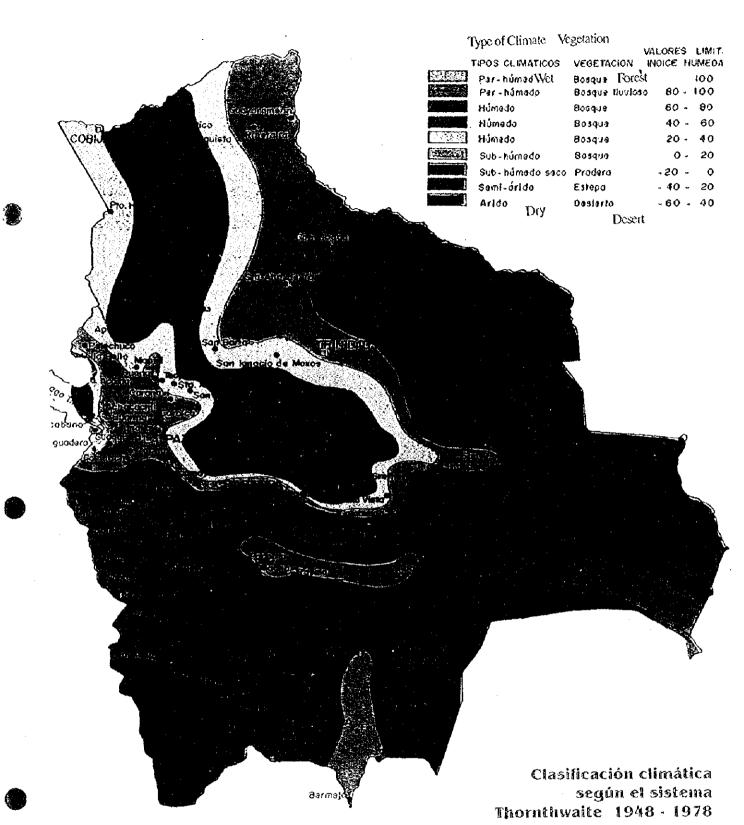

Mapa Orográfico

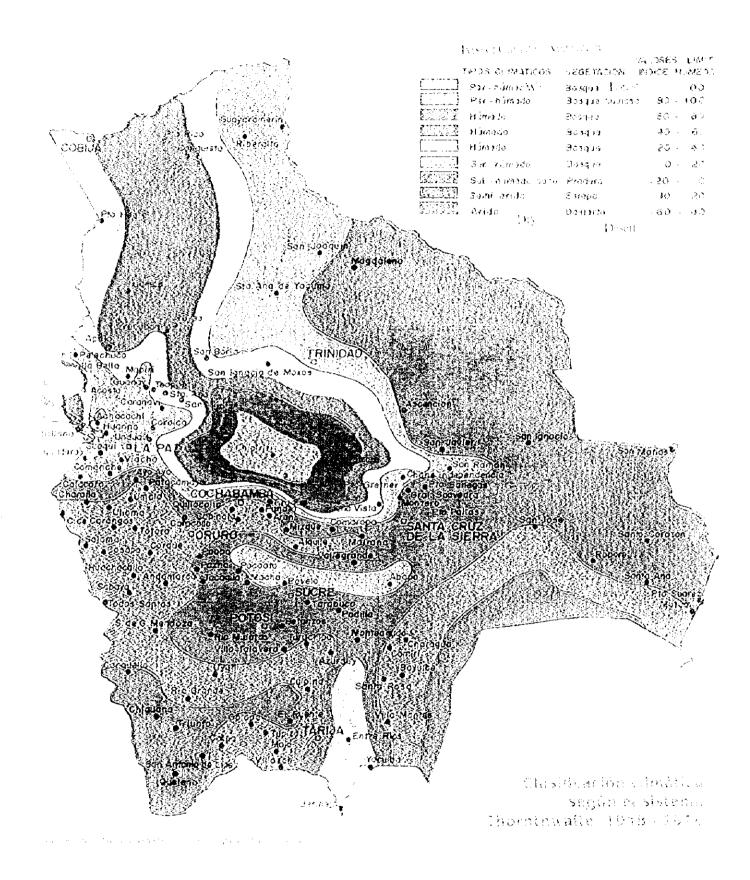
Figure LCountry Map of Land Elevation

Reference REFERENCIAS

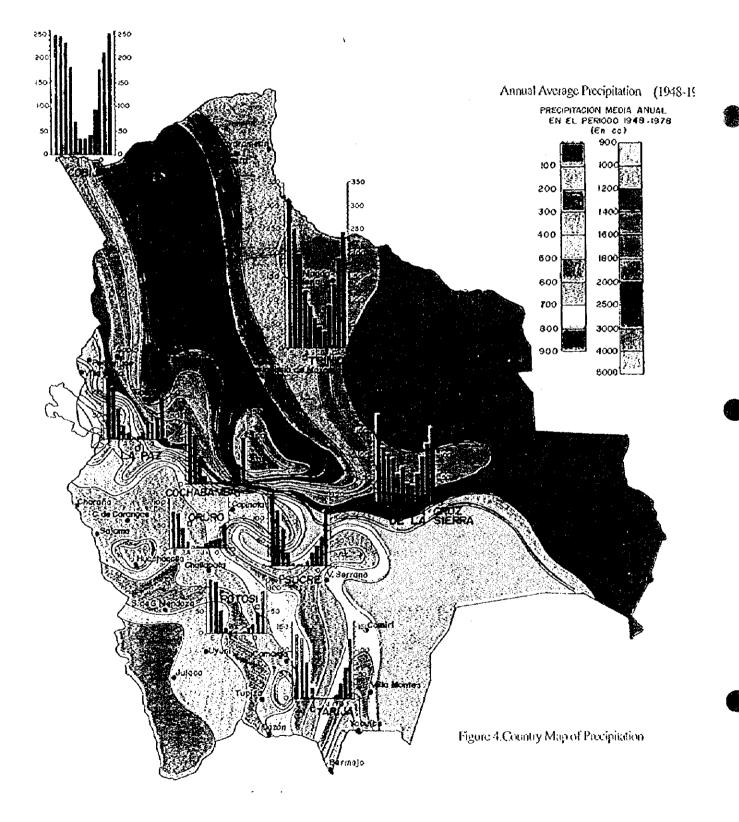

	stan a cartem 000.5	操作的	500 motros
	Meter 3.000 motros	8 82	400 metros
	2.000 matros		200 metros
ŵ۵	1.000 matros		Lagoa

Scale

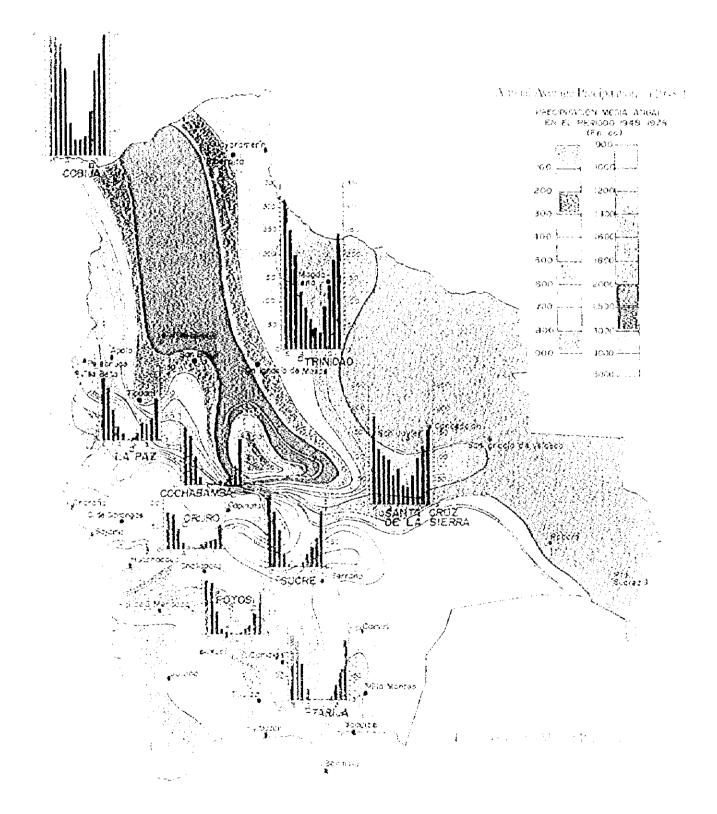
ESCALA : 09 40 0 30 160 km.



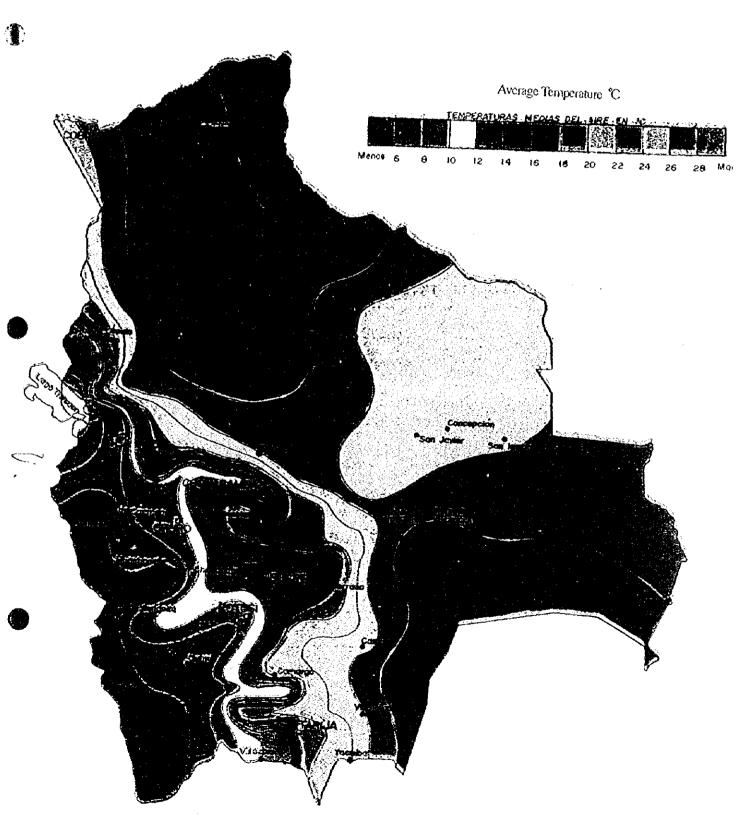
.



Fuente: Servicio Macional de Meteorología e Hidrografía, Dibujo J. David Serrano A.

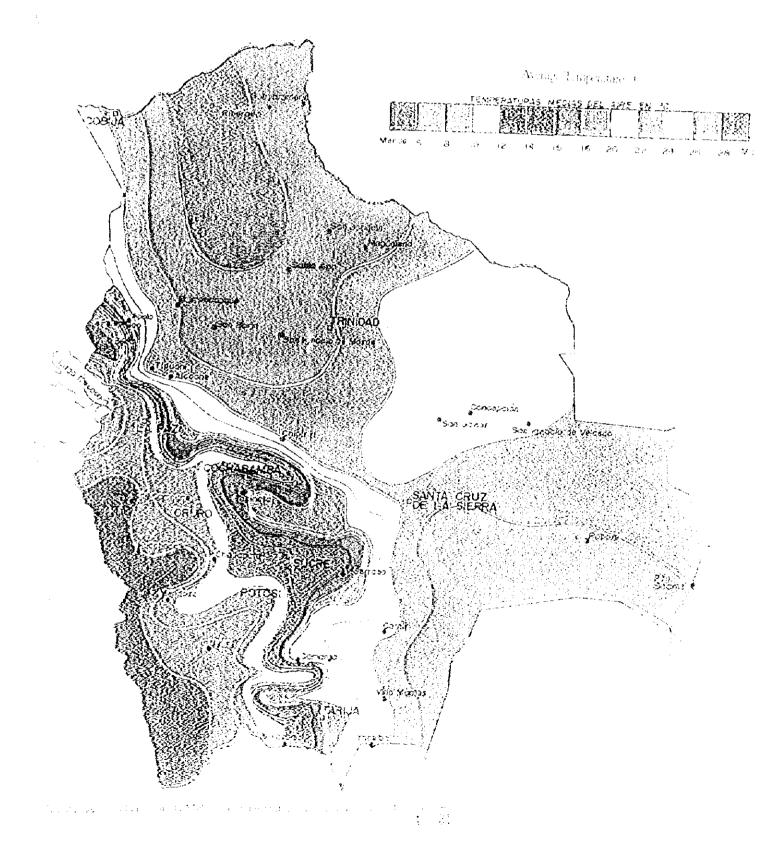

Figure 3. Country Map of Type of Climate

Mapa de Isoyeta 1948 · 197



Mapa de Isoyeta (948 - 197)

