11.5 Boiler Performance Indication

The boiler efficiency is indicated by an input-output method which is represented by a ratio of the available output heat to the total input heat as shown in Table 11.10 or by a heat loss method which subtracts the heat loss rate.

Also, to indicate the boiler performance, an equivalent evaporation multiple is often used.

Equivalent evaporation multiple =
$$\frac{\text{Equivalent evaporation}}{\text{Consumed fuel quantity}}$$
 kg steam/kg (m_N^3)-fuel

In the same boiler, when the vapor pressure and other conditions are almost constant, an evaporation multiple should be obtained as an actual evaporation without conversion. It is sometimes used as a good rating for daily management.

The performance may sometimes be indicated by a rate of evaporation of heating surface (kg/m²·h) which is divided by the equivalent evaporation by the heating surface area (except an economizer and a superheater), or by a rate of heat generation (kJ/m³h) in the combustion chamber which is divided by the total input heat by the volume of the combustion chamber.

11.6 Consideration in Installation Steps

11.6.1 Cogeneration

When steam is applied to heating, its heating temperature is almost 200 °C or less and the temperature of steam is also around the same temperature. While, the flame temperature when fuel is burned, reaches one thousand and several hundred degrees centigrade, but the temperature difference between its temperature and the steam temperature is not utilized effectively.

The basis of a heat engine in which heat is converted to work is the Carnot cycle. When an effective work occurs by the completion of cycle through that of an operating fluid receives heat at the temperature of T_1K from a high temperature heat source and releases the heat at the temperature of T_2K to a low temperature heat source, the theoretical efficiency of the Carnot cycle can be represented by the following equation.

$$\eta = 1 - \frac{T_2}{T_1}$$

Accordingly, a higher T₁ is a higher efficiency.

Cogeneration gives a work (electric power) by utilization of the higher temperatures when fuel is burned and utilizes the remaining exhaust heat as heat (see Figure 11.12). And various systems are considered as follows.

- (1) (Gas turbine power generation) + (Steam turbine power generation)
- (2) (Diesel or gas engine power generation) + (Hot water supply)
- (3) (High pressure steam turbine power generation) + (Steam supply for heating)

In the plants of a steam consumption type, the last system (3) is usually used in such as a petroleum refinery, a paper and pulp plant, or a chemical plant. From the point of view of efficiency, the steam pressure is desirable in 2.94 kPa (gauge) (30 kgf/cm² (G)) or more and it is almost 9.8 kPa (gauge) (100 kgf/cm² (G)). And the capacity is 50 t/h or more. With the sharp advance of an energy price, the economical efficiency is improved even in further lower pressure and a lower capacity boiler and the case equipped with a generator instead of the pressure reducing valve has increased.

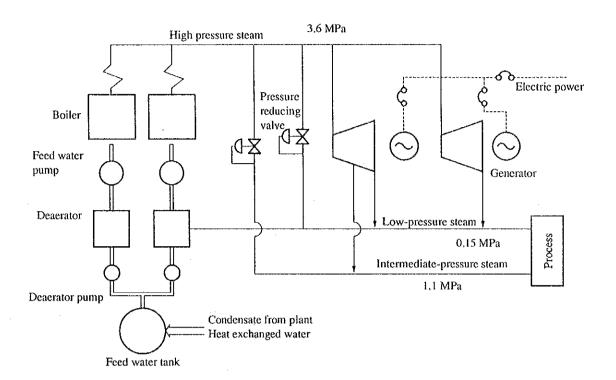


Figure 11.12 An Example of Cogeneration System

11.6.2 Coping with Steam Demand Variation

When the steam demand fluctuates largely in a short time or a difference in the steam demand between day and night is large, an excessive capacity boiler compared with the average load must be installed and the air ratio must be kept at a higher level to prevent black smoke occurring at the load fluctuation.

To prevent a declining of the boiler efficiency due to those, balancing the demand should be done through managing the manufacturing plants as much as possible and the following measures to the system should be taken.

As a method, the steam accumulator should be equipped to store some excess steam which is used when short of steam (See Figure 11.13). If an accumulator is accompanied when the boiler is installed, a boiler of the capacity near the average load can cover sufficiently the demand.

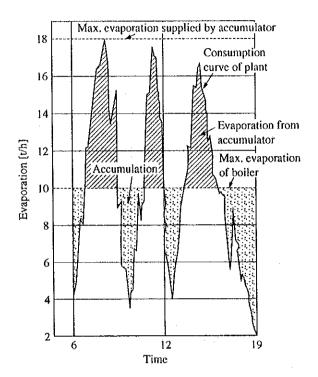


Figure 11.13 Effect of Steam Accumulator

In another method, several small size once-through boilers which are quick to start up are installed and the operating number of boilers is controlled automatically according to load (see Figure 11.14). Since this method increases the efficiency in a lower load compared with the case of a single boiler (see Figure 11.15), energy conservation can be taken as a whole with a counterbalance of some loss increase due to the start-up and shut-off operation.

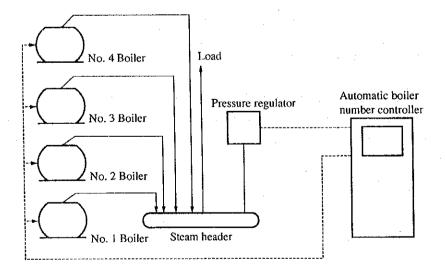


Figure 11.14 Operation Number Control

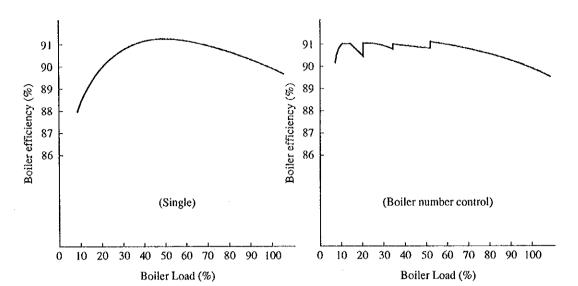


Figure 11.15 Boiler Efficiency Improvement by Operation Number Control

11.6.3 Installation of Proper Capacity Boiler

Installation of an excess capacity boiler causes not only a higher investment but also requires a relatively longer start-up time to the required steam quantity and for much heat loss. In addition to this, when the number of ON-OFFs in operation is increased, the exhaust gas loss due to purge at each operation is increased. In a high-low combustion changeover system boiler, although a proper air ratio is held at a high combustion, it will often be transformed to a higher value at a lower combustion.

For installation of a boiler, a proper capacity boiler should be installed, after saving of steam consumption and control of fluctuation should be taken.

If the capacity of an existent boiler becomes excessive and if the time of a low combustion is longer, an exchange to a small capacity burner may bring about a better result.

Energy Conservation Measure of Boilers 11.7

Waste heat recovery

There are various items for the energy conservation in the boilers as shown in Figure 11.16, the characteristic factor chart. The important points of these items are described below.

11.7.1 Air Ratio

The largest heat loss of boilers is an exhaust gas loss (see Figure 11.17). The exhaust gas loss is determined by an exhaust gas volume and an exhaust gas temperature. A proper air ratio must be kept to minimize the exhaust gas volume.

Improvement of heat transfer Prevention of heat release Operation Microcomputer Combustion Separation of unused line Load condition Arrangement Air pressu Automatic control Capacity Oil pressu Nozzle Heating surface Load stabilization Steam leakage cleaning
Burner Cleaning pipe Atomizing Load fluctuation Changeover of Deformation Riffe groove air to gas Water side Adjustment of boiler number Vapor pressu Volume Suitable pressure Admixture Valve & Flange Opening Furnace Blow Steam property pressure regulation Dumper closing when stop Suitability of reducing temperature and superheating Storage temperature Continuing. Heat insulation - Water - Refractory Steam - Body insul Fuel-Fuel • Suitability of rising time Start & stop time Water Type / temperature Descration condition Self-dissipation \(\frac{1}{2} \) -Condensate Coasting vention Piping Filtratio of leakage Improvement of control accuracy steam saving Improvement of control Low-pressurizin Boiler Intake of high temperature air High efficienc Control chart Air preheating _____ Steam for preheating ___ Feed water pump Proper model Daily report Acid dew point Control of r.p.m. Operating time Control of pump number Correspondence to Evaporation multiple fluctuation Proper capacity Temperature Waste heat boiler -Boiler number Pressure Water quality Analysis Waste heat in another process control system Fuel pump Acid dew Condensate recovery IDF point Economized Consumption Co-generation Receiving High pressure recovery Weighing Blade cleaning ∧_{Soft water} of leakage Reduction Feed water Auxiliary equipment Equipment Management

Figure 11.16 Energy Conservation Items of Boiler

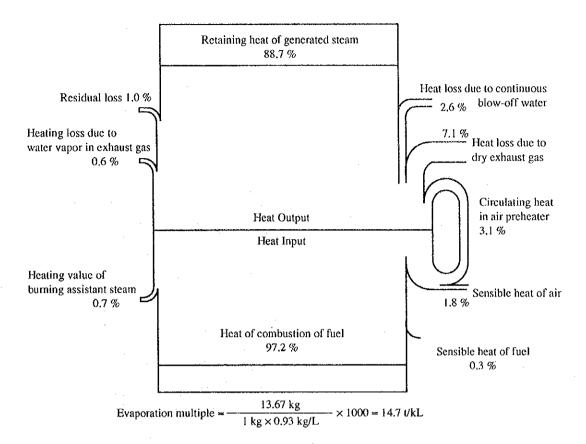


Figure 11.17 Example of 20 T/H Boiler Heat Balance

Considerable points to maintain the proper air ratio are as follows:

(1) Maintaining of proper fuel oil temperature

Fuel oil should be preheated to 80 - 100 °C to maintain the viscosity of fuel oil within the range of 20 to 45 cSt. (See Figure 11.18).

(2) Inspection and tuning up of burner

- Clogging of oil strainer
- Clogging, abrasion and assembling of burner tip
- The mounting direction of the burner and distance to the burner tile
- Damage of and deposit of carbon on the burner tile
- Oil leakage from the oil valves and the pipe connections

(3) Maintaining of steam pressure for atomization

The steam pressure, air pressure or fuel oil pressure should be maintained to the specified value by the manufacturer to be atomized sufficiently. For the characteristics of oil burners, refer to Table 11.15.

(4) Prevention of air invasion

Prevent air invasion by keeping the furnace pressure properly and reducing the area of the opening parts.

Figure 11.18 Viscosity of Fuel Oil

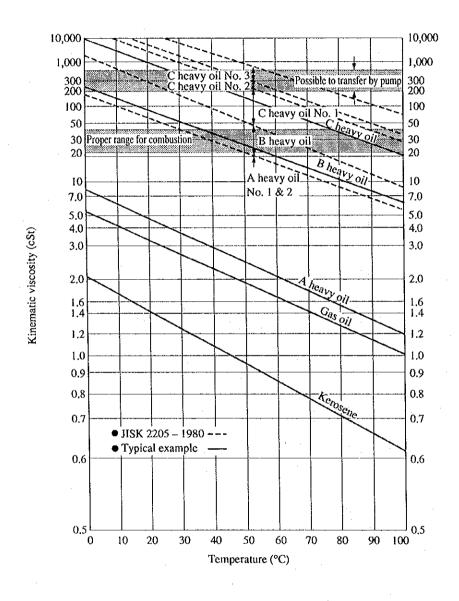


Table 11.15 Characteristics and Application of Oil Burner

		Low pr air syst		High pres atomizing		Oil pressu	ire system	
	Unit	Interlock- ing type	Non- interlock- ing type	Internal mixing type	External mixing type	Return oil type	Non- return oil type	
Fuel oil amount	L/h	1.5 ~ 120	4 ~ 180	10 ~ 5,000	10 ~ 600	50 ~ 10,000	50 ~ 10,000	
Oil pressure	bar	0.4 ~ 1	0.1 ~ 0.3	2 ~ 9	0.2 ~ 1	5 ~ 40	5 ~ 70	
Atomizing pressure		mmAq (400 ~ 2,000)	mmAq (400 ~ 2,000)	3 ~ 10 bar	2 ~ 8 bar			
Atomizing medium amount	A m³ _N /kg S kg/kg	2 ~ 3 m ³ _N kg	$1 \sim 3 \text{ m}^3_{\text{N}} \text{ kg}$	A 0.2 m ³ _N kg / S 0.25 kg/kg				
Atomizing medium		Air	Air	Air or steam	Air or steam			
Combustion air pressure	mmAq	400 ~ 2,000	100 ~ 2,000	0 ~ 250	0 ~ 50	100	100	
Combustion regulation range		4~6:1	4~8:1	8:1	6:1	3:1	3:1	
Flame characteristic		Short flame	Slightly short flame, Long flame	Short flame, Long flame	Slightly long flame	Short flame	Short flame	
Merit		Possible for proportional control by one lever. Low cost of installation and operation	Easy handling Same as left	Good atomizing Small clogging	Same as left	Low combustion noise Low cost of operation	Same as left	
Weakness		Blower required	Same as left	Power cost required	Power cost required	Not respond to load fluctuation High pressure pump required	Same as left	
Boiler	Flue smoke tube	0	0	0	0	0	0	
application	Once-through			0	0	0	0	

 $^{1 \}text{ bar} = 0.1 \text{ MPa}$

 $^{1 \}text{ mmAq} = 9.80665 \text{ Pa}$

(5) Regulation of air

The air ratio can be checked for its appropriateness by an oxygen analysis in the exhaust gas but air must be adjusted by observation of flame and smoke for daily management. The air amount is adjusted with observation of the smoke sent forth from the stack and should be a little more than that under which a slightly black smoke will be emitted.

In fuel oil or kerosene burning, through observation of the flame from the front peep hole, the combustion under conditions that the center of flame is a slightly dark shade and a dazzling flame around it is stable is near to the proper air ratio.

If the air amount drops a little shorter than the proper value, the neighborhood of the flame tip has a tinge of black and soot generates.

On the other hand, if the air is excessive, the flame shortens extremely and becomes like a branch swaying violently. The color of the flame becomes yellow closer to white.

(6) Automatic control

It is the most simple method when the fuel control valve is interconnected mechanically with the air damper and the lever is driven by the control motor of the automatic combustion. But this method is difficult to change the setting of the air ratio during the operation and the air ratio is more likely to be set at a little higher level not to generate black smoke even at a lower loading.

Therefore, there is a method improvement in part of this method.

The example shown in Figure 11.19 has a ratio setting mechanism in the linkage and the O_2 content in the exhaust gas is fed back to adjust the air damper to the O_2 setting by fine adjustment.

The example shown in Figure 11.20 remains the function of linkage and the controller of the revolution of the blower is added to it to adjust the O_2 concentration in the exhaust gas using a setting value suitable to the load.

For a large capacity boiler, a flow controller should be installed for fuel and air respectively to perform a parallel or series cascade control by the steam pressure signal as shown in Figure 11.21.

These controls have little problem under the steady operation, but they do not have a mechanism to prevent black smoke generation which controls fuel or air by preceding air when boiler load increases and preceding fuel when boiler load decreases. Accordingly, these controls have the problem that the air ratio must be set at a little higher level not to generate black smoke even in a load fluctuation.

