	30	City		Charal	
City	111	Qaboon 2	#1	30	City		Hafiriya	
City City	111	Qaboon 2 Qaboon 2	#1	30 20	City Rural	113 201	Ansar Erbeen	
City	111	Qaboon 2	#2	20	Rural		Al Foren	<u> </u>
City	111	Qaboon 2	#2	20	Rural	203	Baladee	
City	111	Qaboon 2	#2	20	Rural		Panorama	
City		Qaboon 2	#2	20	Rural	205	Heilal	
City		Qaboon 2	#2	20	Rural		Enlag	
City City		Al Jamhaa Al Jamhaa	#1 #1	20 20	City City		Talim Kwan	
City		Al Jamhaa	#1	20	City		Fattaleh	
City		AJ Jamhaa	#1	20	City		Amawieen	
City		AJ Jamhaa	#1	20	City	105	Kadaa	
City		A) Jamhaa	#1	20			Bakoura	
City City		Al Jamhaa Al Jamhaa	#1	20	City		Tamrid Misso	
City		Al Jamhaa	#1	30 30	City City		Nisan Shiha	
City		Al Jamhaa	#1	30	City		Tanzim	
City	112	Al Jamhaa	#1	30	City	111	Mazaz	
City		AJ Thawra	•	-	City		Mazraa	Line
City		Al Thawra			City		Ersal 1	Line
City		Al Thawra Al Thawra	#1	30	City		Ersal 2	Line
City City		A) Thawra	#1	30	City City		Amara Dar Al Salam	
City		Al Thawra	#1	30	City		Marje	
City		Al Thawra	#1	30	City	104	Rokiya	
City		Al Thawra	#1	30	City	105	Asrouniya	
City		Al Thawra	#1	30	City		Hamidiya	
City City		Al Thawra Al Thawra	#1 #2	30 30	City City		Harika Tabo	
City		A) Thawra	#2	30	City		Kanawat	
City		Al Thawra	#2	30	City		Souk Al Hall	
City	113	Al Thawra	#2	30	Спу	204	Abdin	
City	113	Al Thawra	#2	30	City	205	Epn Al Amid	
City	113	Al Thawra	#2	30	City	206	Enn Al Korch	

		Substation		ank			Feeder	Remarks
Gov.	No.	Name	No.	Cap.	Gov.	No.	Name	
City		'Al Thawra	#2	(MVA) 30	City	207	7 Bahrat	
City		A) Thawra	#3	30	City		Sadat	
City		A) Thawta	#3	30	City	302	Al Ward	
City		A) Thawra	#3	30	City		Hamra	
Cty		A) Thawra	#3	30	City	+	Tamin	
City		Al Thawra	#3	30	City	305	lwan	
City		Al Thawra Al Thawra	#3	30 30	City City	306	Difaa Akariya	
City City		Dawar Al Matar	#1	20		101	Kazzaaz	
City		Dawar Al Matar	#1	20	City		Nidal	
City		Dawar Al Matar	#1	20	City	103	Forn	~
City	114	Dawar Al Matar	#2	20	City		Chouhada	
City		Dawar Al Matar	#2	20	City		Boustan Al Door	
City		Dawar Al Matar	#2	20	_City_		Al Sinaya	
Сту		Dawar Al Matar	#2	20	City		Bab Charki Al Jamal	
City		Dawar Al Matar Dawar Al Matar	#2	20	City City		Anawi	
City		Dawar Al Matar	#2	20	City		Kouatii	
City City		Oummar At Maker	#1	20	Rural		Kassarah	
City		Dummar	#1	20	City		Al Chab	
City	f	Oummar	#1	20	City		Masaken	
City	115		#1	20	City		Gazieh	
City	115		#1	20	City	105	Kasion	
City	115	Dummar	#1	20	City		Haras	
City	·	Dummar	#1	20	City		Charkiya	
City		Dummar	#1	20	City		Ayach	 _
City		Dummar	#1	20	City		Mostawsaf	
City		Dummar	#1	20			Sakani	
City		Dummar	#2	20	City		Beheeth Techrin	
City	+	Dummar Dummar	#2	20	City City		Dahiya	
City		Dummar	#2	20	City		Abrage	
City		Dummar	#2	20	City	205	Hawach	
City	<u> </u>	Durnmar	#2	20	City	206	Arin	
City	+	Dummar	#2	20	City	207	Kasr Al Azm	
City	+	Dummar	#2	20	City	208	Al Jondi	
City	115	Dummar	#2	20	City		Chamsiya	
City	115	Dummar	#2	20	City	210	Mohajrin	
City	141	Kalersuseh					<u> </u>	
City	161					ļ	-	
City	4	Zeblatani				-		
City	163	·				} -	 	
City	164					1		
City	166	Shekh Hassan	-			1	!	·
City	167	Qsoor			i	1		
Rural	201	Duma	#1	30	Rural	101	Douma	
Rural	201	Duma	#1	30		102	Eben Seena	
Rural	201	Duma	#1	30	Rural	103	Morakabat	
Rural	201	Duma	#1	30			Anaster	
Rural	201		#1	30			Al Hossen	
Rural	201		#1	30			Al Jallaa	
Rural		Duma	#1		Rurai		Eskan	
Rural	201	Duma Duma	#1	+	Rural		Segen Hajariah	
Rural Rural	201	Duma	#2		Rurai		Harasla	
Rural	201		#2		Rural		Mesraba	
Rural	201	· — — — — — — — — — — — — — — — — — — —	#2		Rural		Betwanah	
Rural	201	· 	#2	20	Rural	·	Abiniah	
Rural	+	Adra 1	#1	20	Rural		Nashef	
Rural		Adra 1	#1		Rural		Ethaaha	
Rural		Adra 1	#1	20			Mounshaha	
Rural		Adra 1	#1	20			Soukhnah	
Rural		Adra 1	#1		Rural		Torouk	
Rural		Adra 1	#1		Rural		Makhbar Madagajah 2	
Rural		Adra 1	#1		Rural	+	Madanalah 3 Madanalah 8	
Rural Rural		Adra 1	#2		Rurai		Omaliah	
Rural		Adra 1	#2		Rural		Naft	
Rural		Adra 1	92		Rural		Al Tail	
I SAY					Rural		Sarfi Seheie	
Rural	202	Adra 1	#2	10	I WOUSE	1 404	(Odili Genela	i e

		Substation	E	Bank			Feeder	Remarks
Gov.	No.	Name	No.	Cap. (MVA)	Gov.	No.	Name	
Rural		Adra 2	#1	20	Rural	102	Напа 2	
Rural		Adra 2	#1	20		103	Gazal	
Rural		Adra 2	#1	20	Rural	104	Al Domair Makhbar	
Rural		Adra 2 Adra 2	#1	20 20	Rural Rural		Al Sekeh	
Rural Rural		Adra 2	#1	20		107	Ramadan	<u> </u>
Rural		Adra 2	#1	20	Rural	108	Ethaaha	
Rural		Kolaifa	#1	10	Rural	101	Eskan	
Rurat	204	Kolaifa	#1	10	Rural	102	Kotaifa	
Rural		Kolaifa	#1	10	Rurai	103	Hela	
Rural		Kolaifa	#1	10	Rural	104	Adra	
Rural		Kolaifa	#1	10	Rural	105	Moadamia . Rhaiba	
Rural		Kolaifa	#1	10 10	Rural Rural	106	Lewaa	
Rural Rural		Kotaifa Kotaifa	#1	10		108	Madjana	
Rura!		Nabek	#1	20	Rurai	101	Nasreia	
Rural		Nabek	#1	20	Rural		Mahloola	
Rura!		Nabek	#1	20	Rurat		Yabroud 2	
Rural		Nabek	#1	20	Rural	104	Ahtheia	
Rurat		Nabek	#1	20	Rural	105	Jaboor	
Rural		Nabek	#1	20	Rurai	106	Dair Atia	1
Rura!		Nabek	#2	20	Rural	201	Kara	
Rura!		Nabek	#2	20	Rural	202	Nabak	ļ
Rural		Nabek	#2	20	Rural	203	Garbeia Sharkia	
Rural		Nabek	#2	20 20	Rural	204	Yabroud I	
Rural		Nabek Al Hameh	#2	20	Rural	101	Water 1	
Rurai Rurai		A) Harrieh	#1	20	Rural	102	Waler 2	
Rural		Al Hameh	#1	20	Rural	103	Saboura	· · · · · · · · · · · · · · · · · · ·
Rural		Al Hameh	#1	20	Rural	104	Esmant	
Rural		Al Hameh	#1	20	Rural	105	Al Khadra	
Rural		Al Hameh	#1	20	Rural	106	Bohooth	
Rural	206	Al Hameh	#2	20	Rurai	201	Beera	
Rural		Al Hameh	#2	20	Rural	202	Deemas	
Rural		Al Hameh	#2	20	Rural	203	Kodsaia	
Rurai		Al Hameh	#2	20	Rural	204	Al Bojaa	·
Rural		Al Hamah	#2	20 20	Rural	101	Jamraia Rankous	<u> </u>
Rural Rural		Sydanaya Sydanaya	#1	20	Rural		Zaitoun	
Rural		Sydanaya	#1	20		103	Kotaifah 2	
Rural		Sydanaya	#2	20	Rural	201	Saidnaia	
Rural		Sydanaya	#2	20	Rural	202	Akmar	
Rural	207	Sydanaya	#2	20	Rural	203	Mneen	
Rurai	207	Sydanaya	#2	20		204	Halboun	
Rural		Sydanaya	#2	20	Rural	205	Kolaifah 1	
Rural		Zabadani	#1	20	Rural	101	Rawdah	
Rural		Zabadani	#1	20		102	Madaia Bioudan	
Rural Rural		Zabadani Zabadani	#1	20	Rural Rural	201	Sarf Sehee	
Rural		Zabadani	#2	20			Barada	
Rural		Zabadani	#2	20			Souk	Hama182, Al Feejee
Rural		Zabadani	#2	20			Zabadanee	
Rural		Fursan	#1	30		101	Kaokab	
Rural	209	Fursan	#1	30	Rural		Serah	
Rural		Fursan	#1	30	Rural		Moadamiah	
Rural		Fursan	#1	30			Khaleeg	
Rural		Fursan	#1	30			Thewrah	
Rural		Fursan	#1	30 30			Mouhallak Marwahiat	l
Rural Rural		Fursan Fursan	#1	30			Mazze	 -
Rural		Fursan	#1	30			Afrad	<u> </u>
Rural		Fursan	#2	20			Al Fadel	
Rural	-	Fursan	#2	20	Rural		Katana	
Rural		Fursan	#2	20			Mostawdahat	
Rural	209	Fursan	#2	20	Rura!		Esteshaar	
Rural		Fursan	#2	20			Rokham	<u> </u>
Rural		Al Matar	#1	5M°2	Rural		Matar 1	Feeds airport only
Rural		Al Malar	#1	5M*2	Rural		Matar 2 Esharah 1	Feeds airport only
Rural		Al Mater Al Mater	#1	5M°2	Rural Rural		Esharah 2	Feeds airport only Feeds airport only
Rural Rural		Al Matar		5M 2	Rural		Mantikah Horah	Feeds airport only
Rural		Al Matar		5M*2	Rural		Syrian	Feeds airport only
1,0,01	<u> </u>	,- = -010 Wer						1

		Substation	E	Bank			Feeder	Remarks
Gov.	No.	Name	No.	(MVA)	Gov.	No.	Name	
Rural	210	Al Malar	#1	5M'2	Rural	107	Matar 3	Feeds airport only
Rural	210	Al Matar	#1	5M*2	Rural	108	Matar 4	Feeds airport only
Rurat		Al Matar	#2	20	Rural		Wedian Al Rabeeh	
Rural		Al Malar	#2	20			Ghassoula	
Rural		A) Matar A) Matar	#2	50	Rural Rural		Khameera Afrad	
Rural Rural		A) Matar	#2	20			Tareek Al Malar	
Rural		Al Malar	#2	20	Rural	206	Komama	
Rural		A) Matar	#2	20			Akraba	
Rural	210	Al Matar	#2	20		208	Garamana	
Rurat	210	Al Matar	\$5	20	Rural		Gazlania	
Rural		Izea	#1	20	Rural		Hazrama	
Rural		Izaa	#1	20	Rural	·	Nashabelah	
Rural	211	Izaa	#1	20			Bath 1 Ramadan	
Rural Rural	211	izaa izaa		20			Tahweel 1	
Rural	211	Izaa	#1	20	Rural	ł	Tahweel 2	
Rural	211	Izaa	#1	20			Harariah 1	-
Rurat	211	Izaa	#2	20	Rural	}	Harariah 2	
Rural	211	Izaa	#2	20	Rural	202	Bath 2	
Rural	212	Mutamarat Palace	#1	10		101		Private Substation
Rurat	· · · · · · ·	Mutamarat Palace	#2	10	Rural	201		Private Substation
Rura!		Adra Cement		20	Rural	101		Private Substation
Rura!		Adra Cement	<u> #2</u>	20		201		Private Substation
Rural	213	Adra Cement	#3	20		301		Private Substation
Rural	214	Kisweh	#1	20			Oair Hajer	
Rural Rural	214	Kisweh (Kisweh	#1	20	Rural	102	Sham Sengab	
Rural	214	Kisweh	#1	20	Rurai		Auolostrad	-
Rural	214	Kisweh	#2	20			Houboob	
Rurai		Kisweh	#2	20			Majedia	. = + • . • . • . • . • . • . • . • . • .
Rural		Kisweh	#2	20			Horjola	
Rural	214	Kisweh	#2	20	Rurai	204	Tayaba	
Rural	214	Kisweh	#2	20	Rurat	205	Thahaleb	
Rural	<u> </u>	Kisweh	#2	20	Rural		Sharakes	
Rural	4	Al Maarad	#1	20		101	Bait Sahem	
Rural		Al Maarad	#1	20			Shabha	
Rural		Ai Mearad	#1	20	Rurat		Makam	
Rural Rural		Al Maarad Al Maarad	#1	20		104 201	Oyabia Faress	
Rural		Al Maarad	#2	20			Al Nour	
Rural		Al Maarad	#2	20	Rural		Al Baidar	
Rural		Al Maarad	#2	20			Al Rawda	- · · · · · · · · · · · · · · · · · · ·
Rural		Al Maarad	#2	20	Rural			
Rural	215	Al Maarad	#2	20	Rural	206	Khyala	
Rural		Dimas	#1	20			Mazareh Yafour	
Rural		Dimas	#1	20			Tabreed	
Rural		Dimas	#1		Rural		Korah Al Assad	
Rural	<u> </u>	Dimas	#1		Rural	+	Nohman	
Rural		Dimas	#1		Rural		Abar	
Rural Rural	217	Nasrieh Nasrieh	#1		Rural Rural		Mazareh Nasreiah	
Rural Rural	·	Nasrieh	#1		Rural		Jairoud	1
Rura!		Nasrieh.	#1		Rura!		Matthana	
Rural		Kudseia	#1		Rura!		Jamheiat	
Rural		Kudseia	#1		Rural		Ethaha	
Rural		Erbeen	#1		Rural		Askalanee	
Rural		Erbeen	#1		Rural		Tasabehjee	
Rural		Erbeen			Rural		Zamalka	
Rural		Erbeen	#1		Rural		Madares Aio Tormo	
Rurat		Erbeen	#2		Rural Rural		Ain Tarma Kafar Batna	
Rurat Rurat		Erbeen Erbeen	#2		Rural		Taweel	
Rural		Erbeen	#2		Rural	-	Hamooria	-
Rural	+	Al Faihaa	#1		Rural		Fayaha 6A	
Rural		Al Faihaa	#1		Ruial		Fayaha 6B	· · · · · · · · · · · · · · · · · · ·
		Al Faihaa	#1		Rural	103	Fayaha 10	
Kurai		Al Fahaa	#1		Rural	104	Fayaha 7	
	220	(An i dalga	, -,	20				
Rural	220	Al Faihaa	#2	20	Rural	201	Bostan	
Rural Rural Rural Rural Rural	220 220			20 20		201		

		Substation	E	lank			Feeder	Remarks
Gov.	No.	Name	No.	Cap. (MVA)	Gov.	No.	Name	
Rura!	220	Al Faihaa	#2	20	Rural		Afraah	
Rural	220	Al Faihaa	#2	20	Rural	206	Rahmah	
Rural	220	Al Faihaa	#2	20	Rural	207	i	U/C for "Police Hospital"?
Rural	221	Al Hajar Al Aswad	#?				Police Hospital	Bank unknown
Rural	221	Al Hajar Al Aswad	#1	30	Rural	101	Gawalan	
Rural	221	Al Hajar Al Aswad	#1	30	Rural	102	Mahattah	
Rural	221	Al Hajar Al Aswad	#1	30	Roral	103	Khaleel	
Rural		Al Hajar Al Aswad	#1	30	Rural	104	Yalda	
Rural	221	Al Hajar Al Aswad	#1	30	Rural	105	Baladiah	
Rural	221	Al Hajar Al Aswad	#1	30	Rural	106	Dah Yormouk	
Rural		Al Hajar Al Aswad	#2	30	City	107	Ahli	
Rural	221	Al Hajar Al Aswad	#2	30	City	108	Talaeh	
Rural		Al Hajar Al Aswad	#2	30	City	201	Takadom	
Rural	221	Al Hajar Al Aswad	#2	30	City	202	Madina	
Rural	221	Al Hajar Al Aswad	#2	30	City	203	Kaisa	
Rural	221	Al Hajar Al Aswad	#2	30	City	204	Baskwit	
Rural	221	Al Hajar Al Aswad	#2	30	City	205	Loubieh	
Rural	221	Al Hajar Al Aswad	#2	30	City	206	Arouba	
Rural	221	Al Hajar Al Aswad	#2	30	City	207	Mashmamer	
Rura!	241	Khan Al Sheeh					i	
Rural	261	Al Tai						
Rural	262	Yabroud						
Rural	263	Harasta			1			
Rural	264	Nashabieh	1-5-5					
Rural	265	Al Miliha		1			L	
Rural	266	Saledeh Zinab						
Rural	287	Kudseia 1		1				
Rural	268	Kudseia 2	I	L		·	l	
Rural	269	Darya		I	l			
Other		Auyoba	#1	10	Rural	101	Sahsah	
Other	301	Auyoba	#1	10	Rural	102	Haramoun	
Other	301	Auyoba	#2	10	Rural	201	Hamreet	

付録5-3 20/0.4 kV変圧器の現地調査結果 (1/6)

Date Nov. 23rd, 1998

Date Nov 23rd, 1998

Substation: BAB SHARKI (108) Feeder: Younesiah (201) Substation : BAB SHARKI (108) Feeder: Younesiah (201)

	No./	vame	Tr,1/You		
ransformer	T)	рe	Tower M		
		acity	400)	VA	
	20kV Fee	der	Cable (Over-head)	AI	120 mm ²
Primary		Line	Wire	A	70 mm ²
(MV)Side	Orop Line	DS	Exist		
		Fuse	Exist		
		Conductor		Cu	500 mm²
		C.B.	O.C. Breaker	ļ	600 A
	ļ	Branch	Fusa (R,S;T) (A)	L	Cable
		Feeder 1	400;400;400	A)	120 mm
	Circuit 1	Feeder 2	400;490;400	N.	120 mm
		Feeder 3	400;400;400	AJ	120 mm³
		Feeder 4		A/Cu	ലന്
	ł	Feeder 5		ΑΙ/Cu	<u>mm</u>
		Feeder 6		ALCU	mm
		Conductor		A/Cu	mu,
		C.B.			
	}	Branch	Fuse (R,S,T) (A)		Cable
	Circuit 2	Feeder 1		AI/Cu	ബൻ
Secondary		Feeder 2		AL/Cu	ព្រក
(LV)Side		Feeder 3		AZ/Cu	mm [*]
		Feeder 4		ΑΙ⁄Cυ	mm
		Feeder 5		AL/Cu	mm
		Feeder 6		Al/Cu	<u>m</u> m
	├	Conductor		Al/Cu	mm
	1	C.B.		170001	
	l	Branch	Fusa (R,S;T) (A)	 	Cable
	l	Feeder 1		Al/Cul	UNU)
	Circuit 2	Feeder 2		A/Cu	mm
	Cuccus	Feeder 3		Al/Cu	mm
	1	Feeder 4		AVCu	mw.
	i	Feeder 5		AVC	
	}	Feeder 6		AVCu	TAD.
	I inhining		an in all all and	[ACCO	mm
Remarks	i cignostig	an estels a	re installed.		

