JAPAN INTERNATIONAL COOPERATION AGENCY

DEPARTMENT OF IRRIGATION
MINISTRY OF WATER RESOURCES
THE KINGDOM OF NEPAL

THE STUDY
ON
FLOOD MITIGATION PLAN
FOR
SELECTED RIVERS IN THE TERAI PLAIN
IN
THE KINGDOM OF NEPAL

FINAL REPORT

VOLUME III (4/9)

SUPPORTING REPORT

(A4: FMP/NARAYANI RIVER)

J1150530 [2]

NIKKEN Consultants, Inc. NIPPON KOEI CO., LTD.

> S S S J R 99-076

JAPAN INTERNATIONAL COOPERATION AGENCY

DEPARTMENT OF IRRIGATION MINISTRY OF WATER RESOURCES THE KINGDOM OF NEPAL

()

THE STUDY
ON
FLOOD MITIGATION PLAN
FOR
SELECTED RIVERS IN THE TERAI PLAIN
IN
THE KINGDOM OF NEPAL

FINAL REPORT

VOLUME III (4/9)

SUPPORTING REPORT

(A4: FMP/NARAYANI RIVER)

MAY 1999

NIKKEN Consultants, Inc. NIPPON KOEI CO., LTD.

THE STUDY

ON

FLOOD MITIGATION PLAN FOR SELECTED RIVERS IN THE TERAI PLAIN IN THE KINGDOM OF NEPAL

FINAL REPORT

VOLUMEI

: EXECUTIVE SUMMARY

VOLUME II

: MAIN REPORT

VOLUME III

: SUPPORTING REPORT

A1: FLOOD MITIGATION PLAN/RATUWA RIVER

A2: FLOOD MITIGATION PLAN/LOHANDRA RIVER

A3: FLOOD MITIGATION PLAN/LAKHANDEI RIVER

A4: FLOOD MITIGATION PLAN/NARAYANI RIVER

A5: FLOOD MITIGATION PLAN/TINAU RIVER

A6: FLOOD MITIGATION PLAN/WEST RAPTI RIVER

A7: FLOOD MITIGATION PLAN/BABAI RIVER

A8: FLOOD MITIGATION PLAN/KHUTIYA RIVER

B: OVERALL DESCRIPTION OF STUDY AREA

C: BASIC INVESTIGATIONS AND STUDIES

D: OTHER DOCUMENTS

VOLUME IV

: DATA BOOK

The costs are estimated based on the price and average exchange rate in October 1998.

The average exchange rate is as follows:

US\$ 1.00=NRs.67.93

 \pm 1.00 = NRs.0.59

A4. FLOOD MITIGATION PLAN: NARAYANI RIVER BASIN

		•
		•
		•

SUPPORTING REPORT A4. FLOOD MITIGATION PLAN: NARAYANI RIVER BASIN

TABLE OF CONTENTS

	(page
1. EXISTING CONDITIONS	А-1.
1.1 Topography and Geology	A-1.
1.2 Meteorology and Hydrology	А-1.
	servationA-1.
	ttures of Basin A-1.
	A-1.
1.3.1 Environmental Organiza	ations and Institutions
1.3.2 Environmental Overview	v
1.4 Socio Economy	Α-1.1
1.5 River and Basin Conditions	
1.5.1 Principal Basin Features	λ-1.1
1.5.2 Characteristics of River	Channel A-1.1
1.5.3 River Course Shifting	A-1.1
1.5.4 Riverbed Materials	A-1.1
1.5.5 Land Use	A-1.1
1.5.6 Existing Basin Develop	ment Projects and Plans A-1.1
	a
	asters A-1.1
1.8 Flood Mitigation Activities	A-1.2
1.8.1 Existing River Facilities	A-1.2
1.8.2 Policy Framework	A-1.2
	in Flood Mitigation A-1.2
2. FLOOD MITIGATION MAS	TER PLAN A-2.
	Master Plan
	nd Project Components A-2.
	pponent
-	
· — — —	Λ-2.
	annel Characteristics
•	BL)
	Λ-2.

2.5	Community Development Component	A-2.12
2	.5.1 Community Mobilization	A-2.13
2	.5.2 Local Coping Measures	A-2.15
2	.5.3 Community-based Sustainable Measures	A-2.17
2.6	Flood Mitigation Plan	Λ-2.21
3. A	ACTION PROGRAM TOWARD TARGET YEAR	A-3.1
3.1	Sequence of Works	A-3.1
	Action Plan	
3.3	Implementation Arrangements	A-3.4
4. F	EVALUATION	A-4.1
4.1	Economic Evaluation	A-4.1
4.2	Environmental Screening	A-4.3
	Technical Evaluation	
44	Conclusion and Recommendation	A-4.7

0

LIST OF TABLES

		(page)
Table A1.1	List of Meteorological Stations	A-1.21
Table A1.2	List of Hydrometric Stations	Λ-1.25
Table A1.3	Results of Riverbed Material Tests	A-1.31
Table A1.4	Summary of Questionnaires	A-1.32
Table A1.5	Loss of Life and Damage to Properties	
Table A2.1	Candidate Species for Bioengineering Works in Terai	A-2.24
Table A2.2	Income Generation Opportunities through Bioengineering	A-2.25
Table A2.3	Project Cost for Master Plan	A-2.26
Table A2.4	Annual Disbursement Schedule for Master Plan	A-2.27
Table A4.1	Cost Benefit Flow for Master Plan	A-4.8
Table A4.2	Social Environment Assessment	A-4.10
Table A4.3	Natural Environment Assessment	A-4.11
Table A4.4	Pollution Assessment	A-4.12

LIST OF FIGURES

		(page)
Fig. A1.1	Topographical and Geological Classification (N-S Profile)	Α-1.35
Fig. A1.2	Geological Map	Λ-1.36
Fig. A1.3	Location of Meteorological Stations	A-1.37
Fig. Al.4	Location of Hydrometric Stations	A-1.38
Fig. A1.5	Meteorological Conditions	A-1.39
Fig. A1.6	Annual Rainfall Distribution of Nepal	A-1.41
Fig. A1.7	Monthly Average Flow of Major Rivers	A-1.42
Fig. A1.8	Narayani River Basin	A-1.43
Fig. A1.9	Characteristics of Existing Channel	A-1.44
Fig. A1.10	Change of Narayani River Course	A-1.45
Fig. A1.11	Sampling Sites of Riverbed Materials	A-1.46
Fig. A1.12	Grading Curves of Riverbed Materials	A-1.47
Fig. A1.13	Existing Land Use of Narayani River Basin	A-1.48
Fig. A1.14	Hydropower Plants and Transmission Network	A-1.49
Fig. A1.15	Flood Suffering Area	A-1.50
Fig. A1.16	Locations of River Facilities	A-1.51
Fig. A1.17	Typical River Facilities	A-1.52
Fig. A2.1	Flood Mitigation Measures	A-2.28
Fig. A2.2	Classification of Types of River Bank	Λ-2.29
Fig. A2.3	Dike Works	A-2.30
Fig. A2.4	Relationship between Bed Material Size and Friction Velocity	A-2.31
Fig. A2.5	Comprehensive Flood Mitigation	A-2.32
Fig. A2.6	Community Mobilization	A-2.33
Fig. A2.7	Local Coping Measures	
Fig. A2.8	Community-Based Sustainable Measures	A-2.35
Fig. A2.9	Layout Plan for Flood Mitigation	A-2.36
Fig. A3.1	Action Program Toward Target Year	A-3.9
Fig. A3.2	Implementation Arrangement for Flood Mitigation in Terai	A-3.10

0

1. EXISTING CONDITIONS

1.1 Topography and Geology

6

The topography and geology of Nepal can be divided into the following zones (Fig. A1.1):

- 1) Inner Himalayan valleys
- 2) Higher Himalayan zone
- 3) Lesser Himalayan zone
 - Midfand range
 - Mahabharat range
- 4) Siwalik (Churia) hills
- 5) Dun valleys
- 6) Terai plain

The Narayani river basin covers all the topographical and geological zones mentioned above. Principal features of these zones are presented below.

(1) Inner Himalayan Valleys

North of the Higher Himalayan zone and south of Tibetan plateau are called as Inner Himalayan valleys including Mustang and Langu. In these valleys the amount of annual rainfall is small below 250 mm. The rocks are of Tethys sediments with recent alluvium covering.

(2) Higher Himalayan Zone

Snow covered peaks and deep and "U" shaped glacial hanging valleys are the main topographic features in the Higher Himalayan zone. The mountains above 3,800 m,MSL are mostly barren of vegetation and above 4,800 m,MSL snow occurs at most places. Higher peaks are located mostly in the east Nepal as compared to the west. On mountain slopes, glacial moraines are found. Sometimes the moraines form glacial lakes which are found mostly in northern Nepal.

The topographic slope in this zone varies from vertical to 740 m/km. This slope makes rocks unstable. In Nepal the dip of rock is generally towards the north east. In places where river makes bend and dip is towards the valleys, exposed bedrock slips due to the

load pressure exceeding frictional force. The load increases with erosion of the valley and decreases with erosion of surface layer.

Rivers have gradient of 200 to 740 m/km and flow velocity increases at night summer when the snowmelt water reaches the river channel. Snow melts during the day and it takes about 5 to 6 hours to reach the river channel. In this zone, rockslides or mountain slides often happen. Gravity slides occur in the bed dips of 30° to 60°. Below or above this dip rocks are mostly stable, unless they are fractured.

(3) Lesser Himalayan Zone

Lesser Himalayan zone occupies the central part of the Himalayan Mountains. It consists of a series of mountain ranges rising abruptly above its low rolling hills.

The Lesser Himalayan zone is divided into two sub-ranges, namely the Midland and Mahabharat ranges from north.

Midland Range

(1

(4

The Midland range consists of low hills, river and tectonic valleys. The slope ranges from 100 to 400 m/km. In this range, generally the rocks consist of fissile phyllite and schist. The dip of the bed in this part is generally towards the north. In the areas where rivers have east-west course, landslides are seen on the southern bank of the river. Since the phyllite is a soft rock, the exposed bed in the bottom section of hill is found to be crushed in most places, indicating that the load is beyond its bearing capacity.

The Midland range is composed of soft rocks (phyllite, slate and dolomite) and thick soil covers this area, hence it is heavily populated. Because soft rocks weather easily, the Midland range forms low and mild slope hills. Nearly all the hill slopes are found to be formed from the talus of landslide and rock fall. Generally the hill slope appears to be stable for a period of 8 to 10 years after the slide till the talus is washed away by under-cutting of the river, and at the same time, this causes the development of gullies and crosion throughout valleys. Slowly the topography changes from flat to steeper terrain and sliding occurs again.

Mahabharat Range

The Mahabharat range consists of comparatively harder rock than the midland range.

The number of slides is found to be less even though the topography is steep. The topography is steeper on the southern slope comparing to the northern one of about 100 to 200 m/km. Slides take place on the northern slope and rock falls on the southern slope. The steep of the topography can be attributed to the Main Boundary Fault (MBF) which lies mostly at the southern foot of the ranges.

The Mahabharat ranges are the first set of high mountains facing the Terai plain, and affects much to the climate of Nepal during the monsoon.

(4) Siwalik (Churia) Hills

()

The Siwalik (Churia) hills are the lowest hills bordering the Indo-Gangetic plain in the north. Mostly it consists of rocks of alternating beds of clay, sandstone, sand and pebble. The rocks generally dip northwards. Alternately loose and hard rock beds have produced the escarpment feature. In many places rugged land with numerous gullies and mound of talus are found. The topographic slope varies from 200 to 400 m/km on the average. The Siwalik hills are divided into three layers, i.e., upper, middle and lower Siwaliks.

Upper Siwalik

The upper Siwalik is mainly conglomerate with pebbles and boulders of pale schistose quartzite, purple and white quartzite; dark phyllites; purple and dark pebbly quartzite and silt brown sandstone. The depth of upper Siwalik is about 2000 to 3000 meters.

Middle Siwalik

The layer of middle Siwalik is found in the form of thick deposits of sandstone. These are characterized by their feldspar and mica content. Apparently the sandstone has been derived from granite rocks. Calcareous concretions and seams of coal are found in the basal part. In many sections, the sandstone forms vertical cliffs. The depth of middle Siwalik is about 2000 to 2500 meters.

Lower Siwalik

The lower Siwalik is alteration of brown, weathered sandstone and chocolate colored clays. The alternation of beds is not thick as the sandstone. Beds of impure limestone also occur within the lower Siwalik. The depth of lower Siwalik is about 1200 to 1500

meters. All pebbles except those found in the brown sandstone are derived from rocks of Pre-tertiary age.

(5) Dun Valleys

0

4

The Siwalik hills make separate ranges from east to west except in some places where it merges with Mahabharat range. The separate ranges form Dun Valleys as seen in Trijunga, East Rapti-Nawalpur, Deokhuri (West Rapti), Dang Valley, Surkhet Valley, etc. The Dun Valleys are fertile and are similar to the Terai plain in nature. Hence they are sometimes classified as a part of the Terai plain.

(6) Terai Plain

The Terai plain is the continuation of Indo-Gangetic plain having an elevation from 50 to 300 m, MSL. Its width varies between 10 to 30 km with one exception at Koilabash narrow, and extends from east to west Nepal for about 900 km.

The Terai slopes toward south with steeper slope at the foot hill region and nearly flat at the southern end.

In the Terai plain the changes of river stream are often seen in places by the lateral erosion incorporated by much sediment from the mountainous area. On such rivers, artificial structure works such as bridge, roads and irrigation facilities have to be given careful consideration.

The Terai plain is divided into three zones, i.e., (1) Bhabhar zone (foot of hill), (2) Marshy area (spring line), and (3) Southern Terai (Indian border).

Bhabhar Zone

The Bhabhar zone lies at the foot of Siwalik hills and is about 12 km wide (Charkose Jhadi). It is composed of boulder, pebble, cobble and sand of Siwalik hills or Mahabharat range deposited by the present rivers. In most cases the rocks are sandstone, quartz or charty dolomite. The foot of hills is covered with evergreen forest.

Soils are mainly alluvium consisting of sand, silt, clay looms and silty clay. In the dry season almost all rivers in this zone have no flow on the surface and water flow underground only.