To dissolve this defect, the example in Figure 11.22 is applied with a cross limit to check fuel or air flow whether to conform to the actual flow of each other: for fuel, the master signal coming from the steam pressure meter is compared with the smoke limit fuel quantity signal obtained by a calculation from the actual air flow, then smaller value is selected as a fuel value. In the air side, contrary to this, the air flow is set to a larger value between the master signal and the smoke limit air quantity signal obtained from the actual fuel flow. Thus, since a control of the air preceding type is done in a load increasing and a control of the fuel preceding type is done in the load decreasing, the air ratio is not required at a large margin.

Even in this method, however, since, at a load rapid decreasing, the air ratio comes temporarily to a higher level, an upper and lower limit mechanism of the air ratio may be attached.

When the fuel component fluctuates, there are some cases in which air flow is controlled more exactly through transmitting the signal to the controller from the O₂ analyzer in exhaust gas.

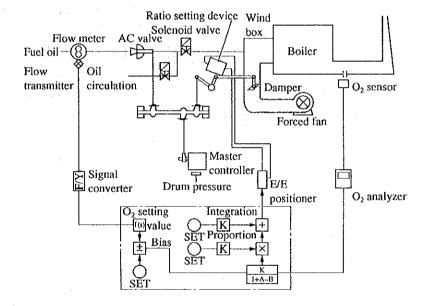


Figure 11.19 Boiler Air Ratio Controller (1)

- Steam Operation control Control motor Fuel valve Ignition confirming Fuel: signal Blower ⇒Exhaust gas O₂ sensor Damper O2 controller O₂ concentration signal Upper and lower limit alarm of O2 conc. Operation control Amplification section Ignition confirmation Sequence section Linearizer Alarm section O2 sensor --VVVF operation Commercial power source operation Temperature regulation circuit O₂ sensor PID,FF Fuel valve operation -abnormality Control detection Comparison Amplification section Blower motor O2/opening converter VVVF section

Power source section

Figure 11.20 Boiler Air Ratio Controller (2)

Figure 11.21 Basic Combustion Control System

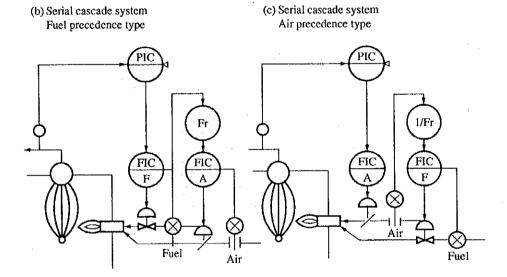
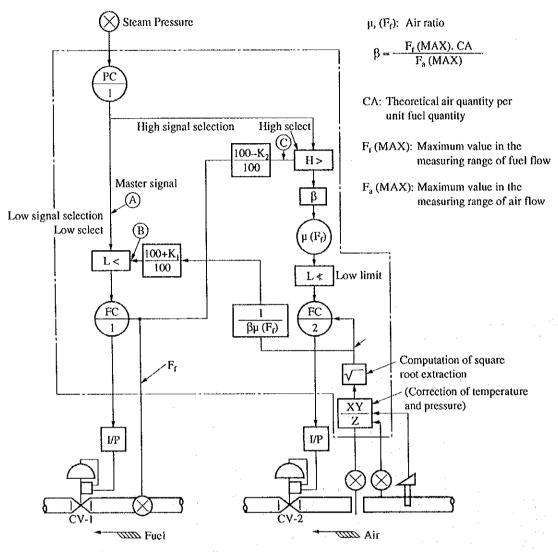



Figure 11.22 Block Diagram of Single Cross Limit Combustion Control System

PC-1: Main steam pressure controller

FC-1: Fuel oil flow controller

FC-2: Air flow controller

(7) Standard of air ratio

Since the air ratio is influenced by the type of fuel, the load factor and the composition of control devices, these points must be considered for setting of the standard. The values of Japanese standard are shown in Table 11.16 as reference.

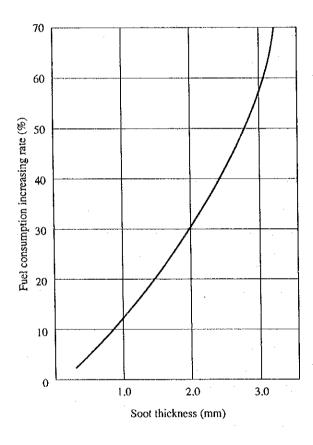
Table 11.16 Standard Air Ratio of Boiler

			Standard air ratio											
Classification of evaporation For electric enterprises		Load factor (Unit: %)	Solid	d fuel	Liquid fuel	Gas fuel	By-product gas from blast							
			Fixed bed	Fluidized bed			furnace, etc.							
		75 to 100	_	_	1.05 to 1.2	1.05 to 1.1	1.2							
Others	Boilers whose evaporation is 30 ton or more per hour	50 to 100	1.3 to 1.45	1.2 to 1.45	1.1 to 1.25	1.1 to 1.2	1.2 to 1.3							
	Boilers whose evaporation is 10 ton to less than 30 ton per hour	50 to 100	1.3 to 1.45	1.2 to 1.45	1.2 to 1.3	1.2 to 1.3								
	Boilers whose evaporation is 5 ton or more to less than 10 ton per hour	50 to 100		_	1,3	1.3	. <u>-</u>							
	Boilers whose evaporation rate is less than 5 ton per hour	50 to 100	-	_	1.3	1.3								

Note: The boiler "for electric enterprises" is installed by the electric power companies (those specified in Clause 2.6 of the Electric Enterprises Act. Hereinafter this will also apply.) for the purpose of electric power generation.

These values shall be applied to the operations of load factor in the range shown in the Table and to steady operation.

11.7.2 Exhaust Gas Temperature


(1) Improvement of heat transfer

The thermal conductivities of soot and scale depend on their composition and the deposit situation, and they are of values of no more than 1/100 to 1/1,000 of those of mild steel as shown in Table 11.17. Accordingly, these deposits make the thermal efficiency of boilers decline remarkably as in the case of some insulation on the heating surface (see Figure 11.23 and Figure 11.24).

Table 11.17 Thermal Conductivity of Scale and Other Substance

Scale and other substance	Thermal conductivity (kJ/mh °C)
Soot	0.25 ~ 0.4
Oily matter	0.42
Scale as main component of silicate	0.8 ~ 1.8
Scale as main component of carbonate	1.8 ~ 2.5
Scale as main component of sulfate	2.5 ~ 8.4
Mild steel	170 ~ 250

Figure 11.23 Example of Fuel Loss due to Soot on Heating Surface

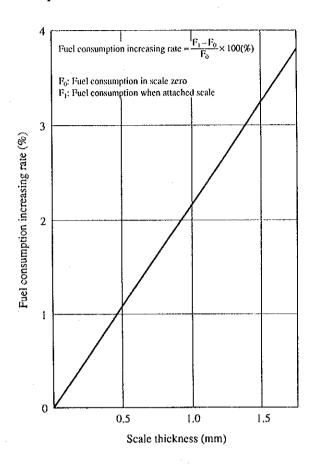


Figure 11.24 Example of Relation between Scale Thickness and Fuel Loss

In order to avoid any hindrance due to the scale, it is required to perform properly a water treatment and a blow and to clean periodically as described in item (3) of paragraph 11.2.3.

Cleaning of the heating surface for the water side should be carried out commonly once per year, though it depends on the degree of the water treatment, by manual cleaning with a brush or by a chemical cleaning of acid containing an inhibitor.

Cleaning of the heating surface for the gas side should be carried out by a brush every month or three months for smoke tube boiler. Even in its period, when the temperature of exhaust gas is higher by 30 °C compared with the temperature just after the cleaning, cleaning is again required. For a water tube boiler, periodic soot blowing is required.

When a flue smoke tube boiler has an enough capacity, a special steel turbulator in the smoke tube is inserted to improve the coefficient of heat transfer by bringing turbulent flow in the gas flow (see item (3) of paragraph 11.7.7).

(2) Recovery of waste heat in exhaust gas

In boilers, it is basic that the exhaust gas temperature does not rise by keeping air ratio in proper values by lessening contamination on the heating surface. If the exhaust gas temperature is higher, the waste heat in the exhaust gas is recovered to preheat the feed water or the air for combustion and the thermal efficiency as a whole should be improved. In general, a large size boiler is often equipped with both an air preheater and a feed water preheater (economizer). A middle or small size boiler is often provided with either of them.

The point to be given attention for recovery of waste heat in the exhaust gas, is corrosion in low temperatures due to sulfuric acid mist in the exhaust gas.

When a fuel containing sulfur is burned, SO_2 is formed and a part of it is converted to SO_3 . Accordingly, the temperature of exhaust gas comes to the dew point or less by contact to the low temperature wall of the heat exchanger, SO_3 reacts with water to produce sulfuric acid (H_2SO_4) in a high concentration, which provides corrosion to the heat exchanger or the duct.

The relation between the sulfur content in fuel and the $SO_2\%$ in exhaust gas is shown in Figure 11.25, the conversion of SO_2 to SO_3 is shown in Figure 11.26 and the relation between the SO_3 concentration and the dew point of acid is shown in Figure 11.27. In the vicinity of the inlet for a low temperature fluid of the heat exchanger, a low temperature part exists partially. Therefore, the gas temperature must be kept at a higher level than the dew point of acid shown in the figure.

Figure 11.25 Relation between Sulfur Content in Fuel and SO₂ Content in Fuel Gas

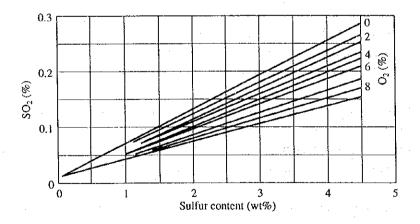


Figure 11.26 Relation between Sulfur Content in Fuel and Conversion Ratio from SO₂ to SO₃

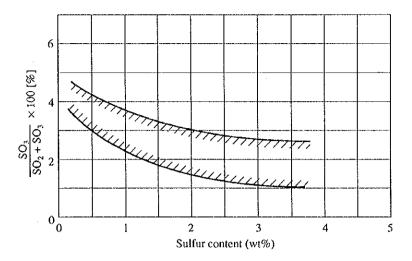
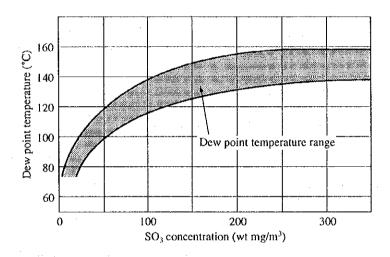



Figure 11.27 Relation between SO₃ Concentration in Exhaust Gas and Dew Point Temperature

To avoid this trouble, some heat exchangers are used with a glass tube or a lead coating tube as the material. As shown in Figure 11.7 in paragraph 11.4 of the heat balance, a measure to prevent overdropping of the gas side temperature of heat transfer surface may sometimes be taken by means of preheating the air with an external heat source prior to feeding the air to the air preheater.

The rising of feed water temperature not only causes a direct increase of the input heat but also it has a merit which makes the thermal stress generated in the drum very low by a small temperature difference between the temperatures of feed water and boiler water in the drum.

The saving rate of fuel due to air preheating is as follows:

Where.

Q: Carrying-away heat of the combustion gas	kJ/kg-fuel
P: Carrying-in heat of the preheated air	kJ/kg-fuel
F: Calorific value of fuel	kJ/kg-fuel
H: Available heat and required heat = $F - Q$	kJ/kg-fuel

In a case, where air is not preheated

$$H_A = F - Q$$

In a case of preheating air $H_B = F - Q + P = H_A + P$

Taking the required heat of furnace as X kJ/h, the fuel consumption when air is not preheated:

$$\frac{X}{H_A}$$
kg-fuel/h

When air is preheated:

$$\frac{X}{H_B} = \frac{X}{H_A + P} \text{kg-fuel/h}$$

Accordingly, the fuel saving rate is as follows:

$$\frac{\frac{X}{H_A} - \frac{X}{H_A + P}}{\frac{X}{H_A}} = \frac{P}{H_A + P}$$

The fuel saving rate in case of 1.2 in the air ratio is shown in Figure 11.28.

The preheating of air brings an energy conservation effect by increasing of the carryingin heat, a reduction of the air ratio through an improvement of the ignition and stability of the flame and an acceleration of combustion and a rising of the flame temperature.

In the case of an air preheating, however, care must be used to the increasing of NOx generation due to the rising of flame temperature and the heat resistance of the burner.

When an installation of an economizer is planned, it should be overall investigated in comparison with the recovery of condensate, the heat recovery in a continuous blow and the feed water preheating effect by solar energy or utilization of waste heat in other processes. If the feed water temperature has already risen by other heat sources, the economy of an economizer may sometimes drop to a lower level.

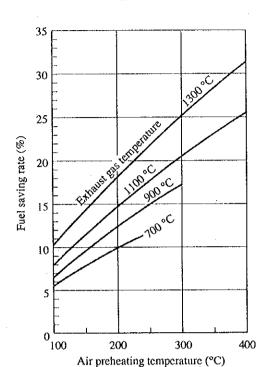


Figure 11.28 Fuel Saving Rate due to Air Preheating

(3) Exhaust gas temperature standard

The heat efficiency of boilers is generally at a higher level compared with an industrial furnace and the exhaust gas temperature is also at a relatively lower level. A large size boiler is in a favorable economical condition to equip with a waste heat recovery unit and has the exhaust gas at a lower temperature. A gaseous fuel generally has a lower sulfur content and heat recovery from the exhaust gas comes to extent of lower exit temperature.

In the Japanese exhaust gas temperature standard, the standard of an exhaust gas temperature by capacity and by fuel is determined in consideration of these points as shown in Table 11.18.

Table 11.18 Standard Exhaust Gas Temperature of Boiler (unit: °C) (Load factor: 100 % at the outer temperature of 20 °C)

Classification	Sol	id fuel	Liquid fuel	Gas fuel	By-product gas		
of evaporation	Fixed bed	Fluidized bed	Liquid fuel	Oas fuel	by-product gas		
Large-sized boiler for electric utilities	-	-	145	110	200		
Other boilers							
30 t/h or more	200	200	200	170	200		
10 to 30 t/h	250	200	200	170			
5 to 10 t/h		– .	220	200			
< 10 t/h		-	250	220			

This standard value is a temperature in a condition of 20 °C in an ambient temperature and 100 % in a load factor just after the periodical maintenance.

11.7.3 Prevention of Heat Release

Boilers are designed to restrict heat release as much as possible under consideration that most of the heat radiation surface is water or steam part and heat insulation is also generally sufficiently provided.

However, the feed water tubes, valves and flanges around the boiler are sometimes not provided with that insulation.

In the event that hot water such as condensate is recovered into a feed water tank, some examples allow the hot water recovered with much effort to overflow in vain owing to poor level control. If overflow is required, piping should be arranged to allow the low temperature water at the bottom to overflow.