	NoA	Varne	Tr.14 Na	hdə 4	
Fransformer		ρe	Ground M		<u> </u>
	Cap	acity	1,600	kVA	
	20kV Fee	đer	Cable/Wire	Cu/At	mm ²
Primary (MV)Side		Line	Cable Wire Bus Bar	Cy'A'	tn≥m²
(MV)Side	Drop Line	O\$			
		Fuse			
		Conductor	Cable Bus-Bar	ΑUCυ	
		CB.	O.C. Breaker		1,250 A
		Branch	Fuse (R;S;T) (A)		Catie
		Feeder 1	355A,355A,315A	Αl/Co	mm²
	Circuit 1	Feeder 2	100A,100A,100A	Al/Cu	, mm²
	[Feeder 3		AVC _U	mm ²
		Feeder 4		Al/Cu	mm²
	-	Feeder 5		ÁΙΛΟυ	നന്
		Feeder 6		Al/Cu	m _m
		Conductor	Cable Bus Bar	ALC	mm²
		CB	O.C. Breaker		800 A
		Branch	Fuse (R,S,T) (A)		Cable
	Circuit 2	Feeder 1	355A;315A;355A	ΑΙ/Cυ	mm²
Secondary		Feeder 2	315A;315A;355A	ΑΙ⁄Cυ	mm²
(LV)Side		Feeder 3	315A;315A;315A	Al/Cu	ന്ന
		Feeder 4		AI/Cu	mm ²
		Faeder 5		Αί⁄Cυ	מתים.
		Feeder 6		ALCU	គាកា
		Conductor	Cable/Bus-Bar	AL/Cu	mm ²
		C.B.	O.C. Breaker		1,250 A
		Branch	Fuse (R,S,T) (A)		Cable
		Feeder 1	400+200;315*2;400+200	Al/Cu	
	Circuit 3	Feeder 2	160+160;160+315;200*2	AL/Cu	mm
		Feeder 3	500,500,500	AL/Cu	mm
		Feeder 4	100;200;100	Al/Cu	mm²
		Feeder 5		Αl/Cu	mm
		Fæeder 6		Αί⁄Cu	mm²
Remarks					

Date Nov. 24th, 1998

Data Nov. 24th, 1998

Substation : NABEK (205) Feeder: Dair Atia (105) Substation: NABEK (205 Faeder: Dair Afia (105

T	Line	Tr.1/Na Ground M 630 t Cable Cable/Wire/Bus-Bar	dounted dVA Al	120 mm²
Cap 20kV Fee	acity Ser Line	630 t Cable	AVA	
20kV Fee	der Line	Cable	Al	120 mm²
	Line			120 mm²
Drop Line		Cable/Wire/Bus-Bar		
Drop Line	D\$		CWAI	mm²
		Exist .		
	Fuse	None		
	Conductor	Cable/Bus-Bar	ALC:	നന²
	C.B.	O.C. Breaker		1,000 A
	Branch	Fuse (R,S,T) (A)		Cable
	Feeder 1	315,200,315	AI I	120 mm²
Circuit 1	Feeder 2		A/Cu	mm²
	Feeder 3	200,315;315	A	120 mm²
	Feeder 4		AI/Cu	mm².
	Feeder 5		Al/Cu	mm²
	Feeder 8	100,100,100	Cu	25 mm²
	Conductor		AVCu	mm²
	C.8.		1	
	8ranch	Fuse (R,S,T) (A)		Cable
	Feeder 1	-	A/Cu	ന സ²
Circuit 2	Feeder 2		A/Cv	nyn²
	Feeder 3		AI/Cu	mm²
•	Feeder 4		Al/Cu	ന്ന ²
	Feeder 5		Al/Cu	mm²
	Feeder 6		Al/Cu	LL)(II)
	Conductor		AVCU	mm²
	C.B.			A
	Branch	Fuse (R,S;T) (A)		Cable
	Feeder 1		AI/Cu	garg.
Circuit 3	Feeder 2	—	AICU	m ²
	Feeder 3		Al/Cu	encm ²
	Feeder 4		AVCU	mm ²
	Feeder 5		Al/Cu	mm ²
	Feeder 6		Al/Cu	mm²
				:
	Circuit 2	Feeder 4 Feeder 5 Feeder 6 Conductor CB. Branch Feeder 1 Feeder 2 Feeder 3 Feeder 6 Conductor CB. Branch Feeder 5 Feeder 6 Conductor CB. Branch Feeder 1 Feeder 3 Feeder 3 Feeder 3 Feeder 5	Feeder 4 — Feeder 5 — G.B. Branch Fuse (R,S,T) (A) Feeder 1 — Feeder 5 — Feeder 5 — Feeder 6 — Conductor G.B. Feeder 7 — Feeder 6 — Conductor G.B. Branch Fuse (R,S,T) (A) Feeder 6 — Conductor G.B. Branch Fuse (R,S,T) (A) Feeder 1 — Feeder 2 — Feeder 3 — Feeder 3 — Feeder 3 — Feeder 3 — Feeder 4 — Feeder 5 —	Feeder 4

	No.A	Name		lannat		
ransformer	1)	rpė	Tower Mounted			
	Caç	acity	200 kVA			
	20kV Fee	der .	Wire	A)	50/8 mm	
Primary		Line	Wire	N	50/8 mm ²	
(MV)Side	Drop Line	DS	None			
		Fuse	None			
1		Conductor		Al/Cu		
	1 !	C.B.	Manual Breaker			
	!	Branch	Fuse (R,S;T) (A)	-	Cable	
		Feeder 1	100,355,400	, A)	120 mm	
	Circuit 1	Feeder 2	7,100,100	Cu	50 π≥n²	
		Feeder 3	250,355,400	N	120 mm²	
		Feeder 4	- -	ALCU	mm²	
	ľ	Feeder 5		Al/Cu	mm	
	1	Feeder 6		Al/Cu	mm ²	
	<u> </u>	Conductor		Al/Cu	nen	
		C.B.		1		
		Branch	Fuse (R;S;T) (A)		Cable	
	Circuit 2	Feeder 1		ALCU	mm	
Secondary		Feeder 2		AUCU	mm,	
(LV)Side		Feeder 3		Al/Cu	tuu,	
		Feeder 4		ALCU	നന്	
		Feeder 5		AVCu		
		Feeder 8		Al/Cu	man'	
		Conductor		AVOL	mm'	
	ļ.	C.B.		1.000		
	Ì	Branch	Fuse (R,S;T) (A)	†	Cable	
	<u> </u>	Feeder I		Al/Cu	ന്ന	
	Circuit 3	Feeder 2		AVCU	mm	
	1	Feeder 3		ALCU.	anu.	
	1	Feeder 4	· · · · · · · · · · · · · · · · · · ·	ALCU	ത്ര	
	I	Feeder 5		ALCU	mm	
	I	Feeder 6	-	ALCU		
	Liablaine		re installed	الممما	നന	
Remarks	- Armay		· · · · · · · · · · · · · · · · · · ·			

付録5-3 20/0.4 kV変圧器の現地調査結果 (2/6)

Date Nov. 24th, 1998

Dala Nov. 25th, 1998

Substation: NABEK (205 feeder: Dair Ata (105

Substation : MiDAN 2 (105) Feeder: Barada (201)

No Name Type Type Type Line Line Line Line CB Branch Feeder Feeder Feeder Feeder Conduct CB Branch Feeder Feeder Feeder Conduct CB Branch	Ground Wire Bus-Bar Exist Exist (Electrical wire O.C. Breaker Fuse (R.S.T) (A) 2 250,250,250 3 250,250,250 4 300,400,355 5 3 355,300,300 or	Cu	70 mm
Cepacity Feeder Line Line Conduct C.B. Branch Feeder Feeder Feeder Feeder Feeder Conduct C.B.	Wive Bus Bar Exist Exist (Electrical wire of Cobie O.C. Breaker Fuse (R.S.) (A) 250,250,250,4 300,400,355 5 5 3355,300,300 or	AV A	70 mm mm eciad together 300 mm 1,000 A Cable mm 120 mm 120 mm 120 mm
Feeder Line Line DS Fuse Conduct C.B. Branch Feeder Feeder Feeder Feeder Feeder Conduct C.B.	Wre Bus-Bar Exist (Electrical wire or Cebie O.C. Breaker Fuse (R.S.T) (A) 2 250,250,250 3 250,250,250 4 300,400,355 5	Al/Cu Cu Al/Cu Cu Cu Cu Cu Cu Cu Cu Cu	mm' ecied together 300 mm 1,000 A Cable mm 120 mm 120 mm 120 mm 120 mm 120 mm
Line Line DS Fuse Conduct CB Branch Feeder Feeder Feeder Feeder Feeder Conduct CB	Bus Bar Exist Exist (Electrical wite or Cable O.C. Breaker Fusa (R.S.T) (A) 2 250,250,250 3 250,250,250 4 300,400,355 5 3 355,300,300 or	AV S are conn Cu AVCu Cu Cu Cu Cu AVCu Cu	mm' ecied together 300 mm 1,000 A Cable mm 120 mm 120 mm 120 mm 120 mm 120 mm
Line DS Fuse Conduct CB Branch Feeder Feeder Feeder Feeder Feeder Conduct CB Branch Feeder Conduct CB	Exist Exist (Electrical wise of Cobin Cobin O.C. Breaker Fuse (R.S.T) (A) 2 250,250,250 3 250,250,250 4 300,400,355 6	Al/Cu Cu Cu Al/Cu Cu Cu Cu Cu Cu Cu Cu	ecied together 300 mm 1,000 A Cable mm 120 mm 120 mm 120 mm mm
Fuse Conduct CB Branch Feeder Feeder Feeder Feeder Feeder Conduct CB CB Branch Feeder Feeder Conduct CB	Exist (Electrical wite of Ceble O.C. Breaker Fuse (R.S.T) (A) 250 250 250 250 3 250 250 250 3 300,400 355 5 3 355,300,300 of	Al/Cu Cu Cu Cu Al/Cu Cu	300 mm 1,000 A Cable mm 120 mm 120 mm 120 mm mm
Conduct CB Branch Feeder Feeder Feeder Feeder Feeder Conduct CB	O Cebie O C Breaker Fuse (R.S.T) (A) 2 250,250,250 3 250,250,250 4 300,400,355 5 5 355,300,300 or	Al/Cu Cu Cu Cu Al/Cu Cu	300 mm 1,000 A Cable mm 120 mm 120 mm 120 mm mm
CB Branch Feeder 1 Feeder 2 Feeder 5 Feeder 6 Feeder 6 Feeder 6 Conduct CB	O.C. Breaker Fusa (R.S.T) (A) 	Al/Cu Cu Cu Cu Al/Cu Cu	1,000 A Cable mm 120 mm 120 mm 120 mm mm
Branch Feeder Feeder Feeder Feeder Feeder Feeder Conduct C B.	Fuse (R.S.T) (A) 2 250,250,250 3 250,250,250 4 300,400,355 5 3 355,300,300 or	Al/Cu Cu Cu Cu Al/Cu Cu	Cable mm 120 mm 120 mm 120 mm 120 mm 120 mm
Feeder (Feeder (Feeder (Feeder (Conduct (C.B.))	2 250,250,250 3 250,250,250 4 300,400,355 5 — 355,300,300	Al/Cu Cu Cu Cu Al/Cu Cu	
Feeder Fe	2 250;250;250 3 250;250;250 4 300;400;355 5	Cu Cu Cu Al/Cu Cu	120 mm 120 mm 120 mm mm 120 mm
Feeder : Feeder ! Feeder ! Conduct C B.	3 250,250,250 4 300,400,355 5 — 3 355,300,300	Cu Cu A/Cu Cu	120 mm 120 mm mm 120 mm
Feeder (Feeder (Conduct C B.	300,400,355 5 —— 5 355,300,300 or ——	Cu Al/Cu Cu	120 mm mm 120 mm
Feeder S Feeder S Conduct C B.	5 — 5 355,300,300 or —	Al/Cu Cu	നദ 120 നന
Feeder (Conduct C B.	355,300,300 or	Cu	120 mm
Conduct C B.	or —		
CB.		Al/Cu	
Branch	E (C) (C) (A)		
	Fuse (R,S,T) (A)		Cable
Feeder 1	l	Al/Cu	enim ⁱ
હ્યું 2 Feeder i	2	Al/Cu	entri
Feeder 3	3	Al/Cu	ന്ന
Feeder 4		Al/Cu	mm
Feeder !	3	AL'Cu	mm
Feeder 6	5	Al/Cu	നന
Conduct		Al Cu	നന
ĊВ.			
Branch	Fuse (R,S,T) (A)		Cable
		Al/Cu	mm
un 3 Feeder 2	?	Al/Cu	നന
		ALCu	ബ
		Al/Cu	നന
		~	נחתו
			mm
	Feeder Feeder Feeder Feeder Feeder	Feeder 1 — un 3 Feeder 2 — Feeder 3 — Feeder 4 — Feeder 5 — Feeder 6	Feeder 1 — AICU 18 Feeder 2 — AICU Feeder 3 — AICU Feeder 4 — AICU Feeder 5 — AICU

		Магле	Yr.2/,		
Transformer		γ pe	Tower I.		
·		pacity	630 NVA		
	20kV Fee		Wire	Cu	35 mm²
Primary		Line	Wire	Cu	35 mm²
(MV)Side	Drop Lina		Exist		
		Fuse	Exist (25A)		
		Conductor		Cu	300 mm²
		C.B.	O.C. Breaker		1,000 A
		Branch	Fusa (R,S;T) (A)	 	Cable
		Feeder 1	400;400;400	Cu	120 mm²
	Circuit 1	Feeder 2	355;355;400	Cu	120 mm²
		Feeder 3	400,400,400	Cu	120 mm²
		Feeder 4		Al/Cu	ന്ന²
		Feeder 5		Al/Cu	m ₂
		Feeder 6		A/Cu	mm²
		Conductor		AVCu	m√n²
	[C.B.		1.55-1	A
		Branch	Fuse (R,S;T) (A)		Cable
	Ì	Feeder 1		Al/Cu	ന്ത²
Secondary	Circuit 2	Feeder 2		Al/Cu	mm²
(LV)Side	*****	Feeder 3		ΑΙ⁄Cυ	mm²
	•	Feeder 4		Al/Cu	നന²
		Feeder 5		AI/Cu	mm²
		Feeder 6		Al/Cu	
		Conductor		ALCU	<u>thm²</u>
		C.B.		12001	mm'
		Sranch	Fuse (R,S,T) (A)		Cable
		Feeder 1		Al/Cul	mm²
	Circuit 2	Feeder 2		AVCu	mm²
	210013	Feeder 3		ΑΙ⁄Cυ	mm²
		Feeder 4		ALCu	mu ₃
		Feeder 5		AVCu	
		Feeder 6		AVCU	
		ecuci o	L	IVACOL	<u></u>
Remarks					

Date Nov. 25th, 1998

Date Nov. 25th, 1998

 Substation : MiOAN 2
 (106)

 Feeder: Barada
 (201)

Substation: MiDAN 2 (105) Feeder: Barada (201)

		Name	Ir.3a Reirigerato		
Transformer	Ť	ype	Ground I		
	Ca;	acity	630 kVA		
	20kV Fee	der	Cable (Oil)	Al	120 mm²
Primary		Line	8us-8ar	Cu	50 mm²
(MV)Skie	Orop Line		Exist (On Load DS)		
		Fuse	Exist (40A)		
		Conductor	Cable	Cu	500 mm²
		CB.	O.C. Breaker	<u> </u>	1,000 A
		Branch	Fuse (R,S;1) (A)	!	Cable
		Feeder i	500*2,500*2,500*2	Cu	300 mm²
	Circuit 1	Feeder 2		A/CJ	ണത²
		Feeder 3	•	Al/Cu	m ₂
		Feeder 4		Al/Cu	nm²
		Feeder 5		Al/Cu	uxu _s
		Feeder 6		Al/Cu	- mm²
		Conductor		AVCu	(AU) ₅
		C.B.			A
		Branch	Fuse (R,S,T) (A)		Cebie
		Feeder 1		Al/Cu	mm²
Secondary	Circuit 2	Feeder 2		Al/Cu	ന്ന²
(LV)Side		Feeder 3		ΑλCυ	mm²
		Feeder 4	_	Al/Cu	lusu ₃
		Feeder 5		AVCu	(EALL)
		Fæeder 6		ΑΙ/Cu	EMJ ₃
	r ——	Conductor		AVCU	ELAD ₃
ŀ		CB.		1	A
		Branch	Fuse (R,S;T) (Å)		Ceble
		Feeder 1	1	ΑΙ⁄Cυ	mvn²
	Circuit 3	Feeder 2	_	ALC:	mm ²
		Feeder 3		AlCu	nwn²
	l	Feeder 4	Armorated .	Al/Cu	LXUS
	l	Feeder 5		AL/Cu	מעת 2
		Feeder 6		Al/Cu	നന²
	Two feed	ers (in-com	ing and Out-poing) and h	vo tans	
			ir through disconectors.		
Remarks	are on loa	ed disconne	ctor exeptions which is o	connecte	d to the in-
	coming te	eder.	=		
	DAGGUAG	anacior is	installed at each transfo	COMP.	

	i	eeder:	Barada	(201)	
		Name	Tr.3b/Reingerato		Private
Transformer		ype	Ground Mounted		
		ecity	630		
	20kV Fee		Cable (Oil)	N.	120 mm
Primary		Line	Bus-Bar	Cu	50 mm ²
(MV)Side	Orop Line		Exist (On Load DS)		
		Fuse	Exist (40A)	T - T	
		Conductor		Cu	500 mm²
	1	C.B.	O.C. Breaker	ļ	1,000 A Cable
	1	Branch	Fuse (R,S,T) (A)		
		Feeder 1	630*2,630*2,630*2	Cu	300 mm
	Circuit 1	Feeder 2		AI/Cu	mm
		Feeder 3		AI/Cu	mm ²
		Feeder 4		AVC _U	<u>ന</u> ന്
		Feeder 5		Al/Cu	mm ²
		Feeder 6		Al/Cu†	
		Conductor		A//Cu	തന്
		C.B.			^
		Branch	Fuse (R,S;T) (A)		Cable
6		Feeder 1		ΑVCυ	mm.
Secondary		Feeder 2		Al/Cu[mm
(LV)Side		Feeder 3	+	Al/Cu	mm
		Feeder 4		Al/Cu	mm
		Feeder 5		Al/Cut	mm [*]
		Feeder 6		AVCu!	mm
		Conductor	_	AVCul	(DIT)
		C.B.		1	7
		Branch	Fuse (R,S;T) (A)	1	Cable
		Feeder 1		Al/Cu	mm)
	Carcuit 3	Feeder 2		AI/Cu:	mm'
	J	Feeder 3		AVCu	mm
		Feeder 4		AVCu.	mm
		Feeder 5		Al/Cul	ET)(TS
	l i	Feeder 6		AUCUL	ENTE:
	Two feed		ing and Out-poing) and t		omen are
			w through disconectors,		
Remarks			clor exept one which is o		
ı	coming te				
_			insialed at each transfo	onec	

付録5-3 20/0.4 kV変圧器の現地調査結果 (3/6)

Date Nov 26th, 1998

Date Nov 26th, 1998

Substation: SYDNAYA (207) Feeder: Kotafah (205) Substation: SYDNAYA (207) Feeder: Kotafah I (205)

		Name	Tr. I/Al ice Kherala (P		for the farm
ransformer		/Pe		Viounted	
		acity		AVA	
	204V Fee	der	Wre	141	50 mm
Primary		Line	Wre	I AI	50 mn
(MV)Side	Drop Line		Exist		
		Fuse	None	TT	
l		Conductor	Ceble	Cu	50 mg
		C.B.	Manual Breaker	 -	600 Cable
		Branch	Fuse (R.S.T) (A)	┸	
		Feeder 1	315,160,80	Cu	50 m²
	Circuit 1	Feeder 2		AVCU	
		Feeder 3	•	A/Cu	
		Feeder 4	•	AVCu	mo
		Feeder 5		AVCu	env
		Feeder 6		Al/Cu	mx.
	Circuil 2	Conductor		AICU	πv
		C.B.		†	
		Branch	Fuse (R.S.T) (A)	1	Cab'a
		Feeder 1		AVCu	ur.
Secondary		Feeder 2		AUCU	Tre .
(LV)Side		Feeder 3		AVCU	me .
		Feeder 4		AVC	my
		Feeder 5		AVCV	TV.
		Feeder 6		NOU	
		Conductor		TAVO.	
		C.B.		AMO	Tri
		Branch	Fusa (R,S,T) (A)	 	Cable
		Feeder 1	1039 10/3/11 104	AVOID	
	A 3.A			AVC	nr
	Circuit 3	Feeder 2			<u>m</u>
		Feeder 3		AVC	m
		Feeder 4		Al/Cu	<u>m</u>
					ov.
		Feeder 8		A/C ₂	rn.
Remarks	Lightning	Feeder 5 Feeder 8 arresters a	re installed.	Al/Cu Al/Cu	n

			Kotaran I	(200)		
		Name		Basa		
ransformer			Tower Mounted 200 kVA			
		acity				
	20kV Fee		We	A)	50 mm²	
Primary		Line	Wre	A)	50 თო²	
(MV)Side	Drop Line		Exist	~~ . ~	·	
		Fuse	Exist (10A)			
		Consuctor	Cable	A)	120 mm²	
		CB.	O.C. Breaker		160/400 A	
		Branch	Fuse (R,S,T) (A)	·	Cable	
1		Feeder 1	200;200;200	N.	90 ami	
		Leeger 5	200,200,200	A)	90 mm	
		Feeder 3		Al/Cu	നന്	
		Feeder 4		Al/Cu	mm	
		Feeder 5	+	Al/Cu		
		Feeder 6		AI/Cu	mm	
		Conductor	*	Al-Cu	mm	
		ÇB.	**	<i></i> '-		
1	Circuit 2	Branch	Fuse (R,S,T) (A)	1	Cable	
		Feeder 1		AI/Cu	mm	
Secondary		Feeder 2		AI/Cu	ന്ന	
(LV)Side		Feeder 3		AI/Cu	ണ്ട	
		Fæeder 4		AVCu	ന്ന	
		Feeder 5		AVCU	enm)	
		Feeder 6		AVC		
		Conductor		ALCO	<u> </u>	
		C.B.		TAY COL	tum'	
		Branch	Fuse (R,S,T) (A)	 	Cable	
		Feeder 1	1030[17,0,1774	AL/Cul		
	Cim a a	Feeder 2		AVCu		
	CILUMS	Feeder 3		Al/Cu	uni,	
		Feeder 4		AVCu		
					avn'	
		Feeder 5		Al/Cu	<u> (1311)</u>	
		Feeder 6	<u> </u>	Al/Cu		
Remarks	iugnining:	arresters ar	e installed.			