Marsby Area

(

()

The marshy area is found in the south of Bhabhar zone where two lithological units having different porosity and permeability meet or inter finger along with the change of elevation mainly resulting in spring lines, ponds, lakes, etc. The lithology is mostly composed of pebbles and sandy bed with a few clay partings. The lithology of the pebbles is similar to the boulder zone and sand beds are loose, brownish to greenish with black and red shale fragments. The clay is mostly blackish gray where a thick sequence is found, but yellow one is also observed at some places where there was a temporary hiatus in its deposition or because of a flood at that time. This is particularly true in Lumbini zone.

Southern Terai

This nearly flat and not well-drained area is found between middle Terai and the Indo-Nepal border. The area is composed of sand, clay and silt with less pebble.

(7) Narayani Riyer Basin

The lower reaches of the Kali Gandaki and Trisuli river junction is called as the Narayani river. Major tributaries of the Narayani river are as presented below.

- The Kali Gandaki river drains the area from central Nepal to higher Himalaya.
 The Kali Gandaki river rises in the trans-Himalayan tract beyond Mamang Bhot and joins many rivers in the upper region. The river cuts across the higher Himalayan range through a gorge between the Dhoulagiri and the Annapurna massifs.
- The Seti Gandaki river rises in the base of the Annapurna Himal massif. The
 river flows through the Pokhara valley and joins with the Trisuli river.
- The Marsyangdi river flows on the north of Annapurna Himal massif and turns toward south on the west of Manaslu Himal.
- The Trisuli river rises from the Ganesh Himal and flows down to south, southwest and then joins the Marsyangdi river, Seti river, and finally the Kali Gandaki river.

Since in the upper basin before these rivers enter to the Narayani river, these rivers flow through the longitudial valley or gentle slope, large materials such as boulders and

cobble stones first deposit in the valley and they are transported to lower reaches by river flow during large flood.

The Narayani river is located in Dun area and surrounded by the Siwalik hills. The East Rapti river joins to the Narayani river in the Dun area. The Narayani river receives much sediment such as gravel, sand and clay through the East Rapti river and other tributaries from the Siwalik hills.

Geological map of the Narayani river basin is shown in Fig. A1.2.

1.2 Meteorology and Hydrology

(□}

()

1.2.1 Meteo-Hydrological Observation

Responsibilities for meteo-hydrological data collection and analysis in Nepal have been born mainly by the Department of Hydrology and Meteorology (DHM), the Ministry of Science and Technology. Other authorities such as the Department of Irrigation (DOI), Nepal Electricity Authority (NEA), and International Center for Integrated Mountain Development (ICIMOD) also conduct meteo-hydrological observations. In principle, all of these data observed by other authorities are also sent to the DHM. The DHM publishes data in yearbooks after basic checking has been completed.

The Meteorology Section of DHM is responsible for compitation and analysis of meteorological observation records such as precipitation, temperature, humidity, vapor pressure, sunshine, wind, evaporation and soil temperature. And the Hydrology Section of DHM is responsible for compitation and analysis of hydrological observation records such as water level and sediment.

Based on the DHM's data, a list of meteorological and hydrometric stations in the Central and Western Development Regions is shown in Tables A1.1 and A1.2, and their locations are shown in Figs. A1.3 and A1.4.

In order to supplement the existing observatory, the Study Team installed recording rain gauge at the following site:

River basin	Caretaker	Serial Number
N	Chitwan District Irrigation Office	Gauge: 232746
Narayani	(Bharatpur)	Recorder: 244191

1.2.2 Meteo-Hydrological Features of Basin

Climate of the Narayani river basin varies wide range depending on the location from Tundra monsoon subtropical zone in Terai plain and Siwalik hills to Tundra in higher Himalayan zone. The dry season (from October to May) and rainy season (from June to September) are clear in the inner Terai. The dry and rainy seasons due to monsoon are the major cause of climatic contrasts in the inner Terai. Figure A1.5 shows the meteohydrological features of the basin based on the monthly average data at Mustang and Pokhara airport (sta. code: 0612 and 0804).

(1) Temperature

()

()

Altitude affects much the temperature. The annual average temperature is 5.7°C at Mustang and 20.9°C at Pokhara airport, ranging from -2.5°C in the coldest month to 13.9°C in the hottest month at Mustang and ranging from 13.5°C to 25.9°C at Pokhara airport. The coldest month is in January and the hottest falls in between June and July. The temperature rises from March to June-July while it decreases from October to January.

(2) Relative Humidity

According to Fig. A1.5, annual average relative humidity is 82.9% at Mustang and 80.9% at Pokhara airport, ranging from 70.2% in June to 94.4% in January at Mustang and from 60.9% in April to 90.2% in January at Pokhara airport.

(3) Rainfall

The study area receives the southeast monsoon during the months from June to September. The monsoon air-stream is forced to rise as it meets the Himalayas and causes heavy rainfall on the south facing slopes (Fig. A1.6).

According to Fig. A1.5, annual rainfall at Pokhara airport is 3,733mm on average ranging from 3,073 to 4,217mm depending on the year. The maximum rainfall is 4,217mm in 1993. The 81% of annual rainfall is concentrated in rainy season from June to September.

(4) Runoff

(

Figure A1.7 shows the monthly average flow of the Narayani river at Narayan Ghat station (No. 450).

According to Fig. A1.7, The runoff increases from May to August while it decreases from August to November and the most of runoff is concentrated in rainy season from June to September. The annual average runoff at Narayan Ghat station is approximately 1,600m³/s. The maximum monthly average flow is approximately 5,100m³/s in August. The monthly average flow exceeds the annual average during the period from July to September.

1.3 Environment

1.3.1 Environmental Organizations and Institutions

The Environmental Division of the Ministry of Population and Environment has overall responsibility for environmental matters in Nepal. In June of 1997, Environmental Conservation Rules were issued under section 24 of the 1997 Environmental Conservation Act. These rules lay down procedure to be followed when new projects are proposed or existing projects extended.

1.3.2 Environmental Overview

The Narayani river is a class-I river rising in the Himalayan mountains and has many tributaries joining it. It has a basin area of some 35,780 km², (nearly 3.6 million hectares) of which just less than 2% are in the Terai. It flows year round and has a length of 360 km. In the Terai plains, its length is about 83 km., with a basin area of some 705 km² (70,500 hectares). It is joined by the East Rapti river and these rivers form two boundary lines of the Chitwan National Park, one of the few remaining areas of natural vegetation in the Terai.

The national park in Chitwan is fully protected from encroachment. There is also a buffer zone round this (and every other) park, with restrictions on the use of forest land and the river bank zones. The total area of Chitwan N.P. is 93,200 ha., 80% being forest and the remaining 20% grasslands. The river Narayani runs along the park's western border, with the East Rapti river forming the park's northern border. Much of the park is

elevated, thus, during the monsoons, river water tends to flow on farm and forest land opposite the park. Some dikes and gabions etc. have been erected to prevent this from happening, but this protection is incomplete.

The flora and fauna in the Chitwan national park and wetlands in the vicinity of the Narayani river include 43 species of mammals and over a hundred species of birds. Some notable mammals and reptiles are Rhinoceros uniceroni (thino), Panthera tigris (tiger), Axis axis and A. pircinus (deer), Gavialis gangeticus (gharial crocodile), Crocoylus palustris, Plantanista gangetica (Gangetic dolphin) and many migratory birds. The fauna include Saccharum spontaneum (elephant grass), Imperata cylindrica (imperata grass), Bombax ceiba (simal [false kapok]) Dalbergia sissoo (sisoo) Acacia catechu (khair), Terminalia tormentosa (saj) and Trewia nudiflora. The trees on the floodplain include, khair, sal, simal, sisoo, Ficus glomerata (gular), Engenia jambolana (kyamuno) and Terminalia tomentosa (saj).

The existing land use and population density of the Narayani river basin in the Terai is shown below.

(Land Area, Land Use and Population Excluding the Chitwan National Park: 1998)

Items	Agri-	Forest	Barren/	Other	Total	Population
	culture		sand			
Area (ha)	51,310	16,280	950	1,960	70,500	(257,000)*
Ratio (%)	72.8	23.1	1.3	2.8	100	(3.6)**

(Note)*: Population (persons), **: Population density (per/ha)

Over 70% of the Narayani basin area in the Terai is now farmed, but there is still about one-quarter of the land under trees. According to the Inventory of Wetlands (IUCN 1996), there are 3 wetlands in the vicinity of this river. It is still to be determined if the proposed flood mitigation interventions will affect these areas. However, with such a high population density, the protection of the farmland and property is important.

Every year, sand, silt and/or floodwater on average covers on average over 5,000 hectares of which about 1,000 ha. are covered with sand and soil. Some of this soil cover is a result of human activity, especially in the Siwalik hills. In addition, over 1% of the land is barren or covered with sand, principally due to flooding and inundation.

This is why flood mitigation measures, including watershed activities are essential to protect the environment. With appropriate flood mitigation measures, such land could

be reclaimed and soil/sand inundation should be reduced. Also, farmers knowing their land is safe from flooding and inundation, could invest in irrigation and increase their productivity. This may relieve the pressure on the remaining forestlands, curtail deforestation and boost grain production.

1.4 Socio Economy

(1) Economic Activities

Land Use: The Narayani river flows in Chitwan and Nawalparasi districts. According to the district data, agricultural and forestland most of the total plain area in the two districts (81.9%/96.4% respectively).

unit: hectare

District	Agriculture	Forest	Sand/Gravel /Boulder	Others
CHRISTANI	49,272	18,500	0	15,000
CHITWAN	59.5%	22.4%		18.1%
	71,310	8,588	2,239	773
NAWALPARASI	86.0%	10.4%	2.7%	0.9%
10 Districts (where	800,591	352,508	43095	52,449
M/P rivers flow)	64.1%	28.2%	3.5%	4.2%

Source: Land Resources Mapping Project 1986, Department of Survey Forest Survey 1993, Department of Forest

Economically Active Population (10 Years of Age and Over) by Major Occupation: A ratio of 75.8%/83.8% of the labor force is engaged in agriculture, as opposed to 5.3%/2.9% in manufacturing and 12.9%/9.0% in service sectors.

District	Agriculture Worker	Service Worker	Production Worker	Sales Worker and Others
CHERTSON	105,498	17,949	7,377	8311
CHITWAN	75.8%	12.9%	5.3%	6%
MANUAL DADARI	145,290	15,669	5,104	7,292
NAWALPARASI	83.8%	9.0%	2.9%	4.2%
10 Districts (where	1,123,328	215,393	73,937	107522
M/P rivers flow)	73.9%	14.2%	4.9%	7%

Source: Population Census 1991, Central Bureau of Statistics

Crop Area and Productively of Agriculture Crop: Chitwan and Nawalparasi districts produce a wide range of crops, with major crops of paddy, maize, wheat, pulse, and oilseed. These major crops but wheat, pulse and oilseed are grown during the monsoon. Although there are also winter paddy and maize, most of the paddy and maize are grown in summer.

unit: hectare. (metric ton/ha.)

						•	
District	Paddy	Maize	Wheat	Pulses	Oilsceds	Sugarcane	Vegetables
CHITWAN	45,000 (2,70)	27,127 (2.00)	9,100 (1.70)		19,550 (0.75)	40 (27.00)	
NAWALPARASI	46,100 (3.06)	7,700 (2.40)	19,000 (2.36)	7,870 (0.43)		7,100 (43.5)	950 (12.00)
10 Districts (where M/P rivers flow)	537671 (27.79)	145489 (18.14)	174589 (19)	98536 (4.9)	102720 (7.92)	17331 (233.06)	11930 (52.58)

Source: Annual Agricultural Development Programme 1995/96, District

(2) Land Holding

()

()

Land Ownership & Holding: In Chitwan/Nawalparasi districts, the average land holding size has declined in recent years like other districts in the Terai plain. The average size is far below the 16.4 hectare ceiling imposed by the 1964 Lands Act. More than 90% of the agricultural land is under owner-cultivation. With regard to the agricultural land under "formal" tenancy, the most dominant form is sharecropping.

	Owner-Cul	tivated (%)	Average Holding Size (ha.)		
District	1981/82	1991/92	1981/82	1991/92	
CHITWAN	97.0	93.4	1.67	0.80	
NAWALPARASI	98.1	94.7	1.45	1.11	
Terai	91.8	87.6	1.47	1.22	

Tenure Arrangements: However, that since informal arrangements of land tenancy are not recorded in the official census, the above figure of owner-cultivation should be treated with caution. Underlying the sharecropping category is a commonly known phenomenon of "dual ownership". To undertake flood mitigation works for land under "dual ownership", it will be imperative to involve both land owners and tenants, both of whom are entitled to certain shares of the proceeds of the land.

	Tenure Arrangement - 1991/92 (%)					
District	Fixed Rent	Share Сгор	Others			
CHITWAN	15.3	6.9	77.8			
NAWALPARASI	14.5	66.4	19.1			
Terai	30.6	62.7	6.7			

Source: Nepal Sample Census of Agriculture 1991/92, Department of Agriculture

(3) Population

From nation-wide viewpoint, in-migration in the east is approaching to zero, as new lands available for cultivation are being closed. On the other hand, the western districts continue to exhibit high population growth, since the land frontiers are relatively open. In a similar vein, the original inhabitants of the Terai constitute nearly or more than half

the population towards the west, while the proportion of indigenous groups makes up less than half in most of the eastern districts.

Population of Chitwan and Nawalparasi districts is 354,000 and 436,000 as of 1991 with population growth rates of 3.1% and 3.4% (1981-1991) respectively. The population growth ratios have gradually been declining since 1970s, just as the national average. The current pace of population growth rates are slightly higher than the national average, i.e., 2.3% (1981-1991).

Demographic Records of Flood-Prone VDCs: The following table shows the population trends of the VDCs affected by Narayani floods. The 1981-91 population growth rate of the affected VDCs is 6.3%. This indicates that the population pressure is higher in the flood-risk VDCs, than other localities in Chitwan/ Nawalparasi districts.

