Tables

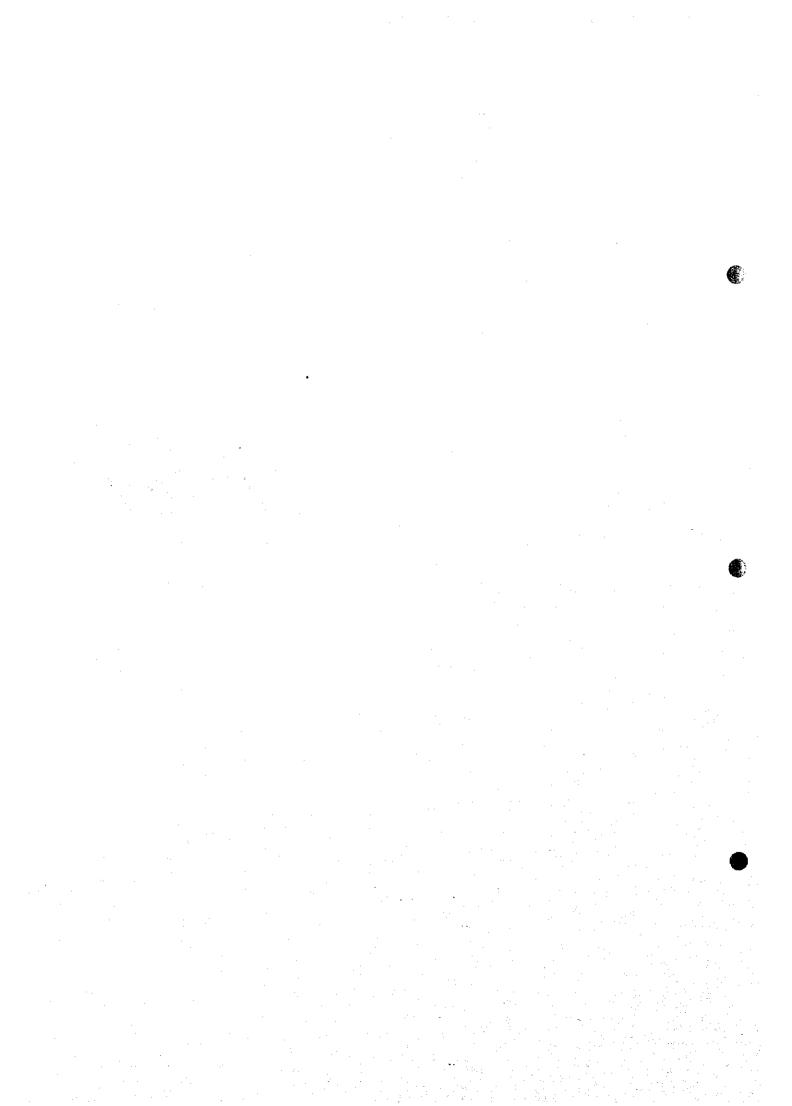


Table 2.1.1 GENERAL FEATURES OF DAMS IN CHAO PHRAYA RIVER BABIN

U	
-	4
_ >	٠
_	7
-	٤
C	١
μ	ì
*	ı
<	C
C	j
Ü	2
Į,	1
Ľ,	7
- 2	1
ρ	Ç
-	•

TAKE SOLVE TAKES													•	
Name of Dam	Bhumbol	Surki	Nac Ngat	Mac	Kiu Lom	Mae	Krasico	Pasak	Kachg	Kwae Noi	Nae Wee	Kar X	Nac S	
			,	X Inning		Z LEU'S			Sur len		150	7.000		
Dimose	I.P.F	I.P.F	1	I	ĭ	-7	ĭ	I P	LF:P	I, F, P	P-15	I.S	44	
Under operation by	EGAT	EGAT	Q2	Ð	Ð	E C	OD.	CDQ.	SID	SID	EED.	Ð.	Ð	Ð
River	Surg	Ca.	rig.	Pug .	Wang	Pung	Chao Phrava	Pasak	Your	Kwae Not	Salec	Weng	Mac	Z Z Pek
Desirage area (km2)	26,386	13,130	1,281	889	2,700	426	1,200	12,929	3,583	4,254	612	1,275	1,085	854
volume (m)	5,662	9,660	255	249	305	30	201	772	1,125	733	250	180	165	345
- ditto -	366	208	199	438	39	70	168	09	314	172	409	150	152	ş
Existing/under constructing/proposed	ш	ш	μί	Ξ	Э	Ξ	3	11	Ċ.	۵,	Ç.	ρ.,	_	ո
				ľ	The Control of the Co			3 77/11						

Note: I = Impation; P = Power Generation; F = Flood Control; S = Water Supply

MEDIUM SCALE DAMS

Name of Dam	Mac Tub	Mae Tub Mae Yao Mac Art	Mac Arb	Mae Prik	Mac Prik Mac Kam	Khlong Khang	Huni Head	Khlong Tron	Nem	Huai Mae Huzi Mae Khon Kon		Khlong Khayang	Khlong Prai	Nam Lai	Khlong Khlung	Mae Song
Purpose		-	_	-	-	,	1	ĭ	_	ľ	1	1	1	I		
Under operation by	2	2	<u>Q</u>	ð	£	g g	Ð	Ð	CD3	ED.	E COM	OD OD	CT2	RID	CD CD	Ð
River	Ping	Weng	Wang	Wang	Yom	Your	New Res	g Z	S Z	Pag	Ping	Ping	Ping	Ping	Ping	You
Designates area (km2)	136	35	35	45	59.2	22	64	265	277	7.	2	20	51	74	56	305
volume (m)	339	3.2	2.7	3.8	9.6	9.5	2,7	52	10.2	3.7	4.85	4.6	13	15	18	53.2
- ditto -	300	91	717	3 2	162	339	58	196	37	109	110	230	254.9	202.7	189.5	174
Existing/under constructing/proposed	Ξ	ш	щ	3	3	3	ы	ŒĴ	Ξ	Ы	ፈ	Д,	۵,	ሲ.	۵.	2.
									Ì.							

Note: I = Imgation: P = Power Generation; F = Flood Control; S = Water Supply

SWALL SWALL SCALE DAMS

				•										_	
Name of Dam	Mac Tang Huai Mac	Huai Mae Song	Huei Ta Pac	Mae Moc	Weng Daeng	Mae Sai	Huai Suang	Mac Khong	Mae Kharing	Huni Nam Kung	Khlong Chomphu	Mae Chaery	Khlong Pho	Huai Nam Dung	Huai Kan Yao
Purpose			-	 - 						- 1		1			1
Under operation by	2	2	2	ð	£	RE CE	Ð	RID	CD2	B	CON CON	E CER	SED.	9	SED SED SED SED SED SED SED SED SED SED
River	Yom	Хош	Yom	You	Your	You	You	You	Nan	Cen Cen	Ze.	Nen	Sakae Krung	Sakae Krung	Sakae Krung
Drainage area (km2)	130	8	287	728	179	177	47	5	575	148.2	364	18	376	45	\$
Active storage volume (million m3)	18.1	11,4	85	8	12	24.3	9.6	7.7	62	12.4	43	4.3	67.5	S	S
- ditto - (mm)	234	190	202	110	29	137	119	110	271	85 75	118	239	180	111	3
Existing/under constructing/proposed	۵.	Ω,	Ω	Δ,	ρ,	ል,	c.	۵۰	ď	Ъ	ч	D.	Δ.	ď	<u>ρ</u>

Table 2.1.2 PRINCIPAL FEATURES OF EXISTING/PROPORSED LARGE DAMS

Project Name	Q	-	-	1	-	1.9	1, 1, 9	T. F. P		1.5	3.7	
1. P. F 1. P	Đ	_	-	1	-	4						
FOAT FEAT A See Name C A The Place Take Take Take Take Take Take Take Tak	ğ				-						- - -	Υ
7. A Sem Ngao C A The Pla.C The Pla.		ç	Ð	CE.	G ₂	Ð	GZ.	CT.	Ð	ĝ	9	7
Control Cont	A Mae Teerg C C Chang Me Me Ngit 19-09-45	A Dos Saker, C C Chang Mai Ping 18-65-32	A Musing C Lampang Weng 18-31-19	A Mae Moh.C. Lempang Mae Chang 11-18-14	A Lan Sak.C. Ubbs: Thanse Sakse Krand	A.Phartens A.San Nikkom c.Lopbn Phrae Panak	*C	A Wat Bot C Philamulok Kwiet No	Aladono e Nakom Sewen Salie Kinve	A Chae Ham Lambang Wang	Assen Pt. Tong C.Churrg Mei Mer Wen	
Command Comm	1,281 293	98. 808. 808. 808.	2700	426 426 54.3 190.5	200 E	12.929 11.00 152.4	3,587 933 260.4	4.7.4 1,440 3.604	28 H &	1,275 265 207.8	53 1,085 181 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20 to 01
(m. M.S.E.L.) 213.0 213.		385.0 385.0 380.0	0.000 0.000 0.000	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	159.0 157.0 143.0	2.5.4 0.2.4 0.2.4 0.2.4	258.0	25.00 0.00 0.00	207.5	352.0	381.85	иов
13.402 1	•	350.0	263.0		1410	32.5	210.0	000	120		328.8	90
The state of the s	<u> </u>	88 4 4 8 4 4 4	H H A & E	80 × 50 5	¥8.44.	785 11 177 795	23 H 5	SXET.	8 4 5 5 8 5 5 5 8 5 5 5 5		150 100 100 1104	8 4 6 1
(mm)	_		160	, e.	100							:T-
(m) Seavity with Seats/All 13.0 (m) (m	Earthfill 59.0 404.0	Earthfil 61.0	Gravity 26.3 286.5	Rockfill #0.0	Barthfill 26.8	(23.2) (23.2) 46.2	Congress E3.0	Roseful 80.0 7 135.0 6 26.00	57.0 .0 .0 .11.0	ill action	47.0 65	3850
Turnel type 2 Turnels, (m. M. S.L.) Xudial Gase Regal Over	3,552	•		347.0		over flow	over flow 2583.0	over flow 118.5 Xadel G. 13.6m (W)	Mr.			380.0
11.0m(w)** 11.85m(w)** 10.0m(w)** 10	3,174	1,470	0000	1,056	٠	3.407	3,300	7,046	5 £		<u></u>	5,67
FLUEL Wheel Flued Whee A. Im(w)* (Com(w)* (Com(w)* (Com(w)*)* (Com		,					0000	Part Ward Star (NY)	v &			1
N-WWEET							-48kCW*1	2-WW61	·			
(TTACLYARD) (TTACLYARD) (TTACLYARD)	<u>स्</u> ६						0.701		0.14			
Note, I = Impation, P = Fower Source: RID	Petron, ? = 3 lood Com	ion				<u> </u>	1					

E

Table 3.3.1 SELECTION OF EFFECTIVE DAM FOR FLOOD MITIGATION (CATCHMENT AREA GREATER THAN 1,600 KM2)

Nana	e of Dam	Bhumibol	Sicikit	Kwac Noi	Kaeng Sua Ten	Pasak	Kiu Lom & Kiu Kho Ma *3
Name	e of River	Ping	Nan	Kwae Noi	Yom	Pasak	Wang
Catchmer	nt Area (km2)	26,386	13,130	4,254	3,583	12,929	2,700
Active S	torage (mm)	366	508	298	279	61	107
Annual	Inflow (mm)	199	428	341	260	162	218
Active Storage	Annual Inflow (%)	184	119	87	107	38	49
Area	A) Tributary	51.6	41.3	13.4	15.2	71.0	24.0
Contribution	B) Nakhon Sawan	23.9	11.9	3.8	3.2		2.5
Factor *1 (%)	C) Bangkok	16.3	8.1	2.6	2.2	8.0	1.7
Distance from	A) Tributacy	220	370	270	230	70	180
Referrence Point	B) Nakhon Sawan	220	300	230	440	-	370
(km)	C) Bangkok	470	550	480	710	180	620
Irrigatio	on Area (ha)	384,000	265,000	24,900	48,800	37,000	30,018
Active Storage/Ir	rigation Area (m3/ha)	25,000	25,000	29,000	20,000	21,000	9600 *4
Pus	pose *2	F,I,P	F,LP	FJP	F,I,P	1,12	1
Result	of Selection	Selected	Selected	Selected	Selected	Selected	Rejected

^{*1;} Area Contribution Factor = Dam Catchment Area / Catchment Area of Reference Point

^{*2;} F: Flood Mitigation, 1: Irrigation, P: Hydropower

^{*3;} Kiu Lom and Kiu Kho Ma dams are treated as a conbined dam.

^{*4;} Water demand for irrigation is less than 10,000 m3/ha.