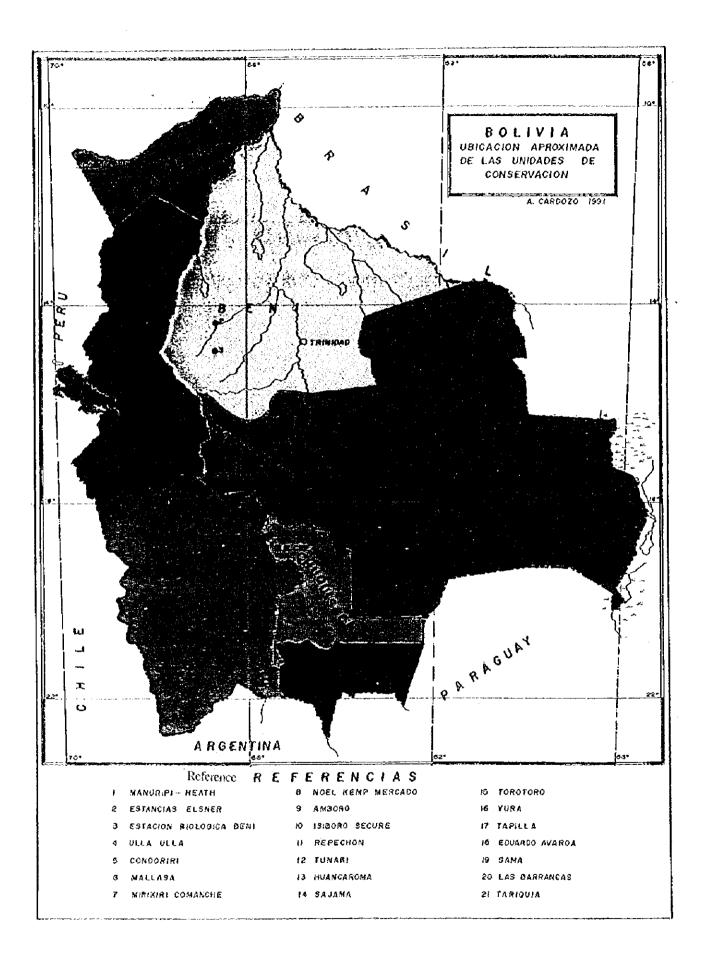
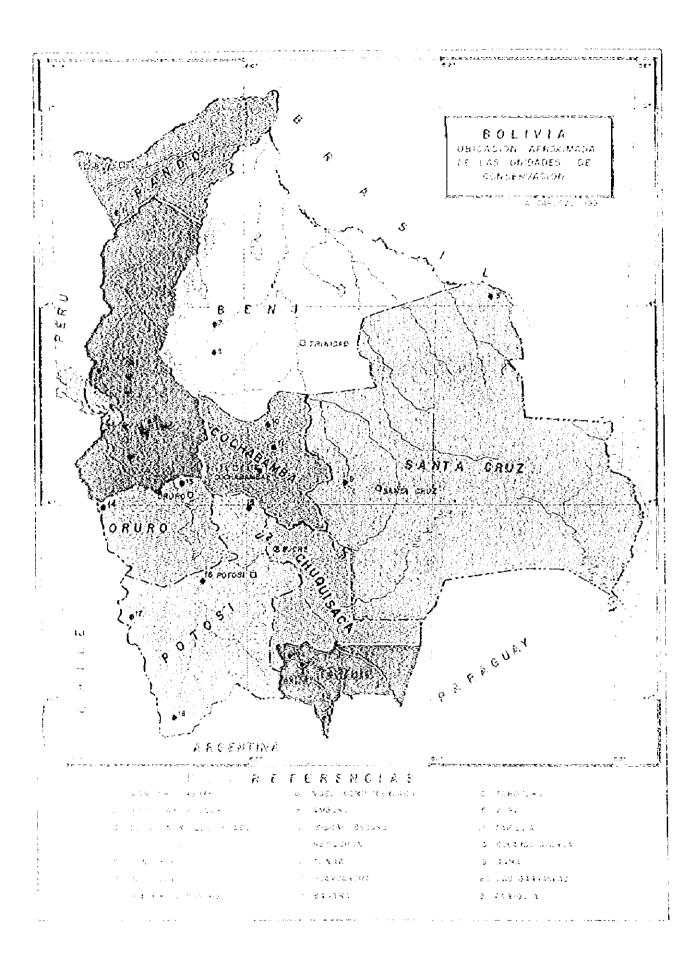
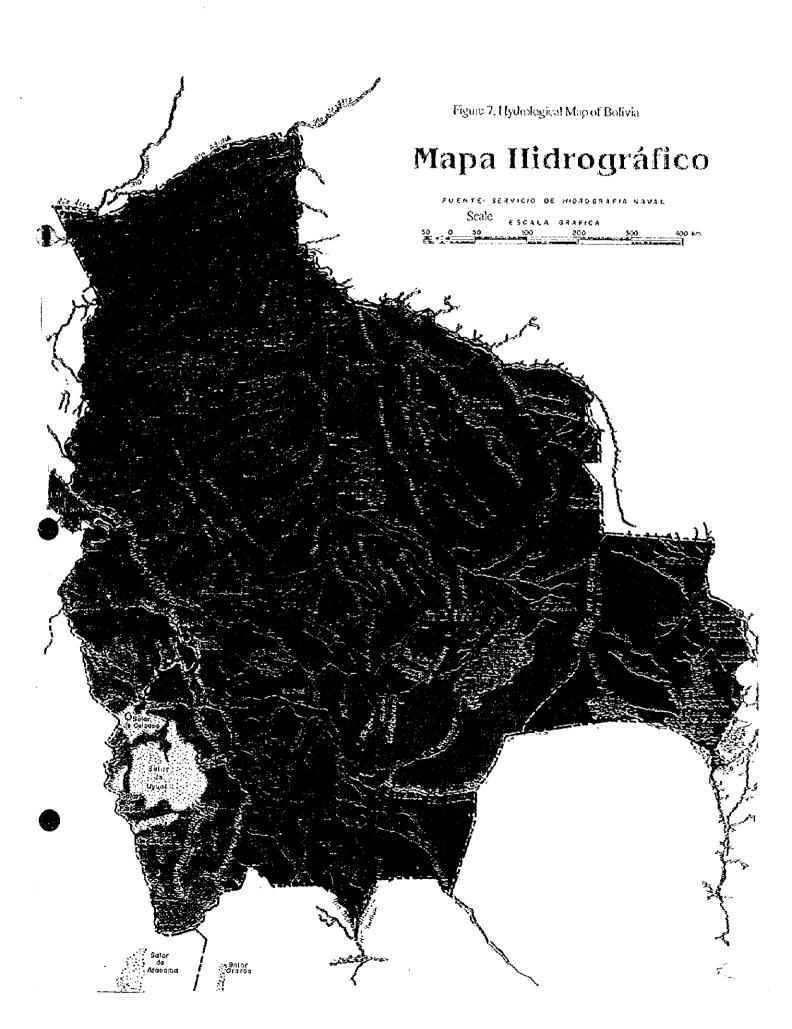
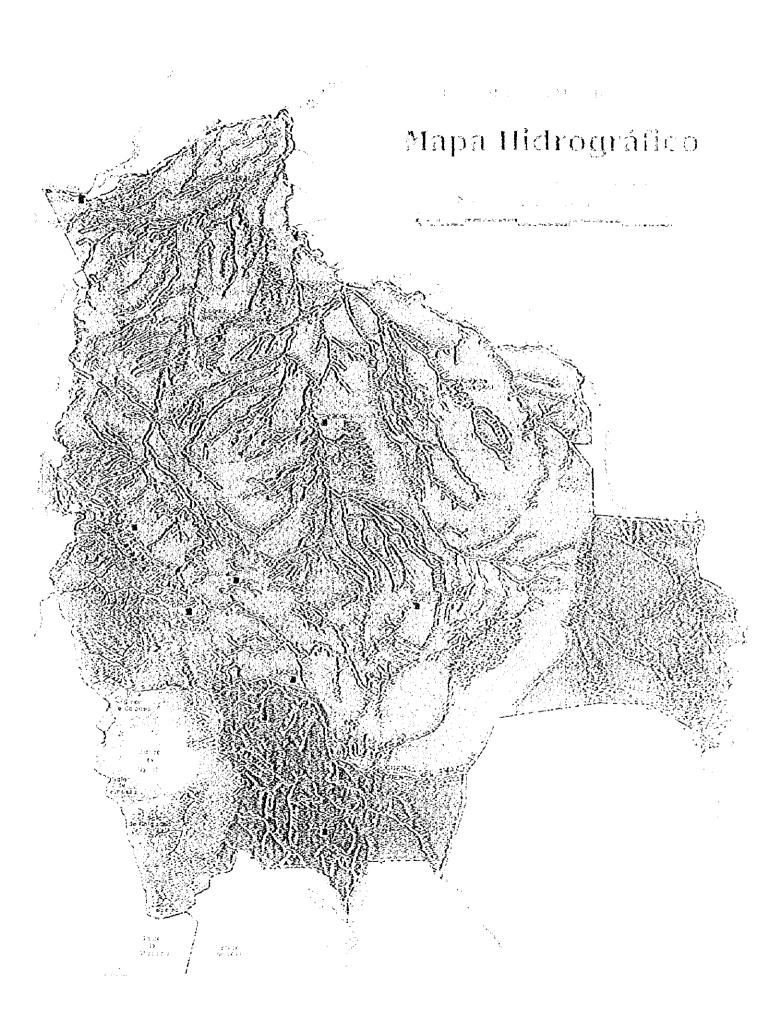
Mapa de isotermas 1948 - 1978

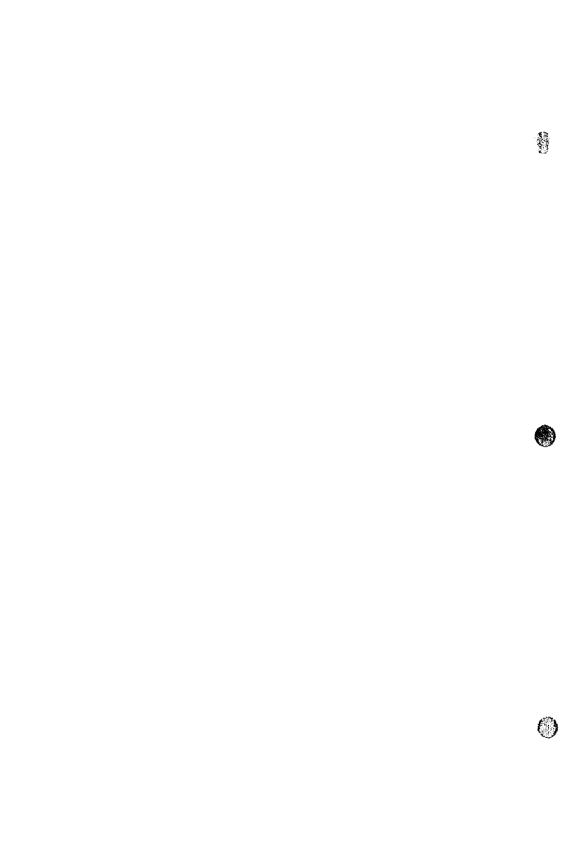

Figure 5. Country Map of Temperature

Fuente: Servicio Nacional de Meteorología e Hidrografía. Dibujo J. David Serrano A. 4-31

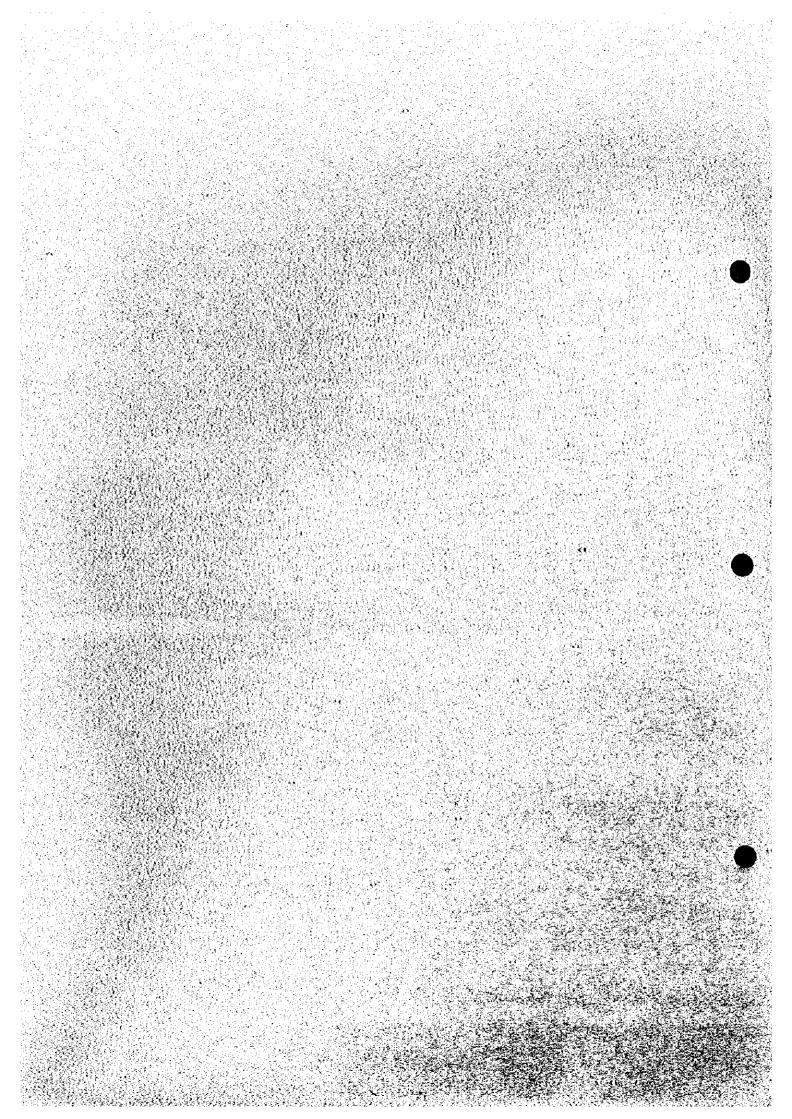
Mapa de isotermas 1948 - 1978

Each of C when $M_{\rm eff}$ is the parameters


Figure 6. Country Map of Reserved Area

 $\{1, \dots, n\} = \{M_{i} \mid i \in \{1, \dots, N_{i}\}$



ANNEX 5

¥.

Water and sediments monitoring analysis results

								¢	.	•	0										(B)					(i)	
coment			Rio Huaynamayu	Rio Korimayu	Rio Huaynamayu			Rio Huarampaya-Jesus valle	Rio Huarampaya-Jesus valle	Rio Huarampaya-Jesus valle	Rio Huarampaya-Jesus valle			Rio Korimayu	Rio Agua Dulce		Rio Huancarani			Rio Pilcomayo(Yocalla)	Rio Huari Huari(Rio Mataka)	(Rio Mataka)	Rio Pilcomayo(Tacobamba)	(Rio Mataka)		Rio Pilcomayo(Pte. Mendez)	
S	ng/L	12,4	127.8	49,5	115.46	70,1	177.32	16,49	8.25	4,21	65.98	53,61	32,32	48,48	16.16	36,36	4,04	32,32	28,28	16,16	20.62	12.12	12,12	4,04	4,04	4,04	
S	J/3m	0,005	0,003	0,021	0.036	0,28	0.08	0,045	0,021	0,013	0,031	0,229	0,111	<0.001	<0.001	0,192	0,006	0,121	0.04	0,028	<0.001	<0.001	<0.001	<0.001	0,002	<0.001	
Za	mg/l	0,18	355	163	167	0,10	56	10'0	10.0	<0.002	0.06	0,05	50	180	42,0	208	38.0	226	36	37	148	0,16	0,11	<0.002	<0.002	01.0	
Å	mg/L	<0.03	0,09	0.11	0.22	0,05	0,04	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.12	<0.03	<0.03	<0.03	<0.03	<0.03	0,10	0,11	<0.03	
Mn	mg/L	0,11	21,2	44,8	14,0	0,02	7.0	0,14	0,44	0,02	0.41	0,17	6,25	61.25	1,66	20,5	0,03	22.0	0.68	0,03	10,3	0,23	0,16	0.10	0,11	0.22	
ЯК	<u>и 8</u> /L	<0.02	0,12	<0.08	<0.08	0.01	0,03	0.03	0,05	<0.02	<0.02	0,13	0.08	0.14	0.05	0,04	0,07	0,50	0,03	0,07	1.15	1,12	1.56	1,82	2.26	1,43	
нс	ng/L	· 60°0	1780	280	500	0.20	93,0	0,08	0,29	<0.008	0,02	0,02	0,37	530	<0.008	59,0	<0.008	192	0,11	1,63	280	0,26	0.2	<0.008	<0.008	1,02	
റ	mg/L	<0.0005	0,05	0.05	0,04	<0.0005	<0.0005	0,01	0,01	0,01	10,0	0,02	0,02	0,08	0,02	0,02	<0.0005	0.01	<0.0005	<0.0005	0,1	10'0	<0.003	<0.009	<0.009	<0.009	
õ	mg/L	0,07	58,0	6.20	11,0	0,04	0,02	<0.003	<0.003	0,01	0,04	0.14	0,02	22,0	0,02	0.04	0.02	0.06	0,04	0,03	0,02	<0.003	<0.003	<0.003	<0.003	<0.003	
ଅ	mg/L	<0.002	11,0	2,10	1,50	0,02	0,12	0,07	0,03	0,05	0,08	0,06	0,19	1.0	0,06	1.7	<0.002	1.7	<0.002	<0.002	0'61	0,04	0.01	<0.002	<0.002	0.06	cobamba
Sb	<u> ц қ/</u> Г	5,18	6,00	0,16	10.7	23.8	2,33	1.15	1.92	0,15	3,42	20.0	0,58	06'0	0,18	2.57	0.5	1.42	1.17	0.08	0,48	1,39	0.28	0,41	0,44	0.20	ng Rio Ta
S.	π g/L	6,64	2620	6,90	1470	9.11	14,2	1.37	1,81	0,18	21.8	9,52	5,47	106,1	0,67	12.4	0.74	20.3	6.43	0,31	6,02	0,65	0.03	2,49	0.46	0,19	after joini
SS	mg/L	11,45.	486,65	23,45	1603.1	65238,95	39502	191.6	151,4	157.7	4819,9	38697	10942	181.5	111.4	43004	120,7	16176	11016	1335.2	115,8	5299,3	8949,9	3077,9	1231	38491	No.22, Rio Pilcomayo after joining Rio Tacobamba
l water pH	1	8,0	2.8	2,8	3,0	9.8	6,3	7.8	8,4	<u>8</u> ,4	8,6	0.6	7,2	2.8	7,4	5.8	8,2	4.8	7.4	7,7	3,8	6.7	8.1	8,5 -	8,5	8,0	No.22, Ri
1.Quality of water pH	Sample	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25	

Analysis Result from Laboratory (1st. round water only)

Đ.