Data Nov 26th, 1998

Date Nov 26th, 1998

Substation: SYDNAYA (207) Feeder: Kotafah 1 (205) Substation: SYDNAYA (207 Feeder: Kotaifah 1 (205

			Tr 3/Hafir Al Foks Ground Mounted Stim			
Fransformer					ម្រា	
	Capacity		200 kVA			
	20kV Feeder		Wre	[AI]	120 mm	
Primary		Line	Bus-Bar	A	FAC	
(MV)Side	Orep Line		Exist			
		Fuse	Exist			
		Conductor		AI	<u>m</u> r 630	
		C.B.	Manual Breaker			
		Branch	Fuse (R,S;T) (A)	╄	Cable	
		Feeder 1	7,7,7	A	120 mm	
;	Circuit 1	Feeder 2	7;7;?	_A	120 mm	
i		Feeder 3	7,7,7	N.	120 mm	
		Feeder 4		ΑVCυ	ED (T	
		feeder 5		ALCU	IT IT	
		Feeder 6		AVCu	ത്ര	
		Conductor		AUCU	mn	
	Circuit 2	C.B.		1		
		Branch	Fuse (R;S;T) (A)		Cable	
		Feeder 1		Αl/Cu	ma	
Secondary		Feeder 2		Al/Cu	វារា	
(LV)Side		Feeder 3		ALCU	man	
		Feeder 4		ALCU	ma	
		Feeder 5		Al·Cu	FT3FT	
		Feeder 6		AVC	ITV:	
		Conductor		ALCU	rava	
	i .	C.B.		1		
		Branch	Fuse (R,S;T) (A)	1	Ĉabie	
		Feeder 1		Al/Cu	ma	
	Circuit 3	Feeder 2		AVCU	ms	
		Feeder 3		AVC	ITS:	
		Feeder 4		AVCU	L/ALI	
		Feeder 5		Al'Cu	men men	
		Feeder 6		Al/Cu	ID/I	
Remarks			- · ·		,	

	No/Name		Tr.4/A	Hatel	
Fransformer		ρe		founted	
	Capacity		200	kVA	
	20kV Fee	der	Wire	Ai :	50 nyn²
Primary		Line	Wre	Αi	50 mm²
(MV)Side	Orop Line		Exist		
		Fuse	16A (Wires are installed		of cut out his
		Conductor		Cu	70 mm²
	C.B.	O.C. Breaker	ļ	160 A	
		Branch	Fuse (R,S;T) (A)		Cable
		Feeder 1	160;160;160	Cu	50 mm²
	Circuit 1	Feeder 2		AI/Cu	mm²
		Feeder 3		Al/Cu	mm²
		Feeder 4		Al/Cu	
		Feeder 5		Al/Cu	ww ₅
		Fæeder 6		Al/Cu	mm²
	[Conductor	Cable	Cu	70 mm²
		C.B.	O.C. Breaker	1	160 A
	Circuit 2	Branch	Fuse (R,S,T) (A)	1	Cable
		Feeder 1	160,160,160	Cu	50 mm²
Secondary		Feeder 2		AI/Cu	നര
(LV)Side		Feeder 3		AVCu	mm²
		Feeder 4		ALC:	
		Feeder 5		AVCu	mm ^a
		Feeder 6		AI/Cu	mm²
		Conductor		AVCU	mm²
	1	ĊВ.		1	Ä
	1	6ranch	Fuse (R,S,T) (A)	1	Cable
	1	Feeder 1		AVCu	നന്
	Circuit 3	Feeder 2		ALCU.	mm²
	l	Feeder 3		AVCU	mm²
	l	Feeder 4		A/Cv	usu _s
	i	Feeder 5		AVCU	mm ²
	ŀ	Feeder 6		AVCU	n.n²
Remarks					

付録5-3 20/0.4 kV変圧器の現地調査結果 (4/6)

Date Nov 28, 1998

Date Nov 28, 1998

Substation : ZABADANI (208) Feeder : Zabadance (204) Substation : ZABADANI (208) Feeder : Zabadanee (204)

		Name	Tr.1/Khan		
fransformer		Mbs .	Ground Mounte		oricaled
		secity	4001		
	20kV Fee	der	Wre	N.	120 mm
Primary		Line	Cebie	A	120 mm
(MV)Side	Drop Line		None		<u> </u>
		Fuse	Exist (16A)		
	1	Conductor		Cu	500 mm
		Č8.	O.C. Breaker	<u> </u>	800 A
	1	Branch	Fuse (R,S,T) (A)	ļ,	Cable
	1	Feeder 1	400,400;400	Cu	95 mm
	Circuit 1	Feeder 2	355,400,400	Cu	95 mm
		F∉eder 3	400,400,355	Cu	95 mm²
		Feeder 4		AVCv	mm
		Feeder 5	-	Al/Cu	mm*
	ĺ	Feeder 6	*	AVCu	mm
		Conductor		A/Cu	mm
	Circuit 2	C.B.		1 1	
		Branch	Fuse (R,S;T) (A)	1	Cable
		Feeder 1		A/Cul	man
Secondary		Feeder 2		Al/Cu	men.
(LV)Side		Feeder 3		Al/Cu	ma
		Feeder 4		AVCu	ന്ദര്
		Feeder 5		A/Cu	mm
		Feeder 6		AVCU	
				AVCU	നന
		Conductor		Vecol	<u></u>
	ŀ	C.B. Branch	Fuse (R,S;T) (A)	-	eldeO
		Feeder 1		AVCul	
				AVCU	மு
	Circuit 3	Feeder 2			mm'
	l	Feeder 3		Al/Cu	
	į	Feeder 4		Al/Cu	
		Feeder 5		Al/Cu	mm
	L	Feeder 6		AL/Cu	മന
Remarks					

	No./	Name	Tr.2/Dia	b Diab	 -
Transformer		Type Ground Mounta			bricaled
		ecity	400 kVA		
	20kV Fee	der	Wire	Ca	50 mm²
Primary		Line	Cable	AI	120 mm²
(MV)Side	Oreo Line	os	Exist (Circuit Breakers)		
		Fuse	None (Wire is installed i	nstead)
		Conductor	Bus-Bar	N	m/m²
-		C.B.	None		A
		8ranch	Fuse (R,S,T) (A)		Cable
		Feeder 1	500,630,400	Cu	70 mm² • 2
	Circuit 1	Feeder 2	630,630,500	Cu	70 mm ² * 2
- !		Ferder 3	500,500,315	Cu	185 mm²
		Feeder 4	•	ALCO	ണന²
	Ì	Feeder 5		ΑΙζυ	נואט)
		Feeder 6		AVC)	<u>ന</u> നു
	Circuit 2	Conductor		ΑVCυ	mm²
		CB.			Ā
		Branch	Fuse (R,S,T) (A)	1	Cable
		Feeder 1	<u> </u>	AL/Cu	m×m²
Secondary		Feeder 2		AVCul	m _s
(LV)Side		Feeder 3	-	AVCU	nen ⁷
		Feeder 4		A/Cu	пұп,2
		Feeder 5		AVCU	na ²
		Feeder 6		AUCU	ma ²
		Conductor	******	ALC)	tutu _s
		C.B.			A
	:	Branch	Fuse (R,S;T) (A)		Cable
,		Feeder 1	•	AI/Cu	mm³
	Circuit 3	Feeder 2		AI/Cu	វាយ ²
		Feeder 3		AZCu	uu,
	ì	Feeder 4		ALC:	ബന ²
- 1		Feeder 5		Al/Cu	ഇത²
		Feeder 6		Al/Cu	ഡമ [ു]
Remarks					

Date Nov.29th, 1998

Date Nov 29th, 1998

Substation: AMAWEEN (102) Feeder: Malki (101) Substation: AVAWEEN (102) Feeder: Malki (101)

			Tr.1/The Arabic Langua		
Transformer		ype	in Buildir		
	Cap		2001		
	20kV Fee		Cable	I A	185 mm
Primary		Line	Bus-Bar	N.	mm
(MV)Side	Orop Line				
		Fuse		T	
		Conductor	Cable/Bus-Bar	Al/Cu	
	i	CB.	O.C. Breaker	ļ	/
		Branch	Fuse (R,S;T) (A)	1	Cable
		Feeder 1		AVC	mm
	Circuit 1	Feeder 2		AVCU	mva
		Feeder 3		AUCU	mm
		Feeder 4		ΑνCυ	ma
		Feeder 5		AVCu	mm
		Feeder 6		ALCU	mm
	Circuit 2	Conductor	Cable/Bus-Bar	AVCV	IT4∩
		CB.	O.C./Manual Breaker	1	7
		Branch	Fuse (R,S;T) (A)	 	Cable
		Feeder 1		AVCu	mo
Secondary		Feeder 2		ΑVCυ	mm
(LV)Side		Feeder 3		A/Cu	mm
		Feeder 4	•	AUCU	mm
		Feeder 5		AVCU	, mm
		Feeder 6		ALC.	ma
		Conductor	Cable/Bus-Bar	AVC.	
		C.B.	O.C.Manual Breaker	1,300	mm
		Branch	Fuse (R,S;T) (A)		Cable
		Feeder 1		A/Cul	mm)
	Circum 3	Feeder 2		A/Cu	m/m
	Caccar 3	Feeder 3		A/Cu	mm
		Feeder 4	············	AVC	100
		Feeder 5		AVC	m/m
		1 55451 3			നന
		Feeder 6		AVCul	mm [*]

		Магле	Tr 2/Çarbi Paki 1		
Transformer		mp e	Ground Mounted		
		pacity	1,600	kVA	
	20kV Fee	đer	Cable	IA.	185 mm² (Ođ
Primary	1	Line	Bus-Bar	Çu	50 mm
(MV)Side	Drop Line	DS	Exist (On Load Type)		
	<u> </u>	Fuse	Exist (40A)		
	i	Conductor		Cu	300 mm
·	ĺ	<u>C.B.</u>	O.C. Breaker	ļ	1,250 /
	Ì	8ranch	Fuse (R,S,T) (A)	l	Cable
		Feeder 1	315,315,315	Al	70 mm
	Circuit 1	Feeder 2	315,400,250	AJ	120 mm
		Feeder 3	315,400,400	Al	185 mm
		Feeder 4		AVC ₂	ത്ര
		Feeder 5		Al/Cu	m m
l		Feeder 6		A)Cu	mm
	·	Conductor	Cable	Cu	500 mm
	Circuit 2	C.B.	O.C. Breaker	T	1,250
		Branch	Fuse (R,S;T) (A)	R,S;T) (A) C	
		Feeder 1	400,400,400	Ai	50 mm
Secondary		Feeder 2	630;400;315	Al	185 mm
(LV)Side		Feeder 3		Al/Cu	നന
		Feeder 4		A/Cu	תעדו
		Feeder 5		Al/Cu	mm
		Feeder 6		Al/Cu	mm.
		Conductor	Cable	Al/Cu	mm
		C.8.	O.C. Breaker	1.200	800 /
		Branch	Fuse (R,S,T) (A)	1	Cabie
		Feeder t	315,355,355	N	120 mm
	Circuit 3	Feeder 2	355:315:500	Αí	120 mm
		Feeder 3		ALCU	mm
		Feeder 6		A/Cu	Parts.
		Feeder 5		A Cu	
		Feeder 6		ĂĊ.	<u>ma</u>
					A mi
Remarks					
			<u> </u>		

付録5-3 20/0.4 kV変圧器の現地調査結果 (5/6)

Date Nov 29th, 1998

Data Nov 29th, 1998

Substation : AMAWEEN (102) Feeder: Maili (101)
 Substation: MAZZHE
 (103

 Feeder: Al Yob
 (104

	No/N	lame	Tr.5/Ko		
ran sfor mer		ре	in Buildin		
		acity	6301		
-	20kY Fee	der	Cable	A/Cu	ന്ന
Primary		Line	Bus Bar	Cu	mm
(MV)Side			<u> </u>		
		Fuse		F T	
		Conductor	Cabla	N.	500 mm 1,250 /
		CB.	O.C.Manual Breaker	 	Cable
		Branch	Fuse (R,S;1) (A)	 	
		Feeder 1	315;400;315	Cu	95 mm
	Circuit 1	Feeder 2	250;250;250	Cu	95 mm
		Feeder 3	400,250,250	Çυ	95 ா₃ന
		Feeder 4	250;W/a;250	Cn	95 mm
		Feeder 5	250;250;250	Cu	95 mm
	1	Feeder 6		AVC	mm
		Conductor		AVCU	m.n
		CB.		1	
		Branch	Fuse (R;S;T) (A)		Cable
	Circuit 2	Feeder 1		Al/Cu	mm
Secondary		Feeder 2	*****	Al/Cu	mili
(LV)Side		Feeder 3	******	AVCu	mit
		Fæeder 4		AVCu	mit
		Feeder 5		AlCu	ma
		Feeder 6		AJ/Cu	mer
	 	Conductor		Al/Cu	ma
	i	CB.		1,000	
		Branch	Fuse (R,S,T) (A)		Cable
		Feeder 1		AI/Cu	mer.
	0:	Feeder 2		AVCU	mvr
	Crount 3	Feeder 3		ALCU	CLALL.
	1			Al/Cu	
	1	Feeder 4	 	Al/Cu	nyn .
		Feeder 5			ma
	<u> </u>	Feeder 6	<u> </u>	Al/Cu	m _t
Remarks					

	No.A	vane	Tr.1/April	17th sq	
fransformer	Ty	pe	Ground Mounted		
	Capacity		630 KVA		
	20kV Fee		Cable	Al	185 mm²
Primary		Line	Bus-Bar	Ai	നന²
(MV)Side	Drop Line	DS	Exist		
		Fuse	Exist		
		Conductor		A!	Liku _s
		C.B.	O.C. Breaker		1,000 A
)	Branch	Fuse (R,S;T) (A)	L	Cable
		Feeder 1	400,400,160	Cu	70 mm²
	Circuit 1	Feeder 2	100,160,160	Cu	16 mm²
		Feeder 3	?;?;160	Cu	15 mm²
		Feeder 4	200,400,400	Cu	25 mm²
	1	Feeder 5	400,355,400	Cu	95 mm²
		Feeder 6		Al/Cu	Latus,
		Conductor		Al/Cu	(LXI)
		C.B.		l	
		Branch	Fuse (R,S,T) (A)	Cable	
	Circuit 2	Feeder \$		AVCU	നത²
Secondary		Feeder 2		Al/Cu	നന്ദ്
(LV)Side		Feeder 3	•	Al/Cu	mm ²
		Feeder 4	•••	AI/Cu	mm²
		Feeder 5		AI/Cu	пла,
		Feeder 6		ALC:	mm _s
		Conductor		AVCU	mm²
		C.B.		1	A
		Branch	Fuse (R,S;T) (A)	L	Cable
	l	Feeder 1		Al/Ç∪	
	Circuit 3	Feeder 2	*****	AI/C	nun²
		Feeder 3		AL/Cu	mm ²
	ł	Feeder 4		Ai/Cu	mm²
	I	Feeder 5		AVCU	mm ²
	l	Feeder 6		AVC	
Remarks					

Date Nov 29th, 1998

Date Nov.30th, 1998

Substation: MAZZHE (103) Feeder: AlTob (104) Substation: ERSAL (107) Feeder: Mojamah (112)

	F.	eeder:	A) Tob	(104)			
		Varne .	Tr.2/Damash				
ransformer		pe	Ground Mounted				
		acity	6301				
	20kV Fee	der	Cable	Al/Cu	mm		
Primary		Line	Bus-Bar	Al/Cu	mm		
(MV)Side	Drop Line		Exist				
		Fuse	Exist				
		Conductor	Cable	Cul	500 mm		
	}	C.B.	O.C. Breaker	├ ──	1,000 / Cable		
		Branch	Fuse (R,S,T) (A)	1			
		Feeder 1	350,400,400	1 24	185 mm		
	Crost 1	Feeder 2	400,250,250	Cu	120 mm		
		Feeder 3	400,315,490	N.	185 mm		
	1	Feeder 4	7 (315,315	A	120 mm		
		Feeder 5	200,315,200	A	120 mm		
		Feeder 8	630,630,315	Cu	300 mm		
		Conductor		AL/Cu	ma		
		C.B.					
	ļ	Branch	Fuse (R;S;T) (A)		Cable		
	Cércuit 2	Feeder 1		Αl/Cu	ខា ខ		
Secondary		Feeder 2		Al/Cu	ma		
(LV)Side	I -	Feeder 3		Al/Cu	ma		
	1	Feeder 4		Al/Cu	ma		
	1	Feeder 5		Al/Cu	ma		
	l	Feeder 6		AVÇU	m		
		Conductor		Al/Cu	ma		
	1	C.B.		† '			
		Branch	Fuse (R,S;T) (A)	1	Cable		
		Feeder		AI/Cu	ITYS		
	Circust 3	Feeder 2		ALCI	rtvi		
		Feeder 3		Al/Cu	EU.		
	1	Feeder 4		AI/Cu	C) C		
	1	Feeder 5		Al/Cu	m		
	1	Feeder 6		AI/Qu	TNC		
Remarks							