The heat insulation reference of boilers is not shown in the Japanese standard but it is taken to be according to the Japanese Industrial Standards (JIS A9501). In JIS, it is provided to insulate heat with a thickness so that the sum of the fuel cost corresponded to the heat loss from the surface after the heat insulation and the annual amortization for the cost demanded to the heat insulation work is minimized. Namely, it is provided that the heat insulation thickness may be selected to cause the greatest economy according to fuel cost and working cost of insulation.

11.7.4 Energy Conservation of Accessory

For a large scale boiler, an optimization of the capacity of blower and feed water pump should be taken. If most of the operation is under a low load, the number of revolutions should be controlled to reduce the pressure loss at the valve and the damper.

Dust attached on the air preheater and the fan should be cleaned periodically to prevent an increase of pressure loss and a reducing of the efficiency.

11.7.5 Operation

If the use of steam is limited to only day time, a once-through boiler of quick start-up operation is desirable, but for a flue smoke tube boiler, some consideration is needed not to advance the start-up time and to stop beforehand the termination of operation with choosing a time utilizable to the remaining pressure. When the boiler is stopped, the flue damper should be shut down to prevent cooling of the furnace.

11.7.6 Routine Management

To advance the energy conservation of boilers, it must be settled first to provide required instruments and grasp the daily operating situations. Especially the relation between the evaporation and the fuel consumption, that is the evaporation multiple (see paragraph 11.5), should be observed. If a declining of the performance is recognized, its cause should be investigated immediately and an appropriate measure must be taken.

Table 11.19 is a sample of operation records. These items must be recorded for the boiler management. The items such as the evaporation multiple, the feed water temperature, the exhaust gas temperature and O_2 % in the exhaust gas should be prepared in chart to know a long-term tendency and these data make use of detection in its early stage of any abnormality. The indication of data is useful to promote the operator's interest to energy conservation.

Table 11.19 Daily Report of Boiler Operation

Marage Chief Early Day Night Marage operator dance service service

	Result	Item 32 Checker Reference	Relief valve	Water gage blowing	Automatic feedwater	Low water	Se Level And step	ins Plame detector	Combustion state	Firing equipment	Feedwater device	Automatic controller .	Control interlocking	Foodwater, 1.4d			multiple A/B	Boiler efficiency %	P Operating time	Carry-over L	2 Today vocaving	Stock		Description:								
	Outlet	static pressure Pa																						1	mD/Cm	шаа		mdd	ı	μΩ/cm	mqq	шdd
		WB static pressure Pa																														
		Furnace pressure Pa																														
		Exhaust gas % CO:																														
	1																															
	Oil pressure	rry Second- ary ary																						ЬН	Conductivity	Chloride ion		Hardness	Н	Conductivity	Chloride ion	Hardness Phosphate ion
		or Primary t MPa																-	į					ď	•	M pac	1	Τ	d	water		¹
	Fuel oil temp.	Service Heater tank outlet																										Crite	let dn			
Outside °C		. 20																				e1)		-1	٦	+	-	ķ	Good or no	State of botter Before and	fler blowing	1
	y Fuel oil quantity	Consump- tion																		(8)		(Take care to the ratio, Example: 13t1)	Reading in previous day	Previous meter reading	Today's meter reading	Freating water quantity	Basic cycle	NaCl quantity	Hardness analysis (Sampling Pressure 5		8. 0
Ambient temperature inside °C	Feed water ouantity	Consump- tion																		8		(Take cure	Readi	 1		otten	iter s			101	PW 101	1
Ambier	11	~ -	اږ																					sure Blowing						g Input hour		TION I
ther	1 1	res- water ure tem- hap, pera-																					previous da	me Pressure	·			low	đu	Input	í	Logav
Date Weather	Ш	Pres- Hours sure																					Reading in previous day	Blowing time				Continuing blow	Total blowing quantity	Chemical name	. .	Previous day
μ	"		٠	(.15q	dn əy	1 1 01 u	nollo:	the b	ពេលវិ	posa	u i	q pşi	r Pour	SINC	H) 9	มอาย	sm (oains	89(8 1	i inoq	ćı).	3	•	U	морл	r blov	oirm	r 191i •	og	graine In		Osmical pomoglació

11.7.7 Example

(1) Feedwater preheating with waste heat in other processes (Petrochemical plant)

In an ethylene manufacturing process, the water used for cooling of the process fluid has been discharged at a temperature of 63 °C with 1,500 t/h. The water has been cooled to 35 °C in a cooling tower and has been used again for cooling.

On the other hand, the boiler in the adjoining plant has preheated air to 60 °C in a preheater with steam to prevent a low temperature corrosion of the air preheater.

The persons in charge of both plants have taken notice of this point, arranged a pipe between both plants, installed a hot water system air preheater and disused the steam system preheater.

The results saved the steam for preheating of 13 t/h. The investment cost was 70 million yen. The saved cost of fuel was 330 million yen a year. The investment fund recovery period was 3 months.

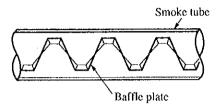
(2) Improvement of boiler air ratio (Building material manufacturer)

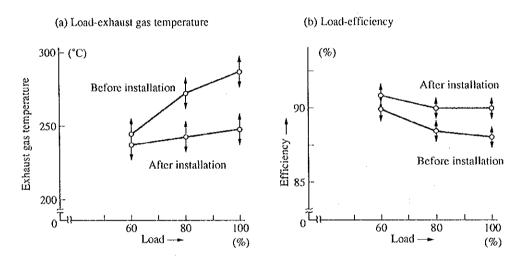
The heat balance of a boiler (30 t/h) which burns fuel oil was as follows:

•	Boiler efficiency	87 <i>%</i>
•	Exhaust gas loss	8 %
•	Steam loss for atomization	1 %
•	Heat release and others	4 %

Various tests were carried out by changing the air ratio automatic controller to a manual operation in order to try to reduce the exhaust gas loss. The result proved to be possible to reduce from 5.0 % of the conventional O_2 % limit to 3.0 %. As a result, O_2 has been reduced to 3.0 %

- a. by replacing to a microcomputer control system which can cope with a load fluctuation and
- b. by installation of a zirconia system O₂ analyzer which is a low time delay.


Since the opening of the damper for the forced draft fan was a low degree of 10 to 20 %, the revolution control by inverter was carried out.


As a result, fuel oil was reduced by 37.5 kL/year, power was reduced by $145 \times 10^3 \text{ kWh/year}$, the merit was 5.15 million yen/year and the investment cost was recovered in about one year.

(3) Heat transfer improvement of smoke tube (See Figure 11.29)

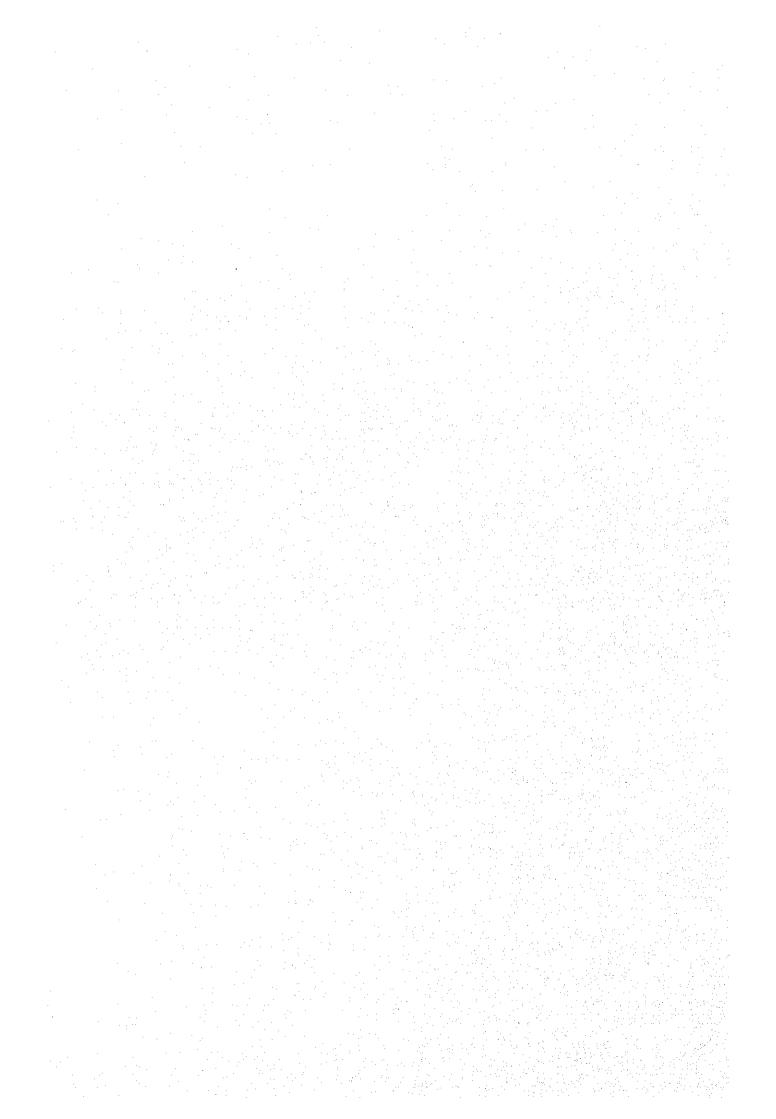

A special steel turbulator was inserted in the smoke tube of a flue smoke tube boiler (6 kg/cm² (G), 7 t/h) which burns fuel oil and the heat transfer was improved by giving a turbulent flow to the gas flow in the smoke tube. As a result, the boiler efficiency was improved from 87.5 % to 89.7 %.

Figure 11.29 Turbulator Insertion Effect

12. ENERGY CONSERVATION IN HEATING FURNACES

12. HEATING FURNACE

This chapter describes general key points for energy conservation for combustion type heating furnaces. Although there are also heating furnaces that use electricity as the heat source instead of combustion system, they are not taken up here.

Figure 12.1 shows important points in energy conservation for heating furnaces.

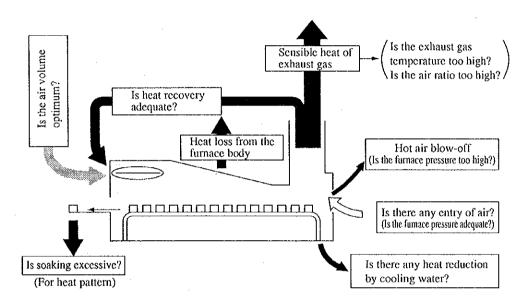


Figure 12.1 Key Points in Energy Conservation for a Heating Furnace

12.1 Air Ratio (Reduction of exhaust gas volume)

If air more than required is supplied for complete combustion, heat loss due to the exhaust gas increases. The value of the actual air volume represented in units of the air volume for complete combustion is referred to as air ratio and therefore, the air ratio is 1 for theoretical combustion. Actually, the theoretical air volume alone can hardly achieve complete combustion of the fuel. In this case, CO is generated in the combustion exhaust gas and the corresponding heat quantity constitutes the loss.

For the gas fuel, fuel consumption is said to be smallest when CO in the exhaust gas is approximately 200 ppm.

If oxygen content and CO content in the exhaust gas are measured, the air ratio, heat loss due to the exhaust gas, and fuel amount that can be saved when the air ratio is adjusted can be obtained through calculation of combustion. Calculation of combustion, as a spreadsheet, is provided along with "V. Measurement Manual". Its handling is provided in "V. Measurement Manual", which is used for reference. Table 12.1 shows the values assumed for calculation of combustion.

Table 12.1 Assumed Values for Calculation of Combustion

Gas content		Wet volume
CO		0.0 %
CO ₂		0.1 %
H_2		0.0 %
CH₄		97.9 %
C_2H_4		0.0 %
C_2H_6		0.4 %
C ₃ H ₈		0.1 %
C_4H_{10}		0.1 %
N_2		1.4 %
O_2		0.0 %
H ₂ O		0.0 %
Fuel temperature	°C	28
Air temperature	°C	28
Atmospheric temperature	°C	28
Relative humidity		60 %
Gas density	kg/m³	0.730
Calorific value Net	kcal/m³	8,487
	kJ/m³	35,525
Calorific value Gross	kcal/m³	9,416
	kJ/m³	39,414

Since measurement of the exhaust gas is expressed by contetns of oxygen and CO, various characteristics of combustion calculation can be directly represented by using oxygen in the exhaust gas as a variable. If the air ratio is used as a variable as shown later, many characteristics are linearly represented. Thus, various characteristics are represented in this section by using the air ratio obtained from oxygen in the exhaust gas as the horizontal axis.

12.1.1 Oxygen in Exhaust Gas and Air Ratio

For the gas fuel, if the fuel composition is known, oxygen and CO contents in the combustion exhaust gas are measured and then the air ratio can be obtained by calculating them. As a simplified formula, the following formula is proposed to obtain the air ratio directly from oxygen concentration in the exhaust gas:

Air ratio = $21/(21-(O_2))$

where (O₂) represents oxygen content in the exhaust gas (%).

Figure 12.2 shows the result of calculating the oxygen concentration in the exhaust gas and air ratio assuming the fuel as natural gas (assuming CO to be zero). This figure shows the value obtained through the simplified formula indicated above as well as the calculated value.

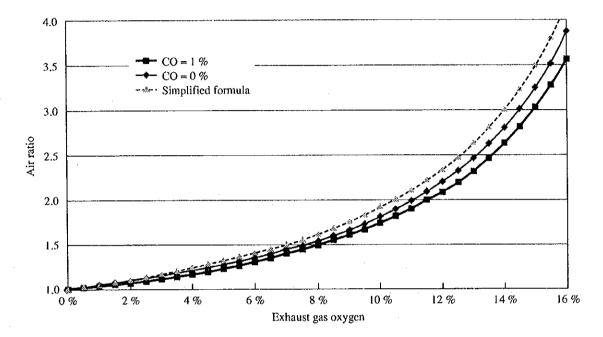


Figure 12.2 Air Ratio by Exhaust Gas Oxygen

In the case of this fuel, as shown in this figure, there is no significant difference between the result of calculation based on fuel components and that obtained from the simplified formula based on oxygen content alone in the exhaust gas. This figure also shows the calculated value for the case in which CO content is 1 % in the exhaust gas. The effect of CO content on the air ratio is small unless oxygen content is extremely large.

Figures 12.3 and 12.4 show the cases where the exhaust gas volume and air volume are represented by oxygen content in the exhaust gas and by the air ratio, respectively.