No.22, Rio Pilcomayo after joining Rio Tacobamba No.24, Rio Tacobamba in front of Tacobamba village

water only)
round 27-30/Jan.
(2nd.
Laboratory
from
Result
Analysis

ł

1. Quality of water

mg/L μ g/L μ g/L μ g/L 8.1 2.4 35.8 0.08 2.8 69.8 7.82 0.40 2.7 118.3 32.60 0.21 3.0 767.8 36.1 0,48 11.8 133500 19.5 0.07 9.5 62408 43,8 0.88 7.9 490 21.2 0.11 8.4 24,7 56.6 <0.03 8.4 25.4 46.8 0.15	mg/L mg/L <0.002 0.01 2.70 37.0 1.72 6.20 1.51 22.0 1.51 22.0 0.07 0.12 0.03 0.08 <0.02 0.003 <0.03 0.03 <0.003 <0.003	mg/L 0,03 0,102 0,089	т <u>в</u> Л 0,93	μ g/L 20,68	1/38	mg/L <0.03	1010	J'gm	7/30	
8.1 24 35.8 0.08 2.8 69.8 7.82 0.40 2.7 118.3 32.60 0.21 3.0 767.8 36.1 0.48 3.0 767.8 36.1 0.48 9.5 62408 43.8 0.07 7.9 490 21.2 0.11 8.4 24.7 56.6 60.03 8.4 25.4 46.8 0.15	┝╾╬╾╂╍╂┉╢┉╂╾╉╶╂╼╂	0,03 0,102 0,089	0,93	20,68	0.00	<u>60.03</u>	010	200	0 / 7	
2.8 69.8 7.82 0.40 2.7 118.3 32.60 0.21 3.0 767,8 36.1 0.48 11.8 133500 19.5 0.07 9.5 62408 43,8 0.88 7.9 490 21.2 0.11 8.4 24,7 56.6 <0.03	╘╾╂╾┼┈┽┉┼╸╉╶╂╴┼╸	0.102 0.089			V24V		27.2	50°0	10.X	
2.7 118.3 32.60 0.21 3.0 767.8 36,1 0,48 11.8 133500 19,5 0,07 9.5 62408 43,8 0,88 7.9 490 21,2 0,11 8,4 24,7 56,6 <0.03	┝╾╸┠┈╍╢┯╍╎┨╼╌┨╴╴╏╴╴┨	0,089	1580	19,7	21,21	0,10	418	0,05	75.8	Rio Huaynamayu
3.0 767,8 36.1 0,48 11,8 133500 19,5 0.07 9,5 62408 43,8 0,88 7.9 490 21,2 0,11 8,4 24,7 56,6 -0.03 8,4 25,4 46,8 0,15	┝╍╓╂┯╍╌╂═╾╋═╾╋═╾╋		480	20,5	40,7	0.10	185	0,013	8,4	Rio Korimayu
11,8 133500 19,5 0.07 9,5 62408 43,8 0.88 7,9 490 21,2 0,11 8,4 24,7 56,6 <0.03	┝┉┅┧═╼╉═╌╂═╌╂	0,054	770	15,1	17,0	0,66	244	0,007	129	Rio Huaynamayu
9.5 62408 43.8 0.88 7.9 490 21.2 0.11 8.4 24.7 56.6 <0.03	┝═╌╉╴╌╏╴╴┠╴╴	0,023	0,05	7,43	0,033	0.26	0,42	0,009	116	
7.9 490 21.2 0.11 8,4 24,7 56,6 <0.03		0.03	<0.008	10,2	0.93	2,80	0,14	0,034	73	
8,4 24,7 56,6 <0.03 8,4 25,4 46,8 0,15		0,014	0,35	13,1	0,22	0.20	0,03	0,002	120	Rio Huarampaya-Jesus valie
8.4 25.4 46.8 0.15		0,02	0,13	20,1	0,29	0,10	0,02	±00.05	17,2	Rio Huarampaya-Jesus valle
		0,02	<0.008	17.3	0,05	0.12	0,01	<0.001	4,3	Rio Huarampaya-Jesus valle
No.10 9,2 21410 20,9 0,111 20,1	<0.002 <0.003	0,02	<0.008	11,2	0,08	0,10	0,04	€0.001	30,1	Rio Huarampaya-Jesus valle
No.11 7,1 62350 44,0 0,65 0,16	16 <0.003	0,03	<0.008	9,23	8,54	3.00	9.50	0,15	90,3	
10.6	202 <0.003	0.03	0,15	4,08	0,06	0,05	0,13	€0.001	123	
No.13 2.6 42.2 24.7 0.43 0.58	8 12,0	<0.005	3,1	4,7	46,3	0.11	117	€0.001	602	Rio Korimayu
7,6 141 39,1	202 <0.003	0,02	0,11	3,1	3,19	0,06	28,0	<0.001	17,6	Rio Agua Dulce
No.15 7,5 50950 18,9 0,04 <0.002	02 <0.003	0,03	<0.008	0,10	7,79	0.8	6.5	0,03	44,0	
8,5 115100	.3 <0.003	10'0	0,25	14,3	0,17	0.51	0,1	40.001	35,2	Rio Huancarani
No.17 8,5 44690 39,3 <0.03 <0.	<0.002 <0.003	<0.005	<0.008	2,65	1,13	0.45	0.17	<0.001	32,5	
No.18 8,1 16230 16.3 0,06 <0.002	X02 <0.003	0,03	0,89	<0.020	0,31	0,41	0,05	<0.001	32.6	
7.4 23060 29.8	.7 <0.003	10'0	0,48	12,2	0.34	0,40	0,002	<0.001	52,8	Rio Pilcomayo(Yocalla)
No.20 4,3 125 7,86 0,19 0,60	50 <0.003	10'0	400	9,18	12,4	0,18	211	100.0 ≥	41,9	Rio Huari Huari(Rio Matakz)
No.21 8.2 57,5 22,6 0,10 0,23	t3 <0.003	0,02	0.12	15.5	0,05	0.05	0.18	<0.001	88,4	(Rio Mataka)
8.3 191,8 48,6 0.10	<0.002 <0.003	0,03	0,06	5,10	<0.002	<0.03	0.06	<u>\$0.00</u>	14,0	Rio Pilcomayo(Puincu)
No.23 8.1 57910 27.2 0.16 0.29	9 <0.003	0,01	0,10	0,40	<0.002	<0.03	0,02	€0.001	18,6	(Rio Mataka)
No.24										
No.25 8,0 22770 54.2 0.62 0.17	7 <0.003	0.04	0.38	0.10	<0.002	<0.03	0,01	<0.001	14,0	Rio Pilcomayo(Pie. Mendez)

5 - 2

	lg. Loss	%	1.60	2.61	3,16	10.9	7,53	9.79	1.74	1.30	1,22	7,54	9,92	9.90	3.02		4.56	3,28	6.17	2,92	2,92	2,03	1.30		2.92	0,84	0.12
	S	2%	0.44	0,40	0.58	13.6	24,9	21,7	0.37	0,13	0.07	20.6	23.5	25.8	2,62		5,48	010	7,72	2,76	0,13	0,18	0,08		0,06	0,19	0,06
	S	mdd	1200	1700	18000	<i>57</i> 00	3200	S300	900	700	700	2400	4900	6100	3200		2400	1000	3400	906	1000	900	700		880	38	8
	6	bm	<0.50	8,50	05.0	<0.50	<0.50	<0.50	<0.50	<0.50	3,00	0.5	<0.50	<0.50	1,00		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50	<0.50
	Zu	udd	1760	1840	570	7200	23200	28800	320	318	114	54400	17400	23600	550		7200	74,0	136	3300	141	670	51,0		120	166	32.0
	чł	mqq	97	112	320	280	320	480	40,0	36.0	24,0	370	400	390	144		116	10,0	122	35,0	11.0	15.0	13,0		13.0	9,00	9.00
	Mn	ppm	389	399	127	134	317	369	188	304	386	95,9	443	637	74,0		336	341	346	442	614	292	597		595	371	113
	Hg	ppb	203	<1.0	258	<0.10	375	215	<0.10	283	338	400	252	344	123		283	98,3	<0.10	<0.10	<0.10	<0.10 <	<0.10		<0.10	<0.10	<0.10
	Fe	ppm	2890	56400	111000	183000	115000	185000	27000	27300	27100	164000	220000	231000	85800		60300	29100	83700	82600	37000	37000	38900		60400	27300	13600
	ბ	ppm	13,3	1,87	2,43	1,39	2,31	2,46	2,42	2,76	2.41	2,56	1,66	1,57	1.04		0,47	3,03	1,19	1.99	2,73	3,33	0.89		4,16	0,77	1.55
	ç	ppm	110	55,0	52,0	640	240	390	20.0	7,00	8,00	2	410	420	67		176	20,0	320	70,0	18,0	40,0	28,0	1	39,0	14,0	7,00
	8	bpm	14.0	71.8	12,0	42,9	74.8	<u>95</u>	96.6	8,98	10,0	239	51.9	6,93	3.99		70.8	6.00	27,0	11,0	7,00	10.0	67.0		3,00	<0.003	<0.003
	ŝ	dqq	521	120	385	418	305	566	15.5	7,79	7.18	393	764	660	216		175	17.5	236	69.7	33.9	6,13	19.7		23.0	<0.18	<0.18
	8	bpb	791	2250	1360	893	1530	1720	2150	1760	2480	1540	1540	2020	1850		2230	2150	1860	2490	2780	1440	2220		1710	2880	2580
it	γR	udd	79,0	28,0	0.67	74,0	89.0	160	7.00	1.00	1.00	80.0	156	159	32.0		52.0	6,00	49,0	16,0	1.00	1,00	2,00	• • • •	1,00	1.00	1,00
2. Quality of Sediment			No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

ĸ

Analysis Result from Laboratory (2nd. round 27-30/Jan. water only)

2. Quality of Sediment

1. Quality of water	f water												-		
	Hd	S	۶.	જ	3	ð	റ്റ	Fe	ЗH	Mn	ፈ	Zu	8	000	coment
Sample	•	mg/L	μ g/L	<u>и 8</u> /L	mg/L	mg/L	mg/L	mg/L	<i>ц 6</i> /Г	ng∕L	mç/L	mg/L	J/3œ	7/3m	
No. 1	- 5'2	211	0,03	0,48	0,03	<0.003	<0.005	0,25	2.17	0,24	0,08	0.34	<0.001	9,4	
No. 2	2.7	349.0	8,51	1,08	4,30	53,0	0,11	1630	5.56	5.67	0.17	620	<0.001	61,2	Rio Huaynamayu
No. 3	3,2	23,0	24,6	0.67	1.60	6,20	60'0	0,97	6.47	6,43	0,15	120	<0.001	28,2	Rio Korimayu
No. 4	2.8	1297	31,1	0.72	1,40	30,0	<0.005	730	7,38	3,0	0,16	240	₹0.00 20	169	Rio Huaynamayu
No. 5	11,3	40686	14,2	0.7	<0.002	0,08	<0.003	<0.008	7.74	0,05	0,72	0.06	<0.001	75	
No. 6	5.9	24480	22,3	0.08	0,86	<0.003	<0.003	90,06	<0.02	1.5	0,29	94.0	\$0.001	85	
No. 7	7.5	89.5	33.7	0.58	<0.002	<0.003	<0.005	0,28	1,06	0.28	1,80	0,04	100.0>	8	Rio Huarampaya-Jesus valle
No. 8	7.8	89.5	30,0	0,62	<0.002	<0.003	<0.005	0.25	3,54	0.48	0.24	0,02	\$0.001	565	Rio Huarampaya-Jesus valle
No. 9	8,2	<0.0001	0,72	0,68	<0.002	0,08	<0.003	<0.008	2,07	0,05	0.13	<0.002	<0.001	14,1	Rio Huarampaya-Jesus valle
No.10	8.1	74.5	21.1	0,71	<0.002	<0.003	<0.005	01.0	<0.02	0.54	0.10	<0.002	<0.001	64,4	Rio Huarampaya-Jesus valle
No.11	7,1	31604	<0.03	1.11	0.30	<0.003	<0.005	<0.008	0.06	1.27	0,11	29.0	<0.001	64,4	
No.12	8.0	17290	3,49	1.03	0,05	<0.003	<0.005	<0.008	0,35	95.0	3,02	1,14	0.01	46,0	
No.13	2,6	28,0	11.7	1,46	0,75	25,0	0,07	700	1,36	6,34	0,06	70	<0.001	51,8	Rio Korimayu
No.14	7,6	38.5	17,9	0,69	0,04	<0.003	<0.005	<0.008	2,17	0,91	0,14	10,5	<0.001	4,6	Rio Agua Dulce
No.15	5,0	7559	13,9	1,25	<0.002	<0.003	<0.005	0.28	1.82	1.30	0.08	0.0	0,03	41,4	
No.16	7,8	323	0,68	0.85	0.40	0,05	<0.005	122	<0.02	0.09	0.78	81	40.001	9,2	Rio Huancarani
No.17	6,4	3555	<0.03	0,97	0,15	<0.003	<0.005	23.0	1.16	0,7	0,59	Э	0,02	27,6	
No.18	7,3	2702	13,0	0.72	0,05	<0.003	<0.005	<0.008	0,36	0,59	0,00	7,0	0.02	4,6	
No.19	8,0	389	5.7	0,34	<0.002	10'0	<0.005	0,48	4,40	0,08	050	<0.002	0.002	13,8	Rio Pilcomayo(Yocalla)
No.20	5,2	<0.001	16.2	0,51	0.50	0,01	<0.005	280	1.16	0,92	0,14	158	≤0.001	36,8	Rio Huari Huari(Rio Mataka)
No.21	8,0	1000.0>	15.7	0,61	0,03	<0.003	<0.005	<0.008	3,94	0,14	0,05	0,12	<0.001	4,6	(Rio Mataka)
No.22	7,1	1874	11.5	0.97	0.0	0,03	<0.00S	0,09	0,86	0,69	0,37	7.5	0,006	13.8	(Rio Tarapaya, Mira Flores)
No.23	8.6	623	40,1	0,64	<0.002	<0.003	<0.005	<0.008	1.36	0,49	<0.03	<0.002	<0.001	13,8	(Rio Mataka)
No.24	4.0	<0.001	10,0	1.08	1.00	2,5	<0.005	0,07	2,12	4,40	800	250	\$0.00 1	4,6	(Qda. Jayajmayu)
No.25	8,5	975	36.3	0,54 -	<0.002	0.01	<0.005	<0.008	2,33	0.22	€0.03	<0.002	<0.001	9,2	Rio Pilcomayo(Pte. Mendez)
Note;	No.22, Ri	No.22, Rio Tarapaya after Mira Flores	after Min	a Flores											