Table 3.5.1 IDEAL VACANT CAPACITY FOR FLOOD CONTROL

(Unit : million m3)

	Probability			Ideal Vaca	nt Capacity		
Name of dam	of Drought	Jul. i	Aug:1	Sep.1	Oct. 1	Nov.1	Dec.1
	0/45	731	597	418	149	16	0
	1/10	733	677	528	161	84	0
Kwac Noi	1/5	733	727	588	228	105	0
	1/3	733	733	631	280	70	0
	1/2	733	733	733	403	109	0
······································	0/45	765	658	· 572	219	18	0
	1/10	772	772	703	396	57	0
Pasak	1/5	772	772	772	481	82	0
	1/3	772	772	772	596	144	0
	1/2	772	772	772	772	216	0
	0/45	1045	575	437	178	38	0
	1/10	1122	975	571	268	75	0
Kaeng Sua Ten	1/5	1123	1017	660	288	107	0
	1/3	1124	1064	783	358	147	0
	1/2	1125	1090	871	554	286	0

Table 3.5.2 PROPOSED UPPER RULE CURVES FOR SELECTED DAMS

I able 3.5.2 PROPOSED OFFER ROLE CORVES F	ことのより	アドガス たつう	パントしてい	だい よつぶん	ひとしかい しゅうしゅう	STATE.						
	ı									(Unit: million m3)	ion m3)	
					Tota	1 Storage Vo	Total Storage Volume of Upper Rule Curve	per Rule C	urve			
Name of dam	Case Case	Jul. 1	Jul. 15	Aug. 1	Aug. 15	Sep.1	Sep.15	Oct. 1	Oct. 15	Nov.1	Nov.15	Dec.1
	-	10500	10600	10700	10900	11000	11900	12800	13100	13460	13462	13462
Burnibol	2	9500	9550	0096	10000	10300	11100	12000	12750	13460	13462	13462
	m	8000	8250	. 0058	0006	0056	10350	11200	12350	13460	13462	13462
	-	6700	0089	7000	7500	8000	8700	9300	0076	9510	9510	9510
Sirildit	7	4900	5200	5500	6250	2000	8150	9250	0856	9505	9510	9510
	m	3000	3500	4000	2000	0009	2600	9200	9350	0056	9505	9510
	1	172	172	172	290	415	230	650	692	69/	692	492
Kwae Nor	2	105	105	105	240	375	505	640	69/	69/	692	492
	ທ	36	36	36	185	335	480	625	692	692	692	769
	1	213	213	213	213	213	400	565	785	785	282	785
Pasak	2	115	115	115	115	115	335	565	\$84	785	785	785
	G	13	13	13	13	£I	270	530	785	785	785	785
	1	909	909	009	795	\$86	1175	1175	1175	1175	1175	1175
Kaeng Sua Ten	2	325	325	325	610	\$68	1175	1175	1175	1175	1175	1175
	ო	95	20	20	425	008	1175	1175	1175	1175	1175	1175

Table 3.6.1 FLOOD MITIGATION EFFECT OF FIVE DAMS

(Stored volume during flood period unit: million m3)

	(Brosec	i voittiile e		المتحالي المتحالي المتحالي والمتحال وال		
Name of	C-22		Flood			Average
dam	Case	1975	1981	1995	1996	ттошьо
	Observed	4,071	2,128	4,465	2,977	3,410
	1	2,716	1,272	2,793	2,810	2,398
Bhumibol	2	3,900	1,272		2,867	2,831
	. 3	4,412	2,767	4,635	3,388	3,800
	Without *1	4,229	2,981	4,340	3,387	3,734
0.01.5	1	4,194	2,356	4,283	3,387	3,555
Sirikit	2	4,410	2,690	4,526		
	3	4,412	2,767	4,635	3,388	3,801
	Without *2	685	335	555	603	545
	1	685	558	597	608	
Kwae Noi	2	690	599	661	671	655
	3	729	637	728	741	709
	Without *2	356	0	0	492	212
	1	437	437	437	492	451
Pasak	2	605	605	605	605	605
	3	772	772	772	772	772
	Without *2	691	419	1,015	368	
Kaeng	1	691	.419	1,015	368	I
Sua Ten	2	691	419	1,023	1	
	3	691	419	1,063	368	635

^{*1 ;} Operation with Kon-Ing-Nan project proposed upper rule curve (after Kok-Ing-Nan diversion)

Table 3.6.2 REDUCTION OF IRRIGATION AREA AND HYDRO-POWER GENERATION

REDUCTION OF IRRIGATION AREA

	REDUCTIO	OFIRMOANO		
Name of		Reseased volume in	Reduction from w	thout/observed' case
dam	Case	dry season (MCM)	Releaseed volume (MCM)	trrigation area (1000 ha)
	Observed	3,079	•	-
Bhumibol	1	3,107		<u>-</u>
Diminio	2	3,098		-
	3	2,937	145	5.8
	Without *1	5,610	-	-
Sirikit	i	5,693	<u>-</u>	-
Billeit	2	5,638	•	-
	3	5,606	4	0.1
	Without *2	784	_	-
Kwae Noi		784	0	-
KWAE INUI	2	781	3	0.1
l	3	769	15	0.5
	Without *2	1,446	00	-
Pasak	1	1,446	0	•
I doak	2	1,442	4 .	0.2
	3	1,427	19	0.9
	Without *2	929	-	-
Kaeng Sua	1	929		
Ten	2	919	10	0,5
1	3	856	70	3,5

REDUCTION OF HYDRO-POWER GENERATION

Name of		Annual average	Redaction from
t t	Case	power generation	Without/observed*
dam		(Gwh)	case (Gwh)
	Observed	1,208	
Bhumibol	1	1,215	-
ivanumon	2	1,214	
ſ	3	1,208	-
	Without *1	1,170	-
Sirikit -	1	1,175	Į -
2iukii	2	1,171	-
Ī	3	1,062	108
	Without *2	147	
	1	147	0
Kwae Noi	2	144	3
	3	141	6
	Without *2	-	-
Pasak	1	-	-
rasak	2	-	-
•	3	-	-
	Without *2	82	-
Kaeng Sua	1	82	0
Ten	2	. 82	0
1	3	79	3

^{*1;} Operation with Kon-Ing-Nan project proposed upper rule curve (after Kok-Ing-Nan diversion)

^{12;} Operation with non-upper rule curve

Table 3.6.3 PROPOSED UPPER RULE CURVE

				Total Storag	e Volume e	Total Storage Volume of Upper Rule Curve (Unit: MCM)	le Curve (C	int : MCM)			
Name of dam	Jul. 1	Jul. 15	Aug.1	Aug.15	Sep.1	Sep.15	Oct.1	Oct.15	Nov.	Nov.15	Dec.1
Burnibol	8,000	8,250	8,500	9,000	9,500	10,350	11,200	12,350	13,460	13,462	13,462
Siriler	3.000	3.500	4,000	5,000	6,000	7,600	9,200	9,350	9,500	9,505	9,510
Kwae Noi	36	36	36	185	335	480	625	692	692	492	769
Pasak	13	13	13	13	13	270	530	785	785	785	785
Kaeng Sua Ten	\$0	80	50	425	800	1,175	1,175	1,175	1,175	1,175	1,175
,											

Table 3.7.1 FLOOD MITIGATION EFFECT OF KWAE NOI AND KAENG SUA TEN DAM

	Reservoir		Flo	od	
	Operation of	1999	S flood	1983	flood
Area	Kwae Noi and Kaeng Sua Ten Dam *	Inundation Volume (MCM)	Recducation ** (MCM)	Inundation Volume (MCM)	Roduction ** (MCM)
Upper	(a) Casc-O	5646	-	3013	_
Central	(b) Case-1	5534	112	2980	33
Plain	(c) Case-2	4880	766	2814	199
1 16311	(d) Case-3	4774	872	2785	228
	(a) Case-0	6587	-	5719	-
Higher	(b) Case-1	6471	116	5545	174
Delta	(c) Case-2	6221	366	5559	160
	(d) Case-3	6147	440	5423	296
	(a) Case-U	1205	-	1854	-
Lower	(b) Case-1	1204	1	1854	-
Delta	(c) Case-2	1203	2	1854	<u> </u>
	(d) Case-3	1203	2	1853	i

^{*(}a) Case-0: Without-case of Kwae Noi and Kaeng Sua Ten

^{* (}b) Case-1: Without-case of Kaeng Sua Ten

^{*(}c) Case-2: Without case of Kwae Noi

^{* (}d) Case-3: With case of Kwae Noi and Kaeng Sua Ten

^{** (}a)-{(b) or (c) or (d)}

Table 4.3.1 CALCULATION RESULT OF WATER BALANCE SIMULATION FOR MAJOR FLOODS

(Unit: MCM)

					Flood year			
Name of Lam	Volume	1975	1978	1980	1981	1994	1995	1996
Bumibol	Maximum	1.3950*	10.920	9.530	10.070	10.610	12.240	11,660
(Vmax=1,3460)	Flood control	3,490	1,810	2,090	350	1,080	2,330	1,260
Sirikit	Maximum	-0620-1	8,140	7.880	8.410	9.390	1.1820*	7.980
(Vmax =9,510)	Flood control	3,380	1.840	1,490	370	1,030	4,460	610

*: Selected flood (Maximum stored volume exceeds the maximum capacity - Vmax-.)

(Unit: MCM)

į				Š	Storage transition curve (adjusted curve.)	on curve (a	djusted curv	o >		
Name of dam	Flood year	Aug. 1	Aug. 15	Sep.1	Sep.15	Oct.1	Oct.15	· Nov.1	Nov.15	Dec.1
Bumibol	1975	9.950	10,100	10,400	10.800	11.750	12,900	00 713,460*	13.400	13.250
. :: .	1975	5,000	5,060	6.090	6,790	7.700	8.220	8,450		6,780
Sinkit	1995	5.000	5.780	6.980	8.310	8.890	9.320	9.500 *	8,840	8.050

*: Maximum storege volume (after adjusting)

(

Table 4.3.3 PROPOSED UPPER RULE CURVE

/OIR
~
RESEI
REGIT
SIRI
S pus
Ö
8
BHUM
ф

Name of					Total S	Total Storage Volume (million m3)	me (milli	on m3)				
	Jan. I	Feb.1 Mar.1	Mar.1	Apr.1	May 1	Jun 1	Jul. 1	Aug. 1	Sep. 1	Oct.1	Nov.1 Dec.1	Dec.1
Bhumibol	13,050	13,050 12,250 11,300	11.300	10,500	001,01	10.050	10,000	9,950	9.950 10,400 11,750	11,750	13,462	13,460
Sirilàt	8,800		7,800 6,650	5,700	5,250	5,100	5,050	5,000	7,000	006'8	9.510	9,300

PASAK RESERVOR

,				(**	Cotal Storag	Total Storage Volume (million m3)	million m3	(
Cabe	Jul.1	յալ.15	Aug.1	Aug.15	Sep.1	Sep.15	Oct.1	Oct.15	Nov.1	Nov.15	Dec.1
1	977	977	226	977	226	226	635	785	785	785	785
2	123	123	123	123	123	120	525	785	785	785	785
ເກ	13	13	13	13	13	13	400	282	785	785	785

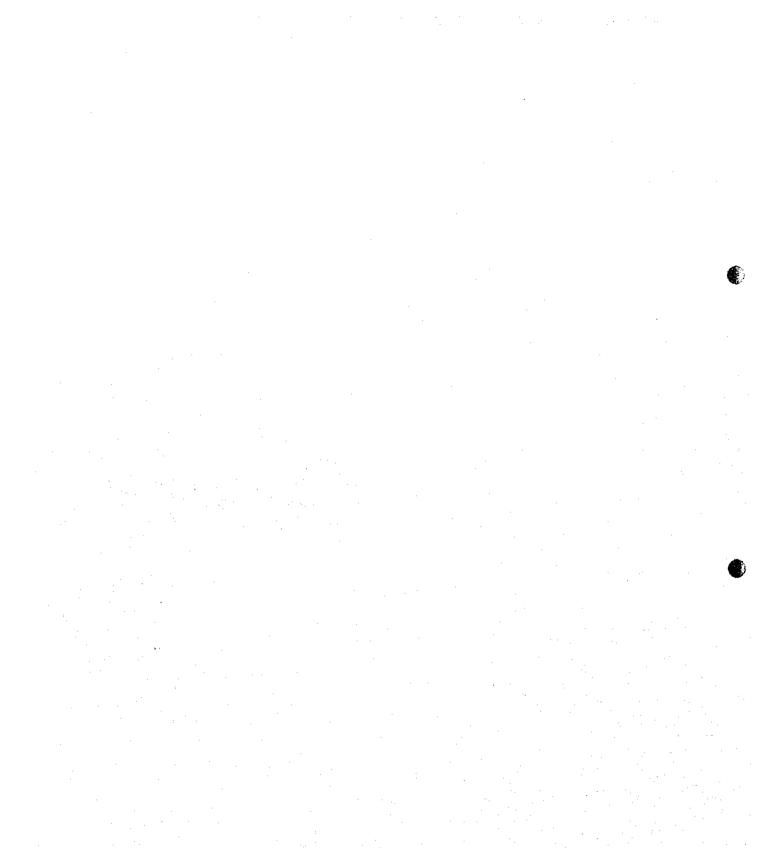
Table 4.4.1 FLOOD MITIGATION EFFECT FOR FIVE BIG FLOODS