Figure 12.3 Air, Exhaust Gas and CO₂ by Air Ratio

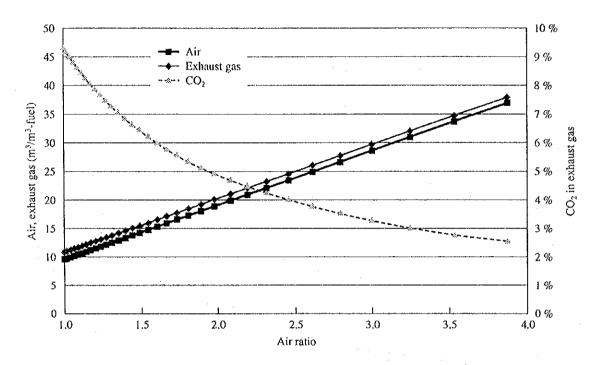
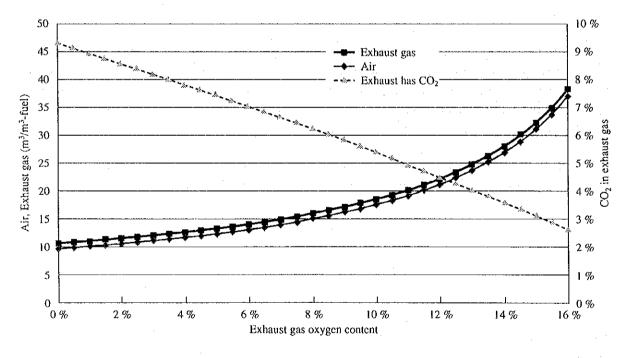



Figure 12.4 Air, Exhaust Gas and CO₂ by Exhaust Gas Oxygen Content

Although the relationship between the oxygen content in the exhaust gas and air ratio depends on the fuel contents in calculation, its effect is actually small. Figure 12.5 shows the result of calculation for different gas fuels.

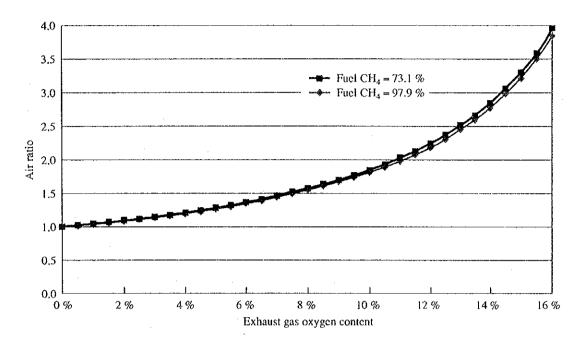


Figure 12.5 Air Ratio by Exhaust Gas Oxygen Content with Fuel Composition

12.1.2 Exhaust Gas Loss

Exhaust gas loss is a value obtained by multiplying the exhaust gas volume, exhaust gas temperature, and the specific heat of exhaust gas. Among them, as shown in Figure 12.3, the exhaust gas volume is greatly affected by the air ratio. Therefore, the fuel intensity is improved by reducing the air ratio. Also reduction in the air volume allows the power for the blower to be reduced if a blower is used for combustion air.

12.1.3 Fuel Reduction through Reduction of Air Ratio

If it is assumed that the exhaust gas temperature does not vary even when the air ratio is adjusted, reduction of fuel consumption as a result of reducing the air ratio can be calculated with the heat balance formula. Figures 12.6 and 12.7 show the calculation results.

Figure 12.6 Fuel Saving by Adjusting the Air Ratio (Exhaust gas temperature = 400 °C)

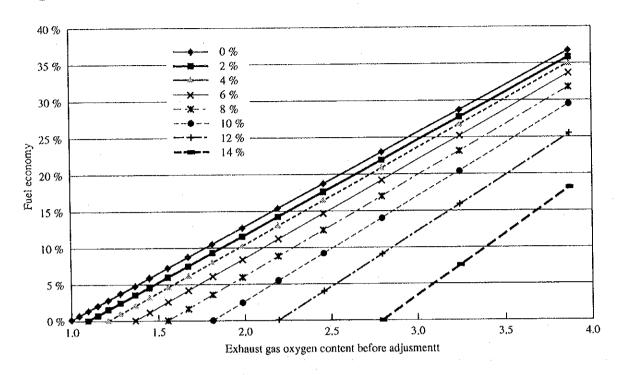
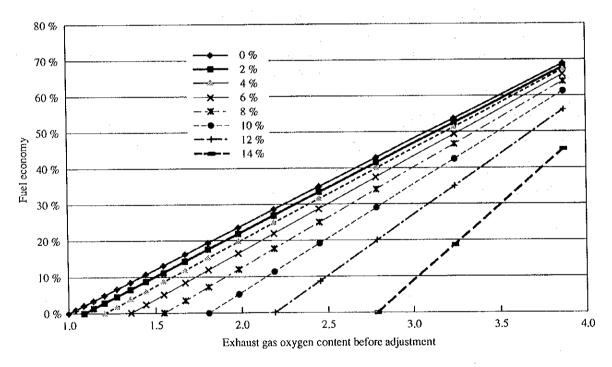



Figure 12.7 Fuel Saving by Adjusting the Air Ratio (Exhaust gas temperature = 600 °C)

As shown in Figures 12.6 and 12.7, the effect of fuel savings through air ratio control is more noticeable as the air ratio is larger and the exhaust gas temperature is higher.

Air ratio should preferably be 1 for theoretical combustion; however, CO is generated to cause heat loss due to non-combustion to arise actually if the air ratio comes closer to 1. Although the relationship between CO generation and the air ratio cannot simply be represented, an example of the relationship is shown in Figure 12.8

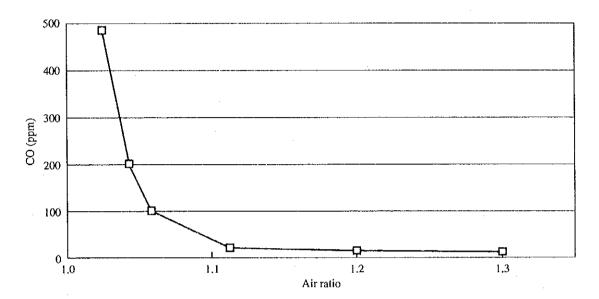


Figure 12,8 Example of Air Ratio and CO Generation

For boilers that use gas combustion, it is said that the highest efficiency is attained when CO is 200 ppm.

12.1.4 Standard for Air Ratio in Japan

In Japan, the air ratios for industrial furnaces are numerically specified for the judgment criteria specified in the Energy Conservation Law. The specified values are divided into the "standard value" and "target value". The standard value is the one that should be achieved by most of "designated energy management factories" (i.e. factories that consume a large amount of fuel). On the other hand, the "target value" should be used as the value achieved in future through modification/new construction of the facility. (See Table 12.2.)

Table 12,2 Standard Values and Target Values of Air Ratio Specified by the Law

	•				
Categories	Continuous	operation	Batch of	Remarks	
	Standard	Target	Standard	Target	
Melting furnace for metal casting	1.3	1.25	1.4	1.3	
Continuous reheating furnace for steel	1.25	1.2	-	_	
Metal heating furnace except continuous steel reheating	1.25	1.2	1.35	1.3	
Metal heat treatment furnace	1.25	1.2	1.3	1.3	
Petroleum heating furnace	1.25	1.25		← .	
Heat cracker, reformer	1.25	1.25	_	 .	
Cement kiln	1.25	1.25	***	_	
Lime kiln	1.30	1.25	1.35	1.35	
Dryer	1.30	1.3	1.5	1.5	Only for burner

12.1.5 Actual Condition of Air Ratio in Japan

The Energy Conservation Center, Japan conducted a survey on the energy management status in 1992 through questionnaires to large-scale factories in Japan. The focus of the investigation was placed on the designated energy management factories specified in the Energy Conservation Law in Japan. A questionnaire was sent to each of 3,500 factories and answered by 2,200 of these factories.

Figures 12.9 to 12.12 show the results of picking up air ratios (actual operation values) for heating furnaces and rearranging them by heating furnace type. Since the uses and fuels are different even for the same heating furnace type, the air ratios show a wide range of distribution but they will be useful as data representing the actual status.

Figure 12.9 Air Ratio Distribution (Metal heating furnace of 315 units)

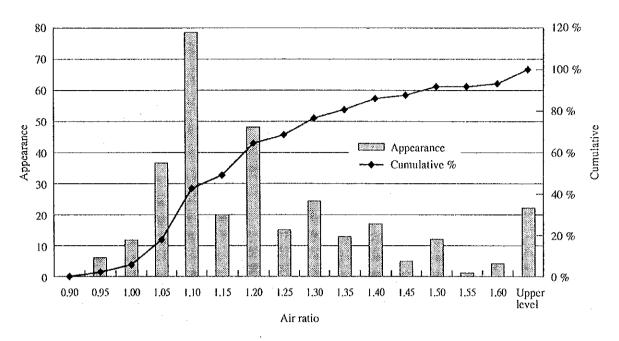
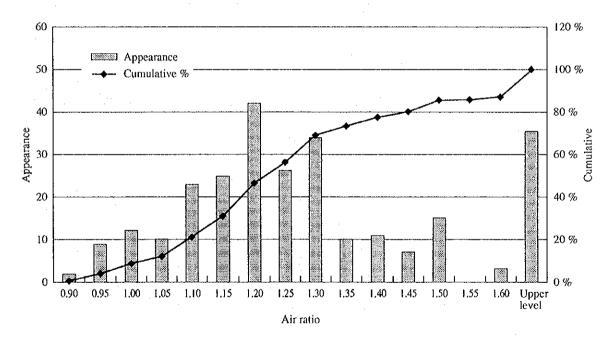
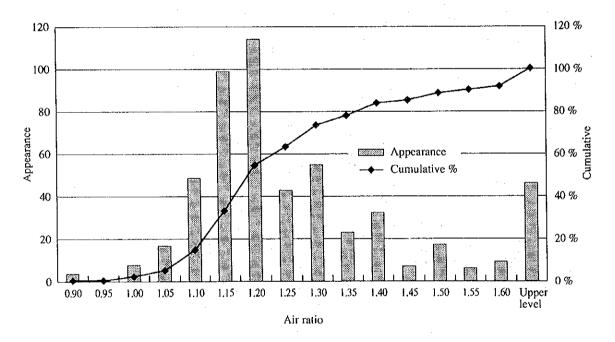



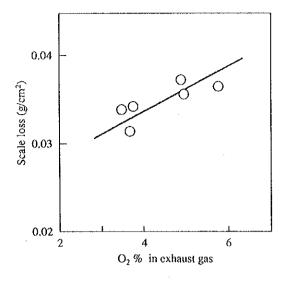
Figure 12.10 Air Ratio Distribution (Metal heat-treatment furnace of 264 units)



120 % 120 Appearance 100 % 100 Cumulative % 80 % 80 Appearance 60 % 60 40 % 40 20 % 20 0 1.60 1.30 1.50 1.55 Upper 1.00 1.10 1.20 1,25 1.35 1.40 1.45 0.90 0.95 1.05 1.15

Figure 12.11 Air Ratio Distribution (Ceramic industry furnaces of 431 units)

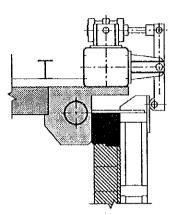
Figure 12.12 Air Ratio Distribution (Chemical industry furnaces of 530 units)


Air ratio

12.1.6 Amount of Scale Generated

The oxidized scale generated on the surface of a steel product when it is heated may be associated with the oxygen in the combustion gas, heating temperature, and period during which the steel product is present in the furnace. Therefore, keeping the air ratio small reduces scale generation and improves the yield of steel products. Figure 12.13 shows an example of relationship between oxygen in the exhaust gas and scale loss.

Figure 12.13 Relationship between Air Ratio and Scale Loss (Fuel oil-fired, heating time: 120 minutes)



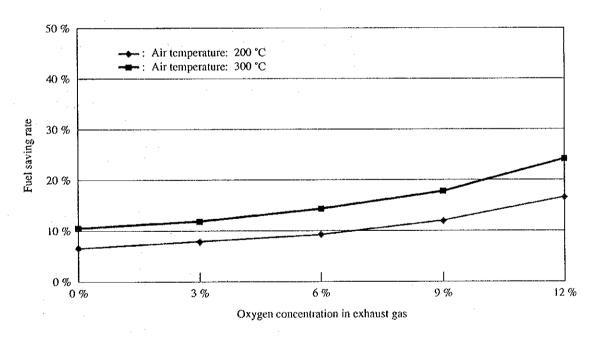
12.1.7 Invasion of Outside Air into the Exhaust Gas Line

If cold outside air enters the high-temperature flue between the combustion zone in the furnace and the air preheater, the exhaust gas temperature drops to reduce heat recovery by the air preheater. For example, there is air invasion through the material charging hole on the continuous heating furnace. If the air ratio is measured at two points in the flow of the exhaust gas, the difference between the air ratio values indicates outer air invasion between the two points. If the air ratio before the air preheater is compared with that after the air preheater, air leak from the air preheater (i.e. leak from the air side to the exhaust gas side) can be known.

Such air leak lowers the preheated air temperature and results in loss of the blower power, and thus the optimum maintenance timing should be grasped through measurement of air leak. Cold air enters through the charging door on a batch type forging furnace as well. To enhance sealing at this part, the charging door should be pressed on the furnace body by air pressure cylinders. Figure 12.14 shows an example.

Figure 12.14 Example of Pressing the Door to the Furnace Body by Air Cylinder

Source: Handbook for Industrial Furnaces (published by The Energy Conservation Center, Japan)


12.2 Decreasing the Exhaust Gas Temperature

As explained earlier, the exhaust gas loss is a product of the exhaust gas volume and exhaust gas temperature. Therefore, the exhaust gas loss can also be reduced by decreasing the exhaust gas temperature.

12.2.1 Fuel Saving by Air Preheating

If the combustion air is preheated by the heat exchanger using the high-temperature exhaust gas from the furnace, an additional amount of heat is supplied to the furnace, thereby reducing the amount of fuel required. Such a heat exchanger is called recuperator. The resulting fuel saving effect can be obtained through calculation using the heat balance. This fuel reduction rate (i.e. rate of the fuel reduction effect against the fuel before preheating) differs depending on the preheated air temperature and oxygen content in the exhaust gas (air ratio). This means that the fuel-saving rate becomes larger as the air ratio is higher and the exhaust gas emission is larger during the operation even when the air preheating temperature is constant. Figures 12.15 and 12.16 show examples of calculation results. As is evident from Figure 12.15 and Figure 12.16, the fuel-saving rate is larger as the exhaust gas temperature is higher even for the same air preheating temperature, that is, as the operation is less efficient. This suggests the importance of heat recovery from the exhaust gas.

Figure 12.15 Fuel Saving by Air Preheating (Exhaust gas temperature before preheating: 400 °C)

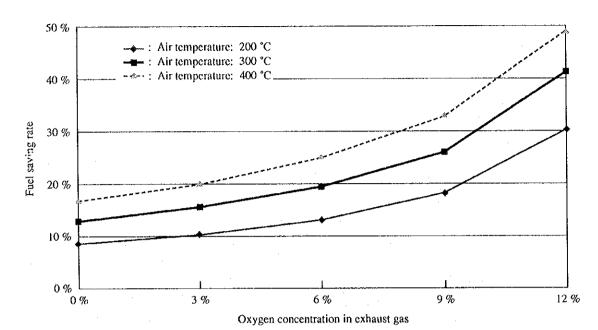


Figure 12.16 Fuel Saving by Air Preheating (Exhaust gas temperature before preheating: 800 °C)

12.2.2 Standard for Exhaust Heat Recovery Rate in Japan

The judgment criteria provided in Energy Conservation Law present the exhaust heat recovery rates for industrial furnaces. See Table 12.3.