Constraint of the

Analysis Result from Laboratory (3rd. round water 3-5/Feb. only)

No.22, Rio Tarapaya atter Mira Flores No.24, Qda. Jayajmayu in front of bridge (upstream of Rio Agua Dulce)

5 - 4

Cr Fe Hg Mn Pb Zn CN ppb ppm pm pm <	contraction data or contacto in co														·	:
ppb ppm ppm ppm ppm 7% 2.01 33600 <0.10	Ag As Sb Cd	s s	г С Я	ട്		ð	റ്റ	ъе	Hg	Mn	ደ	2	8	Sa	S	ig. Loss
2.01 38600 -0.10 744 1870 10600 -0.5 2500 1.96 <0.05 41900 <0.10 435 1650 8700 <0.5 3200 3.86 <0.005 51500 <0.10 435 1650 8700 <0.5 3200 3.47 <0.005 51500 <0.10 476 402 12600 <0.5 2700 3.47 <0.005 49800 <0.10 476 402 12600 <0.5 1100 2.83 <0.005 2.83	mqq dq dq mqq	qdd o	udd qdc	mde			dqq	bpm	dqq	mdd	mqq	ppm	ppm	mqq	r K	×
<0.005 41900 <0.10 435 1650 8700 <0.5 3200 3.86 <0.005	54 406 58	406 58	106 58	58			2,01	38600	<0.10	744	1870	10600	<0.5	2500	1,96	6.02
<0.005 51500 <0.10 600 3320 12700 <0.5 2700 3.47 <0.005	51 134 38	134 38	134 38 3	38	• •		<0.005	41900	<0.10	435	1650	8700	<0.5	3200	3,86	6,83
<0.005 49800 <0.10 476 402 12600 <0.5 1100 2.83 <td>60 196 53</td> <td>196 53</td> <td>196 53 0</td> <td>53</td> <td>-</td> <td></td> <td><0.005</td> <td>51500</td> <td><0.10</td> <td>600</td> <td>3320</td> <td>12700</td> <td><0.5</td> <td>2700</td> <td>3,47</td> <td>7.89</td>	60 196 53	196 53	196 53 0	53	-		<0.005	51500	<0.10	600	3320	12700	<0.5	2700	3,47	7.89
	55 67 54 4	67 S4 4	67 54 4	S4 4	Ч		<0.005	49800	<0.10	476	402	12600	<0.5	1100	2,83	7,99

£

•

Analysis Result from Laboratory (3rd. round water 3-5/Feb. only)

2. Analytical data of elments in SS

Analysis Result from Laboratory (4th. round water 17-19/Feb. only)

water
ot
lit)
Qua
÷

CO	ng/L	4.0	22	4,0	176	8	103	8	118	9.0	116	82	47	43	4.0	80	6	13	13	£1	<u>م</u>	4	~	13	17	26
ŭ	Ē	4		4			ř –			<u>~</u>	_		4													
S	mg/L	0.01	10,0	10.0	0,002	0,017	0,17	0.12	<0.008	0.01	<0.002	0,02	0.02	<0.001	€0.001	0,011	<0.001	≤0.001	0,01	<0.001	€0.00	<0.001	≤0.001	≤ 0.001	\$0.0 <u>0</u>	<0.001
Zn	mg/L	0,24	682	164	338	0,25	280.0	0.0 0	0.56	0.21	0,24	184.0	38,0	115.0	13,5	86.0	0,06	34,0	4,00	0,1	86	0.55	11.8	0,04	181	0.07
£	mg/L	0,03	0,18	0.14	0,88	0.35	3,20	0.15	0.15	0.12	3,38	0,08	0,13	0.09	0,29	0.99	0,55	0.51	0,49	0,45	0.21	0,06	0.42	0,03	0,03	0,03
Mn	mg/L	0,26	22,90	19,80	17.70	1.75	9.89	0,25	0.47	0,14	0,48	0,65	7,30	63,70	3.32	13.0	0,43	5,90	4,79	0,39	6,1	0,28	5,4	0.24	0,53	0.55
Hc	<u>и </u>	5,9	4,3	8.6	6,39	3.07	6.27	6,39	2.58	1,96	0,73	5,16	2,82	6,27	4,54	<0.10	5,53	2,09	2,21	<0.10	1,47	10,6	0.37	0,24	2,21	4,42
Fe	ng/L	0,66	1860	210	1710	<0.008	488,0	<0.008	<0.008	<0.008	<0.008	123	12.6	517.	<0.008	61,2	\$0.008	9,4	<0.008	0.02	120	<0.008	0.01	1.0	60,0	0.12
Ċ	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	60'0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
ð	mg/L	<0.003	71.0	6,10	50	<u> </u>	4,9		0,010	<0.008	0,010	0.450	<0.008	—	0,010	0.350			0,04	0.0	10'0	0.01	0,03	<0.003	0,77	<0.003
g	mg/L	0.03	16,00	2,00	10	0,06	2.1	0.03	0,05	0.04	0.03	0,97	0,27	┼	0,05	0,41	<0.002	0.17	0,03	0,02	0,30	0.03	0.05	0.03	0,8	<0.002
ŝ	<u>н в</u> /Г	<0.10	0,28	0.35	0.39	0,28	0,27	<0.10	0.17	<0.10	<0.10	0.46	10.0	0,41	<0.10	<0.10		<0.10	<0.10	<0.10	0,04	<0.10	<0.10	0.07	0,80	<0.10
Å	<i>ו צ'ר</i>	,				+																				
SS	me/L	110	550	560.0	16800	80600	43600	620	400	35	1800	25800	14400	150	280	2780	8	1540	1750	30	670	640	1070	380	250	14000
u water nH	4 7	8	2.5	2.9	2.6	11.5	4,4	7.6	1.7	8.3	c3 85	4.9	6.4	2.6	7.5	4.7	8.0	6.1	7.3	8,0	5,6	8.0	7,1	8.5	4,2	82
 Uuanty of water OH 	Sample	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	11.0N	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

.

5 - 6

(yluo
17-19/Feb.
water
round v
(4th.
Laboratory
trom
Result
Analysis

\mathcal{O}
.5
3
- Del
- Ho
៊
6
ta
÷
ซี
Ē
lal
Ś

	(SS)	Å	S.	ŝ	3	රි	ඊ	Fe	ЯH	Mn	Ч	ζ'n	\mathcal{G}	Sn	S	lz. Loss
	(mg/L)	uudd	qda	qdd	mqq	uudd	qdd	bpm	qdd	mdd	uudd	bpa	mdd	bpm	20	20
No. 4	16800	12.0		406	54	360	1,38	5,41	40,4	35,6	1441	173	<0.50	4600	3,55	8,71
No. 5	80600	0.6		372	4	310	9,05	5,63	2.67	207	4230	2300	<0.50	4400	5.27	6,7
No. 6	43600	0,0		414	32	570	6,6	6,17	<0.10	105	3350	9400	0.50	4300	5,09	5,13
No.11	25800	6.0		450	55	640	6,8	6,69	4,1	151	2770	8000	0.50	3400	5,55	7.64
No.12	14400	6,0		418	59	540	10,7	6,45	<0.10	157	2069	10100	2,00	2900	5,30	7.19
No.25	14000	3.0		32,4	13	8	14,0	4,14	35,9	1541	102	10600	<0.50	1400	0,31	5.24

.

. only)
19/Feb.
17
water
round
(4 8).
Laboratory
trom
Result
Analysis

3. Quality of Sediments

3. Vuality of Scullicities			ł	č	C	Ċ	¢			104	72	ξ	5	s.	te Low
	\$	Ş	22	3	5	Ե	с Г	3u	ШМ	0 4	3	;	5	5	
Sample	mqq	qdd	qdd	ppm	ppm	qdd	mdd	qdd	bpm	mdd	udd	undd	udd	%	20
No. 1															
No. 2	40,0	213	142	20.0	103	0,13	53800	493	311	ŝ	1800	<0.50	1460	1.59	4,01
No. 3	30,0	2370	401	20.0	54,0	3,23	111000	256	297	2200	84	<0.50	2190	0.73	4,33
No. 4	11.0	156	512	24,0	87,0	<0.005	89900	130	100	1500	5800	<0.50	5800	3,91	9.32
No. S	8,98	0.66	927	94,0	639	4,23	238000	223	S19	2400	27300	<0.50	6300	10.1	16.8
No. 6	9.0	145	749	85,0	474	2,00	198000	236	452	1200	25400	<0.50	4300	8,22	14,2
No. 7	10.0	825	102	4,00	25,0	7,69	25300	<0.10	243	100	700	<0.50	1900	0.05	1,15
No. 8	12,0	81,0	89,7	2,00	20,0	7,41	28100	208	371	30,0	30	<0.50	2400	0,02	2,4
No. 9															
No.10	8,00	846	202	31,0	27.0	2.62	68300	108	90,2	1000	11000	<0.50	3800	2,80	5,80
No.11	17.0	491	1010	42,0	316	3,96	118000	93,1	236	5100	12000	<0.50	4900	4.74	9.03
No.12	11.0	793	454	34,0	183	4,18	67300	335	184	1600	9000	<0.50	3400	2,57	5,59
No.13	5.00	143	254	4,00	61.3	2,67	56200	124	91,8	006	500	<0.50	2400	0,43	3,90
No.14	22.0	155	75.8	4,8	28.0	6,52	34700	<0.10	527	200	1200	<0.50	2300	0.05	3.00
No.15	7.96	266	330	29,0	174	2,28	70100	<0.10	326	1100	9200	<0.50	2900	2,21	5,10
No.16	2,00	224	55	2,00	22,0	8,69	28100	<0.10	348	0.00	80,0	<0.50	1500	0.03	7.19
No.17	8,00	215	275	24.0	349	3,4S	78900	133	341	906	7200	0.50	3900	2,45	6.53
No.18	11.0	218	192	17,0	144	5,41	45700	<0.10	384	700	4800	<0.50	1900	0,69	4,95
No.19	1.00	974	42,4	0,00	19,0	6,80	39200	102	428	0.00	- 0'06	0,50	2400	0.04	3,05
No.20	<0.002	1374	114	<0.002	35,0	9,08	36400	65.2	202	50.0	800	<0.50	1800	0,04	2,49
No.21	2.00	278	50.1	<0.002	15,0	4,07	23600	96,2	328	<0.03	300	<0.50	1900	0,01	2.24
No.22	00'0	541	196	15,0	106	3,51	45200	155	370	450	4200	050	2000	0,47	3,22
No.23	10.0	118	56,4	<0.002	20	8,42	44100	112	474	<0.03	100	0.50	1500	0.34	3.83
No.24	3,00	526	151	1,00	31.0	4,57	48500	21,7	624	500 200	808	<0.05	82	0.09	2.50
No.25	3,00	130	66,3	<0.002	18,0	6.52	27600	86,9	395	<0.03	200	<0.50	1900	0,07	1.24

5 - 8

8

Analysis Result from Laboratory (5th. round water 3-5/Mar. only)

1. Quality of water

	0	ار																			ł				ţ		
	8	mg∕L	21	2.0	17	101	ŝ	63	S S	21	17	25	63	34	63	17	34	2	21	13	8	21	13	13	17	1	8
	8	ng/L	<0.001	<0.001	€0.00	0,02	0.12	<0.001	<0.001	0,004	<0.001	<0.001	<0.001	0,01	<0.001	<0.001	<0.001	<0.001	0,01	<0.001	<0.001	<0.001	<0.001	<0.001	±00.0>	€0.001	<0.001
	ζn	J/gm	01,0	646	186	172	0,05	132	0,08	0,05	0,04	0,16	198	112	118	4,09	30,0	<0.002	16,0	15,0	0,01	84,0	0.32	6,70	0.05	168	0,14
	ፈ	mg/L	0,28	0.55	0,46	2,44	0,09	0,73	41,0	2,44	0,55	<0.03	3,62	0,28	<0.03	2,44	0.37	<0.03	2,44	<0.03	<0.03	2,45	2.44	<0.03	<0.03	8°0	<0.03
	Mn	mg/L	0,16	41.1	49,9	0,16	14,4	9,08	0,25	0,78	0,24	0,79	15,6	11.6	0,80	2,34	9.88	0,10	5,47	6,77	0,14	4,36	0.18	4,81	0,86	18,6	0,86
	ЯΗ	<i>μ</i> β/L	<0.10	<0.10	0,93	<0.10	0.93	<0.10	15.9	2,36	<0.10	<0.10	<0.10	2.23	0,19	2,85	11.87	14,2	22.2	<0.10	<0.10	25,9	6.01	<0.10	1.05	<0.10	\$ 0.10
	Fe	mg/L	0,12	1830	157	397	0,04	65,5	0.58	10'0	0,01	0,01	186	52.5	264	0,37	0,22	3,11	0,04	0,01	0,57	12,8	0.05	0,20	0,42	0,10	0,13
	Ċ	mg/L	<0.005	0.17	0,04	10'0	0.04	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	õ	mg/L	0,04	126	6.10	1.12	0,17	60'0	<0.003	10,0	0,003	0,04	1,81	0,07	22,0 1	<0.003	0.08	0,04	0,06	0,04	0,04	60'0	0.02	0.04	<0.003	0.48	0.01
	ਠੋ	mg/L	0,05	14.0	2,00	1,4	0,07	0,87	0.04	0,05	0,04	0.06	0,92	0,52	0,78	0,07	0.2	0,08	0,15	1,0	0.02	0,25	0,06	60'0	0.05	0,73	0.06
	ŝ	<u>п 8</u> /Г	0,43	2.37	0.72	0,44	0,13	0,12	0.13	0.17	<0.10	<0.10	0,47	0.20	0,96	<0.10	0,75	60'0	0,43	<0.10	<0.10	<0.10	<0.10	0,23	0.02	<0.10	0.37
	ŝ	<u> ц қ/</u>																									
	8	mg/L	430	926	408	350	180000	72300	1800	530	390	2890	12300	10900	490	1500	19000	086	8990	2180	830	028	730	2630	630	730	3160
of water	Hd		8,9	2.5	2,7	3,1	10.5	5,7	8,3	8,2	8.4	8,6	4,5	5,8	2.5	7,4	7.0	8,3	7.2	6,6	7.8	5,1	8,1	7,5	8,7	4,8	8.4
1.Quality of water		Sample	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

¥:

	SSQ	_	5	2	စ္တု	Ħ	2	¥
	Ig. Loss	% %	5,24 5,24	5.76	5,59	9.44	9,45	7.25
	S	Ľ	4.19	4,31	5.85	5,84	3,46	0.36
	Sn	mdd	2900	2400	2600	3400	2900	2800
	6	mdd	0.0	00	1.0	0,5	0,5	0,5
	Zn	bpm	7390	7000	26100	33500	14100	13500
	ዲ	ppm	1210	1150	500	6130	3240	3140
	Mn	ppm	293	275	258	210	254	240
	ЯH	ppb	67,7	50,3	15,6	17.3	26,8	10,1
	Fe	ppm	63000	59000	78300	75000	\$6600	64600
	ථ	qdd	1,17	4,47	13.1	12,8	9,37	99
	S	mdd	105	126	970	930	540	710
	පී	udd	30	23	75	106	2	<i>S</i> 7
	ŝ	qdd	220	200	707	562	743	- 262
S	Ş	qdd						
lements ir	Å5	mqq	7,0	0'0	0.0	1.0	0.0	0,0
il data of e	(SS)	(mg/L)	180000	72300	12300	10900	19000	980
2. Analytical data of elements in SS			No. 5	No. 6	No.11	No.12	No.15	No.17

5 - 10

Analysis Result from Laboratory (6th. round water & Sed. 16/Mar.)