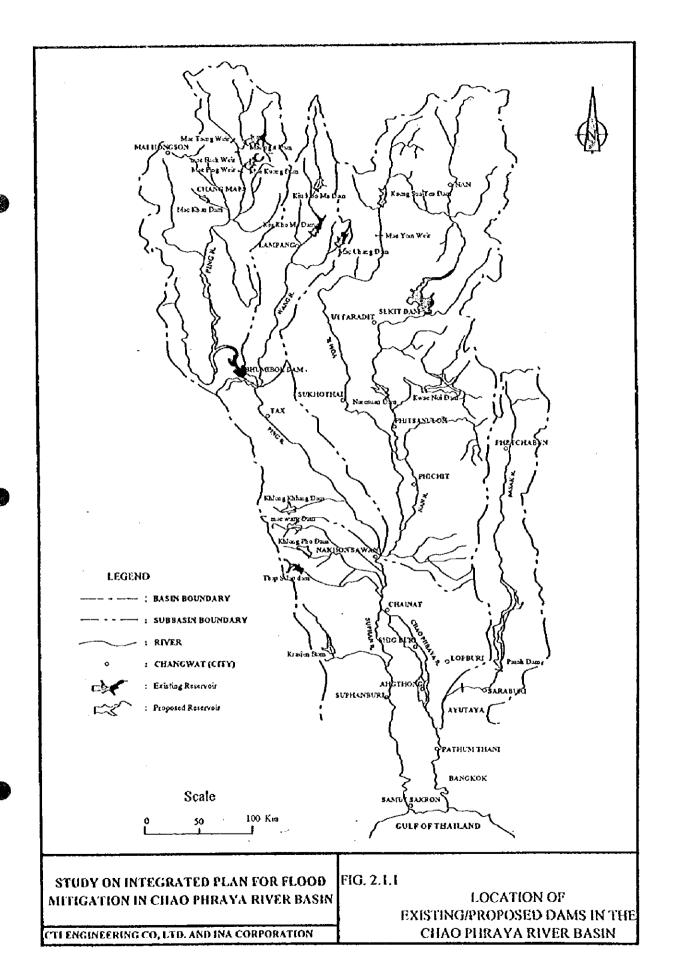
Name of	Operation Case	ì	Reduced inc	indation Vo	lume ((million m3) :
dam	Operation Case	1975 flood	1981 flood	1983 flood	1995 flood	1996 flood	Average
Bhumibol	Without(Observed)	3,436	342	1,615	3,681	918	1,998
	Proposed Operation	4,477	342	1,615	3,773	956	2,232
Sirikit	Without(KIN project proposed)	2,323	348	113	2,725	506	1,180
Ollikit	Proposed Operation	2,813	348	113	3,510	506	1,458
	Without(without Operation)	0	0	0	0	0	0
Pasak	Proposed Operation(Case-1)	175	. 0	0	288	51	103
	Proposed Operation(Case-2)	370	0	0	587	109	213
	Proposed Operation(Case-3)	438	0	0	695	129	252

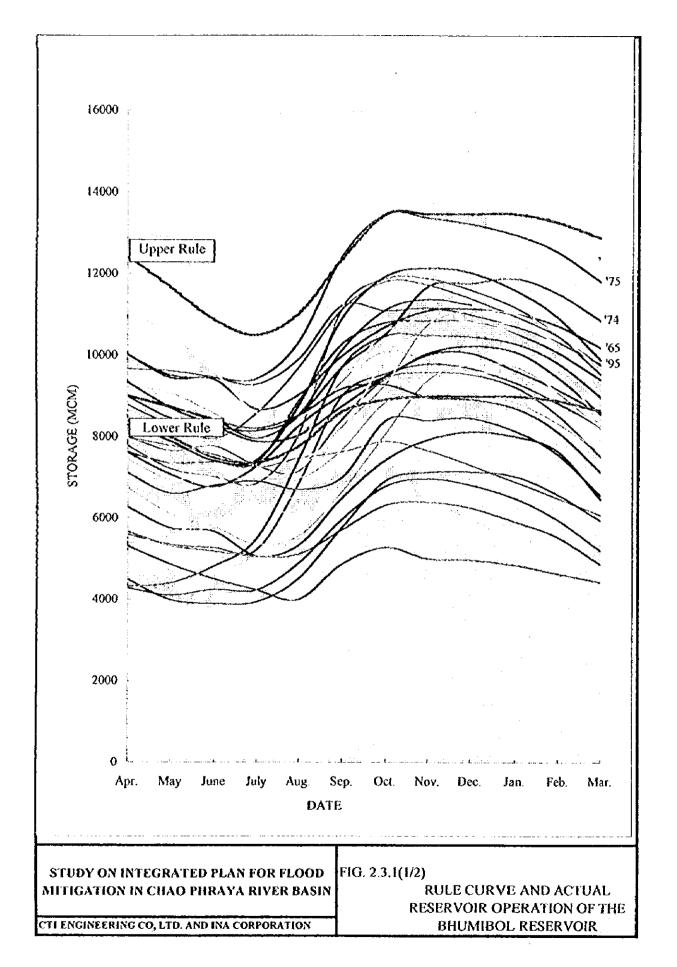
Table 4.4.2 INFLUENCE FOR IRRIGATION WATER SUPPLY AND ANNUAL POWER GENERATION (BHUMIBOL AND SIRIKIT DAM)

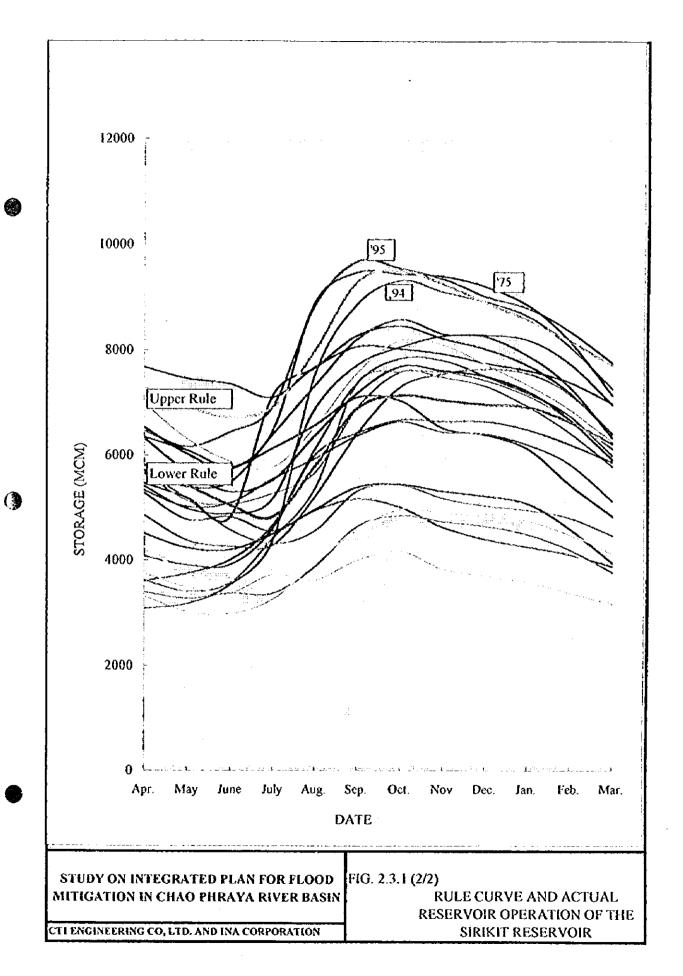
			Bhumibol	Dam						Dam		
} <u>}</u>	Water Supp	y in diy scas	ion (MCM)	Annual Pu	wer Genera	tion (Gwh)			ison (MCM)	Annual Po	же Сект	
Year	Observed	Proposed	Difference	Observed(Proposed	Difference	Without*			Without	Proposed	
<u> </u>	(A)	(B)	(B) (A)	A)	(B)	(B) (A)	(A)	(13)	(B)(A)	(A)	(B)	(B)-(A)
1952	-				-		3117	3117	् स्टार्ट्स्ट्रेस्ट्रेस्ट्र	913	892	-20
1953							4686	4572	-184	1106	1097	
1954		-					3008	3009	0	685	679	. (7
1955							2006	2006	0	662	628	34 7
1956	-			-	<u> </u>		4513	4521	9	1508	1501	7 ê
1957			<u></u>				4554	4535	-19	1214	1188	-26
1958					<u> </u>		4513	4513	. 0	1063	1083	21
1959				-			2006	2006	<u> </u>	852	789	-63
1960							4513	4525	13	1208	1208	<u>1</u>
1961		-		-	<u> </u>		4588	4539	- 48	1585	1609	24
1962	-			<u> </u>	<u>.</u>		4835	4640	-195	1111	1084	27
1963	-	_					2006	2006	0	615	609	.7
1964	-	-		•		<u> </u>	4011	4012	0	975	966	.9
1965	2801	5800	3000	866	1462	596	3008	3009	0	696	688	-8
1966	2474	40%	1623	1105	1406	301	1504	1501	0	487	482	6
1967	2585	3971	1386	1337	1276	-60	3008	3009	0	754	745	٠٩٠
1968	2569	3728	1158	1095	890	-205	3008	3009	0	741	730	-11
1969	2672	5185	2814	1129	921	208	1504	1504	0	463	458	-3 %
1970	3651	5800	2149	1551	1377	-174 ×	2006	2006	0	884	840	41
1971	3901	5800	1899	1974	1966	8	4513	4521	8	1295	1313	18
1972	3118	5800	2682	1463	1476	!4	4011	4012	0	908	878	-30
1973	4154	5800	1546	1818	1736	-82	2006	1504	-501	612	556	-55
1974	2963	5800	2837	1346	1477	131	4011	4012	0	963	1025	62
1975	3716	5800	2054	1961	2072	111	3008	3009	Ó	1152	1029	1?3
1976	3605	5800	2195	1618	1475	143	4513	4513	1	1130	1224	94
1977	3658	5800	2142	1620	1414	-207	420)	4012	-198	1016	1015	31
1978	3122	5800	2678	1229	1363	143	3008	3009	0	814	789	25 ;
1979	3007	4051	1044	1419	1329	-81	4011	4012	0	1035	991	-44
	2091	4149	2058	603	884	281	2006	2006	0	701	675	-26
1980 1981	3417	5556	2139	1176	1150	-26	4011	4012	0	1393	1421	28
	3139	4120	681	1321	1129	192		3009	-1003	956	906	-50
1982	2964	4010	1077	906	1126	220	4011	4012	0	907	890	35,175
	2835	3845	1010	981	899	-83	3008	3009	0	1015	9%	-19
1984	2624	4007	1383	838	896	58	4011	4012	0	986	962	-23
1985			596	1239	1004	-235		4012	0	957	959	2
1986	3250	3846		1055	875	,180	1	2006	-1003	675	549	126
1987	2979	3840	861 626	943	925	7.18	1501	2006	502	481	550	69
1988	3713	4399		1	1105	-166	2006	2006	0	624	618	24
1989	3705	3927	705	1272	875	-81		2006	0	651	658	1
1990	2996	3700	705	956		132	2006	2006	0	624	557	-67
1991	2594	3736	1112	722	854	218	2006	2006	0	539	532	8 ii
1992	2634	3700	1066	633	851	105	1504	1501	0	465	459	.7 .1
1993	1659	1806	147	667	772	777	1504	1504	0	885	853	-33
1994	2328	5151	2823	724	490	235		4012	0	1568	1464	-103
1995	4131	5800	1669	1325	1367	42	4513	4538	26	1180	1269	89
1996	4700	5800	1100	1880	1410	-13	3218	3162	-56	913	899	-14
Average	; 3129	4710	1581	1208	1195	t : Proposed t	-		1	J	1	

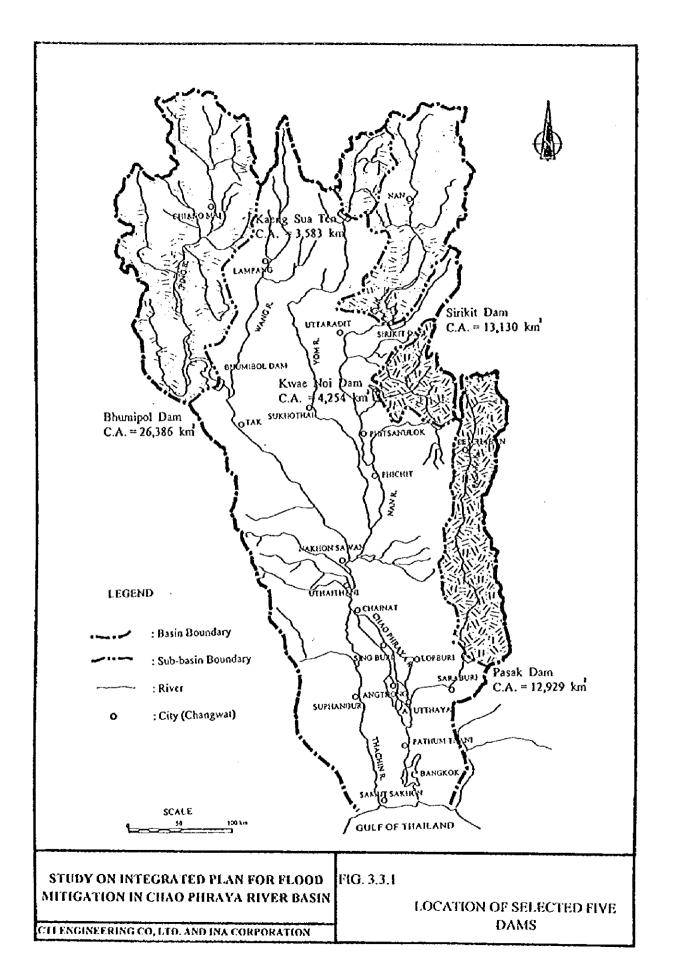
* Without : Proposed by Kok-Ing-Nan Project