	No Mama		Tr. Msthlakieh		
[ransformer	Ť	Dê	Ground Mounted		ground)
	Capacity		6301	(VA	
	20kV Fee	er	Cable	A	185 mm
Primary		Line	Bus Bar	Ču	mm
(MV)Side	Orop Line	DS	Exist (On Load Type)		
	i	Fuse	Exist		
		Conductor	Cable	Cu	500 mm
	(C.B.	O.C. Breaker	L	1,2507
	1	Branch	Fuse (R,S,T) (A)	L.,	Cable
		Feeder i	315,400,400	} AI	120 mm
	Circuit 1	Feeder 2	400;315;400	I AL	185 mm
		Feeder 3	315;315;315	N	95 mm
		Feeder 4	400;315;400	Q.	50 mm
		Feeder 5		AL/Cu	ma
	ļ	Feeder 6	355;200; ?	Cu	50 mm
	}	Conductor		ΑVCυ	ma
	Circuit 2	C.B.		1	
		Branch	Fuse (R,S,T) (A)	†	Cable
		Feeder 1		Al/Cu	.mar
Secondary		Feeder 2		Al/Cu	Liki.
(LV)Side	0.00	Feeder 3		ALCU	er st
		Fæeder 4		Al/Cu	DYT
l		Feeder 5	 	Al/Cu	UAL
i		Feeder 6		AVCU	cor
	 	Conducto	J	AVCu	mm.
		C.B.	<u> </u>	1000	1(4)
		Branch	Fuse (R.S.T) (A)	+	Cable
		Feeder 1	1030,033,034	A/Cu	ma
İ	Cimula 2	Feeder 2	<u> </u>	AUCV	and the same
	Caucits	Feeder 3		A/Cu	
		Feeder 4	 	Al/Cu	
	1			Al'Cu	na
l	1	Feeder 5			
<u> </u>	ļ	Feeder 6	<u> </u>	AL/Cu	TI T
Remarks			•		

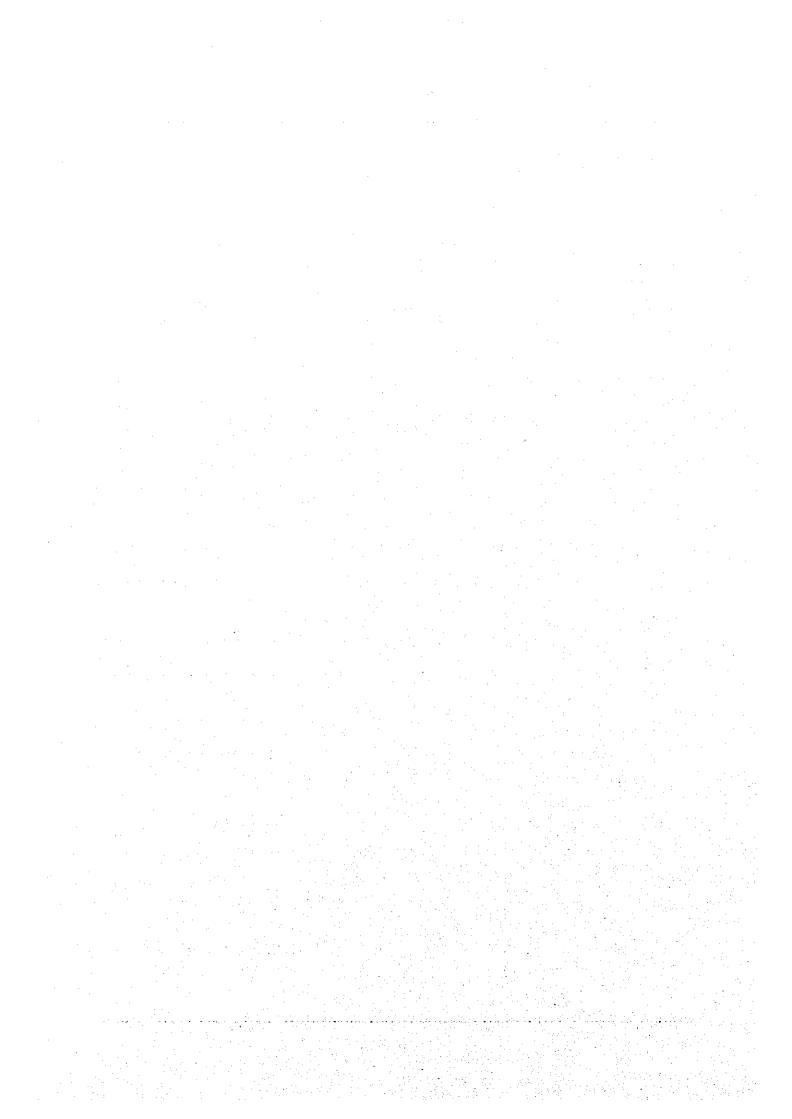
付録5-3 20/0.4 kV変圧器の現地調査結果 (6/6)

Date Nov 30th, 1998

Date Nov 30th, 1998

Substation: ERSAL (107) Feeder: Mojamah (112) Substation: QABOON 1 (110) Feeder: Abasien (219)

	No./	Name	Tr.2/A) \$	Saihieh	
Transformer	T	/pe	Ground Mounted (Underground)		
		vacity	630 kVA		
	20kV Fee	der	Cable	A	185 mm²
Primary		Line	Bus-Bar	AVCu	ന്നു
(MV)Sida	Orop Lina	os	Exist (On Load Type)		
·	_	Fuse	Exist		
		Conductor	Cable	Cu	300 mm²
		C.B.	Manual Breaker	L	1,000 A
		Branch	Fuse (R,S,T) (A)	l	Cabio
		Feeder I	400,400,400	LA!	185 mm²
	Circuit 1	Feeder 2	400,400,355	A	185 mm²
		Feeder 3	315,355,400	AI.	185 mm²
		Feeder 4	 .	Al/Cu	mm²
		Feeder 5	400,400	Cu	50 mm²
		Feeder 6	400	Cu	25 mm²
		Conductor		AVCU	mm²
	Circuit 2	C.B.		1	A
		Branch	Fuse (R,S;T) (A)	Cable	
		Feeder 1		AVCu	ന്ന
Secondary		Feeder 2		AlX	rnm²
(LV)Side		Feeder 3		Al/Cu	mm²
		Feeder 4		Al Cu	നന²
		Feeder 5		AVCu	ന്ന²
		Feeder 6		AVCU	mm²
		Conductor		Arcul	anm²
		C.B.		 	A
		8ranch	Fuse (R,S;T) (A)	1	Cable
		Feeder 1		AVCU	mm²
	Circuit 3	Feeder 2		AVCU	mm²
		Feeder 3		AVO	mm²
		Feeder 4		AI/Cu	mm²
1		Feeder 5	*	AVC	myn²
İ		Feeder 6		Al/Cu	mm²
Remarks					


	No Name		Tr.3/Khudar		
[ransformer		ype	Ground Mounted		
		acity	630 XVA		
	20xV Fee	der	Cable	I AI I	185 mm²
Primary		Line	8us-8ar	Cu	mm²
(MV)Side	Orop Line	os	Exist (On Load Type)	1	11311
, ,	l '	Fuse	Exist		
		Conductor	Cable	Cu	300 mm²
		C.B.	O.C. Breaker	1	800 A
		Branch	Fuse (R,S,T) (A)		Cable
		Feeder 1	315,315,315	Cu	50 mm²
ı	Circuit 1	Feeder 2	160,160,160	Ctr	35 mm²
		Feeder 3	250,315,400	Cu	50 mm²
		Feeder 4		AVCU	mm²
		Feeder 5		Al/Cu	ram²
		Feeder 6	•	Al/Cu	mm²
i		Conductor	Cable	Cu	300 mm²
	Circuit 2	C.B.	O.C. Breaker	1	800 A
		Branch	Fuse (R,S;T) (A)	Cable	
		Feeder 1	355;355;355	Cu	50 mm²
Secondary		Feeder 2	—	Al/Cu	ww ₅
(LV)Side		Feeder 3		A) Cu	mm²
		Feeder 4		A½/Cu	mm²
		Feeder 5		Al/Cu	mm²
		Feeder 6		ΑνCu	F(#1)
		Conductor		A/Cu	mm²
	l.	CB.		AZCU	mm² A
		Branch	Fuse (R;S;T) (A)		Cable
		Feeder 1		Al/Cui	mm²
	Circuit 3	Feeder 2		Al/Cu	rom²
	CICCIO	Feeder 3		Al/Cu	
		Feeder 4		Al/Cu	mm²
		Feeder 5	}	AVCu	rom²
		Feeder 6		AVCU AVCU	men ²
		r eeder 6		AVCU	mm°
Remarks					

付録5-4 電力計測スケジュール

	日付	エリア	引出し口	フィーダー名	タイプ
-20 k	Vフィーダー				
	11/23	市外	Bab Sharki SS	Younesiah	
	11/24	市外	Nabek SS	Dair Atia	
	11/25	市外	Midan 2 SS	Barada	
	11/26	市外	Sydnaya SS	Kotaifah I	
	11/28	市外	Zabadani SS	Zabadanee	
	11/29	市内	Amaween SS	Malki	
			Mazzhe SS	Al Tob	
	11/30	市内	Ersal SS	Mojamah	
			Qaboon 1 SS	Abasien	
低田	棟(400 V -	- 220 V)			
!	12/2	市外	Duma SS	Al Jallaa	商業地区
				Betwanah	住宅地
		<u> </u>	Adra 1 SS	Al Torik	不法接続地区
	12/3	市外	Midan 2	Sahnaia	混合地区
				Semex	工業地区
	12/6	市内	Qaboon 1 SS	Adawi	住宅地
			Bab Sharki	fallad	工業地区
		<u> </u>	Mazzrha	Salhie I	混合地区
	12/7	市内	Qaboon 2 SS	Warwar	不法接続地区
	12/9	市内	Dawar Al Matar SS	Al Jamal	商業地区

第6章

調査対象地域の既存整備・開発計画

第6章 調査対象地域の既存整備・開発計画

6.1 都市開発·工業化計画

調査団は、シリア開発計画局 (SPC) と県 (Governorate) 当局から地域開発計画の基本方針または開発計画の公式情報を得るべく努力をしたが、第 2 章で国家開発計画について述べたのと同様、現時点では地域開発に関し公式に承認されたまたは明らかにされたものは存在しないという返事であった。

一方、調査団は PEDEEE から調査対象地域の電力系統の 2000 年までの開発計画を入手した。地域の工業開発計画等の詳細な情報は一切公式に発表されないため、PEDIEE の計画は過去の電力量販売実績とピーク電力を基に、開発情報の一部を考慮して作成されている。当調査団と同様に、PEDIEE はダマスカス郊外地域の電力需要はダマスカス市のそれよりも高い率で伸びると予想している。なぜならば、市における開発はすでに飽和状態にあり、工業および商業セクターの開発は今後ダマスカス郊外に向けて広がると予想されるためである。事実、多くの工場や住宅が郊外で現在建設中である。従って、ある程度の地域開発計画は PEDIEEE の系統開発計画に既に織り込み済みであると言える。

調査団が、現地調査段階に PEDEED より入手した調査対象地域における都市開発・工業化開発計画に関する情報は以下の通りである。但し、これらの情報はあくまでも PEDEED が独自に収集した非公式なものである。

(a) 工業団地開発計画

Adra 地区に大規模工業団地の開発が進行中で、2000年より順次工場の運転が開始される予定である。

(b) 住居地域開発計画

ダマスカス市内の住宅・居住地域の開発がほぼ飽和状態にあり、郊外において多くの住宅地域 の開発が進行中または計画されている。

	<u>地 域</u>	規 摸	完成年
-	Kafersuseb 地区	約20万人	2000 年より
-	Dummar 地区	既存住宅地域の拡張	2000 年より
		(約 10 万人)	
_	Yamrook 地区	約5万人	2001 年より
	Kudseia 地区	約 10 万人	2000 年より
	Roostia seks	WA 10 12 / C	2000 0

第 4.2 節で述べた調査対象地域における変電所毎の電力需要予測には、以上の計画は織り込み済みである。非公式ながら、新変電所や配電系統の拡張・拡充計画もこれらの情報に従って作成する。

6.2 230 kV 系統の開発計画

PEEGT は、調査対象地域において信頼度の高い安定した電力の供給を目的として、230 kV 系統強化のため下記のプロジェクトを実施中である。

(a) 230/66/20 kV Dimas 変電所の建設

Dimas 変電所は現在建設中であり、1999年前半には運転開始の予定である。この Dimas 変電所から既設 Fursan までの 16 km の 230 kV 送電線は既に完成している。

(b) 230/66 kV Zahera および Mazzuha 変電所の建設

Zabera および Mazzrha 両変電所の建設に関わる入札は既に締め切られ、PEEGT により評価審査中である。2001 年の完成を予定している。Nasrich—Mazzrha 間および Tishrin—Zahera 間の230kV 送電線は、PEEGT の資金にて建設されることになっている。

さらに PEEGT は、グマスカス市および郊外の電力供給能力の強化を図るため、調査対象地域内のBaramekha, Al Faihaa そして Saiedeh Zanabの3ヶ所に230/66 kV変電所を付随する送電線も含めて建設する計画を持っている。これら3変電所は、単器容量125 MVAの230/66 kV変圧器を2台設置する予定である。資金手当てはまだ決まっていない。完成は、2010年の予定である。

6.3 66 kV 系統の開発計画

(a) 南部地区の SCADA および通信システムの開発

国全体をカバーするSCADAシステム開発プロジェクトの一環として、南部地域のSCADAおよび 通信システムの開発プロジェクトが EU の資金で始まったばかりである。 給電司令所はグマスカス 市の Kafersuseh 変電所に設置され、南部地域の 66 kV 配電系統の迅速、効率的かつ弾力的で 安全な運転を図ることを目的とする。 国際入札が行われ現在提案書の審査中である。 PEDEEE は 2002 年の完成を見込んでいる。

(b) 66/20 kV Kafersusch 変電所の建設

2 台の30 MVA 変圧器を有する Kafersuseh 変電所は現在建設中である。1998年 12 月末に非公式に運転を開始した。

(c) 建設中の 66/20 kV 変電所

PEDEEEの自己資金によって、Harash (1x30 MVA)とKhan Al Shih (1x20 MVA)に 66/20 kV 変電所を現在建設中である。両変電所とも 1999 年中に完成の予定である。

Harash 変電所は Mazzrha - Amaween 間の 66 kV 地中送電線に、IN/OUT 方式で接続される。 Khan Al Shih 変電所は、Kisweh 変電所から 66 kV 架空送電線により接続され、将来 Khan Al Shih より Qunaitra まで延長される。

(d) ダマスカス市地域における8変電所の建設

下記の 8 変電所がイスラム開発銀行 (IDB)の資金によりダマスカス市に建設される予定である。 国際入札は既に終わり、現在入札書類の審査中である。2001年の完成を目指している。

(i)	Barzeh	2 x 30 MVA
(ii)	Zablatani	2 x 30 MVA
(iii)	Ibn Al Nafis	2 x 30 MVA
(iv)	Jalaa	2 x 30 MVA
(v)	Hosh Blas	2 x 30 MVA
(vi)	Sheikh Hasan	2 x 30 MVA
(vii)	Qsoor	2 x 30 MVA
(viii)	Jaramana	2 x 30 MVA

これらの変電所に付随する合計 12 kmの 66 kV 地中送電線は、PEDEEE の資金にて建設されることになっている。

(e) ダマスカス郊外地域の3変電所の建設

Yalda、Jededat Artouz および Bludan の 3 ヶ所に、66/20 kV 変電所を 2003 年の完成を目指して 建設する予定である。資金についてはサウジ開発銀行/アプダビ銀行と現在交渉中である。これら の変電所に必要な 10 km の架空送電線は、PEDEFE の資金により建設される予定である。

(f) ダマスカス郊外における10変電所の建設

下記の 10 変電所が 2005 年から 2010 年の間の完成を目指してダマスカス郊外地域に建設される計画で、ヨーロッパ投資銀行からの資金調達を予定している。 20 km の地中送電線と 350 km の架空送電線は、PEDEEE の資金を予定している。

(i)	Al Tal	2 x 30 MVA
(ii)	Yabroud	2 x 30 MVA
(iii)	Harasta	2 x 30 MVA
(iv)	Nashabieh	2 x 30 MVA
(v)	Meleha	2 x 30 MVA
(vi)	Saiedeh Zinab	2 x 30 MVA
(vii)	Kudseia I	2 x 30 MVA
(viii)	Kudscia II	2 x 30 MVA

(ix) 変圧器の追加

2 x 30 MVA

(x) Darea

2 x 30 MVA

以上の計画中の変電所を含めた将来予定される66 kV 送電系統図を図 7.4.8 に示す。

(g) 66/20 kV 変圧器 (30 MVA) の調達と据付け

容量 30 MVA の 66/20 kV 変圧器 30 台が、既設の容量の小さい変圧器の取替えを目的として PEDEEB の自己資金によって調達、据付けが行われる。10 台の変圧器の供給・据付け業者は既 に決定し実施に入っている。この10台の内、4台がグマスカス郊外配電会社に納められ、Marrad、Fursan、Al Matar および Midan-2 の既設変圧器と取替えられる。

残りの20台の入札は現在審査中であり、変圧器の設置先はまだ決定していない。

また、Ersal 変電所の既設変圧器(2x20 MVA)を 2x30 MVA の取替えるための供給・据付けの入札も現在審査中である。 取替えは 2000 年になる。

6.4 20/0.4 kV 配電系統の開発計画

(a) 20 kV システムへのキャパシタの設置

無効電力を補償することにより、66 kV系統の電圧を適正なレベルに保つため、PEDEIEは66/20 kV 変電所の 20 kV 母線へのキャパシタの据付けを、以下に述べる 2 段階のプロジェクトで進めている。

キャパシタ設置 (第1期)

合計 145 MVar のキャパシタを調査対象地域の変電所に据付け中である。その据付け変電所と キャパシタ容量を表 5.1-2 示す。据付け工事は 1999 年 3 月までには終了予定である。

キャパシタ設置 (第2期)

前述の同プロジェクトの第2期工事として PEDEEE の自己資金により、電圧改善と無効電力補償のため、合計 300 MVar のキャパシタの調達と据付けを行うことになっている。その対象はシリア全国の 66/20 kV 変電所であり、1999 年中に実施される。

(b) 20 kV 遮断器の取替え

PEDEEE は SF6 ガスタイプの 20 kV 遮断器 125 台を自己資金にて購入し、全国の既設変電所の老朽化した 20 kV 遮断器の取替えを行う予定である。125 台の内、73 台がダマスカス市配電会社に供与され、以下の変電所で 20 kV 遮断器の取替えが行われる。

Midan I

28 台

Qaboon I 10 台 Ersal 35 台

取替え工事は、1999年中に行われる。

(c) 20 kV 開閉機器装置の取替え

ダマスカス市配電会社では、Ashmar および Thawra の2 変電所において既存の20 kV 開閉機器盤をSF6 ガス絶縁キュービクル(GIS)に取替える予定である。資金は PEDEEE の自己資金を予定している。新しいキュービクルは、保守作業と非常時の際の弾力的な運転が可能なように2 重母線を採用している。このプロジェクトは、2000年に実施の予定である。

(d) 変電所における20 kV 開閉機器装置の増強

ダマスカス郊外配電会社は、PEDEEE 資金により Zabadani、Duma および Adra-1 の 3 変電所で 20 kV 開閉機器キュービクルの増設を行う。新しいキュービクルは SF6 ガス遮断器を備えたもので、2000年に実施予定である。

(e) 20 kV 負荷開閉器の調達と据付け

PEDEEE はシリア全国の配電設備を対象として、自己資金により 20 kV 負荷開閉器を 5,000 台調達し、配電用変圧器の既存の開閉器を交換する予定である。合計 5,000 台の内グマスカス市配電会社に 800 台、グマスカス郊外配電会社に 500 台が供与される。据付け工事は 1999 年から 2000 年にかけて行われる。

(f) 20/0.4 kV 配電設備の購入

PEDEER は、20/0.4 kV 配電設備の拡張、改善および保守を目的として、毎年自己資金にて 20/0.4 kV 配電設備用の材料を購入し、配電会社に供給している。次の表は、PEDEER の 5 ヶ年 計画によるダマスカス市および郊外地域への材料供給の予定である。

