Table D3.23 The Concentration of $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Cd}$ in the Atmosphere

		totali absorb air	96	20	Cd
			$\mu \mathrm{g} / \mathrm{m}^{3}$		
MMS (1)	3-4.LX. 1985	15.5	5.70	4.00	0.50
	12-13.V.1986	8,84	6.64	22.70	0.89
	31-1.VIII, 1986	11.48	4.45	1.89	0.00
TEKE (3)	20-21.V. 1986	10.17	0.92	1.55	4.67
	7-8.VII. 1986	13.79	0.44	0.99	0.00
	4.5.X. 1986	14.02	5.39	8.90	0.56
BASINO SELO (4)	1-2.XI. 1985	13.7	0.91	2.39	0.04
	24-25.VII. 1986	8.99	0.61	1.52	0.04
	19-20.V711. 198	10.27	0.00	0.82	0.00
GRADSKO (5)	12-13.XI.1985	16.84	0.18	3.93	0.00
	10-11.V1. 1986	10.4	0.00	0.99	0.00
	20-21.VIII. 198	11.26	0.19	0.60	0.00

Source : RHI

Table D3.24 The Concentration of $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Zn}$ in the Dust
Annual Average Concentrations in Veles (1976-1985)

		Average	conc.	$\mathrm{mg} / \mathrm{m} 2$
Urban area	Year	Pb	Cd	Zn
	$1976 / 77$	5.200	0.260	9.780
	1982	0.530	0.056	0.253
	1983	1.721	0.104	0.455
	1984	0.317	0.041	0.523
	1985	1.336	0.101	10.769
	Veles	1984	0.056	0.004
	0.054			
Control area	19. Ivankovci	1985	0,042	0.007

Source: IPH-Veles

Table D3.25 The Concentration of $\mathrm{Pb}, \mathrm{Cd}, \mathrm{Zn}$ in the Atmosphere
Annual Average Concentrations in Veles

		Average	conc	ag $/ \mathrm{m} 3$
Urban area	Year	Pb	Cd	Za
	$1976 / 77$	2,480	0,170	1,750
	1982	1,080	0,193	0,741
	1983	1,086	0,172	0,626
	1984	0,773	0,087	0,599
Veles	1985	0,701	$\cdots 0,120$	1,138
	0,077	0,010	0,103	
Control area	1984	0,083	trace	0,126
v. Ivankovci	1985	0,083		

Source: IPH-Veles

Table D3.26 Air Quality Level in Bitola for Dust (1996)

\bigcirc	T Paples\%	36-manos 2 \%	VVR-station	Factory Progr
	fragem)	$\square .\left(\mathrm{mog} / \mathrm{m}^{2}\right)$	$\underline{\square}$ ($\left.\mathrm{m} / \mathrm{ma}^{2}\right)$	
Jammary,	38.86	63.69	72.31	73.88
February .	22.40	57.71	54.70	111.03
March,	48.74	54.77	59.44	58.47
April	51.61	72.94	129.94	84.90
May,	86.82	73.00	94.78	35.66
Junc.	14.40	96.18	150.50	183.50
Iuly	128.39	64.22	57.77	48.69
Augusd	10.80	59.73		75.63
Septeotor	60.42	151.35	112.26	251.08
Sctutara..........	42.47	29.25	66.74	68.96
Kovarubok......	13.17	68.64	42.90	125.56
をaccmbak,	29.50	41.70	87.50	45.50
Total 89% \%	4863\%	69.43]	10643,	- 26690

above the MPC (maximum permited concentration $-300 \mathrm{mg} / \mathrm{m}^{2}$)

Figure D3.18 The Measuring Points Disposition

Table D3.27 The Survey Results of SO_{2} and Black Smoke in Bitola

MMS BITOLA
SO_{2}

	-C	$\%$	C_{98}	MPC	$\mathrm{C}_{\text {max }}$
1984	9	99	34	0	45
1985	18	100	74	1	153
1986	21	98	123	1	151
1987	18	99	90	0	134
1988	15	90	37	0	55
1990	18	93	83	0	190
1991	12	80	42	0	77
1992	7	99	23	0	51
1993	4	99	15	0	33
1994	8	100	29	0	33

black smoke

	\vec{C}^{\prime}	$\%$	C_{98}	MPC	$C_{\text {max }}$
1984	16	99	71	25	103
1985	19	100	77	42	101
1986	19	98	96	40	149
1987	17	99	75	22	161
1988	16	90	78	22	107
1990	16	83	85	23	164
1991	22	80	79	33	280
1992	16	97	69	22	162
1993	16	97	67	23	176
1994	14	100	69	18	124

$$
\begin{array}{cl}
\overline{\mathrm{C}} & - \text { average annual concentration } \mu \mathrm{g} / \mathrm{m}^{3} \\
\mathrm{C}_{98} & -\quad 98 \text {-percentile value } \\
\% & -\quad \% \text { of realisation } \\
\mathrm{MPC} & -\quad \text { number of days }>\mathrm{MPC}=150(50) \\
\mathrm{C}_{\max } & -\quad \text { max annucl value } \mu \mathrm{g} / \mathrm{m}^{3} \quad \text { Source }: \mathrm{RHI}
\end{array}
$$

