- 3 Environmental Administration in Bolivia
- 3-1 Environmental Control Administration
- 3-1-1 Organization and Management

Figure 3-1-1, 'Organization Chart of Ministry of Sustainable Development and Planning' (MDSP), presents the current national level environment administration organization chart with name of each department, the main operating body for the national level environment administration organization, Vice-ministry of Sustainable Development and Environment (VMDSMA). This to the MDSP actually has 83 employees, 20 working on the Environment Policies and Rules, 49 on the Bio-diversities and 14 on the Special Program.

The MDSP was created by the regulation No. 23660 based on the law No. 1493 on October 12, 1993. It was given the responsibility for the 1) the establishment of a long term national environment protection plan. 2) the conservation of natural resources and 3) the protection of the environment.

As the 1997 yearly budget for the MDSP, the Table 3-1-1 'Budget of Vice-ministry of Sustainable Development and Environment (VMDSMA)' shows the sources of the fund and the total value in excess of s Bs111,000,000, but details of the budget are not made public. Generally, expenditure comes significantly below budget.

Figure 3-1-2, 'Organization Chart of Potosi Prefecture', presents the current prefecture-level environment administration organization chart with name of each department, the main operating body for the prefecture level environment administration organization, the Natural Resources and Environment Department. This belongs to the Division of Sustainable Development and Planning, and is made up of two units, the Unit of Environment Management and the Unit of Territorial Control with one employee for each unit beside a manager.

The administrative organization of the prefecture was reformed based on the new law for the executive power organization, promulgated on September 16, 1997.

The 1997 yearly budget for the Natural Resources and Environment Department is not available but as

the Table 3-1-2 'POTOSI Prefecture Budget' demonstrates, the total for prefecture exceeds Bs3,600,000, and the Division of Sustainable Development and Planning has 30% of total yearly budget for the prefecture.

3-1-2 Environment Administration at the National Level

The daily activities of the environment related services are handled by the one of three divisions of the VMDSMA, the Environment Politics and Rules Division, which is made of three units, Planning Policies and Rules, Environment Impact Assessment and Environment Quality Control.

According to the Environment Law, the environmental quality control (CCA) is administrated by VMDSMA, having two main instruments for implementation, Environment Impact Assessment and Environment Quality Control, as shown in the Figure 3-1-3 'Environment Quality Administration Scheme'. The activities for the environment impact assessment (EIA) would be the most practical instrument for the national environment administration to prevent the possible damages to the environment, by evaluating new projects before their implementation. The activities for the environment quality control (CCA) would be the other practical means for the national environment administration to make certain that existing projects and the activities of each company minimize the damages to the environment in accordance with the Environment Law.

Every new project should be evaluated by the competent environmental authorities under the EIA system and the all on-going activities should be evaluated by the competent environment authorities periodically under the CCA system. Those who do not comply with these systems are subject to penalties, as explained in the following chapter.

The institutional frame work of these two systems is presented in Figure 3-1-4 'Institutional Frame', which shows the National Level administration with the relation of Prefecture Level and Sector Level administration.

Actually every issuance of the certificates for Authorization and Declaration of Environment Impact

(DIA) and the Declaration of the Environmentally Adequacy (DAA) and the verification work and approval work are made by the prefectures. In case of national level projects, the verification, approval work and issuance of the certificate is made by VMDSMA. And, additionally, in case of projects in the mining sector and the hydrocarbon sector, which have already started as authorized sectors for the verification and presentation of the opinion for the Environment Note (FA) and the Environment Manifesto (MA), the competent prefectures should make evaluation and their decision of DIA and DAA taking these sectors' opinions into their consideration.

And, monitoring services of each approved projects should only be made by the relevant institutions of the prefectures.

3-1-3 Environment Administration at the Prefecture Level and Municipal Level

The prefecture and municipal environment administration activities have just started. Being as the present work force and their budget very limited, in case of Potosi Prefecture, based on the decentralization policy, up to the end of 1997, three of the sixteen administrative districts in the prefecture have been informed of the system and have been delegated the authority for execution of the main part of the EIA and CCA system.

At the level of Prefecture, the specific environment policy for the area shall be defined by the environment administration of the prefecture in cooperation with the VMDSMA.

In Potosi Prefecture, however, due to the overall decline of the economy of the region, it has become more difficult to keep the ideal philosophy of sustainable development. Because of the mono-cultural industry of the area, that is mining, which gave the historical prosperity to the country but now faces the difficult challenge of recent declines in the international market for mining products, and the obsolete technologies which are employed in the area, makes it too difficult for Potosi Prefecture to provide the financial support to the mining sector to help them to invest in the necessary remedies for the betterment of the situation of the environment.

As one of the example of Potosi Prefecture environmental administration, at the beginning of 1998, one of the biggest companies in Potosi Prefecture announced its Environment Manifesto (MA), as the first application in this prefecture. This could be a good precedent for other companies, projects and entities.

3-1-4 Mining Sector Administrative Organization for the Environment Protection

The national level mining sector administration is under the Ministry of Economic Development, and the direct administrative responsibility for the mining sector is lead by the Vice-ministry of the Mining and Metallurgy. The latter has two general directorates, the General Directory for Mining and the General Directory for Metallurgy. The division for environment issues is under the General Directory of Mining as shown in the Figure 3-1-5 'Organization Chart for Mining Administration'.

The mining sector environment administration is obliged to cooperate with the VMDSMA to execute the following activities.

- ① To propose the policies, rules and activities for the protection and betterment of the environment in harmony with the development of mining-metallurgic industry.
- ② To comply with the function and activities which are defined in the Regulation for the Environment Law, in the relation to the protection and conservation of environment for the mining-metallurgical activities, beside the check, supervision and control of the applications and the compliance of the regulations.
- ③ To promote studies for the planning and environment control of the mining-metallurgical activities and also to promote the adaptation of the technology which can contribute to prevent and eliminate the elements which cause damage to the environment.

Table 3-1-1 Budget of Ministry of Sustainable Development and Planning (MDSP) (Fund Source-wise budget for 1997 in Bs)

Fund Source	Value
National Treasury General Account	27,503,205
Transfer from National Treasury	668'066'9
Transfer of Credit	38,142,324
Transfer of Donation	13,760,520
External Credit	6,250,000
Donation	18,907,619
Total	111,554,567

Table 3-1-2

Budget of Natural Resources and Environment Department

(POTOSI Prefecture)

			Value (Bs. & %)		
		Division of Sustainable	Q	Department of Natural Resources	Rate
	Prefecture	B	B/A	0	C/B
Special Resource	1,916,780	546,492	28.51	U.K.	U.K
Transfer from National Treasury	1,667,346	541,103	32.45	U.K	U.K
Others	92,380	0	0	0	0
1043	3,676,506	1,087,595	29.58	U.K.	U.K

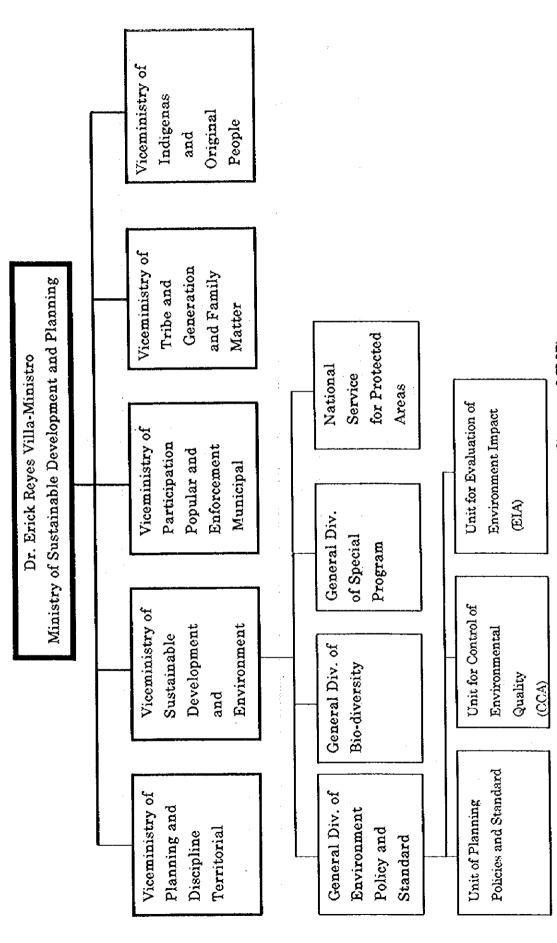
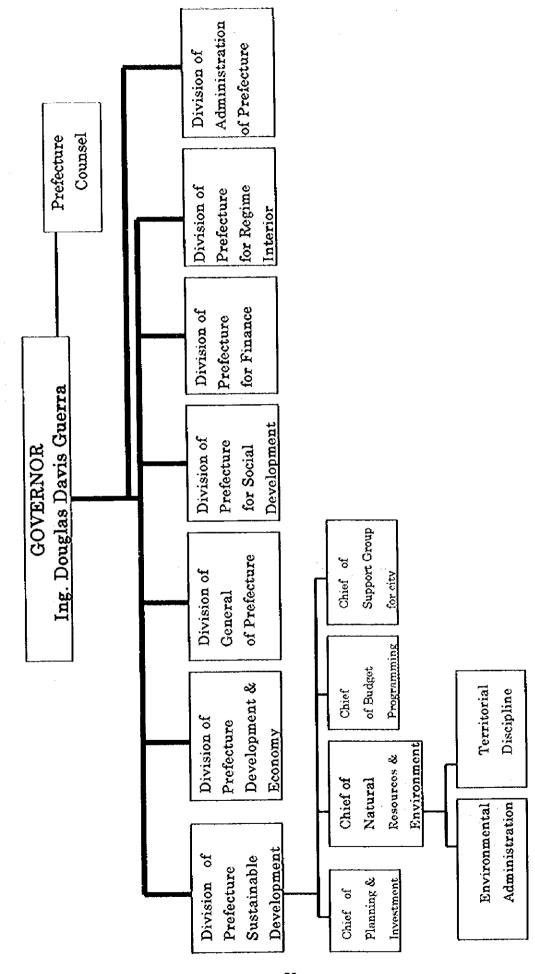
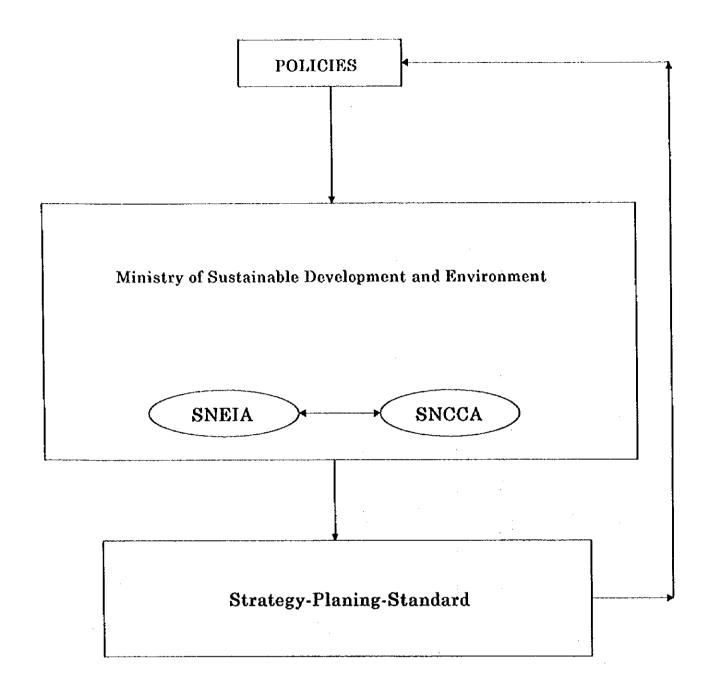
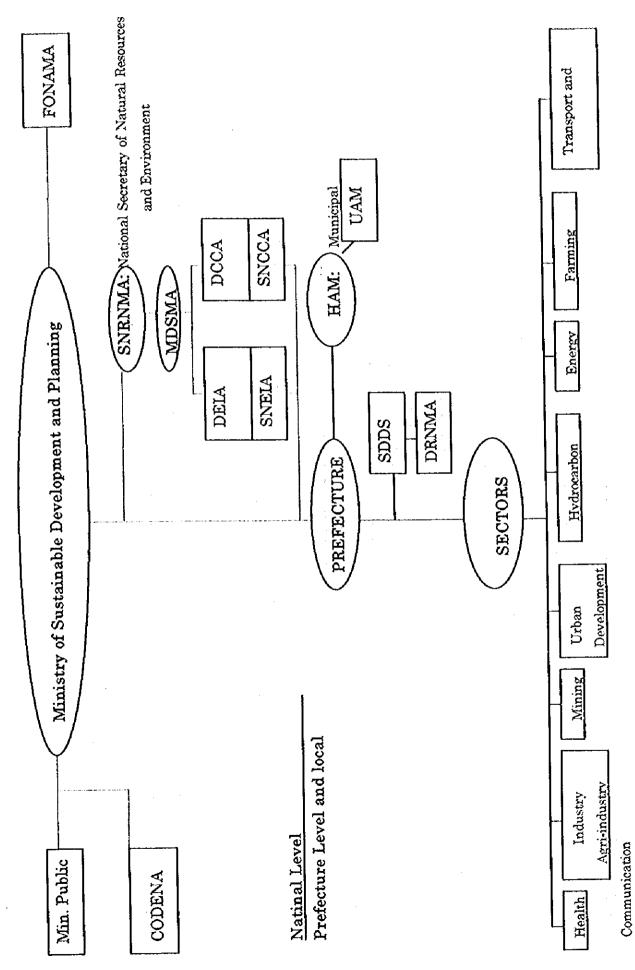




Figure 3-1-1 Organization Chart of Ministry of Sustainable Development and Planning (MDSP)

(3)


Figure 3-1-2 Organization Chart of POTOSI Prefecture

OBS;

SNEIA: National System for Environment Impact Assessment SNCCA: National System for Environment Quality Control

Figure 3-1-3 Environment Quality Administration Scheme

-77-

Figure 3-1-4 Institutional Frame

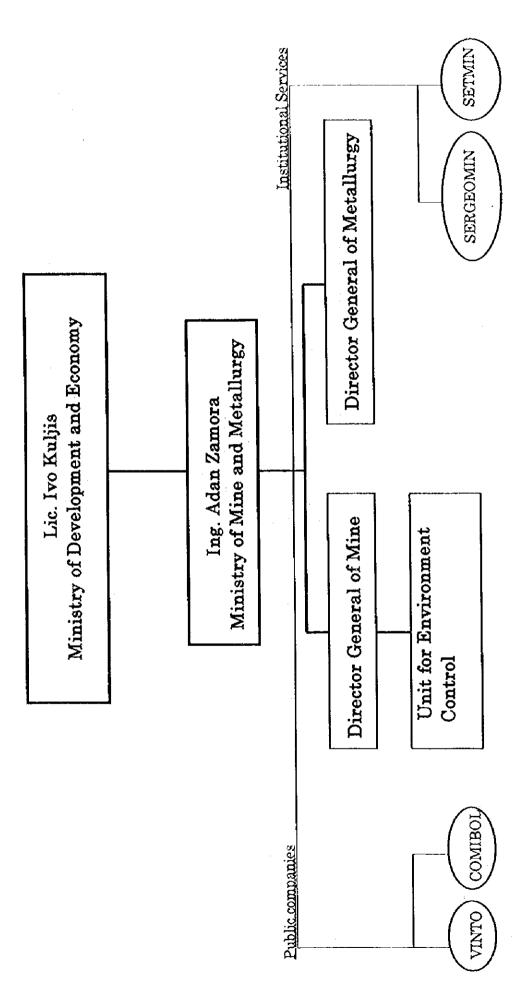


Figure 3-1-5 Organization Chart of Mining Administration

3-2 Environment Law and Regulation

3-2-1 Environment Law

The law of the environment which is now valid was promulgated on April 27, 1992, as law No. 1333, has general characteristics and does not concentrate on specific activities. The object of the law is to protect and conserve the environment without affecting the development of the country.

The law consists of 118 articles in 12 titles and 34 chapters which contain the general rules on the environmental issues of various aspects including the inhabitants and their health. And this law includes the issues of the natural resources to be recuperative, and environmental education, the people's participation and administrative infractions, etc.

The titles of the law are as follows;

Title 1. General Rule

Title 2. Environmental Control

Title 3. Environmental View

Title 4. Natural Resources in General

Title 5. Inhabitants and Environment

Title 6. Health and Environment

Title 7. Environment Education

Title 8. Science and Technology

Title 9. Promotion and Incentives for the activities of Environment

Title 10. People's Participation

Title 11. Security Methods, Administrative Infraction and Environment Crime

Title 12. Transition Rule

Figure 3-2-1 'General View of the Environment Protection Related Laws and Regulations' gives a total view of the laws related to environmental protection regulations of which are referred to, in this report.

3-2-2 Regulation for the Environment Law

The Environment Law was augmented, as a practical instrument, by the Regulation for the Environment Law which was promulgated on December 8, 1995(Regulation No. 24176). This is new Regulation integrates 6 regulations, namely those directly concerned with the General Environment Procedure, Prevision and Control of Environment, Air Pollution Materials, Water Pollution Materials, Activities and Dangerous Substances, and Solid Waste Control.

A brief explanation of these six regulations is as follows;

① General Environment Procedure:

Give a general explanation about government decisions and activities on behalf of the sustainable development.

2 Provision and Control of Environment:

Refers to environment impact assessment (EIA) and environment quality control (CCA), matters.

③ Air Polluting Materials:

The prevention and control of the air contamination to protect all citizens so that they can enjoy a healthy and comfortable environment.

Water Polluting Materials:

The prevention of the contamination of water and control of water quality.

⑤ Dangerous Activities and Substances:

Within the frame-work of sustainable development, the establishment of the management procedures, controls and reduction of the risks in the activities with the dangerous substances.

6 Solid Waste Control:

The residual solids which are considered as sensible factor to affect the human health and animal, promoting the adequate usage of the contents in the residual solid.

3-2-3 Standards

The environment standard and regulation of qualities of substances to be emitted or discharged are defined in the Regulation for the Environment Law. The standard for the air quality; (air quality standard and gas emission quality standards) and water quality, (water quality standard and effluent discharging quality standards) are defined.

Regarding the water quality standard and effluent discharging quality standards, the Table 3-2-1 'Water Quality Standard Comparison between Bolivia and Japan' helps to clarify the Bolivian level of the environmental standard and the effluent discharge standard.

3-2-4 Penalties

The Environment Law, Title XI, chapters III and V defines the environmental crimes, identifies the types of crimes and grades of penalties. The Regulation for the Environment Law, article on General Environmental Procedure, Title IX, Chapter I gives, the procedure of the infraction and the administrative sanction with their procedures.

So far there has been no instance of the use of administrative sanctions in Potosi Prefecture or elsewhere in Bolivia, but in relation to the procedures of the environment impact assessment (EIA) work for new projects and the environment quality control work, anyone who does not follow the instructions defined in the law and regulation are subject to be penalized.

The detailed definitions of crimes and penalties in the Environment Law are cited in the Table 3-2-2 'Crimes and Penalties in the Environment Law'. The infractions which constitute violation of the law and the regulation, and the infractions which are subject to the administrative sanction, are described as follows;

- To initiate the activity or to implement the work or a project without getting the suspension certificate or the declaration of environment impact.
- ② To present to the government the Environmental Note (FA), the study of Evaluation of the

Environment Impact (EEIA), the Environmental Manifestation (MA), or other environmental authorities' report with altered information.