1. Analytical data of wa

.

Analysis Result from Laboratory (6th. round water & Sed. 16/Mar.)

2. Analitical data of elements in SS

		I	1	ł	1	1	1
	lg. Loss	r V	13,16	6,78	7,12	7,12	6 . 09
	s	re V	6.23	5,22	4,02	5,29	3,02
	Sn	mqq	2920	3410	2440	3410	2440
	6	mdd	0,5	0.0	0,6	0.5	0.5
	Zn	mdd	8095	7190	10600	16400	13500
	£	tudd	. 1700	1680	2400	8540	2620
	Mn	ppan	224	197	376	183	315
	ЯH	ppt	462	331	448	511	272
	Fе	bpm	71700	64500	82400	58300	57900
	Ċ	- qdd	3,68	3,12	7.58	4,40	5.27
	õ	ppm	244	296	620	467	8 8
	3	bpm	32	28	36	122	55
	Sb	bpb	416	316	352	301	316
001	ş	qdd	5660	5180	4580	4540	4050
lements II	Ąĝ	udd	50	57	61	48	67
4. Analytical data of elements in 55	(SS)	wdd	No. 5 173000	97300	18600	78400	8840
Z. Analitic			No. 5	No. 6	No.11	No.12	No.15

5 - 12

0

Analysis Result from Laboratory (6th. round water & Sed. 16/Mar.	\sim
sis Result from Laboratory (6th. round water & 3	16/Mar.
sis Result from Laboratory (6th. roun	& Sed.
sis Result from Laboratory (6th. roun	water
sis Res	. round
sis Res	y (6th
sis Res	Laborator
sis Res	from
Analysis	
	Analysis

۲

9

3. Analytical data of sediments

	Ag	Ås	ß	ട	õ	ර්	Fe	H_g	Mn	ዲ	Zn	8	ч	s	Ig. Loss
	mdd	bpb	ppb	ppm	ppm	bbb	mdd	ppm	ppm	ppm	ppm	bpm	mdd	%	%
No. 2	66	690	100	4,0	35	3,5	47500	61.6	739	762	1500	0,5	2430	0,43	2,89
No. 3	78	1310	202	3,0	38	5,4	70600	435	160	1160	320	<0.5	2530	0.27	3,31
No. 4	254	6490	300	42	241	1.9	00006	107	102	1330	9690	<0.5	5260	7,70	7,10
No. 5	100	8140	361	30	233	1.5	101000	151	319	1290	7600	<0.5	3410	9,04	7,67
No. 6	173	9620	660	54	377	3,2	139000	136	383	1360	13200	<0.5	3400	1,34	9,68
No. 7	28	750	47,7	1,0	20	7,3 -	237000	227	170	37	310	<0.5	1950	0,09	1.27
No. 8	14	562	31.6	3.0	25	6,8	32500	141	400	10	300	0.5	1950	0,06	2,56
No.10	25	710	111	280	161	2,9	130000	107	93	5150	36600	0,5	1944	15.2	10.8
No.11	173	8560	1800	45	333	4	158000	437	320	3370	13500	<0.5	4390	14,7	11,5
No.12	86	8850	364	46	227	3,3	118000	263	368	1620	12200	2,0	3410	10,2	5,22
No.13	49	1830	164	5,0	71	2,6	64000	107	64,9	845	740	0,5	3420	1,68	3.82
No.16	55	4130	272	31	197	3,6	81100	209	274	1140	6700	<0.5	2920	5,31	5,14
No.17	42	2690	187	22	167	5.8	86300	304	272	643	5700	<0.5	2920	4,05	4,38
No.18	40	2550	251	17	134	6,0	56400	367	350	561	4700	0,5	1950	3,74	4,35
No.19	5	225	11,0	1,0	14	2,9	13800	326	170	0.0	36	<0.5	974	0,04	1.26
No.20	15	1690	26,1	13	42	6,8	32000	299	228	0.0	680	2,0	1460	0,11	2.02
No.21	11	1010	11,7	2,0	20	2,2	19900	372	262	0.0	400	<0.5	1460	0,05	1.21
No.22	30	1270	111	10,0	97	7,3	46400	353	322	340	4000	0,5	1950	1.38	2,91
No.23	19	450	20,4	2,0	24	8,5	44100	443	450	0.0	89	<0.5	1950	0,12	4,98
No.24	112	2400	65,0	4,0	31	5,2	44200	440	600	313	670	<0.5	1460	800	2,63
No.25	10	2930	25,6	3.0	19	6.5	33100	462	378	0.0	280	<0.5	1940	0.18	2,11

E)

(dulo)	
7/Mar.	
water 2	
. round	
ry (7th	
Analysis Result from Laboratory (7th. round water 27/Mat. only)	
from L	
Result	
nalysis	:
<	

1 Oualit

			1	ı	1	J	1	1	1	1	ı	ı	\$	ı	I	1	I	1	J	1	1	1	1	1	1	ţ	1
i de	200		25	83	જ્ઞ	41	74	63	- 32	ន	21	g	૪	54	50	57	45	11	29	57	16	8	4	5	01	11	51
ł	3	<u>1/3</u> 6	0,001	100.05	100.0×	0.005	1.01	0,36	0,002	100,0	0.001	<0.001	0,062	0.057	0,001	0,003	0,001	40.00I	0,001	0.00	0,003	100.0 ℃	0,007	€0.001	100.0	<0.001	0.003
t	ry X	ng/L	0.37	788	225	228	0,27	125	0,25	0.14	0,13	0.21	0.49	0,18	101	12,6	1,51	0,08	4,05	0,67	0.10	62	0.40	0,63	0,002	131	0.002
i	er L	mg/L	0,33	0,59	0.24	0,35	0,24	1.11	0,33	0,24	0,33	0,41	0,41	0,41	0,41	0.50	0,50	0,50	0,67	0,59	0.33	0.02	0,15	0,41	0.24	0.33	0,24
	Mn	J/gm	0,05	30,7	36,6	16.2	0,03	6,60	0.15	0,39	0,09	0,45	2,51	0,54	26,0	1,53	3,43	0,03	1.77	1,60	0,14	4.15	0,07	1.67	0,03	18,0	0.53
	Нg	<u>л ғ/г</u>	7,70	11,8	12,3	5,36	24.1	13,1	21.0	16'0	8,70	9,63	1.45	<0.10	4,64	<0.10	12.3	<0.10	<0.10	<0.10	0.36	2,35	<0.10	10,7	3,62	7,96	5,30
	Fe	mg/L	0.55	940	277,5	893	0.02	148	0,56	0,05	0.19	0,27	0.29	0.09	158	0,03	0.26	0,34	0,22	0.25	0:30	62,7	60'0	0,68	0,31	0,17	0.16
	ථ	mg/L	<0.005	0,09	0,08	0.07	0.01	0,005	0,007	<0.005	<0.005	<0.005	0.020	0,006	<0.005	<0.005	0,020	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	õ	mg/L	60'0	0.03	6.8	22.0	2,19	2,36	0,03	0.05	0.07	0.04	0.30	0,20	16.0	0.06	0,10	0,003	0,07	0.06	0,11	0,003	0,003	0,06	0,003	0,37	0.003
	შ	mg/L	0,02	6,10	1.73	1.36	60,0	0,70	0.07	0.06	0,07	0,02	0,06	0,03	0.58	0.05	0,10	0.05	0,07	0.07	0,04	0,24	0,24	60.0	0,06	0,62	0.07
	Ŗ	יי צ'ב	0.23	0,70	0.39	0,55	0,28	0.37	0,11	15,8	0,23	0,53	0,58	0.21	.96.0	0,49	0,38	0.60	0,13	0,26	0.20	0,15	<0.10	<0.10	<0.10	<0.10	<0.10
	Ś	7/3 11	7,5	11	8.9	54	55	61	8,0	25	0,89	6.4	14,1	ន	3	1.7	14.1	1.3	9.2	11,6	2,1	50 10	0,63	12,5	5,0	0.36	2.5
	83 1	n⊵/L	250	1230	290	320	58800	31200	480	770	330	820	52600	49600	136	9 <u>9</u>	46000	410	9800	4860	1560	84	390	6470	830	800 000	1750
of water	Hd	•	0.6	2.6	2,6	2.6	11.6	5.0	8.1	83	8,4	8,4	8,4	8.7	2.7	7.9	8.1	8.0	7,6	8.0	8,1	5.2	6.1	7.6	8.5	4.6	8.5
1. Ouality of water		Sample	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	0.0N	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

۲

Analysis Result from Laboratory (7th. round water 27/Mar. only)

2. Analitical results of elements in SS

	Ig. Loss	%	7.18	8,03	7,51	7,12	7,90	7.70
	S	%	5.59	6.64	6.20	6,08	6.75	6,17
	Sn	ppm	3330	3800	2850	3330	3800	3810
	8	ppm	0,0	0.5	0,0	0.5	0.5	0.5
	Zn	bpm	8690	7300	10900	10200	10390	10900
	ዲ	bpm	1710	1620	1390	960	2470	2270
	Mn	mqq	486	224	749	680	470	472
	Нg	þþþ	277		٠	•	•	
	Fe	udd	70700	80600	73400	74500	74200	72200
	ථ	qdd	19,4	18,4	19,8	21,1	29.1	21.1
	ට	uidd	396	650	357	306	331	441
	უ	uidd	32,0	24,0	40	39,0	40,0	44.0
	ß	qdd	381	372	397	589	362	435
	R	qdd	2100	9260	5510	10500	7280	0096
OI CICIDICI	Å	udd	136	88.0	F	0'09	60.0	65.0
CHINCOLINE	(SS)		58800	31200	No.11 52600	49600	46000	9800
2. MIANNERI TOSUIS OF CIENCIES IN CONTRACTOR			No. 5	No. 6	No.11	No.12	No.15	No.17

Analitical Results from Laboratory (8th. round, 1-5/Abr.)

1 Onality of Wate

		.1	1	1	1	I	I	I	1	1	1	I	1	I	I	I	1	I	1	ł	I	I	1	ł	I	ļ	ŧ
		7/3@	4	\$	5	181	129	7	8	ŝ	tr	g	ß	\$	5	8	19	4	<u>1</u>	∞	4	ង	5	4	5	2	1
Č	5	mg/L	<u>*0.01</u>	<0.001	<0.001	0.012	0.24	0.07	0,003	<0.001	100,0	0.001	< 0:00	0,041	100,0	€0.05	<0.001	€0.00 100	0,001	0.001	≤0.001	0,001	<0.001	€0.05	€0.001	¥0.00	≤0.02
2	5	л В Г	0,14	566	205	444	0,48	0,66	0,26	0,14	<0.002	0,25	5,70	0,13	10.4	16,0	37,0	0,02	11	51	0.03	45	0,5	2.7	0.1	153	0.05
Ĕ	5	75 10 10	0.03	0.03	0.25	4,00	0.50	0,50	0,75	0,25	0.25	0.25	0.25	0,03	0,25	0,03	0,08	<0.03	<0.03	<0.03	<0.03	0,05	<0.03	<0.03	<0.03	\$0.03 \$	<0.03
2	Mn	mg/L	0,10	31.0	43,0	34,0	0,10	0.21	0,39	0,60	0,12	0,46	8,00	0,64	49,0	1.67	9,00	10'0	2.06	2,15	0.03	3,10	0.05	2.25	0,04	15.0	0,05
:	Hg	ц 2/L	0,10	0,85	1.21	0:30	0,17	0,14	0.10	60.10	<0.10	<0.10	<0.10	40.1 0	0,26	0,20	0,62	<0.10	<0.10	<0.10	<0.10	2,32	40.10	<0.10	<0.10	<0.10	<0.10
ł	Fe	mg/L	0,06	589	256	1190	0,20	0,04	0.22	0,13	0.10	0,11	0,14	0,03	170	0,17	7,65	0,41	0,18	0,29	0,21	49,8	0,08	0,37	0.1	0,12	0.28
I	ბ	mg/L	<0.005	0,01	0,006	0.06	<0.00S	<0.005	<0.005	<0.005	<0.005	0,002	<0.005	<0.005	0,03	<0.005	-0.00S	€0.005	<0.005	<0.005	<0.005	<0.00S	<0.005	<0.005	0,007	<0.005	<0.005
	ර	mg/L	<0.003	34,0	6,1	32.0	0,26	0,34	0.01	\$0.003	<0.003	<0.003	0,08	0.13	14,0	<0.003	0.20	<0.003	0.10	0,02	0,02	0.10	<0.003	<0.003	<0.003	0.37	<0.003
I	5	mg/L	0.02	4,00	5 8	2.60	0,04	0.07	0.05	0.05	0,04	0.06	0.24	90,0	0,63	0.13	0.34	0.0	0.15	0,07	0,06	0,17	0,002	0,11	0,002	1.01	0,002
	в	ר גיך	<0.10	0.28	0.17	12'0	0,05	0,67	0.10	010	0.28	0.10	0.51	0.49	0.25	0.11	0.46	0.08	<0.10	0.12	0,07	0,11	0.04	0.15	0,22	0.22	0.08
	Ş	ц р/Г	6,22	64.4	3,08	100	113	14.8	5.11	4.05	0.68	23,1	12.3	8.86	46.7	1.04	5.84	1.04	8.86	13.8	1.77	2.20	0.53	16,8	0,40	0.55	3,39
	S	mg/L	290	1350	360	10500	235000	84400	400	420	310	2440	36100	28300	320	400	26400	750	6200	2270	1400	470	250	2980	290	570	1570
of Water	Hd	•	8.2	2.8	2.8	27	11.9	9.6	84	84	8.5	8.9	8.1	89	2.6	2.0	89	8.1	72	7.8	8.2	5.2	81	7.7	8.5	4,4	8,6
1. Quality of Water		Sample	No. 1	No.2	No. 3	No. 4	No. 5	No. 6	r on	× v	No. 9	No.10	No.11	No.12	No.13	N0 14	No 15	91 ON	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

8

۲

Analitical Results from Laboratory (8th. round, 1-5/Abr.)