Figure D3.19 The Measuring Points Disposition

Table D3.28 The Survey Results of SO_{2} and Block Smoke in Tetove
SO_{2}

	Kinder garten Tetovo					Radi station				
	c	$\%$	C_{9}		$\mathrm{C}_{\text {max }}$	C	$\%$	C_{0}		C
1984	7	99	49	0	79	10	100	71	0	107
1985	27	99	123	2	183	23	94	119	2	199
1985	19	99	137	5	168	22	93	156	9	233
1987	9	99	65	0	96	22	91	149	7	237
1988	9	99	54	0	80	12	94	35	0	105
1990	5	88	19	0	27					
1991	4	93	21	0	70					
1992		96	10	0						
1993	2	97	8	0						
1994	,	95	11	0	18					

black smoke

	Kinder garten Telovo					Radio stalion				
	C	\%	C_{5}	MP	C_{ma}	C	\%	C_{9}		$\mathrm{C}_{\text {max }}$
1984	14	99	84	23	179	32	100	101	62	187
1985	36	99	143	82	230	38	94	136	78	333
1986	33	99	153	62	189	31	93	125	48	178
1987	26	99	117	52	135	31	97	121	56	245
1988	33	96	162	60	277	31	94	124	58	186
1990	32	88	131	36	271					
1991	35	89	206	62	230					
1992	26	96	114	42	312					
1993	24	97	166	31	238	-				
. 1994	23	96	103	29	192					

Source : RHI

Table D3.29 Air-quality Level in Kumanovo for Dust Fall (1996)

Q Mnath \square^{\square}	- - Iverage	Winimum (mg mix)	S4anmom (mp/m)
\checkmark	¢ concentration	$\cdots \geq$	
		$\bigcirc \mathrm{L}$. L . L .	$1+$
January \square^{\square}. ${ }^{\text {a }}$	226.1	187.7	299.1
Feonume \square_{\square}	35.0	29.7	39.4
ASarch: \square°	4.5	35.9	54.0
ALril, , ,	79.9	64.3	97.1
May ${ }_{\text {a }}$.	78.7	75	88.0
Iune :	89.0	82.0	96.0
Fuky ${ }^{\text {a }}$,	83.3	68.5	93.2
Aogus	118.5	106.0	130.0
Senternter.........	72.3	33.3	92.9
October \square^{\square}. ${ }^{\text {a }}$	71.5	54.0	107.0
November,	199.5	122.9	1\%.
becember,	142.9	103.9	194.5
Fotal 1996.	1025	819	$152: 9$

* above MPC (maximum permited concentration - $300 \mathrm{mg} / \mathrm{m}^{2}$)

Source : IHP

Table D3.30 Air Quality Level in Shtip for Dust Fall (1996)

E-Patratatum		- NOWOCm			2dow Ediy
.-......--3...					
-	Frevaruenuty	mentriopunt			- 5 batertar
Q,		-	Coneticray:	\% (xip)	
$\square-\square$	- 5 -	4. 4 HT		$\cdots \mathrm{O}$	-20-20.
$\square \times$	2,	N-.	manding/3n)	-	
Catera	4	47	410	1423-1176.0	275

Table D3.31 Air Quality Level in Prilep and Krushevo for Dust Fall (1996)

$\bigcirc \square$	Fta orsmanes	- krerage $=$		Nococarys
$\cdots \mathrm{V}$, V .	$\stackrel{\square}{ }$	- manthly	[1010	OMovethe.
		-		
	V 2.	concentrations		Hamert.
$\square \mathrm{V}$, L V ,	V, +2	(7xy/m) ${ }^{2}$	\cdots	$\square \mathrm{V}$
	60	424.2	195.0-776.8	240
S Krushevo.	24	461.0	150.0-876.0	240

*MPC - maximum permited concentration ($300 \mathrm{mg} / \mathrm{m}^{2}$)

Source : IHP

Notes of Table D3.32(1) - Table D3.32(5)

The information and data about investigated objects and emitters are given in Table 3.32. The are given together with data about:

Object 1: Number of emitters
2: Type of emitters: industrial (I), energetic (E) and communal-heating (C)
3: Installation power (in MW)
4: Quantity of liquid fuel per hour (in kg / h)
5: Quantity of solid fuel (in kg / h)
6: Quantity of gas fuel (in $\mathrm{m}^{3} / \mathrm{h}$)
7: Volumetric flow of waste gases (in $\mathrm{Nm}^{3} / \mathrm{h}$) from emitters working in the investigated period
8: Total vol. Flow of gases of registered emitters (in $\mathrm{Nm}^{3} / \mathrm{h}$)
9: y coordinate (longitude), Gauss-Krieger protection
10: x coordinate latitude), Gauss-Krieger protection
Table D3.32(1) Emission Source Facilities in Skopje