- 3 Not to present the Environmental Manifestation within the established period.
- Mot to comply the administrative resolution which had been emitted by the competent environment authorities.
- (5) To change, to amplify or to modify the project, work or activities without complying with the procedure of the Environment Impact Assessment (EIA).
- To fail to give any information to the competent environment authorities about the suspension of the projects, works and activities.
- Not to complete the corrective measurement or modification after the inspection within the allowed period.
- ® Not to implement the approved moderation measurement in the program of prevention and modification and in the plan of adequacy.

Above administrative sanction could take the form of penalty corresponding to the value of 3/10,000 of the total property or declared assets of the company, project or the work and in the worst case the authorization to conduct business would be canceled as the penalty.

3-2-5 Incentives

The Environment Law, Title IX, Chapter II, defines the policy of incentives for the promotion of the environment protection activities. The General Environmental Procedure, Title V, Chapter II, defines the administrative procedures for the incentives.

The incentives are considered as supports by which the state, companies, personnel, public organizations and others can promote environment protection activities. Such support can be made through the mechanisms which are defined in the articles, like the system of concession, direct subsidy, tax incentive, on subsidy to the financial cost for the investment.

The evaluation of each project to be a subject of the incentives shall be made by the competent authorities, using the pre-fixed parameters for the evaluation and taking into the consideration of the following factors;

- ① Environmental Efficiency
- ② Economic Efficiency
- 3 Legal and Institutional Viability
- Administrative Capability
- ⑤ Legitimacy and Equality
- Fiscal Impact

3-2-6 Policy of Mining Sector for the Environment Protection

Considering the following key characteristics of the mining sector in Bolivia, the Mining Law and the Environmental Regulation for Mining Activities have been prepared as legal instruments, to realize environmental policies in the mining sector,

Key characteristic;

- ① The employment of old-fashioned technology in the mining sector.
- ② Insufficient knowledge about the damages that can be caused by the mining and metallurgical industries.
- 3 Limited capacity of institutional organization, and limited financial support for the effective implementation of the regulation.
- Economic crises in the mining industries due to the drastic decline of international metal prices
 which have had strong impacts on the companies' income and personal income.

Main policy of the mining sector:

 $oldsymbol{\oplus}$ To improve the environment in the operation of mine-metallurgical businesses, achieving more

efficient operation and a better life for the mine communities.

- ② To coordinate the mining sector policy with the economical policy for sustainable development.
- To decontaminate the passive environment, (reduce stock of pollutionants)

3-2-7 Mining Law

On March 17, 1997, the Mining Law (No. 1777) was proclaimed. It contains the general policies related to the mining industries and to attract, on the foreign investment.

Regarding the environment issues for the mining industry, the frames work of regulation is clearly provided in this law, as follows, beside other principal definition for the issues of mining sector.

Principal Environment issues in the Mining Law:

- Who can enter the mining industries, and requirement to follow the principleal ideas of sustainable development.
- ② Closing legal loopholes regarding the passive environment responsibility.
- To establish the environment license as the single general principle, this document shall contain the every required authorization for the environment, and doing so, without dispersing the efforts and bureaucratic procedure, the government and business promoters can integrate the every environmental factors.
- To prospecting and exploitation, such as the activities of a small mining company outside of the protected area, there are to be established general and specific measures of the promotion of the environment protection through the regulation, with the working objective of reducing the cost and bureaucratic procedure for issuing the environment license.

3-2-8 Environment Regulation of Mining Activities

On July 31, 1997, the Environment Regulation for Mining Activities (No. 24782) was proclaimed to enforce the Mining Law specially regarding environment protection.

This regulation was prepared incorporating with the Mining Law No. 1777, the Environment Law No. 1333, and the Regulation for the Environment Law No. 24176 and others, to clarify the rules in the mining industry sector in detail, to promote the smooth implementation, and to promote environment protection activities.

Table 3-2-1

Item Item Simbol & Unit Discharge Temperature D.C. (+)/(-)5 bH -	& Unit	Bolivia		acre!	4
rature Simbol & Unit erature D.C. Need Oxygen er of colonies of E. Coli MPN/100ml nded Solid (max.) SS ic As ic Cu ralent Chromium Cd alent Chromium Pbb Mercury T-Hg um Se UN l le Manganese le Manganese le Iron Fe	& Unit:				•
rature D.C. reature D.C. ved Oxygen et of colonies of E. Coli MPN/100ml nded Solid (max.) SS ic As ium Cd ralent Chromium Cd ralent Chromium Pb Mercury T-Hg um Cyanogen CN le Manganese le Manganese le Iron Fe		Environment "B"	Environment "C"	Discharge	Environment
ved Oxygen er of colonies of E. Coli MPN/100ml nded Solid (max.) SS side of colonies of E. Coli MPN/100ml nded Solid (max.) SS in Cd alent Chromium Cd+ Pb Mercury Pb Wercury T-Hg um Cyanogen CN le Manganese le Manganese le Iron Fe		(+)/(-)3	(+)/(-)3		•
er of colonies of E. Coli MPN/100ml nded Solid (max.) SS nded Solid (max.) SS ium Cd ar Cu As ium Cd ar Cu Alent Chromium Cr6+ Pb Mercury Pb Wercury T-Hg um Cyanogen CN I Zn Ie Manganese Ie Manganese Ie Iron Fe		6.0/9.0	0.6/0.9	5.8/8.6	6.0/7.5
er of colonies of E. Coli MPN/100ml nded Solid (max.) SS ic As ic As ic Cu ralent Chromium Cr6+ Mercury T-Hg Mercury Sc Cyanogen CN I Zn le Manganese le Iron Fe of Colonies of E. Coli MPN/100ml SS Zn Fe of Colonies of E. Coli MPN/100ml As As Colonies of E. Coli MPN/100ml As As Colonies of E. Coli MPN/100ml As Colonies of Colonies		70% sat.	60% sat.	1	×5
nded Solid (max.) SS ident Chromium Cd As Cd As Cd As As Cd As Chromium Cr6+ Alent Chromium Cr6+ Alent Chromium Cr6+ Alent Chromium Cr6+ Alent Chromium Cr6+ As Cd As C	00ml	<1,000	<5,000	300,000	<5,000
ic As jum Cd zr zalent Chromium Cd+ zalent Chromium Cr6+ Mercury Pb Mercury T-Hg um Se Cyanogen CN I Zn Ie Manganese Ie Manganese Fe		50	50	200	<100
ic As ium Cd zr zalent Chromium Cd Alent Chromium Cr6+ Mercury Pb Mercury T-Hg um Se Cyanogen CN le Manganese le Manganese Fe		in	0.3	•	(Sea Nd.)
ic As jum Cd zr zalent Chromium Cr6+ Alent Chromium Pb Mercury T-Hg um Se Cyanogen CN Il I Zn Ie Manganese Ie Iron Fe	08	♦	<20	160	8
ic As jum Cd zr Alent Chromium Cr6+ Mercury Pb Mercury T-Hg um Sc Cyanogen CN I Zn Ie Manganese Ie Manganese Fe	250	<10	<40	160	(Sea 5)
ium Cd zt Cu zalent Chromium Cr6+ Mercury Prb Mercury T-Hg um Se Cyanogen CN I Zn le Manganese le Iron Fe		0.05	0.05	0.1	0.01
Cu Cu		0.005	0.005	0.1	0.01
Alent Chromium Cr6+		1.0	1.0	3.0	3.0
Property T-Hg Mercury T-Hg Sc Cyanogen CN I Zn I E Manganese Fe Fe Fe Fe Fe Fe Fe		0.05	0.05	0.5	0.05
Mercury T-Hg um Se Cyanogen CN I Zn le Manganese Fc le Iron Fc		0.05	0.05	0.1	0.01
m Se yanogen CN Zan Zn Manganese Fe		0.001	0.001	0.005	0.0005
yanogen CN Zn Xn Manganese Fc		0.01	0.01	0.1	0.01
Manganese Eron		0.1	0.2	1.0	Nd.
Manganese Zn Iron Fe		1.0	5.0	5.0	-
ole Manganese Sle Iron Fe	3.0	0.2	5.0	5.0	
Fe	10	1.0	1.0	10	•
Fe	10	0.3	1.0	10	
	1.0	•	•	•	,
Phosphorous P		0.5	1.0	16	(Sea 0.09)
	1	12.0	12.0	120	(Sea 1.0)
PCB		0.001	0.001	0.003	Nd
Tri Chrolo Ethylene TCE -	<u> </u>	•	ŀ	0.3	0.03

OBS:1. (Sea :) :means standard to be applied for sea water., 2. Environment means standard to be applied agriculture usage water : "B" for fresh vegetable and thin skin fruit, "C" for other agricultural products.

3. Unit :means mg/l, PPM, except otherwise defined specifically 4. Other components: there are some other several components defined in the regulation as controlled items both in Bolivia and Japan

Table 3-2-2

	Crimes and Penalties in the Environment Law	e Environment Law		
Number of Article	Crimes	Penalties in Prison (Years)	Other Penalties	Related Artcile No. of Penalty Law
104	To fire the field for the agriculture or livestock breeding.	2 to 4	υου	Art. No.206
105	To contaminate and poison the water to be prepared for the public use, industry use, farming use and fish breeding use more than limitation established in the regulation.	1 to 2	non	Art. No.216, item 2) and 7)
106	To destroy, damage, steal or export the assets which belongs to the public or other personnel.	1106	non	Art. No.223
107	To discharge the untreated water, chemicals, bio-chmicals or refuse to any kind of nature exceeding the limit established in the regulation.	1 to 4	100 percent value compenstaion of damages	non
112	To deposit, commercialize the refuse of industrial liquid, solid or gas putting the human lives and /or environment in dangerous situation.	2	non	non
113	To authorize, cooperate for depositing, introducing or transporting into the national territory the dangerous toxic, radioactive and other foreign origin refuse, and any technologies which introduce the dangerous material.	upto 10	non	uou

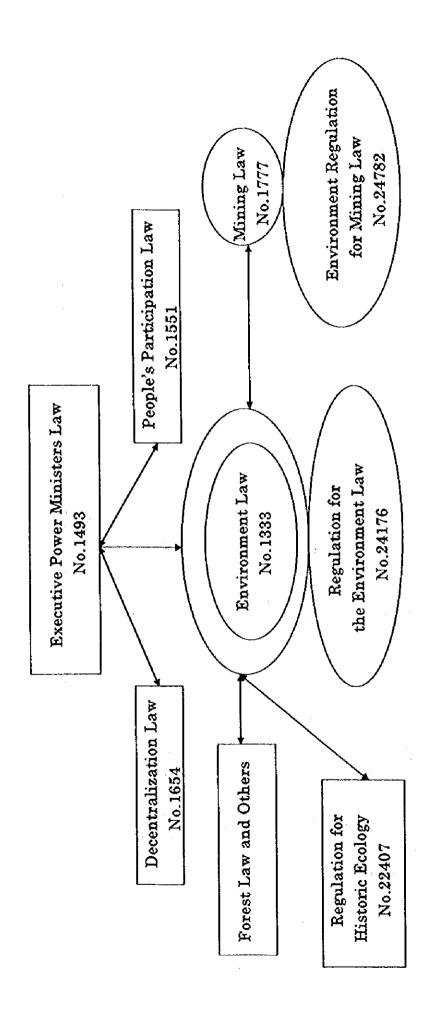


Figure 3-2-1 General View of Environment Protection Related Laws and Regulagions

4 Present Water Pollution of Rivers

4-1 Study Area

As expressed in paragraph 1-2-1, the study area of this project is mainly conducted from Rio de La Rivera river of Rio Tarapaya river basins and the basin from the confluence of Rio Tarapaya and Rio Pilcomayo river as far as the Puente Mendez bridge on Rio Pilcomayo river. In addition, it is decided to evaluated water quality of Rio Samaza river which flows east from eastern outskirts of the city of Potosi and its downstream Rio Mataca river in the northern district, and rivers of Vitichi and Tupiza area of southern district of Potosi prefecture.

4-1-1 Outline of Monitoring Design

Water monitoring was practiced for one year as illustrated in diary below. It was agreed to establish 25 sampling points mainly within the study area. The analysis covered the following items: Analysis of each item is carried out due to ASTM, except for ignition loss (JIS K0102).

- Water quality (14 items): pH, SS, As, Sb, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn, CN, COD
- Sediment (15 items): Ag, As, Sb, Cd, Cr, Cu, Fe, Hg, Mn, Sn, Pb, Zn, CN, S, ignition loss

Diary of monitoring water

No.	Date (1998)	Sampling	No.	Date (1998)	Sampling
1	mid January	water	11	early May	water, SS, sediment
2	late January	water, sediment	12	mid May	water, SS
3	early February	water, SS	13	late May	water, SS, sediment
4	mid February	water, SS, sediment	14	early June	water, SS
5	early March	water, SS	15	early July	water, SS, sediment
6_	mid March	water, SS, sediment	16	early August	water, SS, sediment
7	late March	water, SS	17	early September	water, SS, sediment
8	early April	water, SS	18	early October	water, SS, sediment
9	miđ April	water, SS, sediment	19	early November	water, SS, sediment
10	late April	water, SS	20	mid December	water, SS, sediment
			21	Early December	water, SS, sediment

Table 4-1-1 presents the list of sampling points, and Fig.1-2-4 shows a general map of these sampling points.

Sampling was started on January 14, 1998 and ended in December. Workbenches were installed at two continuous monitoring points for water quality, to facilitate field activities required (See attached

photograph in ANNEX(2)). Training was conducted for handling and operation of monitoring equipment. As a result, the data monitoring system was ready to operate in mid-February 1998.

To investigate pollution of rivers in southern district of Potosi prefecture, water samples were collected on the third week of February 1998 (rainy season) and in October (dry season) at six points, each selected in Rio Vitichi, Rio Tumusla, Rio Cotagaita, Rio Tupiza, Rio San Juan del Oro, and Rio Camblaya rivers. In addition, sampling was carried out in Villamontes, the farthermost downstream of Rio Pilcomayo within the country (near the border of Paraguay and Argentina), during the first round of sampling.

4-1-2 Hydrology Survey

Rio Huayanamayu river is the largest stream flow among three small rivers which have their sources on the slope of the Mt. Cerro Rico de Potosi.

Candidate sites for cross-sectional measurement of rivers within the study were selected at 6 points, 4 in the Tarapaya river system (each in Rio de La Rivera, Rio Alja Mayu, Rio Molino, and Rio Tarapaya) and 2 in Rio Pilcomayo (each at Yocalla and at Puente Mendez). These survey points are also shown in Fig. 1-2-4. The study team requested for cross-sectional measurement of river and obtained survey data.

The study team provided training for C/P to measure river water flow by using the electric current meter which was supplied to the study. Then the formal survey was started in February 1998. It was mainly conducted at the cross-sectional measurement points. Also, the study team obtained cooperation of Hydrology Department of the Potosi prefecture.

Table 4-1-1 Sampling Points on Rivers for Water and Sediments

Quality Monitoring

No.	Code	Name of sampling point	Name of river
1	PIRI	Origin of Rio de La Ribera	Rio de La Ribera
2	P2HU	Rio Huaynamayu in front of camp Pailaviri	Rio de La Ribera
3	Р3КО	Rio Korimayu at Puente Espana	Rio de La Ribera
4	P4HU	Rio Huaynamayu before joining Rio de La Ribera	Rio de La Ribera
5	P5RI	Rio de La Ribera before joining Rio Huaynamayu	Rio de La Ribera
6	P6IR	Rio de La Ribera after joining Rio Huaynamayu	Rio de La Ribera
7	P7HR	Lecherias zone branch of Rio Hualampaya	Rio Jesus Valle
8	P8HR	Rio Hualampaya before joining Rio Jesus Valle	Rio Jesus Valle
9	P9JV	Rio Jesus Valle before joining Rio Hualampaya	Rio Jesus Valle
10	P10J	Rio Jesus Valle before joining Rio de La Ribera	Rio Jesus Valle
11	PHR	Rio de La Riveva before joining Rio Jesus Valle	Rio de La Ribera
12	P12A	Rio Aljamayu after joining Rio Ribera and Jesus Valle	Rio Aljamayu
13	P13K	Rio Korimayu before joining Rio de La Ribera	Rio de La Ribera
14	P14D	Rio Agua Dulce before joining Rio Aljamayu	Rio Aljamayu
15	P15A	Rio Aljamayu before joining Rio Huancarani (pt. la Palca)	Rio Aljamayu
16	PIGA	Rio Huancarani before joining Rio Aljamayu (pt. Peatonal)	Rio Huancarani
17	P17T	Rio Tarapaya after joining Rio Aljamayu and Huancarani	Rio Tarapaya
18	P18M	Rio Tarapaya at Mondragon village	Rio Tarapaya
19	P19Y	Rio Piłcomayo at Yocalla village	Rio Pilcomayo
20	P20D.	Rio Huari Huari downstream of Huari Huari Mine	Rio Mataca
21	P21C	Rio Mayu Tambo at Puente Mayu Tambo	Rio Mataca
22	P22T	Rio Tarapaya at Miraflores downstream of hotsprings	Rio Tarapaya
23	P23M	Rio Mataca before joining Rio Pilcomayo	Rio Mataca
24	P24J	Quebrada Jayajmayu (upstream of Rio Agua Dulce)	Rio Atjamayu
25	P25P	Rio Pilcomayo at Puente Mendez bridge	Rio Pilcomayo

- 4-2 The Scope and Grade of Water Pollution
- 4-2-1 Water Pollution of Study Area

(1) Analysis Data

Typical analysis results of water and sediment samples were illustrated in Table 4-2-1 (first round, mid-January, example of rainy season) and Table 4-2-2 (ninth round, mid-April, example of at the beginning of dry season). Twenty times of sampling were practiced during the study period. Every data was presented in ANNEX(5).

Acid water was found in Rio Huaynamayu river (sampling point No.2, 4), Rio Korimayu river (No.3, 13), Quebrada. Jayajmayu river (No.24), as originated in Mt. Potosi. Dissolved heavy metals and arsenic were also found rich but the suspended solid (SS) was not much in these river waters. These waters are originated in mining activities either mine drainage or infiltrating water that contacted waste ores or old tailing dams from mineral concentration processes. Similar analytical data were observed in Rio Huari Huari river (No.20), a branch of Rio Samaza river which flows along the Huari Huari mine.

On the other hand, alkaline water, high SS content and COD value was found in Rio de La Ribera (No.5) river. Except the pH value, simular results were observed in the downstream of the river (No.6, 11). Heavy metals were found rich in the SS of Rio de La Ribera. Large amount of sediments were precipitated in the river bottom, and heavy metals were also found rich in these bottom sediments. The cause of the sediment in Rio de La Ribera is come from untreated discharged tailings from ingenios. The strong influence of Rio de La Ribera was also observed in its downstream Rio Aljamayu river (No.12, 15) and Rio Tarapaya river (No.17, 22, 18).

Acid water was found at sampling point No.6 is the most characteristic data in Table 4-2-1. Above sampling point No.6 is the point just after the confluence of Rio de La Ribera (alkaline) with Rio Huaynamayu (acidic). Water of this point showed significant pH variations, due to the number of factors such as volume and quality change of both rivers. The pH readings of sampling point No.6 were observed rather basic for year round between 3 in the rainy season and over 12 in the dry season.

Alkaline water was found in sampling point No.11 in Table 4-2-1 which is located few km downstream of sampling point No.6, after joining discharged water from several ingenios, spring water from near San Miguel Ingenio and Rio Korimayu. Dissolved form of heavy metals and arsenic were not found much in alkaline river water.

Water in other branch rivers and streams showed pH value between 7.5 and 8, and lack of dissolved heavy metals and arsenic. Sediments of those rivers showed poor heavy metals and arsenic contents. These data suggested that there was not any significant polluter, such as mine and ingenio in the region. However COD value was high in the Rio Huatampaya river (No.7, 8) water due to the effect of municipal sewers, looked like as Rio de La Ribera water.