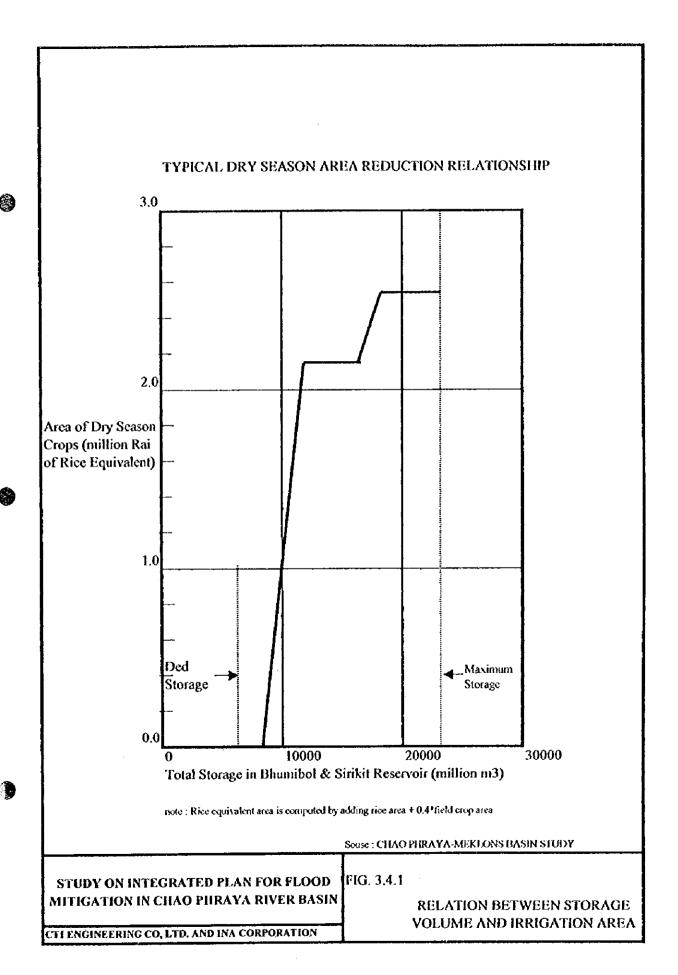

Table 4.4.3 INFLUENCE FOR IRRIGATION WATER SUPPLY OF PASAK DAM

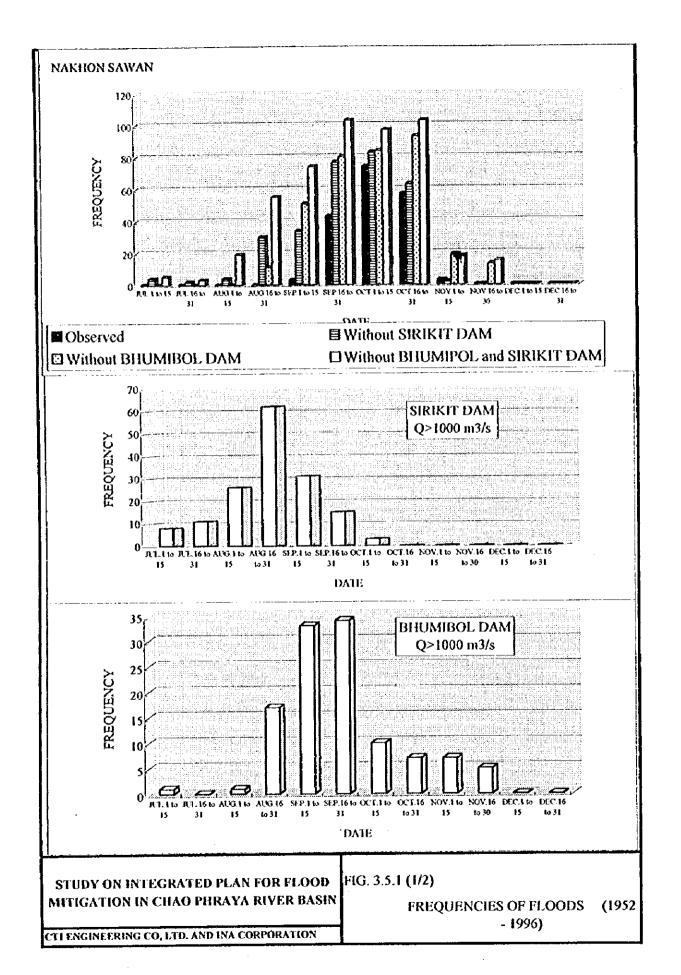

(Unit: MCM)

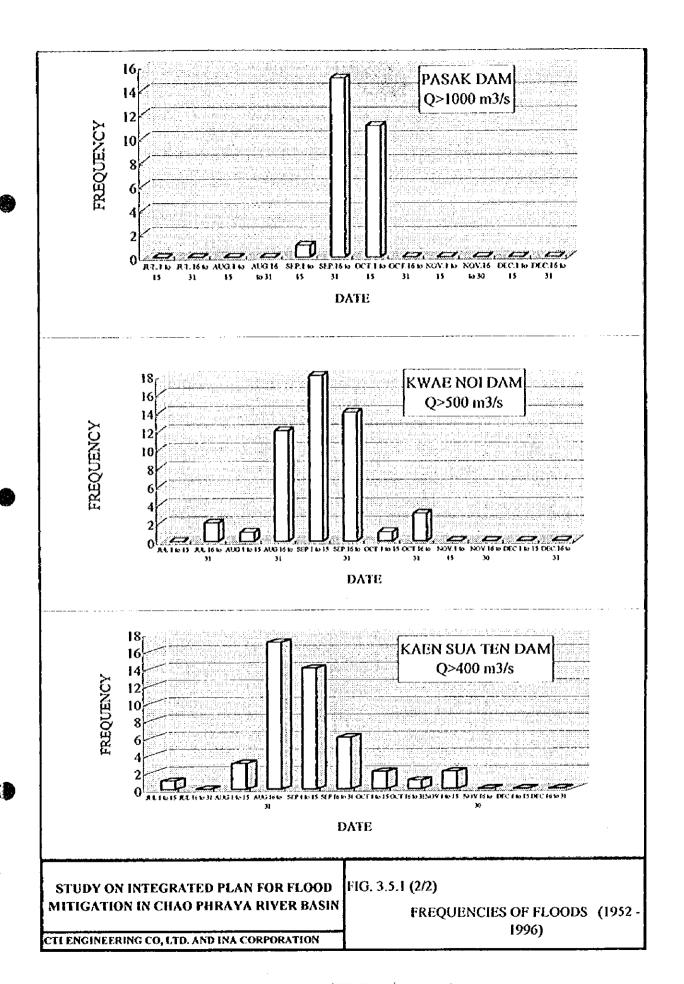

			Pasa	k Danı		<u> </u>
		ase-I		asc-2	C	se-3
Year		Reduction from		Reduction from	Storage at	Reduction
	Nov.30	'without'	Nov.30	'without'	Nov.30	from Without
1952	772	0	772	0	772	0
1953	772	0	772	0	772	0
1954	772	o o	772	0	772	0
1955	772	0	772	0	772	0
1956	772	0	772	0	717	ाक ्-35 च्छा
1957	772	ŏ	772	0	772	0
1938	772	0	772	0	772	0
1959	772	0	772	0	772	0
1960	296	o o	251	253445°	131	-164
1961	$\frac{-270}{772}$	0	772	0	772	0
1962	772	0	772	0	772	0
1963	772	0	772	o o	772	0
1964	772	0	\overline{m}	0	772	0
1965	772	0	582	-190	462	- 310 -
1966	772	0	772	0	772	0
1967	1-772	0	772	0 -	772	0
	335	0	240	V 26 10	120	• 216
1968		0	772	0	772	0
1969	772	0	772	0	772	0
1970	772	0	772	0	727	125.45 Eq.
1971	772	0	772	1 0	772	0
1972		0	771	0	761	-10 33
1973	771	0	772	0	772	0
1974 1975	772	1 0	772	1 0	772	0
1976	772	0	772	0	772	0
1970	772	0	755	18 (17 TY	721	-52
1978	772	0	772	0	772	0
1979	636	0 7	541	94	421	214
1980	$\frac{000}{m}$	1 - 0	772	0	772	0
1981	772	0	772	0	772	1 0
1982	772	0	772	1 0	772	0
1983	772	0	772	0	772	0
1984	772	0	772	0	772	0
1985	772	1 <u>0</u>	772	0	772	0
1986	745	0	436	309		-429
1987	772	0	772	0	772	0
1988	772	ŏ	\overline{m}	0	772	0
1989	772	0	720	₹ 57.52	600	-172
1990	- 772	- 	772	0	772	0
1991	772	 0	772	0	$\frac{n_2}{m}$	0
1992	772		717	15 15 5 E 5	597	-175
1993	465	0	465	0	345	120
1923	772	0	772	1 0	$\frac{30}{72}$	0
1995	772	0 :	772	1 0	772	0
1996	$\frac{1}{7n}$	0	772	1 0	772	1 <u> </u>
Average		- 	722	-19	698	43