District	VDC	1971	1981	1991	1996
Chitwan	Divyanagar	-	6,662	7,001	8,160
	Gunjnagar	5,190	5,701	11,067	12,909
	Mangalpur	6,502	10,480	13,488	15,720
	Meghauli	6,987	9,374	12,363	14,401
Nawal	Parsauni	2,335	-	4,709	5,579
Parasi	Pithauli	3,044	7,673	5,957	7,058
	Kumarvatti	-	-	4,155	4,923
	Rajahar	-		7,839	9,288
	Koluwa	4,583	7,542	6,292	7,455
	Mukondpur	-	-	7,631	9,041
	Narayani	-	-	7,234	8,571
	Total	28,641	47,432	87,736	103,105

Source: Population Census 1991, Central Bureau of Statistics Nepal District Profile 1997, National search Associates

(4) Human Development Index (HDI)

(1)

(

()

In terms of the Human Development Index (which is a development indicator based on life expectancy, adult literacy, and GDP), the districts in eastern areas of the country receive, in general, higher performance, and become lower toward the west. Whil the HDI of Chitwan district is one of the highest (16th of all 75 districts), the HDI of the neighboring Nawalparasi district is ranked among the lower strata (51st among all 75 districts).

1.5 River and Basin Conditions

1.5.1 Principal Basin Features

The Narayani river basin extends from 27°15′N to 29°15′N and from 83°00′E to 85°45′E. The Narayani river originates in the Higher Himalayan zone. The river is classified as a class I river. Administratively the inner Terai of the Narayani river falls under Chitwan district of Central Development Region (left bank) and Nawalparasi district of Western Development Region (right bank).

Basin area of the Narayani river is 35,780 km² in total, consisting of 35,075 km² of mountainous basin and 705 km² of plain area. General basin maps of the Narayani river is shown in Fig. A1.8. Topographic maps of 1/50,000 were used to prepare overall basin maps. The basin map of the inner Terai was prepared based on the topographic maps of scale 1/25,000 (Eastern Nepal topographic mapping series and Lumbini zone mapping series). Boundaries of the river basin and sub-basins were drawn on the basin map. Basin boundary in the inner Terai was delineated in consideration of existing drainage channels, irrigation canals, road networks and other ground objects.

Notable features of the Narayani river basin are as follows:

- The Narayani river forms a valley called inner Terai in the downstream area from E-W Highway bridge, having narrow gorge in the lower end near Indian border
- 2) River is braided in the plain area and has islands in the river area.
- 3) Major tributaries in the inner Terai are the East Rapti and Rewa rivers. Numerous tributaries from the Siwalik hills flow into the Narayani.
- 4) At the gorge section, Narayani barrage was constructed and managed by India. Nepal Gandak Western Canal Project is operated for the lower areas of the gorge getting water from the barrage.
- 5) Bharatpur city is located in the riverine area near the outlet from the mountainous basin.

1.5.2 Characteristics of River Channel

Channel slope and width of the existing river are shown in Fig. A1.9 for the plain reaches. These were prepared based on the topographic map of scale 1/25,000, since river survey results were not available. In order to obtain the river profile, spot elevation data on the topographic map were used and the river width was measured on

the map at the intervals of 1 km along the river. The river width includes perennial river sections and sandbars of the meandering and braided river section.

According to the figure, principal features of the existing river in the Terai plain are summarized below.

River	Class	Length(km)	Slope	Width(m)
Narayani R.		83.0(80.6)	1/720~1/1560	400~2500

Note: River length in () indicates that downstream from E-W Highway

1.5.3 River Course Shifting

(

It is generally said that rivers in the Terai plain have tendency to shift westwards. If it is true the existing talweg might take closer to west or right side bank as a whole. To confirm this hypothesis, the location of talweg in the river section was measured at every 1 km and shown in the Fig. A1.9. The clear tendency of westward shifting was not seen.

In order to look into the actual shifting of river course in the past, topographic maps prepared in 1953/54 (scale: 1/50,000) and those in 1992 (scale: 1/25,00) were superimposed and shown in Fig. A1.10.

According to the figure showing river course change during the past 38 years, the following features are considered:

- 1) Meander of river channel is not sever for the main Narayani river and the shifting of river course seems to remain within the meander belt.
- Meandering of the East Rapti and Rewa rivers is rather severe and the river course shifting is large.

1.5.4 Riverbed Materials

The Study Team investigated riverbed materials along the plain reaches of the river. The investigation includes the following outdoor and indoor works:

- Sampling of river bed materials at site
- 2) Grain size analysis at site field and in laboratory
- 3) Specific gravity test in laboratory

Bed materials of the Narayani river were sampled at 23 sites (Fig. A1.11) among which outdoor analyses were carried out at 20 sites. Results of riverbed material tests are shown in Table A1.3 and the grading curves in Fig. A1.12

Principal features of the riverbed materials are summarized below. In the descriptions below, UI denotes uniformity index defined as a ratio of d₈₄ to d₁₆, SG stands for specific gravity, and classification of grain size is principally based on classification by AGU.

- 1) Samples: Riverbed materials were sampled from the main course of the Narayani river except for the following:
 - Anabranch of Narayani R: Na-9, Na-9A, Na-13, Na-14
 - East Rapti R: Na-11, Na-16, Na-17
 - Tributaries: Na-1, Na-3, Na-4, Na-8
- 2) Grain size:

()

()

- Main river: d₆₀ = 7.39 to 77.96 mm (distribute in wide range from fine gravel to small cobbles) except Na-2
- Right anabranch: $d_{60} = 0.10$ to 5.93 mm (very fine sand to fine gravel)
- E. Rapti R: $d_{60} = 24.36$ to 47.91 mm (coarse to very coarse gravel)
- Tributaries from Siwalik hill: $d_{60} = 20.27$ to 39.70 mm (coarse gravel)
- 3) Uniformity index: All samples distribute in wide range UI>38 except for anabranch samples and Na-21.
- 4) Specific gravity
 - SG = 2.65 g/cc on average ranging from 2.60 to 2.70 g/cc
- 5) Longitudinal distribution: Significant change in grain sizes is not clear.

Based on the investigation result, grain size distribution along the river is shown in the Fig. A1.9.

1.5.5 Land Use

Land utilization map and land capability map (scale: 1/50,000) are available. These maps have been prepared by Topographic Survey Section of Survey Department under the Canadian assistance program.

Mapping details are based on aerial photos taken in 1978 and 1979 and extensive field truthing and sampling during the year 1980 and 1981. The maps were published in

1982.

6

Existing land use of the plain area is shown in Fig. A1.13 based on the land utilization map. These maps were prepared rearranging the classifications into five categories, i.e., (1) rice field, (2) diversified cropland, (3) grazing land, (4) forest, and (5) settlement.

Land capability map is also available, which shows the land capability for agricultural development mainly based on the land system such as topography, land slope, soil and drainage conditions. Future land use would be prospected from the land capability.

1.5.6 Existing Basin Development Projects and Plans

(1) Gandaki Irrigation Project

The Gandaki barrage is located at the outlet of narrow gorge of inner Terai plain, and service area covers western lands of the Narayani river. Therefore the project area is located outside of the flood prone area for the Study.

(2) Other Water Resources Development Projects

There exist nine major hydropower plants over the country of Nepal. Out of these 6 plants (136.5 MW in total) are located in the Narayani river, while others are in the Sunkosi and Bagmati rivers as listed below (Fig. A1.14).

Plant	Proposed capacity (MW)	River
Panauti	2.4	Sunkosi R.
Trisuli	21.0	Narayani R./frisuli R.
Sunkosi	10.0	Sunkosi R.
Gandak	15.0	Narayani R.
Kulekhani No.1	60.0	Bagmati R.
Devighat	14.1	Narayani R./Frisuli R.
Kulekhani No.2	32.0	Bagmati R.
Marsyangdi	69.0	Narayani R./Marsyangdi R.
Andi Khola (BPC)	5.1	Narayani R./Kaligandaki R.
Jhimruk (BPC)	12.3	Narayani R./Kaligandaki R.
Total	240.9	

NEA has conducted Phase-I study of Medium Hydropower Study Project with an aid of Canadian International Water and Energy Consultants. The medium hydropower is defined as those ranging 10 to 300 MW. In this study, a total of 138 sites were inventoried. Through the several stages of screening, 7 priority sites were selected as

follows:

()

Plant	Installed capacity (MW)	River
Upper Karnali (KR-1A)	240	Karnali R.
Dudh Koshi (DD-1)	134	Sunkosi R.
Kabeli A (KB-A)	35	-
Likhu Khola (LK-4)	34	Kamala R.
Rahughat Khola (RH-0)	24	Narayani R.
Budhi Ganga (BG-0)	22	Karnali R.
Tamur (TM-3)	72	-

1.6 Vegetation in Watershed Area

General features of vegetation in the watershed area are presented here. Sediment yield from the watershed was not estimated for the Narayani river, since the watershed area is large and the sediment yield in the watershed does not directly affect the sediment flows in the plain area. Most of the sediments in the plain area are secondary or tertiary sediment deposit transported by river flows.

Watershed of the Narayani river is classified as the climate and vegetation divisions of Terai and Outer Himalaya, Middle Mountain, Himalaya Inner Valleys and Alpine Deserts.

(1) Terai and Outer Himalaya

The Terai plain is composed of an alluvial fan and an alluvial plain of elevation ranging from 50 m to 300 m,MSL extending from the foot of Siwalik hills to the Indian border. The climate of this area belongs to the monsoon subtropical zone, and the dry season is from October to May with the rainy season from June to September. The Terai plain was covered widely by Sal forests (Shorea robusta). But, recently farmers from Middle Mountains cleared the forests rapidly for agricultural land and villages.

The Siwalik hills were formed by upheaval of sediment bed carried from Himalaya. Forests are left in the Siwalik hills, because of too steep inclination for settlement and farming. But, clearing forest takes place recently even in the Siwalik hills.

(2) Middle Mountain

The Middle Mountain is the area of 1000 to 2500 m, MSL between the Mahabharat and High Himalaya mountain. The Middle Mountain is the central place of Himalayan

mountain residents. In the eastern and central part of the Middle Mountain, population is large and forest changed to cultivated lands and residential areas.

Large forest area shall remain in the western part of the country where population is sparse. Generally the forests are left in the areas such as (1) steep slope area which is hard to approach, (2) community forest managed by village, (3) forest with small shrine of native belief, and (4) northern slope which is not suitable for agriculture.

Vegetation changes according to the changes of elevation. Sal forest continues from the Terai plain up to 1000 to 1200 m, MSL, followed by laurel forest from 1000 to 2500 m, MSL. These vegetation zones are recognized throughout the Middle Mountain, and forest species changes from humid type in eastern part to dry type in western part.

(3) Himalaya Inner Valleys

()

Himalaya Inner Valley is located in the main ridges of High Himalayas. Because the Middle Mountain interrupts monsoon from the south, rainfall in this area is less than that in the Middle Mountain area.

The area forms Alpine zone of elevation ranging from 3800 to 5500 m,MSL. Forest of Himalaya Inner Valley are formed *Abies spectabilis* forest (3000 to 3800 m,MSL), *Betula utilis* forest (3700 to 3800 m,MSL) and the high mountain scrub (3800 to 3900 m,MSL).

(4) Alpine Deserts

Annapurna and Dhaulagiri mountains interrupt monsoon from south, and make the southern mountain areas rainy with annual rainfall amounting to 5000 mm. On the other hand, the northern mountain area ranging from 3000 to 5000 m, MSL is arid with annual precipitation of 500 mm or less.

Plants which grow scattering in this zone are Genus Caragana, Genus Nepeta, Genus Ephedra, Rosa sericea and Artemisia gmelinii. Vegetation of arid zone also has variety of plants as in Tibet Highland, Central Asia and Iran-Turan region.

1.7 Past Flood and Sediment Disasters

The Study Team investigated conditions of past flood and sediment disasters in January

1998. On the basis of the information obtained from the District Irrigation offices and District Development Committee offices, a total of 11 VDC/Municipality offices were selected for the investigation. Furthermore, a total of 101 residents in the flood prone areas were selected for the interview using questionnaire form.

Questionnaires to the residents are summarized in Table A1.4. In recent 10 years, the Narayani river experienced big floods in 1988, 1993 and 1995. Bank erosion sedimentation and flooding over farmland are the major types of disasters. Among these, bank erosion is the most serious problem. Frequent flooding occurs in the low-lying lands on the right bank in the lower reaches from the East Rapti rivers junction.

()

According to the data and information obtained from DDC and DIO of Chitwan and Nawal Parasi districts, areas suffering from bank crosion and flooding are summarized as shown below.

(Areas Suffering from Bank Erosion and Flooding)

VDC	Village/Ward
(Nawal Parasi)	
Mukundpur	Pitauji
Rajahar	Bote Tole, Kujauli (Tallo), Kujauli (Mathillo), Kotetadi
Pithauli	Rudauli, Gairi
Kumarvarti	Amaltari
Kolhuwa	Kolhuwa (No.4), Nandpur, Ratanpur, Bharmsthan
Narayani	Dhajaha, Sitapur, Sehari, Bhandara
Parsauni	Somara, Parsauni (No.3), Kulcutta, Tole, Buduwa
Naya Vehani	Tamaspur (No.1, No.2)
(Chitwan)	
Mangalpur	Bharampur, Jhanjhan,
Gunjanagar	Gajipur, Gobareni
Divyanagar	Hirapur, Koila, Padariya, Sishait, Bhagedi
Meghauli	Bardaha, Parsabazar, Loukure, Sisabash, Jogitole, Bhatatpur,
J	Salbash, Pahadi, Jitpur, Baluwa, Dadreni, Pipara, Pathreni,
	Bancatta

Loss of life and damage to properties are shown in Table A1.5, mainly based on data during 1993-flood. According to the field investigation and interviews of residents, flood-suffering areas during the 1993-flood are shown in Fig. A1.15.

1.8 Flood Mitigation Activities

1.8.1 Existing River Facilities

According to the result of investigation conducted by the Study Team in January 1998, major river facilities of the Lakhandei river are as follows:

1) Embankment: none

()

()

2) Spur : 65 sites

3) Revetment: 4 sites

4) Head work : none

5) Bridge : 1 site

Location of these facilities is shown in Fig. A1.16. As seen in the above, spur (groin) works share by far the majority of the facilities followed by revetment works. Almost all the spur and revetment works are made of gabion by boulder and galvanized iron (G.I.) wire net.

The existing facilities are located sporadically along the river course. Some of these spur and revetment works are damaged already probably due to inappropriate foot protection. In some sites single spur was seen, though the spur works can function effectively, in general, when they are installed as a series. The types of existing spur or bank protection works are monotonous. Variety of works should be introduced taking account the river condition and availability of materials. Photos of typical river facilities are shown in Fig. A1.17.