內 容 1998 1999 2000 合計 1996 1997 ダマスカス市 20/0.4 kV 配電用変圧器 (台) 121 70 104 117 125 537 481.8 20 ky 配電線 108.8 78 100 100 95 (km) 0.4 kV 配電線 55.7 16 50 69 97 287.7 (km) ダマスカス郊外 20/0.4 kV 配電用変圧器 65 117 127 130 619 (台) 180 20 kV 配電線 108.6 114 122 129 605.6 (km) 127 104 0.4 kV 配電線 113.2 70 93 120 500.2 (km)

表6.4-1 ダマスカス市および郊外地域への材料供給の予定

6.5 運転・保守に関する開発計画

(a) 20 kV 配電司令所へのコンピュータ管理システムの導入

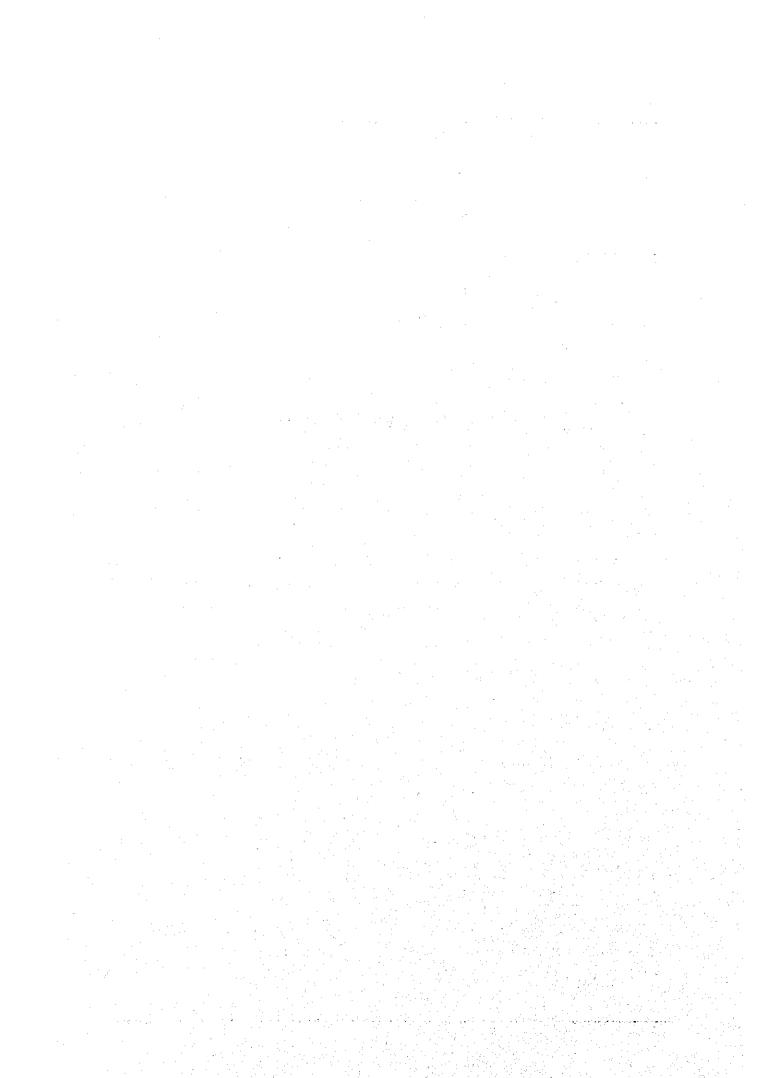
PEDEEE は EU の援助により ESSP のもとで、20 kV 配電司令所が配電網の管理、運転、長期の配電系統計画に対して効率良く機能するために、コンピュータ管理システムを導入する。

PEDEEE はこのパイロット事業に適当な配電会社を選定し、コンピュータ管理システムを導入する。

20 kV 配電網のコンピュータによる管理システムの導入は、PEDEEE にとって将来最新の配電システム管理ツールを使用する際に、非常に有益な経験となる。このパイロットプロジェクトとしてのコンピュータ管理による系統マップや運転データの蓄積は、配電システム全体の近代化を実施する際のひとつの実地演習として貢献すると思われる。

このプロジェクトは 1999年の中旬から開始し、12ヶ月にわたり実施される。 予算は約 485,000 ECU である。

(b) アレッポ研修センター


シリア北部の大都市アレッポにおいて、EU の援助により電力セクターの研修センターの開発が、 プロトタイプとしてまた将来のモデルとして、ESSP の中で行われている。アレッポ研修センターの 目的は、高品質の配電設備技術の研修を PEDEEE のスタッフ、すなわち技術者、電気工事者、 ケーブルジョインター、変電所オペレーター、顧客サービス担当者に対して行うことである。

アレッポ研修センターの第1期開発は、1996年から1998年にかけて進められ、4つの研修室、6つのワークショップ、そして屋外研修ヤードが完成している。

第2期工事が、2000年の完成を目指して現在進行中である。

第7章

配電網の整備基本計画

第7章 配電網の整備基本計画

7.1 設備基準

現在、PEDEEE およびグマスカス市および郊外の両配電会社では、配電設備の計画・設計のための公式な基準類が存在しないため、その計画や設計に不都合が生じている。66 kV 変電所と送電線を含む配電設備の計画や設計は、シリアにおける配電系統の開発の中で長く適用されてきたある種の標準的な慣例にしたがって行われている。

したがって、公式な文書の形でシリア配電系統の設備計画や設計に係わる最も適当な基準を作成することが非常に重要であり、以下のようなメリットが考えられる。

- 統一された慣習の適用による計画・設計のコストの低減
- 同じ設計の適用による共通部品の使用によるスペアパーツの数量の低減
- 運転と保守の容易性

以下の電力設備の計画・設計に関する基準をこの章で述べる。この基準は現在の PEDEEE の標準的な 慣習と世界の電力会社で採用されているスタングードを基にして調査団によって作成された。

- (a) 66/20 kV 変電所
- (b) 66 kV 架空および地中送電線
- (c) 20 kV および低圧配電設備

7.1.1 66/20 kV変電所設備基準

66/20 kV 変電所の計画・設計に関する設備基準を付録 7-1「66/20 kV 変電所の設備基準」にまとめた。 この推奨する設備基準の中から、特に下記の項目につき補足説明する。

(1) 主変圧器の単器容量および数量

調査対象地域の既設変電所の主変圧器容量と数量は、表 5.1-2 に示す通りである。全ての既存変圧器は3 相変圧器である。

この表から分かるように、標準的な 66/20 kV 変電所は単器容量 20 MVA の変圧器を 2 台ないし 3 台設置している。但し、Thawra および Al Hajar Al Aswad 変電所は 30 MVA 変圧器が 2 台または 3 台設置されている。また、Qaboon II 変電所は 40 MVA 変圧器 3 台を設置している。最近の需要増加に対応するた

めに、より大きい単器容量の変圧器の必要性が増している。

小容量 10 MVA 変圧器は、ダマスカス郊外の変電所でのみ使用されている。

この様に、調査対象地域における既設変電所の変圧器の主流は、単器容量 20 MVA である。しかし、増 大する需要を満たすため単器容量 30 MVA や 40 MVA の変圧器が高い負荷密度の地域で設置され始めている。そして最近では、単器容量 30 MVA 変圧器が標準的な容量として購入されている。

標準単器容量として、10 MVA、20 MVA および30 MVAの3タイプに加え、最近の急激な需要の伸び も考慮し、40MVAも標準単器容量とすることを推奨する。負荷密度の高い地域に使用されている小容量 の変圧器はより大容量の変圧器に交換し、撤去された小容量のものをその有効利用のため郊外地域の追 加の変圧器として使用する。

信頼度の観点より、1 つの変電所での変圧器台数は 2 台ないし 3 台を提言する。そうすれば、仮に 1 台の変圧器が故障した場合でも、変電所の全停を避けることができる。1 台だけの設置は仮設備または緊急設備の場合のみに限る。

(2) 20 kV フィーダーの標準本数

現地調査の結果、20 MVA 変圧器 1 台あたりの 20 kV フィーダーの平均的数量は、グマスカス市で 10 から 12 木、郊外で 6 から 8 木である。(付録 5-2¹グマスカス市および郊外の 20 kV フィーグー」を参照。)

1 台あたりの 20 kV フィーグーの本数は、1 フィーダー当たりの適正な負荷、その変電所の供給する範囲の負荷の特質などを長期的な視野から十分に検討した上で決定されるべきである。

変圧器 1 台あたりのフィーダーの最大本数は、10 MVA に対して 6 本、20 MVA に対して 8 本、30 MVA に対して 10 本とすることを推奨する。しかし、供給信頼度、負荷の増加、将来の大容量変圧器への変更、20 kV フィーダーのルート配置などを検討の上、必要であれば本数を増やすことも可能である。

(3) 遮断機の定格

EU による ESSP で作成された技術報告書 No.4 「送電系統拡張計画」によれば、コンサルタントである EDFは、2010年におけるシリア全国の 400/230/66 kV 送電系統に対して行った短絡故障計算の結果から、 66 kV 遮断器の短絡容量として 31.5 kA を推奨している。この定格容量は、最近の 230/66 kV 系統の計画 に採用されている。調査団は、将来この遮断容量を標準として適用することに異存はない。

20 kV 遮断器に関しては、調査対象地域における 66/20 kV 系統の 20 kV 短絡故障電流を、2000 年、2005 年および 2010 年それぞれの電力潮流解析の中で同時に計算した。その結果、20 kV 系統の短絡電流は 2010 年においても 25 kA を超過することはない。したがって、20 kV 遮断器の定格遮断電流として 25 kA を標準とすることを推奨する。

7.1.2 66 kV送電線設備基準

66 kV 送電線の計画・設計のために作成した設備基準を、PEDEEE の参考用として付録 7-2 に示す。以下は、その中の主な留意点である。

(1) 架空送電線の鉄塔および電線

5.2.2 節で述べたように、PEDEEE は 66 kV 送電線に対してシリア全国でたった 1 つの標準設計を採用している。電線がACSR240/40の1回線送電線で、鉄塔型は懸垂鉄塔と耐張鉄塔の2型である。この66 kV 送電線は、気候、送電容量、地域性などが異なる様々な場所で運転されている。その結果、ある所では、需要の増加につれて送電容量が不足する事態(過負荷)に直面している。

このような状況から調査団は、将来の送電線ルート上での土地収用の難易度、需要の仰び、地域環境と の調和などを考慮して、2回線鉄塔も標準として考慮することを提言する。電線サイズについては、それぞ れの送電線の必要送電容量に応じて、より大きなサイズを採用することが効果的である。

(2) 絶縁設計

3.5.2 節および 3.6.2 節で述べたように、過去の記録によるとシリアでは送電線の絶縁破壊故障が著しく多いことが分かる。特に、66 kV 送電線の故障回数は顕著である。碍子沿面絶縁破壊は、碍子表面に付着した埃に早朝の露が付着して引き起こされることが多い。砂漠地帯での埃には塩分が含まれているが、長距離の送電線においては碍子表面の洗浄は実際的ではなく、その解決策には碍子装置の表面漏れ距離の増加または導電性コーティングを表面にほどこした特殊碍子の採用が考えられる。表面漏れ距離を増加させるには2つの方法があり、1つは碍子連の碍子の個数を増やすことであり、もう1つは普通碍子の代わりに耐霧碍子の採用である。碍子個数を増やす場合はより大きな鉄塔が必要となるが、耐霧碍子の場合は既設送電線の碍子を取替えるだけなので同じ設計の鉄塔が適用できるため、この問題を解決するのに適当である。新設送電線への最適な解決策の決定にあたっては、現場での実施調査または技術的なモデルテストによるべきである。

(3) 地中送電線のケーブルサイズ

調査対象地域に敷設されている 66 kV 地中送電線用ケーブルは、すべて銅導体で断面積 300 mm²の CV ケーブルである。

このケーブルの許容電流は、連続定格、短期定格、短絡定格の 3 ケースについて明確にしておく必要がある。送電用ケーブルの電流容量は、その敷設状況により変化する。

300 mm²銅導体でも不十分な場合は、より大きなサイズの導体の使用を考慮する必要がある。このため、 現在 Midan-II – Al Hajer Al Aswad 間に敷設予定である銅導体 625 mm²のケーブルを基準に盛り込んだ。

7.1.3 20 kVおよび0.4 kV配電設備基準

20 kV および 0.4 kV 配電設備の計画および設計に適用する設備基準の調査団の推奨案を、付録 7.3 「20 kV および 0.4 kV 配電設備基準」として添付した。以下にその要点を述べる。なお、設備基準の策定においては、可能な限りシリアの国産品を使用することを基本とした。

(1) 支持物

現在シリアでは3種類の支持物が使われているが、直線部分には極力国産の鉄筋コンクリート住(単柱) を使用することとした。ただし、重機の進入が困難な場所においては木柱を使用する。また、末端柱や角度 柱などの高強度の要求される場所においては、鉄塔または11柱(鉄筋コンクリート柱)を使用することとした。

支持物の径間および根入れについても、その標準を付録7-3のとおり定めた。

(2) 電線およびケーブル

20 kV および 0.4 kV フィーダーの幹線に使用する電線およびケーブルの標準を下表に示す。

	20 kV	0.4 kV
架空裸線	AS 120 mm ²	AJ 120 mm²
架空ケーブル	Al 185 mm²	Al 120 mm²
地中ケーブル	Al 185 mm²	Cu 120 mm ³

表7.1-1 模準電検およびケーブル

分岐部分の電線については、その負荷実態や将来の負荷の伸びを考慮して、幹線部分に比較して細いサイズの電線を使用することも考慮する。ただし、20 kV 幹線については、他フィーダーとの連系を考慮し、末端まで同一サイズの電線を使用することとした。

一方現地調査において、架空・地中線ともに不適切な施工による不具合が認められたが、これらについては別途施工基準を定め、現地の作業者に習熟させることが望まれる。

(3) 変圧器

変圧器の供給エリアは、互いに交差または重複しないように、また低圧線が長くなりすぎて電圧降下が許 容値を超過しないように設定する。設置する変圧器容量は、需要密度に応じて決定することとする。従っ て、比較的需要密度の高い都心部に設置される変圧器は、需要密度の低い郊外に比べて大容量となる。 変圧器の設置場所は、市街地では主にコンクリート製の建屋内、郊外の架空線地域は主に柱上とし、保護 装置として避雷器およびヒューズを取付けることとする。

(4) 開閉器

20 kV フィーダーの分割、または他フィーダーとの連系のため開閉器を設置する。フィーダー事故発生時

には、これらの開閉器を操作することにより事故区間を健全区間から切り離し、早期に健全区間に送電を再開する。これらの開閉操作は、負荷のかかった状態で行う必要があるため、開閉器は負荷開閉機能を有するものを適用する。

7.2 電力供給の品質に関する基準

推奨する電力供給の品質に関する基準を付録7-4「配電設備計画基準」に示す。

7.2.1 系統および供給電圧に関する基準

需要家への供給電圧を望ましい範囲に維持するために、すべての電圧階級において系統電圧を適正 値に制御しなければならない。PEDIEEEの66 kV、20 kV および 0.4 kV 系統についてそれぞれ系統電圧 を適正値に管理すべきである。

(1) 66 kV 系統電圧

66 kV 系統の電圧は、まず PEEGT の 230/66 kV 変電所の 66 kV 母線において、変圧器の負荷時タップ切換装置および電力用コンデンサにより制御される。しかしながら、66/20 kV 変電所の 66 kV 母線受電電圧 (PEDEEE 側)は、送電線の長さ、供給電力、力率等に依存する送電線の電圧降下により変化してくる。 通常 66 kV 母線電圧値は定格電圧の± 5%以内に維持されるべきである。 66 kV 送電線の電圧降下が大きい場合、電力用コンデンサを 66/20 kV 変電所の 20 kV 母線に設置する。

(2) 20 kV フィーダー供給電圧

20 kV フィーダーの供給未端の電圧を適正値に維持するために次の4つの方法が考えられる:

(a) 66/20 kV 変圧器の負荷時タップ切換装置:

66/20 kV 変圧器にはタップ幅± 10%の負荷時タップ自動切換装置を設置する。既設変圧器は± 16%以内のタップ幅を持つが、これほどの大きなタップ幅は適当ではない。現状では、タップ切換操作は手動であるが、供給レベルを改善するために自動制御装置を導入することが望ましい。また、線路の電圧降下を補償するために、重負荷時にはタップ電圧値を高めに、軽負荷時には若干低めに設定すべきである。

(b) 負荷時タップ切換装置とともに使用する線路電圧降下補償装置:

線路電圧降下補償装置とは、負荷に応じて重負荷時には高めに、軽負荷時には低めに自動的に電圧を設定し、負荷時クップ切換装置を調整して20kVフィーダーの電圧降下を補償する装置である。 実際の機器においては、CT により測定された電流値を負荷値に変換して制御する。この装置は、負荷時クップ切換装置が自動モードにある時のみに作動する。

(c) 線路端への電力用コンデンサの設置:

20 kV フィーダーの配圧降下を軽減する最も良い方法は、負荷力率を95%近辺に改善することである。このために、400 V 電力用コンデンサが多くの20/0.4 kV 変圧器サイトに設置されている。さらに、20 kV および20/0.4 kV の大規模需要家側への電力用コンデンサの設置の推進を推奨する。日本では電気事業者と需要家間の供給契約において、力率改善のため電力用コンデンサの設置が要求されており、コンデンサの設置が確認された後に供給線が接続される。また、力率がある値を超えて改善されると、電気料金が下がるような奨励措置もとられている。

(d) 緑路中間への電圧調整装置の設置:

上記の対策を施してもなお、線路が長いために電圧降下が大きい場合、電圧降下を補償するために 線路の中間点に電圧調整装置を設置する。電圧調整装置は、2 次側電圧を適正に維持するようなク ップ付きの(例えば± 2 x 2.5%)単巻オート変圧器である。広く使われているのは、3~5 MVA の柱上 タイプのものであり、負荷時タップ切換装置付きの自動型と、無負荷タップ切換装置付きの手動型の 両方がある。

(3) 0.4 kV 供給電圧

400 V 送り出し電圧を適正値に維持するために、20/0.4 kV 変圧器には、400 V ± 2 x 2.5%の無負荷時タップ切換装置を取付ける。需要家未端の定格電圧は 380/220 V であるので、電圧降下のため 5%の許容幅を考える。

電圧降下を許容範囲 8%以内に抑えるために、長距離・重負荷の低圧線は計画すべきではない。

7.2.2 供給信頼度基準

シリアの供給信頼度改善への取組みは未だ初期段階にあり、計画に際し確立された基準は存在しない。 供給信頼度は、一般的に供給の継続性で判断される。例えば、年平均供給支障時間などである。発電設 備計画においては、電力供給信頼度の判断材料として LOLP(電力不足確率)が用いられる。送電系統や 配電系統の信頼度は、系統全体としての性能(電力総合指数)または送配電網の特定の地点での供給信 頼性(負荷点指数)の程度を示すものである。送電および配電系統の信頼度基準には、断定的基準と確率 的基準の2種類がある。

断定的基準とは、比較的頻繁に発生する事故の際に、供給支障なしに信頼性を確保できるかどうかに着 目したものである。これは一般に N-1 基準(単一設備故障)または N-2 基準(2 重設備故障)と表現されて いて、それぞれ送配電設備の 1 要素または 2 要素が切り離された時でも需要に応えて電力供給ができる かどうかを判断するものである。送電線、ケーブル、変圧器など遮断器と共に構成される系統単位設備の 故障を考慮し、時には重要な変電所の母線全体の故障や連続する遮断なども考慮する。しかし、全てのケ 一次において電力供給支障が起こらないように考慮する必要はなく、これらの指標はあらかじめ設定された 故障に対して計算により判定可能である。 確率的基準とは、系統の信頼度を、すなわち系統構成要素の偶発的な故障の系統への影響を、故障発 生の統計的確率により考えようとするものである。

電力会社の大部分は、それらの系統の計画にあたっては断定的基準を採用している。主に、単一設備 故障においても供給故障が起きないような N-1 基準である。

断定的基準は、潮流解析中に選択された系統構成要素の故障に対して計算が可能であり、送電線の過 負荷、許容電圧からの逸脱などの計算結果が得られる。また、確率的基準の計算は、コンピューターの計 算技術の面で、また主要システムの設備の信頼度で適切なデータを得ることが困難なために、かなり複雑 である。