All those water are finally joined and gone down into Rio Pilcomayo river, and passed through Puente Mendez bridge and then farther downstream. Though heavy metals and arsenic were not found much in dissolved form, they were existed in bottom sediment of Puente Mendez bridge of Rio Pilcomayo river.

(2) Rainfall and River Water Flow

Averaged annual precipitation is 405 mm and rainy days are 87 days at Potosi city during recent 40 years (from 1958 to 1997), due to the hydrological record of Hydrology Department of the Potosi Prefecture. Table 4-2-3 is the outline of above data.

The rainy season start from October or December and end in March or April, depending on yearly climate change. It is almost no rain in the dry season. Relative humidity is between 50 and 55% in the rainy season and between 25 and 30% in the dry season. However there was El Niño phenomenon happened from 1997 to 1998, and it rained in August and September 1997 and did not rain until the middle of January 1998. This phenomenon was finished in the middle of 1998.

There is a mountainous region developed in study area, so rich in slope and poor in forest. When it rains, some is returned to the atmosphere at once by evaporation and some flows overland and makes its way to runoff.

After hand rain or sometimes during raining, water level rise rapidly so much as 100 times of normal level of flow in Rio Huaynamayu for example. However the river returns to small stream within a day or so.

The results of flow measurement of rivers are presented in Table 4-2-4, also Fig.4-2-1 for Rio Tarapaya and Fig.4-2-2 for Rio Pilcomayo. The survey was started from February and was conducted at 6 points, as stated in previous paragraph (4-1-2). During flow measuring, no flash flood was occurred in the rivers.

Water flow of Rio Tarapaya river system did not vary much up to May and declined in July through September to reflect the dry season. It rained in October and water flow rose once, but extremely declined in December. In particular, large declines were observed at Molino and Mondragon. On Rio Pileomayo river, variation of flow varied between different measurement points. The flow decreased at Puente Mendez in March, immediately after the start of survey, and it declined gradually May through September. On the other hand, small changes were observed at Yocalia.

4-2-2 Scope and Grade of Water Pollution

(1) Water pollution of Rio Tarapaya river system and Rio Pilcomayo river until Puente Mendez bridge.

(Quantitative analysis)

SS including arsenic and heavy metals causes primarily water pollution of Rio Tarapaya river system and Rio Pilcomayo river until Puente Mendez bridge under this study. The source of toxic materials are mainly tailings and untreated discharged water from ingenios, and then mine drainage and infiltrating water that contacted waste ores on the mountain slope or in the sucus or tailing dams from old mineral concentration processes.

Rio de La Ribera, uppermost stream of Rio Tarapaya river system, receives large amount of discharged water and tailings from ingenios. Rio Huaynamayu, the main branch of Rio de La Ribera, receives mine drainage and infiltrating water that contacted waste ores in the sucus or tailing dams from old mineral

concentration processes. These are the main causes of water pollution in the river system. The strongest polluter among these sources is the tailings from ingenios which contain large amounts of SS consisting of arsenic and unrecovered heavy metals.

Importantly, the water flow, the SS concentration and the amount of SS carried by water vary greatly within time of data collection. Based on the results of the stream flow measurement and water quality surveys, rough estimation of the amount of SS carried by the rivers was obtained. The amount of SS transported by each river was calculated by using water quality and stream flow data between the end of January and the end of May, and also throughout of 1998 year as summarized in Table 4-2-5. Data base of this calculation is shown in Table 4-2-6. Variations of the amount of SS transport in the Tarapaya river system are shown in Figures 4-2-3 and Pilcomayo river in Figure 4-2-4. As the SS data vary greatly between different sampling points, they are plotted on a semi-logarithmic graph.

As shown in Figure 4-2-3, the data up to May indicate that the SS carried in the Tarapaya river system partially settles upstream to reduce the amount on the downstream side. However, this trend is not always true in the dry season. Since no flash flood occurred at the time of sampling, the amount of SS transport remains fairly stable regardless of the season, as judged from the general trends read from the graph. This indicates that a large amount of SS are carried and contaminate the rivers.

The maximum amount of SS carried from Rio de La Rivera to Rio Tarapaya, on the basis of the available data, was estimated to be over 1,700 tons/day in San Antonio and slightly less than 1,200 tons/day in Potosi, compared to 950 tons/day at Molino and less than 400 tons/day at Mondragon, between the end of January and the end of May. And also averaged SS were carried 1,890 tons/day in San Antonio, 1,110 tons/day in Potosi, 1,010 tons/day in Molino and 606 tons/day un Mondragon, throughout of 1998 year. The difference of those two data are not large and more or less 10%.

Meanwhile, each Ingenio in and around the city processes approximately 1,300 (1,000 - 1,500) tons of ore daily and disposes 1,000 - 1,300 tons of tailings. Besides tailing desposal, Ingenios discharge residual slack lime and various chemicals into the rivers. Because Ingenio facilities consume slack lime

that is used to keep alkalinity of water used in the floating separation process and also to acquire another recycle water for the process, as well as various chemicals.

As observed in the upper part of San Antonio in the Tarapya rivers system, a large amount of SS seems to have settled into sediments downstream of San Antonio. Based on the above data, approximately 750 tons/day (yearly averaged 880 tons/day) of sedimentation occurred between San Antonio and Molino and additional 550 tons/day (yearly averaged 400 tons/day) between Molino and Mondragon. Although large amount of SS is carried away to the Pilcomayo river from the Tarapaya river system. While a significant increase in sediment was not seen on the riverside or riverbed during the rainy season in the Tarapaya river system as the settled SS was presumably carried by the flash floods to the Pilcomayo river, a large amount of sedimentation was confirmed on the riverside during the dry season in the Tarapaya river system.

As shown in Figure 4-2-2, in Rio Pilcomayo, the amount of SS carried declines gradually in the dry season due to the decrease in flow and the decline in SS concentration. The difference of SS concentration seems to be nearly 100 times at Yocalla. During the rainy season, the data of same sampling point vary greatly among sampling times. The SS concentration at Puente Mendez is about 10 times larger than that of Yocalla. In particular, large amounts of sediments are washed away by the periodical flash floods to the lower reaches as well as outflow of soil.

Based on raw data shown in next chapter 5 and data in Table 4-2-2, pollutant loads discharged to the Tarapaya river system were estimated to be arsenic 300kg/day, cadmium 80-100kg/day, lead 2 ton/day, zinc 20-30 tons/day, and tin 2-4 tons/day. They represent the level of environment pollution caused by mining activities in Potosi. They are transported to downstream as SS and contaminated water and bottom sediment. As there are many origins of pollution, the main cause are tailings and untreated discharged water from ingenios, and then mine drainage and infiltrating water that contacted waste ores or old tailing dams.

On the other hand, Rio Pilcomayo always receives water containing SS that is polluted by heavy metals

from Rio Tarapaya river system. Rio Pilcomayo is obliged to receive an increase in SS concentration when the Tarapaya rises after periodical flash rain, and transports them further downstream. One part of those SS is polluted water as oneself, and the other part is contaminated sediment after to have settled into riverbed.

As observed from the color of water and sediment, most SS carried I the Pilcomayo river seemed to be outflow soil from flash flood in rainy season, it looks like the color of lateritic soil. On the other hand it changes SS color in dry season, as if it seems to be a tailings from mineral concentration processes from the Tarapaya river system to the Pilcomayo river. It shows gray-black color. This estimation is also supported by heavy metals content in the bottom sediment at Puente Mendez, because of poor content in rainy season and rich in dry season.

Rio Pilcomayo runs among the mountains in the study area, so it is very hard to access the riverside. It was difficult to put sampling point other than those two point, Yocalla where there is not influenced by Rio Tarapaya and Puente Mendez. So, it is hard to explain more quantitatively about water pollution and sediment contamination of Rio Pilcomayo river system, until now.

The flow and the quality of river vary from hour to hour, so the mining production and the operation of ingenios. It should be noted, however, that the figures are merely rough estimates at this stage, while actual data change dynamically over time, including water quality parameters, stream flow data and operations by mines and Ingenios. Under any circumstances, they should not be used as the basis of any plans or actions before their validity is confirmed.

(2) Water quality of Rio Mataca river and its tributaries

On the east of the Potosi city area, Rio Samaza river flows and merges with many rivers to become Rio Mataca river. Rio Mataca then joins Rio Pilcomayo river slightly downstream of Puente Mendez. In the Don Diego village along Rio Samaza, there is a metal concentration plant named Ingenio Caballo Blanco, one of the major ingenio in Bolivia. The plant is located on a riverside of Rio Samaza. It

mostly treats tailings produced from the separation process and stockpiles them separately in a special dam. Also, process water is totally recycled. Thus, it is generally believed that no water pollution occurs in Rio Samaza.

On the other hand, Rio Huari Huari river flows from Mina Huari Huari (sampling point No.20) before joining Rio Samaza near the Don Diego village. River water showed acidity at the foot of the mine, ranging between pH4 and pH6. 100-200ppm of iron ion and 100ppm of zinc ion were detected in water, while a few ten ppm of arsenic, about 240ppm of lead and 1,000ppm or less of zinc were found in the sediments. Water in the river is slightly brownish-colored by iron ion. On the other hand, contents of SS were small. The river water lost acidity as it flew down. Its color and pH were improved before its confluence with Rio Samaza to lose color and turn into neutrality or alkalinity. At the same time, heavy metals disappeared from water, probably because they precipitated and settled into the bottom.

Analysis of water samples and sediments collected near the Mayu Tambo bridge (No.21), slightly down Rio Samaza, detected presence of arsenic, lead and zine in the sediments, with concentration levels were much lower than those found near Mina Huari Huari, whereas few heavy metal ions were found in water, including iron, lead and zine. Thus, little pollution occurs in the river. Heavy metals found in the sediments seem to come from the sediments of Rio Huari Huari that were carried by the floods after heavy rains.

In Rio Mataca near Millares (No.23), situated close to Puente Mendez, turbid water flew during the rainy season, while clear water was seen in the dry season. The pH was neutral or slightly on the alkaline side. Concentration levels of arsenic, lead, zinc and other heavy metals in the sediments were similar or below those found near the Mayu Tambo bridge. Thus, the sediments are not severely contaminated by heavy metals.

Water qualities of Rio Samaza and Rio Mataca are not contaminated much and may suggest a future goal for environmental cleanup of Rio de La Rivera and Rio Tarapaya rivers, which can be expected when adequate pollution control measures are taken. The results of investigation on the two rivers

reveal that water pollution can effectively be controlled in a watershed area where mines and processing facilities are located, so far as appropriate measures are taken to prevent or significantly reduce the discharge of polluted water into the river. As a result, water can be kept relatively free from heavy metals, and pollution can be reduced to a minimal level in the lower reaches.

There are only 3 sampling point along Rio Mataca river system and are biased 2 in Rio Samaza. It is necessary to make well-organized program in order to know water contamination above area more exactly.

(3) Water quality of rivers in the southern part of Potosi Prefecture

Figure 4-2-5 shows the outline of river map in the southern part of Potosi Prefecture.

As only two sampling surveys were conducted in the area, once in the rainy season (February) and once in the dry season (October), the study team has limited data and information on pollution in Rio Vitichi, Rio Tumusla and Rio San Juan del Oro rivers. Table 4-2-7 and 4-2-8 present the results of analysis of the collected samples, as well as those collected in Villamontes, downstream of Rio Pilocomayo river, which were sampled during the sampling survey in the rainy season.

A variety of heavy metals were detected in these samples, and they appeared that the sediments collected from all the rivers were contaminated by heavy metals except for chrome, although their concentration levels were much lower than those found in the Tarapaya river system after the city of Potosi. It should be noted that water sample collected in La Laba, located in the upper stream of Rio Vitichi, showed slight acidity, possibly La Laba area is affected by mine acid water.

In Table 4-2-7 and 4-2-8, Vitichi-1 represents the sample at La Lava of Rio Vitichi river, Vitichi-2 is that of Ari Palca of Rio Vitichi river, Cotagaita is that of Cotagaita of Rio Cotagaita river, Tumusla in that of Tumusla of Rio Tumusla river, CB-PV.A is that of Villa Abecia of Rio Tumusla (or Rio Camburaya) river, SJO Tupiza is that of suburbs of Tupiza of Rio San Juan del Oro river, SJO V.A is that of Villa Abecia of Rio San Juan del Oro river, and Pilcomayo is that of Villa-Mantes of Rio Pilcomayo river.

This is only a preliminary survey to see water contamination of Vitichi and Tupiza area. Data are quite limited. Well-organized program is needed to know water contamination exactly in the future.

Table 4-2-1 Water Quality Analysis Results / Monitoring Program (Midterm, Jan. 1998)

Coment			Huaynamayu River	Korimayu River	115.46 Fluaynamayu River			Hualampaya-Jesus valle Rivers	Hualampaya-Jesus valle Rivers	Hualampaya-Jesus valle Rivers	Hualampaya-Jesus valle Rivers			Korimayu River	Agua Dulce River		Huancarani River	To the state of th		Pilcomayo (Yocalla)	Huari Huari River (Mataka River)	(Mataka River)	Pilcomayo River (Tacobamba)	(Mataka River)		Pilcomayo-River (Mendez Bridge)
<u>გ</u>	mg/L	12.4	127.8	49.5	115.46	70.1	177.32	16.49		4.21	65.98	53.61	32.32	48.48	16.16	36.36	4.04	32.32	28.28	16.16	20.62	12.12	12.12	4.04	40.4	40.4
Z	mg/L	0.005	0.003	0.021	0.036	0.28	0.08	0.045	0.021	0.013	0.031	0.229	0.111	<0.001	<0.001	0.192	0.006	0.121	0.0 Q	0.028	<0.001	<0.001	<0.001	<0.001	0.002	<0.001
Za	mg/L	81.0	358	163	167	0.10	56	0.01	0.01	<0.002	90.0	0.05	50	180	42.0	208	38.0	226	36	37	148	0.16	0.11	<0.002	<0.002	0.10
2	mg/L	<0.03	60.0	0.11	0.22	0.05	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.12	<0.03	<0.03	<0.03	<0.03	<0.03	0.10	0.11	<0.03
된	mg/L	0.11	21.2	44.8	14.0	0.02	7.0	0.14	4.0	0.02	0.41	0.17	6.25	61.25	1.66	20.5	0.03	22.0	99.0	0.03	10.3	0.23	0.16	0.10	0.11	0.22
Hg	" S/L	<0.02	0.12	<0.08	<0.08	0.01	0.03	0.03	0.05	<0.02	<0.02	0.13	0.08	0.14	0.05	0.04	0.07	0.50	0.03	0.07	1.15	1.12	1.56	1.82	2.26	1.43
Fe	mg/L	60.0	1780	280	200	0.20	93.0	0.08	0.29	<0.008	0.02	0.02	0.37	530	<0.008	59.0	<0.008	192	0.11	1.63	280	0.26	0.2	<0.008	<0.008	1.02
Ö	mg/L	<0.0005	0.05	0.05	40.0	<0.0005	<0.0005	0.01	0.01	0.01	0.01	0.02	0.02	80.0	0.02	0,02	<0.0005	0.01	<0.0005	<0.0005	0.1	0.01	<0.003	<0.009	<0.00	<0.009
ර	mg/L	0.07	58.0	6.20	11.0	0.04	0.02	<0.003	<0.003	0.01	0.04	0.14	0.02	22.0	0.02	0.0	0.02	90.0	0.0	0.03	0.02	<0.003	<0.003	<0.003	<0.003	<0.003
ਤ	mg/L	<0.002	11.0	2.10	1.50	0.02	0.12	0.07	0.03	0.05	0.08	90.0	0.19	8:1	90.0	1.7	<0.002	1.7	<0.002	<0.002	0.61	40:0	0.01	<0.002	<0.002	90.0
Sp	" X/L	5.18	8.8	0.16	10.7	23.8	2.33	1.16	1.92	0.15	3.42	20.0	0.58	0.30	0.18	2.57	0.5	1.42	1.17	80.0	0.48	1.39	0.28	0.41	0.44	0.20
Ą	1/3/ H	40.0	2620	6.90	1470	9.11	14.2	1.37	1.81	0.18	21.8	9.52	5.47	106.1	0.67	12.4	0.74	20.3	6.43	0.31	6.02	0.65	0.03	2.49	0.46	0.19
SS	mg/L	11.45	486.65	23.45	1603.1	65238.95	39502	191.6	151.4	157.7	4819.9	38697	10942	181.5	111.4	43004	120.7	16176	11016	1335.2	115.8	5299.3	8949.9	3077.9	1231	38491
Ha	, 1	8.0	2.8	2.8	3.0	8.6	63	7.8	8.4	8.4	8.6	0.6	7.2	2.8	7.4	5.8	8.2	4.8	7.4	7.7	3.8	7.9	8.1	8.5	8.5	8.0
,	Sample	No.	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17	No. 18	No. 19	No. 20	No. 21	No. 22	No. 23	No. 24	No. 25

Note; No. 22, Rio Pilcomayo after joining Rio Tacobamba No. 24, Rio Tacobamba in front of Tacobamba village

Table 4-2-2 Water, SS and Sediments Analysis Results / Monitoring Program (Midterm April 1998) 1/3

Analitical Results from Laboratory (9th. round, 14/Apr.)