1.8.2 Policy Framework

There are various laws and policies governing and orientating the flood mitigation activities. The followings are the major ones, among others:

- 1) Approach to the Ninth Plan (1997-2002)
- 2) National Action Plan on Disaster Management
- 3) Draft Flood Mitigation Policy
- 4) Watershed Development Policy

1.8.3 Organizations Involved in Flood Mitigation

The Department of Irrigation (DOI) is responsible for flood mitigation in the downstream areas. At the same time, there are other agencies that can make significant contributions to the implementation of flood mitigation project, both within and outside the central Government.

The Water-induced Disaster Prevention Technical Center (DPTC) has developed technologies and methodologies which can be applied to the project.

The Department of Soil Conservation and Watershed Management (DOSCWM), with an increasing number of branch offices in the Terai plain, also contributes to the project implementation through soil conservation which is also a crucial factor in promoting flood mitigation in the target areas.

As indicated by the experience of the efforts for small-scale infrastructure development by the Ministry of Local Development (MLD), the local governing institutions (LGIs) can play a significant role in facilitating community mobilization and also in coordinating different organizations operating in their own jurisdictions. There exists an NGO-led disaster preparedness network (DPNET), an association of organizations concerned with community-based disaster management can participate in implementing community development components of the flood mitigation project.

LIST OF METEOROLOGICAL STATIONS

0

0

(

Station	Station Name	Type of Station	Reg	Latitude	Longitude	Elevation	Start of Record	Remarks
No.		Climatology	W	28 47 00	83 43 00	(m) 2,744		Narayani
	Jonisom Thakmarpha	Agrometeology	W	28 45 00	83, 42 00			Narayani
~	Baglung	Climatology	W	28 16 00	83 36 00	+		Narayani
	Tatopani	Precipitation	W	28 29 00	83 39 00			Narayani
0607		Precipitation	W	28 38 00	83 36 00			Narayani
	Ranipauwa (M Nath)	Precipitation	W	28 49 00	83 53 00			Narayani
	Beni Bazar	Climatology	W	28 21 00	83 34 00	835		Narayani
	Ghami (Mustang)	Precipitation	W	29 03 00	83 53 00	3,465		Narayani
	Mustang (Lomangtang)	Climatology	W	29 11 00	83 58 00			Narayani
	Karki Neta	Precipitation	W	28 11 00	83 45 00	1,720		Narayani
	Kushma	Climatology	W	28 13 00	83 42 00	891		Narayani
0615	Bobang	Precipitation	W	28 24 00	83 06 00	2,273		Narayani
0616	Gurja Khani	Precipitation	W	28 36 00	83 13 00			Narayani
0619	Ghorapani	Precipitation	W	28 24 00	83 44 00		03-1975	Narayani
0620	Tribeoi	Precipitation	W	28 02 00	83 39 00		•	Narayani
0621	Darbang	Precipitation	W	28 23 00	83 24 00			
	Rangkhani	Precipitation	W	28 09 00	83 34 00	 		ļ
0701	Ridi Bazar	Precipitation	W	27 57 00	83 26 00			Narayani
0702	Fansen	Ctimatology	W	27 52 00	83 32 00		07-1956	
	Butwal	Climatology	W	27 42 00	83 28 00		07-1956	
	Beluwa (Girwari)	Precipitation	W	27 41 00	83 03 00			Narayani Fi
	Bhairhawa Airport	Agrometeology	W	27 31 00	83 26 00		09-1966	
	Dunkauli	Agrometeology	W	27 41 00	84 13 00 83 28 00		01-1968	Narayani
	Bhairhawa (Agric)	Agrometeology	W	27 32 00 27 32 00	83 28 00 83 40, 00		05-1971	
	Parasi	Precipitation	W	27 32 00 27 35 00	83 521 00			Narayani
	Dumkibas	Precipitation Climatology	W	27 56 00	83 09 00			Narayani
	Khanchikot	Climatology	W	27 33 00	83 04 00		11-1970	
	Faulihawa Pattharkot (West)	Precipitation	W	27 46 00	83 03 00		03-1973	
	Musikot	Precipitation	W	28 10 00	83 16 00			Narayani
	Bhagwanpur	Precipitation	W	27 41 00	82 48 00		01-1975	
	Paklihawa	Precipitation	W	27 29 00	83 27 00		01-1970	
	Tamphas	Climatology	W	28 01 00	83 15 00	1	11-1979	Narayani
	Gagarkot	Precipitation	W	27 52 00	831 48 00			Narayani
	Lumbini	Precipitation	W	27 28 00	83 17 00	95	10-1980	
	Simari	Climatology	W	27 32 00	83 45 00	154		Narayani
0801	Jagat (Setibas)	Precipitation	W	28! 20 00	84 54 00	1,334	07-1957	Narayani
0802	Khudi Bazar	Climatelogy	W	28 17 00	84 22 00			Narayani
0803	Pokhara (Hospital)	Precipitation	W	28, 14 00	84 00, 00			Narayani
	Pekhara Airport	Agrometeology	W	28 13 00	84] 00 00			Narayani
	Syangja	Chmatology	W	28 06 00	83 53 00			Narayani
	Larke Sando	Precipitation	W	28 40 00				Narayani
	Kunchha	Precipitation	W	28 08 00				Narayani
	Bandipur	Precipitation	W	27 56 00				Narayani
	Gorkha	Agrometeology	W	28 00 00				Narayani
	Chapkot	Climatelogy	W		83 49 00 83 57 00			Narayani Narayani
	Malepatan (Pokhara)	Agremeteology Precipitation	W	28 13 00 28 16 00				Narayani
	Bhadaure Deurali	Agrometeology	W	28 18 00				Narayani
	Lumle Khairini Tar	Agrometeology	W	28: 02: 00				Narayani
	Chame	Climatelogy	w	28, 33 00				Narayani
	Damauli	Precipitation	w	27: 58: 00			01-1974	Narayani
	Lamachaur	Precipitation	W	28 16 00				Narayani
	Manang Bhot	Precipitation	W	28. 40, 00			06-1975	
	Ghandruk	Precipitation	W	28 23 00				Narayani
	Khuldi	Precipitation	W	28 26! 00	83 50 00	2,410	09-1973	
	Gharedhunga	Precipitation	W	28 12! 00		1,120	07-1976	Narayani
	Siklesh	Precipitation	W	28 22 00	84 06 00		06-1977	Narayani
0825	Begnas Tal	Precipitation	W	28 12 00			07-1981	<u> </u>
	Walling	Precipitation	W	27 59 00				
	Rumjakot	Precipitation	W	27, 52: 00			ļ	.
5	Rampur	Agrometeology	c	27, 37, 00		· · · · · · · · · · · · · · · · · · ·		Narayani
	Jhawani	Precipitation	C	27 35 00				Narayani
	Chisapani Gadhi	Precipitation	C	27 33 00				Narayani
	Danian	Climatology	C	27: 36: 00				Naray ani
0004	Hetaunda N.F.I	Climatology	C	27 25 00	85 03 00)] 474 	08-1966	Narayani

LIST OF METEOROLOGICAL STATIONS

Station	Station Name	Type of Station	Reg.	Latitude	Longitude	Elevation	Start of Record	Remarks
No. 6907	Amlekhganj	Precipitation	c	27, 17, 00	85 00 00	(m) 396	06-1955	
	Simara Airport	Agrometeology	C	27 10 00	84 59 00	130	09-1965	
	Nijgadh	Precipitation	Č	27 17 00	85 10 00	244	06-1955	
	Parwanipur	Agrometeology	C	27 04 00	84 58 00	115	01-1967	
	Ramoli Bairiya	Precipitation	C	27 01 00	85 23 00	152	01-1956	
0915	Karkhu Gaun	Precipitation	C	27 37 00	85 09 00	1,530	12-1971	
	Hetaunda (Ind Dis)	Precipitation	C	27 26 00	85 02 00	466		Narayani
	Birgunj	Precipitation	С	27 00 00	81 52 00	91	02-1974	
	Makwanpur Gadhi	Precipitation	C	27 25 00	85 10 0 0	1,030		Narayani
	Beluwa	Precipitation	C	27 30 00	84 45 00 85 00 00	274		Narayani
	Kafaiya	Precipitation	C	27 02 00 26 46 00		90	02-1976 03-1983	
	Gaur	Climatology Precipitation	C	26 46 00 28 17 00	85 18 00 85 26 00	1,900		Narayani
	Timure Aru Ghat D.Bazar	Precipitation	c	28 03 00	84 49 00	518		Narayani
	Trishuli	Precipitation	c	27 55 00	85 09 00	595		Narayani
	Nuwakot	Climatology	c	27 55 00	85 10 00	1.003	05-1956	
	Dhading	Precipitation	c	27 52 00	84 56 00	1,420		Narayani
	Gumthang	Precipitation	c	27 52 00	85 52 00	2,000	07-1947	
	Kakani	Agrometeology	C	27, 48, 00	85 15 00	2,064	01-1962	Narayani
	Nawalpur	Precipitation	C	27 48 00	85, 37, 00	1,592	06-1959	
1009	Chautara	Precipitation	C	27: 47: 00	85 43 00	1,660	07-1947	
1011	Kathmandu (US AID)	Precipitation	С	27 42 00	85 20 00	1,335	01-1954	· · · · · · · · · · · · · · · · · · ·
1012	Sundarijal (Pwr.House)	Precipitation	C	27 45 00	85 25 00	1,364	05-1940	
	Sundarijal (Water Res.)	Precipitation	C	27 47; 60	85 26 00	1,576	05-1940	
	Kathmandu (I.E.)	Precipitation	C	27 44 00	85 20 00	1,324	01-1921	
	Thankot	Precipitation	C	27 41 00 27 57 00	85 12 00 85 36 00	1,630 2,625	09-1966 11-1970	ļ
	Sarmathang Dubachaur	Climatology Precipitation	c	27 52 00	85 34 00	1,550	11-1970	
	Baunepati	Precipitation	c	27: 47: 00	85 34 00	845	11-1970	
	Mandan	Precipitation	c	27 42: 00	85 39, 00	1,365	07-1947	
	Godavari	Climatology	č	27 35 60	85 24 00	1,400	05-1952	
	Dolal Ghat	Precipitation	c	27 38 00	85 43 00	710	07-1947	
	Dhulikhel	Climatology	С	27: 37: 00	85 33 00	1,552	06-1947	
1025	Dhap	Precipitation	С	27 55 00	85 38 00	1,240	12-1976	
1	Bahrabise	Precipitation	C	27 47 00	85 54 00	1,220	12-1965	
	Pachuwar Ghat	Precipitation	C	27 34 00	85 45 00	633	01-1966	
	Khumaltar	Agrometeology	C	27 40 60	85 20 00	1,350	05-1967	
	Kathmandu Airport	Agremeteology	C	27 42 60	85 22 00	1,336	06-1949 09-1970	
	Sankhu	Precipitation	C	27 45 00 27 41 00	85 29 00 85 38 00	1,449 865	11-1970	
	Panchkhal Dhunibesi	Agrometeology Climatology	c	27 43 00	85 11 00	1,085		Narayani
	Panipokari (Kathmandu)	Climatology	c	27 44 00	85 21 00	1,335	01-1971	(alujuni
	Nagarkot	Climatology	c	27 42 00	85 31 00		05-1971	
	Pharping	Precipitation	Č	27 37 00	85 18 00		05-1971	
	Khopasi (Panauti)	Precipitation	С	27 35 00	85 31 00	3,517	06-1971	
	Bhaktapur	Precipitation	C	27 44 00	85 25 00	1,330	05-1971	
	Thamachit	Precipitation	C	28 10 00	85 19 00	3,847		Narayani
	Dhunche	Climatology	C	28 06 00	85 18 00	1,982		Narayani
	Tokha	Precipitation	C	27: 48. 60	85 26 00	1,790	12-1972	
	Pansayakhola	Climatology	C	28 01, 00	85 07: 00	\$,240	01-1973	
	Tarka Ghyang	Precipitation	C	28 00 00	85 33 00 85 25 00	2,480	01-1974 05-1974	
	Changu Narayan	Precipitation Precipitation	C	27 45 00 27 36 00	85 25 00 85 20 00	1,543 1,448	10-1975	
	Chapa Gaun Lubhu	Precipitation	C	27, 39, 00	85 23 00	1,448	11-1975	
	Sangachok	Climatology	c	27 42: 00	85 43, 00	1,327	05-1979	
	Thokarpa	Precipitation	c	27 42 00	85 47 00	1,750	07-1979	
	Buddhanilakantha	Climatology	c	, 00	00	1,360	•	
	Paigutang	Climatology	C	28 13 00	85 11 00	4,091	٠	
	Nagdaha	Precipitation	C	27 41 00	86 06 00	850	01-1977	
	Charikot	Precipitation	C	27 40 00	86 03 00	1,940	06-1959	
1103		Agrometeology	C	27 38 00	86 14 00	2,003	08-1961	
	Melung	Precipitation	C	27: 31: 00	86 03 00	1,536	06-1959	···
	Ramechhap	Precipitation	C	27 19 00	86 05 00	1,395	04-1948	
	Sindhuli Gadhi	Climatology	C	27 17 00	85 58 00		06-1955	
	Bahun Tilpung	Precipitation	C	27. 11 00 27 05 00	86 10 00		05-1958	Lakhandehi
1109	Pattharkot (East)	Precipitation		27 05 00	85 40 00	275	N1-1250	укаклаписті

LIST OF METEOROLOGICAL STATIONS

Station	Cara Varia	T of Carrier	D.	La	titud		Lo	ngitu	de	Elevation	Start of	Remarks
No.	Station Name	Type of Station	Reg.	0	1	•	0		×	(m)	Record	Kemaiks
1110	Tulsi	Precipitation	С	27	02	00	85	55	00	457	12-1955	
1111	Janakpur Airport	Climatology	C	26	43	00	85	58	00	90	06-1968	
1112	Chisapani Bazar	Precipitation	C	26	55	00	86	10	00	165	07-1955	
1)14	Hardinath	Precipitation	C	26	18	00	85	59	00	93	11-1968	
1115	Nepal Thok	Precipitation	С	27	27	00	85	49	00	1,098	04-1948	
3116	Hartharpur Gadhi	Precipitation	C	27	20	00	85	30	00	880	06-1955	
1117	Hariharpur Gadhi Valley	Precipitation	C	27	20	00	85	30	00	250	03-1978	
1118	Manusmara	Climatology	Ç	26	53	00	85	25	00	100	02-1979	
1119	Gausala	Precipitation	C	26	53	00	85	47	00	200	02-1979	
1120	Malangwa	Precipitation	€	26	52	00	85	34	00	150	03-1983	Lakhandehi
1121	Karmaiya	Climatology	С	27	07	00	85	28	00	131	08-1983	
1122	Jalesore	Climatology	C	26	39	00	85	47	00	<u>L</u>	03-1989	<u> </u>

(Note) Reg. W: Western and C: Central Region (All the stations of these region are listed.)