2 Analysis of SS

	(g.Loss	હ	6.80	9.19	8,75	7,64	7,49	6,50	1
	s	ļ			98300		_		
	Sn				3320				
	8	mdd	0,50	0.50	0.50	0.00	0,50	1.50	
	Zu	mdd	8890	10100	9800	13300	13200	15600	
•	ጜ	ppm	1148	1139	1531	1039	1088	1910	
	Mn	mdd	71.9	290	330	350	8	480	
	Hg	bpb	1300	516	645	770	770	1900	
	Fe	undd	71400	97100	100900	73300	71300	73300	
	ර	bpm	65.0	69,5	4,3	5.79	6.79	4,31	
	õ	mdd	490	8	6 4	8	549	500	
	3	bpm	35.0	55,0	51.0	60,0	64.0	65,0	
	Sb	qdd	1		359	1	1	262	
	As	undd	3670	10500	1210	7730	7300	3800	
	Ag	mqq	127	94,0	67.9	79.9	93.8	54,0	
of SC	(SS)	(mk/L)		1	84400			F	
2. Analysis of SS			No. 4	No. 5	No. 6	No.11	No.12	No.15	No.17

摇

Analitical Results from Laboratory (9th. round, 14/Abr.)

1.Quality of Water

my/L mc/L mc/L mc/L mc/L mc/L mc/L 250 0,012 1230 0,076 1230 0,076 258500 0,088 34200 0,088 34200 0,019 480 0,003 770 0,003 0,0003 0,003 0,003 0,003 0,0003 0,003 0,003 0,003 0,003 0,0003 0,000	γL μg/L 12 0,17 76 0,81		3	3	•	0		1			
			1/2000	U.a.m	1/om	. U	me/l	me/1.	1/202	me/L	me/L
╶┼╶╁┊╎╏╺┽╺┢╸╋	+-				7 Am				016	1000	
╶╁╶┟╶┟╸┟╸┟		_	70.0	co*o	55°,	74.72		3	A		
		9,3	101 101	0.07	1600	0.37	28,0	1.0	018	TM	ŧ,
	07 0,48	2.3	6,40	0,02	220	0,51	39,0	0.Q	106	50°0	13
┝─┼╶┟╌┼╴	01 1.16	2.7	25.0	0,04	568	0,39	18,2	3.39	408	0,066	142
╎┈┟┈┟╴	88 1,13	0,002	0,43	<0.005	0.08	0,23	10,0	0,10	0.38	0,015	83
	19 0,85	1,2	0,05	<0.005	11,8	1.07	8.90	0,23	159	0,001	85
	03 0,29	0.02	0,03	<0.005	0,32	<0.10	0.14	<0.03	0,22	0,004	75
	0,002 0,36	0,03	0,12	<0.005	0.52	<0.10	0,35	0,03	0,28	0.001	71
330 0	0 0,14	0.04	0,003	<0.005	-0,06	<0.10	0,10	0.03	0.19	100.0>	*
820 0,017	17 0,28		0,03	<0.005	0.20	<0.10	0.18	0,03	0,28	0,001	SO
52600 0,022	22 0,76	0.05	0,16	<0.005	0,02	0,13	0,03	0,03	0,16	0.084	8
49600 0.02	22 0.6	0.05	0,15	<0.005	0,06	<0.10	0,33	0.03	0,21	0,001	46
135 0,059	59 0,61	0,71	20,0	<0.005	104	<0.10	44,0	0,03	111	0.015	ิ่
	0,10	0,05	0,02	0,005	0.01	<0.10	0,64	0.03	22.0	100.0	4
48000 0.01	0,35	0,10	0.02	0,005	5,12	0,55	<i>S</i> ,70	0.03	36,0	0.029	17
410 0	<0.10	10'0	0,02	0,03	0,12	0.20	0.03	0,03	0,18	100'0	4
110'0 0066	11 0.31	0,04	0.02	0,05	0,18	<0.10	1.74	0,03	5.70	0.10	8
4960 0,01	0,29	0'04	0,03	0°0	0,13	0,14	1.72	0,03	2,80	€0.001	4
1660 0,008	08 0.29	0,01	0.05	£0°0	0,16	<0.10	0,04	0,03	0.17	0.001	4
400 0,003	03 0,62	0,17	0.05	\$00.05	68.3	0,12	3,20	0,03	58.0	0,002	7
390 0,002	02 0.70	0,002	0,01	<0.005	<0.01	<0.10	0.02	0,03	0,40	0,002	4
6470 0,012		0,06	0,04	0.03	0,10	<0.10	1,70	0,03	3,20	0.005	7
830 0	0,63	0.002	0,07	<0.005	5,55	<0.10	0.14	0,03	16,2	100.0	8
300 0,003	03 0,47	0,08	0.33	0,02	0,17	0,10	17,3	0,03	170	0,001	75
1750 0	0.57	0,002	0.02	<0.005	0.45	0.15	0.02	0,03	0.19	0,001	4

5 - 18

Analitical Results from Laboratory (9th. round, 14/Abr.)

.

۲

of SS
2. Analysis

CO ID SISCHUNY?	20100															
	(SS)	Ş	As	Sь	8	δ	ბ	Fe	ЯR	Mn	ፈ	5°	8	Sn	s	lç.Loss
	(mg/L)	mdd	mqq	qdd	mdd	mdd	bpm	bpm	qdd	undd	ppm	mdd	ppm	mdd	mdd	×9
No. 4	Ł	174	227	411	59,0	630	1.95	79200	819	23.0	2720	11100	0,0	4750	\$\$000	9,18
No. 5		173	218	578	140	620	2,44	62500	833	131	4620	17200	1,50	3800	<i>59700</i>	8,67
No. 6	34200	128	228	537	86,0	849	185,0	77600	815	53.9	3730	14500	3,50	4750	69200	8,94
No.11		77,0	221	286	46.0	640	280	67000	589	391	2280	11900	0.00	3330	55300	6,88
No.12	I	91.0	140	535	50,0	610	2,47	85800	526	410	2850	12600	0.50	3330	75400	8.27
No.15		96,0	241	851	69,0	410	1,49	00616	889	480 84	6510	16900	8.0	2850	77600	8,16
No.17	0066															

į

.

	Н
	Че
	្
	õ
Abr.)	8
ound, 14//	Ş
tory (9th. n	As
n Laborat	٩ĉ
Analitical Results from Laboratory (9th. round, 14/Abr.)	3.Qality of Sediment
•	••

•

Ag ppm 23,0 23,0 138 118 118 118 10,0	As 24,9 84,4	8 g	5		5	pom Dom	a da			in ad	budd	bpm	, mod	2. 2.
ppm 23,0 47,0 138 138 134 10,0	Ppm 44,9 84,4	qdd	maa	udd	~~~~	noa	qdd	500	maa	maa	mdd	bpm	udd	^{or}
23,0 47,0 138 118 134 10,0	44,9 84,4				hput tradd			2222				•		
47,0 138 118 134 10,0	84.4	98.4	5.0	81.9	1.56	48100	296	349	732	1600	0.0	1700	5900	3,05
138 118 134 10.0		302	2.0	62,3	3,61	86500	507	128	1340	400	0.0	3800	3900	3,20
	242	522	0.66	403	2,05	190000	822	43,9	1330	19400	0.0	5230	68800	13,0
	271	738	67,0	305	2.67	155000	745	142	2280	19100	0,0	3330	159000	11.2
	258	513	81,0	360	2,34	168000	435	106	1840	19800	0.0	4280	177000	12,1
	19	46,9	1.0	38,0	5,73	24900	4900	240	100.0	530	0,0	950	1100	1,42
No. 8 4,0	225	1240	0,0	40,9	3.61	62600	16800	238	28,9	370	0.0	1430	1300	1.24
No. 9			=.											
No.10 159	19	39,5	78.0	313	5,46	213000	697	38.9.	3450	20200	0,0	7120	230000	15,5
No.11 126	263	1110	77,0	497	2,21	238000	006	431	3580	20000	0.0	5220	280000	16.1
164	1027	1051	30,0	446	2.63	252000	169	006	3650	21000	0.5	4280	268000	17.6
	161	289	2,0	106	3.15	108000	164	53,9	1050	1100	0.0	4280	210000	4,97
3,0	17,8	25,2	0.0	31,0	5.37	18800	138	277	0'0	56.9	0,5	1430	8	2,41
0.00	228	361	36.0	280	1,82	23800	485	454	1410	10200	0,5	2850	75600	6.29
3,0	15,8	17,0	5.0	27.0	6,16	87500	69,3	376	0.0	89	0.0	1420	8	2,47
0.09	239	341	34,0	295	2,34	104000	470	439	1490	10700	0.0	3600	56100	7,69
45,0	203	288	34,0	189	0.85	66500	472	430	1523	9300	0.0	2850	90500	5,49
No.19														
3,0	26,6	10,4	5,0	43,9	9.11	33600	527	309	57.7	1040	0.5	1900	2100	1.78
1,0	2.52	27,3	3,0	25,9	2,21	24900	25,4	291	13,5	866	5.0	1900	50800	1,16
35,0	190	300	32,0	246	1,46	62100	620	393	1400	9100	0.0	2380	801	5.72
1.0	2.51	21.6	12,0	23,0	6,60	46700	140	407	13.5	113	0.5	950	8	2,12
No.24 19.0	29,4	69,0	2,0	56.9	3,35	43200	153	610	410	9010	0,0	1430	1500	2.25
1.0	5,61	20,3	1,0	20,0	3,84	23200	118	310	6.0	118	0,5	1420	1000	1.00

Analitical Results from Laboratory (10th. round, 28/Abr.)

۲

Ő	mg/L	4	61	12	170	105	61	33	<u>و</u> ع	4	\$	81	59	16	50	16	4	14	12	4	16	4	7	4	~	6
8	mg∕L	<0.001	€0.001	≤0.001	0.025	0,017	0,086	±0.05	<0.001	0,04	±00.0⊳	0,018	010,0	<0.001	100.02 V	0,006	€0.05 100	<0.001	±00.0⊳	<0.001	±0.00	100.0>	£0.05	€0.001	-0.001 100	<0.001
Za	J/gm	0,15	1050	264	337	0,31	0,05	0,10	0,10	0,04	0,14	0,04	0,0 20	118	17,0	9,40	0 0	3,70	0.83	0,07	1,50	144	0.17	0.04	0,02	0,03
đ	mg/L	<0.03	0,14	0,14	2,16	<0.03	<0.03 40.03	<0.03	<0.03	<0.03	€0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0,26	0,26	<0.03	0.20	<0.03	0,20
Mn	mg/L	0,16	14,9	34,0	15,0	<0.002	0,05	0,09	0,22	0,03	0.20	<0.002	<0.002	35.0	1,02	4,60	0,03	1.38	1.49	0,01	4,60	0.01	1,50	0,10	15,7	0.25
ц	н 2/Г	0,13	0,90	0,60	0.57	0,09	0,10	0,10	01.0	1,35	1,61	0,1	0.03	0,27	0.22	1,48	0,04	0,14	0.12	0.15	0,07	0,36	0,09	0,13	0,06	0,33
е Ц	ng/L	0,14	1654	251	589	0,23	0,20	0,35	1,85	1.15	0,34	0,26	0,02	156	0.18	0,92	0,9	0,7	0,72	0,55	107	0,17	0,58	0,13	0,43	0.19
Ċ	mg/L	<0.005	0,11	0.07	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0,04	<0.005	0,02	0,03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
ć	mg/L	0,01	92	6,7	18	0,07	0,07	<0.003	0,11	<0.003	0,08	0,1	0.36	17	0,01	0,03	<0.003	0,01	<0.003	<0.003	0,03	<0.003	<0.003	<0.003	0,025	<0.003
Č	mg/L	<0.002	8.7	2.1	1,4	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0,63	<0.002	0,15	0.01	0.07	0,03	0.02	0,29	0,03	0.04	0,02	0.77	0.03
đ	л <i>а</i> л	0.33	1,15	0,67	0,76	0,52	0,65	0,19	0.32	0,19	0,32	0,71	0,61	0,35	0,40	0,67	0,24	0,57	0,48	0.33	0,36	0,37	0.46	0,39	0.56	0,40
Å		8,55	2040	6,33	1330	289	5,86	- 60°8	4,13	0,10	12,7	24,4	28,7	32,1	0,10	9,35	0,10	9,05	14,9	0,72	3,34	1,25	17.3	0,42	0,26	8,49
2	a Lam	340	1430	410	9830	139000	84600	550	8	380	1470	00065	81900	410	390	40400	390	10100	5650	640	570	380	7150	360	340	850
of Water		8,2	2,5	2,8	2,9	12,4	9.6	8,1	8,4	8,4	8,7	10,6	10,7	2.7	7,0	7.5	8,3	5*2	7,9	8.1	8,2	8,5	7.8	8.6	4°S	8.6
1.Quality of Water	Sample	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

	Ś	Å	ş	ß	შ	ð	ථ	Не Не	Hβ	Mn	ፈ	5	B	S	n	15.1.005
		mdd	mqq	qdd	mqq	udd	mdd	mdd	þþþ	mqq	ppm	mdd	mdd	mdd	udd	સ્ટ
No. 4	0830	79	199	265	30	640	0	00696	720	41.9	630	6200	0.5	4270	81800	8,81
No. 5	139000	38	232	328	56	337	115	60400	695	458 .	2720	13700	0,0	2850	51600	6.4
No. 6	84600	35	224	312	48	416	1,6	63700	629	438	2090	11500	0,5	3330	52800	6,81
No.11	00066	41	241	365	88	421	3,2	00669	617	648	2980	15400	0,0	3800	60700	6,93
No.12	81900	45	246	432	8	389	1,4	99100	162	859	2660	13600	0.5	2850	90200	7,38
No.15	40400	54	237	3230	49	471	2.6	101000	783	488	2790	10200	0,5	2380	73200	8,45
No.17	10100	57	237	2310	46	660	3,9	0806	838	432	2920	10201	0.0	3320	77200	11.1

Analitical Results from Laboratory (10th. round, 28/Abr.)

2. Analysis results of SS

5 - 22

9

Analitical Results from Laboratory (11th. round, 6/May)

.