1. Quality of Water

Cuanty	Quanty of water				1	,	,	4		1	ă	7.2	3	CCC	coment
- 1	Ή	SS	Ş	Sp	3	<u>3</u>	5	Ľ,	Зц	=== E	i,	3	3	}	***************************************
samble	٠	mc/L	mg/L	# EAL.	mg/L	mg/L	mg/L	mg/L	ηgη.	mg/L	mg/L	mg/L	mg/L	mg/L	
No. 1	9.0	250	0.012	0.17	0.02	0.02	0.05	0.33	<0.10	0.19	<0.03	0.16	0.001	4	
No. 2	2.6	1,230	0.076	0.81	9.3	101	0.07	1,600	0.37	28.0	0.17	810	0.001	8	
	2.8	290	0.007	0.48	2.3	6.40	0.02	220	0.51	39.0	0.04	106	0.001	E	
	2.8	028	0.001	1.16	2.7	25.0	90	568	0.39	18.2	3.39	408	0.066	142	
No. 5	11.6	58.800	880.0	1.13	0.002	0.43	<0.005	0.08	0.23	0.01	0.10	0.38	0.015	8	
No. 6	5.0	34,200	0.019	0.85	1.2	0.05	<0.005	11.8	1.07	8.90	0.23	159	0.001	88	
No. 7	8.1	480	0.003	0.29	0.02	0.03	<0.005	0.32	<0.10	0.14	<0.03	0.22	0.004	75	
Š.	8.3	770	0.002	0.36	0.03	0.12	<0.005	0.52	<0.10	0.35	0.03	0.28	0.001	71	
No. 9	8.4	330	0	0.14	0.0	0.003	<0.005	0.06	<0.10	0.10	0.03	0.19	<0.001	8	
No.10	8.4	820	0.017	0.28	0.05	0.03	<0.005	0.20	<0.10	0.18	0.03	0.28	0.001	S	
No.11	8.4	52,600	0.022	0.76	0.05	0.16	<0.005	0.02	0.13	0.03	0.03	0.16	0.084	50	
No.12	8.7	49,600	0.02	9.0	0.05	0.15	<0.005	90.0	<0.10	0.33	0.03	0.21	0.001	46	
No.13	2.7	135	0.059	0.61	0.71	20.0	<0.005	ই	<0.10	44.0	0.03	111	0.015	25	
No.14	7.9	360	0	0.10	0.05	0.02	0.005	0.01	<0.10	0.64	0.03	22.0	0.001	4	
No.15	8.1	48,000	0.01	0.35	0.10	0.02	0.005	5.12	0.55	5.70	0.03	36.0	0.029	17	
No.16	8.0	410	0	<0.10	0.01	0.02	0.03	0.12	0.20	0.03	0.03	0.18	0.001	प	
No.17	7.6	006.6	0.011	0.31	0.04	0.02	0.05	0.18	<0.10	1.74	0.03	5.70	0.10	8	
No.18	8.0	4,960	0.01	0.29	0.0	0.03	0.07	0.13	0.14	1.72	0.03	2.80	<0.001	4	
No.19	8.1	1,660	0.008	0.29	0.01	0.05	0.03	0.16	<0.10	0.04	0.03	0.17	0.001	4	
No.20	5.2	904	0.003	0.62	0.17	0.05	<0.005	68.3	0.12	3.20	0.03	58.0	0.002	72	
No.21	8.1	390	0.002	0.70	0.002	0.01	<0.005	<0.01	<0.10	0.02	0.03	0.40	0.002	4	
No.22	7.8	6,470	0.012	0.57	90.0	0.04	0.03	0.10	<0.10	1.70	0.03	3.20	0.005	2	
No.23	8.5	830	0	0.63	0.002	0.07	<0.005	5.55	<0.10	0.14	0.03	16.2	0.001	80	
No.24	4.6	300%	0.003	0.47	0.08	0.33	0.02	0.17	0.10	17.3	0.03	170	0.001	75	
No.25	8.5	1,750	0	0.57	0.002	0.02	<0.005	0.45	0.15	0.02	0.03	0.19	0.001	4	

Table 4-2-2 Water, SS and Sediments Analysis Results / Monitoring Program (Midterm April 1998) 2/3

	(SS)	Ag	As	qs	ಶ	ට	ರ	괊	Hg	A a	£	Z d	F	Sn	S
Sample	(mg/L)	mdd	mdd	qdd	mdd	mad	cadd	mdd	qdd	mdd	ppm	add	ppm	mdd	uidd
No. 4	820	174	227	411	59.0	630	1.95		819	23.0	2,720	11,100	0.00	4,750	55,000
No. 5	58,800	173	218	578	140		2.4		833	131	4,620	17,200	1.50	3,800	59.700
No. 6	34,200	128	228	537	86.0	849	ļ``	77,600	815	53.9	3,730	14,500	3.50	4,750	69,200
No.11	52,600	77.0	221	286		640	280	000,79	589	391	2,280	11,900	0.00	3,330	55,300
No.12	49,600	91.0	140	535	50.0	610	2.47	85,800	526	410	2,850	12,600	0.50	3,330	75,400
No.15	48,000	0.96	241	851	0.69	410	1.49	1	889	480	6,510	16,900	0.00	2,850	77,600
No.17	9,900														·

Calcula	Calculated elements content in SS.	ts content	in SS												
	(SS)	Ą	As	Sp	ਲ	Ö	ರ	Fe	Hg	Ma	ЪЪ	Za	CN	Sa	ø,
Sample	•	mg/L	mg/L	m g/L	mg/L	mg/L	mg/L	mg/L	μ g/L	mg/L	mg/L	mg/L	뭐	mg/L	mg/L
No. 4	0.00082	0.14	0.19	0.34	0.05	0.52	0.002	65	0.7	0.02	2.23	9.102		0.03	45
No. 5	0.0588	10.17	12.82	33.99	8.23	36.46	0.143	3,675	49.0	7.70	271.66	1011.36		2.12	3,510
No. 6	0.0342	4.38	7.80	18.37	2.94	29.04	6.327	2,654	27.9	1.84	127.57	495.9	0.12	1.23	2,367
No.11	0.0526	4.05	11.62	15.04	2.42	33.66	14.728	3,524	31.0	20.57	119.93	625.94		1.89	2,909
No.12	0.0496	4.51	6.94	26.54	2.48	30.26	0.123	4,256	26.1	20.34	141.36	624.96		1.79	3,740
No.15	0.048	4.61	11.57	40.85	3.31	19.68	0.072	4,411	33.0	23.04	312,48	811.2	0.00	1.73	3,725
No.17	0.0099												***	0.36	

Table 4-2-2 Water, SS and Sediments Analysis Results / Monitoring Program (Midterm April 1998) 3/3

4. Oality of Sediment	Sediment								,			, ,	,	ę	
-	Ag	Ş	ŝ	3	- ♂	ರ	Fe	нg	Σ	<u>~</u>	ď.	 Z	Sa	У	ig.Loss
Sample	anda	1000	qda	undd	andd	undd	mdd	qdd	mdd	mdd	ppm	ppm	mdd	mdd	₩
No. 2	23	45	88	5	83	2	48,100	296	349	732	1,600	0	1,700	5,900	3.0
No. 3	47	\$	302	2	29	4	86.500	202	128	1.340	400	0	3.800	3,900	3.2
No. 4	138	244	522	86	403	23	190,000	822	4	1,330	19,400	0	5,230	008'89	13.0
No. S	118	271	738	29	305	æ	155,000	745	142	2,280	19,100	0	3,330	159,000	11.2
No. 6	134	258	513	81	360	2	168,000	435	106	1,840	19,800	0	4,280	177,000	12.1
Z. 2	101	19	47		38	9	24,900	4,900	240	100	530	0	056	1,100	1.4
No. 8	4	225	1,240	0	41	4	62,600	16,800	238	29	370	0	1,430	1,300	1.2
No. 9															
No.10	159	161	04	182	313	S	213,000	169	39	3.450	20,200	0.	7,120	230,000	15.5
Z o Z	126	263	1.110	77	497	2	238,000	006	431	3,580	20,000	0	5,220	280,000	16.1
No 12	7	1.027	1.051	<u>چ</u>	446	(C)	252,000	169	8	3,650	21,000	-	4,280	268,000	17.6
No. 13	9	161	289	2	106	e,	108,000	791	54	1,050	1,100	0	4,280	210,000	5.0
No. 14	er,	18	25	0	31	5	18,800	138	277	0	57	17	1,430	006	2.4
No.15	9	228	361	36	280	2	23,800	485	454	1,410	10,200	1	2,850	75,600	6.3
No.16	65	16	17	S	27	9	87,500	69	376	0	68	0	1,420	009	2.5
No.17	ક	239	341	34	295	2	104,000	470	439	1,490	10,700	0	3,600	56,100	7.7
No.18	45	203	288	34	189		66,500	472	430	1,523	9,300	0	2,850	90.500	5.5
No.19					: :										
No.20	w	27	10	S	4	6	33,600	527	309	58	1.040	1	1,900	2,100	1.8
No.21	1	60	27	t,	97	2	24,900	25	291	14	666	1	1,900	50,800	1.2
No.22	35.	138	300	32	246	1	62,100	620	393	1,400	9,100	0	2,380	1,000	5.7
No.23		۳.	22	12	23	7	46,700	140	407	14	113	П	950	006	2.1
No.24	19	29	89	2	57	r.	43,200	153	019	410	9.010	0	1,430	1,500	2.3
No.25	1	9	20	1	20	4	23,200	118	310	1	118	1	1.420	1,000	1.0
1															

Table 4-2-3 Rainfalls in Potosi City

Months	Precipitation (mm)	Raining days
January	92.1	18
February	69.5	18
March	64.3	13
April	18.0	5
May	2.5	1
June	1.4	0
July	0.4	0
August	4.5	1
September	13.0	3
October	23.1	; 5
November	42.1	9
December	72.4	15
Total	404.9	87
Max. (Year)	656.7 (1984)	128 (1984)
Min. (Year)	182.6 (1983)	64 (1969, 1983)

Table 4-2-4 Water Flow Measurements

										(2)	
River	Point	Sampling point number	Feb	Арг	May	Jul	Aug	Sep	Oct	Nov	Dec
De la Ribera Potosi	Potosi	No. 6	0.032	0.236	0.115	0.012	0.015	0.073	0.225	0.033	0.032
Aljamayu	San Antonio	No.12	0.472	0.313	0.441	0.231	0.432	0.108	0.898	0.338	0.078
Tarapaya	Molino	No.17	1.05	0.745	0.950	0.839	0.555	0.326	2.35	0.927	0.149
	Mondragon	No.18	0.951	0.737	0.948	0.903	0.741	0.451	2.18	1.18	0.162
Pilcomayo	Yocalla	No.19	5.16	4.14	4.51	5.16	3.82	3.28	5.38	4.84	2.82
	Mendez Bridge	No.25	22.2	12.1	14.9	12.8	9.64	8.95	15.2	19.5	5.30

Table 4-2-5 Transported SS Quantity over the Rivers

Name of River	Measurement Point	Transported SS Quantity
	(Sampling Point Number)	(t/d)
De La Ribera	Cobija Station (No. 6)	1,170
Alja Mayu	San Antonio (No. 12)	1,700
Tarapaya	Molino (No. 17)	950
	Mondragon (No. 18)	390
Pilcomayo	Yocalla (No. 19)	1,010 *(185)
	Mendez Bridge (No. 25)	13,300 *(4,300)

Table 4-2-6 Pollution Charge Caused by SS

Direct	40cld	S P No						Mass Flov	Mass Flow rate (m ³ /s)					
date			Feb- 58				March		Apr		į	May		
Y a Dibora	Potosi (Cobiia)	٠	**0.236						0.236			0,115		
THE WINDS	Total (condition)		043						0.313			0.441		
Arija mayu	San Antonio	3 5	0,4,7						0 244			0.95		
Tarapaya	P. Molino	17	co:-						1 1			0000		
	Mondragon	18	0.951						0.737			84%. C.Y48		
Pilcomavo	Yocalla	19	5.16						4.14			4.51		
	Mendez Bridge	25	22.2				13.0		12.1		4	14.9		
									į					
SS concentration (mg/L)	tion (mg/L)	S.P. No												
date			end/Jan.	beg./Feb	mid./Feb	beg/Mar	mid./Mar	end/Mar	beg./Apr	mid./Apr	end/Apr	beg/May	mid./May	end/May
La Ribera	Potosi (Cobiia)	9	62.400	24,480	43600	72300	97300	31200	84400	34200	84600	57000	209000	51700
Alia mawi	San Antonio	12	32,800	17,290	14400	10900	78400	49600	28300	49600	81900	70000	20100	116000
Toronom	P Molino	1 4	44.690	3.555	1540	0668	3160	9800	6200	0066	10100	18000	13000	8270
a fadama	Mondragon	28	16.230	2702	1750	2180	2230	4860	2270	4960	2650	9009	2300	2640
Pilonmaso	Yocalla	19	23.060	389	300	830	375	9	470	4 0	570	94	17	240
- newirals	Mendez Bridge		57,910	975	14000	3160	3140	1750	1570	1750	820	970	400	099
Pollution of SS (t/d)	SS (t/d)	S.P. No												
date			end/Jan.	beg./Feb	mid./Fcb	beg/Mar	mid./Mar	end/Mar	beg./Apr	mid./Apr	end/Apr	bcg/May	mid./May	end/May
La Ribera	Potosi (Cobija)	9	1272.361	499.157	889.0214		1983.9859	636.18048	1720.9498		1725.0278	566.352		513.6912
Allamaw	San Antonio	12	1337.61	705.1	587.2435	444.5107	3197.2147	2022.7277	765.32256		2214.8381	2667.168	4	4419.8784
Tarapaya	P. Molino	17	4054.277	322.5096	139.7088	815.5728	286,6752	889.056	130.70592	208.70784	212.92416			678.8016
•	Mondragon	18	1333.561	222.0136	143.7912	179.1228	183.23107	399,3287	144,54634	315.83693	359.77392			461.95661
Pilcomayo	Yocalla	19	10280.7	173.4255	133.7472	370.0339	167.184	178.3296	168.11712	143.0784	203.88672	179.24544	6.624288	93.51936
•	Mendez Bridge	25	111076	1870.128	26853.12	6061.133	3526.848	1965.6	1641.3408	1829.52	888.624	1248.7392	514.944	849.6576

Table 4-2-7 Water and Sediments Analysis Results / Southeastern Zone of Potosi (1/2)

Analysis data of Southern part of Potosi (Rainy season-February)

. Guanty of Mater										ļ				_ = = _	
	Hď	SS	As	Sb	ပ	Cn	ර්	ιΤ' ©	T SC	ž	2	Zn	S	000	coment
Ample	<u> </u>	mø/L	7/Z	1/x 7/	mg/L	mx/L	mg/L	mg/L	# 8/L	mg/L	mg/L	mg/L	mg/L	mg/L	
R. Vitichi-1	6.44	89.4		<0.10	0.04	0.16	<0.005	5.80	0.61	2.03	0.33	6.70	600.0	6.74	PVI-1
S. Vitichi-2	8,03	6840		0.02	0.01	0.02	<0.005	3.01	3.69	0.89	0.24	0.03	<0.001	13.48	PVI-2
Cotagaita	7.71	1760		0.25	0.03	0.08	<0.005	12.4	5.16	3.14	0.21	0:30	<0.001	0.50	CTC
7. Tumusla	7.56	11700		60.0	0.06	0.24	<0.005	17.0	6.76	5.23	0.36	4.1	<0.001	13.48	PT C
A CR-P V A	× ×	4150	·	60.10	0.02	0.01	<0.005	0.14	4.92	0.19	0.22	0.03	<0.001	11.24	CBY
S SIO Tuniza	7.98	8340		0.25	0.02	0.10	<0.005	11.0	6.88	5.70	0.29	0.21	<0.001	13.48	Zdl
S. SIO V.A	8 2	6940		0.14	0.01	0.02	<0.005	<0.008	2.21	0.26	0.21	0.01	<0.001	8.99	SIO
3. Pilcomayo	7.91	504		<0.10	0.03	0.20	<0.005	57.0	3.19	9.82	0.48	1.13	<0.001	4.49	VMT

2. Analysis of SS												Ì				
	(SS)	γy	As	qS	PS	, nO	ඊ	Fe	T 88	Μ	9	_ 	ઇ	સ્	S	Ig.Loss
	(mg/L)	шdd	mdd	ppp	ppm	mdd	,mdd	mdd	qdd	mdd	шdd	mad	mdd	mdd	шdd	ક્ક
R.Vitichi-1	89.4						;			1						
R.Vitichi-2	6840															
R. Cotagaita	1760									:						
R. Tumusla	11700	3.00		46.64	9.00	53.0	11.76	47300	497	260	125	304.9	0	2000	2200	6.62
R. CB-P V.A	4150	5.00		35.72	11.0	71.0	26.36	44800	280	836	100	159.9	0	1800	11250	9.65
R. SIO Tupiza	8340	5.59		49.23	7.00	57.0	34.11	43900	467	674	85.0	107.9	0.50	1900	006	10.38
R. SIO V.A	6940	4.99		49.96	9.00	56.0	29.76	43400	557	892	92	138.9	0	1500	5300	9.71
R. Pilcomayo	504	8.00		41.73	8.00	45.0	11.3	43400	386	524	85	131	٥	2000	3000	5.75
														İ		

Contracted dientically content in Co			3													
	(SS)	Ag	As	જ	PO	ాస	្ន	Fe	Hg	Mn	Pb -	Zu	ડ	S,	S	Ig.Loss
	ı	mg/L	mg/L	7/8 n	mg/L	mg/L	mg/L	mg/L	μg/L mg/L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	8
R.Vitichi-1	9E-05	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R.Vitichi-2	0.0068		0	0	0	0	0	0	0	0	0	0	0	0	0	0
R. Cotagaita	0.0018	0	0	0	0	0	0	0	0	0	0	0	0	0	0	oʻ
R. Tumusla	0.0117	0.035	0	0.5457	0.105	0.62	0.1376	0,1376 553.41 5.8149 6.552	5.8149	6.552	1.463	3.5673	0	23.4	25.74	0.077454
R. CB-P V.A	0.0042	0.021	0	0.1482	0.046	0.295	0.1094	0.1094 185.92 1.162 3.469 0.415	1.162	3.469	0.415	0.6636	0	7.47	46.688	0.0400475
R. SIO Tuoiza	0.0083		0	0.4106		0.058 0.475 0	.2845	366.13 3.8948 5.621 0.709 0.8999	3.8948	5.621	0.709	0.8999	0.0042	15.85	7.506	0.0865692
R. SIO V.A	0.0069		0	0.3467		0.389	.2065	301.2 3.8656 5.33 0.527	3.8656	5.33	0.527	0.964	0	10.41	36.782	0.0673874
R. Pilcomavo	0.0005	0.0005 0.004	0	0.021	0.00	0.004 0.023	0.0057	0.0057 21.874 0.1945 0.264 0.043	0.1945	0.264	0.043	0.066	0	1.008	1.512	0.002898
												ĺ				

Table 4-2-7 Water and Sediments Analysis Results / Southeastern Zone of Potosi (2/2)

4.Caliculated elements content in water	ments co	ntent in	water													
	(SS)	(Ag)	As	જ	ည	ರ	ប៉	Fe	Hg	Mn	g.	-Z	S	(Sn)	છ	(Ig.Loss)
	mg/L	(mg/L)	17/8 n	μ g/L	mg/L	mg/L	mg/L	mg/L	4 8/L	lk/L	mg/L	mg/L	mg/L	(mg/L)	mg/L	8°
R.Vitichi-1	89.4	0	0	0	0.04	0.16	0	5.8	0.61	2.03	0.33	2.9	600.0	0	0	0
R.Vitichi-2	6840	0	0	0.02		0.02	0	3.01 3.69 0.89 0.24 0.03	3.69	0.89	0.24	0.03	0	0	0	0
R. Cotagaita	1760	0	0	0.25	0.03		0	12.4	5.16	3.14	0.21	6.0	0	0	0	0
R. Tumusla	11700	0.035	0	0.6357	0.165	0.86	0.1376	570.41	12.575	11.78	1.823	7.6673	0	23.4	25.74	0.077454
R CB-P V.A	4150	0.021	0	0.1482	0.066	0.305	0.1094	186.06	6.082	3.659	0.635	0.6936	0	7.47	46.688	0.0400475
R. SIO Tupiza	8340	0.05	0		0.078	0.575	0.2845	377.13	377.13 10.775 11.32 0.999	11.32	0.999	1.1099	0042	15.85	7.506	0.0865692
R. SIO V.A	6940	0.035	0		0.072	0.409	0.2065		6.0756 5.59	5.59	0.737	0.974	0	10.41	36.782	0.0673874
R. Pilcomavo	504	0.004	0		0.034	0.034 0.223	0.0057	78.874 3.3845 10.08 (3.3845	10.08	0.523	1.196	0	1.008	1.512	0.002898

5.Quality of Sediments	ments							,								
Sample	Ag	As	9S	PΩ	η	ひ	Fe	Ŧ,	Mn	쥰	Zn	S	ß	S	Ig.Loss	
	mdd	qaa		mdd	шdd	mdd	mdd	ppp	ppm	ppm	ppm	mdd	bpm	mdd	%	
R.Vitichi-1	4.00		۱.	8.00	46.0	5.09	33800	279	410	200	400	<0.50	926	0011	3.42	
R.Vitichi-2	1.00		46.3	8.00	30.0	4.87	40400	23.0	318	0.09	90.0	05.0	1460	909	2.31	
R. Cotagnita	3.00		56.1	20.0	40.0	7.26	44400	135	310	0.09	100	<0.50	926	13900	2.19	
R. Tumusla	2.00		54.9	10.0	80.0	5.03	37100	72.3	316	0.09	100	<0.50	732	1400	1.77	
R. CB-P V.A	3.00		34.6	20.0	20.0	8.55	29400	122	259	70.0	90.0	<0.50	976	1200	9.19	CBY
R. SIO Tupiza	1.00		43.5	10.0	30.0	12	37600	132	354	50.0	90.0	0.50	976	800	1.73	TPZ
R. STO V.A	1.00		39.7	20.0	20.0	13.4	36000	102	216	40.0	80.0	<0.50	732	1400	1.36	SIO
R. Pilcomayo	3.00		34.3	10.0	20.0	2.71	26500	207	247	50.0	70.0	0.50	975	1300	1.24	VMT

Table 4-2-8 Analysis Data of Southern Part of Potosi (mid. Oct. - dry season sample)

1. Ouality of Water

1. Cuality of water	בי														
	Hď	SS	As	Sb	8	Ö	ರ	Fe	Hg	Mn.	Pb	Zn	S	σοο	coment
Sample	•	mg/L	u g/L	ηgη	mg/L	mg/L	mg/L	mg/L	µg/L	mg/L	mg/L	mg/L	mg/L	mg/L	(Code name)
R. Vitichi-1	4.7	11	1,11	29.0	<0.002	2,10	<0.005	5,90	<0.10	4,51	0,20	0,03	100.0>	4	PVI-1
R. Cotagaita	8.4	0,2	0.97	05'0	0,03	0,01	<0.005	0,19	0,51	0,12	0,17	0,03	<0.001	4	CTG
R. Tumusla	8,6	245	0,29	0,53	0,10	0,01	<0.005	0,37	2,27	0,01	0.28	27.0	<0.001	99	PTU
R. CB-P V.A	8.7	472	0,38	65,0	0,02	0,01	<0.005	0,18	95'0	0,01	0,24	0,02	<0.001	6	CBY
R. SJO Tupiza	9.1	21	0,57	0.62	0,01	0,01	<0.005	0,18	1,18	90'0	0,18	0,02	<0.001	4	TPZ
R. SJO V.A	8,2	31	0.13	09.0	0,01	0,02	<0.005	0,25	1,04	0,70	0,21	0,03	<0.001	30	SIO

2.Qaulity of Sediment

Data are not offered from laboratory.