6

LIST OF HYDROMETRIC STATIONS

Remarks							Khutiya																							
End of	Record				01/04/88																									
Start of	Kecord	01/01/65	01/01/62		01/01/66	9	•	14/05/78	62/90/21	13/06/79	17/01/89	08/11/65	06/02/66	19/03/64	17/03/64	08/03/64	19/10/10	24/02/65	20/03/78	01/02/63		28/04/78	•	06/02/63	17/06/65	18/06/72	18/06/76	16/12/89	23/01/63	01/01/62
ent				_	-												S							S					S	S
Instrument			Я														R			R	_			8	8			PR	K	ĸ
Ins			ပ	S	၁				(C			2	C	C	0	၁	Ų	υ ○	<u></u>	ပ	၁	S	U	U	C	C	<u>ں</u>	၁	S
Drainage Area	(km²)	1.150	12,236	(99)	118	(313)		1,310	(8,447)	5.300	795	1.150	15,200	1.870	824	3,470	19,260	1,060	(801)	21,240	2,040	1,340	4,420	7.460	968	6.720	2,620	•	12,290	42,890
Elevation	æ	٠	-	•	1.110	٠	•	•	-	•	•	•	1	•	•	٠	629		•	320	-	•	•	328	314	•	•	•	246	161
岁	-	30	30	00	10	00	00	00	8	00	28	00	8	8	00	00	30	8	စ္က	01 /0	40	00	30	04	8	30	30	_	00	30
Longitude	•	33	15	35	33	56	44	52	52	22	45	04	36	55	58	36	56	36	4.	07	12	13	46	80	% 4	17	21		21	1
្ន	٥	08	80	80	80	80	80	81		81	81	82	∞	81	81	81	- - - -	∞	8	 	08	81.	စ္တ	81	08	82	82		18	8
U	F	20	45	00	30	8	00	00	8	00	16	00	8	00	00	00 :	0.	8	8	9	30	00	8	40	8	30	30		20	40
Latitude	-	40	5 6 ·	31	27	36	53	57	38	37	36	31	60	12	12		57	4	56	27	33	11	81	58	56	42	39		45	38
L	ľ	29	53	53	53	28	28	59	29	53	53	59	53	29	58	29 08	28	28	28	28	53	56	દ્ધ	58	%;	28	28		28	28
Name of Site		Karkale Gaon	Pancheshwor	Gujar Gaon	Patan near Baitadi	Amsara	Boladevi Gaon	Kharpu	Bihi Chhara	Surkhet	Kawadi Ghat	Nizal	Thuldada	Nagina	Diware	Seti Ghat	Asara Ghat	Tallo Dungeswat	Gitachaur	Benighat	Chainpur	Kakarsant	Gopaghat Gaon	Banga near Belgaon	Khanayatal	Rimna	(Simli Ghat	Samaiji Ghar	Jamu	Chisapani
Name of River		Chamelia	Mahakali	Sumagad	Surnagad	Kandr Khola	Khutiya Khola	Kharpu Khola	Humla Kamali	Mugu Kamali	Kawadi Khola	Rara Daha	Humla Karnali	Tila Nala	Sinja Khola	Tila Nadi	Kamali	Lohare Khola	Chhamghat Khola	Kamali	Seit	Bhdhi Ganga	Seit	Seit	Tuli Gad	Thulo Bheri	Sano Bheri	Bheri Nadi	Bheri	Karnali
Station	ź	120.	150.	169.8	170.	190.5		205.	206.	208.	209.	210.	215.	220.	225.	230.	240.	241.	245.	250.	251.	255.	259.2	260.	262.	265.	267.	269.5	270.	280.

LIST OF HYDROMETRIC STATIONS

8

Remarks			Narayani	Narayani	Narayani			Narayani	Narayani	Narayani	Narayani	Narayani	Narayani	Narayani	Narayani	Narayani	Narayani	.Narayani		Narayani	Narayani		Narayani	Narayani		Narayani		Narayani	Narayani	Narayani
End of	שברסות																		21/05/88											
Start of	מבכסות	-/03/92	25/05/75	22/02/16	21/02/64	27/05/90	01/01/90	06/04/89	18/12/78	24/05/67	13/04/89	15/04/64	02/90/20	68/10/10	08/02/73	04/07/81	09/02/76	31/03/87	01/06/73	20/11/63	13/10/67	26/12/86	28/11/63	//67	•	1		//63	24/04/69	01/04/67
 ;					S											-		s	S				S							S
Instrument		፠			ጸ							×						Я	R	PR			ĸ					ጸ		R
Inst			2		၁	Э		၁	ပ	၁	C	ပ	Э	2	С	C	C	C	2	C	ပ		ပ	ပ		၁		၁		ပ
Drainage Area	(km ²)	ŧ	(635)	(138)	6.630	-	1	476	(239)	1,990	1	11.400	160	285	858	(151)	(341)	(4.088)	3.850	308	386		4,270	768		(540)	•	49	162	4,110
Elevation	(m)	667	•	1	546	•	•	543	1	-	•	198	•	830	-	•	•	354	320	442	•		485	•		•	-	•	630	009
ي	:	8	15	<u>0</u>	<u>0</u>			20	15	2		ဒ္က	30	8	00	45	30	48	42	23	15		59	10		45		40	15	8
Longitude	- 1	42	42	57	36			35	82	28	٠.	က က	55	8	14	21	27	25	59	59	35	* '	48	46		20		11	11	=
Lon	•	83	83	8	ဋ္ဌ	•	-	83	S	83	-	24 24	83	84	84	84	84	84	2	84	84		84	84		85	•	85	85	85
	Ŧ	8	30	8	င္က		T	20	55	22		8	30	8	8	15	45	00	35	14	00		37	20		30	-	01	25	S
Latitude	-	2	5	8	8			- 88	=	58		45	 81	4	90	17	01	57	55	03	01		02	- 85	-	60	-	01 /0	58	28
Ľai	0	28	28	- 28	28			27	28	27		27	28	82 82	28	38	28	27	27	28	- 82		28	27		28		28	27	27
Name of Site		Modi Beni	Navapul	Seti Beni	Seti Beni		Arjun Chaupari	Dumrichaur Andhimuhan	Wamitaksar	Rudrabeni Gulmi	Ansigh-AndhiGhat	Kotagaon Shringe	Lahachok	Phoolbari	Shisa Ghat	Khudi Bazar	Amote Bazar-Sera Besi	Bimal Nagar	Gopling Ghat	Garam Besi	Nayasanghu Gorkha	Ramdi	Arughat	Ankhu Bridge	Kyangjin	Shyaprubesi	Syaprubesi	Dhunche	Betrawati	Betrawati
Name of River		Kali Gandaki	Modi Khola	Seti Khola	Kali Gandaki	Danab Khola	Dararun Khola	Andhi Khola	Daram Khola	Badigad Khola	Kali Gandaki	Kali Gandaki	Mardi Khola	Seti Khola	Madi	Khudi Khola	Dordi Khola	Marsyangdi	Marsyangdi	Chepe Khola	Daraundi Khola	Daraundi Khola	Burhi Gandaki	Ankhu Khola	446.15 Lirung Khola	Langtang Khola		Trisuli Khola	Phalankhu Khola	Trisuli
Station	ġ Z	406.	1.,		1-	<u>را</u>	1		416.2	417.	1		428.	430.	438.	439.3	439.4	439.7	439.8	440.	441.	441.5	445.	445.3	446.15	446.2		446.3	446.8	447.

0

0

Remarks		Narayani	Narayani	Narayani	Narayani		Narayani	Narayani	Narayani	Narayani	Narayani																			
End of	RECORD	4	4	<u> </u>			£.	4	<u>F4</u>	_	1								27/08/98			08//			09/12/78	15/11/77			17/10/84	
Start of	Record	_	•	14/06/68	•	•	28/03/82	10/02/62	01/01/63	13/06/63	30/11/63	07/12/62	00/11/63	00/11/63	1	1	04/03/00	15/11/64	27/05/68	23/11/62	01/01/87	01/07/62	01/06/91	15/06/85	01/07/75	01/12/62	01/02/88	28/01/79	21/06/64	*
ti.			_					S					H									S		S		S		S	S	
Instrument							_	ሌ		R		Я										4	PR	ĸ	R	R		R	ĸ	
lsu.							ပ	C	2	C) 	C								_		ပ		၁	ပ	C		C		
Drainage Area	(km²)	254	(145)	653			(14.500)	31,100	625	427	169	17	13	ť	•	26		89	7	43	95	585	209	•	122	126	•	2,700	2,720	(13.790)
Elevation	(m)	•	•	475	•	•	•	180	332	305	336	1,600	1.660	1,660	-			1,300	1,454	1,400		1,280	1,255	-	1,514	1,480	-	180	177	•
	[*	2	45	8	30		45	ίχ Ο	15	10	00	40	10	10	15	30	-	00	32	50	30	20	8	45	39	တ္တ		30	30	00
Longitude	-	17	4	 80	34		26	25	58	48	5	25	56	25	26	23 ·		21	7.	18	18	17	13	15	60	8		28	28	20
J.	8	85	88	85	84		25	84	84	2	84 	85	85	85 :	85	85		85	85	85	85	85	85	85	85	85		85	85	\$8
υ	=	g	စ္က	35	00		00	8	30	8	0	ဂ္ဂ	20	10	45	45		30	49	30	40	40	00	30	13	0		20	20	30
Latitude	-	55	53	51	51		46	42	56	[2	35	46	46	46	44	43		42	46	34	39	39	16	33	38	35		90	27 06	45
ï	٥	27	27	27	27		27	27	27	27	27	27	27	27	27	27		27	27	27	27	27	27	27	27	27	L	27	27	26
Name of Site		Rautar Nuwakot	Pattawari Nuwakot	Tadipul Belkot	Mugling		Bhorletar	Narayan Ghat	Rajaiva	Manahari	Lothar	Sundarijal	Sundarijal	Syamdado	Gagalgau	Gokarna	Shakyu Salmutar	Gauri Ghat	Budhanilkantha	Tika Bhairab	Nakhu Jail Near Patan	Chovar	Khokana	Sampkhel	Lamichaur	Kulekhani	Rai Gaon	Pandhera Dobhan	Karmaiya - Mangalpur	Bramhapuri
Name of River		Tadi Khola	Likhu Khola	Tadi Khola	Trisuli	449.91 Trishuli	Trisuli	Naravani	Rapti	Manahari Khola	Lothar Khola	Bacmati	Nagmati	Sialmati	Dhakal Khola	Bagmati River	Manahara River	Bacmati	Bishnumati Khola	Nakhu Khola	Nakhu Khola	Bagmati River	550.05 Bagmati	Bagmati River	Kulekhani Khola	Kulekhani Khola	Bagmati	Bagmati	Bagmati	Bagmati
Station	ġ Ż	447.4	Т	1	449.9	449.91	449.95 Trisuli	450	T	Γ	Γ	T	Π		511.	Π	<u></u>	1	Τ.,	T	Г	T-	05	550.1	!	Γ	Г	Г		

Remarks																														
End of	210231																													
Start of	710701	19/03/92	•	-	22/12/86	:1/05/72	01/09/98	01/09/98	02/01/74	1	01/06/68	23/05/75	0/0/64	•	17/02/65	•	25/12/63	t	•		17/09/72	26/03/64	17/10/63	'	14/01/70	06/04/64	01/07/67	24/03/64	20/02/86	
nent						S												_	_	_		_	_	_	_					
Instrument			-			C R	-		CR	C		C R		Br			C	U			U	ပ	\dashv	\dashv	CR	C	C	၁	၁	Br
o o	(km²)	•	(1,595)	•	352		(26)	(38)	375	110	(4.183)	28.200	337	30,380	2,410	(84)	629	(1.375)	•	•	1,225	4,920	87	•	2,753	313	10,000	823	(8.736)	(87)
Elevation	(E)	•	•	•	1.500	1.294	-	•	•	-	•	414		•	840	•	793	٠	•	•		289	1.480	,	849	1,520	455	543	•	2,350
g ŢĢ	•	8	30	00	8	90	30	45	12	30	30	30	00	30	20	30	10	00	00		42 : 30	10	20		<u></u>	20	8	13 : 10	00	30
Longitude		20	01	60 : 9	7 21	87 20	87 13	87 12	7 13	87 13	91 28	87 11	87 07	60 : 48	85 53	85 54	85 46	85 : 43	85 32		85 42	85 45	85 30		86 05	86 11	00 98	86 13	86 22	86 : 33
	-	30 85	15 86	45 86	00 87	!	8 00	8 00	20 87	45 8	8 00	8 00	8 00	30 8	10 8	30 8	208	30 8	3 00		20 8	30	3 05		3 50	30	-	10	30	45
Latitude	-	57 00	55	36 .		36	24	24		17	8	20	05	55	47	46	84	38	05	-	≥8 €	33	34		38	34	20	20	10	31
្ម	ō	55	56	. 56	27	27	27	27	27	- 73	27	27	27	56	27	27	27	27	- 28	_	27	27	27		2.7	27	27	27	27	27
Name of Site		Chvutaha	Chisapani	Inarawa	Seksila Hativa	Uwa Gaon	Kurle Besi	Kurle Besi	Tumlingtar	Pipletar	Leguwa Ghat	Turkeghat	Parapani Phedi	Simle	Barabise	Barabise	Jalbire	Dolalghat	Helambu	Sajhaya	Dolaighat	Pachuwar Ghat	Panauti	Lold Khola	Busti	Rasnalu Village	Khurkot	Sanghu Khola	Ahrkapur (Tokselghat)	Beni
Name of River		Jamuni	Kamala	Kamala	600.05 Barun Khola	Arun	Pangtha Khola	Pangma Khola	Sabhava Khola	Hinwa Khola	Arun	Arun	Pikhuwa Khola	Arun	Bhote Kosi	Sun Kosi	Balephi Khola	Sun Kosi	Melamchi Khola	627.55 Melamchi Khola	Indrawati	Sunkosi	Rosi Khola	Rosi Khola	Tamakosi	Khimti Khola	Sunkosi	Likhu Khola	Sun Kosi	
Station	 ģ	595		Т	600.05	600.1	F	1	т-	602.5	604.	۸۱		909	610.	612.	620.	625.	627.5	627.55	629.1	630	640.	641.	647	650	659	.099	965	668.4