Table 12.3 Standard and Target Values of Waste Heat Recovery Rate for Furnaces

		Exhaust heat	recovery rate	(Reference	for target)
Exhaust gas temperature	Capacity class	Standard	Target	Waste gas temperature	Preheated air temperature
(°C)		(%)	(%)	(°C)	(°C)
500 & under	A & B	25	30	300	165
500 & over, under 600	A & B	25	30	365	200
600 & over, under 700	Α	35	35	400	270
	В	30	30	435	230
	С	25	25	470	195
700 & over, under 800	Α	35	. 35	460	310
,	В	30	30	505	265
	C	25	25	545	220
800 & over, under 900	Α	40	40	480	395
•	В	30	- 35	525	345
	C	25	30	575	295
900 & over, under 1,000	Α	45	50	430	550
	В	35	40	535	440
	С	30	35	590	385
1,000 & over	Α	45	50		
.,	В	35	40		
	$\bar{\mathbf{c}}$	30	35		

Notes: A: Rating capacity of over 20 Gcal/h.

B: Rating capacity of 5 to 20 Gcal/h.

C: Rating capacity of 1 to 5 Gcal/h.

12.3 Reduction in Heat Loss from Furnace Wall and Cooling Water

12.3.1 Heat Loss due to Radiation from Furnace Wall

The furnace wall constituting the heating furnace is composed of bricks, etc. As the surface temperature of the furnace wall is higher, heat radiation loss from the furnace wall increases. Heat loss from the surface consists of two factors; heat transfer by air convection and heat loss due to radiation from the furnace wall.

For the coefficient of heat transfer by convection, several experimental formulas are proposed, and for heat radiation, a physical formula is available. By using these formulas, heat loss from the furnace wall can be calculated by using the furnace wall temperature. The calculation sheet for the furnace wall heat radiation is also available as a heat calculation sheet. Figure 12.17 shows the wall surface temperature and the amount of heat emission as an example.

5,000 Gross heat Convection 4,000 Radiation Heat emission (kcal/h/m²) 3,000 2,000 1,000 80 100 120 140 160 180 200 220 240 Wall surface temperature (°C)

Figure 12.17 Heat Emission from Furnace Wall (Emissivity 0.7, vertical wall on natural convection)

As shown in this figure, heat radiation consists of the convection portion and radiation portion. The latter increases its percentage as the surface temperature rises.

12.3.2 Reinforcing the Heat Insulation for the Furnace Wall

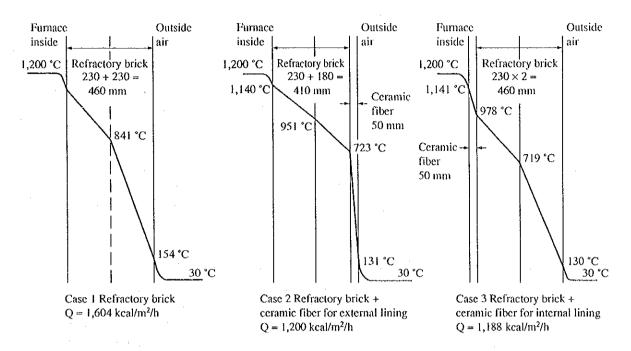

-Some recent furnaces may use ceramic fiber as the heat insulation material for the furnace wall. Since ceramic fiber has an excellent heat insulation effect, heat loss from the furnace wall can be reduced. Also, ceramic fiber stores a small volume of heat, it is effective for reducing the loss of heat storage in the body of a furnace operating on a batch basis. Table 12.4 and Figure 12.18 show calculation of the effect on reduction of heat emission by lining the furnace with ceramic fiber in comparison with an existing furnace with the wall made of bricks.

Table 12.4 Trial Calculation for Reinforcing the Heat Insulation of the Furnace Wall by Ceramic Fiber

Furnace w	all structure	Case I Insulating refractory brick	Case 2 Lining the external wall with ceramic fiber	Case3 Lining the internal wall with ceramic fiber
Furnace internal temperatu	re	1,200	1,200	1,200
Furnace internal wall temp	erature	1,120	1,140	1,141
First layer	Heat insulating material	Insulating firebrick Class 3	Insulating firebrick Class 3	Ceramic fiber blanket No. 3
		3	3	****
	Insulation thickness mm	230	230	50
	Average heat conductivity	1.321	1,464	0.364
Inter-layer temperature		841	951	978
Second layer	Heat insulating material	Insulating firebrick	Insulating firebrick	Insulating firebrick
,	v	Class 2	Class 2	Class 3
	•	2	2	3
	Insulation thickness mm	230	180	230
	Average heat conductivity	0.537	0.947	1.058
Inter-layer temperature		154	723	719
Third layer	Heat insulating material		Ceramic fiber blanket No. 3	Insulating firebrick Class 2
	Insulation thickness mm		50	230
	Average heat conductivity		0.1013	0.4639
External wall temperature	•	154	131	130
Ambient temperature		30	30	30
Amount of	kcal/ın²h	1,604	1,200	1,188
heat emission Heat emission rate		100	75	. 74

Unit of heat conductivity: kcal/m/h

Figure 12.18 Trial Calculation for Reinforcing the Heat Insulation of the Furnace Wall by Ceramic Fiber

In this case, the lining decreases the surface temperature on the outer surface of the furnace wall, which means that the heat emission amount of the furnace wall drops by approximately 25 %.

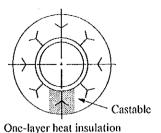
12.4 Energy Conservation for Rolling Continuous Reheating Furnace for Steel-making

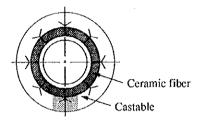
12.4.1 Hot Charging and Low-temperature Extraction of Hot Billets

Great energy conservation can be achieved if high-temperature slabs (billets or blooms) are charged into the heating furnace by using the residual heat in the preceding process. In the iron and steel industry, hot charge in which continuously-cast billets of high-temperature are charged into the heating furnace and direct feed rolling in which continuously-cast billets are maintained at a high temperature to be fed directly to the rolling mill are available to achieve a substantial energy conservation effect.

In the rolling process in which the plastic machining heat is generated in the process, low-temperature extraction is also available for the purpose of extraction from the reheating furnace at a temperature which is as low as possible.

Extension of the furnace length and quenching in the preheating zone:


The effective means of improving the heat efficiency of the reheating furnace include optimization of the air ratio that reduces the exhaust gas volume, extension of the furnace length and also quenching in the preheating zone that are useful for dropping the exhaust gas temperature. Additionally, if the reheating furnace consists of the preheating zone, heating zone, and soaking zone, the amount of heat input in each zone is re-assessed according to the heat load and the so-called heat pattern is improved to decrease the exhaust gas temperature, thereby reducing the exhaust gas loss.


12.4.2 Reducing the Heat Loss from Water-cooled Skid

In a continuous reheating furnace, heat loss from the water-cooled skid (i.e. water-cooled beam supporting a steel product in the furnace) is largest next to the exhaust gas loss along with heat emission loss from the furnace body. Reducing the heat loss from the water-cooled skid allows reduction of the cooling water volume as well as fuel reduction.

Figure 12.19 shows the two-layer heat insulation system that reduces the heat loss from the skid.

Figure 12.19 Heat Insulation of a Water-cooled Beam

Two-layer heat insulation

It is said that this two-layer heat insulation can reduce 40 % of the water cooling loss compared with one-layer heat insulation. However, since the outside diameter of the skid becomes larger for two-layer heat insulation, the shadow effect becomes larger in heat transfer to steel products. Therefore, the skids should be arranged properly based on this fact.

12.4.3 Heat Balance for Continuous Reheating Furnace

In heat balancing for the heating furnace, heat loss can be grasped quantitatively by obtaining details on the heat input and heat output to identify the important points in the countermeasures. In Japan, heat balancing method is specified in the standard (JIS).

Figure 12.20 shows an example of heat balance for the steel product continuously heating furnace to which the recent energy conservation measure has been applied.

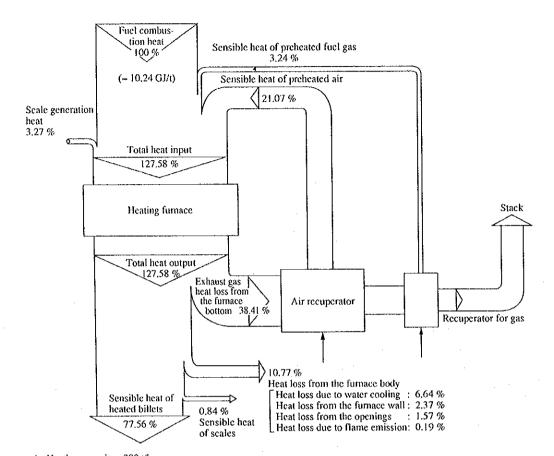


Figure 12.20 Heat Balance Diagram of WB Type Heating Furnace

- 1. Heating capacity: 300 t/h 2. Billet (slab or bloom) to be heated: 250 T \times 1,200 W \times 12,000 L
- 3. Effective length of a furnace: 38 m
- 4. Load on the furnace floor: 700 kg/m²·h
 5. Heating temperature: 30 °C → 1,200 °C
 6. Fuel: Mix gas

- Excess air ratio: 5 %
 Preheated air temperature: 620 ° (before the burner)
 Preheated gas temperature: 250 ° (before the burner)
 Exhaust gas from the furnace bottom: 800 °C
 Amount of reduction due to burning: 0.6 %
 Fuel intensity: 10.24 GJ/t

Source: Handbook for Industrial Furnaces

(Published by The Energy Conservation Center, Japan)

Tables 12.5 and 12.6 list the heat contents in various steel products and the iron oxidization reaction heat as values specific to heat balance for the steel product heating furnace.

Table 12.5 Heat Content in Steel Products (Source: JIS 1995 edition)

Amount of heat required for heating a steel product starting from 0 °C (kJ/kg)

·			
Type of steel	Killed steel	Mild steel (low carbon steel)	Medium carbon steel
Temperature °C	0.08 % C	0.23 % C	0.4 % C
0	0,0	0.0	0.0
50	23.44	23.44	23.44
100	47.72	47.72	47.72
150	72.84	72.84	72.84
200	98.79	98.79	98.37
250	126.00	125.58	124.74
300	153,63	153.21	152.37
350	182.09	182.09	180,84
400	211.81	211.81	210,14
450	243,21	243.21	240.70
500	276.28	276.28	273.35
550	311.02	311,44	307.67
600	348,28	348.69	343,25
650	387.62	388.04	379,67
700	430.32	430.32	418.18
750	487,25	501.90	497.30
800	535.39	549.62	528,27
850	578.51	586.46	553,81
900	619.11	618.69	581.02
950	651.76	651,34	612.41
1,000	684.41	683,57	643,39
1,050	717.48	716.22	675.20
1,100	750.55	748.46	706.60
1,150	783.62	781.53	738.83
1,200	816.69	814.60	771.48
1,250	849.76	848.50	804.97
1,300	883.25	882.83	839.29

Remarks: The values listed in the table above are adopted from the Physical Constants of Some Commercial Steels at Elevated Temperatures, 1953 (The British Iron and Steel Research Association). It should, however, be noted that the values for the temperature range from 0 to 50 °C are those estimated by extrapolation based on "Experiment on heat transfer in continuous slab heating furnaces and the calculation method", 1970 (The Iron and Steel Institute of Japan).

Table 12.6 Iron Oxidization Reaction Heat and Sensible Heat of Scales (Source: JIS 1995 edition)

Reaction	Reacti	on heat
Caction	kJ/kg	kJ/kg
$Fe + \frac{1}{2}O_2 = FeO$	268.954	4.8140 (Fe)
$2\text{Fe} + \frac{3}{2}\text{O}_2 = \text{Fe}_2\text{O}_3$	817.117	7.3172 (Fe)
$3\text{Fe} + 2\text{O}_2 = \text{Fe}_3\text{O}_4$	1,117.257	6.6684 (Fc)

Remarks: These values are adopted from Anhaltszahlen für Energieverbrauch (5th edition)

The formulas for the heat generated by scale formation and scale sensible heat are shown below.

(Heat generated by scale formation)

Heat generated by scale formation is as follows:

Amount of Fe reduced by heating per ton of steel product (kg) × Heat of scale formation [kJ/kg·Fe] kJ/t of steel product

Heat generated by scale formation per kg of Fe is obtained from the following formula.

[Heat of FeO formation (kJ/kg·Fe) \times 0.777 \times FeO (%) + Heat of Fe₂O₃ formation (kJ/kg·Fe) \times 0.700 \times Fe₂O₃ (%) + Heat of Fe₃O₄ formation (kJ/kg) \times 0.724 \times Fe₃O₄ (%)] + T. Fe (%) kJ/kg·Fe

However, if scale analysis is not performed, the heat generated is 5,588.4 kJ/kg·Fe.

(Sensible heat of scales)

Scale sensible heat is as follows:

Amount reduced by heating per ton of steel product (kg) $\times \frac{100}{T.\text{Fe (\%)}} \times \text{Average specific}$ heat of scale [kJ/kg°C] \times [Surface temperature at extraction (°C) – Outside air temperature (°C)] kJ/ton of steel product

The specific heat of scale is assumed to be 0.900 kJ/kg °C. If scale analysis is not performed, T.Fe can be 75.5 %.

JIS also provides the calculation formula for the amount of heat loss for each of the following cases in addition to these tables:

- · Heat emission from the outer wall
- · Heat emission from the furnace floor
- · Heat loss due to gas flame emission from the furnace opening
- · Heat loss due to radiation from the furnace opening

Citation from JIS is shown below.

- (1) Heat emitted from the furnace body and the flue
 - a. Heat loss due to radiation from the furnace wall and the flue

Heat balancing time (h) \times outer wall area (m²) \times [heat flux due to radiation (kJ/m²h) + heat flux due to convection (kJ/m²h)] / mass of steel product (t) kJ/ton-steel product

Heat flux due to radiation is obtained from the following formula:

$$q_{\rm r}$$
 (kJ/m²h) = $\varepsilon \times 20.428 \times \left[\left(\frac{\rm T_w}{100} \right)^4 - \left(\frac{\rm T_a}{100} \right)^4 \right]$

Heat flux due to natural convection for each of the following cases is obtained as follows:

• When the wall is horizontally upward : q_c (kJ/m²h) = 11.721 × $\Delta T^{1.25}$

• When the wall is vertically sideways : $q_c (kJ/m^2h) = 9.209 \times \Delta T^{1.25}$

• When the wall is horizontally downward: q_c (kJ/m²h) = 6.279 × Δ T^{1,25}

where

 ε : Emissivity of the furnace body surface

T_w: Outer wall temperature (K)

T_a: Ambient temperature (K)

 ΔT : $T_w - T_a$ (K)

b. Heat loss due to radiation from the furnace hearth

The heat emitted from the furnace hearth varies depending on the structure of the furnace hearth. Therefore, calculation matching the shape of the furnace hearth should be performed. For example, the heat radiation due to convection from the hearth of a walking beam type heating furnace can be obtained from the formula for the case when the wall is horizontally downward, which is described in the above item (a).