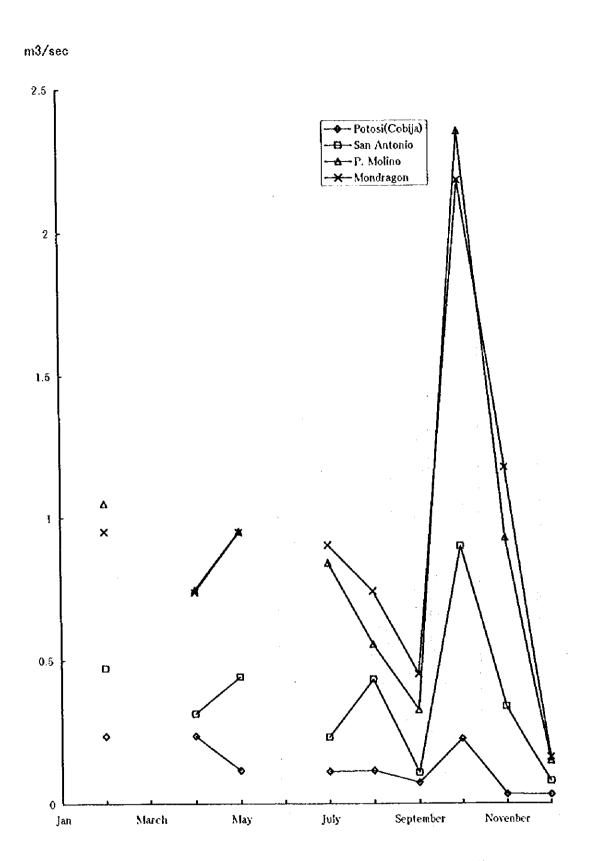


Figure 4-2-1 Variation of Water Flow at Tarapaya River

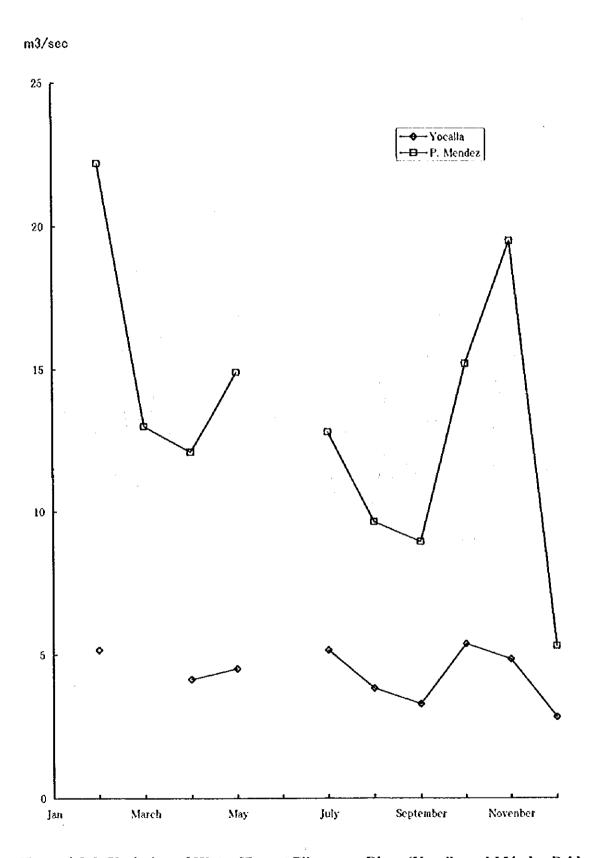


Figure 4-2-2 Variation of Water Flow at Pilcomayo River (Yocalla and Méndez Bridge)

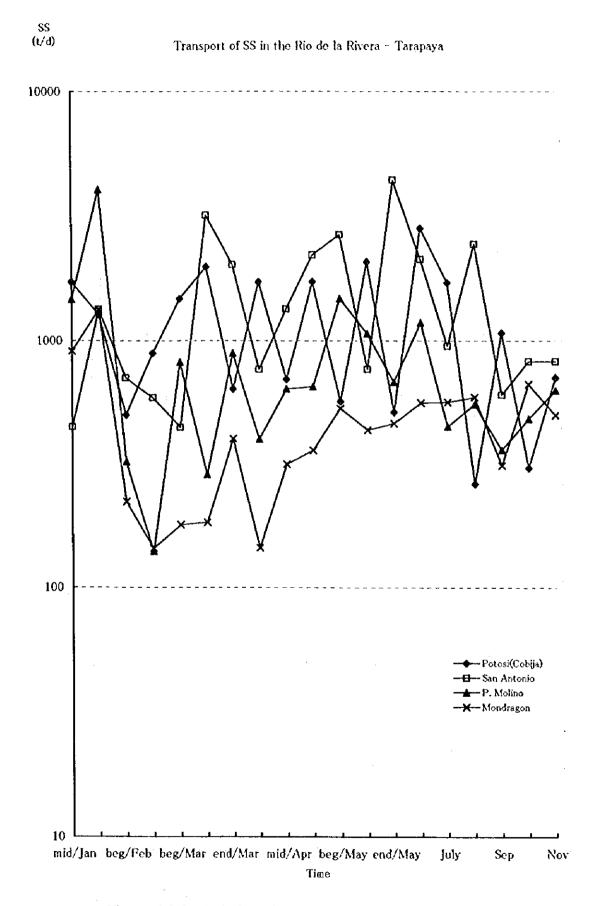


Figure 4-2-3 Variation of Transported SS over Tarapaya River

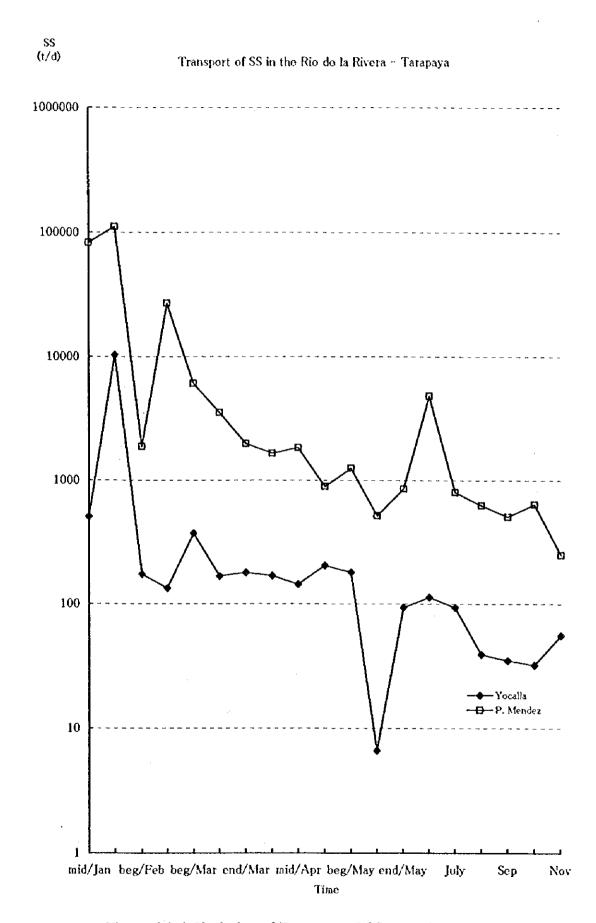


Figure 4-2-4 Variation of Transported SS over Pilcomayo River

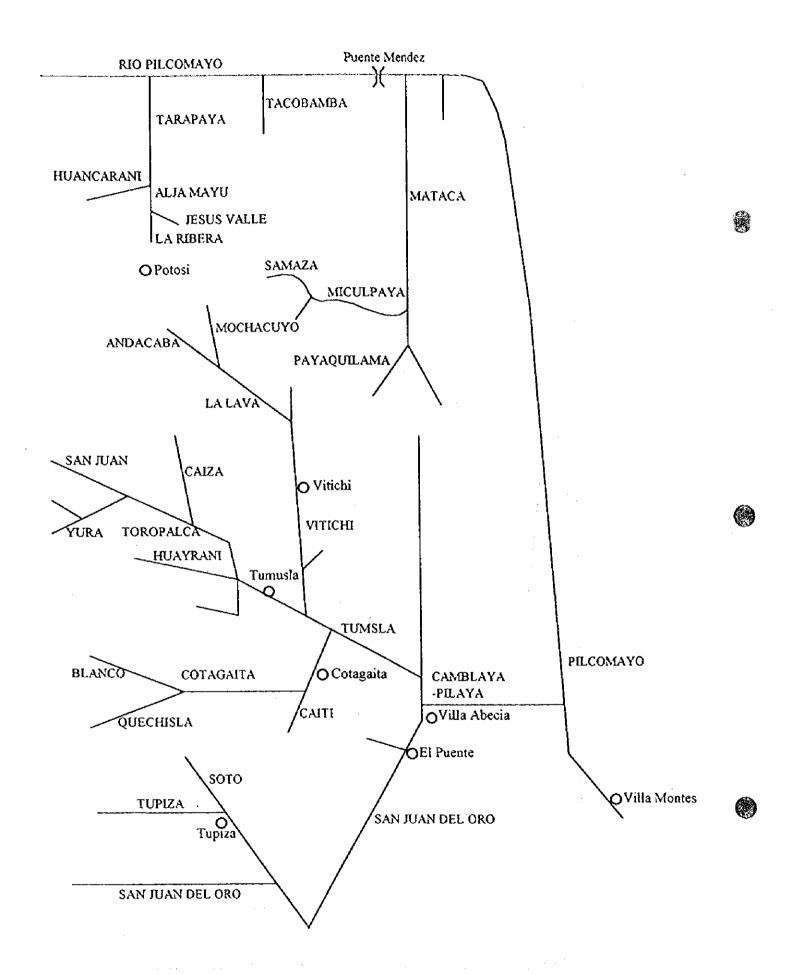


Figura 4-2-5 Diagrama de estructura hidrológica de la zona sudeste de Potosí

4-3 Area and Impact of Damages

4-3-1 Background

(1) Geographical position of the study area

This study covers the area of Potosi City of Tomas Frias Province, the area of the branch stream of Tarapaya River, including Cayara river, Totara D. river, and also the area of Pilcomayo River Basin from Tarapaya main river to the vicinity of Mendez Bridge.

The Pilcomayo River runs the prefectures of Potosi, Chuquisaca and Tarija, and each of them covers areas of 118,218 km², 51,524 km² and 37,623 km², respectively.

According to the CER-DET and QPID (1997), the Pilcomayo River Basin (PRB) covers an area of some 99,110 km² in Bolivia. The Prefectures of Potosi, Chuquisaca, Tarija and Oruro occupying 42,987 km², 30,818 km², 24,591 km² and 714 km² respectively. (The 3rd edition of 'Geografia y Recursos Naturales de Bolivia', gives the Pilcomayo River Basin as covering an area of 98,100 km²)

The Pilcomayo River arises in the Province of Avaroa (Oruro Prefecture) and, ends in the Province of Esmeralda (Tarija Prefecture). Its length is 620 km and it flows into the Paraná River.

Data of the hydrological station of Villamontes (Tarija Prefecture), shows that the river can get as deep as 6.6 m and has a width of 150 m. Its annual average flow is estimated as 203 m³/sec.

The weather that characterizes the basin is variable. In its highest part (altitude up to 4,500 meters) corresponding to the most extended area, a cold arid to semi-arid climate predominates. Downstream, the climate is mild and sub-humid. Close to the border of Paraguay and Argentina (minimum altitude of 250 m), the climate is torrid and arid to semi-arid.

In the high part of the basin, there are important mineral deposits where the most common metals are lead, tin, zinc, silver, antimony, copper and bismuth (see the Pilcomayo River map in the Figure 4-3-1 "The Pilcomayo River Map" for the location of the incidents and mining activities).

(2) Social aspect of the study area

According to official estimates of the National Statistics Institute (INE) the Bolivian population for 2000 will total 8.329 million inhabitants.

The same institution estimates that the prefectures of Potosi, Chuquisaca and Tarija, through which the Pilcomayo River passes, will have the populations, respectively, of 774,000, 590,000 and 403,000 in 2000.

Particularly regarding Potosi Prefecture, the following data shows how severe conditions of daily life are:

- ① An annual population growth rates for the period of 1990-1995 were, respectively, of 1.1, 2.4, 3.2 percent for Potosi, Chuquisaca and Tarija. 'The rate of the entire nation was around 2.4%.
- The child mortality rate, for the five-year period of 1990-1995, was very high for Potosi (112 per thousand births). In Chuquisaca (84 per thousand) and Tarija (60 per thousand), their rates lie closer to the national average (75 per thousand).
- 3 Life expectancies were 53 years in Potosi, 57.8 years in Chuquisaca and 63.1 years in Tarija, while the average at the national level is 59.3 years.

The few alternatives for employment and income generation are being influenced by the decrease of and the irregular quantity of supply of water resources. In fact, in this arid to semi-arid environment, water is of vital importance, for human daily activities as well as for the traditional productive activities (agriculture, stockbreeding and, in certain regions, fishing).

There is no doubt that for the peasant communities living downstream, close to mining operations, the water, soil and food chain pollution has caused deterioration of nutrition and hygiene. All this contributes to the accelerated growth of some cities and to the unplanned colonization of other rural areas of the country.

Nevertheless, the complexity of the predominant social situation, marked by poverty and marginality makes it difficult to determinate exactly the degrees to which the different factors, that together are at the

root of the regional socioeconomic crisis, contribute to problems. The migration data of each prefecture indicates the biggest rate of all in Potosi.

Within the study area, the Study Team carried out an impact study of the pollution originating from mining activities. It covers 34,701 people, and 8,070 families in the five districts, out of 120,000 people of twelve districts of Potosi city as urban area sample which correspond with the No. 1, No. 2, No. 3, No. 4 and No. 5 areas of the Figure 1-2-1. As the rural area sample the Study Team selected 7,396 people, and 1,720 families of thirty-seven districts, which correspond with the No. 6 to No. 42 areas of the Figure 1-2-1.

And the Figure 4-3-2 shows the location of 5 districts urban area in Potosi City.

The Figure 1-2-1 shows the location of 37 rural districts.

Table 4-3-1 gives the population and number of families for each district influenced by the minecaused pollution, including the urban area.

The table distinguished in mark and color the population that lives in the area of the river banks, the population who lives in the area one kilometer from the river, and population that is in the urban area of Potosi City.

Table 4-3-2 shows the interesting behavior of the people. The habitants of almost every rural area, have a strong tendency toward complete or incomplete emigration. The following facts are suspected as the main reasons for this.

- ① Eight areas near the urban area, few own property and suffer less impact of pollution.

 Jesus del Valle (6), Agua Dulce (8), La Palca (12), Santa Lucia (13), Cayara (14), Totara 'D (15),

 Totara Pampa (16) and Yocalia (17).
- ② Eight areas is influenced by the contamination of the Tarapaya River, and the Jaya Mayu River, and soil contamination all originating in mine activity.

Jaya Mayu (9), San Antonio (10), La Puerta (11), Molino (18), Aroifilla (19), Tambo Pampa (20), Miraflores (21) and Mondragon (22)

③ Twelve areas influenced by the contamination of Pilcomayo River and the area to be swept away by the inundation.

Sullcari (23), Pallea (24), Juicuni (25), Capilla Rosario (26), Tacuara (27), Talula (28), Ancoma (29), Huerta Khasa (30), Kholu (31), Oyora (32), Chalama (33) and Quebrada (35)

Six areas influenced by the contamination of the Pilcomayo River and the lack of cooperation for the
 protection and recovery of soil;

Aczulipamapa (34), Km127 (36), San Autonio (37), Vina Pampa (38), Tuero (41), Puente Mendez (42).

(3) Economic aspects of the study area

The principal economic sector that suffers from the PRB's pollution is agriculture.

The peasant sector is constituted of thousands of poor families who are close to the subsistence level and can rely only on activities of low profitability and high risk.

The low and extremely volatile prices paid for the traditional products of this region (potatoes, maize, wheat, barley, meat, wool, fish, etc.) do not permit a sustainable growth of these activities. As a consequence, there is a very low level of reinvestment in these production systems, which contributes to the gradual reduction of the productive capacity of the ecosystems.

According to the INE (1996), the shares of the departments of Potosi, Chuquisaca and Tarija were, respectively, 6.7%, 8.2% and 5.9 % of the gross national product obtained by agriculture in 1993. The agricultural gross product of these three prefectures were, for 1993, of some 157, 192 and 138 million Bolivians i.e. 37, 45 and 32 million US\$, respectively.

The following are the details information about commercial activities of the study area which is affected by the contamination of river water, including the urban area.

1) Urban area

As shown in the Table 4-3-3, the main commercial activities of the urban area is retailing and it's share is more than 50% of the total commercial activities. In both the large and small business sectors alike, retailing occupies the main commercial activities in the town, including official and unofficial. The second largest commercial activity is mine-related activity, which is also important for the local economy. Meantime the enterprises that are working in the mine-related activity area, have only small scale production capacity, primitive technology and a weak financial base, so their standpoint is very sensitive to the international price competition.

As the result these mine related activity enterprises are not in a position to compete with the big international firms who employ advanced technology. That means the mine related activity firms, being a declining sector, can not absorb emigrants from rural area. As a consequence it provoke the social instability and increase of unofficial economical activities.

2) Rural area

The main commercial activities in the rural area are agriculture and stockbreeding. Beside the agriculture activity in San Antonio and Aroifilla, there are ingenio and, in the center of village activities.

3) Emigration

As shown in Table 4-3-2, we can see the fact that the contamination of water causes economical aggravation and oppression of people's lives.