No.	¢ ${ }^{\text {a }}$ -		2	3,	4	5	6	7	8		9			10	
1. Commualty Cair															
1	Basic Scbool (BS) "Varil Glavinov"	2	C	1.22	80	-	-	675	1285	75	36		40	52	225
2	ES Rajko Zinzifor	2	C	1.1	100	\cdot	.	580	1160	75	36	375	40	52	925
3	BS Pelar Zdravkovski	2		1.16	100	\cdot	.	610	1220	75	37	1100	40	53	206
4	BS Panajot Ginovski	2	C	1.2	100	\cdot	-	630	1260	75	37	725	40	53	112
5	BS Zivko Brajkovski	5	C	1.6	270	-	-	630	1683	75	37	500	40	54	175
6	BS Kliment Ohridski	2	C	1.66	140	-	-	874	1748	75	37	3.50	46	55	225
7	BS 26 Juli	2	C	1.18	80	-	-	610	12.42	75	35	550	40	-55	325
8	BS Braca Ramiz Hamid	2	C	0.8	60	-	-	420	840	75	35	550	46	55	$5(x)$
9	BS Idnina	4	C	0.81	170	-	-	316	856	75	37	550	40	53.	$05(1$
10	BS Nikola Vapcarov		C	0.81	80	-	-	420	$840)$	75	36	925	40	52	S(0)
11	BS Aco Sopor	2	C	$\begin{aligned} & 1.1 \\ & 2.0 \\ & 2.2 \\ & \hline \end{aligned}$	-	60	-	-	$\stackrel{-}{-}$	75	37	425	40	59	S2.5
12	Children-garden-C-G Snezona	2	C	0.6	60	-	-	316	632	75	38	325	46	52	225
13	C-G Snexana, $\mathrm{K}-1$	1	C	0.6	60	-	\cdot	420	632	75	36	375	18	52	82.5
14	C-G Saczona, K-2	1	C	0.4	40	-	-	316	420	75	35	550	40	55	175
15	C-G11 Oktomvri	2	C	0.73	55	-	-	. 390	760	75	37	000	40	53	150
16	C-G Rosica	1	C	0.4	30	-	-	420	420	75	36	950	46	52	954
-17	C-G Bral.-Edinst.	2	C	0.3	50	-	-	316	316	75	37	850	46	53	050
18	C-G Br.Ed. K-S.P	1	C	0.1	10	-	-	105	105	75	37	500)	46	54	275
19	C-G Br.Ed K-NK	2	C	0.5	50	-	-	203	526	75	37	375	40	S4	3001
20	C-G11 Oktomvri	2	C	0.6	50	-	\cdot	316	632	75	37	425	46	50	300
21	High School-HSA, rsenil Jakor	2	C	1.2	120	\cdot	-	632	1264	75	37	150	40	53	300
22	HS Cvetan Dimor	2	C	1.55	110	.	-	1054	163.4	75	36	075	18	5	250
23	Pension home	2	C	0.8	60		-	-	-	75	30	5(x)	16	S?	$251)$
24	Rehobilitation center	3	C	3.6	240	.	-	1260	3780	75	36	550	16	53	275
25	Rehabilit. Center 25 May	2	C	1.07	80	-	-	890	890	75	37	150	46	54	750
26	Ambulance Kraiska 1	1	c	0.15	10	-	-	180	160	75	37	350	46	54	150
27	Ambulanco-S.Orizari	2	C	0.7	-	160	-	458	916	75	3.5	200	46	55	025
28	Ambulance Cair	3	C	1.37	100	-	.	900	1550	75	37	425	40	53	(150)
29	Poat Cair	2	C	0.5	50	-	-	316	316	75	37	150	4 H	52	325
30	Police Station	1	C	0.08	8	-	-	82	82	75	37	375	16	5.1	850
31	Jall Skopje	2	C	1.78	80	-	-	250	500	75	35	625	40	5.4	225
32	Electrodistribut.	2	C	3.75	200	-	-	2250	3000	75	36	63.5	40	54	225
33	Textile factory Nose Dete	2	C	0.11	10	\cdot	.	110	116	75	37	150	16	53	750
34	Water Supply.	2	C	3.49	300	-	-	1833	3133	75	30	625	16	54	050
35	Textilc lactorySkoteks	1	c	2.2	50	-	-	612	612	75	37	050	4	53	450
36	Bakery 8 March	13	C	4.5	935	-	-	5550	5550	75	36	050	16	5.	125
37	Porc. factory IGM	11	I	3.20-for 4	501	,	30.4	69490	094×0	75	30	125	10	53	025
	$10 \mathrm{~Pa}$	- ${ }^{\text {cse }}$	$8 \mathrm{~K}$		¢ $4 \times \mathrm{S}$ ¢	220	$\underline{\square}$	14480	109570						

Table D3.32(2) Emission Source Facilities in Skopje

m. Community Ceater

8 암

Table D3.32(3) Emission Source Facilities in Skopje

Table D3.32(4) Emission Source Facilities in Skopje

Table D3.32(5) Emission Source Facilities in Skopje

[^0]Table D3.33 Number of Companies Divided by Type of Activities

Type of activities	Number of companies and institutions						
Candustry	Gazi Baba	Kisela Voda	Karpos	Centar	Skopic total		
Non-industry	32	15	13	12	7	52	
Total	37	33	17	11	18	101	

Table D3.34 Number of Emitters Divided by Type of Activities

Type of activities	Number of emitters					
	Cair	$\begin{aligned} & \text { Gazi } \\ & \text { Baba } \\ & \hline \end{aligned}$	Kisela Voda	Karpos	Centar	Skopje. total.
Energetic and metallurgy	2	18	3	8	4	. 35.
Metal and electrical industry	0	0	4	0	0	4.
Nonmetallic industry	0	0	3	0	0	\% 3.
Textile and leader industry	3	11	7	0	2	23..
Chemical industry	0	6	12	10	0	28.
Graphic, paper, publishing and cinematography	0	5	0	0	3	8
Agriculture, food, tobacco and water treatment	13	17	4	7	11	W2...
Forest and wood industry	0	0	0	0	3	\% 3
Construction	11	0	7	7	0	. 25.
Traffics	0	0	2	0	0	2.
Post	2	2	2	2	2	10
Education	51	46	34	16	19	166
Health	6	4	2	6	8	26
Administration	3	1	0	0	0	\% 4.
Trade, tourism, restaurants	2	7	0	0	10	19
Communal activities	2	0	0	0	0	2
Banks, assurance, intellectual activities	0	0	0	0	0	0
Total.....	95.	11.	80.	56.	62	410

Table D3.35 Number of Emitters Divided by General Type of Activities

Type of activities	Number of emitters						
	Cair	Gazi Baba	Kisela Voda	Karpos	Centar	Skopje total	Skopje.total, in \%
Industry	11	32	13	4	7	67	16:34
Energetic	0	12	10	6	4	32	7.8
Communal	84	73	57	46	51	311	75.86
Total	95.	117	80	56	62	410	100.0

Table D3.36 Number of Emitters Working Continuously for S, 10 and more than 10 years (for those emitters having data)

Working years	Number of emitters and institutions						
	Cair	Gazi Baba	Kisela Voda	Karpos	Centar	Skopje total	Skopje total, in \%
< 5	18	4	6	3	4	35	$\underline{9} 9$
5-10	18	8	7	5	11	49	13.1
>10	58	83	58	43	47	289	. 77.5
Total	94	95.	\% 71.	51.	, 62,	\% 373	100:0.