The amount of heat emitted from the furnace hearth which is directly laid on the concrete base is obtained from the following formula:

Heat balancing time (h) \times furnace hearth area (m²) \times heat loss through the furnace hearth (kJ/m²h) / mass of steel product (t) kJ/ton-steel

Heat loss through the furnace hearth can be obtained from the following formula:

$$Q = 3.599 \times S \cdot C \cdot \frac{T_h - T_a}{D} \quad (kJ/m^2h)$$

where

S: Coefficient determined based on the shape of the furnace hearth:
4.1 for the circular floor, 4.5 for the square floor, and 3.8 for the long rectangular floor

C: Heat conductivity of the furnace hearth material (W/mK)

T_h: Temperature of the furnace hearth surface (K)

T_a: Ambient temperature (K)

D: Furnace width between the inner walls (m)

The formula shown above assumes that the wall thickness is $\frac{D}{6}$. For $\frac{D}{4}$, heat loss is 95 % of the value given by the above equation. For $\frac{D}{8}$, heat loss is 110 %. In other cases, the presumed value should be obtained based on the relationship shown above.

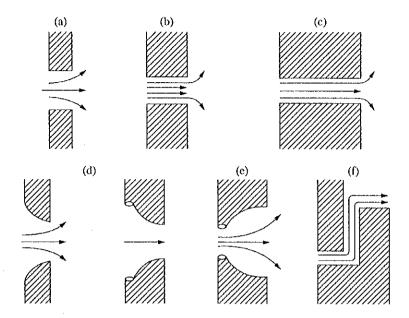
(2) Heat loss due to flame gas emitted from the furnace opening

Furnace opening time (h) during heat balancing \times amount of emitted flame gas $(m_N^3/h) \times [average specific heat of emitted flame gas <math>(kJ/m_N^3K) \times temperature$ of emitted flame gas (K) – average specific heat of emitted flame gas of reference temperature $(kJ/m_N^3K) \times temperature$ (k)] / mass of product steel (t) kJ/ton-steel

The amount of emitted flame gas is obtained from the following formula:

$$G = \alpha \times 4,467 \times \sqrt{\frac{273}{T_g}} \times \sqrt{\Delta p} \times A \ (m^3_N/h)$$

where


 α : Coefficient determined by the shape of the outlet. If the friction resistance coefficient is f, $\alpha = \frac{1}{1+f}$

 Δp : Furnace inside pressure at the opening (Pa)

T_a: Temperature of emitted flame gas (K)

A: Area of the opening (m²)

Remark: α is determined based on the following criteria:

- (a) $\alpha = 0.38$ (f = 1.6) if the wall thickness is half the diameter of the opening (diameter for a circle, and hydraulic diameter for other cross sections) or smaller
- (b) $\alpha = 0.67$ (f = 0.5) if the wall thickness is 2.5 to 3 times larger than the diameter of the opening. If the wall thickness is 0.5 to 2.5 times larger, α is an intermediate value between the values in (a) and (b).
- (c) If the wall thickness is 3 or more times larger than the diameter of the opening, f for the wall thickness up to the initial 3 times should be 0.5. For the wall thickness larger than that, calculation is performed based only on the friction loss of the wall surface at the opening. Therefore, $\alpha < 0.67$.
- (d) $\alpha = 0.9$ to 0.95 (f= 0.1 to 0.05) if the gas inlet is open. $\alpha = 0.9$ (f= 0.1) if molten material is adhered as shown on the right in (d).
- (e) An intermediate value between the values in (a) and (b).
- (f) For general door gaps, the pressure loss of the bending corner is added to(b) or (c).

(3) Heat loss due to radiation from the furnace opening

Furnace opening time (h) during heat balancing × area of the opening (m²) × ϕ × 20.428 × $\left\{ \left(\frac{T_f}{100} \right)^4 - \left(\frac{T_a}{100} \right)^4 \right\}$ / mass of steel product (t) kJ/ton-steel

 ϕ : Coefficient determined by the shape of the furnace opening

T_c: Furnace inside temperature (K)

T_a: Ambient temperature (K)

where

Table 12.7 Emissivity by Shapes of Furnace Openings

Chang of the anoning		(D	iameter or	shortest s	ide) ÷ (W	all thickne	ess)	
Shape of the opening	0.01	0.1	0.2	0.5	1	2	4	6
Circular	0.02	0.10	0.18	0.35	0.52	0.67	0.80	0.86
Square	0.02	0.11	0.20	0.36	0.53	0.69	0.82	0.87
Rectangular (2:1)	0.03	0.13	0.24	0.43	0.60	0.75	0.86	0.90
Very slender and long	0.05	0.22	0.34	0.54	0.68	0.81	0.89	0.92

12.4.4 Heat Balance Table Formats

For reference, Tables 12.8 to 12.11 show the heat balance table formats according to JIS.

Table 12.8 Equipment Overview List

1	Compar	ny and factory names			
2	Address				
3	Name o	f reheating furnace cturer			
4	Reheati	ng furnace No.			
5	Roll-	Туре			
6	ing	Nominal capacity		t/year	
7	mill	Major products			
8	Reheat-	Турс	·		
9	ing	Nominal capacity		t/h	
10	fur- nace	Effective length of furr furnace width	nace ×	mm × mm	
11		Dimensions and materi body brick and heat-ins materials			
12		Kind of fuel used			
13		Type, capacity and qua	•		
14		Type and capacity of v equipment	entilation		
15		Type and heating surfa	ce area of	m²	
16		Material, dimensions, r heating temperature of steel products to be use for nominal capacity	standard	mm, kg, K	

Remark: With regard to the items 10, 11 and 15, a simplified diagram of the vertical and horizontal sections of the furnace (including the dimensions of major parts of the furnace and preheater, the kind of refractory materials and major measurement points) should be attached.

Table 12.9 Long-term Operation Result List

1	Operation date			Date		
2	Description of operation time		Heating	Heat raising	Heat holding	Shutdown
		h/month				
		%				
3	Heating ton	t/month				
4	Ton per heating hour	t/h				
5	Average mass of typical steel products (Maximum and minimum range)	kg				
6	Average temperature of hot charged steel	К				
7	Hot steel product ratio	%				
8	Fuel consumption	kL/month or m³/ month				
9	Lower calorific value of fuel	kJ/kg or kJ/m³				
10	Heat intensity per ton of steel product	MJ/t				
11	Work shift status					

Remarks 1. Definitions of operating time shall be described as follows:

Heating time : Time during which a steel product is being extracted; that is, the operating time of a

rolling mill

Heat raising : Time required for the furnace to be heated up to the temperature when extraction can be

conducted

Holding time : Time during which extracting is stopped due to a failure of equipment other than the

furnace, etc.

Shutdown time: Time during which no operation is performed (including the time for periodical repairs)

2. Definitions of steel products treated as hot-charge steels should be described.

Table 12.10 Measurement Result List

Mea	sur	ement date and time (hours)				
		who made measurements				
Wes				Outside temperature	Ambient temperature	Relative humidity
	attic	1 Atmosphere pressure	MPa	K	K K	%
, 	Īκ	ind				
1		oaking zone upper part	Consumption	kg/t or m³/t		
	}	oaking zone lower part	Consumption	kg/t or m³/t		
1	_	eating zone upper part	Consumption	kg/t or m³/t		
1		eating zone lower part	Consumption	kg/t or m³/t		
		reheating zone upper part	Consumption	kg/t or m³/t		
5	_	reheating zone lower part	Consumption	kg/t or m ³ /t		
		efore the flowmeter	Pressure	Pa		
2 1		efore the combustion equipmen		Pa		
3	_	ilet of the preheater	Temperature	К	· · · · · · · · · · · · · · · · · · ·	
4		butlet of the preheater	Temperature	K		
5	-	efore the flowmeter	Temperature	К .		
6		efore combustion equipment	Temperature	К		
7	_	fass or volumetric ratio of each		kg/kg or m³/m³		
8		ower calorific value	component	kJ/kg or kJ/m³		
		ind			· - · · · · · · · · · · · · · · · · · ·	
H		oaking zone upper part	Consumption	kg/t or m³/t		
H		oaking zone lower part	Consumption	kg/t or m ³ /t		· · · · · · · · · · · · · · · · · · ·
2	_	leating zone upper part	Consumption	kg/t or m³/t		
	_	leating zone lower part	Consumption	kg/t or m³/t		
4 1	_	reheating zone upper part	Consumption	kg/t or m³/t		·····
Atomizer		reheating zone lower part	Consumption	kg/t or m³/t		
6	-	efore the flowmeter	Pressure	Pa		
7	ļ.,.,	efore the combustion equipmer		Pa		
8	-	lefore the flowmeter	Temperature	К К		
9	<u> </u>	Sefore combustion equipment	Temperature	K		· · · · · · · · · · · · · · · · · · ·
0		oaking zone upper part	Consumption	m³/t		
1		oaking zone lower part	Consumption	m³/t	· · · · · · · · · · · · · · · · · · ·	
2		leating zone upper part	Consumption	m³/t		
3		leating zone lower part	Consumption	m³/t		
	-	reheating zone upper part	Consumption	m³/t		
~		reheating zone lower part	Consumption	m³/t		
Combustion		lot air blow-off amount	Consumption	m³/t		
취를		Sefore the flowmeter	Pressure	Pa		
8 5		Before the combustion equipmen		Pa		
9		nlet of the preheater	Temperature	К		
10		Outlet of the preheater	Temperature	K	· · · · · · · · · · · · · · · · · · ·	
ii		Before the flowmeter	Temperature	К		
12	1-	Before combustion equipment	Temperature	K		
13		Consumption		m ¹ /t		
	-	emperature		K		
4 % 5 8	P	ressure		Pa		
61°		Oxygen purity		m³/m³		
7 <u>5</u>		Consumption		t/t		
S \$	-	'emperature at the inlet		K		
Cooling	h	emperature at the outlet		K		
ं है	P	ressure		MPa		· · · · · · · · · · · · · · · · · · ·
1 8		urnace bottom temperature		K		
2 5	7	emperature at the preheater in	я	К	· · · · · · · · · · · · · · · · · · ·	
2 your and mon	Ţ	Cemperature at the preheater out		К		
4 8	1	folumetric ratio of each compor		m³/m³		
5	+	Average dimensions (Thickness		mm × mm × mm		
6	_	Verage mass		kg	, , , , , , , , , , , , , , , , , , , ,	
7	I	Mass meter for charged steel		ĭ		· · · · · · · · · · · · · · · · · · ·
		Mass meter for extracted steel		t		· · · · · · · · · · · · · · · · · · ·
product	N	fass meter for steel products in a furnace at t	ne start of measurement	t		
		luss meter for steel products in a furnace at t		(······································	
Steel		Average charge temperature		К		· · · · · · · · · · · · · · · · · · ·
2 0	_	Average extraction temperature		K		
3		Amount of reduction due to burn	ing	kg/t		
4		Average in-furnace time		h		
	_	e internal pressure		Pa		
5 Fur	rnac					

Remark: For the measurement method for item No. 66, a simple sketch of the furnace body should be attached.

Table 12.11 Heat Balance List

Heat input			Heat output		
Item	MJ/t	%	Item	MJ/t	%
(1) Fuel combustion heat			(8) Heat content of the extracted steel product		
(2) Sensible heat of fuel			(9) Sensible heat of scale		
(3) Sensible heat of combustion air			(10) Sensible heat of exhaust gas		
(4) Sensible heat of atomizer			(11) Heat loss due to incomplete combustion gas		
(5) Heat content of a charged steel product			(12) Heat carried away by cooling water		
(6) Heat generated by scale formation					
(7) Heat recovered by the preheater	()	()	(13) Other heat output Heat loss due to radiation from the furnace body and the flue Heat loss due to gas flame emission from the furnace openings Heat loss due to emission from the furnace opening Heat loss from the piping for preheated fluid Heat loss due to hot air blow-off Other heat losses		
			(14) Heat recovered by the preheater	()	()
Total (1) + (2) + (3) + (4) + (5) + (6)			Total (8) + (9) + (10) + (11) + (12) + (13)	_,	

Remarks 1. For entry of heating values, MJ/t should be used as the unit, and the fractional portion of the number should be rounded off to the first decimal place.

- 2. The percentage should be rounded off to the first decimal place.
- 3. "Heat recovered by a preheater" means the circulating heat based on the temperature and the flow rate before the combustion equipment.
- 4. Other heat losses should be analyzed in as much detail as possible.

12.5 Actual Examples of Energy Conservation

12.5.1 Actual Cases of Energy Conservation

The Energy Conservation Center, Japan has collected improvement cases from factories throughout Japan every year and convened a presentation convention since 1975. "Heating furnaces" are searched through the cases in recent years (1984 to 1998) to find 103 cases. Figure 12.21 shows their distribution in business categories, Figure 12.22 shows the motivations for those energy conservation activities, and Figure 12.23 categorizes the activities for energy conservation.

Figure 12.21 Number of Cases Presented for Reheating Furnaces (1984 to 1998)

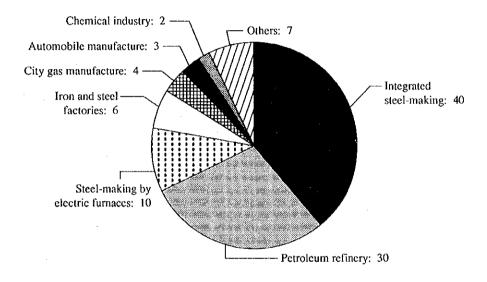


Figure 12.22 Motivations for Energy Conservation

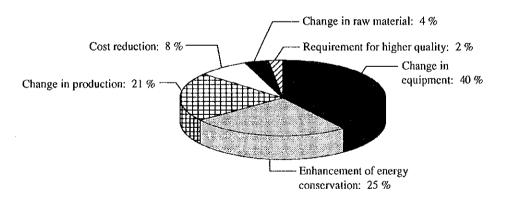
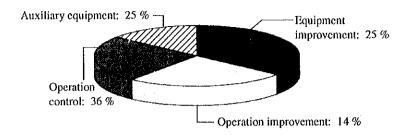



Figure 12.23 Patterns of Energy Conservation

These cases of energy conservation are mainly the results of small-group activities by operators in factories and most improvements are intended for operation of existing equipment. Table 12.12 briefly describes the content of improvements.