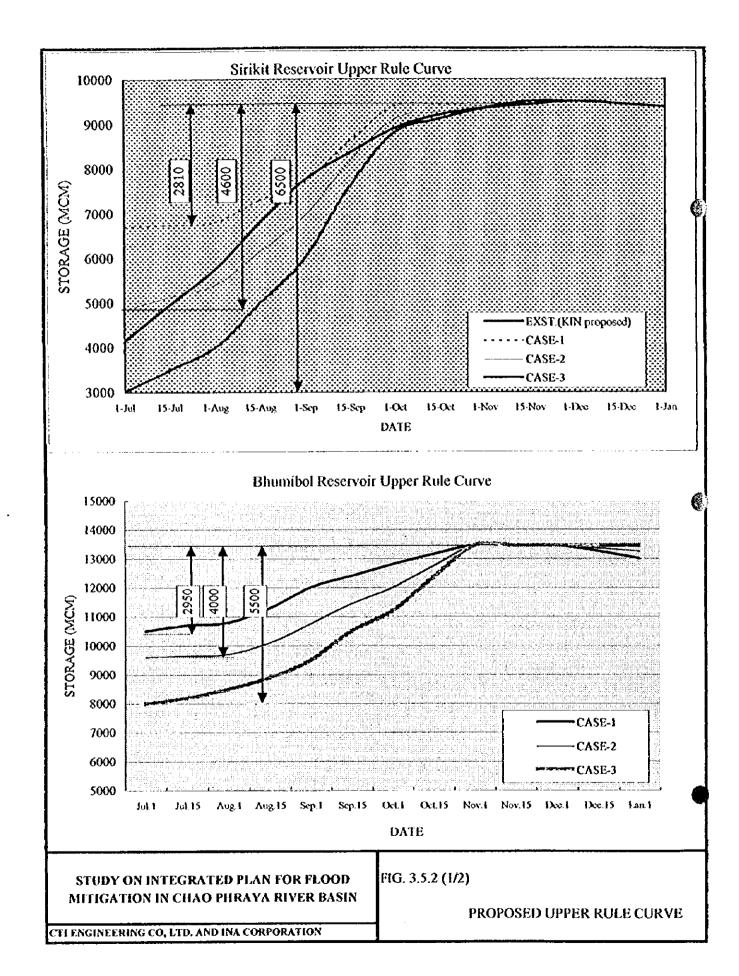

Without: Operation with non-upper rule curve

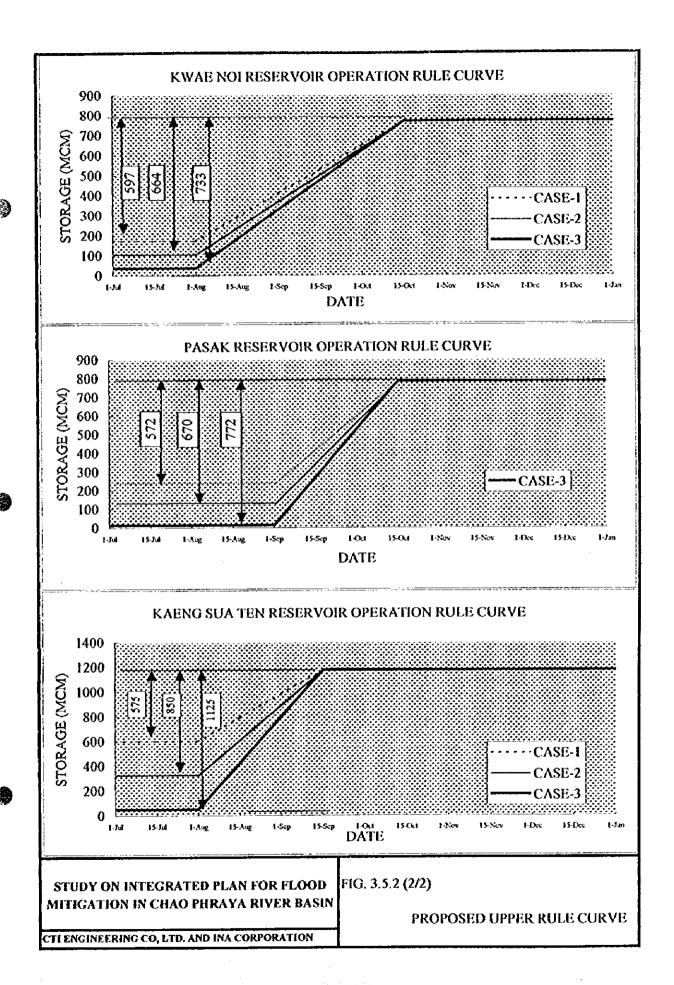

Figures

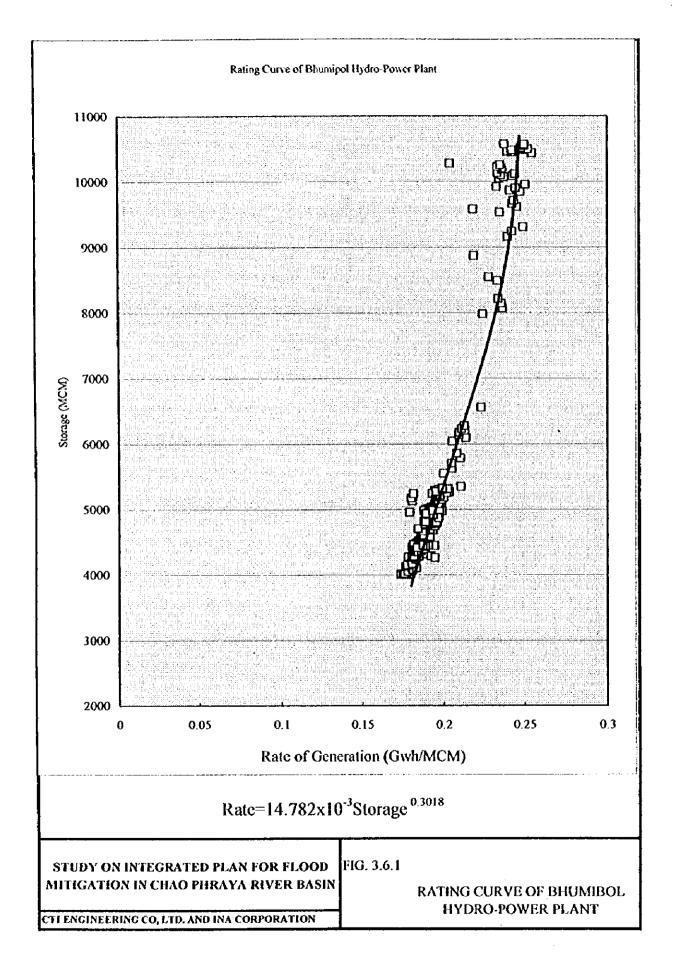


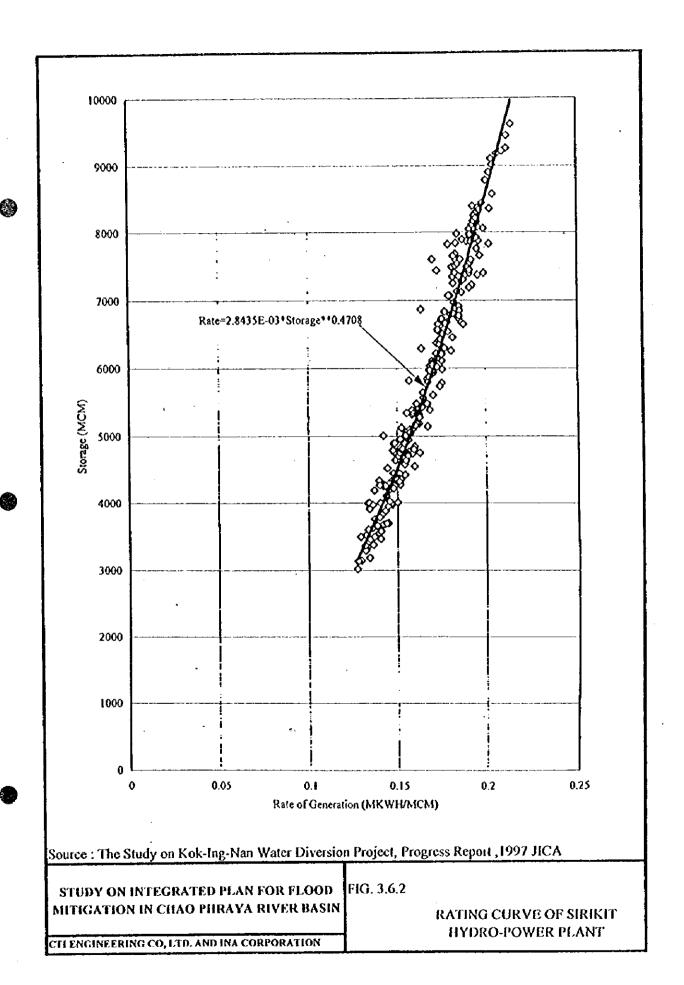


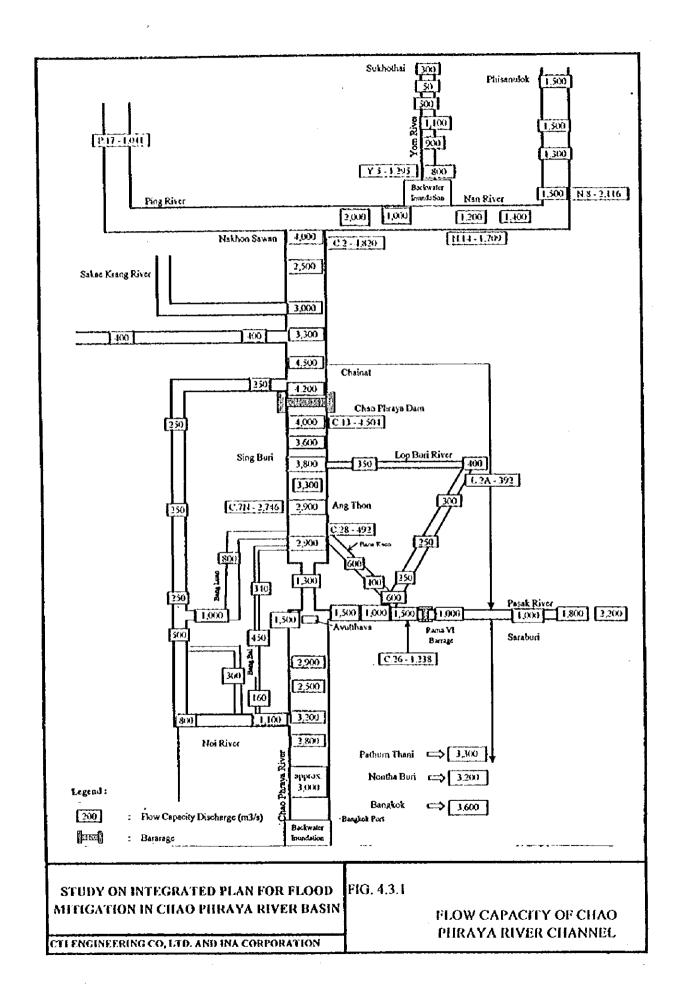


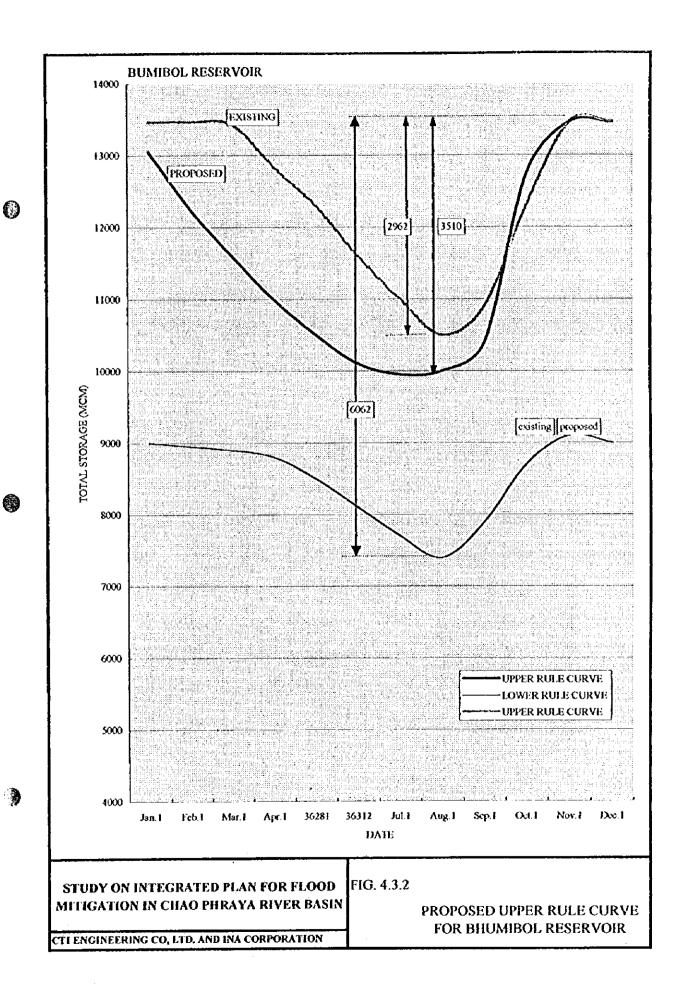


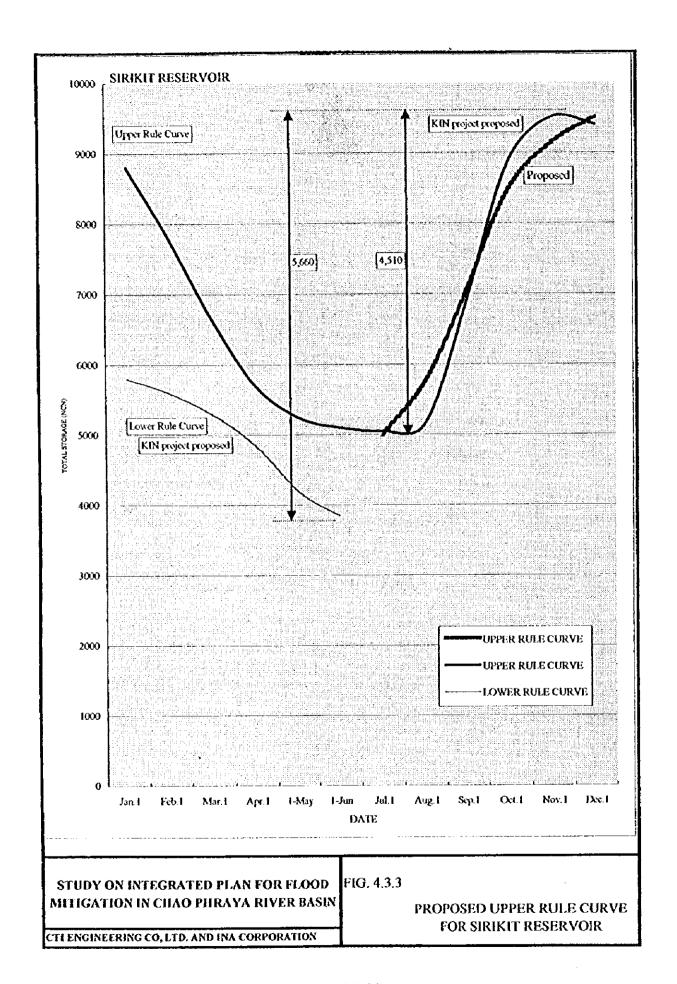

()