Table D3.37 Number of Emitters with Different Capacities (power of less than $1 \mathrm{MW}, 50 \mathrm{MW}$ and more than 50 MW)

Capacity, MW	Number of emitters and institutions						
	Cair	Gazi Baba	Kisela Voda	Karpos	Centar	Skopje total	Skopjetotal, in \%
< 1	64	46	42	29	34	215	52.44 .
1-50	13	51	25	15	22	126	30.73
>50	0	2	0	2	0	4	0.98
No data	18	18	13	10	6	65	15:85.
Total.	$\bigcirc 95$, 117	\% 80	5.6	. 62	410	100.0%

Table D3.38 Consumption of Fuels in Skopje

Type of fuel	Consumption of fuel in kg / h					
	Cair	Gazi Baba	Kisela Voda	Karpos	Centar	Skopje total.
Liquid	4234	48775	17884	7344	10024	88621.
Solid	320	100	100	-	-	. 520 \%.
Gas	304	-	-	-	-	$\% .4304 \%$

Table D3.39 Number of Emitters Divided by Type of Used Fuel

- Type of fuel	Number of emitters					
	Cair	Gazi Baba	Kisela Voda	Karpos	Centar	Skopje - total
Liqaid	82	107	75	51	58	373
Solid	5	10	5	5	4	+29
Gas	8	0	0	0	0	8
, Total.	95	. 117	$\bigcirc 80$.	56	- 62	410

Table D3.40 Number of Emitters Divided by Working Capacities

Working capacities	Number of emitters					
	Cair	Gazi Baba	Kisela Voda	Karpos	Centar	Skopje total
<33\%	24	22	15	13	13	, 8.87
33-50 \%	51	49	39	34	23	196
$>50 \%$	8	9	14	4	21	,
No data	12	37	12	5	5	, 71. , ,
Total	95\%	【. 117 \%	, 80\%	56..	62	$\ldots 410$,

Table D3.41 Emission Parameters from Emitters in Skopje according to the Type of Emitters

Type of emitter	Vol. Flow, $\mathrm{Nm}^{3} / 24 \mathrm{~h}$	$\mathrm{CO}, \mathrm{kg} / 24 \mathrm{~h}$	$\mathrm{SO}_{2}, \mathrm{~kg} / 24 \mathrm{~h}$	$\mathrm{NO}_{x}, \mathrm{~kg} / 24 \mathrm{~h}$	Dust, $\mathrm{kg} / 24 \mathrm{~h}$
Industrial	4040153	10384.73	1819.86	1045.9	208.56
Communal	1911805	717.72	1226.92	573.46	-
Energetic	4974489	277.91	6212.16	2724.89	-
, Total	10926447	11380.36 .	9258.94	4344.25	208.56

REFERENCES

1. Register of Polluters in Skopje, Mining Institute, Skopje, 1996.
2. National Environmental Action Plan, Summary of Thematic Reports, Part I, Industrial Management, Skopje, 1996.
3. National Environmental Action Plan, Summary of Thematic Reports, Part II, Air Quality, Skopje, 1996.
4. Statistical Yearbook of the Republic of Macedonia, Skopje, 1996.

Figure D3.20 Heating Plant (HP EAST)

Figure D3.21 Heating Plant (HP WEST)

Figure D3.22 Heating Plant (HP PARK)

Figure D3.23 Heating Plant (HP 11 OKTOMVRI)

Table D3.42 Characteristics of the Central Heating Plants in Skopjc

No.	Object	No. emit.	MW	Liquid fuel, kg / h	Liquid fuel, $\mathrm{kg} / 24 \mathrm{~h}$	Vol. gases of $\left(\mathrm{Nm}^{3} / \mathrm{h}\right)$	Total vol. Flow of gases of emitters, Nm / h
1	CHP Heating Plant-EAST	7	293.93	24480	190400	304597	304597
2	Central Heating Plant - WEST	6	182.91	14760	88200	137364	137367
3	Central Heating Plant OL Oktomvri	3	28.21	2480	16700	26748	26748
4	Heating Plant Park	2	8.95	400	3500	2515	5031
5	Heating Plant Vodno	2	3.88	240	-	1800	3600
	TOTAL	20	517.88	42360	298800	473024	477343

Table D3.43 Physical and Chemical Characteristics of Liquid Fuel

No	Parameter	Value
1	Content of carbon	$83-87 \%$
2	Content of hydrogen	$10-14 \%$
3	Content of sulfur	$0.8-2.0 \%$
4	Content of oxygen	$0.1-0.5 \%$
5	Content of nitrogen	$0.1-0.5 \%$
6	Content of ash	$0.02-0.5 \%$
7	Content of moisture	$0.02-1.5 \%$
8	Density at $15{ }^{\circ} \mathrm{C}$	$935-975 \mathrm{~kg} / \mathrm{m}^{3}$
9	Flash point	$110-250{ }^{\circ} \mathrm{C}$
10	Viscosity at $50^{\circ} \mathrm{C}$	$115-350 \mathrm{~mm} / \mathrm{s}^{2}$
11	Heating value	$39.8-41.28 \mathrm{MJ} / \mathrm{kg}$