inage Start of rea Instrument Record (324) Br	Drainage Area (km²) (324)	Elevation Dra A (m) (k) (k) (k) (k)	Longitude Elevation A A (m) (k 86 33 15 1.800	ongitude Elevation A A (m) (k 33 15 1.800	Latitude Longitude Elevation Dra 50 " " (m) (k) 30 30 86 33 15 1,800
ă	\perp	-	86 40 30	16 00 86 40 30	ure 27 16:00 86:40:30
4,100 C R S		200	86 39 50 460	20 460	16 00 86 39 50 460 37 370 300 300 300 300 300 300 300 300
- C			87 08 45	55 15 87 08 45	war 26:55 15 87 08:45 -
- Ci		- 5	87 42 45	42 45	09 30 87 42 45
194		0:	87 36 50 [36	22 10 87 36
		5	87: 46: 15	46	09 45 87 46
		5	87 22 15	87 22	26 : 59 : 30 87 22
13		0:	87 22 30	22	59:00 87:22
(28)			87 : 23 : 15	23 15	87 : 23 : 15
51			87 22 15	22	30 87 22
5,640 Br PR S		15 276	87 19 45	19 : 45	55 50 87 19 45
(6.146) C		- 00	00 01 28	26:55:00 87:10 00	01 : 28 : 00 : 82 : 10
54,100 C S		140	87 09 30 140	09 30 140	-Kothu 26 52 00 87 09 30 140
7)5	87	8	51:00 87:18
210		50 (87 57 20	22	25 87 57
140		50	87 59 20	- 26	40 87 59
377 C S		- 51	87 : 55 : 45		52 45 87
107 C		802	87 54 40	54 : 40	87 54 40
(1661)		•	87 46 15	- 2 -	54 00 87 46 15 -
1.148 C R		125	87 52 44	52 44	12 87 52 44
				•	Kumarkhod-Jhapa
		- 00	88 07 00 -	0.7	26 51 15 88 07

Note:

C: Cable way for discharge measurement

Br: Bridge available for discharge measurement

R: Recording gauge for water level observation PR: Pressure type gauge for water level observation

GRAIDING OF RIVERBED MATERIALS

<u> </u>					Cu	mulative	percent	age of p	assing m	aterials ((%)				
Sangle	< 0.075	< 0.106	< 0.25	<0.425	< 0.85	<2	<4.75	<9.5	<19	<26.5	<37.5	<53	<100	<200	<400
code	(mm)	(nvn)	(ពមារ)	(mm)	(11111)	(mm)	(mm)	(mm)	(nm)	(6M3)	(mm)	(u ₇ u)	(mm)	(១១១)	(mm)
	0.075	0.106	0.250	0.425	0.850	2.00	4.75	9.50	19.0	26.5	37.5	53.0	100.0	200.0	400.0
												-			
Narayar	i River														
Na-1	0.8	1.7	7.6	13.3	17.0	22.1	28.7	34.3	41.9	49.6	58.5	67.5	78.4	100.0	100.0
Na-3	0.8	1.7	7.6	13.3	17.0	22.1	28.7	34.3	41.9	49.6	58.5	67.5	78.4	100.0	100.0
Na-2	2.4	4.8	30.3	53.8	61.7	62.8	64.9	67.0	70.9	73.8	80.3	87.6	100.0	100.0	100.0
Na-3	0.4	0.9	6.4	14.5	25.9	33.9	39.5	45.2	56.9	64.3	72.6	82.5	95.9	100.0	100.0
Na-4	0.4	1.0	5.8	11.2	15.6	22.1	31.0	38.5	51.0	57.6	66.4	77.9	97.2	100.0	100.0
Na-5	1.4	2.4	5.8	9.5	12.5	13.7	17.3	23.4	31.8	36.9	43.5	48.2	67.6	100.0	100.0
Na-6	3.8	4.9	7.0	9.4	14.3	20.0	27.8	39.4	57.5	69.2	82.0	88.4	91.4	100.0	100.0
Na-7	0.5	0.7	1.7	8.5	23.0	25.8	28.7	32.8	38.9	44.4	52.1	58.5	80.6	100.0	100.0
Na S	0.3	0.6	2.9	5.3	10.7	22.6	34.8	42.9	58.2	67.4	78.0	86.7	100.0	100.0	100.0
Na-9	40.5	60.6	94.6	93.7	99.5	99.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
N2-9A	34.3	50.8	77.0	85.0	91.6	96.9	99.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Na-10	0.7	1.1	4.5	14.2	25.8	31.4	37.7	44.8	56.9	66.0	82.6	93.0	100.0	100.0	100.0
Na-31	4.6	7.0	10.4	13.2	16.9	20.3	24.2	23.0	34.7	40.1	52.4	63.3	81.9	100.0	100.0
Na-12	0.5	0.8	4.7	16.2	32.0	43.1	55.8	62.4	70.8	75.7	82.0	89.0	94.1	100.0	100.0
Na-13	2.3	4.3	19.3	30.9	49.1	54.3	58.4	63.3	71.2	77.2	82.3	85.7	100.0	100.0	100.0
Na-14	1.7	4.6	42.0	74.4	91.4	96.5	98.1	99.2	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Na-15	2.1	2.5	5.8	14.4	25.5	32.4	38.5	45.6	57.8	63.5	68.0	73.3	81.9	100.0	100.0
N2-16	0.7	1.3	6.4	12.7	21.3	24.5	27.1	33.2	45,4	63.9	78.5	90.7	100.0	100.0	100.0
Na-17	1.8	2.7	8.8	18.2	23.6	25.7	27.4	30.0	37.3	45.4	56.3	75.3	100.0	100.0	100.0
Na-18	4.2	6.3	18.0	27.8	32.8	35.3	39.7	45.6	63.0	73.3	81.6	88.9	100.0	100.0	100.0
N2-19	3.9	5.1	10.0	17.3	29.5	36.5	41.4	44.8	55.5	62.1	64.3	67.9	70.4	100.0	100.0
Na-20	0.9	1.3	2.6	6.4	14.5	24.1	35.8	49.1	66.3	75.1	82.6	89.6	91.8	100.0	100.0
N2-21	1.8	2.4	4.9	6.9	8.0	8.8	10.4	13.5	19.1	24.3	31.7	44.4	72.7	100.0	100.0
Na-22	13.6	19.5	29.6	32.5	34.1	35.6	33.8	42.9	45.6	53.4	61.0	65.1	59.7	100.0	100.0

REPRESENTATIVE GRAIN SIZES AND SPECIFIC GRAVITY

		Represe	ntative g	raio size	,	Specif	ic gravil	y(g'cc)
Sample	16	60	65	84	d34	5.G.1	S.G.2	S.Gave
code	(%)	(%)	(%)	(%)	d16	(g'cc)	(g/cc)	(g'cc)
			-					
Narayar	i River							
Na-1	0.70	39.70	45.10	119.69	170.45	2.61	2.65	2.63
Na-1	0.70	39.70	48.10	119.69	170.48	2.61	2.65	2.63
Na-2	0.15	0.73	4.87	44.68	289.44	2.63	2.63	2.66
Na-3	0.46	21.82	27.25	57.01	122.71	2.68	2.63	2.68
Na-4	0.89	29.15	35.46	64.84	72.75	2.68	2.70	2.69
Na-5	3.49	77.96	91.84	142.03	40.65	2.66	2.65	2.66
Na-6	1.10	20.41	23.52	41.71	37.94	2.69	2.70	2.70
Na-7	0.61	55.35	63.90	112.92	185.79	2.59	2.63	2.61
Na 8	1.24	20.27	24.30	47.63	38.26	2.68	2.63	2.66
Na-9	#N/A	0.10	0.12	0.19	#N/A	2.65	2.63	2.64
Na-9A	#N/A	0.14	0.17	0.40	#N/A	2.68	2.63	2.66
Na-10	0.47	21.26	25.51	39.29	83.06	2.68	2.65	2.67
Na-11	0.72	47.71	56.10	108.37	151.46	2.64	2.61	2.63
Na-12	0.42	7.39	11.79	41.44	98.55	2.63	2.65	2.61
Na-13	0.21	5.93	11.00	42.80	206.73	2.65	2.68	2.67
Na-14	0.14	0.34	0.36	0.63	4.57	2.59	2.63	2.61
Na-15	0.47	21.63	29.75	108.37	230.41	2.68	2.65	2.67
Na-16	0.55	24.36	27.17	43.80	79.14	2.59	2.61	2.60
N2-17	0.38	40.12	43.95	66.30	176.58	2.63	2.59	2.61
N2-18	0.22	16.74	20.27	42.08	195.34	2.68	2.63	2.66
Na-19	0.39	23.88	39.99		356.02	2.68	2.70	2.69
Na-20	0.97	14.74	18.04	40.24	41.47	2.65	2.63	2.67
N2-21	12.87	75.19	84.12	133.23	10.35	2.63	2.58	2.61
Na-22	0.09	35.82	52.37		1000.3	2.58	2.61	2.60
							Average	2.65

SUMMARY OF QUESTIONNAIRES BY RIVER

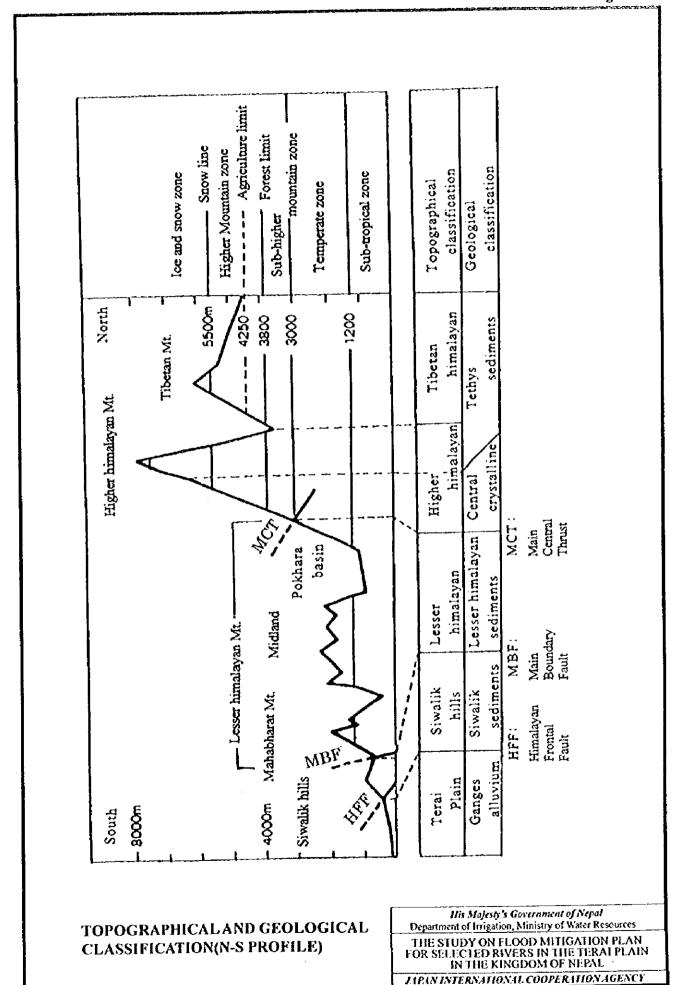
Name of river: NARAYANI RIVER(1/2)

No.	Questions/items	Summary of answers
J .]	FLOOD EVENTS	1
1.1	Year of most severe flood in past 10 years (nop)	1993(51), 1988(46), 1989(1)
1.2	Floods in a year (times)	Average(4) ranging(2 to 9)
1.3	Severe floods in past 10 years (times)	Average(3) ranging(2 to 6)
1.4	(Cancelled)	(Cancelled)
1.5	Cause of flood (nop)	Too much rain(62) Bank erosion(48) Others(0)
2. El	FFECT DUE TO SEVERE FLOOD I	N PAST
2.1	Loss of human life (nop)	2 (excluding those due to epidemic disease)
2.2	Loss of livestock/husbandry (nos)	Cow(23) Buffato(0) Sheep/Goat(13) Poultry(134)
2.3	Damage to farm land (ha)	 Irrigated land: Average(1.9) ranging(1.0 to 6.2) Non-irrigated land: Average(1.7) ranging(0.2 to 7.7)
2.4	Extent of damage to farm land	 Simple inundation (nop): 30 Loss of crops (nop): Paddy(72), Sugarcane(1), Maize(52), Others(0) Total washout (ha): Average(3.1) ranging(0.2 to 11.6)
2.5	Extent of damage to dwelling and asset	 Flooding duration (days): Average(6.0) ranging(2 to 12) Flooding depth in (m): Average(1.6) ranging(03 to 3.0) Damage to house (nop): Severe(15), Moderate(21), Ordinary(44) Loss of cash (Rs): Average(5,000) ranging(0 to 8,600) Loss of food grains (kg): Paddy: Average(710) ranging(0 to 2,500) Clothing (nos): Average(2) ranging(1 to 4) Other valuables: Average(2) ranging(0 to 2)
2.6	Problems during flood (nop)	 Erosion of river bank (79) Sediment in the river (66) Sediment in irrigation canal (51) Drinking water problem (43) Sanitary problem (28) Salinity (0) Flooding over farm land (64) Others (1)
2.7	Epidemic disease after flood? (nop)	· Yes(38) · No(63)
2.8	If yes, kind of epidemic disease (nop)	· Cholera(0) · Dysentery(35) · Typhoid(16) · Others(0)
2.9	Fatal causality? (nop)	· Yes(0) · No(69)
2.10	Reason of flood(nop)	 Too much rain(37) Lack of flood protection works(93) Weak river training works(0) Sediment load in the flood water(20) Flood from adjoining rivers(6)
2.11	Total amount of damage (Rs)	Average(160,000) ranging(0 to 3,000,000)

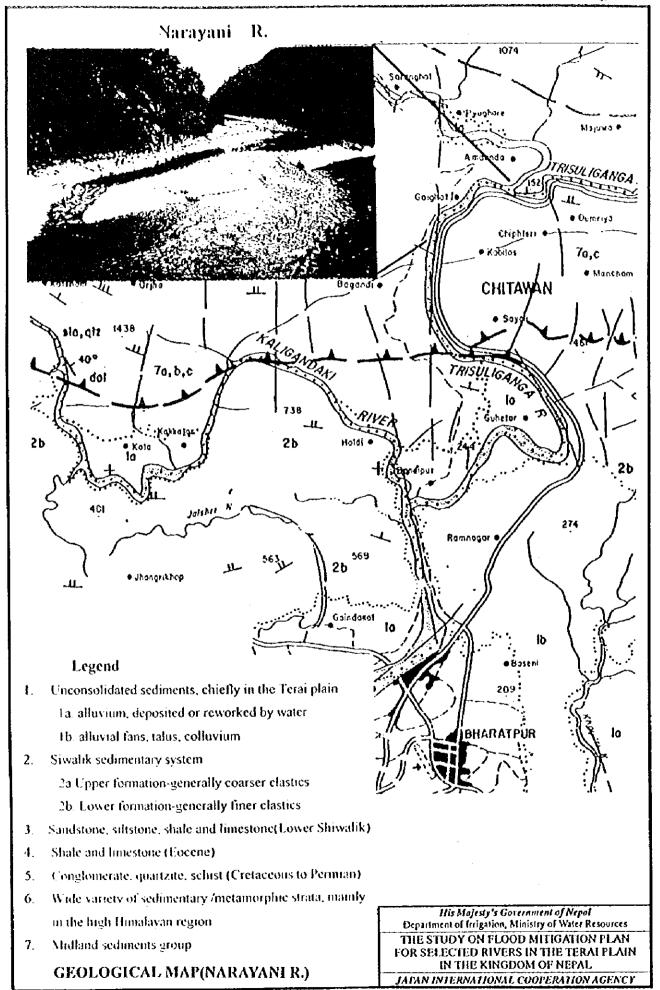
(Remarks) nop: Number of persons who answer to the item.