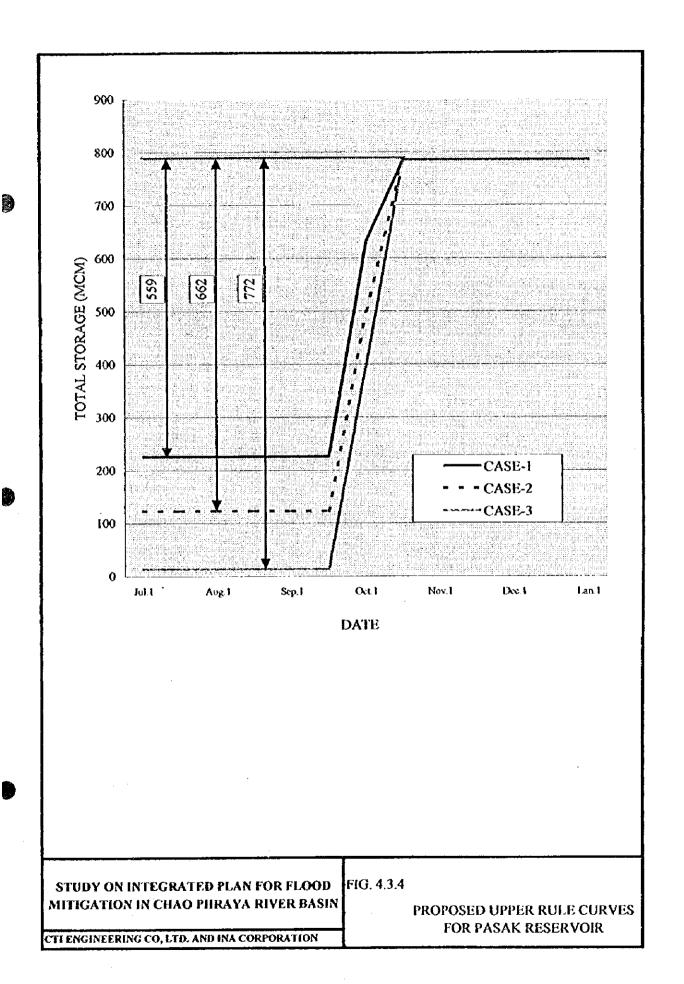


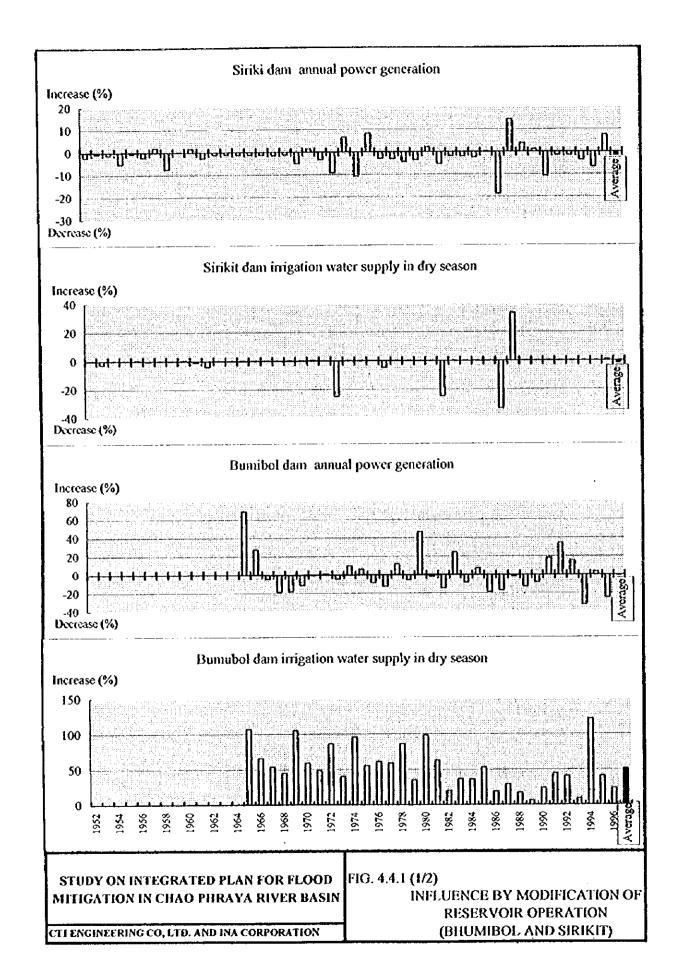


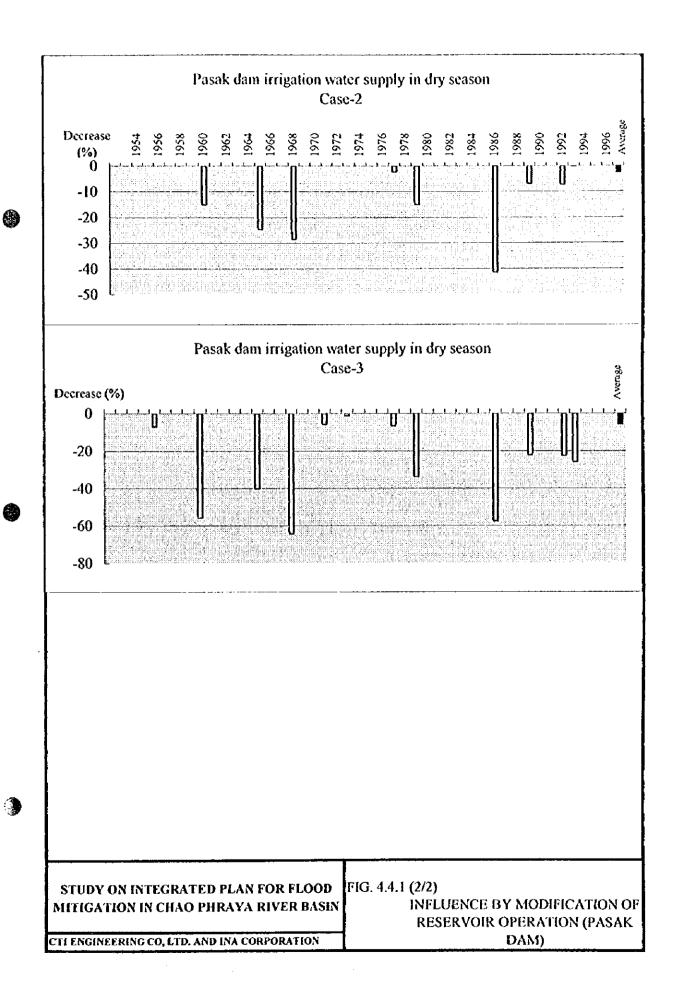


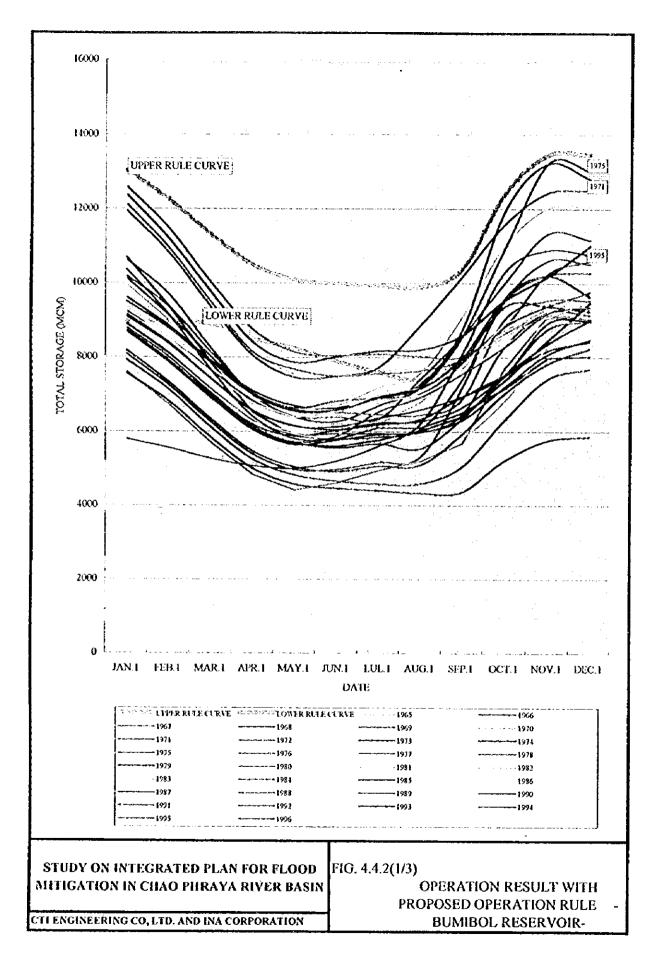


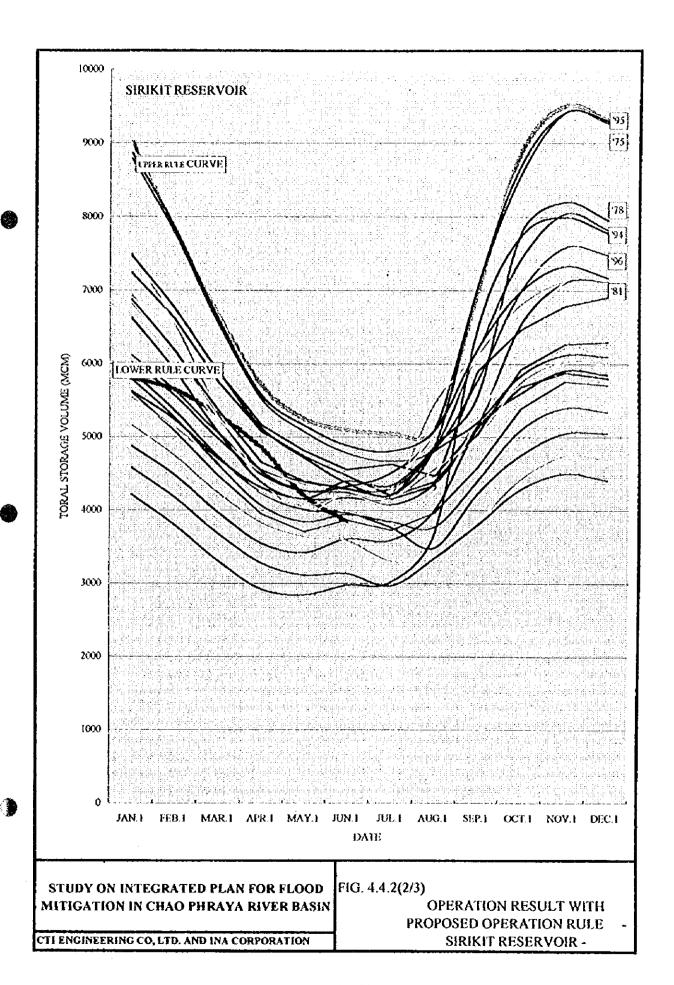


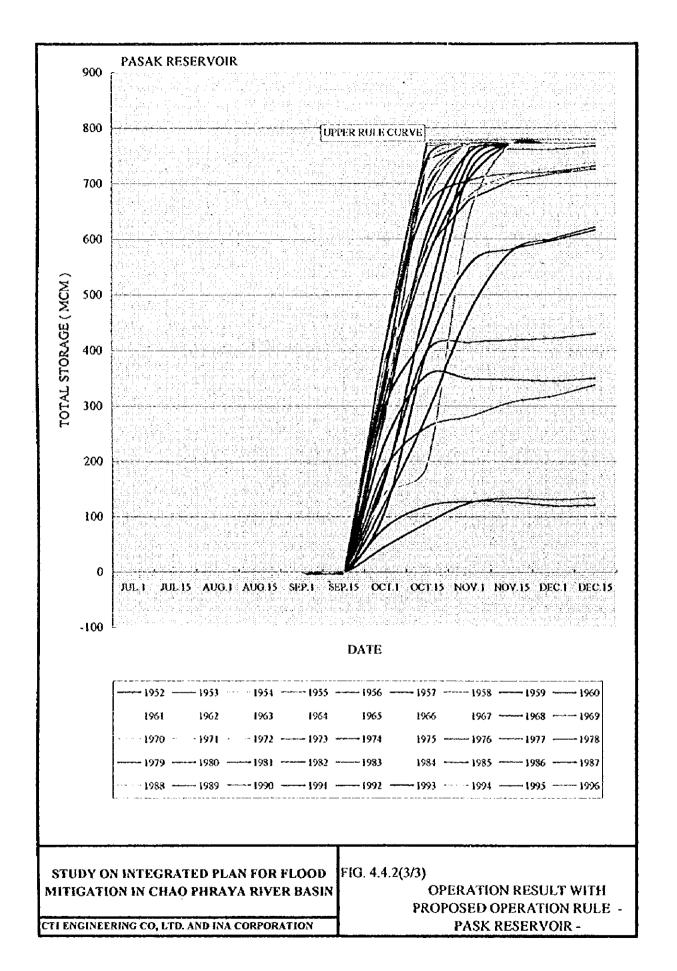


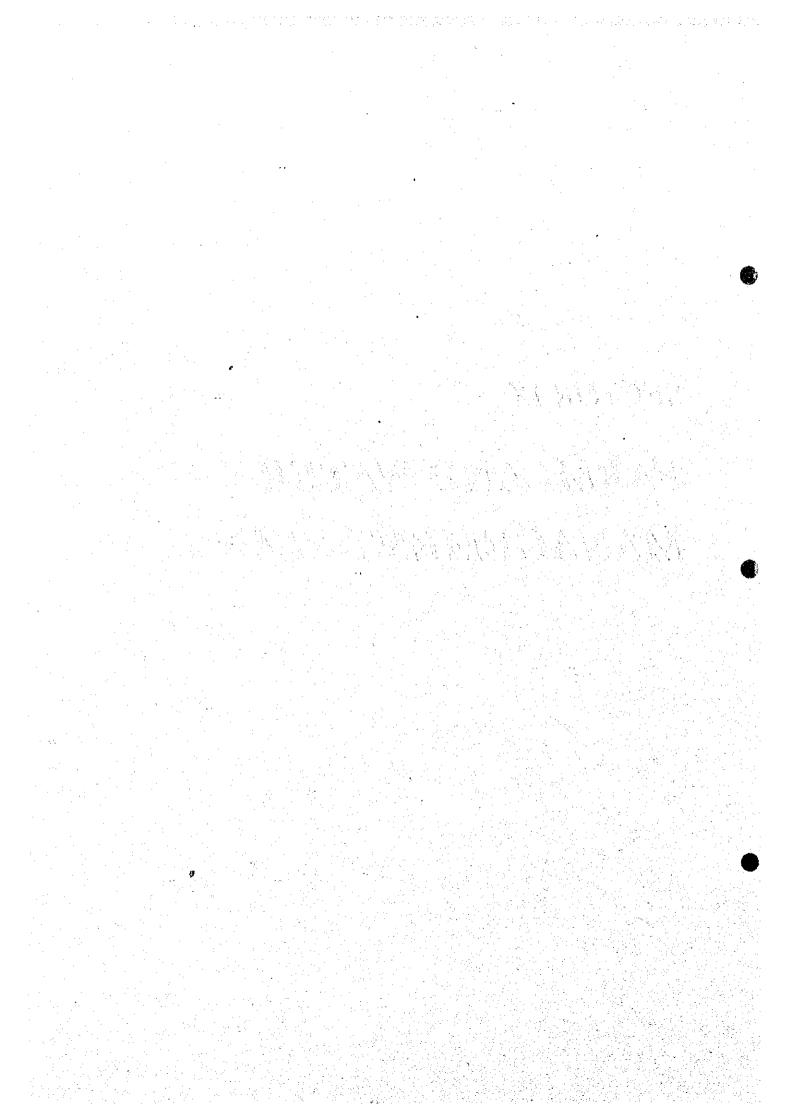












SECTOR IX

FARMLAND WATER MANAGEMENT PLAN

SECTOR IX: FARMLAND WATER MANAGEMENT PLAN

TABLE OF CONTENTS

1.	INTRO	DUCTION	4
1.1	Genera	l	IX-1
1.2		ts of Study	IX-I
2.	TRENI	D OF AGRICULTURAL DEVELOPMENT PLAN	
2.1		ion of the 7th Agricultural Development Plan	
		996)	IX-3
2.2	Strategi	ies of the 8th Agricultural Development Plan	
	(1997-2	2001)	IX-4
*	2.2.1	Strategies of Agricultural Development	1X-4
•	2.2.2	Supporting strategy	IX-5
	2.2.3	Summary of the investment scheme in the 8th	
		Agricultural Development Plan	IX-5
2.3		ture Restructuring Policy of the 8th	
	Agricul	tural Development Plan (1997-2000)	IX-6
	2.3.1	Agriculture Restructuring Policy	1X-6
	2.3.2	Policy on Increasing Productivity and	
		Reducing Production Costs	IX-6
	2.3.3	Policy to Improve Quality	
	2.3.4	Policy to Restructure the Ministry of	
	÷	Agriculture and Cooperatives	1X-7
	2.3.5	Policy on Rural Savings	1X-7
	2.3.6	Policy on Fertilizer and Agricultural Chemicals	IX-7
	2.3.7	Policy for Management of Forest, Soil, Water,	
		Coastal Area, and Biological Resources	IX-8
	2.3.8	Policy for Preparing for Global Climate Change	IX-8
	2.3.9	Policy for Preparing for the 21th Century	IX-9
3.	PRESE	NT STATUS	
3.1	Agricul	ture	IX.16
J.1	3.1.1		
	3.1.1	General Situation	IX-10
	3.1.2	Cropping Pattern Deepwater and Floating Rice Cultivation	IX-10 IX-10
	3.1.4	Agricultural Land Use	IX-10
:	3.1.5		JX-12
ż	3.1.6		1X-12
	3.1.7	Livestock Industry	IX-12
3.2		on and Drainage	IX-12
٠.2	3.2.1		IX-13
	3.2.2		IX-13
	3.2.2		1X-13