Table D3.44 Physical and Chemical Characteristics of Natural Gas

No	Parameter	Value
1	Content of methane	85%
2	Content of ethane	7.0%
3	Content of propane and heavier CH	6.0%
4	Content of oxygen	0.02%
5	Content of nitrogen and carbon monoxide	7.0%
6	Content of hydrogen sulfide	$\mathrm{max} .6 \mathrm{mg} / \mathrm{m3}$
7	Content of sulfur in mercaptan	$\mathrm{max} .15 \mathrm{mg} / \mathrm{m} 3$
8	Content of total sulfur	$\mathrm{max} .100 \mathrm{mg} / \mathrm{m} 3$
9	Density	$0.780 \mathrm{~kg} / \mathrm{m} 3$
10	Flash point	$640^{\circ} \mathrm{C}$
11	Heat value	$33.5 \mathrm{MJ} / \mathrm{m} 3$

Table D3.45 Emission from the Central Heating Plants

Heating Plant	Vol. Flow waste gases, $\mathrm{Nm}^{3} / \mathrm{h}$	$\begin{aligned} & \text { Vol. Flow } \\ & \text { waste gases, } \\ & \mathrm{Nm}^{3} / 24 \mathrm{~h} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{~kg} / 24 \mathrm{~h} \end{gathered}$	$\begin{gathered} \mathrm{SO}_{2} \\ \mathrm{~kg} / 24 \mathrm{~h} \end{gathered}$	$\begin{gathered} \mathrm{NO}_{\mathrm{x}}, \\ \mathrm{~kg} / 24 \mathrm{~h} \end{gathered}$
EAST	304597	2456522	108.56	2790.39	1390.12
WEST	137367	1102640	34.54	1277.17	594.53
11 Oktomvri	26748	208978	1.96	226.76	96.54
Park	5031	$4+256$	0.71	52.82	26.36
\%. Total.	473743	3812396.	14577	4, 34714	21075

Table D3.46 Results from the Measurement of Waste Gases from Central Heating Plant - East (March 1995)

Parameter	Type and number of boiler					
	$\begin{aligned} & \text { VKSM- } \\ & 60, \text { No } 1 \end{aligned}$	$\begin{aligned} & \text { VKSM- } \\ & 40, \text { No } 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VKSM- } \\ & 40, \text { No } 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VKSM- } \\ & 40 . \mathrm{NO}^{2} \end{aligned}$	$\begin{aligned} & \text { VKSM- } \\ & 40, \text { No } 5 \end{aligned}$	$\begin{gathered} \mathrm{BKG}- \\ 100, \text { No } 1 \end{gathered}$
Temp. of gases, ${ }^{\circ} \mathrm{C}$	281	241	264	262	272	278
Ambient temp..$^{\circ} \mathrm{C}$	20	20	23	26	23	20
$\mathrm{O}_{2} ; \%$	3.5	1.7	3.6	2.1	3.7	5.5
$\mathrm{CO}_{2}, \%$	12.9	14.2	12.8	14	12.8	11.5
$\mathrm{CO}, \mathrm{mg} / \mathrm{m}^{3}$	64	85	87	44	58	84
$\mathrm{NO}_{x} \mathrm{~m}^{\mathrm{mg} / \mathrm{m}^{3}}$	553	568	583	554	572	458
$\mathrm{SO}_{2}, \mathrm{mg} / \mathrm{m}^{3}$	1154	1148	1140	1148	1148	1182

Table D3.47 Results from the Measurement of Waste Gases from
Central Heating Plant - West (March 1995)

Parameter	Type and number of boiler			
	VKSM-20, No 1	VKSM-20, No 2	VKSM-50, No 3	VKSM-50, No 4
Temp. of gases, ${ }^{\circ} \mathrm{C}$	287	283	214	283
Ambient temp., ${ }^{\circ} \mathrm{C}$	20	20	20	20
$\mathrm{O}_{2}, \%$	4.8	5.2	3.8	4.2
$\mathrm{CO}_{2}, \%$	13.1	11.7	12.7	12.4
$\mathrm{CO}_{2} \mathrm{mg} / \mathrm{m}^{3}$	53	48	68	83
$\mathrm{NO}_{3}{ }^{\circ} \mathrm{mg} / \mathrm{m}^{3}$	593	589	570	554
$\mathrm{SO}_{2}, \mathrm{mg} / \mathrm{m}^{3}$	1164	1187	1130	1182

Table D3.48 Results from the Measurement of Waste Gases from
Central Heating Plant - 11 Oktomvri (March 1995)

Parameter	Type and number of boiler		
	BKG-80, No 1	BKG-80, No 2	BKG-80, No 3
Temp. of gases, ${ }^{\circ} \mathrm{C}$	238	195	198
Ambient temp. ${ }^{\circ} \mathrm{C}$	20	20	18
$\mathrm{O}_{2}, \%$	6.5	7.0	8.5
$\mathrm{CO}_{2}, \%$	10.7	10.3	9.2
$\mathrm{CO}_{2} \mathrm{mg} / \mathrm{m}^{3}$	20	41	12
$\mathrm{NO}_{x} \mathrm{mg}_{\mathrm{C}} \mathrm{m}^{3}$	512	493	453
$\mathrm{SO}_{2}, \mathrm{mg} / \mathrm{m}^{3}$	1129	1107	1080