Table 12.12 Examples of Energy Conservation (heating furnace) (1/5)

Year	ID/ECC	Industrial categories	Process 1	Process 2	Motivation	Раттет	Improvements	Title for presentation
9. 9.	1	FE96064 Petroleum refinery	Naphtha hydrogenation	Stabilizer heating furnace	Promotion of energy	Auxiliary	Optimum control; devised by	Energy conservation for the naphtha-hydrogenation
966	FE96045	Integrated steel making	desulturizer Motors for blowers	Large-size motors: 3	conservation Promotion of energy	equipment Auxiliary	operators VVVF control, renewal of heating	Audit activities for energy conservation and power-
				locations	conservation with a focus placed on electricity	equipment	fumace heat exchanger, etc.	saving measures for rotary machines
1996	FE96036 1	Integrated steel making	Large-size shape steel	Heating furnace	Operating system (Blast	Operation control	Al intake control	Establishment of the energy-saving operation method
90	1 0009033	FEOGOD Incorated steel making	factory Steel plate factory	Heating furnace	fumace to be shut down) Small-lot multi-item	Auxiliary	Overheat prevention linked with the	for the continuous neating furnace Reduction of the fuel intensity for the steel plate heating
				9	production	equipment	process computer	furnace Exercise of second content on temperature to the
288	FE96001	Petroleum refinery	Factory as a whole		Global environment as the corporate's goal	Operation control	A near exchanger was newly installed,	creation of a heat emission loss map
1995	FE95147 (City gas manufacture	Naphtha cracking gas		Raw oil quality change	Operation control	Review associated with material change (from coal cas to naphtha)	Energy conservation for the city gas manufacturing confirment
1995	FE95090 1	FE95090 Iron and steel factories	Steel tube galvanizing	Blowing the steam for removal of the	Frequent occurrence of moubles	Auxiliary equipment	Introduction of heat exhaust gas to eliminate steam condensate	Energy conservation by stabilizing operation of the zine recovery equipment
1995	FE95089 1	Integrated steel-making	Hot rolling works	excessive zinc Heating furnace	Operating system (Blast	Operation control	Optimization of heat holding fuel	Review of the heating furnace heat holding/raising
1995	FE95085 S	Steel-making by an	Heating furnace		Promotion of energy	Operation control	Decreasing the setting temperature	Energy conservation by sign covering the operating mathem for the perhaps improving the operating
1995	FE95082 1	escence furnace FE95082 Petroleum refinery	Fluid catalytic cracking	Catalytic regenerator	Promotion of energy	Operation control	Running conditions for exhaust gas	Uncersing affort for power recovery
1995	FE950%0 P	Petroleum refinery	Tower light oil desulfurizer	Air fin cooler	Promotion of energy conservation	Operation control	Examination of the rise of the outlet temperature by a dynamic	Further efforts for energy conservation
1995	FE95077 1	FE95077 Petroleum refinery	Vacuum light oil	Distiller fuel oil heating	Fuel quality change	Operation control	Air ratio control according to the	Reinforced effort for energy conservation for the hearing furnace
1995	FE95076 P	Petroleum refinery	Atmospheric distillation unit	Thinacc	Improvement of performance	Operation control	Computerized forecasting of dirt in the heat exchanger and computerized forecasting of dirt in continuation of cleaning	Energy conservation by computer technology
1995	FE95044 [Integrated steel-making	Hot rolling factory	Heating furnace	Process change	Operation control	Process information such as the extraction order and enhancement of slah temperature countil	Reduction of the fuel intensity for the No.2 heating furnace in the hot rolling plant
1995	FE95018 1	Integrated steel-making	Hot rolling factory	Heating furnace	Promotion of energy	Operation control	Optimization during hot charge	Improvement of the fuel intensity for the heating
1995	FE95001 S	Steel-making by an	Coke oven gas refinery	Heat exchanger	Promotion of energy	Operation control	Hydrogenation washing	Improvement measures for light oil heat exchanger efficiency
1994	FE94112 /	Automobile manufacture	Engine manufacture	Cam shaft die casting	Introduction of new equipment	Operation control	Heat-insulated cover for the molten metal, refractory lining, and	Energy/resource saving by die casting
1994	FE94099 /	Automobile parts manufacture	Electric furnace		Increasing the production	Equipment improvement	tapping nozzle material Modification of the furnace body for increasing production	Reduction of the electricity intensity by modifying the furnace body for the high-frequency induction hearing furnace.
1994	FE94078 1	Integrated steel-making	Heating furnace for scamless steel pipe		Small-lot multi-item production	Operation improvement	Optimization of the charging method and setting temperature by making	Reduction of the fuel intensity for the small-diameter tube heating furnace
1994	FE94070 F	Petroloum refinery	Raw oil heating furnace		Raw oil quality change	Equipment improvement	Int Stuffing legal longer Additional installation and reinforcement of heat exchangers to copy with the change in the curality of the processed caw oil	Energy conservation by rearrangement of the raw oil proheating heat exchangers
1994	FE94065 (Chemistry	Raw material heating		Promotion of energy	Equipment	Two materials separately heated are	Energy conservation for the NP manufacturing process
1994	FE94047 II	Integrated steel-making	Hot rolling factory	Heating furnace	Promotion of energy conservation	Auxiliary equipment	Coping with minimum operation, countermeasures against air invasion, and installation of a partition wall in the preheating	Measures for fuel intensity reduction for the hot roll heating furnace
1994	FE94035 1	Integrated steel-making	Hot rolling factory	Heating furnace	Retrofitting the furnace	Equipment	Full-ceramic furnace body	Reduction of the fuel intensity by renewing the heating furnece for the hot relline factory
1994	FE94032 I	Integrated steel-making	Hot rolling factory	Heating fumace	Retrofiting the furnace	Equipment	Furnace shape improvement, fue/vair proheating, and reducing the number of operation humans	Energy conservation for the steel product heating furnace
1994	FE94008 F	Petroleum refinery	Fuel oil desulfurizer	Raw oil heating fumace	Worsening of the energy intensity	Operation control	Removal of scales on the liner surface of the intermediate section based on pert balance section	Limitiess energy conservation for the heating fumace
1994	FE94002 R	Petroloum refinery	Atmospheric distillation unit	Raw oil heating fumace	Promotion of energy conservation	Operation control	Raising the raw oil storage temperature and improvement of best pechanics moreons	Energy conservation activities for the atmospheric distillation equipment (Effort for improvement of the process heat efficiency)
1993	FE93102 1	FE93102 Integrated steel-making	Steel plate factory	Heating furnace	Inconsistency in process control	Operation control	Making the charging order variable	Effort toward 200,000 keals of heat intensity in the continuous heating furnace

Table 12.12 Examples of Energy Conservation (heating furnace) (2/5)

						Doseans	Tmorrowents	Title for presentation
Year	ID/ECC	Industrial categories	Process 1	Process 2	Motivation	Pattern Control	Improvement of heating gattern and	Reduction of the fuel intensity in the heating furnace in
1993	FE93100	FE93100 Integrated steel-making	Pipe manufacture factory	Heating furnace	Small-lot multi-item production	Operation control	the temperature rise/drop pattern	the small diameter tube manufacturing plant
1993	FE93095	Integrated steel-making	Hot rolling factory	Heating furnace	Furnace retrofitting/hot charging	Auxiliary equipment	Improvement of furnace setting temperature and the finishing stand	Effort toward 250,000 keal of fuel intensity for the reheating furnace
Ş		Distract products	Raw mibber refining	Natural rubber heating	Scasonal adjustment	Equipment	Changing the heating source from	Energy conservation by heating rubber with microwave
3		Kupoci pioancis	process	process	Trouble in firmace messure	improventent Auxiliary	steam to microwayo Countermeasures against air invasion	Energy conservation by reducing the load on the
1993	FE93021	Iron and steel factories	Heating fumace for scamless steel pipe		controj	equipment	into the flue, recuperator, charging/extraction parts	induced draft fan for exhaust gas
1993	FE93013	Integrated steel-making	Manufacture of forge-	Heating furnace/transfer	Improvement of yield	Equipment improvement	Two-layer atmosphere heating and N2 scaled transfer	Total energy reduction by reducing the scale loss in the forge-welded steel tube manufacturing line
6		Automobile manufacture	welded steel tubes Heat-treatment furnace	ale ale	Energy conservation during	Operation control	Reduction of fumace temperature and semocohoric over supply	Energy conservation for the sintering Jurage and continuous reheating furnace on holidays
		-	Chand paraduot housing	Chid burton	non-operating time Improvement of product	Auxiliary	Skid button shape change/material	Development of an energy conservation type high
266	FE92107	Integrated steel-making	furnace		quality	cquipment	improvement Holding monthly meetings with the	menting point said busing Reduction of the fuel intensity for the heating furnace
1992	FE92104	Integrated steel-making	Hot rolling factory	Heating fumace	Promotion of energy conservation	Improvement	cpartments and both ats holding daily	ьу DHCR
1992	FE92092	Petroleum refinery	Heavy oil hydrogenation desulfurizer	Hydrogen manufacturing equipment	Important items to be implemented	Equipment improvement	modulings A hydrogen film separating unit was newly installed to be used together with the existing equipment after	Enhancing the efficiency of the hydrogen supply system
1992	FE92047	Automobile manufacture	Forge reheating furnace	High-frequency induction furnace	Promotion of energy conservation	Equipment improvement	The skid rail for transport was abolished and ceramic was used	Using ceramic as the material for high-frequency induction heating furnace body
1992	FE92041	Integrated steel-making	Blooming mill	Heating furnace	Small-lot multi-item production	Auxiliary equipment	Burner modification and development of a device for removing the scales	Reduction of the fuel intensity for the heating furnace
		:		Therefore Management	Demotion of enemy	Operation control	on the skild Reverse charging of rejected hot slab	Combustion intensity reduction measures for the
1992	FE92031	Integrated stock-making	Hot rolling min	Doming things	conservation	Contract and increased	into the furnace's extraction hole	heating furnace Energy conservation for the walking beam type
1991	FE91101	Iron and steel factories	Cast forging	Heating furnace	Promotion of energy conservation	Operation country		continuous reheating furnace
8	FE91098	Steel-making by an	Rolling mill	Large-size heating	Annual target policy of the	Operation control	improvement of ourner toda distribution	Laci the same of t
1991	FE91047	electric furnace Integrated steel-making	Large-size shape steel	Heating fumace	Promotion of energy conservation	Operation control	Air ratio, fumace internal pressure, heat holding damper, heat pattern,	Thorough going on-site analysis for composition improvement
8	FE91028	Petroleum refinery	Atmospheric distillation	Heating furnace	Raw oil quality change	Operation control	Naphtha lead pressure setting was based on the type of raw oil, and	Pursuit of energy conservation for annospheric distillation equipment
			unit				control of washing tower NaOH	Reduction of heating energy for the vacuum light oil
1981	FE91011	Petroleum refinery	Vacuum light oil desulfurizer		Premotion of energy conservation	improvement	integrated into a single stage. Development/display of management	desulfurizing equipment Energy conservation effort for shift-basis work system –
188	FE91001	Petroleum refinery	All processes		Promotion of energy conservation	Operation Council	and control screens and setting of the standard for intermediate	Development and utilization of the management and control servens
1990	FE90147	Electric enterprises	Thermal power station	Boiler	Cost reduction	Operation control	Operation control of auxiliary machine/desulfurizer operation and	Reduction of DSS start-up losses
1990	FE90144	City gas manufacture	Coal tar distillation equipment	Heating furnace	Fumace retrofitting	Equipment improvement	temperature country to the companion seed layout in the convection section, and weighing/heat insulation	Energy conservation measures for the coal tar distiller heating furnace
986	FE90088	Petroleum refinery	Vacuum distillation.		Integration of formal organizations	Equipment improvement	Inaucriat Lowering reboiler pressure and modifying the gas turbine in order	Energy conservation activity chaltenging the environmental changes with reinforced determination
1990	FE90087	Petroleum refinery	Naphtha catalytic reforming device	Waste heat boiler	Promotion of energy conservation	Equipment improvement	Advanced control of water supply distribution to three waste heaf	Maximization of waste heat recovery through advanced control
1980	FE90086	Petroleum relinery	Heavy oil desulfurizer	Heating furnace	Promotion of energy conservation	Equipment improvement	Exhaust heat recovery was changed from the boiler to raw oil plus	Waste heat recovery by improving the heating furnace for the heavy oil desulfurizing equipment
80	FE90084	Petroleum refinery	Naphtha desulfurization	Stripper	Raw oil quality change	Operation control	hydrogen Simpper temperature/pressure control	Energy conservation by improving the stripper running method
0661	FE90082	Petroleum refinery	reforming device Pour point depressing	Raw oil heat exchanger	Improvement of maintenance	Operation control	Reduction of dirt in the heat exchanger through control of raw	Energy conservation by preventing dirt in the raw oil
86	FE90038	FE90038 Integrated steel-making	Sizing mill heating		Changing the operation in the upstream process	Auxiliary	ou quanty Dual slab cutting torch, and roll cooling by spraying air/water	near containing to improvement of the continuous cast steel temperature
			2					

Table 12.12 Examples of Energy Conservation (heating furnace) (3/5)