	3.2.4 Drainage System	1X-13
3.3	Flood Damage In Farm Land	IX-14
	3.3.1 Damages In Farm Land	
	3.3.2 Flood and Damage Data Collection In Sample Area	1X-14
4.	STUDY OF RETARDING BASIN	
4.1	Existing Lake and Large Swamp	IX-15
	4.1.1 Selection and study for retarding basin	IX-15
	4.1.2 Present utilization and Management situation	IX-15
	4.1.3 Study and evaluation on flood control ability	
4.2	Old River Course	
	4.2.1 Selection and Study for model area	IX-16
	4.2.2 Present utilization and Management situation	1X-17
	4.2.3 Study and Evaluation on Retarding Area Ability	
4.3	Paddy Field including Fallow Area	
4.4	Evaluation of Applicability of Retarding Basin	
4.5	Further Evaluation of Applicability of Retarding Basin	JX-19
5.	WATER USE PLAN IN DRY SEASON	
5.1	Alternative Water Use Plans	
5.2	Conservation Area	IX-23
5.3	Flood Plain	1X-24
5.4	Utilization of Small Lake and Swamp	IX-25
5.5	Ground Water Recharging	
6.	DRAINAGE PLAN IN FARMLAND	-
6.1	General Condition for Study on Farmland	
	Drainage Improvement	1X-26
**	6.1.1 Objective Area of the Farmland Drainage	
	Improvement	1X-26
	6.1.2 Division and Classification of Objective Areas	
6.2		17.50
6.3	Inland Drainage System Improvement in the Model Drainage Area	IX-28
.*	6.3.1 Selection of Model Drainage Area	IX-28
	6.3.2 Consideration of Water Level at Drainage Outlet	JX-28
÷	6.3.3 Water Balance in Paddy Field During High Water	
	Level	IX-29
6.4	Level	
	of the Other Areas	. IX-31
45	Coordination with Other Inland Drainage Plan	IX-32

7.	FARMLAND DRAINAGE IMPROVEMENT IN THE CHA PHRAYA DELTA	.О
7.1	Study Procedure	1X-33
7.2	Study on Higher Delta	IX-35
7.3	Study on Lower Delta	1X-45
7.4	Consideration of Priority of the Areas for Implementation	IX-57
7.5	Consideration of Implementation Schedule	IX-64
TAI	BLES	
FIG	FURES	÷

List of Tables

Table 3.1.1	Agricultural Main Products in Chao Phraya River Basin	IX-T-1
Table 3.1.2	Agricultural Land Use in Chao Phraya River Basin (1992)	IX-T-2
Table 3.1.3	Rice Cultivation in Chao Phraya River Basin	IX-T-3
Table 3.1.4	Mutual Relationship between Rice Yield and Inundation	IX-T-4
Table 3.1.5	Deepwater and Floating Rice Areas by Water Depth in 1992/1993	IX-T-5
Table 3.1.6	Area under Floating Rice by Irrigation Project	IX-T-6
Table 3.1.7	Change of Forest Area in Thailand in Past 32 years (1961-1993)	IX-T-7
Table 3.1.8	Reforestation Areas as of 1996	1X-T-8
Table 3.1.9	Reforestation Program in the Next Five Years	
	(1997-2001)	IX-T-9
Table 3.1.10	Change of Fishery Production in Thailand (1983-1993)	IX-T-10
Table 3.1.11	Composition of Agricultural Land Use, 1975-1991	IX-T-11
Table 3.1.12	Livestock Production in the Chao Phraya River Basin	IX-T-12
Table 3.2.1	Main Irrigation Facilities of Rivers and Canals in Chao Phraya River Basin (2 Sheets)	IX-T-13
Table 3.2.2	List of Large and Medium Scale Irrigation Projects	IX-T-15
Table 3.3.1	Flood and Other Damage on Agriculture (1984-1993)	IX-T-16
Table 3.3.2	Rice Cultivation Area Damaged by Flood (2 Sheets)	IX-T-17
Table 3.3.3	Agricultural Flood Damage Data in Ang Thong Province in 1995	IX-T-18
Table 3.3.4	Recent Major Agricultural Damage	
Table 3.3.5	Fisheries Flood Damage by Hurricane in 1995	
Table 4.1.1	Change of Lake and Swamp Water Area	
Table 4.2.1	Change of Old River Course Area	
Table 4.3.1	Area of Paddy Field as Fallow Area in Sloping Land	-
Table 4.4.1	Occurrence of Overflow from Outlet	•
Table 6.1.1	Drainage Area of Paddy Field	
Table 6.1.2	Cropping Calendar (Rice in Wet Season)	
Table 6.3.1	River Water Stage Higher Than Ground Height	
Table 6.3.2	Water Balance of Paddy Field During High River	
	Water Level (3 Sheets)	IX-T-27
Table 7.2.1	Features of Drainage Area	IX-T-30

Table 7.2.2	Main Drainage Issues of the Area	IX-T-31
Table 7.2.3	Conceivable Measures for Drainage System Improvement	IX-T-32
Table 7.3.1	Drainage Regime of Rangsit Tai Irrigation Project	IX-T-33
Table 7.4.1	Water Balance of Paddy Field during High River	
	Water Level	1X-T-34
Table 7.4.2	Water Balance of East Bank Area (Rangsit Tai Area)	IX-T-35
Table 7.4.3	Water Balance of West Bank Area (Khlong Dan Area)	IX-T-36
Table 7.4.4	Priority of Drainage System Improvement	IX-T-37

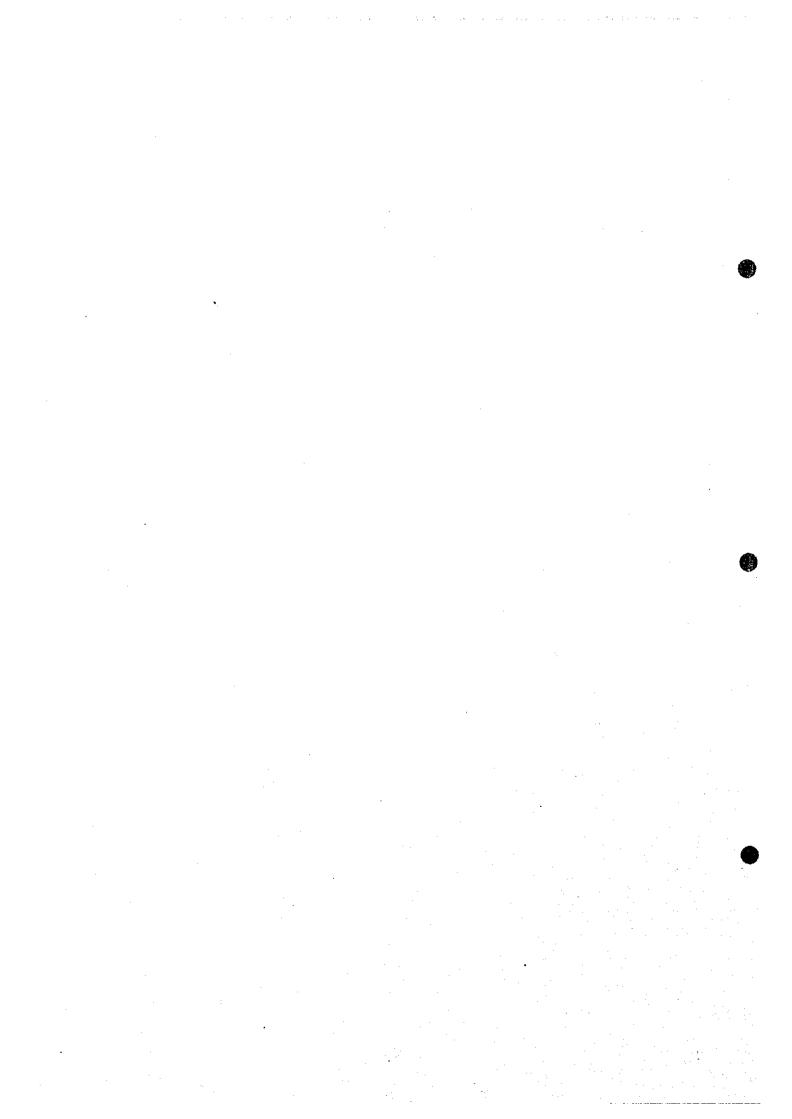

List of Figures

Fig. 3.1.1	Cropping Patterns in Irrigation Project (2 Sheets)	IX-F-1
Fig. 3.1.2	Deepwater/Floating Rice Cultivation	IX-F-3
Fig. 3.1.3	General Layout of the Bung Boraphet Project	IX-F-4
Fig. 3.2.1	Chao Phraya River and Canal System	IX-F-5
Fig. 3.2.2	RID Regional Office Boundaries	IX-F-6
Fig. 3.2.3	Irrigation Project in the Basin	IX-F-7
Fig. 3.2.4	Existing Main Canals and Regulators in Chao Phraya Delta	IX-F-8
Fig. 3.2.5	Proposed Irrigation Water Demand to Bhumibol	
	and Sirikit Dams in Dry Season in 1997	IX-F-9
Fig. 4.1.1	Water Area of Lake and Large Swamp	1X-F-10
Fig. 4.2.1	Water Area of Old River Courses (3 Sheets)	1X-F-11
Fig. 4.3.1	Cropping Pattern in Chao Phraya Delta	IX-F-14
Fig. 4.3.2	Location of Fallow Area	IX-F-15
Fig. 4.3.3	Proposed Retarding Basin.	IX-F-16
Fig. 4.3.4	Location of Deep Water Rice Area	IX-F-17
Fig. 4.3.5	Model of Raising Dike in Paddy Field	1X-F-18
Fig. 4.3.6	Location of Paddy Field in Slope Land	IX-F-19
Fig. 4.4.1	Proposed Retarding Basin	IX-F-20
Fig. 4.4.2	Runoff Condition from Unit Paddy Fields (2 Sheets)	IX-F-21
Fig. 6.1.1	11 Drainage Areas	IX-F-23
Fig. 6.3.1	Water Balance of Paddy Field During High River	•
	Water Level (3 Sheets)	1X-F-24
Fig. 6.3.2	Average Rainfall Basin Selected Gauging Stations	IX-F-27
Fig. 7.1.1	Objective Area for Drainage System Improvement	IX-F-28
Fig. 7.1.2	Drainage Canal Network	IX-F-29
Fig. 7.2.1	Land Use Map	IX-F-30
Fig. 7.2.2	Land Elevation Map	IX-F-31
Fig. 7.2.3	Longitudinal Profile (2 Sheets)	IX-F-32
Fig. 7.2.4	Drainage Facilities in Lower Delta	1X-F-34
Fig. 7.2.5	Main Issue of the Farmland Drainage	IX-F-35
Fig. 7.2.6	Conceivable Measures for Drainage System Improvement	1X-F-36
Fig. 7.3.1	Drainage System in East Bank	IX-F-37
Fig. 7.3.2	Drainage System in West Bank	IX-F-38

()

Fig. 7.4.1	River Water Level (Ang Thong)	IX-F-39
Fig. 7.4.2	Accumulated Rainfall (3 Sheets)	1X-F-40
Fig. 7.4.3	H-A, H-V Curve (3 Sheets)	IX-F-43
Fig. 7.4.4	Distribution of Water Level	1X-F-46
Fig. 7.4.5	Distribution of Tidal Level	IX-F-47
Fig. 7.5.1	Priority of Drainage System Improvement	IX-F-48

()

1. INTRODUCTION

1.1 General

"FARM WATER MANAGEMENT" deals here with flood mitigation measures studied from a "flood and agriculture" standpoint taking into account past and present agricultural development situation.