SUMMARY OF QUESTIONNAIRES BY RIVER

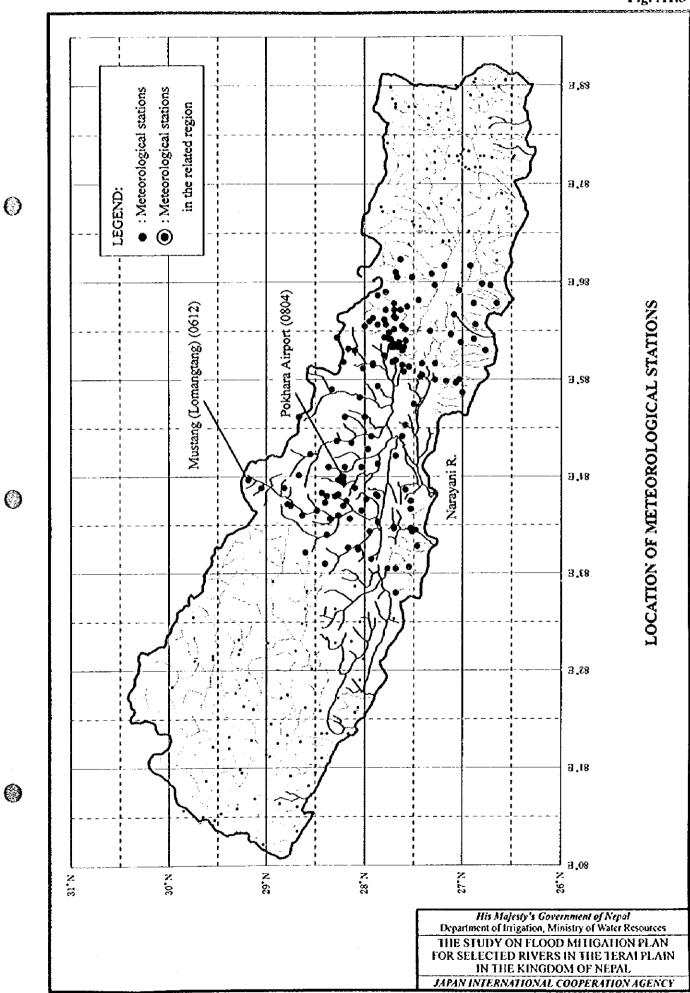
Name of river: NARAYANI RIVER(2/2)

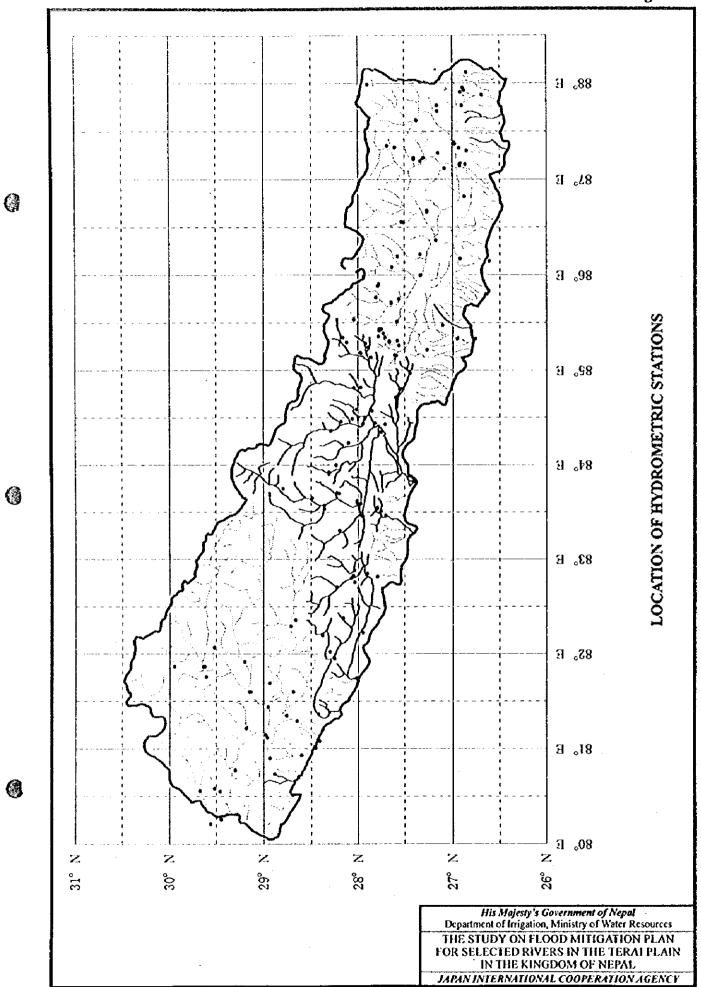

No.	Questions/items		Su	mmary of an	swers	
3. FLC	OOD WARNING SYSTEM					
3.1	(Cancelled)	Cancelled)				
3.2	Self warning (nop)		/High flood	level(56)		
		Bank erosi	on(19)	•	Smelled n	nuđ (6)
	i		ound(5)	•	Others(0)	
3.3	Warning by others (nop)			Institutio		
4. FLC	OOD RELIEF MEASURES		·		<u>`</u>	
4.1	Evacuation experience? (nop)	Yes(72)		•	No(29)	
4.2	If yes, place of evacuation (nop)	High grou	nd(8)	•	Public bui	lding(19)
		Others hou		•	Other site:	
4.3	Being relieved? (nop)	Yes(43)		•	No(57)	
4.4	If yes, how?(nop)	In cash(13	}	•	Kind(43)	
4.5	Organization/individual giving		vernment(0)		DDC(24)	
	relief (nop)	VDC(8)	,			itutions(4)
		NGO(0)		•	Individual	
4.6	(Cancelled)	Cancelled)				
	VENTIVE MEASURES AGAINST					
5.1a	Current preparedness/ measures	Warning(0	}	•	Evacuatio	n(35)
	(nop)	Settlement				` '
5.1b	Proposed preparedness/ measures	Warning(1		•	Evacuatio	n(50)
	(nop)	Settlement				` _
5.2a	Current non-structural measures	Seed stora			Cash pool	s(0)
	(nop)		surance(0)	•	Others(0)	.,
5.2b	Proposed non-structural measures	Seed storag		•	Cash pool	s(16)
	(nop)		surance(16)	•	Others(0)	
5.3a	Current structural measures (nop)	Embankme	nt(0)	•	Spur(13)	,
		Simple gat		•	Plantation	(0)
		Others(0)		•		. ,
5.3b	Proposed structural measures(nop)	Embankme	nt(75)	•	Spur(37)	· · · · · · · · · · · · · · · · · · ·
	'	Simple gat		•	Plantation	(0)
		Others(0)	• •			` '
6. PAR	TICIPATION ACTIVITIES					
6.1	Experience of Participation in activities? (nop)	Yes(43)		•	No(58)	
6.2	If yes, type (nop)	Cash(1)		Labor(26)	•	Kind(0)
		Care taker	(6)	Others(8)		• /
6.3	If no, reason (nop)		ted badly(1		Financiall	y weak(1)
	' ' '		of the area(2		No willing	
		Others(35)		•	•	,
6.4	Willing to participate in future?	Yes(95)		•	No(0)	
6.5	If yes, type (nop)	Cash(6)	•	Labor(93)	•	Kind(0)
		Care taker	13)	Others(0)		` '
6.6	If no, reasons (nop)	No time(0)				
	'''	No benefit				
		No Willing				
				articipate(0)}	
	ĺ	Others(0)		4 (*	•	

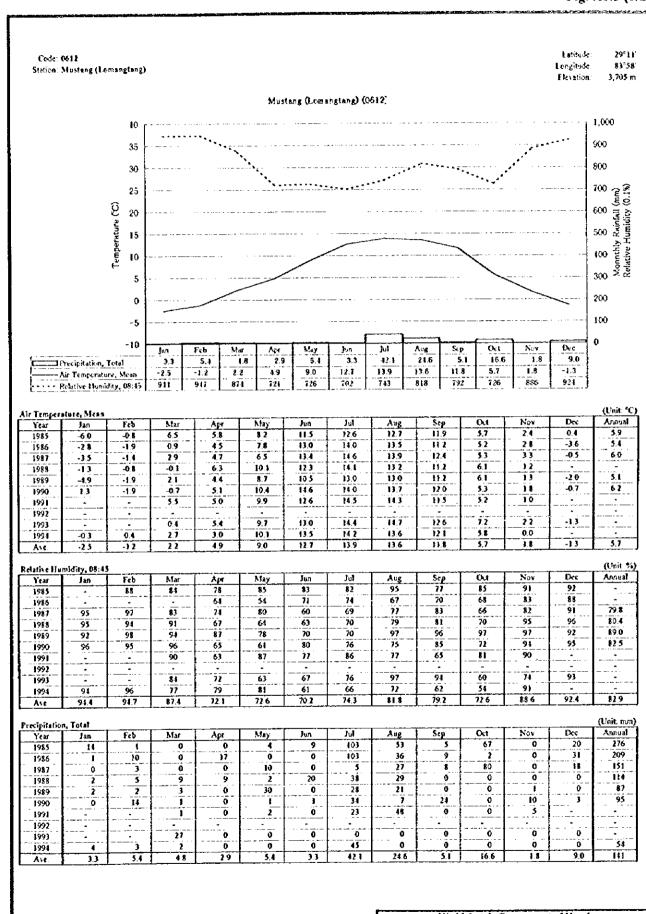
(Remarks) nop: Number of persons who answer to the item.


LOSS OF LIFE AND DAMAGE TO PROPERTIES (NARAYANI RIVER)
(1993-FLOOD)

0

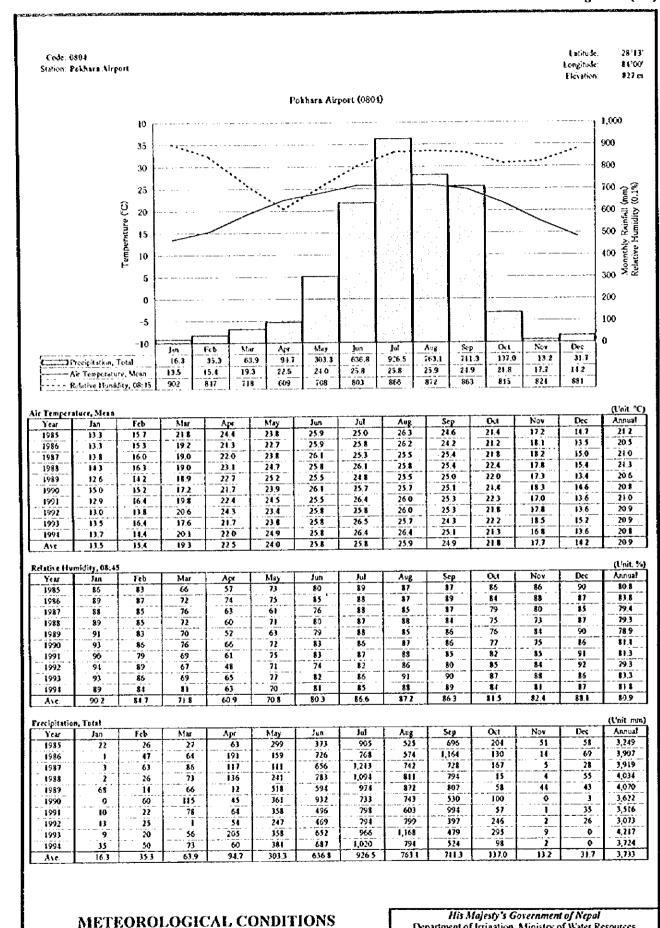

	Loss of Life	Los	Loss of Cattle (nos.)	(5.)	Damage of	Damage of Crops (hac)	Damage of Crops (ton)	Crops (ton)	Damage of	Land (nos.)	Damage of Land (nos.) Damage of Houses (nos.)	louses (nos.)	Remarks
VDC/Municipality	(nos.)	Cow	Goat	Polutry	Paddy	Marze	Paddy	Maine	Agneultural	Вапсп	Damage	Washout	
A. Chitwan District													
Meghauli	•	15	•	•	22	08	02	160	130	30	10	135	
Divyanagar	5	09	1	•	52	•	156	1	\$2	•	50	200	
Gungnagar		•	٠	•	21	9	42	6	81	B	20	35	
Manglapur	•	•	•	•	100	•	300	•			50	•	
sub total	3	75	0	0	184	98	268	169	200	33	130	370	
B. Nawal Parasi District													
Mukundpur	- T	•	•	3	3	Ð	6	5	9		35	•	
Pitihauli		•	•	•	•	•	٠	•	0.1	1.3	•	•	
Rajahar		•	*		7	8	25	8	80	۲n	25	•	
Kumar Varti	•	•	٠	I .	20	8	06	12	28	•	•	99	
Koluwa		•	•	ı	215	1	896	3	180	•	30	150	
Narayani	•	12	07	\$00	45	35	89	23	23	•	150	35	
Parsauni	•	100	35	1.000	525	∞	1,575	12	200	•	180	45	
Naya Belahani	•	•	7	-	200	133	009	100	30	•	•	•	
sub total	0	112	28	1.500	1.015	195	3,335	160	475.1	6.3	340	295	
Total	3	187	82	1.500	1,199	281	3,903	329	675.1	39.3	470	999	