PEDEEE の配電系統については、できる限り N-1 基準を満足することを提言する。主な HV 系統は、送電線故障にたいし高速再閉路を適用し、いかなる供給支障も起こらないように計画される。しかし、配電網に対して、このような厳格な信頼度を求めるのは一般的ではない。配電系統における信頼度は、事故のあとなるべく最短の時間内に供給を復旧できるように設計することである。調査対象地域の配電網は、以下に述べるような方針で設計されることを提言する。

(1) 66 kV 系統

66 kV 送電線は一時的な故障の際に速やかに供給が復旧できるように、低速度 3 相再閉路装置を設置する。

各変電所は、仮に 1 回線故障の場合でも必要な電力は他の回線を通じて供給されるように、最低 2 本の送電線に接続されるようにする。供給支障が起きた場合に、回線間の切替えが必要である。

各 66/20 kV 変圧器は、通常 20 kV 側を連系せずにそれぞれ独立して運転する。 ただし、複数台数の 変圧器の内1台が故障した場合、20 kV 側での連系運転が必要となる。1 台の変圧器が故障したときは、そ の他の変圧器の負荷はその定格容量の 110%を超えてはならない。

(2) 20 kV 系統

20 kV 配電線は多分割多連係の放射状系統(7.6.1 節 (1)参照)を標準とし、切替のため区分および連係開閉器を適切な箇所に設置する。

通常事故時に迅速に供給を回復するために低速度 3 相自動再閉路装置を設置する。系統には、事故 区間までの供給を自動的に回復する自動事故点捜査機能付き開閉器を設置する。

自動再閉路および供給回復の手順は次のとおりである。

変電所のリレーにより事故が検知されると、フィーダーの遮断器が開き、その後、全ての区分開閉器が自動的に開く。遮断器はセットされた無電圧時間の後(例えば 1 分間)に再投入され、第 1 区間の区分開閉

器は電源側からの線路電圧を検知して、あらかじめセットされた時間の後(例えば 7~14 秒後)に再投入される。その後、次の開閉器が同様にして自動的に投入される。このような投入操作が、事故区間(まだ除去されていない)に達したとき、事故電流を検知することにより、変電所の遮断器は再び開かれ、事故区間の区分開閉器の連続的投入機能はブロックされる。遮断器は再閉路され、区分開閉器は上記と同様に続けて投入される。事故区間の区分開閉器の投入操作はブロックされている。こうして、事故区間に達するまでの間の電力供給は自動的に復旧できる。事故区間は変電所の操作盤に表示される。

事故区間の先の区間への電力供給は、連系開閉器を閉じることにより、他フィーダーをその区間に接続 し回復できる。

(3) 0.4 kV 系統

20/0.4 kV 変圧器の負荷は定格容量を超過してはならない。

低圧系統は放射状とするが、保護ヒューズを適切に設置することにより、事故による影響を最小限に押さえる。

7.3 設備の運転保守

7.3.1 運転・保守の基本方針

PEEGT と PEDEIE のメンテナンスに関する基本方針は:

「系統システムを構成するコンポーネントの有効耐用年数内の最大限の利用と、最適な動作状態 を維持確保をするために維持管理を行う」である。

この基本方針は、両公社の維持管理基準の基礎となっている。

調査団は PEDEEE の現在のメンテナンスシステムにおいて改善すべき点について 5.5.2 節で言及した。 ESSP でも、1996 年にシステムの調査と解析を行い、PEDEEE の現在の維持管理基準の改善への提言を 行っている。PEDEEEは、この提言に沿って改善に取り組む予定である。

ESSPの提言内容の概要は以下の通り。

(a) 全ての電圧階級の機器について、詳細な技術仕様書と国内での生産及び入手の可能性およ びスペアパーツのリストを用意する。

(b) 変圧器

66/22 kV 主変圧器からサンプルを選び出し、負荷時タップ切換装置内部のダイバーターのメンテナンスの計画を立て実施する。その結果から、将来のメンテナンスの予定表を作成する。

全ての負荷時タップ切換装置の製造元とタイプを、必要スペアパーツと共にリストにまとめ、スペアパーツの補充を行う。

(c) 鉄塔

架空電線の作業用の全ての機器・工具について見直しを行う。欠陥の発見されたいかなる機器・工具もスクラップとして廃棄し、新しい機器・工具と取替える。

これらの機器・工具の定期的かつ継続的な検査を、ひとつのシステムとして導入する。その際には、機器の状態と予定される取替え時期を記録すること。

- (d) 全ての記録を集中的に管理するためコンピューターを使った管理システムを開発し、メンテナンスの必要性、予定取替え時期、将来の作業量と費用などの情報を提供する。このシステムを、配電設備のメンテナンスの実行に際し、短期、中期、長期の作業量・人数、予算の必要性などの予測に利用する。
- (e) 安全基準を標準運転規則と共に導入する。
- (f) 全電圧階級において、常に最新設備に合わせて改定された標準運転マニュアルを用意する。
- (g) 全運転状況を調査し報告書にまとめ、将来必要な時期にさらなる提言のベースとする。

更に、ESSP では、PEDEEE スタッフとその運転保守要員のトレーニングが海外及び国内で必要であると 強調している。もっともトレーニングが必要と思われる分野は、以下の通りである。

- (a) 設備及び系統情報の集中管理とマネージメントのための、コンピュータによる記録システム。
- (b) 安全と運転。安全体制の構築のため全国においてアラビア語による集中的なトレーニングが必要。
- (c) 新設備。新変電設備建設の際の仕様書の一部として、新規設備の取り扱い方とメンテナンスの 方法に関し、現地でのトレーニングを義務づける。

7.3.2 簡易データペースシステムの導入

配電設備・機器の的確な運用・維持管理を目的として、調査団は簡易デークベースシステムを作成した。 データベースシステム(設備データ)は、管理する項目が設備毎に異なるため以下に示す設備別に分類し 管理するように作成した。

- (a) 20/0.4kV変圧器
- (b) 支持物(鉄柱、コンクリート柱、木柱)
- (c) 電線

- (d) 開閉器
- (c) 遊雷器
- (1) 地中ケーブル
- (g) 特殊機器(事故搜查器、事故点表示器)

簡易データベースを作成するにあたっては、汎用のデータベースソフトであるマイクロソフト社の「アクセス 97」を使用し、ユーザーインターフェイスを考慮しシンプルでわかりやすい操作性とした。更に、データの加工・編集などには同じくマイクロソフト社のソフト「エクセル」の方が優れていることから、自由にアクセスのデータを編集できるよう「エクセル」へのコンバート機能を追加している。

この簡易データベースシステムは、本調査期間中にダマスカス市及びダマスカス郊外の両配電会社と PEDEEE のコンピュータに移植し、配電会社の担当者に対してその操作方法の研修を行った。

しかし、既に第 5.7.4 節で述べたように両配電会社では 20/0.4kV 変圧器を除いて、他の配電設備の詳細なデータが把握がされていないため、まず 20/0.4kV 変圧器のデータのデータベース化を進めることとして、配電会社の担当者によるデータの入力を開始した。これにより、元来別々の部署により管理されていた変圧器の負荷管理と運転履歴管理をデークベースに統合し、一元管理できるようなった。

このように、配電会社の現在のデータ整備状況から 20/0.4kV 変圧器のみしかデータベース化することができない為、他の設備については今後以下の条件整備を実施する必要がある。

- (a) 図面類の整備
- (b) 設備の番号付け

まずは、各配電設備のレイアウト図、結線図などの図面類を最新の情報に更新する必要がある。さらにデータベースで管理するための番号を各機器・設備に付けることが必要である。番号は、名前ではなくデータベース化に適するように英数字とすることが望ましい。設備管理は、基準となる設備を決定し、そこから各設備・機器へと順次関連付け(番号付け)して管理していく必要がある。すなわち、架空配電線では支持物を、地中線設備では途中にある各設備(変圧器、開閉器、支持物等)を基準として、番号付けをする。

簡易データベースシステムの導入により、今後以下のような効果が期待できる。

- (1) 配電設備の増設・改良計画の策定等への利用により、効率的な計画策定ができるようになる。
- (2) 設備の運用・保守において、巡視・点検などにデータベースを活用することで事故の未然防 止が期待できる。
- (3) データベースがある程度整備されると、各イマージェンシーオフイス毎の設備の比較が可能となり、効率的な設備投資の評価や設備計画方針の決定などにも利用することができる。

(4) 将来的には、大型のコンピュータシステム導入時の基礎データとして活用できるため、その際 に効率的な移行を図ることができる。

今後、両配電会社の担当者の手によって、変圧器のみならず他の配電設備についてもデータの整備を 進め、この簡易データベースシステムが有効に利用されることを期待したい。

調査団の作成した簡易データベースシステムの概要を、付録 7-9 に示す。

7.4 電力潮流解析

7.4.1 66 kV系統

(1) 概要

シリア全国の 400/230 kV 送電系統とシリア南部地区の 66 kV 送電系統は図 3.5-1 と図 5.1-1 示す通りである。

調査対象地域の電力潮流解析を実施するにあたり、シリア全国の 400/230 kV 送電系統と調査対象地域の 66 kV 送電系統をひとつの系統にまとめた。その他の地域の 66 kV 系統は考慮しない。また、66 kV 送電系統での地域間の電力の融通は、その電力も小さいことから無視した。

シリアの既設発電設備の詳細は、表 3.4-2 に示す通りである。 発電設備と 400/230 kV 送電系統は、 ESSP のマスタープランに従って今後も継続して開発されるものと仮定した。

他の地域での 230kV変電所のピーク負荷は、ESSP による「発電送電マスタープラン」の電力需要予測の結果を参照した。調査対象地域でのピーク負荷は、4.2.3 節の「ピーク電力予測」の結果を全ての 66 k V変電所に適用した。

調査対象地域の電力潮流解析は、配電網改良計画が策定される 2000 年、2005 年および 2010 年の 3 段階について計算を行った。

潮流解析の中で使用した様々なタイプの電線・ケーブルの許容電流と送電容量を、表 7.4-1 に示す。

平常時では、送電線はそのケーブルまたは電線の熱容量の 80%以下で運転されており、これは PEEGT の運転の目標値となっている。設備基準による単一設備故障の場合は、熱容量(最大許容電流)の 100%まで運転可能とする。この指針は潮流解析の結果の判定に使われる。

電圧	電線サイズ	許容電流と送電容量				
(kV) (mm²)		平常時	緊急時			
400	2 x 550	2 x 800 A 1,000 M VA/回線	2 x 1000 A 1,400 MVA/回線			
230	409	600 - 650 A 260 MVA/回線	850 A 340 MVA/回稅			
66	240/40	480 A 55 MVA/Cîrcuit	600 A 68 MVA/回線			
66	ケーブル, Cu 300	400 A 45 MVA/回線	500 A 57 MVA/回線			

表7.4-1 検路の送電容量

(2) 2000 年系統に対する解析

2000 年における 400/230 kV 系統と発電設備は、現在の系統とほぼ同じである。また、調査対象地域の66 kV 系統には、現在の系統に Kafersuseb、Harash および Khan Al Shih の現在建設中の3 箇所の66/20 kV 変電所が加わる。2000 年時点における400/230 kV 系統の単線結線図を図 7.4-1 に、また調査対象地域の66 kV 系統の結線図を図 7.4-2 に示す。

2000年における潮流解析の結果は、図 7.4-3に示す通りであり、その概要を以下にまとめた。

(a) ダマスカス市とグマスカス郊外地域を含む南部地域は、中部地域より 400/230 kV 系統と通して、以下に示すように合計 556 MW の電力を輸入する必要がある。

Jandar – Adra II400 kV 送電線234 MWJandar – Adra II230 kV 送電線181 MWQattineh – Qaboon II230 kV 送電線141 MW

(b) 調査対象地域のほとんどの 66 kV 送電線は、平常時には熱容量の 80%以下の電流で運転 されていて問題はないが、以下に示す送電線は過負荷ではないが 80%を超える電流で比較 的大きな負荷を送電している。

Midan II – Dawar Al Matar 66 kV 地中線 49 MVA/回線
Dummar – Amaween 66 kV 地中線、2 回線 46 MVA/回線
Midan II – Al Hajar Al Aswad 66 kV 架空線 57 MVA/回線

- (c) 調査対象地域における全ての66/20 kV変電所の66 kV 母線における電圧は定格電圧の±5% 以内に収まっている。単線結線図に示すように、合計 305 MVar のキャパシタが、66 kV 母線 の電圧の調整に必要である。
- (d) Qaboon 11 および Dummar 変電所の 230/66 kV 変圧器が、以下のように定格容量よりわずか に過負荷となる。

変電所	負債	現在の定格容量
Qaboon II	221 MVA	$3 \times 70 \text{ MVA} = 210 \text{ MVA}$
Dummar	167 MVA	$2 \times 80 \text{ MVA} = 160 \text{ MVA}$

この過負荷は、2005 年までに新設の 230/66 kV 変電所が完成することにより解決する。この 過負荷を系統運転の運用で一時的対処するために、電力供給方法につき検討を要する。

以上のように、平常時においては調査対象地域の 66 kV 系統での電力潮流には、230/66 kV 変圧器の 過負荷を除いて重大な問題はない。過負荷問題ついては、8.1 節で詳述する。

N-1 基準(単一設備故障)による信頼度の確認のため、上述の比較的重負荷の送電線が故障を起こした場合の樹流解析を行った。その結果によれば、数本の66kV 送電線が以下の通り過負荷となる。

	<u>故障条件</u>	過負荷の送電線	熱容量に対する 過 <u>負荷率 (%)</u>
(1)	Dummar - Amaween 区間の 1 回線が故障	同区間の他回線	140 %
(2)	Midan II - Al Hajar 区間の 1 回線が故障	Midan II - Dawar Al Matar 送雷線	130 %
(3)	Midan II - Dawar Al Matar 区間が故障	Midan II – Al Hajar 送電線	100 %

上記の過負荷送電線の補強については、7.5 節および8.1 節に詳述する。

変圧器 1 台が系統から離脱する際のN-1 基準に関しては、2000 年の時点では多くの 66/20 kV 変電所が基準を満足しない。2 台の変圧器を持つ変電所で、1 台故障した場合、他の変圧器は多くの場合過負荷となる。 本件についても、7.5 節および 8.1 節に詳述する。

(3) 2005 年系統に対する解析

2005 年におけるシリア全国の 400/230 kV 系統と発電設備は、ESSP の発電・送電マスタープランにしたがって図 7.4-4 のように仮定した。2000 年から 2005 年までの系統の開発計画を以下に示す。

- (a) Al Zara 火力発電所 (3x200MW)が、2001 年までに完成する。
- (b) EUの発電拡充計画に沿って、対象地域内の Dier Ali にコンパインドサイクル発電所(1 x 330 MW)を建設する。
- (c) 400kV送電線が、Adra II、Deir Ali、Dimas そして Jandar を結び、ダマスカス市を囲むリングシステムを形作る。 更に、Jandar Hama II 区間の増強のため 2 回線目の 400 kV 送電線が建設される。
- (d) 2箇所の230/66 kV変電所が、Mazzrhaと Zahera に建設される。両変電所は230/66 kV 変圧器 (2x125 MVA)を備える。Mazzrha 変電所は、主に Nasrieb から電力供給をうけ、Zahera はTishreen から電力を供給される。両変電所は図7.4-5 に示すように66 kV 系統に接続される。
- (d) 以下の11箇所の変電所が2005年までに建設され、運転開始する。

Barzeh, Qsoor, Ibn Al Nafis, Zablatani, Sheik Hassan, Jaramana, Hosh Blas, Jalaa, Jededat Artouz, Yalda および Bludan 変電所

これらの変電所は、すべて 2x30 MVA の変圧器が設置される。上記 11 箇所の 66/20 kV 変

電所と2 箇所の230/66 kV 変電所を含む2005 年における調査対象地域の66 kV 系統を図7.4.5 に示す。この図中の送電線の回線数の増加と変圧器の増容量分は2000 年における潮流計算結果を踏まえたものである。

2005年のおける潮流解析の結果は、図 7.4-6に示す通りであり、以下はその概要である。

(a) 南部地域では 1x330 MW の発電設備が Deir Ali に建設されるものの、調査対象地域を含む この地域は、中部地域より 400/230 kV 系統を通して、以下に示すように合計 740 MW の電力 を輸入する必要がある。

Jandar -- Adra II 400 kV 送電線241 MWJandar -- Dimas 400 kV 送電線195 MWJandar -- Adra II 230 kV 送電線170 MWQattineh -- Qaboon II 230 kV 送電線134 MW

(b) 調査対象地域の全 66 kV 送電線は平常時には熱容量の範囲内で運転されている。ただし、 以下の送電線において熱容量の約80%と比較的重負荷で運転しているものもある。

Zabera – Dawar Al Malar 66 kV 地中線49 MVA/回線Mazzrha – Ersal 66 kV 地中線45 MVA/回線Mazzrha – Thawra 66 kV 地中線48 MVA/回線

- (c) 全ての 66/20 kV 変電所の 66 kV 母線における電圧は定格電圧の±5%以内に収まっている。 単線結線図に示すように、合計 585 MVar のキャパシタが 66 kV 母線の電圧の調整に必要である。
- (d) Adra II 変電所の 230/66 kV 変圧器の負荷が、以下のようにその定格容量近くに達する。

 変電所
 負荷
 現在の定格容量

 Adra II
 325 MVA
 2 x 125 + 80 MVA = 330 MVA

この様に 2005 年における潮流解析の結果によれば、230/66 kV 変圧器の負荷が定格容量近くに達することを除き、平常運転下では特に大きな問題はない。

N-1 基準(単一設備故障)による信頼度の確認のため、同じ系統に対して上述の比較的重負荷の送電線 が故障を起こした場合の潮流解析を行った。その結果は以下の通りである。

	<u>故障条件</u>	過負荷の送電線	熱容量に対する 過負荷率 (%)
(1)	Zahera - Dawar Al Matar 区間の 1 回線が故障.	過負荷となる送電線なし	-
(2)	Mazzrha - Ersal 区間の 1 回線が故障	Mazzrha - Thawra 送電線	112 %
(3)	Midan II - Kafersuseh 区間の 1 回線が故障	過負荷となる送電線なし 4	-
(4)	Fursan - Jalaa 区間の 1 回線が故障	過負荷となる送電線なし	.