Table D3.49 Consumption of Liquid Fuels for Traffics and Household for Heating
(Unit: ton)

Year	Gasoline	Household for Heating		
		Diesel-1	Kerosene	Total
1980	46713	42667	36701	79368
1981	47114	49622	24085	73707
1982	46117	59833	16812	76645
1983	36444	85179	24313	109492
1984	47192	80326	26061	106387
1985	32939	51525	28172	79697
1986	39079	47235	17534	64769
1987	37067	39221	19535	58756
1988	41280	131989	17728	149717
1989	40759	41440	19382	60822
1990	43864	69766	22729	92459
1991	58005	69971	20785	90756
1992	45985	52346	11879	64225
1993	48577	47570	14631	62201
Total 1980/93	611135	868690	300347	1169037
Average	43653	62049	21453	83502
Average per day	120	170		59

Table D3.50 Consumption of Heavy Oil in Heating Plants from Central Heating in Skopje from 1993 to 1997 (in tons)

Heatung Planu Year	January	Febuary	March	Aoril	October	Vovember	December	Tolal
1993								
East	102313	7877.1	5571.6	1296.3	835.7	6339.3	7991.5	10183.3
West	$\underline{+405.6}$	3519.9	2443.9	589.7	3575	2830.5	3432.6	17579.8
11 October	833.7	716.0	199.9	91.0	65.1	559.6	674.5	3439.3
Park	269.6	187.4	161.7	45.3	29.3	126.2	189.0	1009.0
Total	157402	12300.4	3677.1	2022.3	1277.7	9906.1	122876	62211.9
1994								
East	7393.5	70450	3642.7	1584.9	1808.0	5356.7	8785.1	35615.9
West	3399.5	3990.1	1672.4	761.4	744.5	2354.2	3770.1	15692.2
11 October	686.9	565.1	340.4	107.9	158.6	438.1	759.2	3056.2
Park	197.9	167.6	30.5	45.2	54.5	105.5	219.9	871.1
Toral	11677.8	10767.8	5736.0	2499.4	2765.6	3254.5	13534.3	552354
1995								
East	9767.0	6162.7	6165.4	2520.3	2137.4	7643.0	7353.6	41749.4
West	4666.1	2887.2	2702.8	1369.7	1027.8	3570.0	3372.9	19596.5
11 October	766.7	568.1	489.5	250.8	185.4	687.7	620.6	3568.9
Park	242.1	163.6	102.5	105.6	51.2	210.4	189.3	1065.2
Total	15441.9	9781.6	9460.3	4246.4	3401.8	12111.1	11536.9	65980.0
1996								
East	9226.6	8307.1	7837.4	3152.4	3180.6	5453.7	3433.3	45591.1
West	4098.6	3762.3	3498.0	1407.8	1172.1	2398.5	4207.5	20544.8
11 October	769.5	649.2	620.6	267.3	234.1	453.6	756.3	3751.1
Park	227.7	219.4	202.2	77.7	74.2	143.9	223.3	1168.9
Total	14322.4	12938.0	12158.2	4905.2	4661.0	3449.7	13621.4	71055.9
1997								
East	9452.8	7574.3	6115.9	5581.6	4272.1	5850.3	8397.2	47244.7
West	4240.0	3199.2	2848.1	2547.8	1982.9	2717.9	3918.2	21454.1
11 Oclober	719.0	636.9	486.5	458.7	380.7	504.7	723.1	3899.6
Park	207.3	190.3	160.0	141.0	128.3	137.3	226.2	1191.4
Total	14619.6	11591.2	9610.5	3729.1	6764.0	9210.7	13264.7	73789.8

Table D3.51 Lead, Cadmium and Zinc Concentrations in Vegetables (mg/kg) on Various Distances from the Lead Smelter Factory in Veles (1990)

	Spring			Auturan		
Vegetables	lead	cadmium	zinc	lead	cadmium	zinc
Green salad						
Drenevica*	15.1	2,3	51,0	75.5	4,4	71,3
Recani**	14,1	2.3	36.6	28,0	2.6	39.2
Basino selo***	11.4	1.7	33.9	15.6	1,0	45,2
Spinach						
Drenevica*	24,9	2.4	74,3	39.2	4.6	46.8
Recani**	19.3	1,6	54,3	23.6	4.5	34.8
Basino selo ***	15.0	1,4	50.5	24,4	3.2	56.8
v.Ivankovci ${ }^{* * * *}$ (control)	0,9	0,11	5,9	-	-	-

Table D3.52 Lead, Cadmium and Zinc Concentrations in the Soil and Vegetables (mg/kg) - Statistical Relation - 1990

		Spring			Autuma		
Vegetables - metal	Soil	regetable	r	p	vegetable	τ	p
Green salad							
Lead	30.5	13,8	0,599	∞, 05	39.7	0.743	$<0,01$
Cadmium	2,5	2,4	0,704	$\infty 0,01$	2.9	0.787	<0.01
Zinc	78,5	40,6	0.910	<0,01	57,6	0,770	<0,01
Spinach							.
Lead	30,5	19,7	0.704	<0,01	29.6	0.630	<0,05
Cadmium	2,5	1.7	0.919	-0,01	3.6	0,389	$<0,01$
Zinc	78,5	59.7	0,927	< 0,01	83.6	0,677	<0,05

* Drenevica $=700 \mathrm{~m}$ north-west from the smelter factory
** Recani $=1000 \mathrm{~m}$ south-east from the smelter factory
*** Basino selo $=2000 \mathrm{~m}$ north from the factory
****s. Ivankovei (control) $=10.000 \mathrm{~m}$ north-east