1. Ouality of Water

	۵	니		_		_			: 1			1								l				[1	
	ĝ	7/30	4	111	2	121	81	8	2	7	2	S	2	જી	33	16	55	6	ន្ត	∞	~	\$	13	R	2	10	61
	8	7/3m	₹0.001	€0.00	€0.001	100.0≥	₹0.001	0,087	100.0>	0,009	<0.001	≤0.001	800 O	€0.00 1	<0.001	€0.00	0,040	<0.001	€0.001	\$0.001	€0.00	€0.00	<0.001	€0.001	<0.001	€0.00	60.05 100
	Z'n	J/3m	0,19	810	210	192	0,9	0,12	0,13	60'0	0,04	0.11	0.3	0,07	108	3,3	1,0	0,02	0,88	0,73	0.08	83	0,10	0,88	0.05	31	0,07
	å	ng/L	0,15	0,21	0,15	3,3	0,09	0.09	<0.03	<0.03	0,09	0.15	0,09	0,08	0.09	0,09	0,22	<0.03	0,28	0,28	0,22	0,23	<0.03	0,28	<0.03	0.28	<0.03
	Мп	∏g∏	0.15	19	31	2,6	0,03	0,13	0.12	0,28	0,04	0.02	0,02	0,01	33	0.79	3,1	<0.002	1,1	1.2	10,0	5,1	0,02	1,3	0,09	15	0,26
	ЯH	π g/L	0,21	2.6	0,13	0.10	0,85	0,29	01.0	0.10	0.10	0.25	0,57	0.79	1,0	1,60	4,6	3,1	19'0	0,35	0,12	0.31	0,29	0.43	0,29	0.32	0.38
	Fe	ng/L	0,31	1800	270	280	0,16	0,13	.91.0	0,44	0,11	0.22	0,19	0.28	160	0.15	0,40	0.39	0.37	0,48	0.43	130	0,40	0,54	0,36	0,32	0.30
	ර	mg/L	0,05	0,17	0.12	0,03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00S	0.03	0,03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	õ	mg/L	0,22	102	6,5	9,7	0,20	0,23	10'0	10'0	<0.003	0,07	0,16	0,17	10,0	1,50	0.05	<0.003	<0.003	0,01	<0.003	0,02	0.01	<0.003	0,01	0,24	10,0
	შ	mg/L	0.03	9,2	2,4	1,4	0,01	10,0	0,02	0,02	10.0	0.02	0.01	0,01	0.58	0,03	0.05	10,0	0,04	10'0	0.02	0,33	0.02	0.04	0.03	0,75	0,03
	ŝ	$\mu g/L$	<0.10	1.50	0.22	0.15	<0.10	0.28	<0.10	<0.10	<0.10	<0.10	0.28	0,27	<0.10	0,04	0.67	0,36	0.43	0,28	0.12	0,06	0.12	0.26	0,07	0,25	0.12
	Ś	$\mu g/L$	8,7	1700 -	4,9	118	29	01.0	6,5	2,4 .	0.10	61	4,8	3,8	43	0,31	0,10	1,9	10	22	2.8	15	1.6	2	0,10	4,3	8.2
	SS	mg/L	230	1500	350	15000	100000	57000	330	500	250	5600	72000	70000	280	260	846000	380	18000	6500	550	460	400	0066	400	370	970
f Water	Hq	•	1.7	2,7	2.6	4,5	12,1	9,7	8,3	9.5	8,6	9,2	10.8	10.6	2.9	7,3	8,4	8,3	8,1	8,0	8,3	6,1	8.6	7,8	8.6	4'4	8,5
1.Quality of Water		Sample	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

Ð

lg.Loss	re R	6,68	5.24	6.03	4,95	6,79	7.83	6,76	6,48	
S	bpm	75400	43700	46600	45200	77800	85800	67600	66300	
Sn	ppm		3330	3330	3330	3330	2850	3330	3330	
6	tudd	0,5	ŝ	1,0	2.0	0,5	0.5	0'0	S	
Zn	ppm	11400	6900	0006	9350	10600	12400	11200	11400	
ደ	ppm	2170	2420	2380	2760	2460	3530	3930	3980	
Mn	nedd	36	114	148	222	2761	324	262	302	
Нg	qdd	1320	733	989,99	883	1510	1150	1280	1330	
Ес	tadd	83700	51000	54300	51000	54800	97500	79800	77600	
ර	uudd	5,5	3.3	4,0	2.8	2,2	9,5	6,1	43	
ටි	uudd	580	378	482	576 576	412	418	474 -	530	
ვ	undd	58	58	42	38	48	S4	50	54	
ŝ	qdd	172	342	351	415	522	834	834	2010	
Ş	wed	8	141	69	142	74	156	150	139	
Ac	maa	194	136	190	138	182	165	160	162	
(SS)	~	15000	100000	57000	72000	70000	846000	18000	9900	
•		No. 4	No.5	No. 6	No.11	No.12	No.15	No.17	No.22	

Analitical Results from Laboratory (11th. round, 6/May)

2. Analysis of SS

0

.

	lg.Loss	^{6%}	11.8	4,94	11.6	7,12	20.5	1.28		2,02	6,16	18,7	11,2	3,97	1.23	11,5	1.73	21.9	9,82	2.53	3,10	1,04	10,3	1,89	2.82	1.70
	s	bpm	15200	7300	118000	101000	316000	1300		1400	88100	236000	156000	13400	1200	144000	2100	278000	113000	3500	3000	1100	13400	1100	2900	3000
	Sn	mdd	1430	2380	4750	3330	7600	1900		1900	2850	5700	3800	2780	950	4280	1430	8660	47S0	1450	1430	1900	5230	1430	2550	1430
	8	IIIdd	0.5	0,5	50	. 1. 5 .	5.0	0'0		0.5	0.5	0,5	0.0	0,5	5.0	0.5	0'0	0.5.0	0'0	0'0	0.0	0.5	0.5	0.0	0.5	0.5
	Zn	udd	7200	759	15600	17800	35200	168		306	17600	S2100	13800	1160	760	4160	210	20000	12400	207	1060	320	13600	140	1360	8 Sé
	Pb	bœ	1140	1090	1340	1650	3720	4,0 .		5,0	1910	4850	2260	1030	3,0	3150	7.0	3600	2230	3.0	102	3.0	2510	2.0	1240	152
	Mn	ppm	76	328	48	64	200	190		286	28.8	987	356	61.9	376	852	386	628	800	288	154	354	578	394	1600	433
	ЯH	bpb	687	76,7	42,7	1010	1390	762		- 6 <i>LL</i>	829	1850	1070	852	382	1240	275	1180	799	246	44,6	688	1690	301	416	361
	Fe	ppm	48200	64800	157500	105300	000162	28200		29900	83800	264000	163000	79200	26600	155000	27100	328000	125000	51500	37100	36900	140000	43200	91400	32100
	റ്റ	ppm	3,23	7,16	1,09	1.60	5.17	5.25		5,10	3,19	3,5	2,57	4,22	5,8	2,94	2.32		2.53	5,15	7,33	4.01	2.12	7.00	6,11	6,53
	රි	ppm	234	65.9	528	228	713	41,9		23,9.	63.9	752	374	61.9	27,9	397	52	814	332	23,9	43,9	57	366	30	51.9	49,9
	ខ	ppm	28	9	72	88	144	2.0	:	2,0	2	172	58	4	6	S2	4	88	48	6	10	∞	50	∞	12	10
	Sb	bpb	426.	223	503 -	475	3720	44,2		4,8	379	2800	1850	294	28.7	1480	35.5	2810	2430	49,8	96,7	31,3	674	25,3	311	53,1
	Ş	ppm	125	45,4	153	150	169	14.8		1,4	135	189	159	86	12.3	186	20.1	172	161	26,6	20,6	5,6	157	3,9	42	14.0
20	Ag	mdd	214	32	168	142	341	94		4,0	8	254	129	56	42	8	18	156	2	2,0	n	8,0	8	4,0	30	4,0
Sediment	·																									
3. Quality of Sediments	Sample		No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

æ

Analitical Results from Laboratory (11th. round, 6/May)

¢

Analitical Results from Laboratory (12th. round, 12/May)

i

1.Quality of Water

		.1	I	ł	1	1		I	I	.	1	I	I	I	I	ł	I	I	1	1	I		I	1	I	1	I
	3	п ^р Г	\$	129	8	178	315	8	125	8	ε	8	ଞ	છ	9	18	२	6	4	16	\$	ຊ	14	16	4	67	4
ě	3	72	0,001	100.02	100'0	0.004	0.013	0,008	0,001	0.001	0,024	0.001	€0.001	0,041	0.002	100,0	<0.001	₹0 0	100,0	0,008	<0.001	€0.001	0,001	0.007	0,001	1000	0,001
ł	5		0,29	9 <u>8</u> 0	ଝ	220	1,0	0,35	0.17	6000	0.14	0.27	0.26	0,13	102	7,5	9.2	0,07	5.4	2.9	0,02	170	0.28	3,6	0,1	168	0,14
i	ደ	1 /30	0.23	0.35	0,29	1.1	0,29	0,17	0,03	0,03	0,03	0,17	0,02	0.17	0,17	0,03	0,17	0,03	0.11	0,03	0,03	0.14	0,03	0.11	0,03	0,17	0.03
2	мм	mc∕L	0.16	14	21	11,5	0,05	0,06	0.16	0.28	0.07	0.27	0,16	0.22	35	1.0	6,6	0,02	1.6	1,5	0.01	8.0	0.01	1.6	0.08	32	0.31
	ЯR	<u>п 8'</u> Г	2.7	8,3	1.7	4,0	0.62	1,7	0,23	<0.10	0,24	0,29	0,36	0,44	0,10	0.10	0,26	0.15	0,21	0.18	0,44	0.18	0,10	0,49	<0.10	0,21	0.22
	Не	mg/L	0.24	1600	270	520	0,15	0,17	0.24	0,25	05.0	0.27	0,16	0,18	152	0,29	0,13	0,14	0,36	0,35	0,54	206	0,13	15,0	0,11	0,12	0.14
	ඊ	mg/L	<0.005	0.1	0'0	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0,02	<0.005	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	ð	mg/L	0.02	86	7,3	15	0,56	0.47	0,16	0.11		20,05	0,28	0.32	16	0.20	0,04	0,003	0,04	0,003	0,003	0,04	0,03	0,01	0,03	0,28	0.04
	3	mg/L	0,02	8,4	2.5	1,5	0,02	0,03	0,01	80	0,00	10'0	0,02	0,02	0,57	0.03	0,19	0,01	0,05	0,03	0,01	0.45	0,01	0,04	0,04	0,76	0.05
	જ	$\mu g'L$	0.14	0.0	0.13	0,11	0,48	<0.10	0.13	0.23	0,11	0.21	0,49	0.24	0.17	0.25	010	0.10	0,10	0.10	<0.10	0.17	0.12	0,14	0,10	0.27	0.10
	Ś	н 5/L	7,6	1310	6,2	1170	56	2,9	ង	5.7	0,65	16	11	15	12	0.61	15	2.9	11	14	3,9.	4.7	1.4	15.7	1,6	16'0	12
	SS	mg/L	420	4600	550	6200	203000	209000	520	540	220	2100	68000	20100	220	220	58000	240	13000	5300	54 S4	17	ઝ	7400	56 .	250	400
f Water	Hq	•	8.7	26	2,8	2.9	12.2	-	f	83	8.4	8.4	9.4	8.9	27	72	7.5	8.0	7,4	7.5	7.9	5.1	85	7.6	8.7	4.6	8,8
1. Quality of Water		Sample	No. 1	No 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

8

۲

۲

ł

9

9

•

Analitical Results from Laboratory (12th. round, 12/May)

.

2. Analysis of SS

Cr Fe Hg Mn Pb Zn CN ppm ppm ppm ppm ppm ppm ppm ppm ppm ppd ppm ppm ppm ppm 5.96 73600 1320 260 2290 18000 1,00 10,5 73000 880 266 2140 20400 4,00 11,4 102100 851 270 2330 1,50 1,50 8,47 87000 951 248 2350 21800 0,00 4,03 11,9 81400 951 270 2330 1,50 4,03 11,9 87000 923 308 2350 21800 0,00 4,03 4,03 2463 10200 0,00 1,50 1,50										
of SS Ag As Sb Cd Cu Cr Fe Hg Mn Pb Zn CN Sn (mg/L) ppm		ig.Loss	ч. Ж		7,62	7,50	8,54	7,79	8,31	6,70
of SS Ag As Sb Cd Cu Cr Fe Hg Mn Pb Zn CN (mg/L) ppm		S	uudd		64700	\$4000	98600	71900	87100	77,00
of SS Ag As Sb Cd Cu Cr Fe Hg Mn Pb Zn (mg/L) ppm ppm <td></td> <td>Sn</td> <td>mdd</td> <td></td> <td>2880</td> <td>3360</td> <td>3360</td> <td>3360</td> <td>3840</td> <td>3360</td>		Sn	mdd		2880	3360	3360	3360	3840	3360
of SS (SS) Ag As Sb Cd Cu Cr Fe Hg Mn Pb (mg/L) ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		8	mdd		1,00	4,00	1,50	0,00	0,00	0.50
of SS (SS) Ag As Sb Cd Cu Cr Fe Hg Mn (mg/L) ppm ppm ppm ppm ppm ppm ppm ppm ppm 6200 54.0 254 411 40.0 462 5.96 73600 1320 266 203000 52.0 266 384 42.0 560 10.5 73600 1320 266 68000 75.9 284 495 66.0 456 11.4 102100 851 270 68000 64.0 245 508 44.0 338 11.9 81400 951 248 58000 64.0 254 386 62.0 334 8.47 87000 923 308 560 260 260 260 260 266 266 560 260 266 260 266 266 266 266 560 266 260 266 260 266 266 266 266 560 75,9 284 295 66.0 256 11.4 102100 851 270 560 75,9 284 200 265 364 26,0 256 11.4 102100 266 266 560 75,9 284 295 66.0 256 11.4 102100 851 248 58000 64.0 255 508 24.0 338 11.9 81400 951 248 560 760 75.0 266 26.0 366 26.0 366 10.5 7300 253 308 560 750 750 750 750 750 750 750 750 750 75		Z'n	bpm		18000	20400	22800	10200	21800	21200
of SS (SS) Ag As Sb Cd Cu Cr Fe Hg (mg/L) ppm ppm ppm ppm ppm ppm ppm ppb 6200 54.0 254 411 40.0 462 5.96 73600 1320 203000 57.0 266 384 42.0 560 10.5 73000 880 68000 75.9 284 495 66.0 456 11.4 102100 851 20100 64.0 245 508 44.0 338 11.9 81400 951 58000 64.0 254 386 62.0 334 8.47 87000 951 58000 64.0 254 366 62.0 334 8.47 87000 951 58000 64.0 254 366 62.0 334 8.47 87000 951		ዲ	bpa		2290	2140	2330	2460 -	2350	2060
of SS (SS) Ag As Sb Cd Cu Cr Fe (mg/L) ppm ppm ppm ppm ppm 6200 54,0 254 411 40,0 462 5,96 73600 203000 52,0 266 334 42,0 560 10,5 73000 68000 75,9 284 495 66,0 456 11,4 102100 68000 64,0 245 508 44,0 338 11,9 81400 58000 64,0 245 336 62,0 334 8,47 87000 560 240 240 241 250 244 440 356 11,4 102100 560 240 245 508 244,0 338 11,9 81400 560 240 240 245 444 240 346 11,4 102100 560 240 240 245 508 244,0 340 11,4 102100 560 240 240 245 508 244,0 340 11,4 102100 560 240 240 240 245 508 244,0 340 11,4 102100 560 240 240 240 244 356 62,0 340 11,4 102100 560 240 240 240 245 508 244,0 340 11,4 102100 560 240 240 240 245 508 244,0 340 11,4 102100 560 240 240 245 508 244,0 340 11,4 102100 560 240 240 240 245 508 244,0 340 11,4 102100 560 240 240 245 346 24,0 340 11,4 102100 560 240 240 245 508 244,0 340 11,4 102100 560 240 240 240 245 508 244,0 340 11,4 102100 560 240 240 245 240 340 245 11,4 102100 560 240 240 245 508 244,0 340 11,4 102100 560 240 240 240 240 240 240 240 240 240 24		Mn	bpm		260	266	270	248	308	266
of SS Ag As Sb Cd Cu Cr (mg/L) ppm ppm ppm ppm ppm 6200 54,0 254 411 40,0 462 5,96 203000 52,0 266 384 42,0 560 10,5 68000 75,9 284 495 66,0 456 11,4 20100 64,0 245 508 44,0 338 11,9 58000 64,0 254 386 62,0 334 8,47		Нg	bpb		1320	880	851	951	923	1340
of SS (SS) Ag As Sb Cd Cu (mg/L) ppm ppm ppm ppm 6200 54,0 254 411 40,0 462 203000 52,0 266 384 42,0 560 68000 75,9 284 495 66,0 456 58000 64,0 245 508 44,0 338 58000 64,0 254 386 62,0 334 58000 55.0 502 503 506 62,0 505 502 502 502 502 505 505 502 502 502 505 505 505 502 502 502 505 505 505 505 502 502 502 505 505 505 505 502 502 502 505 505 505 505 505 505 505		ře	ppm		73600	73000	102100	81400	87000	112000
of SS Ag As Sb Cd (mg/L) ppm ppm ppm ppm 6200 54.0 254 411 40.0 203000 52.0 266 384 42.0 68000 75.9 284 495 66.0 68000 64.0 245 508 44.0 58000 64.0 245 508 44.0		Ċ	bpm		5,96	10,5	11,4	9,11	8,47	4.91
of SS (SS) Ag As Sb (mg/L) ppm ppm ppb 6200 54.0 254 411 203000 52.0 256 384 68000 75.9 284 495 68000 64.0 245 508 58000 64.0 245 508		õ	ppm		462	560	456	338	334	386
of SS Ag As (SS) Ag As (mg/L) ppm ppm 6200 54,0 254 203000 54,0 254 203000 54,0 254 256 68000 75,9 234 68000 75,9 234 58000 64,0 245 13000 64,0 245 13000 64,0 245 13000 64,0 245 13000 64,0 245 13000 64,0 245 13000 64,0 245 13000 64,0 245 13000 64,0 245 13000 64,0 145 130000 64,0 145 130000 64,0 145 130000000 64,0 145 13000000000000000000000000000000000000		8	mdd		40,0	42,0	66,0	44,0	62,0	58.0
of SS Ag (mg/L) ppm 6200 54,0 203000 54,0 68000 75,9 68000 64,0 53000 64,0		ß	dqq		411	384	495	508	386	273
of SS (SS) (mg/L) (mg/L) (203000 58000 58000 58000 58000 58000 58000 58000 58000 58000 58000 58000 58000 58000 58000 500000 500000 5000000		As V	bpm		254	266	284	245	254	243
2. Analysis of SS (SS) (mg/L) No. 4 6200 No. 5 203000 No. 11 68000 No. 11 68000 No. 12 20100 No. 15 58000		Ag	mqq		54,0	52,0	75,9	64,0	64.0	56.0
Z. Analysis No. 5 No. 12 No.12 No.12 No.12	500	(SS)	(mg/L)	6200	203000	209000	68000	20100	58000	13000
	2. Analysis			No. 4	No. 5	No. 6	No.11	No.12	No.15	No.17