 このケースにおいては、Kafersusch - Midan f 区間を関き、Midan I への送電を Dewar AI Matarから Midan I - Dawar AI Matar 区間を閉じることにより行う。 N-1 基準の信頼度を確保するため、上記の過負荷送電線の補強が必要である。

変圧器の故障に関しては、短時間の 120%から 130%の過負荷運転を認めることにより、N-1 基準をほぼ 満足する。

(4) 2010年系統に対する解析

2010年におけシリア全国の 400/230 kV 系統は、図 7.4-7 示す通りである。 2005 年から 2010 年にかけての系統の開発計画は、ESSP の発電・送電マスタープランにしたがって以下のように仮定した。

(a) 以下の火力発電所の建設

場所	発電設備容量
Dier Ali	3 x 330 MW
	(2005 年に対し2 x 330 MW 追加)
Nasriah	2 x 330 MW
Latakia	2 x 330 MW
Tayem	2 x 330 MW
合計	9 x 330 MW

- (b) 400 kV 送電線が東方向に延伸され、Aleppo F、Thawra そして Tayem を結び、最終的には、 イラク系統につながれる。更に、400 kV 系統は Hama II から Zayzoun そして Aleppo F まで延 長される。
- (c) Nasrich および Deir Ali 発電所の完成により、230 kV 送電網が単線結線図に示すように新たに建設される。
- (d) Al Faihaa、Baramekha および Saicdch Zanab の 3 個所の 230/66 kV 変電所が 2010 年までに 建設される。それぞれの変電所は、2 x 125 MVA の変圧器容量を持つ。
- (e) 2010年までに以下の8個所の66/20kV変電所が建設され、運転開始される。 Yabroud、Al Tal、Harasta、Nashabieh、Meteha、Darca、Kudseia I および Kudseia II これらの変電所は全て2x30MVAの変圧器容量を持つ。

上記8箇所の66/20 kV変電所と3箇所の230/66 kV変電所を含む2010年における調査対象地域の66 kV系統を図7.4-8に示す。この図中の送電線の回線数増加と変圧器の増容量分は2005年における 潮流計算結果を踏まえたものである。

2010年における潮流解析の結果は、図 7.4-9に示す通りであり、以下はその概要である。

(a) 南部地域での発電設備容量は、Dier Ali (3 x 330 MW)および Nasrich (2 x 330 MW)の完成により、その地域の需要をほぼ満たすことが可能となる。しかし、まだ 152 MW を中部地域より 輸入する必要がある。

(b) 対象地域の全ての 66 kV 送電線は平常時には、以下の送電線を除き熱容量の 80%以下で運転されている。

Kafersusch - Baramekhe 66 kV 架空送電線

46.4 MVA/回線(81.1%)

(c) 調査対象地域の全 66/20 kV 変電所の 66 kV 母線における電圧は定格電圧の±5%以内に収まっている。単線結線図に示すように、合計 745 MVar のキャパシタが、66 kV 母線の電圧の調整に必要である。

この様に潮流解析の結果から、2010 年における調査対象地域の 66 kV 系統には、平常運転下では特に大きな問題はない。

N-1 基準(単一設備故障)による信頼度の確認のため、同じ系統に対して上述の比較的重負荷の送電線が故障を起こした場合の潮流解析を行った。その結果は以下の通りである。

	<u>故障条件</u>	過負荷の送電線	熱容量に対する 過負荷率 (%)
(1)	Zahera - Dawar Al Matar 区間の1回線が故障	S. Hassan - Dawar Al Matar 地中線	112 %
(2)	Dummar - Amaween 区間の 1 回線が故障	同区間の他回線	111 %
(3)	Zabera - S. Hassan 区間の 1 回線が故障	過負荷となる送電線なし 血	•
(4)	Mazzība - Ersal 区間の 1 回線が故障	Mazzrba – Thawra 地中線	103 %
(5)	S. Zanab - Maarad 区間の 1 回線が故障	同区間の他回線	114 %

は: このケースにおいてけ、Zahera - Dawar Al Matar 区間および Bab Sharki - Jaramana 区間を開放することにより、過負荷となる送電線はなくなる。

N-1 基準の信頼度を確保するため、上記の過負荷送電線の補強が必要である。

変圧器の故障に関しては、単一設備故障条件下でも多少の過負荷運転を認めることにより、N-1 基準を 満足する。

(5) 短絡電流および電力損失

(a) 短絡電流

2000 年、2005 年および 2010 年のそれぞれについて、230/66 kV 変電所および 66/20 kV 変電所における短絡電流の解析のため、3 相短絡故障計算を実施した。その結果を表 7.4-2 に示す。

表から分かるように、20 kV 母線における最大短絡電流は2010 年に Qaboon I 変電所で23.6 kA である。 66/20 kV 変電所の設備基準で提言している20 kV 遮断器の定格短絡遮断電流25 kA は、これから十分 であることが分かる。

66 kV 系統においては、最大短絡電流は 2010 年の Mazzzha 変電所で 31.8 kA であり、これは設備基準で提言している 31.5 kA をややオーバーしている。その他は全て、31.5 kA 以下である。現時点での予想では、Mazzzha 変電所には 6 本の重負荷の送電線がつながり、全ての送電線が並列運転されている。実際の運転では、並列・ループ運転は極力避けて運転されることなろう。実際の運転方法については、今後研究が必要である。短絡故障計算では、一部の送電線が開の状態で、残りの送電線は全てが連携した状態で計算している。従って、66 kV 送電線が放射状に運転される実際の運転状況では、短絡電流は31.5 kA より小さくなると考えられる。そのため、66 kV 遮断器の定格遮断電流 31.5 kA は、2010 年までは問題ないと思われる。

(b) 電力損失

調査対象地域の 66 kV 送電線における損失は、3 段階の潮流解析によりそれぞれ下表の通りである。

		2000	2005	2010
230 kV 変電所からの供給電力	(MW)	1,205.7	1,660.2	2,319.3
66 kV 送電線での損失	(MW)	15.4	16.4	14.4
	(%)	1.27	0.99	0.67

表 7.4-3 66 kV送電線の電力損失

以上のように、2000年から2010年にかけて230/66 kV変電所の新設により、230/66 kV変電所から66/20 kV変電所への66 kV 送電線の平均距離が減少するために、66 kV 送電線における電力損失率は減少する。尚、上記の損失には変電所における66/20 kV変圧器での損失と所内消費は含まれいない。

7.4.2 20 kVおよび0.4 kV系統

調査対象地域における 20 kV および 0.4 kV 配電系統は、基本的に放射状であり、ループ系統ではない。従って、変電所および供給用変圧器より引き出される放射状の線路として、20 kV および 0.4 kV 配電線の潮流上の特性、すなわち電圧および電力損失を単純な計算プログラムによって計算した。下位側の変圧器負荷と一致する電流を合計して、変電所から流れ出る電流を得ることができる。

配電網改良計画の作成のため、次に示すようなケースに対して系統解析を実施し、線路の損失および電 圧降下を把握した。

- 大きな損失および大きな電圧降下を持つ負荷の重い20 kV 配電線
- 大きな損失および大きな電圧降下を持つ典型的な 0.4 kV 配電線モデル

調査対象地域の20kVおよび0.4kV系統の系統解析において次の条件を仮定した。

(a) 20 kV 系統

- 個々の変圧器の負荷はそれぞれの変圧器容量に比例
- 変圧器1次側での力率は0.9
- 引出点(66/20 kV 変電所 20 kV 母線)での電圧は 19 kV

(b) 0.4 kV 系統

- 負荷は全線に渡り一様に分布
- 各相ごとに模擬
- 中性線は非接地

潮流計算結果は、第5章、第7章および第9章において、損失と電圧降下を評価するために用いた。20 kV 系統の計算結果例を付録 7-5 に示す。0.4 kV モデルについて計算した例を付録 7-6 に示す。

7.5 66 kV 設備

7.5.1 基本計画

66/20 kV 変電所と 66 kV 送電線を含む 66 kV 系統の改良・拡張計画の為の整備基本計画は、7.1 節および 7.2 節で述べたように、電力システムの現在の問題点、対象地域の増大する需要、PEEGT による電力供給計画、PEDEEE により既に確認されている開発計画等々を考慮して作成した設備基準に基づいて、PEDEEE との検討を経て調査団により策定された。

その基本計画の大きな柱は、以下の2点である。

(1) 過負荷の解消

66kV 配電設備の最大の問題点は、設備の容量不足のため多くの変電所でピーク時に過負荷の状態にあり、部分的な給電制限も行われ、需要家の要求に満足に応じられていないことである。この状況を打開するため、需要の拡大に応じて適正な場所に変電所を新設することと、各変電所の変圧器の容量を需要予測の結果にしたがって、更に「信頼度基準」の「N-1」基準を満足するよう増強整備を行う。

(2) 老朽化した設備の更新

変電所の機器は、その多くが既に老朽化が進んでおり、その動作に不具合が見受けられるケースが多くなっていることと、更にスペアパーツの入手も難しくなってきており保守が困難になっている。このような老朽化した機器を最新の設備に更新し、変電所運転の信頼性を高める。

7.5.2 整備計画

以上の基本計画に基づき、以下の通り66 kV 設備の整備を進める。

(1) 新変電所の建設

対象地域の急増する需要に対応するため、十分な数量と容量を持った・66/20 kV 変圧器を備えた新変電所の建設が不可欠である。まず、PEDEIE が既に 2010 年までに計画中の変電所を検討する。その後、さらに必要な変電所を、潮流解析と現地の固有の問題を参考に検討する。

(2) 変圧器の容量

調査対象地域における既設および新設の各変電所の変圧器容量を、4.2.3 節で予測した変電所毎のピーク電力にしたがって、より大容量の変圧器への交換、または追加変圧器の設置等の方法により増加することを検討する。変圧器の単器容量と数量は、変電所の設備基準を満たすことが必要である。66/20 kV 変電所の変圧器容量の設計にあたって、信頼度の N-1 基準の適用は段階毎に進めることとする。

(3) 20 kV 遮断器

現在使われている小油入型の 20 kV 遮断器は、すでにその導入から 15 年以上経過している。これらの 遮断器は老朽化が激しく、スペアパーツも入手困難な状況で保守が難しくなってきており、SF6 ガスタイプ か真空型の遮断器に取替える必要がある。2010 年までに全ての小油入型遮断器を取替えることとする。

系統解析の結果から、各変電所の短絡遮断容量を検討し、定格短絡電流が不足の場合は大きな短絡 電流の遮断器に取替える。取外した遮断器は、郊外地域の変電所に再使用する。

(4) 20 kV フィーダーの保護リレー

過電流、地格電流継電器等、20 kV フィーダーに設置されているほとんどの保護リレーは、電磁機械式の旧型が多く、スペアパーツが入手不可能なため保守も難しい状況にある。これらのリレーは、保護の信頼度向上と他のシステムとの協調性のためにも、新しいデジタル式の静止型リレーに取替える必要がある。しかし、20 kV 開閉器盤上で保護リレーだけを取替えるのは実際的ではなく、電源や操作スイッチ等を含めた根本的な改造が必要である。したがって、20 kV 開閉器盤全体を取替える際に保護リレー、電流変流器、計測計、指示計その他アクセサリーも含めて取替えることが必要である。そこで、20 kV 開閉器盤を従来型または GIS 型の開閉器盤に取替えることを提言する。取替えの優先順位は、配電システムの中での変電所の重要性を考慮して決定する。

上記の項目(3)に関しては、2005 年までの間は 20 kV 遮断器のみの交換と保護リレーやその他の補助 装置を含めた開閉器盤全体の取替えの両方で実施する。2005 年以降は、開閉器盤全体の取替えのみを 提言する。

この様に、保護リレーを含むほとんどの20kV開閉器盤は、2010年までに交換される。

(5) 66 kV 系統の補強

2000 年、2005 年および 2010 年の潮流解析の結果から、PEDEEE が計画中の送電線の補強以外に数本の送電線の補強が必要となっている。したがって、これらの送電線は新たな送電線(回線)を追加するか、より大きなサイズの電線・ケーブルに取替えることにより送電容量を増強する。

(6) 66 kV 遮断器の取替え

既設 66 kV 遮断器の定格遮断電流は、16 kA から 31.5 kA である。ESSP の送電系統拡張計画によれば、標準定格遮断容量として 31.5 kA を推奨している。66 kV 系統の短絡故障計算の結果から、66 kV 遮断器の遮断電流を常に検討する必要がある。計算された短絡電流が既設の定格を超過するようであれば、遮断器は大きな遮断電流のものと交換する。取外した遮断器は、短絡容量の比較的小さい郊外の変電所に再使用する。今後導入する遮断器は、EDF の提言にしたがって全て 31.5 kA 遮断電流のものとする。

(7) 66 kV 開閉機器および制御装置

変圧器、遮断器以外の66 kV 開閉機器と制御装置は、調査団の現場調査によると、ほとんどが老朽化しているものの、特に重大な問題は発見されなかった。したがって、66 kV 開閉機器は定期的な検査と保守により今後も使用することを提言する。仮に、不適切な動作や重大な損害がある場合は、スペアと交換する。これは日常の運転保守業務と考え、改良計画としては扱わない。

7.6 20 kV 配電設備

7.6.1 基本計画

第 5.7.3 章(2)項で述べたように、1997 年における全系統における電力供給支障の内ほとんど 9 割以上が 20 kV 系統で起きている。 このように既設 20 kV 配電設備のその系統構成からくる信頼度は非常に低く、この点における改良が急務となっている。

高い供給信頼度が確保できると考えられている20kVの系統構成としては、以下の2案がある。

(a) 2回線系統

2 回線両方から受電することにより、供給信頼度は大きく向上する。しかし、更なる回線と開閉器を付加することが必要なため、2 回線系統を建設するコストは大きい。この系統構成は最重要地域に採用される。

(b) 閉ループ系統

供給信頼度はループ系統を適用することで改善可能である。しかしループ系統には保護用の信号を送信するための高信頼度の通信設備が必要である。フィーダーには多くの遮断器が必要とされ、そのためこの系統構成のコストは高くなる。

以上の系統構成は、建設コストが掛かりすぎること、さらに系統が複雑になること等の理由により、対象系

統への適用は薦められない。

そこで調査団は、第7.2.2 節の「信頼度基準」のなかで提案した系統構成、すなわち「多分割多連系 1 回線構成」を基本とした整備計画を提案する。

系統構成 (多分割多速系1回線構成)

ダマスカス市配電会社管内では、現行設備のほとんどの 20 kV フィーダーは関ループを構成しており、 常時開放の開閉器を通してフィーダー末端が他のフィーダーに接続されている。一方、ダマスカス郊外配 電会社管内では、ほとんどのフィーダーは放射状に構成されている。 この様に、ほとんどの 20 kV フィー ダーは1回線構成である。 そのため、既設の20 kV系統の信頼度を改善する最も効果的な方法として「多 分割多連系1回線構成」の採用を提案する。

このシステムはいくつかの区分開閉器(通常は閉)で幹線を区分し、それぞれのセクションは連系開閉器 (通常は閉)により他のフィーダーに接続ができるようにするものである。これにより、事故による供給支障発 生後、事故区間を除いた区間の電力供給の復旧が、区分および連系開閉器の操作により可能となる。

多分割多連系系統の形態例を付録 7-3「3.4 開閉器」の項に示す。フィーダーの事故時に供給を自動的に回復する手順については 7.2.2 節を参照願う。

ダマスカス市内地域のほとんどのフィーダーは軽負荷であり、隣接するフィーダーへ電力供給するのに十分な容量をもつため、変電所引用付近で事故が起きた場合でも他フィーダーからの供給を受けることにより、電力供給が回復される。この方式は東京における 6.6 kV 配電系統に適用されており、そのフィーダーのピーク負荷はダマスカスの 20 kV フィーダーとほとんど同じである。(約 1~3 MW)

7.6.2 整備計画

以上の基本計画のしたがって、20 kV 配電設備の整備を以下の通り進める。

(1) 20 kV 系統の増強および改良

多分割多連系 1 回線構成を 20 kV フィーダーに適用するにあたって、主な構成要素に対する基本的要求事項を下記に示す。

(a) 幹線の定義

20 kV 地中線系統に枝線は存在しないため、全ての 20 kV 地中線フィーダーは幹線とみなす。一方、20 kV 架空線系統には多くの枝線が存在するが、負荷が大きく更に末端で他フィーダーに接続可能な枝線は、フィーダーの幹線であると考える。1 本のフィーダーには必ず 1 本の幹線がある。

(b) 幹線の線種・サイズ

配電設備基準により、幹線の線種は架空線の場合 ACSR 120AS 、地中線の場合 185AL ケーブルとする。

(c) 幹線の長さ

事故時の開閉器操作による回線切替後であっても、大きな電圧降下を避けるために、次のような基準を設ける。

- 事故時の開閉器操作による回線切替後であっても、幹線の合計長は 20 km を越えるべきでない。

例えば、320 A(力率90%)の負荷が120AS, 20 kmの配電線にかかる場合、電圧低下は16% と計算される。しかし、事故時であっても20 kV 系統における電圧降下は10%以内に抑えるべきであり、それにより変電所の負荷時タップ切換装置(調整幅約±10%)の操作によってフィーダー末端の電圧を許容範囲の10%以内に維持することは可能である。しかし、フィーダーの長さが20 km を超えると電圧降下はさらに大きくなり、負荷時タップ切換装置を使っても電圧の-10%以内への維持は難しい。

(d) 幹線の許容電流

他フィーダーが幹線に接続される場合、接続されるフィーダーのピーク負荷電流は幹線の許容電流の 50%以内に抑えるべきであり、両フィーダーのピーク電流の合計は幹線の定格許容電流を超えてはならない。合計が限界値を超える場合には、新規フィーダーもしくは他フィーグーへの接続線を新設する。例えば、70AS は許容電流値が 260 A であるが、同じ 70AS のフィーダー2 本が接続され、その合計のピーク電流値が 260 A を越える場合は、これら両フィーダーの電線は 120AS に張替えなければならない。

(e) 他フィーダーへの接続

既設 20 kV フィーグーのほとんどは、無負荷状態で操作できる開閉器により、他フィーダーへ接続され、開閉操作は無負荷状態のみで行うことができる。本調査では、既設の連系点に設置されているこのような開閉器を、負荷を切離すことができるような開閉器へ取替えることを計画する。

このように、連系開閉器の操作で他フィーダーと接続することによりできるフィーダーの集合を、本節では「ブロック」と称する。

(f) 20 kV 幹線の増強

現行設備では、多くの幹線が 120AS より細い線種であり、その電流容量不足により、多くの場合事故後の供給回復のための切替操作ができない状況である。そこで、前記の「幹線」の項で述べたように、細い線種の既設フィーダーを 120AS の架空線あるいは 185AL のケーブルに増強する。新規の幹線が建設され、既設の枝線に接続される場合は、この枝線もまた 120AS に増強する。

(g) 20 kV 幹線の新設

第5.3 節でのべたように、現状では 100 A よりも小さいピーク電流値をもつフィーターが多い。 計画および設備基準上では幹線の容量は 320 A である。したがって、新規に建設されるフィーター数は多くないと考えられる。しかし、郊外の系統では重負荷のフィーターは同一の方向に集中しているケースが多く、新規フィーター無しでは負荷を均平化することは困難である。したがって郊外にある重負荷フィーターの供給信頼度を向上するため、追加の新規フィーターが必要となる。

幹線の新設にあたっては、次のような考え方を採用することとする。

- 1 つのブロック内の負荷合計値が 160 A×「ブロックに接続されているフィーダー数」を超過するとき、新規フィーダーを建設する。

1 つのブロック内の負荷は必ずしも既設フィーダーに均等に分布しているとは限らず、既設フィーダー間の稼働率にはかなりの相違がある。通常運転時の大きな損失や電圧降下を改善するため、平常状態における負荷の切替が必要となる。図8.2-1に示すように、例えばMaarad Al Nour フィーダーの一部は、もし Dawar Al Matar Kazzaz フィーダーを 120AS に張替えれば Kazzaz フィーダーに切替可能である。多くのフィーダーはこの例のように負荷切替ができる可能性をもっている。

(b) 区分開閉器の設置

2 つの自動事故点捜査型開閉器の間隔は少なくとも 1 MVA(約 50 A)の負荷を持つように計画する。フィーダーの理想的なピーク電流値は 160 A(120AS と 185ALのもつ容量の半分)であり、このフィーダーが 3 分割された場合それぞれのブロックは約 53 A の負荷を持つためである。50 A以下の負荷しか持たないフィーダーには自動事故点捜査システムを設置する必要はない。 幹線に設置される開閉器数を次表に示す。

ビーク電流値 事故捜査型開閉器数 末端負荷開閉器 100-160 A 3 1 50-100A 2 1

表7.6-1 幹線に設置される開閉器数

(i) 20 kV 枝線の新設

架空 20 kV 系統では、20/0.4 kV 変圧器新設にとしない、変圧器に供給するための枝線が必要となる。

(2) 老朽化した油含浸ケーブルの取替え

5.3 節で述べたように、多くの油含浸ケーブルが油漏れを起こしているにも係わらず未だに使用され続けている。これらのケーブルは、途中に接続箇所が多く、これらの接続部が油の循環を妨げ地絡事故をおこし、この事故がさらなる事故原因となる新たな接続部を生むという悪循環に陥っている。このような事故を核

らし、信頼度を向上させるために CV ケーブルへの取替えを計画した。

(3) 既設設備の修繕および不活用設備の撤去

公衆および作業者の安全、および設備保護のため以下を計画した。

- ケーブル隠蔽化
- 立ち上がりケーブル防護管の取付などのケーブル防護
- 適正なヒューズ取付
- 不活用ケーブルの撤去

7.7 低汗配電設備

7.7.1 基本計画

20/0.4kV 配電用変圧器を含む低圧配電設備における問題点は、次の2点に代表される。

- (a) 配電用変圧器の過負荷運転
 - 第8.3 章の表8.3-1から分かるように、約50%近くの変圧器がピーク時には過負荷またはそれ に近い状態で運転されている。 電力需要の急激な伸びを考えると、早急に追加の変圧器を 設置するか容量の大きな変圧器への更新が必要である。
- (b) 大きな電圧降下と損失 亘長が長く、重負荷の低圧配電線における著しく大きな電圧降下と損失。(第 5.7.1 章(2)項お よび第 5.7.2 章(2)項を参照)