1.2 Contents of Study

In the master plan (M/P) study, investigations on the existing agricultural policies, present status of the agricultural sector in the national agricultural development plan, conditions of the existing irrigation and drainage facilities in the project area and flood and drought damages as related to agriculture were carried out.

In the Feasibility Study (I/S), which followed the M/P study, drainage improvement measures as related to flood caused by local rains and river water were examined.

The following summarizes the content of the study in each chapter of the report, starting from chapter 2.

In chapter 2, the study evaluated target and strategies set forth in the 7th Agricultural development Plan that ended in 1996 and confirmed the main policies set forth in the following 8th Plan. Incidentally, the said policies were adjusted owing to the monetary crisis that occurred in 1997. The study also confirmed the contents of these adjusted policies.

In chapter 3, in addition to agriculture, matters related to forestry, marine and stock raising industries in the project area were also dealt with.

It can be said that agriculture, which is constantly being improved, remains the major activity in Thailand.

For example, the lower delta area, which is called a granary area, used to grow a single annual crop using a variety of floating rice. Today, the introduction of a high yielding variety (HYV) coupled with irrigation made it possible to grow several crops a year, contributing mainly to the stable supply of food in the said area.

Furthermore, the study investigated the conditions of irrigation and drainage facilities in the area, which is necessary when dealing with water management. In the same way and through data collection, the study investigated the present conditions related to forestry, fishery and animal husbandry.

Also, in this chapter, the study addressed the occurrence of flood and examined the damages it caused particularly in the year 1995.

In Chapter 4, the study looked into the area proposed as the flood retarding basin and examined retarding ability and flood control effect.

In Chapter 5, potential flood diversion channels were studied and their alternative use as irrigation channels in the dry season for the purpose to supplement irrigation water was considered.

Also, the study examined the effectiveness of using existing lakes, swamps and old river courses as flood retarding basins.

In chapter 6, the study divided an objective area of 29, 000km2, which was selected as a potential flooding area, into 11 areas based on topography, existing river systems, drainage facilities and land use. It then looked into the drainage system improvement of these areas.

Data were collected in 4 areas selected as model areas where the improvement of drainage system was studied to be applied to other subsequent areas.

In chapter 7, the study proceeded to the more detailed examination of the drainage system improvement for the agricultural land in the Chao Phraya Delta because of the high social and economic implication of the area, which is considered a priority area.

2. TREND OF AGRICULTURAL DEVELOPMENT PLAN

2.1 Evaluation of the 7th Agricultural Development Plan (1992-1996)

The 7th Agricultural Development Plan (7th Plan hereafter) focuses on the following 4 strategies that can be evaluated as follows:

(1) Reorganization of Agricultural Production Structure

The reorganization of the production structure and the reinforcement of the planning ability of farmers in the production scheme were targeted in the plan. These targets have been reached.

(2) Improvement of productivity:

This strategy was adopted for improvement of agricultural productivity. The set targets are not completely reached.

(3) Agricultural marketing and price

This strategy did not offer much benefit to the farmers.

(4) Conservation and development of natural resources as related to agriculture

In 1994, a conservation area of 77.55 million rai of forest was designated as reserve area, which was equivalent to 24.18% of the national land. This figure is slightly below 25%, the figure officially targeted in the plan.

As regard to water resources conservation and development projects, 26.69 million rai or 24.18% of farmland was developed as irrigated area by 1994. As a result of the development, the irrigation area belonging to medium and large-scale projects was slightly increased.

The land use ratio in the proposed project area was lower than the target figure of 150% set by RID, and lower than the figure reached in the sixth plan. The ratio in the seventh plan was only 101.03% due to the long drought and serious water shortage. As a result, the acreage devoted to irrigation was increased to the detriment of other. Therefore, development project in future must effort to beneficially and closely related with local association and fundamental data management.

Range of Irrigation Area

(Unit: million rai, %)

	Farmland Area	Irrigation Area	Irrigation Ratio
Thailand	132.05	28.09	21.73
1.North	29.11	7.56	25.97
2.North-east	57.70	4.80	8.32
3.Central	28.01	13.37	47.73
4.South	17.13	2.95	17.12

(Source: RID)

Landuse Ratio in Medium and Large Irrigation Project

(Unit; %)

		(, , /
	Sixth Plan (1987-91)	Seventh Plan (1992-96)
Rainy Season	83.74	81.35
Dry Season	29.62	19.68
Annual	113.36	101.03
		400 (50.00)

(Source: RID)

2.2 Strategies of the 8th Agricultural Development Plan (1997-2001)

The target of the 8th plan is to contribute in the whole economy, through the increase of farmers' income and the development of the agricultural sector. The target annual growth rate of the agricultural sector is set at around 2.9%. The target economic growth rate is set at 8.0%.

2.2.1 Strategies of Agricultural Development

As strategies of the 8th plan, the following three items are stressed.

(1) Strengthening of international competitiveness

Liberalization of agricultural trade will affect growth. Thailand has the advantage of being rich in natural resources and having cheep labor force. But these factors are reducing the merit due to the agricultural situation.

For the strengthening of competitiveness, it is necessary to secure stable growth, adapt to global economic fluctuation and farmers' demand for better income and living standard.

(2) Preservation of natural resources and sustainability of agricultural development

It is necessary to use the available resources efficiency and set up limits for this utilization. It is also necessary to take into consideration the effects on the environment.

(3) Development of human resources and farmers' organization

The difference of income between the agricultural sector and other sectors is still large. Agricultural people have generally less employment opportunity and their living standard is still low compared with other sectors. Farmers' association is still weak with very few successes observed.

Therefore, the strategies aiming at the development of human resources and farmers' organization seek to raise living standard, provide stable occupation, increase income and distribute profits generated through the utilization of various natural resources.

2.2.2 Supporting strategy

For the purpose of implementing the above-mentioned strategies, the following policy will be carried out.

- (1) Strengthening of international competitiveness
- Set up a suitable interest rate for agricultural credit
- Establish cooperative banks
- Promote research and development in governmental and private sectors
- Consolidate agricultural market
- Expand agricultural crops insurance
- Set up standards and quality improvement of agricultural products
- Develop agricultural processing
- (2) Preservation of natural resources and sustainability of agricultural development
- Develop community forest law
- Develop a management system for river basin
- Properly manage coastal areas and marine resources
- Set up economic production areas for agricultural products
- (3) Development of human resources and farmers' association
- Resolve labor force problems and protect agricultural labors
- Prepare a network for transfer of traditional technical information
- Solve debt problems of farmers

2.2.3 Summary of the investment scheme in the 8th Agricultural Development Plan

The investment plans related to the 8th plan strategies are shown below. The total investment including fund is around 370 billion baht.

Summary of Investment Budgets under the Agricultural Development Plan

(Unit: million bath)

G.	Investment	Project			Budget (1997-2000)	
Strategy	Plan	New	Extension	Total	Amount	Percentage
1.Competitive Ability	5	16	14	30	102,951.9	27.8
2. Conservation of Natural Resources and Sustainable Development	7	15	13	28	216,241.7	58.3
3. Development of Human Resources and Agricultural Organizations	4	4	1	5	13,459.1	3.6
4.Fund and Operating Capital	-	·	-		38,250.9	10.3
Total	16	35	28	63	370,902.0	100.0

(Source: RID)

2.3 Agriculture Restructuring Policy of the 8th Agricultural Development Plan (1997-2000)

The adjusted policies in Agricultural Sector of the 8th plan are shown below.

2.3.1 Agriculture Restructuring Policy

- (1) Designate large areas for establishing specialized agriculture production activities, focusing on integrated production linked to markets and processing, similar to production of important agricultural products for agroindustries, including for example: jasmine rice, shrimp, field corn, fast-growing trees, cane sugar, cotton, soybeans, cassava, livestock, and fisheries. Investment opportunities in these areas area available to the private sector or to foreign investors. Incentives to encourage investments are offered, including tax measures and the revision of laws making them more amenable to investors interested in the designated areas. Investment promotion will be focused on cooperative land settlement, land reform areas, and land consolidation areas.
- (2) Reduce risks for small farmers, and ensure food security at the farm level focusing on support for: activities in mixed (or integrated) agriculture; sustainable agriculture; conserving natural resources; and, the "New Theory" of agricultural development under Royal initiative; as well as increasing the value of products produced locally.

2.3.2 Policy on Increasing Productivity and Reducing Production Costs

- (1) Research and develop appropriate technologies, including biotechnology for crops, livestock, and fisheries, to increase productivity and reduce production costs.
- (2) Implement an Products Champion Pilot Project under the Ministry of Agriculture and Cooperatives, that includes para-rubber, durian, longan and orchids; emphasizing yield, marketing, and integrated processing.

(3) Expand the base for producing raw materials for agroindustries. Negotiate with neighboring countries in an effort to reduce obstacles to investing in production of raw materials for agroindustries.

2.3.3 Policy to Improve Quality

- (1) Establish appropriate quality standards for agricultural products for export. Focus on operating a "One Stop Service", with private sector participation in providing services and issuing certificates to entrepreneurs who volunteer to adhere to quality standards.
- (2) Develop agricultural production systems that have fully integrated quality controls, from production at the field level, to packing and packaging, and to consumers, by focusing on quality and standards of products that conform to international sanitary and phyto-sanitary standards.
- (3) Encourage agricultural organizations to expand their participation in inspecting and guaranteeing product quality, through Government promotion of infrastructure that will facilitate marketing and ensure the quality of products being held for sale; such as warehouses and cool store units.
- (4) Support safe agriculture and natural agriculture for domestic consumption and for export to specific markets.

2.3.4 Policy to Restructure the Ministry of Agriculture and Cooperatives

- (1) Restructure administration of the Ministry of Agriculture and Cooperatives, to enable it to: provide services in an integrated manner; efficiently maintain and rehabilitate natural resources; directly provide information to farmers; and, more efficiently undertake research with academic institutions and the private sector.
- (2) Reduce the official role in providing services at the sub-district level, through the decentralization of authority to local organizations.

2.3.5 Policy on Rural Savings

Campaign to promote rural savings through agricultural cooperatives, with the objective of increasing the potential for farmer groups to help themselves through simple processing of farm products and engagement f alternative occupations at the household level. The campaign will be undertaken in collaboration with the Government Savings Bank, operating the savings program in as a community bank. Parallel financing will be arranged if necessary to support group activities. Farmers will participate in administering deposits and by formulating policies for utilization and recovery.

2.3.6 Policy on Fertilizer and Agricultural Chemicals

(1) Use chemical fertilizers and agricultural chemicals more efficiently by applying them with organic and biological fertilizers, in order to

improve soils and to increase yields. Employ natural methods to control crop pests to reduce imports of fertilizers and agricultural chemicals. Improve soils and the environment in rural communities over the long-term.

网络蛋白 经存储费的复数分配的 化等性电流 化二十二十二烷酸化

(2) Utilize refuse and wastes from agriculture, by encouraging private sector production of organic fertilizer and bio-fertilizers, and other products used in the agriculture sector, helping to reduce farmers' expenditures on imported fertilizers.

2.3.7 Policy for Management of Forest, Soil, Water, Coastal Area, and Biological Resources

- (1) Identify vacant land and extend land tenure rights, to solve the problem of availability of land for subsistence. By revising the Land Tax Act, taxes will be collected at a higher rare from land owners not engaged in agricultural activities; with the exception of those in compliance with the Rental of Paddy Land Act. The government will promulgate a decree that will allow the private sector to rent land to the State, for on-renting to farmers on a yearly basis.
- (2) Implement a project to reserve and control conservation areas, including appropriate activities related to land allocation, forest fire prevention, rehabilitation of natural resources, and surveying and utilizing forest resources.
- (3) Conserve and rehabilitate degraded ecosystems in coastal areas, and resolve coastal aquaculture problems, particularly those impacting on coastal environments. Take precautions to prevent problems that may arise from environmental actions linked to the export of Thai agricultural products to foreign markets.
- (4) Undertake appropriate development of natural resources for nature-based tourism (ecotourism), and promote tourism in agricultural areas, including developing local products for production and marketing.
- (5) Develop agricultural potential in irrigation command areas, by producing agriculture products more efficiently, while mitigating pollution problems impacting on the environment in these areas.

2.3.8 Policy for Preparing for Global Climate Change

- (1) Prevent impacts from natural disaster, for example from drought and flooding, by establishing a centrally coordinated advance warning system. Prepare plans to fully utilize surface water and underground water resources throughout the country, while addressing specific situations during periods of water shortage.
- (2) Provide assistance to farmers impacted by natural disasters in the form of flood, inputs important to their occupations, and consumer goods.

- (3) Ensure food security for the country to prevent impacts from natural disasters, by accelerating production of agricultural products in areas with production potential, as well as in areas that are adequately served with water resources; particularly in areas that have sources of natural surface water, irrigation system infrastructure, underground water supplies, and irrigated areas serviced by electric pumps.
- (4) Undertake rehabilitation of occupations and livelihoods following natural disasters, by providing assistance in the form of production inputs, including plant material and breeding animals, to support agricultural production activities.

2.3.9 Policy for Preparing for the 21st Century

- (1) Accelerate undertaking of surveys and preparing of inventories of Thailand's biological resources. Establish a database network to manage forest, soils, and coastal resources; and to control utilization of biological resources, ensuring equality in sharing their use.
- (2) Monitor the resolution of issues related to the implementation of agreements that employ non-tariff barriers to trade, particularly those issues related to the environment, restrictions on crops and livestock, and to the quality and origin of products, in order to protect the country's interests and to prevent placing the country at a disadvantage.