.

Analitical Results from Laboratory (13th. round, 26/May)

1. Ouality of Water

COD	J/Mm	5	114	8	180	74	8	110	74	8	33	102	74	16	4	37	4	16	8	8	41	20	∞	29	4	5
ß	mg/L	0,001	0.001	0.001	111.0	2,55	0.85	0,003	0.001	<0.001	100'0	0.008	0,046	<0.001	100'0	<0.001	0,002	100.0	0,007	0.001	100,0	100'0	0,001	100,0	100.0	0,001
Ϋ́	mg/L	0,20	748	190	208	0,22	71.0	10,3	0.17	0.06	0.22	0.19	0,03	102	2,51	0,10	0,06	6000	0,36	0,04	122	0,10	0,27	0,02	158	0.06
ୟ ଜୁଣ	mg/L	0,03	0,41	0,35	2,25	0,29	0.29	0,03	0,03	0,29	0.29	0,29	0.29	0,32	0.03	0.15	0,15	0,09	0,09	0,03	0,14	0.03	0,09	0,03	0,35	0,03
Mn	J/gm	0.49	18,0	36,0	10,3	0,01	4,00	0.12	0,23	10'0	0.20	10'0	10'0	38,2	1.11	0.56	0,00	0.28	0.76	0,00	6.20	0,03	0,73	0.04	22,8	0.22
ЯH	п g/L	0,90	3,21	0,38	0,13	0.32	<0.10	0,17	0,19	<0.10	0,10	0,13	0,17	0,18	0.30	3.09	0.23	16,0	0.56	0,13	0*0	0.27	0,34	<0.10	0,49	<0.10
Че	mg/L	0,31	1400	324	395	0.04	0,04	0,01	0,01	0.01	0,18	0,01	10.0	122	<0.01	0,13	<0.01	0,09	0.22	0,57	191	0,11	0,12	<0.01	<0.01	0,06
ථ	mg/L	0.12	0.05	0,02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
ට්	mg/L	0,03	75,0	7,8	15,4	4.30	1,91	0,03	0,03	10'0	0,04	0.22	0.21	16.5	0,03	0,14	10.0	0,05	0.04	0,01	0,03	0,03	0,03	0,04	0.28	60 O
පි	J/gia	0'04	11.0	2,8	22	0,07	0.43	0,03	0.06	0,06	0.05	0,07	0.07	0,59	0,08	0.04	0.04	0.02	0.03	0.02	0,43	0,03	0.03	10'0	0.90	10'0
ß	и р/L	0,10	0.67	0,23	0,10	0,28	0,35	<0.10	<0.10	0,15	0.17	0,27	0,64	0.32	0,36	0,91	0,25	0,52	0,39	0.25	0,10	0,10	0.59	0,10	0.38	0.10
ş	<u>1/</u> д п	16,5	2840	6*3	98820	410	5,9	8,8	5,4	1,6	13.3	369	18,3	243	2,6	3,5	0,29	0.52	0,39	0,25	5,5	2,6	20,4	3.1	0.49	9,8
SS	mg/L	100	2200	150	8720	89000	51700	430	530	10	3560	232000	116000	300	8	46200	8	8270	5640	190	240	190	6280	170	100	88
i Water pH	•	8.3	2,6	2,8	3,1	12,2	8,3	8.1	8,2	8,7	6.8	12,0	10.9	2.7	7,4	9.3	8,3	9.1	8.3	8,3	6.2	8,5	8.3	8.7	4,5	8,6
1.Quality of Water pH	Sample	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

•

Analitical Results from Laboratory (13th. round, 26/May)

貜

SS
5
y is
Anal

	Loss	% %							
	S lg.Loss	_							
	S	αdd							
	Sn	ndd							
	6	ppm							
	Zn	ppm							
	ደ	ppm							
	Mn	ppm							
	Hg	ppb							
	Fe	ppm							
	ඊ	ppm							
	ර	ppm							
	8	bpm							
	ŝ	ppb							
	As .	ppm]						
	₽£	ppm							
of SS	(SS)	(mg/L)	8720	00068	S1700	232000	116000	46200	8270
2. Analysis of SS			No. 4	No. 5	No. 6	No.11	No.12	No.15	No.17

K.

S le.Loss	F			┿	138000 17.5	140000 18.1	281000 22.5	3600 4,54	1700 2,66		13800 14.8	314000 20,5	13900 11.7	12000 4.21	1500 1.70	10800 8,68	1500 2,72	16200 13.6		1300 3,27	6900 9,52	1300 1,79	132000 10.6	1700 5.93	2100 2,66	15200 2.97
Sp	-	\vdash	+	╋	3830 13	7670 14(7190 28:	1430 3(1920		7670 13	6710 31	3830 13	2880 12	1920 1:	3360 10	1440 1:	5750 16		959 1:	1920 6	1440 1:	4800 13.	1980 I	2400 2	1920 15
8	, muu		-	╉	0.0	0.0	0.5	0'0	0.5		0,5	0,0	0.5	2.0	0,5	0.5	0,0	0.5		0'0	0.0	0.0	0.0	0'0	0'0	0.0
Zu		2760	077	000	49800	35600	62800	860	534		52800	30800	15200	500	800	12000	91,9	13200		65.9	360	580	11200	102	626	3600
£		1110	0111	nch?	1890	2530	6040	153,0	37.3		2750	5220	1950	921	59.6	1490	0'0	2260		214,0	240	0.0	2320	0.0	972	574
ň		1 550		900	61,9	250	410	186	276		124	364	332	53,9	006	324	322	368		266	180	340	618	526	1000	396
Цų	31	2			780	581	863	2110	1110		2110	1390	819	590	213	829	165	1250		165	2010	458	2190	259	331	591
ti Q		undq	Avoc -	133000	294000	296000	378000	31200	33400		222000	305000	175000	76400	32900	116000	25000	182000		22200	128000	29400	139000	37800	71700	40600
Ċ	5	ppm 1 c	21.5	5,19	1,13	0,85	2,32	4,23	8,56		2,26	0,34	2,09	4.57	3.11	0.40	4.30	3,78		4,63	5,42	3,67	2,26	6,38	4,57	6.27
ć	3	nidd 1.60		57,9	838	536	069	44,0	24.0		270	568	308	53.9	16,0	226	12,0	350		12.0	63,9	17.9	350	25,9	41.9	118
č	3	undd		2,0	1.0	61,9	132	6.0	0,0		78.0	108	50.0	0.0	2.0	4	2.0	48,0		0.0	16,0	4,0	46,0	2.0	6,0	14,0
Ó	00	odd	<u>Ş</u>	271	619	6670	5150	59.9	85,0		745	13100	626	185	28,6	129	558	138		51,8	228	129	751	50 20	348	255
Ţ	2	udd		99,1	317	375	398	2,95	2,48		60£	347	301	80.8	2,91	244	1.47	311		1,15	61.5	1.93	274	2,19	37.5	77.7
	Å	udd	40,0	51.9	120	114	190	6,0	4.0		134	140	61.9	24.0	2.0	35,9	6.0	53,9		4.0	8.0	2.0	54.0	2,0	16,0	12.0
3. Quality of Sediments	Sample	•	No. N	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	No.25

Analitical Results from Laboratory (13th. round, 26/May)

劒

3

۲

Analitical Results from Laboratory (14th. round, 1-3/Jun)

1. Quality of Water

	200	mg/L	26	10	31	273	343	202	136	119	8	88	92	64	22	2	33	31	18	2	ه	35	22	8	7	6	
Ì	3	ng/L	<0.001	0,031	100,0	0.015	0,125	2,13	0,006	0,001	100,0	0,177	0,003	0,003	0,001	0,001	0,001	0,001	0,001	<0.001	0,001	0,001	<0.001	0,001	0.001	0,001	
1	5	∏/3œ	0.21	848	206	180	0,53	0,34	0,12	0,08	0.03	0,07	0,19	0,05	8	1.72	0,10	0,04	0,10	0,40	0.04	125	0.16	0,52	0.02	180	
i	ፈ	mg/L	0,03	0,36	0.36	0,94	0,30	0,30	0,03	0,03	0,03	0,03	0,30	0.30	0,36	0'03	0'03	0,03	0,03	0,03	0,03	0,41	0,03	0.03	0,03	0.30	
	Mn	J/gm	0.29	15,0	35.7	14,4	0,002	0,002	90°0	0,2	0,002	0,002	0,13	010'0	34,6	80°0	0,51	0'010	0,33	0,94	0,002	6,4	0,02	0,86	0,07	20,5	
	Нg	<u>и р</u> /L	0,24	1,88	0,56	0.92	0,82	0,28	0.23	0,14	0,32	0.95	0,36	0,58	0,54	0,22	1,64	<0.01	0.28	<0.01	0,23	3,49	0,29	0. 44	<0.01	0,28	
i	е Ц	ng/L	16'0	2400	322	456	0,14	0,15	0,01	0,01	0,01	0,16	0,01	0.02	155	0,06	<0.01	<0.01	10,0	<0.01	10'0	182	10.0 >	10,0	10'0	0,02	
	ථ	mg/L	<0.005	0,12	0,010	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.26	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.005	<0.005	Ĩ
	õ	J/3m	0,010	144	7.20	12,30	2,40	1.93	0,010	0,010	0,010	0,29	0,03	0.31	14,3	0,010	0.14	0,003	0,04	0,02	0,003	0,06	0,05	0,02	0.06	0.25	
	8	mg/L	0.04	14,0	2,60	1,30	0,04	0.03	0,020	0,020	0.03	0,04	0,002	0.010	0.54	0,05	0,020	0,020	0,010	0,020	0,02	0,38	0.010	0.04	0.010	96.0	
	ŝ	1/g 11	0,42	1,57	0,58	0.37	0,48	0,1	<0.10	<0.10	<0.10	0,36	<0.10	0,29	<0.10	0,10	0,69	0,49	0.57	0,55	0,39	0,65	0.52	0,46	0,37	0,1	
	ş	ע צ'ל	8,61	3484	4,46	962	163	116	6.29	4,12	0.10	43,1	10,4	9,07	35.4	0.95	3,11	13,4	11,5	17.5	2,02	7,55	1.49	18,1	0.83	3.01	
	3	mg/L	130 -	160	180	4340	405000	285000	350	450	130	00668	1860	55700	230	150	43700	170	14400	6830	290	270	190	59200	18	130	
of Water	Hd	,	-6'4	2.4	2.8	3.0	12.7	12.2	8,4	8.4	8,6	11.3	8,7	10,2	2,7	7.5	9,3	8,3	9,1	8,3	8.3	6,0	8,3	8,2	8,7	4,5	
1. Quality of Water		Sample	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20	No.21	No.22	No.23	No.24	

S

and the medium and												i	•	•	•
(SS)	Å	Å	જ	පී	ð	ඊ	Fe	Нg	dM	ፈ	S	8	ŝ	s	lg.Low
(mg/L)	udd	ppm	qdd	udd	mdd	tudd	mqq	ppb	ppm	ppm	mqq	ppm	todd	udd	re K
4340	6'12	283	391	54	770	3,59	138900	1608	41,9	970	13400	0,5	5270	135300	13,4S
405000	36,0	290	433	28	336	6,42	93300	691	184	1790	8200	0.5	2875	840000	8,13
5000	35,9	27S	452	58	394	6,1	89500	692	208	1884	8390	1,5	2875	83500	7.85
1860	48.0	269	542	50	508	3.46	95600	787	384	2610	12200	0.5	2876	77900	8,12
55700	61.9	256	563	88	546	2,51	98400	1278	408	2920	15200	2,0	3840	72100	8,58
43700	60,0	287	638	8	394	0.45	92800	967	396	2230	13600	0,5	21100	86500	8,17
14400	58.0	223	550	58	450	1.03	100000	39400	386	2210	13400	0.5	4795	92100	8.60

.

1. Quality of Water

2. Analysis of SS

ð