低圧配電設備の整備計画を作成するにあたり、基本的に上記2点の問題の解消を最重点に考える。

7.7.2 整備計画

以上の基本計画にしたがって、20 kV 配電設備の整備を以下の通り進める。

(1) 配電用変圧器の増設

20/0.4 kV 変圧器は、需要増に応じて配電系統の特定の場所に継続的に増設されるべきである。調査対象地域における低圧系統の改良計画を策定するにあたっては、既設変圧器容量と同じ容量の変圧器の適用を仮定した。その理由は次のように説明される。

ダマスカス市内系統においては、新規設置場所の確保が困難なことから、20/0.4 kV 変圧器の合計供給容量を増やすために、その台数を増やす替わりに、大きな容量の変圧器へ取替えることが頻繁に行われ、既設の変圧器は他のより軽負荷の地区で使用されていた。大容量の変圧器を導入することは、20 kV 系統の拡張を必要とする小容量の変圧器を設置する場合と比較して、建設コストは低く押さえることができる。し

かし、大容量の変圧器の採用によって電力損失と電圧降下は大きくなる。このような状況から、建設コスト、設備維持費、損失および電圧降下の低減対策を含んだ総合的なコストを比較しなければならない。コスト 比較のため、Adra 1変電所からの20 kV フィーダー上の20,0.4 kV変圧器を1台サンプリングし計算を行った(付録 7-7「変圧器容量の選定例」参照)。ピーク時においてこの変圧器(200 kVA)は過負荷運転しており、その対策として同容量(200 kVA)の変圧器をさらに設置するか、2倍の容量(400 kVA)の変圧器に置き換えるかの2つの方法を比較する。このケースにおいては、同容量の変圧器を設置した方が大きな容量に置き換えるよりも経済的に有利であることがわかる。

さらに、理想的なモデル系統における損失の計算も実施した(付録 7-8「変圧器容量と低圧線の損失の関係」)。このモデルによると、需要密度が 500 kW/km² のつぎのような条件下で低圧フィーダーの損失について次表に示す結論が得られる。

変圧器容量	50 kVA×	100 kVA×	200 kVA×	400 kVA×	630 kVA×	1000 kVA×	630 kVA x 2
	1000 nos.	500 nos.	250 nos.	125 nos.	80 nos.	50 pos.	units x 40 sets
LV 線の長さ	320m	450m	630m	890m	1,120m	1,410m	1,590m
LV 線の損失	3.74kW	5.3kW	7.5kW	10.6kW	13.3kW	16.7kW	18.8kW
LV 線の損失合計	1,577.9 kW	2,231.5 kW	3,155.8 kW	4,462.9 kW	5,600.9 kW	7,056.5 kW	7,920.9 kW
	(3.2%)	(4.5%)	(6.3%)	(8.9%)	(11.2%)	(14.1%)	(15.8%)
LV 線の長さ合計	133.5km	188.7km	266.9km	377.5km	473.7km	596.9km	667.0km

表7.7-1 変圧器容量と低圧フィーダーの損失の関係

条件: エリア面積 = 100 km², 需要 = 50 MW, 移種 = 120AS, 需要密度= 500 kW/km², 低圧線の電流 = 200A, 電圧 = 380/220 V

変圧器の単器容量の決定に際して、低圧系統の損失を低減するために単器容量は大きすぎないように し、提案した「配電設備計画基準」の標準容量の中から適正な単器容量を選定する。

付録 7-7 に示すように、Cを変圧器単器容量、Dを需要密度とすれば、損失率は√(C/D)に比例する。従って、変圧器の単器容量 C が一定の場合、将来の需要密度の増加に伴い損失率は低下する。改良計画を作成する際には、このような既設の変圧器と同じ単器容量の変圧器を追加した場合のメリットを考慮しつつ、損失計算をした上で 20/0.4 kV 変圧器単器容量を遂定する。

(2) 低圧線増強および新設

変圧器の新設により低圧線の過負荷や電圧降下はある程度改善されるが、低圧線の増強が必要となる 個所もある。低圧線の増強は、以下の条件により計画することとする。

- (a) 変圧器新設後においても低圧線の負荷電流および電圧降下が所定の条件を満たさない。 (基本的に変圧器の新設は、その過負荷を解消する目的で行うものであり、電圧降下解消目 的での変圧器新設は行わないこととする)
- (b) 低圧電線は必要以上に太くしない。(架空線は Al 120 mm²、ケーブルは Cu 185 mm²を上限 とする)

(3) 既設設備の修繕および不活用設備の撤去

公衆および作業者の安全、および設備保護のため以下を計画した。

- 離隔確保
- 立ち上がりケーブル防護管の取付などのケーブル防護
- 変圧器室の施錠
- 小動物進入防止のための変圧器室開孔部などの閉塞
- . 適正なヒューズ取付
- 不活用ケーブルの撤去
- 変圧器室の清掃(室内の不要品撤去・設備に付着した塵埃などの除去など)

(4) 盗電対策

技術面からの盗電対策としては、以下が有効であると考えられる。

- 電線被覆化
- 計器箱の施設

盗電が特に大きな問題となっている箇所を除き、これらの対策は設備の新設・取替えなどと併せて実施 することが望ましい。

7.8 保護設備

7.8.1 66 kV系統

現在の送電系統において、66 kV 系統の保護システムに対しヨーロッパの標準的な慣例にしたがった設計基準を採用している。したがって、以下の点を除き、保護システムの基本方針を変更する必要はない。

(1) デジタル式静止型リレーの使用

世界では、標準的なリレーとして長い間旧型の電磁機械式リレーが使われてきた。同様に、シリアでも全ての古いリレーは電磁機械式である。世界の半導体技術の進歩により、リレーはアナログ式の電磁機械式 からデジタル式の静止型に変わってきた。デジタル式の卓越性と適応性から、電磁機械式リレーは新設の設備には使われていない。生産も既にストップしており電磁機械式リレーのスペアパーツは入手不可能となっている。電磁機械式リレーのリレー盤は、徐々に新しいデジタル式に交換することを提案する。

(2) 送電線保護

(a) 距離継電器

架空送電線と比較的長い地中ケーブルの保護として、現行の 3 ゾーン限時型距離継電システムを変更する必要はない。

66 kV 送電線保護方式として、故障除去後に短時間の供給再開を目的として、3 相、低速度再開路方式を採用することを提言する。

デジタル式距離継電器は、一般的に架空送電線用として故障点測定機能をそなえている。但 し、この機能は測定精度がケーブルのキャパシタンスのため十分でないため、ケーブルには 適用できない。

(b) パイロットワイヤー保護方式

現設備に適用されていないが、パイロットワイヤー保護方式は数 km の短い送電線の保護を目的として世界的に適用されている。

パイロットワイヤー保護方式には、通信方法とシグナルの比較の方式に様々な方法がある。現在、アナログ式パイロットワイヤー保護方式よりも、デジタル式を使う傾向にある。シグナルの交換には、通常の通信ケーブルの代わりに、光通信ケーブルを使うことにより高速通信が可能である。比較方式では、3 相電流比較方式がいろいろな送電線に採用されている。低速度 3 相再閉路の電流比較方式を、対象地域の送電線に適用することを提言する。

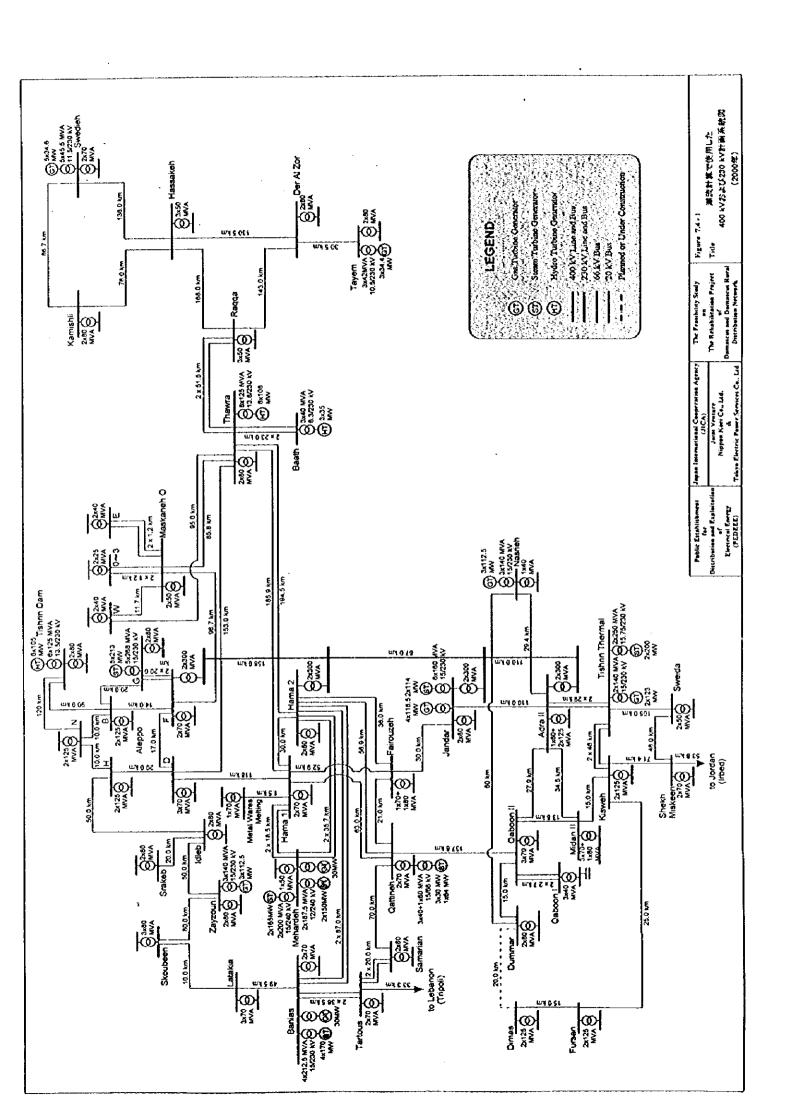
(3) 変電所機器の保護方式

- (a) 変圧器には主保護として比率差動継電器を、後備保護として過電流継電器を採用している。
- (b) 現在、母線保護は採用されていないが、重要度の高い変電所には母線保護方式を採用する ことを提言する。一般的に単母線保護には電流差動継電器が使われる。2 重母線の場合は、 電流差動継電器をそれぞれの母線に設置し、電圧差動継電器を2 重母線全体に適用する。

7.8.2 20 kV系統

5.3 節で述べたように 20 kV フィーダーの保護リレーは、変電所のフィーダー引出し口に取付けられているのみである。その他の既存 20 kV 系統用の保護装置としては、ケーブル保護を目的として架空線とケーブルの接続点、および変圧器の保護を目的として変圧器の 1 次側にそれぞれ避雷器が取付けられている。さらに変圧器には、事故の波及防止のため 1 次側にカット・アウト・ヒューズが設けられている。

20 kV 系統の保護システムに関しては、変電所の保護リレーを除き特に改修の必要は無いと考えられる。


7.8.3 0.4 kV系統

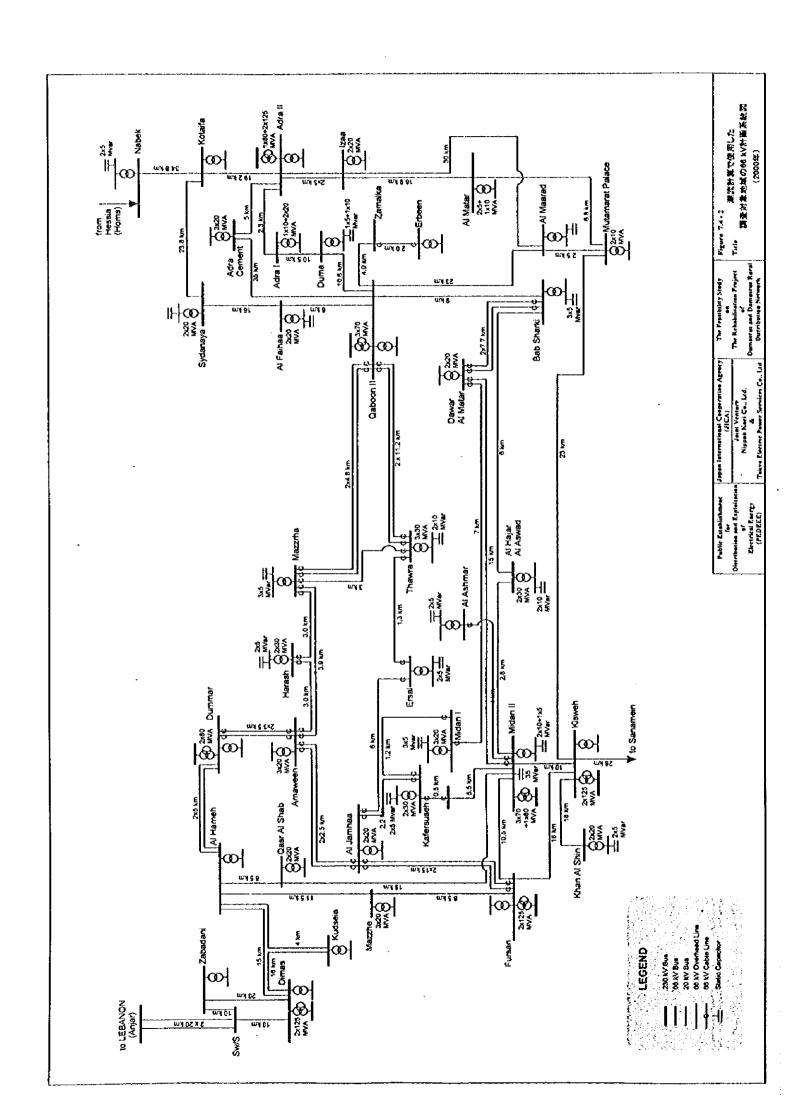

低圧系統の保護としては、変圧器の2次側の低圧引出し口にヒューズが設けられているほか保護装置は設けられていない。しかし、引込線の保護および事故波及防止の観点から、引込線へのヒューズ取付けが推奨される。料金制度および簡素な設備形成の点から、現在需要家側には電流制限器やプレーカーは取付けられていない。従って、引込線の適正サイズの選定は難しい問題となっている。このような状況の下で、引込線にヒューズを取付けるためには、契約容量を考慮の上、引込線のサイズに合わせた容量のヒューズを取付けることが望ましい。

表7.4-2 変電所毎の短絡電流計算結果

ダマスカス市									(kA)
	64	66NV 母線			OkV母線		定物色	断程法	Remarks
変量所名	2000	2005	2010	2000	2005	2010	66kV	20kV	1
1. Mazziha	17.6	24.4	31.8	14.2	15.2	16.1	1500MVA	25	
2. Amaween	18.1	24.2	31.3	14.5	15.5	22.7	1500MVA	20/25	
3. Mazzhe	9.5	11.0	12.1	11.9	12.4	12.8	1500MVA	20	
4. Midan I	16.6	19.7	27.6	14.2	14.6	15.4	1500MVA	33	
5. Midan II	17.4	23.5	29.5	18.1	19.3	22.0	33	25	
6. Al Ashmar	13.9	20.7	25.1	10.0	10.6	15.2	31.5	20	
7. Ersal .	16.4	22.8	30.1	10.2	15.2	23.0	1500MYA	16/20	
8. Bab Sharki	15.7	20.5	25.1	14.0	14.7	15.1			
9. Qast Al Shab	9.3	10.8	11.7	8.7	9.1	9.2	31.5		
10. Qaboon-1		- : .	<u>-</u>	21.2	22.7	23.6		16	
11. Qaboon-2	17.6	23.1	30.5	12.5	13.0	15.7	14/22	20	I
12. Al Hajer Al Aswad	13.5	21.0	26.1	13.2	14.8	21.3	20	20	
13. Al Jamha	18.1	24.0	31.4	10.3	10.6	10.9	31.5	20	
14. Thawta	16.8	22.6	29.7	19.0	20.7	22.8	31.5	25	
15. Dawar A) Matar	16.0	20.7	25.3	10.2	10.5	15.2	31.5	25	
16. Dummar	17.3	22.6	28.8	10.4	15.1	15.9			
17. Kafersuseh	17.2	21.5	28.2	14.3	14.9	15.8	31.5	25	
18. Harash	16.7	22.2	28.0	13.9	14.8	22.3			
19. Barzeh		21.7	27.8		15.0	15.4			, , , , , , , , , , , , , , , , , , , ,
20. Jalaa	1	19.3	23.5		14.5	15.0			
21. Sh. Hasan	l	20.4	25.1	· · · · · · · · · · · · ·	14.7	15.1			
22. Qsoor		22.6	29.3		15.0	15.6			
23. Zablatani	I	19.6	23.8		14.7	15.3			
24. Hosh Blas		16.6	19.0	i	14.1	14.4			
25. Ibn Al Nafis		22.1	28 2		14.9	15.4			
26. Baramekha			31.3		- :	-			

ダマスカス郊外地区									(kA
	66	66kV 母糗			20kV母稼			新建液	Remarks
変電所名	2000	2005	2010	2000	2005	2010	66kV	20kV	
1. Duma	6.1	10.5	15.3	8.8	14.7	182	16	16/25	
2. Adra I	11,4	15.5	19.7	11.1	14.0	19.9	25	20	
3. Adra II	15.4	18.7	23.4	5.5	14.6	15.0	22	12.5/25	
4. Kotaifa	4.6	7.8	10.6	2.5	4.9	8.9	20	15/16	
5. Nabek	2.6	3.6	6.2	5.1	7.3	9.7	40	25	
6. Al Hameh	14.4	18.2	21.8	10.0	14.4	20.6	20/33	25	
7. Sydanaya	2.2	4.0	8.5	4.5	6.4	11.1	16	25	
8. Zabadani	3.5	6.0	7.0	6.0	7.7	10.3	16	25	
9. Fursan	16.3	21.2	26.5	14.2	14.9	15.4	20/31.5	25	
10. Al Matar	7.1	7.8	10.2	6.7	8.5	12.1	20		
11. Izaa	12.1	15.2	16.8	9.4	10.1	10.0	20	20	
12. Moatamrat Palace	8.2	9.0	15.4	4.9	5.0	5.4	20		
13. Adra Cement	9.8	11.0	12.2	11.9	12.5	12.7			
14. Kisweh	14.5	17.0	19.1	9.9	10.2	14.5	31.5	20	
15. Al Maarad	8.0	8.8	15.1	11.0	8.8	18.2	20.0	20	[
16. Dimas	11.0	14.8	17.5	5.2	5.4	10.1			
17. Nasrich	1	·		8.5	8.7	8.9		31.5	[· · · · · · · · · · · · · · · · · · ·
18. Kudscia	10.2	122		2.8	5.4		20		l
19. Erbeen	9.6	11.1	15.9	9.0	9.3	13.7	31.5	25	
20. Al Faihea	1.6	2.4	21.2	3.6	4.8	15.0	80	20	l
21. Khan Al Shih	22	4.2	4.3	6.4	6.6	6.6			[
22. Jededal Artouz	1	8.2	8.8		17.1	11.4			
23. Babila		16.1	22.6		13.9	15.1			
24. Bludan	l	4.3	4.7		7.9	8.4			
25. Jaramana	. 1	15.6	3.4		13.8	7.0			[
26. Al Tal	1		14.5	i		13.3			
27. Yabroud	1	.	7.7			10.6			
28. Harasta	l		14.4			¥3.2			
29. Nashabieh	1		11.1			12.3			I
30. Meleha] .		3.8			7.4			
31. Saiedch Zanab	1	_	22.0						
32. Kudseia I			14.9			13.7			
33. Kudseia II			12.9	li.	i	128			
34. Darea			17.5			14.1			
35. Zahera		22.0	27.3						