During the drought of 1983 and the worst period of Pilcomayo River water contamination in 1970's and 1980's, the number of emigrants sharply increased. Santa Cruz Prefecture and Cochabamba Prefecture were two main domestic destinations and Argentine was the main foreign destination.

4-3-2 Damages Impact Data

Dozens of mineral concentration plants which are presently operating or which are inactive, and hundreds of abandoned and operative mines, located in the territory of Potosi, are at the root of the current pollution processes of the Pilcomayo River Basin.

Nevertheless, the existence of other pollution problems generated within and outside the territory of Potosi should not be ignored. Those problems are magnified through management problems of the basin by farmers, stockbreeders, wood collectors and mining industries. In fact, the lack of planning of the use of natural resources and the adoption of management systems without use of sustainability criteria are causing a process of regional deforestation and serious disturbances of the water cycle.

We can see cases of social-economic impact caused by the inappropriate management of the economic activities in the follow five published study reports study mission survey.

Study	Area
(1) The Case of Villamontes	Pilcomayo River Tarija Prefecture
(2) The Case of Tarapaya River	Tarapaya River, Molino Mondragon
(3) The Case of La Patca	Tarapaya River, La Palca
(4) The Case of Potosi City	Potosi City De la Ribera River
(5) The Case of Study Area Survey	De la Ribera River to Mendez Bridge

(1) The Case of Villamontes

(1) Project Implementers: CER-DET and QPID-1997

②Study Area: A three areas in Tarija Prefecture

3Study Purpose:

- To analyze the concentration of lead and other toxic metals in the enter bodies of the silver fishes.
- · To analyze the concentration of lead and zino in the human blood.

i.

- · Laboratories' analysis of chemical elements the bodies of the fishes.
- · Laboratories' analysis of chemical elements the human blood (Guaranian).
- ⑤Principal Impact:

6-1 Fish:

During the three study period, the average concentration of lead in the tested fish was detected as 6.96 ppm and 5.56 ppm for the first and the third period, respectively.

⑤-2 Human Blood:

The test result for second and third period were 4.94 μ g/dl and 16 μ g/dl, respectively, as lead concentration.

®Detailed comments:

In the report there is no indication about the permissible limits of lead concentration in the entire fish and human blood. However it is pointed out that the children absorb 50% of the lead consumed against 10% in the case of adults, so it is necessary to be more careful about toxic metal caused aliment among children. The reported average levels of metal concentration registered in fish are summarized below:

Location	Comments	Pb (ppm)	Zn (ppm)
Villamontes	Near Argentine	2.11	13.31
Puerto Margarita	Between V. and Y.	7.76	35.64
Yukimbia	Near Potosi	6.82	33.48

(2) The Case of Tarapaya River

- ①Project Implementers: MEDMIN-1995 (Organization to support medium and small mining operators)
- ②Study Area: Tatapaya River. (Refer the Figure 1-2-1, corresponds to the areas of number 18, Molino to
- 22, Mondragon.)
- ③Project Purpose: To identify the social-economic impact around the area of the river Ribera and Pilcomayo between Potosi City and Mendez Bridge.

The following gives, the summarized principal impacts which affect the study area.

4-1 Human health:

Contact with water causes irritation, blooding and/or cracking of skin.

Drinking water causes intestinal and stomach diseases.

4-2 Agriculture:

Production of carrots require 3 times more seeds, for a lower productivity (by 70%).

Abnormally slow growth of plants.

Death of plants.

Low productivity.

4-3 Stockbreeding:

Intestinal disease when drinking water.

Degradation of nails after prolonged or frequent contact with water.

Low productivity.

4-4 Bio-diversity:

Disappearance of vegetation on river banks.

Disappearance of aquatic life.

(5)Observation:

There are lots of beautiful farming area alongside the river Talapaya, even though the river itself is strongly contaminated with heavy metal, like the district of Molino. The farmers of the area do not use the contaminated river water for their agricultural work, but are using the irrigation systems with supplied clean water from other water sources.

Meantime some of the dwellers who live in the place located after the Mendez bridge have less opportunity to use the clean water for their agricultural works, and only have the polluted Pilcomayo River water, making the productivity of such area very low.

So it is recommendable to extend the study area for the impact and not to limit the area to Potosi Prefecture.

- (3) The Case of La Palca
- ①Project Implementers: Centro para el Desarrollo Regional (C.D.R.)
- Study Area: La Palca area in Tarapaya River (Refer the Figure 1-2-1, corresponds to number 12, La Palca area)
- Study Purpose: Socio-Economic impact study of the mining activities
- (4) Sampling Method: Interviews with the leaders of the districts
- ⑤Principal impact:
- ⑤-1 Agriculture

Farms in the area which produce the broad bean using the Tarapaya River water, only can get the half of the yeild, 30qq/ha, compared with the non-contaminated water production, 45qq/ha production, and some of contaminated water farming only can produce 0.37qq/ha. 1 quintal (qq) is 100 kg.

⑤-2 Stockbreeding

The pastors who have their sheep around the area of the Tarapaya River, could produce only half the volume of products compared with results for previous years.

- (4) The Case of Potosi City
- ①Project Implementers: Centro para el Desarrollo Regional (C.D.R.)
- ②Study Area: five of twelve districts of Potosi City, which are alongside of the river Ribera. (Refer the
- Figure 1-2-1, areas of San Juan (1), San Cristobal (2), San Pedro (3), San Benito (4) and Cantumarca (5))
- Study Purpose: Socio-economic impact study of the contamination in the river
- **@Sampling Method:** 500 samples in all with 100 from each of the five districts.

©Principal Impact:

Diseases of digestive and respiratory systems, caused by contact with river water. It is believed that frequent occurrence of these diseases productivity of human resources.

6Observation:

Beside diseases caused by the contact with river water, due to the massive dust from ingenos the habitants reported the origin diseases caused by air contamination.

(5) Study of the area to be influenced by the contaminated river water

①Project implementor: Study Team researched the situation with the assistance of CDR (NGO of the local area)

②Study area: Five districts of Potosi city urban area and the 37 districts of the rural area of Pilcomayo River basin villages from the Potosi City to Mendez Bridge, which have been influenced by contaminated water. (Refer the Figure 1-2-1)

Urban area; 1.San Juan (1), 2.San Cristobal (2), 3.San Pedro (3), 4.San Benito (4), 5.Cantumarea (5)
Rural area; 1.Jesus Valle (6), 2.Cebadillas (7), 3.Agua Dulce(8), 4.Jaya Mayu (9), 5.San Antonio (10),
6.La Puerta (11), 7.La Palea (12), 8.Santa Lucia (13), 9.Cayara (14), 10.Totora D. (15), 11.Totora Pampa (16), 12.Yocalla (17), 13.El Molino (18), 14.Aroifilla (19), 15.Tambo Pampa (20), 16.Miraflores (21),
17.Mondragon (22), 18.Sulleari (23), 19.Pallka (24), 20.Juicuni (25), 21.Capilla Resario (26), 22.Tacuara (27), 23.Talula (28), 24.Ancoma (29), 25.Huerta Khasa (30), 26.Kholu (31), 27.Oyora (32), 28.Chalama (33), 29.Aczulipampa (34), 30.Quebrada (35), 31.Km127 (36), 32.San Antonio/Sucure (37), 33.Vina Pampa (38), 34.Talula (39), 35.Tasa Pampa (40), 36.Tuero (41), 37.Puente Mendez (42)

③Study Purpose: To investigate the environment damage impact to the human health, agriculture and stockbreeding.

(4) Study Method: Interviews at each village of study area.

⑤Impact Study Result:

The study area can be clarified into four types, (a) Complete Potable Water System area, (b) Fountains base area, (c) Lorry service areas, and (d) Pilcomayo River water area.

6-1 Human Health:

(a) Complete Potable Water System area:

As indicated in Table 4-3-5, the potable water supply system in the urban area serves every habitant, and only less than 10% of habitants use well water as an auxiliary.

(b) Fountains base area:

In the rural area, seventeen districts have a potable water supply system that uses concrete setting tanks. The resources of these potable water are mainly fountains and even the quality of which are not tested, users have no claim about that.

The remaining seventeen rural area districts (listed below), also use the water from the fountains but only a very simple setting tank, and the water quality there has not been examined. People waste much time and energy for the transportation of potable water from the fountains to their home, a job which is a very heavy burden to women and children.

1. Jesus Valle (6), 2. Cebadillas (7), 3. Agua Dulce (8), 4. Jaya Mayu (9), 5. San Anotonio (10), 6. Sullcari (23), 7. Pallka (24), 8. Juicuni (25), 9. Capilla Rosario (26), 10. Tacuara (27), 11. Talula (28), 12. Ancoma (29), 13. Huerta Khasa (30), 14. Kholu (31), 15. Oyora (32), 16. Chalama (33) and 17. Quebrada (35)

(c) Lorry service areas:

Regarding the San Antonio district (10) and Yocalla district (17), because of lack of potable water resource, the habitants get the potable water service by water tank lorry from Potosi City.

(d) Pilcomayo River water area

It is necessary to point out the fact that the river water of Pilcomayo is used as the potable water for the habitants of the districts of Aczulipampa (34), Km 127 (36), San Antonio/Sucre (37), Vina Pampa (38), Talula (39) and Puente Mendez (42). And even among people who take the river water as potable after processing the filtration with river sand, there are many cases of the stomachache and diarrhea.

(Diseases in rural area)

As shown in the Table 4-3-6, there are two principal diseases which are caused by water contamination.

- · Dermatopathy: On chapped on hands and feet.
- · Gastroenteritis: Diarrhea because of the disorder of stomach and intestines.

The incidence of diseases has become fewer than in previous years, but this is because of the deepened awareness about the contamination. That means there is no alteration about the contaminated area but the peoples are paying more attention to self-protection.

Meanwhile, in the districts of Mondragon (22), Sullacari (23), Juicuni (25), Tacuara (27), Aczulipamapa (34), Quebrtada (35), Km 127 (36), San Antonio/Sucre (37), Vina Pampa (38), Talula (39) and Puente Mendez (42), because of necessity, peoples use the contaminated water for irrigation and occasionally they come into direct contact with the contaminated river, by touching the water when using it for transportation, that has provoked several type of problems among the habitants.

There has not been any report of a mortality case but among the people who are using the polluted water as potable water, it is reported that there are many cases of nausea, stomachache and diarrhea.

(Diseases in urban area)

Table 4-3-7 we can see the main 13 types of diseases in the urban area and the human health condition in five urban districts.

We can see the fact that there is a correlation between the area highly contaminated being equal with the area have dense activities of mine-related enterprises. These enterprises increased their pollution whenever they increased production capacity.

The raw materials and the semi-products, after being processed by ingenios, are stocked in open areas without shelter, because of the severe weather of Potosi City, with its strong temperature alternation, and strong and continuous wind, spreads them into air and causes human health problems, especially asthma.

The effluent and solid waste from the mine activities enterprises are discharged into the river and such materials accumulate on the riverbed, causing harm to the habitants, especially women and children, who have no preventive methods they can use except to avoid the contact with the contaminated water, but they must rely on the river for transportation.

Since these rivers are used as a part of the waste, disposal system due to the incompleteness of the solid waste collection system, the river water has become ever more contaminated, and more incidents of causes the diarrhea and stomachache.

⑤-2 Agriculture

(Back ground)

Not only are almost every irrigation channel but also entire irrigation systems made of soil, these irrigation systems are the key to survive the dry weather and support highland agricultural activities. The farm land in the study area is divided into small parcels due to the land ownership pattern, and this is one of the structural reasons for out ward emigration. There are many cases of abandonment of irrigated farming land, due to decreased fertility of soil caused by polluted irrigation water.

(Damages)

Table 4-3-8 indicates the overall picture of agricultural damage in the study area.

In the districts of Aczulipampa (34), Km 127 (36), San Antonio/Sucre (37), Vina Pampa (38), Talula (39), Tasa Pampa (40), Tuero (41) and Puente Mendez (42) to obtain the required level of germination, it is necessary to use more than two or three times the quantity of seed compared with standard situation, even to get only a 60 to 70 % germination rate.

And in the districts of Talula (39), Chalama (33), Km 127 (36), San Antonio/Sucre (37), Vina Pampa (38) and Tuero (41), there have been causes of damage of fruit trees seen in the phenomenon of decreased productivity and withered trees.

The followings are six concrete phenomena of pollution damages.

- The shrinkage of and yellow coloration of a bud after the germination.
- Withered leaves and stems.
- Decreased productivity.
- Enameled plants.
- Immaturity of infant roots.
- Low germinative rate

6-3 Stockbreeding

(Background)

Table 4-3-9 shows the abundant stockbreeding field and it is available to be used as a stock farm every slop of hills and mountains regardless their sizes. And principally, domestic animals live close to the human habitation, but there is no irrigation system for stock farm, as the result there is no chance to come into contact with polluted water and there is no polluted grass.

The areas of stock farms are measured including the spaces between rivers and hills, which is practically equal with the administrative boundary.

One reason for erosion of land is the current stockbreeding methods, which permits the domestic animals to eat completely the grasses and trees of land surface.

(Damages)

As shown in Table 4-3-10 the damages analysis was made by classifying the owners of livestock into three groups based on the number of animals.

(A)First group.

Where one family keeps the twenty sheep and two goats, as the districts of La Puerta (11), La Palca (12), Aroifilla (19) and Tambo Pampa (20)

Where one family keeps the fifteen sheep and fifteen goats, as the districts of Mondragon (22), Sulicari (23), Juicuni (25), Capilla Rosario (26), Tacuara (27), Aucoma (29), Huerta Khasa (30) and Kholu (31). (C)Third group;

Where one family keeps the three sheep and twenty-five goats, like as the districts of Aczulipampa (34), Km 127 (36), San Antonio/Sucre (37), Vina Pampa (38), Talula (39), Tasa Pampa (40), Tuero (41) and Puente Mendez (42).

The breeding methods for sheep and goats are the same and it is understood that both animals are damaged equally by the polluted water and the risk of reduced productivity for both types is same. It is suspected that the following damages are caused by polluted river water.

The difference of number of livestocks and type of livestocks do not effect their illness.

- · Deformity: Maternity of deformed children with weight and legs.
- Gastroenteritis : Diarrhea.
- Dermatopathy: Diseases of outside skin.
 Regarding the above diseases, the following should be understood.
- a. For the deformed animals, the habitants pointed out the polluted water as the reasons, but it is requested to ascertain if this is true by using scientific analysis.
- b. Regarding the mortality, the third group reports a high mortality rate for young goats (less than 4 months old) 40 %, which is far higher than the normal mortality rate, 5 %.

4-3-3 Summary of Pollution Impact

Taking the above facts into the consideration, the main impacts caused by the Pilcomayo River Basin can be classified as follows:

- (1) Social Impact:
- 1) Poverty caused by the difficulty or the impossibility to maintain traditional productive activities.

- 2) Migration caused by poverty, particularly during winter and spring when there is a scarcity of good water resources, and the risk of catching sickness, the frequent disease mainly related with digestion, which could eventually be serious. 3) Migration and poverty are damaging the structures of the traditional social organizations. (2) Economic Impact: 1) Decrease and destabilization of the production capacity of fishing, agriculture and livestock raising. 2) Decrease of economic activities due to decreasing human resources. 3) Reduction of the economic and political importance of the farming sector in the Pilcomayo region's economy. (3) Environmental Impact: 1) The accumulation of, heavy metal, toxic, chemical elements in rivers, soils and food chains. 2) Increase of the suspended solids in the Pilcomayo River. 3) Increase of the ecosystem's sensitivity in the face of disturbing factors (human or natural). 4-3-4 Consideration of Causes and the Estimated Magnitude of Damage
 - (1) Consideration of causes

The Pilcomayo River is polluted in biological, chemical and physical terms. This situation is due to the past and current human activities as well as, although to a lesser extent, to geological natural processes. And several human activities are the roots of the pollution problem of this river basin.

1) Towns and cities

Towns and cities, being areas of concentrated economic activity, produce certain quantities of gases as well as solid and liquid waste materials which affect the water quality of rivers.

Judging from the scale of the urban population, however this factor seems not very true in the prefecture of Potosi since it does not have big urban areas. The only important city is Potosi which has 120,000 inhabitants. But due to the lack of any type of sanitation facilities for drainage in Potosi City, we can anticipate contamination by the colon bacillus. Currently with German support, two sewerage plants are planned to be installed.

2) Agriculture

Chemical products used in farming and livestock raising for the protection and development of crops and stockbreeding. These products are sometimes toxic and they do not always degrade before being carried away to the rivers. Moreover, farming activities and the felling of trees to burn the wood for energy affects soils and vegetation communities stability; this loss of ecological stability intensifies at the same time the natural processes of soil and water erosion as well as of sedimentation.

Due to the fact that regional ecosystems are globally overused by poor farmers and even the use of agrochemical products is limited by cultural and economical factors, it can be considered that soil erosion and sedimentation constitute the pollution source originated by this sector.

3) Industries

The prefecture of Potosi is characterized by very limited industrialization and the most important industry is mining. Mining activities have caused chronic and sometime acute pollution within several sub-basins of the Pilcomayo River Basin.

The dumping of residual water that comes from the ingenios, the accumulation of mineral tailings in precarious conditions and the loss of water from active and abandoned mines constitute the bulk of the pollution sources generated by this sector.

And the increasing small size of suspended solids, it should be emphasized that the dramatic substitution of gravity method beneficiation plant 'Ingenio' by the floating method ingenios, after the 1985, started to increase the fine suspended solid in the discharge of the each ingenio.

Such technical alteration was caused to meet the market demand of zinc, lead and silver than tin at the same period.

4) Environment Damage Matrix

Summarized in Table 4-3-4 is the relation between the causes of pollution and the victims of the pollution. Even from this environment damage matrix, we can see the fact that the study area bears a heavy environmental burden.

(2) The estimated magnitude of damages

Since we do not have enough reliable data and information, it is not justified to make any estimation of damages caused by the water contaminated by mining activities, but to have a rough perception of the magnitude of the impact, it might be able to use the following data.

Hereunder the table shows the estimated opportunity loss in human force, agriculture, livestock and fisheries became of the water pollution, to be caused by the mining activities;

Section Human Force (1994)		Estimated Impact in million US\$	Observation The possible increase of GDP with the national level life period US\$400×(59.3-53)×1/53×478,000		
		22.7			
Agriculture (1993)	Case 1	3.7	The possible increase of agricultural production with the national level productivity for the Pilcomayo basin area (1,723Bs/ha-1,353Bs/ha) × 116,000ha × 0.364 ÷ 4.27Bs/US\$		
	Case 2	0.28	The possible increase of agricultural production with the national level productivity for the study area {1,537ha × (1,723Bs/ha-1,353Bs/ha)+ 361ha × 1,723Bs/ha} ÷ 4.27Bs/US\$		
Livestock Breeding (1993)		1.8	The recoverable value with assumption that the actual productivity is limited at the half level of normal condition.		
Fisheries (1993)		0.2	With the assumption that the same size of production with the actual production can be recoverable without contamination.		
Total	Case 1	28.6			

1) Number of peoples to be affected by the contamination in Potosi and other prefectures in Bolivia, the health of these peoples can be affected in some mode:

Number of rural area habitants for the, Potosi, Chuquisaca and Tarija prefectures are 478, 336 and 146 thousand, respectively (in 1993).

The areas of each prefecture, Potosi, Chuquisaca and Tarija as indicated at the paragraph 4-3-1 are 118, 51 and 37 thousands Km², respectively. The area of the Pilcomayo River Basin in each of the three prefectures are 43, 30 and 24 thousands km² respectively, and which corresponds with 36.4, 59.8 and 65.4% of each prefecture area, respectively.