Table D3.53 Lead, Cadmium and Zinc Concentrations in Different Kind of
Agricultural Food (mg/kg) in Veles Area (1990)

- Drenevica $=700 \mathrm{~m}$ north-west from the smeller factory
* Recani $=1000 \mathrm{~m}$ south-east from the smetter factory
*** Basino selo $=2000 \mathrm{~m}$ north from the factory
**** \& I Ivankavci (control) $=10.1001 \pi$ north-east

Figure D3.24 Lead, Cadmium and Zinc Concentrations in Different Kind of Vegetables ($\mathrm{mg} / \mathrm{kg}$) in Veles Area (1990)

Table D3.54 Heavy Metal Concentration Found in Wine

Type of Heavy Metal	Wine- Producing region	Average (ug/l)	MAX (ug/l)	MIN $(\mathrm{ug} / \mathrm{l})$	Standard Deviation	No. of Samples Regions
	T. Veles Regions	218.3	1030	94	234.8	16
Zn	Non-polluted Regions	182.6	432	90	102.6	10
	T. Veles Regions	316.3	609	161	168.3	11

Source: St. Cyril and Methodius University-Skopje

Table D3.55 Engine Factor of Automobiles

Table D3.56 Emission Volume of Harmful Pollutants for Each Type of Fuel

		SO_{2} t/year	VOC t/year	$\begin{gathered} \mathrm{CO} \\ \text { t/year } \end{gathered}$	NO_{2} t/year	Pb t/year	TSP t/year
Gasoline	R. Macedonia	73.6	7360	40480	3680	82.8	552
	Skopje	27.6	2760	15180	1380	31	207
	from this in Skopie	37.5%					
Light Oil	R. Macedonia	383.4	9372	7668	7668	-	1278
	Skopje	61	1492	1220	1220	-	203
	from this in Skopje	16%					
Total Discharge	R. Macedonia	4574	16732	48148	11348	82.8	1830
	Skopje	88.6	4252	16400	2600	31.0	410
	from this in Skopje	19.4\%	25.4\%	19.4\%	22.9\%	37.5\%	22.4\%

Source:NEAP

Table D3.57 Chemical Analysis of Coal

Mine	Content, $\%$							Heat value, $\mathrm{kJ} / \mathrm{kg}$
	Moisture	Ash	C	H	O	N	S	
Berovo	46.40	14.86		38.78			1.18	8839
Bitola								
- Suvodol								
- Zivojno	51.1	13.42	22.66	2.05		9.66	0.55	7582
Piskupstina- Struga	37.3	10.52	28.47	2.55	11.34		0.85	8179
Oslomej Kicevo	56.64	7.81	22.52	1.26	11.77		0.52	7050

Table D3.58(1) List of the Sampling Points for SO_{2} and NO_{2} (November 10-20, 1997)

No.	DESCRIPTION
1	s. Radišani (Atanas Kirilov)
2	n. Kisela Jabuka, prodavnica JUGE-EM, ul. 10, br. 12, Cedo Džumkovski
3	s. Vizbegovo, glavna ulica br. 61, (sproti školoto), Dimovski Tomislav
4	n. Suto Orizari, Ul. Vietnamska, br. 2l (sproti Ambulanta), Šain Safet
5	n. Suto Orizari, pogon JOSING (pozadi grobišta), Sašo ili Zvonko
6	n. Butel, Galička 52, Dragan Angelovski
7	n. Butel, Ljubotenska 55, Tomislav Daskalov
8	n. Butel, Institut za lozarstvo
9	n. Butel, Ho Si Miin 34, Miloš Makreski
10	Butel grobišta, kapela
11	n. Suto Orizari, Žito Luks, pogon 8-mi mart
12	s. Novo Selo, ambulanta D-r Biljana
13	Skiadište ENTERIER, Novoselski pat b.b.
14	s. Bardovski, prodavnica MEGALOPROM, Drage Atanasovski
15	s. Bardovski, niva na Drage Atanasovski
16	Momin Potok, firma SINTEK
17	Do IGM-TIPO, Ul. Makedonsko-kosovska brig. 85, Boris Spasov
18	IGM-TIPO, direkcija (kontakt Lazar Krepiev)
19	n. Butel (do opština), Hristijan Todorovski Karpoš 157, Zekirija Omer
20	Železara, Ruden dvor
21	Železara, Topilnica
22	Zelezara, Troska - Topilnica
23	n. Singelíc, Zemjodelska apteka, Alija Avdović b.b.
24	Železara, Troska - Celičarnica
25	Železara, Čeličamica

Table D3.58(2) List of the Sampling Points for SO 2 and NO_{2} (November 10-20, 1997)

26	n. Zelezaraidunbulanta Dr RUBINA, Koce Metalec 14
27	Do DDD na ZZZ, ul. Hristijan Todorovski-Karpos 26
28	ul. Blagoja Parović 4 (do d. gradinka na Džon Kenedi), Miško Božinovski
29	Kasama LLINDEN
30	Momin Potok, pogon SKENCO (do Tehnokomerc)
31	RHiVZ
32	s. Zlokućani, CVETAN MARKET PROM1, ul. Skupi 13
33	Otpad JUGOSUROVINA, DE Djorçe Petrov, (upravniik Vojkan)
34	n. Novoselski Pat, ul. Tiranska 14, Vojislav Cvetkovski
35	n. Djorče Petrov, Rasadnik, Ul. Cmogorska, br. 72, Erhan Cervani
36	s. Kondovo, AmbulantaHUMANTTETI, Dr. Fatmir Šakiri
37	s. Ljubin, Harun Ličina
38	Gj. Petrov (benz. pumpa-izlez), ul. Panajot Ginovski 1a, Mitra Veselinovska
39	Djorče Petrov
40	Djorče Petrov
41	Djorče Petrov
42	Vlae, merno mesto na ZZZ, do OU Dimo Hadži Dimov, Kleoec 16^{6}, Milka Hadži Vasileva
43	Karpoš IV
44	Karpoš III, T. Stafilov
45	Mašinski fakultet
46	Mitropolija
47	Ministerstvo za zemjodelstvo, šumarstvo i vodostopanstvo, ul. Leninova b.b.
48	Market do Ambulanta Bit Pazar
49	PMF
50	Avtokomanda, Merno mesto na RHMMZ (Dom za starci)
51	Zelezara, Valavnica
52	Źelezara, Ezero
53	n. Singelić, Ambulanta
54	Madžari, MLEKARA