								The second secon
Year	1D/BCC	Industrial categories	Process 1	Process 2	Motivation	Pattern	Improvements	וווכ זסו אובאכחומווסו
986	FE90028	Steel tubes manufacture	Erbart tube manufacture	Heating equipment	Promotion of energy conservation	Auxiliary equipment	Air ratio, preheated air temperature, ceramic fiber, and variable flame	Reduction of the heating energy in the Emart tube manufacturing process
966	FE90020	Steel-making by an electric furnace	Heating furnace		Worsening of the energy intensity	Operation control	Temperature measuring position, combustion air temperature, and	Improvement measures for fuel oil intensity of the heating formace
066	FE90018	Steel-making by an	Forging mill	High-frequency heating	Development of equipment	Equipment	Development of a vertical high- frequency heating further	Development of the vertical high-frequency heating furnace
1990	FE90013	ercente sonace Integrated steel-making	Hot rolling mill		Controlling the temperature of the material to be heated	Operation control	Charging schedule and operation improvement for emoty furnace	Energy conservation activities by using a more efficient operation mode
980	FE90011	Integrated steel-making	Steel plate factory	Heating furnace	Promotion of energy	Operation control	High-temperature charging and lead	Improvement of the hot steel product charging temporaries for story plate mapping
86	FE90008	Petroleum refinery	Atmospheric/vacuum		Reviewing the integration of	Equipment	Development of an ideal heat	Reduction mensures for heating formace intensity for the
1989	FE89143	City gas manufacture	distribation unit Naphtha heating fumace		processes Prometion of energy conservation	Equipment improvement	Perheating the combustion arising the waste heat from the furnace and exhaust heat from the	personant assistant of the feating furnace through recovery of waste gas and hot air
1989	FE89093	Steel-making by an electric furnace	Roll heating furnace		Promotion of energy conservation	Equipment improvement	air in cooler An air prehenter was newly installed: DDC was adopted for instrumentation	Energy conservation measures for the continuous heating furnace
1989	FE89092	Steet-making by an electric fumace	Fuel oil tank	Tank preheating electric heater	Promotion of energy conservation	Auxiliary equipment	Switching from constant heating to consume detection control of supply temperature detection	Fuel oil tank and heater temperature control
1989	FE89091	Steet-making by an electric furnace	High-frequency heating furnace		Promotion of energy conservation	Equipment improvement	Heating coil shape was changed	Reduction of the electricity intensity for the high- frequency heating furnace by improving the coil effections, and elimination mines economies
1989	FE89051	Steel-making by an	Roll heating furnace		Small-lot multi-item	Operation control	Heating temperature pattern and	Acivities for improving the fuel intensity
1989	FE89047	cucture rumace Integrated steel-making	Hot rolling mill	Heating furnace	Production Promotion of energy conservation	Operation control	Pressure setting for the air blower according to the combustion	Improvement of the electricity intensity through automatic control of the combustion air pressure
1989	PE89033	Iron and steel factory	Tube manufacturing	Hearing furnace	Cost reduction	Operation control	Changing the combustion gas route	Improvement of heavy oil A intensity for the pipe in
6861	FE89032	Petroleum refinery	Distillator heating furnace		Promotion of energy	Auxiliary	Using a microcomputer for control of oxygen in the exhaust pas	Energy conservation by improving the heating furnace control system
1989	FE89027	Integrated steel-making	Tube manufacturing factory	Rotary furnace floor heating furnace	Worsening of energy intensity due to low production	Operation	Burner distribution, temperature control standard, and door innersonment	Reduction of the fact intensity for the heating furnace in the medium-size tube plant
1989	PE89007	Petroleum refinery	Fuel oil desuffurizer		Change in demand	Auxiliary equipment	Controlling the number of exhaust gas damper impellers on a variable basis, setting it according to the combustion load, and burner	High-efficiency operation of raw oil heating furnace implemented by a feam — Energy conservation achieved by modifying the damper
1988	FE88142	Petroleum relinery	Atmospheric distillation unit	Raw oil heating furnace	Decline in production	Operation improvement	Dropping the air preheater dew point control temperature because of architection of sulfur in the raw oil	Energy conservation by reviewing the air probeater control temperature
1988	FE88129	City gas manufacture	Naphthalene heating fumace		Promotion of energy conservation	Equipment improvement	A stud was installed on the heating pipe and heat pipe's heat exchange was installed for air	Energy conservation measures for the naphthalene heating furnace
1988	FE88094	FE88094 Integrated steel-making	Large-size shape steel factory	Heating furnace	Decline in production	Operation improvement	Cochinger was instance to an instance thouse furnace operation control, and temperature fleektraction control in comporture estable for holidays	Reduction of the fuel intensity for the heating furnace by the One by One activity
1988	FE88060	FESSO60 Integrated steel-making	Service water supply	Electric power for service water	Promotion of energy conservation	Operation improvement	Implementation of 100 items for energy conservation (with small investments), and control in terms of PADA/con.	Effort for service water electricity reduction of 1000 kW with zero investment
1988	FE88041	FE88041 Integrated steel-making	Steel plate factory	Heating fumace	Promotion of energy conservation	Operation improvement	Control including that for the preceding process for hot charge improvement and use of the beaution model.	Reduction of the fuel intensity for the plate heating furnace — Efforts for continuous integrated operation from tapping to rolling
1988	FE88038	Integrated steel-making	Steel plate factory	Heating furtace	Promotion of energy conservation	Auxiliary equipment	Temperature unevenness was climinated by developing a slab surface scale preparating continuous	Energy conservation by removing scale from the charged stab
1988	FE88002	Petrolcum refinery	Heating furnace	Steam line	To cope with the cold region conditions	Auxiliary equipment	Temperature control trap was adopted (to avoid freezing), and heat insulation of the heating furnace	Energy conservation activity for the oil refinery equipment in cold districts
1987	FE87052	FE87052 Potroleum refinery	Atmospheric distillation unit		Limit in the utilization of microcomputer	Operation improvement	Application of a computer and improvement of analysis moter accuracy	Energy conservation for the atmospheric distilling equipment by computer

Table 12.12 Examples of Energy Conservation (heating furnace) (4/5)

							Standownant	Title for presentation
Year	1D/ECC	Industrial categories	Process 1	Process 2	Motivation	Faticin	Control Programme and the second	Deduction of the fired intensity for the plate continuous
1987	FE87036	FE87036 Integrated steel-making	Steel plate factory	Heating furnace	With the newly modified heating furnace	Operation	hot charge was improved and oxygens load factor was controlled with Nox, fuel distribution	healting furnace
1987	FE87033	FE87033 Integrated steel-making	Steel plate factory	Heating furnace	Comparison with competing companies	Auxiliary equipment	Preventive maintenance was enhanced and a heat insulating cover was installed on the transfer	Effort for fuel intensity "250" for the plate continuous heating furnace
1987	FE87031 1	fron and steel factories	Beating fornace		Premotion of energy conservation	Auxiliary equipment	controlling the furnace internal atmosphere by installing an oxygen meter and prevention of oxidative that the DG installing that the DG installing that DG installing that DG installing the DG installing that DG installing the DG installing that DG installing the DG installing the DG installing that DG installing the DG installing the DG installing that DG installing the DG installing the DG installing the DG installing the DG installing that DG installing the DG installing that DG installing the DG installing the DG installing that DG installing the DG insta	Reduction of the butane gas intensity for the heating furnace by O ₂ meter control
1987	FE87024 1	FE87024 Integrated steel-making	Steel bar factory	Heating furnace	Frequent occurrence of troubles and shutdowns	Auxiliary equipment	A partition was installed on the top of the prediction was installed on the top of the preheating zone to improve the gas flow and air ratio control	Improvement of the bar steel heating furnace
1981	FE87016	FE87016 Petroloum relinery	Vacuum distillation unit	Raw oil heating furnace	Frequent occurrence of burner troubles	Operation improvement	during heat hotding Optimization of atomizing and control of the register opening	Efforts for optimization of the heating furnace operation
1986	FE86116 1	Petroleum relinery	Vacuum distillation unit	Heating fumace	To achieve a substantial effect	Operation	O, reduction, clearance joint caulking and red indication of the O, meter	Reduction of control values for the heating furnace of the vacuum distilling equipment
1986		Petroleum refinery	Indirect desulfurizer	Heating fumace	A large fluctuation in O ₂	Operation	Improvement of the scal for the operating lever of the air register	Thorough implementation of O ₂ control for the heating furnace
9861	FE86084 J	Integrated steel-making	Wire and steel rod rolling	Heating furnace	Energy conservation along with maintenance of high quality	Operation improvement	Setting of the furnace internal temperature distribution with consideration given to the	Energy conservation by the computer control activity for the heating fumace
9861	FE86068	FE86068 Integrated steel-making	Steel tube manufacture	Rotary heating fornace	Cost reduction	Auxiliary equipment	cecarponized depth Reduction of extraction door opening/closing time by improving	Energy conservation activity for the extraction zone of the rotary heating fumace
9861	FE86060	FE86060 Integrated steel-making	Hot rolling mill	Heating furnace	Cost reduction	Equipment improvement	Recuperator was improved, an exhaust heat boiler and skid boiler	Total exhaust heat recovery for the heating fumace in the hot rolling plant
9861	FE86021 1	Petroleum refinery	Reforming furnace for hydrogen manufacture		Promotion of energy conservation	Equipment improvement	were instanced by stopping the forced draft stopping the forced draft ventilation fan when the load is	Energy conservation by stopping the blower for the heating furnace
1985	FE85133 (Chemistry	Manufacture of man- made fiber intermediate material	Thermal heating fumace	A large fluctuation in fuel consumption	Operation control	small Making the load uniform at the heat medium consumers and improvement of fuel control valve	Fuel reduction for the COG heating furnace
1985	FE85071	FE85071 Integrated steel-making	Semi-finished steel product manufacturing	Semi-finished steel product heating	Black smoke emitted at setting change	Operation control	Fuchair control software was changed (to actuaction door's control) disturbance.	Reduction of the fuel intensity by improving O ₂ control in the heating furnace
1985	FE85069	Iron and steel factory	factory Rolling mill	furnace Semi-finished steel product heating	Review based on heat balance results	Equipment improvement	Prevention of leak from the recuperator and additional	Improvement of the fuel intensity for the bar steel heating furnace
1985	FE85026	Petroleum refinery	Naphtha reforming unit	fumace Hydrogenation desulfurizer	Cost reduction	Operation improvement	Cleaning of burners, adjustment of air registers, and Oz reduction by	Challenge of expanding the limit for reducing O ₂ in the heating furnace
1985	FE85021	Integrated steel-making	Butt-welded steel tube manufacturing	Heating furnace	Cost reduction	Equipment improvement	Adoping the air-cooled skid instead of water-cooled skid to recover hot	Energy conservation measures for the forge-welded steel tube skelp heating furnace
1985	FE85010	FESSO10 Aluminum processing	equipment Rolling mill	Ingot heating furnace	Promotion of energy conservation	Equipment improvement	Air for use Reduction of the rotational speed of the hot air circulation fan in the	Energy conservation for the aluminum ingot heating furnace in the hot rolling plant
1985	FE85007	FESSO07 Integrated steel-making	Hot rolling mill	Heating furnace	Reinforcement of measurement control	Auxiliary equipment	Improvement of O, control during minimum combustion, and high selection of the pyrometer in the	Reduction of the fuel intensity for the hot-rolled slab heating furnace by applying the functional control technique
1984	FE84096	FE84096 Integrated steel-making	Steel bar factory	Heating fumace	Switching to by-product gas	Auxiliary equipment	uniace Modification of the burner wall and control according to the LD gas holder level	Improvement of the fuel intensity for the heating furmace by using the convertor gas
1984	FE84084	FE84084 Steel-making by an electric furnace PE84075 Integrated steel-making	Special steel tube manufacture Steel bar factory	Batch heating furnace Heating furnace	Small-lot multi-item production Cost reduction	Equipment improvement Auxiliary	Fuel charging pattern was improved, and a recuperator was installed. Flue damper was adjusted under low	Reduction of fuel intensity for batch type heating furnace Improvement of the downstream flue damper for the handle furnace.
1984	FE84060	FE84060 Integrated steel-making	Large-size shape steel factory	Heating furnace	Reinforcing the effort for energy conservation which	Operation improvement	Track time was reduced, and the recuperator's heating surface was	Reduction of the fuel intensity for the large heating furnace
1984	FE84058	FE84058 Integrated steel-making	Small-diameter tube factory	Butt-welded tube heating furnace	Cost reduction	Auxiliary equipment	Modification of bumers, and oxygen- enriched combustion	Energy conservation by raising the flame temperature of the forge-welded steel tube heating furnace

Table 12.12 Examples of Energy Conservation (heating furnace) (5/5)

Xear	Year 1D/ECC	Industrial categories	Process 1	Process 2	Morivation	Pattern	Improvements	Title for presentation
1984	1	FE84057 Integrated steel-making	Steel plate factory	Heating furnace	Cost reduction	Auxiliary equipment	Use of an electrical combustion fan damper, and automated control of air/fuel ratio	Energy conservation for the plate steel slub heating furnace
1984		FES 4043 Integrated steel-making	Hot rolling factory	Heating furnace	Promotion of energy conservation	Operation improvement	Dual charging door, reduced flue, and a partition in the preheating zone	Improvement of the fuel intensity by preventing air invasion to the hot heating furnace
1984		FES4022 Integrated steel-making	Seamless steel pipe factory	Rotary heating furnace	Promotion of energy conservation	Equipment Improvement	Energy conservation incorporated into the newly installed heating furnace.	Effort toward No.1 ranking in the world with regard to the fuel intensity of the new heating furnace in the intensited tube plant.
1983		FE83255 Brick buming	Refractory heating furnace	Неатіпр титасс	Promotion of energy conservation	Equipment improvement	Use of ceramic fiber, utilization of sintering furnace exhaust, reinforcement of seal	Energy conservation for the refractory heating furnace by exhaust heat recovery
1983		FE83158 Construction heavy manufacture	Electric heat-treatment furnace	Heating furnace	Promotion of energy conservation	Operation improvement	Weight reduction of jigs, stopping of cooling hars, and adjustment of the door opening degree	Energy conservation for the large electrical heating furnace by operation improvement
1983		FE83097 Integrated steel-making	Hot rolling factory	Heating furnace	Trouble with the exhaust gas analyzer	Operation improvement	Countermeasures against failures of the meters for the newly installed furnace, and elogging of sample tube	Reduction of the fuel intensity by stabilized operation of O ₂ control for the continuous heating furnace
1983		FE83087 Integrated steel-making	Hot rolling factory	Heating furnace	Cost reduction	Auxiliary equipment	Measurement of in-fumace slab temperature, reduction of the socking zone fumace floor, and semi-hot skid	Substantial reduction of the fuel intensity for the heating furnace in the for roll plant — Challenge of expanding the limit based on a viewpoint from a different angle
1983		FE83057 Integrated steel-making	Steel plate factory	Heating furnace	Promotion of energy conservation	Operation	Hot slab charge expansion, and heat pattern suitable for hot slab	Reduction of the fuel intensity for the heating furnace
1983		FE83056 Integrated steel-making	Steel pipe manufacture	Heating furnace	Promotion of energy conservation	Auxiliary equipment	Heat insulation boards on the furnace body (ceiling, side walls, and turnace floot)	Energy conservation for the roll heating furnace
1983		FE83037 Petroleum refinery	Atmospheric distillation and hydrogenation desulfurizing	Heating धित्मबट्ट	Promotion of energy conservation	Auxiliary equipment	Prevention of air leak from the furnace floor, and damper control according to oxygen in the furnace	Effort toward reduction of exhaust gas O ₂ in the heating furnace to 25 %
1983		FE83030 Integrated steel-making	Steel plate factory	Heating tumace	Improvement of computerized control	Operation improvement	Changing the control logic and mixing of hot and cold slabs	Improvement of the actual operation by application of computer control to the heating furnace

12.5.2 Convention for Presentation of Energy Conservation Cases

The first energy conservation improvement case presentation convention was convened in 1975. Up until 1998, totally 3,646 entries have been made. Figure 12.24 lists these entries along with business categories.

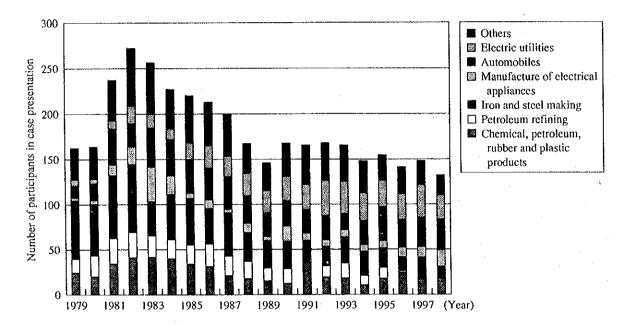


Figure 12.24 Entries to the Case Presentation Convention

Since member factories of The Energy Conservation Center, Japan mainly participate in the convention, most of these factories are large-scale factories.

Figure 12.22 shows the motivations for improvement. The production facility and operation always change from the initially planned situation. In other words, the product volume change, production quality change, advance of technologies for peripheral facilities, change of raw material, and so forth always take place. The presented cases show the results of pursuing optimization of energy conservation to cope with these changes.

Since such production environment changes are specific to each factory, application of a presented case to another factory may not always produce a good result. However, presented improvements cover a wide range and therefore these details may give tips for improvement in each factory.

•