Then we can estimate the gross number of peoples likely to be affected by the mining-origin water contamination as, 234, 201 and 96 thousand respectively, for Potosi, Chuquisaca and Tarija, taken not only rural data into consideration but also including half of the citizens of Potosi City.

The total number of population and family living alongside of the Pilcomayo River, who can be considered as being affected by the polluted river water from the Potosi City to the point of 180 km down

stream at the Mendez Bridge vicinity are, as mentioned in the paragraph 4-3-2 5), 42,097 habitants and 9,790 families.

The average expecting lives in birth during the years of 1990 and 1995, in Potosi and Chuquisaca, are 53 years old and 57.8 years old, which are less than national average 59.3 years old.

The reasons of the shorter lives in these two prefectures are not investigated will, meantime, if the water contamination caused by mining activities is one of the main factors, we have to pay attention to the economic loss of work force in the area.

Now we can compute the domestic production loss of each prefecture because of the earlier missing of work force with US\$22.7 million and US\$5.1 million, considering the each per capita gross domestic product as US\$400 and US\$581, respectively.

2) Possible opportunity loss of agricultural production in Potosi and other prefectures as follows:

The value of agricultural production per year for the three prefectures and the total production in Bolivia are 157, 192, 138 and 2,347 million bolivians, respectively (in 1993).

The area of agricultural land for each prefecture are 116, 149, 69 and 1,362 thousands bectares.

The value average output per unit agricultural area (ha) are Bs1,353, Bs1,289, Bs2,000 and Bs1,723, respectively.

Then if the average production rate in Bolivia can be realized in these prefectures, the estimated maximum recuperative production shall be Bs43.8 and Bs64.5 million for Potosi and Chuquisaca, in US\$ 10.0 million and 15.2 million respectively.

Based on certain assumptions of the paragraph 4-3-2 (5), within the study area, from Potosi City to the point of 180 km downstream on the Pilcomayo River, Mendez bridge, the possible increase of value of

agricultural production would be Bs1,191 thousand, in US\$ 280 thousand, in case the nonpolluted water irrigation becomes available. This calculation was made based on the assumption of possible increase of productivity with Bs375 per ha, which is the balance of national average productivity for the current farming land, 1,537 ha and additionally the possible production with national average productivity, 1,723 Bs per ha, to the newly prepared farming land by introducing the irrigation system with non-polluted water, 361 ha.

The ANNX(9) shows the location of farming field in the study area peparately the areas irrigated by non-polluted water and polluted area, in addition to the possible recoverable area.

3) Possible opportunity loss of stockbreeding in Potosi and other prefectures:

Referring to the case of La Palca, as one of the example of stockbreeding damages caused by the Piticomayo River contamination, the number of animals which each stockbreeder could keep, would be able to expect the double of the present one due to the contaminated water.

And estimating from the present stockbreeding production in each of three prefectures we can obtain the magnitude of the damages in the stockbreeding area, as follows.

The current stockbreeding production volumes in Potosi, Chuquisaca and Tarija are, Bs33,807, Bs95,904 and Bs59,526 thousands (in 1993).

The shares of the Pilicomayo River Basin in each prefecture area are, 36.4%, 59.8% and 65.4%, respectively, as indicated in the paragraph 4-3-1.

Then, considering the rate of the productivity the area of the Pilicomayo River Basin as 50% on average, the estimated recuperative production value for each prefecture would be Bs7,521, Bs40,906 and Bs28,921 thousands for Potosi, Chuquisaca and Tarija, and which correspond with US\$1.8, US\$9.6 and US\$6.8 million, respectively in the value of 1993.

4) Possible opportunity loss of fishing in Potosi and other prefectures:

Even we do not have enough data for fishery damages of the Pilcomayo River using the data of the Case of Villamontes in Tarija area, we might be able to estimate the magnitude of damages as follows.

Since the data of Case of Villamontes indicates the fish of the area are contaminated by lead, even though the rate of contamination is not so significant, we can consider that these fishes have no value commercially, in a severe judgement.

Then the total production value of fisheries in these areas Potosi, Chuquisaca and Tarija can be considered the maximum damaged value due to the impact of mining activities of the areas, which would be Bs1,036, Bs1,191 and Bs9,784 thousand for the three, and which correspond with US\$ 0.2, US\$ 0.3 and US\$ 2.3 million, respectively in 1993.

In the study area, from Potosi City to the point of 180 km down stream of the Pilcomayo River, Mendez Bridge, especially the farmers living near from the Mendez Bridge, traditionnaly used to get their principal nutrition from the fish of the river, but today there are no fish there.

Table 4-3-1 Population of Study Area

Prefecture of Potosi, Province of Tomás Frías

	. 497	. Ardena	Confidence (line a company	ន ូវខ្ លែព្យល់ទេ
1	Potosi	Potosi	San Juán *	1 330	5 719
2			San Cristóbal *	1 227	5 276
3			San Pedro *	1 739	7 478
4	·		San Benito *	2 184	9 391
5			Cantumarca *	1 590	6 837
- 6			Jesus Valle	15	65
7	Yocalla	Santa Lucia	Cebadillas	16	69
8			Agua Duice	40	172
9			Secc. Jaya Mayu	4	17
10			San Antonio	108	464
11			La Puerta	24	103
12			La Palca	78	335
13]	Santa Lucía	89	383
.14			Cayara	120	516
15	<u> </u>	Totora "D"	Totora D	130 _	559
16			Totora Pampa	175	753
17		Yocalla '	Yocalla	80	344
18	Potosi	Tarapaya	Et Molino	120	516
19			Aroifila	39	168
20			Tambo Pampa	50	215
21			Miraflores	20	86
22			Mondragón	14	60
23	Tinguipaya	Tinguipaya	Sullcari	20	86
24			Palika	5	22
25			Juicuni	25	108
26			Capilla Rosano	6	26
27			Tacuara	16	69
28	<u> </u>		Taluia	160	688
			Sub total riverside	8 595	36 959
	Sub total listed		9 424	40 523	

Prefecture of Potosi, Province of Cornello Saavedra

111.	(*) (*) (*)	s wince	no action and a	ing a ring tr	પારંતું તાલ હોય
29	Tacobamba	Ancoma	Ancoma	7	30
30			Huerta Khasa	2	9
31		Tacobamba	Kholu	1	4
32			Oyora	2	9
33			Chalama	20	. 86
34		ļ	Aczulipampa	34	146
35		Rođeo	Quebrada	4	17
36	Betanzos	Potobamba	Km. 127	30	129
37		Tuero	San Antonio	48	206
38		Millares	Viña Pampa	50	215
			Sub total riversidel	198	851

Prefecture of Chuquisaca, Province of Oropeza

	(4,721.)	Volta (s	Gannon A	www.conje	and a policy of
39	Sucre	Quila Quila	Talula	38	163
40	Yotala	Yotala	Tasa Pampa	73	314
41		Tuero	Tuero	35	151
42	[]]	ļ	Puente Mendez	22	95
			Sub totał riverside	168	722

TOTAL Riverside	8 961	38 532
TOTAL Listed	9 790	42 097

Community of riverside	* Urban area of POTOS! city
Community more than 1km far from river	

Table 4-3-2
Emigration
(Expressed in %)
Prefecture of POTOSI, Province of Tomás Frías

		180	isser accord	1 9/00/01/01 (())		
	Copminutity	e andone :	Estimate	Constitue-	indian.	
6	Jesus Valle	no data	65	no data	no data	
7	Cebadillas	90	69	56,52	23.33	
8	Agua Dulce	419	172	65.36	58.95	
9	Secc. Jaya Mayu	no data	17	no data	no data	
10	San Antonio	834	464	35.12	41,95	
11	La Puerta	258	103	34.95	\$0,00	
12	La Palca	479	335	60.00	30.00	
13	Santa Lucía	510	383	69.40	24.90	
14	Cayara	645	516	50.00	20.00	
15	Totora D	745	559	50.1 0	24.96	
16	Totora Pampa	941	753	23.90	19.97	
17	Yocalla	491	344	34.89	29.93	
18	El Molino	1290	516	39.92	60.00	
19	Aroifilla	311	168	39.88	45.98	
20	Tambo Pampa	413	215	52.11	47.46	
21	Miraflores	242	86	69.77	64.46	
22	Mondragón	200	60	78.33	70.00	
23	Sullcari	215	86	38.37	60.00	
24	Palika	no data	22	no data	no data	
25	Juicuni	154	108	39.80	29.87	
26	Capilla Rosario	no data	26	no data	no data	
27	Tacuara	99	69	33.33	43.43	
28	Talula	955	688	39.97	27.96	
	Sub total riverside	4495	2322	47.42	50,29	
	Sub total listado	9291	5822	47.99	41.22	

Community of riverside

Community more than 1km far from river

Prefecture of POTOSI, Province of Cornello Saavedra

		12,322	hio.		1.0
	Section Of Section 1		estional Ca		
29	Ancoma	200	30	sin esp.	85.00
30	Huerta Khasa	no data	9	no data	no data
31	Kholu	200	4	0.00	98.00
32	Оуога	180	. 9	0.00	95,00
33	Chalama	123	8 6	no data	30.11
34	Aczulipampa	228	1 46	39.73	35.96
35	Quebrada	no data	17	no data	sin esp.
36	Km. 127	179	129	65.00	27.93
37	San Antonio	294	206	80,00	29.93
38	Viña Pampa	537	215	40.00	59.96
	Sub total riverside	1941	851	37.46	57.74

Prefecture of Chuquisaca, Pvovince of Oropeza

					alpan et se e
	7.55		Actual		De)initive 1
39	Talula	no data	163	no data	no data
40	Tasa Pampa	418	314	32.48	24.88
41	Tuero	201	151	25.16	24.87
42	Puente Mendez	173	95	no data	45.10
	Sub total riverside	792	722	28.82	31.62

ſ	TOTAL Riverside	7228	3896	37.90	46.55
ſ	TOTAL Listed	12024	7396	38.09	43,52

Community of riverside

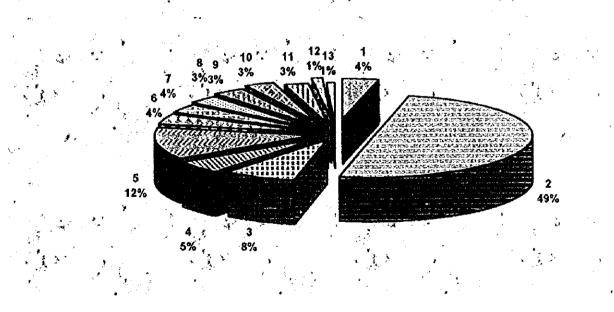

Community more than 1km far from river

Table 4-3-3 Occupation Classification in City Area

(Expressed in % of Population)

					44.44	
Livestock Farming	0.00	0.00	0.00	0.00	18.00	3.6
Commercial	59.00	60.00	61.00	59.00	9.00	49.6
Mining	8.20	8.40	8.50	9.00	4.00	7.6
Teachers	4.20	5.00	6.30	5.50	3.50	4.9
Medical Services	5.40	4.20	4.00	5.70	44.00	12.0
Others	4.80	4.00	4.50	4.00	3.00	4.0
Without specification	4.00	5.00	3.00	3.50	3.00	3.7
Industries	3.50	3.00	4.00	3.10	1.00	2.9
Construction	3.50	3.00	1.70	4.00	5.00	3.4
Transportation and Com.	3.00	4.00	2.00	2.50	3.50	3.0
Hotel & Restaurant	2.00	1.90	3,50	1.50	3.80	2.9
Public Administration	1.50	1.00	1.00	1.80	0.00	1.6
Third Countries Org.	0.90	0.50	0.50	0.40	2.20	0.9

Economic Activities

Source: INE Census 1992, Il Census Economic Establishment

Note: In graph the average numbers are used.

fable 4-3-4

No Recreation at River Side No Recreation at River Side No Recreation at River Side Less Productivity Lass Productivity INo Recreation at River Side No Recreation at River Side Less Productivity No Adequacy for Housing No Adequacy for Housing No Adequacy for Housing No Admouncy for Mousing Less Productivity Less Productivity Less Productivity Less Productivity Less Productivity Less Productivity ess Productivity Less Productivity Less Productivity Less Productivity Less Productivity Fishery Diarrhea, Other Possible Contamination Less Productivity Less Productivity Less Productivity Less Productivity ess Productivity Less Productivity ese Productivity Less Productivity ess Productivity Less Productivity ese Productivity Less Productivity Land Occupation Land Occupation Stock Farming Less Productivity ess Productivity Environment Damages Matrix Diarrhea Stomech Ache, Increment of Heavy Moral in Blood Diarrhea Stomach Ache, Increment of Heavy Mesal in Blood Heary Metal in Blood Diarrhea, Stomach Ache, Increment of Heary Metal in Blood Diarrhea, Stomach Aoha, Increment of Heavy Metal in Blood Diarrhea, Stomech Ache, Increment of Asthma, Nose and Throat Pain xhaust from Industries and Home Fume Diesel oil gas exhaust but no coal fume Asthma. Nose and Throat Pain Asthma, Nove and Throat Pain Asthma Nose and Throat Pain Asthma, Nose and Throat Pain Aethme, Nose and Throat Pain Nose and Throat Pain Doef, Numbrees Noise & Vibration by Rotating Machine | Deaf, Numbress Noise & Vibration by Rotating Machine Deaf, Numbness Asthma No lead gasoline but dust and diesel oil Waste Rook and Drained Waste Solid No Treatment Facilities for 100 incomes for 100 incomes (8,640 / day) for City No Treatment Facilities for City 50 incomes feed, 300 / day) for City No Treatment Facilities for Possible Contamination 18,000t/year for all Potosi with 120,000 population (about 0.5kg/day Parson) Heavy Metal Arsenic, Chemical, etc. Heavy Metal, Arsenic, Chemical, etc. Drained Weste Solid: 1.300t/day Winns Activities, Drainage, Solid Waste, Heavy Metal, Arsenie, etc. Banafiolation Plant Activities, Drainage. Heavy Metal, Arsenic, etc. Heavy Metal Arsenic, etc. Weste Rock: 1.450t/day Pollocente Crowded Transport Chemical Materials Chemical Materials Dust ٦ ا Other Environment Related Sectors Issues Mining Site Activities, Drilling etc Densi inscommentendownes: Termone Solid Weste
Selection of Rock and Beneficiation
Process Type Causes of Polition
Ining Industry Sector Related Issues
Water Humankind Used Water Industries Used Water (Inoluding Beneficiation Plant) Agricultural Chemicals for Insect Beneficiation Plant Activities Baneficiation Plant Facilities Beneficiation Plant Orainage Underground Water Usage Family Origin Solid Waste Mining Activities Orainage Naste Rock Drainage Mining Site Facilities Hospital Used Water Noise & Vibration Automobile Accomobile Solid Waste Land Subside Solid Waste etc Noise Water Stink Soil Soil Air ₹

Table 4-3-5

System of Portable Water for Each Community

(% is measured by number of families)

Prefecture of Potosi, Province Tomás Frias

	Community	s spendik	Siperivelace		Valjek (Postos)	Nr (28) (6)	
					Fyndyn i	A YOU	7000
1	San Juán	75.0	25.0	0.0	0.0	0.0	0.0
2	San Cristóbal	65.0	45.0	0.0	0.0	0.0	0.0
3	San Pedro	85.0	15.0	0,0	0.0	0.0	0.0
4	San Benito	60.0	40.0	0.0	0.0	0.0	0.0
5	Cantumarca	80.0	20.0	0.0	0.0	0.0	0.0
6	Jesus Valle	0.0	0.0	0.0	20.0	80.0	0.0
7	Cebadillas	0.0	0.0	62.5	0.0	37.5	0.0
8	Agua Dulce	0.0	0.0	60.0	0.0	40.0	0.0
9	Secc. Jaya Mayu	0.0	0.0	0.0	75.0	25.0	0.0
10	San Antonio	0.0	0.0	0.0	0.0	5.5	94.5
11	La Puerta	12.5	79.0	8.5	0.0	0.0	0.0
12	La Palca	79.5	20.5	0.0	0.0	0.0	0.0
13	Santa Lucía	40.5	55.0	4.5	0,0	0.0	0.0
14	Cayara	75.0	20.0	5.0	0.0	0.0	0.0
15	Totora D	70.0	20.0	10.0	0.0	0.0	0.0
16	Tolora Pampa	80.0	14.9	5.1	0.0	0.0	0.0
17	Yocalla	75.0	20.0	2.5	1.3	0.0	1.3
18	El Motino	45.0	50.0	5.0	0.0	0.0	0.0
19	Aroifilla	79.5	20.5	0.0	0.0	0.0	0,0
20	Tambo Pampa	74.0	20.0	0.0	6.0	0.0	0.0
21	Miraflores	70.0	30.0	0.0	0.0	0.0	0.0
22	Mondragón	7.2	71.4	0.0	21.4	0.0	0.0
23	Sulicari	0.0	0.0	0.0	100.0	0.0	0.0
24	Palika	0.0	0.0	0.0	100.0	0.0	0.0
25	Juicuni	0.0	0.0	24.0	76.0	0.0	0.0
26	Capilla Rosario	0.0	0.0	100.0	0.0	0.0	0.0
27	Tacuara	0.0	0.0	0.0	100.0	0.0	0.0
28	Talula	0.0	0.0	20.0	80.0	0.0	0.0
	Riverside Average	40.2	24.2	7.6	22.4	0,3	5.3
	Listed Average	38.0	20.2	11.0	20.7	6.7	3.4

Community of Riverside

Community more than 1 km far from riverside

Prefecture of Potosi, Province Cornelio Saavedra

	saesinayalija es	Spara cons	nost v one.		Without Schill	AVENIAN SEE	1 2.0
€ . V.			danta.	\$4 5 (878.38)			
29	Ancoma	0.0	0.0	0.0	57,0	43.0	0.0
30	Huerla Khasa	0.0	0.0	0.0	100.0	0.0	0.0
31	Kholu	0.0	0.0	0.0	100.0	0.0	0.0
32	Oyora	0.0	0.0	0.0	100.0	0.0	0.0
33	Chalama	0.0	0.0	5.0	95.0	0.0	0.0
34	Aczulipampa	0.0	0.0	100.0	0.0	0.0	0.0
35	Quebrada	0.0	0.0	0.0	100.0	0.0	0.0
36	Km. 127	33.0	40.0	0.0	27.0	0.0	0.0
37	San Antonio	0.0	22.9	0.0	77.1	0.0	0.0
38	Viña Pampa	60.0	40.0	0.0	0.0	0.0	0.0
	RiversIde Average	9.3	10.3	10,5	65.6	4.3	0.0

Prefecture of Chuquisaca, Province Oropeza

		fgi koreij.	intayê e.e.		Yalis (de ajs	4C 600 k	
			1575				
39	Talula	0.0	100.0	0.0	0.0	0.0	0.0
40	Tasa Pampa	0.0	90.4	0.0	9.6	0.0	0.0
41	Tuero	11.0	86.0	0.0	3.0	0.0	_ 0.0
42	Puente Mendez	18.0	68.0	0.0	14.0	0.0	0.0
	Riverside Average	7.3	86.1	0.0	6.7	0.0	0.0

Riverside Average	18.9	40.2	6.0	31.6	1.5	1.8
Listed Average	18.2	38.9	7.2	31.0	3.7	1.1

Community of Riverside

Community more than 1 km far from riverside

Table 4-3-6
Record of Human Sickness

Prefecture Potosi, Province Tomás Frías

(% is indicated with number of patient at survey time)