Table D3.58(3) List of the Sampling Points for SO2 and NO2 (November 10-20, 1997)

55	KOMUNA
56	Pat za Kvantaški pazar, ELEKTROMETAL (sproti MTZ)
57	Evropa (do Pivara, merno mesto na ZZZ)
58	Ul. Belasica 19 ${ }^{\text {a }}$, Marica Božinovska (sproti Sajmište)
59	Do Narodna i univerzitetska biblioteka (prod. za autodelovi)
60	Sproti Ginazija Josip Broz Tito (merno mesto na RHMZ)
61	AiMSMM (merno mesto na RHMMZ)
62	Ul. Naum Naumovski-Borče, 64
63	Blizu Dr. Mihail Kočubovski (Perica)
64	Do Žitoluks (Taftalidže I), Dušan Jovanović
65	n. Kozle, ul. Jurij Gagarin 111, Predrag Stanoević
66	Fabrika KUPROMI
67	s. Saraj, ANTIKOR
68	s. Grčec, do Osnovno učilište, Murtezani
69	pat za Nerezi (levo od prikolka)
70	n. Zdanec, ul. Zdanec 39 (Silvana)
71	n. Tmodol, ul. Jan Hus 9, Sašo Stojanovski
72	n. Kozle, Institut za belodrobni zabolovanja
73	RZZZ
74	GZZZ
75	Voena akademija
76	n. Aerodrom, do Detska gradinka, prod. GRNE PROMET (m. mesto na ZZZ)
77	a. Lisiče, ul. ASNOM 56, prod. ŠKSPRR (do Vardar)
78	n. Lisiče (diva naselba), ul. Todor Cangov 142, Petre Bonevski (f. Sito Kolor)
79	s. G. Lisiče, ul. Lisec 162, Boris Božinovski
80	n. Lisiče, Mini Market Žan kompani, ul. Ernest Telman 7a, Zoran Dimiškovski
81	n. Lisiče, zgrada br. 33, st. 3, Nikola Angelkovski (do merno mesto na RHMZ)
82	n. Aerodrom, Bul. Jane Sandanski, gradilište Mavrovo
83	n. Kisela Voda, Zavod za ovoštarstvo - Rasadnik (m. mesto na RHMZ)

Table D3.58(4) List of the Sampling Points for SO_{2} and NO_{2} (November 10-20, 1997)

84	n. Kisela Voda, kaj hotel Pelagonija, ul. Gj. Dimitrov br. 6
85	Do Hotel Panorama (memo mesto na GZZZ)
86	Sredno Vodno, restoran "Staro Skopje"
87	s. G. Nerezi, Manastir Sv. Pantelejmon
88	n. Pržino, Pržino 70 (Dušan)
89	n. Kisela Voda, Avto škola "Kisela Voda" (Vasko)
90	Fabrika Cementarnica (m. mesto na ZZZ)
91	n. Lisiče, ul. Mlihail Glinka 4, prof. Durnev
92	s. G. Lisiče, ul. G. Lisiče l, Nikola Nikolovski
93	n. Pintija (OHIS), ul. 1438 br. 17 (poseldna kuća desno), Dimče Ristevski
94	OHIS, restoran MOSKVA, Prvomajska b.b, Dimitrija Cancevski
95	OHnS (sproti benzinska pumpa), Prvomajska 30, Trifun Sazdovski (pozadi avtohehaničarski dućan PIRELD
96	n. Pripor, ul. Sava Kovačević 81", Petar Mitrevski
97	s. Sopište, "Komitska noć", Ljubo Petrevski
98	n. Dračevo, Ul. 14-ta Brigada" br. 3a, Slobodan Miloševski
99	n. Dračevo, ul. "Janko MVisíć br. S3, Vlado Nikolovski
100	s. Dračevo, Dračevska 198, memo mesto na RHMZ (Branko)

The Monitoring Results of SO_{2}

SO2
SO2 R10 9
NO2 : Run-1
佂

[^1]
[^0]: The information and data about investigated objects and cmitters are given in Table II. They are given together with data about :
 a (1) Number of emitters(1): $\quad n$ (7) Volumetric flow of waste gaxea (in Nom $3 / \mathrm{h}$) from eatitters working in the investigated period:
 a (8) Total
 $n(9)$ y coordinate (longilude). Gaus-Kriger proection
 $\mathrm{n}(10) \times$ coordinate (latitude), Gaw-Kriger procetion
 (2) Type of emitters: indistrial
 (4) Quanty of liquid fuil jer hour (in k / h):
 (4) Quantly of liquid fuil jxer howr
 n (6) Quantity of gar fuel(in $\mathrm{m}^{3} / \mathrm{h}$);

[^1]: Figure D3.26(2) The Concentration Distributions of NO 2