	Average listed	8283	6.5%	12271	7.4%	
	Avaerage riverside	8278	10.1%	12271	11.5%	
28	Takda	5	0.7%	no dala		
27	Tacuara	2	2.9%	0	0.0%	
26	Capilla Rosario	0	0.0%	. 0	0.0%	
	Juicuni	16	14.8%	0	0.0%	
	Palika	0	0.0%	no data		Diarrhoea by ocasional consumption
23	Sulicari	15	17.4%	10	11.6%	
22	Mondragón	12	20.0%	to	16.7%	Diarrhoea by ocasional consumption
21	Miraflores	Ů	0.0%	0	0.0%	
20	Tambo Pampa	5	2.3%	0	0.0%	
19	Aroifila	5	3.0%	0	0.0%	
18	El Molino	o	0.0%	0	0.0%	
16 17	Totora Pampa Yocalla	0	0.0%	0	0.0%	
15	Totora D	0	0.0%	0	0.0%	
	Cayara Tahana D	0	0.0%	0	0.0%	•
	Santa Lucia	0	0.0%	0	0.0%	
	La Palca	0	0.0%	0	0.0%	
.	La Puerta	8	7.8%	0	0.0%	
. }	San Antonio	0	0.0%	0	0.0%	
- 1	Seco. Jaya Mayu	0	0.0%	0	0.0%	Recently river is contaminated
- 1	Agua Dulce	0	0.0%	0	0.0%	
1	Cebadillas	0	0.0%	0	0.0%	
- 1	Jesus Valle	0	0.0%	0	0.0%	
ı I	Cantumarca	1026	15%	2188	32%	
4	San Benito	2817	30%	2911	31%	
3	San Pedro	2019	27%	3066	41%	
2	San Cristóbal	580	11%	1741	33%	
1	San Juán	1773	31%	2345	41%	
		Holos (a		Paralland	love.	
		r menus		erarestan e Turi		Harri OSIGO RAN

Community of riverside

Community more than 1 km far from river

Prefecture of Potosf, Province Cornelio Saavedra

	Entropy to the side	Pelipetines		iganosinis Europe		io (0.4)
	is (**Innology) Successful Language (**)	N diviners				
29	Ancoma	0	0.0%	0	0.0%	
30	Huerta Khasa	no data		no data		
31	Kholu	0	0,0%	0	0.0%	
32	Oyora	0	0.0%	0	0.0%	
33	Chalama	0	0.0%	0	0.0%	1
34	Aczulipampa	20	13.7%	0	0.0%	
35	Quebrada	4	23.5%	no data	<u> </u> -	
36	Km. 127	35	27.1%	- 15	11.6%	Diarrhoea by river water drink
37	San Antonio	48	23.3%	20	9.7%	Diarrhoea by river water drink
38	Viña Pampa	20	9.3%	no data		Diarrhoea by river water drink
	Avaerage riverside	127	9.7%	35	2.1%	

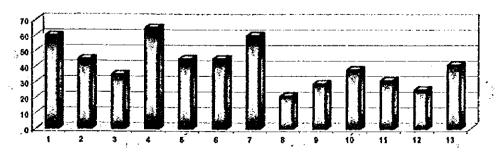
Prefecture of Chuquisaca, Province Oropeza

	Avaerage riverside	62	11.5%	0	6.1%	
42	Puente Mendez	15	15.8%	- 8	8.4%	Diarrhoea by river water drink
41	Tuero	25	16.6%	24	15.9%	Diarrhoea by river water drink
40	Tasa Pampa	0	0.0%	0	0.0%	Diamhoea by river water drink
39	Talula	22	13.5%	no data		Diarrhoea by river water drink
		in Moke				
				Chairean Carl		

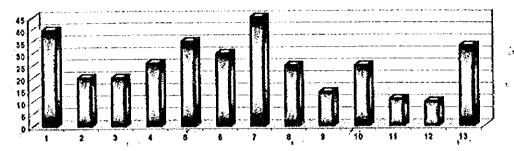
Avaerage riverside	8467	10.4%	12306	6.6%	
Average listed	8472	9.2%	12306	5.2%	

Community of riverside

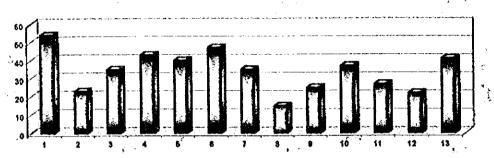
Community more than 1 km far from river

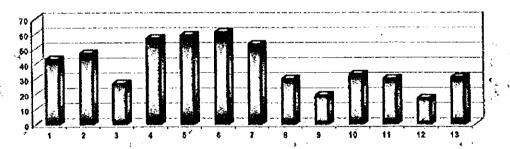

Table 4-3-7

Type of Sickness at Urban Area (% is Indicated with number of patients at survey period.)


ત્રે}(છ)	Kir ál (Eur ber	10 corbin
312	Tonsilities	Headache due to absorption of dust and offensive smell during operation of ingenios.
	Gatrities	Effect to the digestive organ due to absorption of dust originated from the waste
		of ingenios.
	Lung Problem	Effect to the digestive organ due to absorption of soil of river which keeps the
		offensive materials of the contaminated water.
	Pharyngitis	Effect to the throat due to absorption of dust originated from the waste of ingenios.
	Pharyngitis	Effect to the throat due to absorption of dust of copper sulfat or salt sulfat of road
		and houses.
	Conjunctivitis	Effect to the eyes due to absorption of dust of copper sulfat or salt sulfat.
\$7	Conjunctivitis	Effect to the eyes due to absorption of dust during operation of ingenios.
4.4	Dermatitis	Effect to the skin due to the contamination of metal.
	Dermatitis	Effect to the skin due to the contact with contaminated refuse.
	Dermatitis	Effect to the skin due to the contact with soil contaminated by copper or salt sulfat.
	Dermatitis	Effect to the skin due to the contact with contaminated water.
	Dermatitis	Effect to the skin due to the contact with city water drainage.
	Gastrointestinal	Diarrhea

W.	es Donse	y the	**:		21			7		1)	90	, ije	1	(1)
	San Juan	60	45	35	65	45	45	60	21	29	3 8	31	25	41
	San Cristóbal	40	20	20	26	35	30	45	25	14	25	11	10	33
	San Pedro	54	23	35	43	40	47	35	15	25	37	27	22	41
	San Benito	43	47	27	57	59	61	53	30	19	33	30	17	31
	Cantumarca	10	25	20	45	-	-	55	-	20	-	10	-	35


San Juan


San Cristóbal

San Pedro '

San Benito

Cantumarca

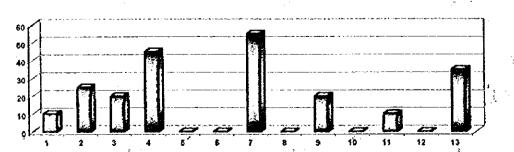


Table 4-3-8 Estimated Contamination in Agricultural Area

Prefecture of Potosi, Provice Tomás Frias

40.4	Control of the contro	(i (Volta)	iskuris :	AND HAVE	
74 F		1 12 66	์ วังคมสากกำ	ALC: SECULATION FOR SELECT	la cultilité du Roma de la line de l'Alberta de la	e denv	l www.cenyer
1	San Juán	0	0	0	0	0	0
2	San Cristóbal	0	0	0	0	0	0
	San Pedro	0	0	0	0	0	0
4	San Benito	0	0	0	0	0	0
5	Cantumarea	0	0	0	0	0	0
6	Jesus Valle	0	0	0	0	0	0
7	Cebadillas	0	0	0	0	0	0
8	Agua Duice	0	0	0	0	0	0
	Seco, Jaya Mayu	2 (c,e)	0	1 (c,e)	0	0	0
10	San Antonio	6 (c,e)	11 (a,b,c)	6 (c,e)	5 (c)	0	0
11	La Puerta	0	0	0	o	0	o
	La Palca	0	0	0	0	0	0
13	Santa Lucía	0	0	0	0	o	0
14	Cayara	0	0	0	0	0	o
15	Totora D	0	0	0	0	0	0
16	Totora Pampa	0	0	0	0	0	0
17	Yocalla	0	0	0	0	0	0
18	El Molino	0	0	0	0	. 0	0
19	Aroifilla	0	5 (a,c)	0	0	٥	0
20	Tambo Pampa	0	0	0	0	0	0
21	Miraflores	0	0	0	0	0	0
22	Mondragón	0	3 (a,b,c)	2 (c,d,e)	0	5	0
23	Şullcari	1,5 (e)	1 (a)	5 (c,d,e)	0	7 (d)	0,5 (c)
24	Palika	0	0	0	0	0	0
25	juicuni	0	0	1 (e)	0,5 (c)	0,5 (d)	0
26	Capilla Rosario	0	0	o	0	0	0
27	Tacuara	0	0	0	0	0	0
28	Talula	0	0	0	0	Ó	o
	Sub total riverside	7.5	20.0	14.0	5.5	7.5	0.5
	Sub total listed	9.5	10.0	15.0	5,5	7.5	0.5

Community of riverside

Community more than 1 km far from riverside

- (a) Curl phenomenon of germination
- (b) Blight of leaves and stalk
- (c) Low productivity
- (d) Stunted plants
- (e) Effect to roots due to the contamination caused by mining activities and ingenio
- (f) Bad germination

Prefecture of Potosi, Pyrovince Cornelio Saavedra

	es in incitive	(Arrivation(Let))					
		APOE .	i i i i i i i i i i i i i i i i i i i	Evantry,	(vicine		We gaste
29	Ancoma	0	O	0	0	0	0
30	Huerta Khasa	0	0	0	0	0	0
31	Kholu	0	0	. 0	0	0	0
32	Oyora .	0	0	0 .	0	0	0
33	Chalama	0	0	0	٥	0	0
34	Aczulipampa	0	0	0	0	0	0
35	Quebrada	0	0	0	0	0	0
36	Km. 127	0	0	0	0	2 (ď)	5 (c,f)
37	San Antonio	0	0	. 0	0	2 (d,f)	6 (a,c,f)
38	Viña Pampa	0	2 (a)	0	0	3 (d,f)	5 (c,f)
	Sub total rivera	0	2	0	0	7	16

Prefecture of Chuquisaca, Provincia Oropeza

				. te ctor	canalis //		
		r dy cy	Ministre.	i i i	(Anice is	(Property	Alexant V
39	Talula	0,5 (e)	0	0	0	1,5 (d)	3 (a,c,f)
40	Tasa Pampa	0	0	0	0 -	0	٥
41	Tuero	0	0	0	- 0	2 (d)	30 (a,c,f)
42	Puente Mendez	0	0,2 (a,c)	0,1 (c)	0	0,7 (d)	4 (a,c,f)
	Sub total rivera	0.5	0.2	0.1	0.0	4.2	37.0

Sub total riverside	8.0	22.2	14.1	5.5	18.7	53.5
Sub total listed	10.0	12.2	15.1	5.5	18.7	53.5

Community of riverside

Community more than 1 km far from riverside

- (a) Curl phenomenon of germination
- (b) Blight of leaves and stalk
- (c) Low productivity
- (d) Stunted plants
- (e) Effect to roots due to the contamination caused by mining activities and ingenio
- (f) Bad germination

Table 4-3-9
Pastorel Area
Prefecture of Potosi, Province Tomás Frías

	19 :0000007	2510 (7 16 (106)
1550	S 114-	
1	San Juan	0
2	San Cristóbal	0
3	San Pedro	0
4	San Benito	0
5	Cantumarca	0
6	Jesus Valle	120
7	Cebadillas	115
8	Agua Dulce	67
9	Secc. Jaya Mayu	25
10	San Antonio	224
11	La Puerta	50
12	La Palca	300
13	Santa Lucia	291
14	Cayara	320
15	Totora D	177
16	Totora Pampa	158
17	Yocalla	157
18	El Molino	164
19	Aroifilla	130
20	Tambo Pampa	160
21	Miraflores	15
22	Mondragón	80
23	Sullcari	90
24	Palika	45
25	Juicuni	95
26	Capilla Rosario	125
27	Tacuara	78
28	Talula	200
	Sub total riverside	1 556
	Sub total listed	3 186

Community of riverside
Community more than 1km far from riverside

Prefecture of Potosi, Province Cornelio Saavedra

il),	Countries.	(Prioriphic (CD)
		AIGHOD S
29	Ancoma	80
30	Huerta Khasa	15
31	Kholu	20
32	Oyora	60
33	Chalama	80
34	Aczulipampa	135
35	Quebrada	50
36	Km. 127	130
37	San Antonio	110
38	Viña Pampa	120
	Sub total rivera	800

Prefecture of Chuquisaca, Province Oropeza

	1 4 (1977)	Paratranese
39	Talula	200
40	Tasa Pampa	60
41	Tuero	110
42	Puente Mendez	23
	Sub total rivera	393

Sub total riverside	2 749
Sub total listed	4 379

Community of riverside
Community more than 1km far from riverside

Table 4-3-10
Sickness and Death Rate of Animal (Expressed in % of Livestock)

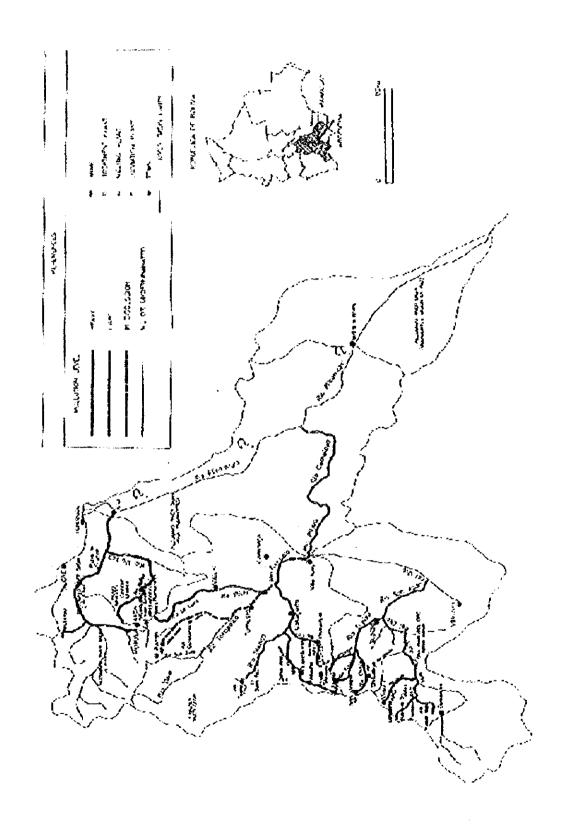
Department of Potosí, Provice Tomás Frías

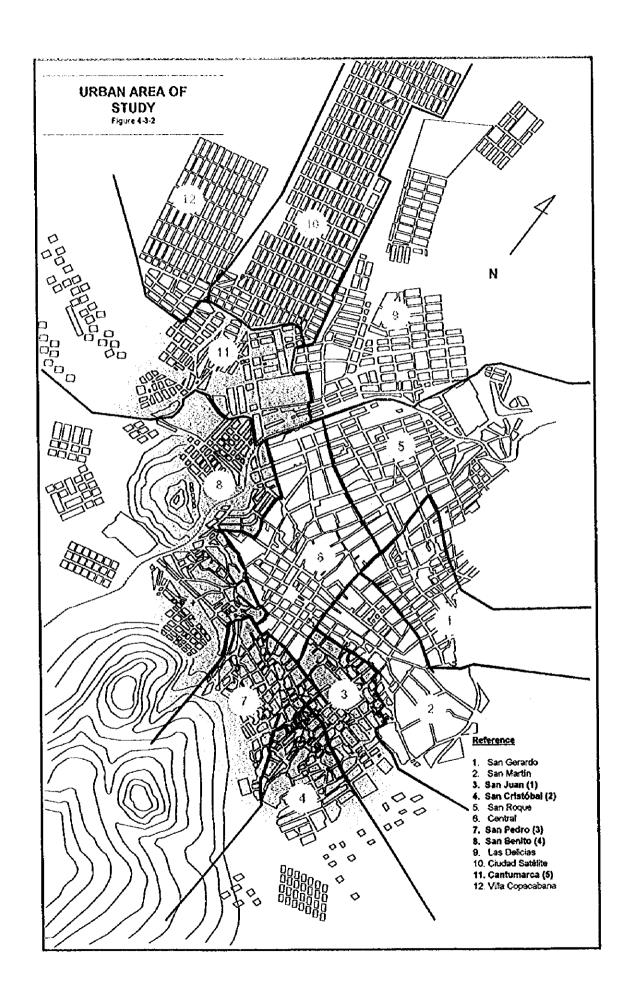
103	irument of Potosi, Provi	PROPERTY CONTRACTORS	هنمه ويستماله بالترابط وينهلك	amenica i	e comanes	branca	O Grandish
1	San Juán		0	6 () () () ()	0	0	
2	San Cristobal		0	0	0	0	
3	San Pedro		0	0	0	0	
4	Şan Benito		0	0	0	0	
5	Cantumarca		0	0	0	0	
6	Jesus Valle		0	0	0	0	Clean Water
7	Cebadillas	ļ	0	0	0	0	Clean Water
8	Agua Duice		0	0	0	0	Clean Water
9	Secc. Jaya Mayu		0	0	٥	0	
10	San Antonio		0	- 0	0	0	·
11	La Puerta	1	0	0	20	0	Cross river/Drink water
12	La Palca	1 1	0	0	20 .	o	
13	Santa Lucía	ł	0	0	0	0	Clean Waler
14	Cayara		· 0	0	0	0	Clean Water
15	Totora D		0	0	0	0	Clean Water
16	Totora Pampa	1	0	0	0	0	Clean Water
17	Yocalla		0	0	0	0	
18	El Molino		0	10	l o	0	Drink water
19	Aroifilia	1	0	5	0	0	Drink water
20	Tambo Pampa	4 4 4	: · o	15	. 10	0	Drink water
21	Miraffores		٥	0	5	0	Cross river
22	Mondragón	2	0	40	0	7	Cross river/Drink water
23	Sulfcari	2	0	10	0	4	Drink water
24	Palika		0	0	0	0	No effect
25	Julicuni	2	0	8	. 0	0	Drink water
26	Capilla Rosario	2	0	20	0	0	Orink water
27	Tacuara	2	0	25	6	0	Cruzan el río / beben agua
28	Talula		0	0	0	0	No effect
	Average riverside		0	7	3	1	
	Arverate listed		0	5	2	0	

Community of riverside

Community more than 1 km far from riverside

Prefecture of Potosí, Province Cornelio Saavedra


1;-	ennishty.	A672104	liki lo miti	()Filinger	งงากเลทเจ	inenitera	i stradaución
29	Ancoma	2	0	40	0	0	Drink water
30	Huerta Khasa	2	0	50	0	0	. Orink water
31	Kholu	2	0	50	0	0	Drink water
32	Oyora		0	0	0	0	No effect
33	Chalama		0	0	0	0	
34	Aczulipampa	3	0	10	0	20	Orink water
35	Quebrada		0	0	0	0	
36	Km. 127	3	0	35	0	60	Drink water
37	San Antonio	3	0	50	20	30	Drink water
38	Viña Pampa	3	0	30	0	30	Beben agua
	Promedio rivera		0	27	2	14	


Prefecture of Chuquisaca, Province Oropeza

1.0		Gio.	is it to make		THE TOTAL	lo tratifica	l premies :
39	Talula	3	0	30	0	O	Drink water
40	Tasa Pampa	3	· 0	20	0	0	Drink water
41	Tuero	3	1	50	0	50	Drink water
42	Puente Mendez	3	0	100	0	40	Drink water
	Average riverside		0	50	0	23	

Average riverside	0	28	2	12	
Average riverside	0	27	1	12	

Community of riverside
Community more than 1 km far from riverside