0



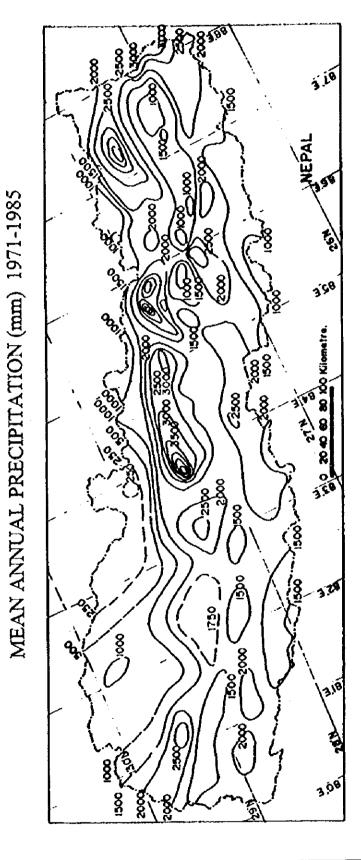
0

A₄-1.37



METEOROLOGICAL CONDITIONS

()


His Majesty's Government of Nepal Department of Irrigation, Ministry of Water Resources THE STUDY ON FLOOD MITIGATION PLAN FOR SELECTED RIVERS IN THE TERAI PLAIN IN THE KINGDOM OF NEPAL

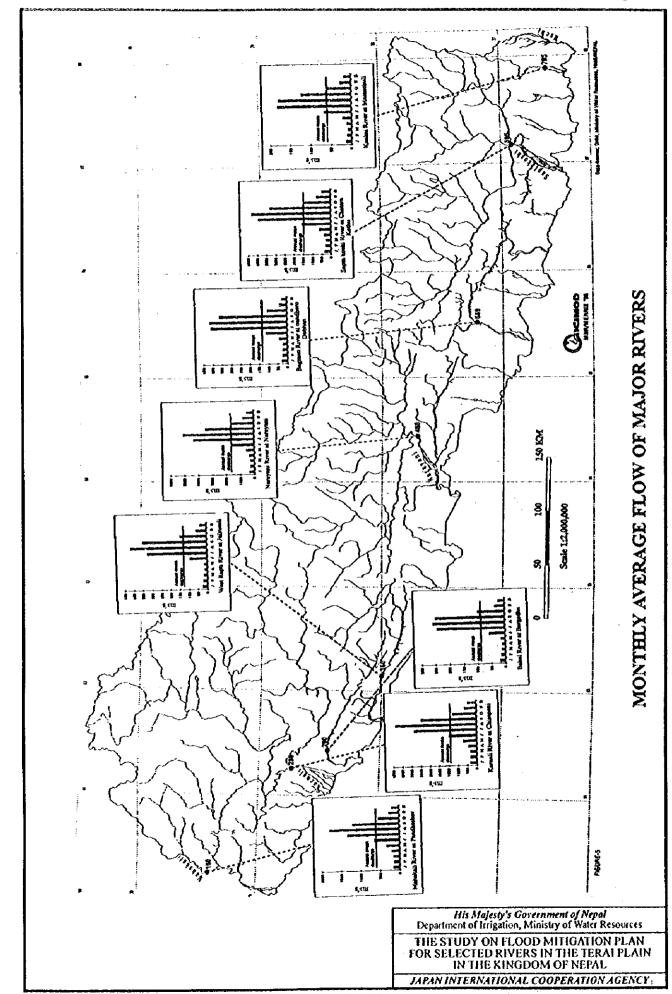
JAPAN INTERNATIONAL COOPERATION AGENCY

 $A_4-1.40$

Department of Irrigation, Ministry of Water Resources
THE STUDY ON FLOOD MITIGATION PLAN
FOR SELECTED RIVERS IN THE TERAL PLAIN
IN THE KINGDOM OF NEPAL
JAPAN INTERNATIONAL COOPERATION AGENCY

Source: Natural Hazards and Man Made Impacts in The Nepal Himalaya, C.K.Sharman, 1988

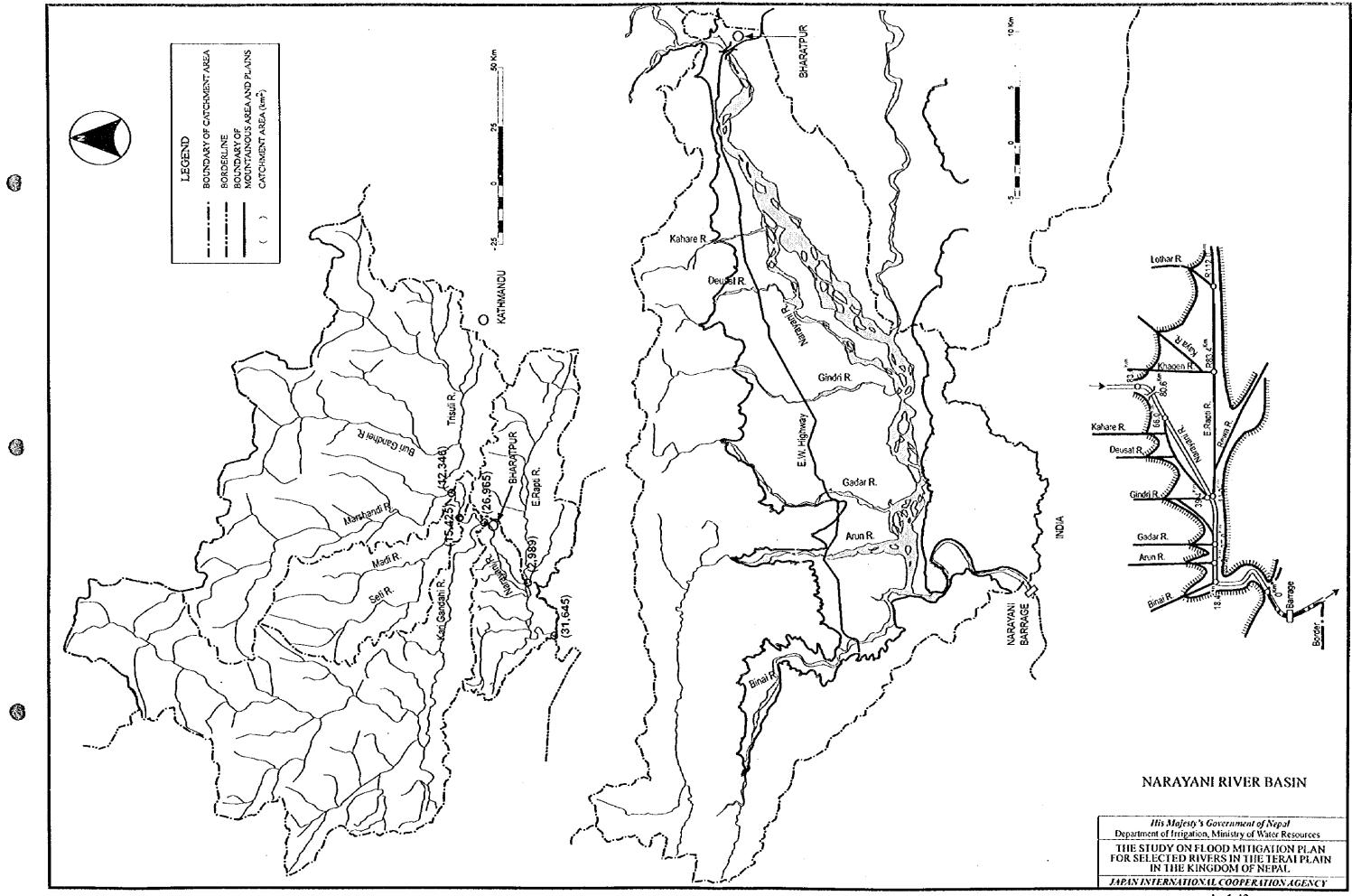
ANNUAL RAINFALL DISTRIBUTION OF NEPAL

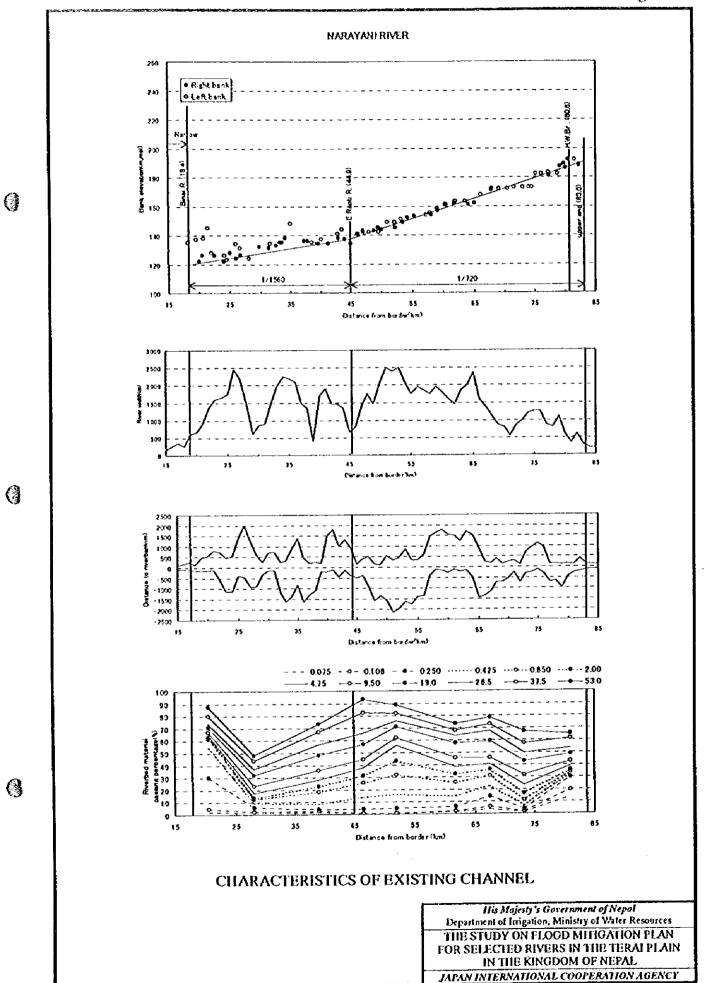

()

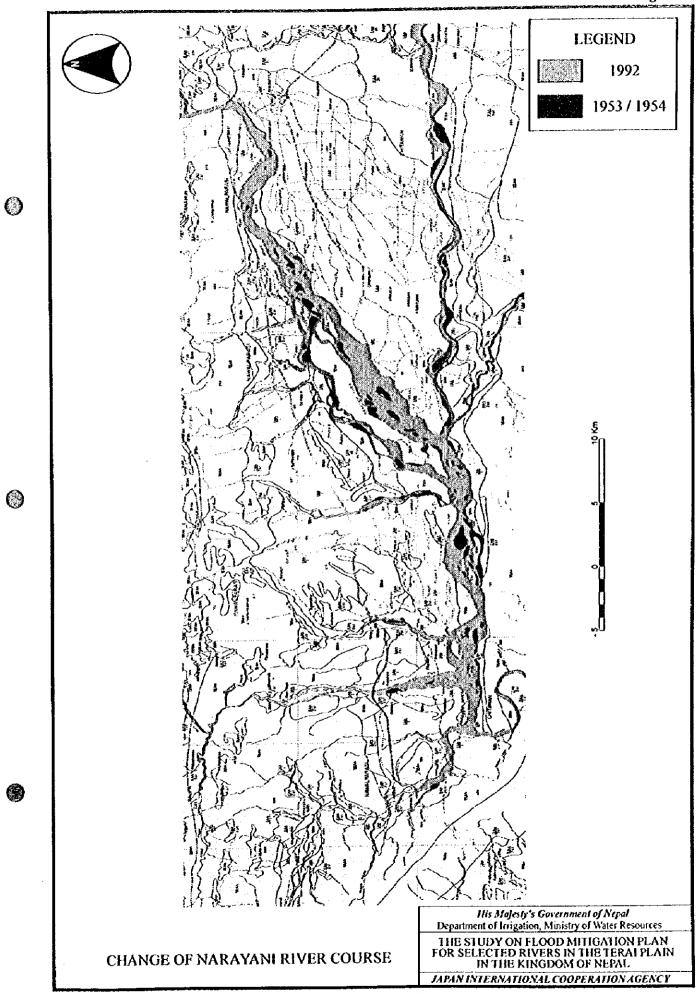
0

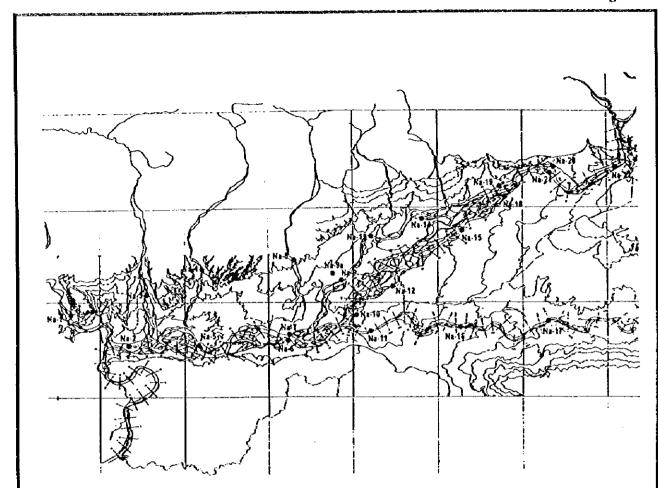
0

His Majesty's Government of Nepal Department of Irrigation, Ministry of Water Resources

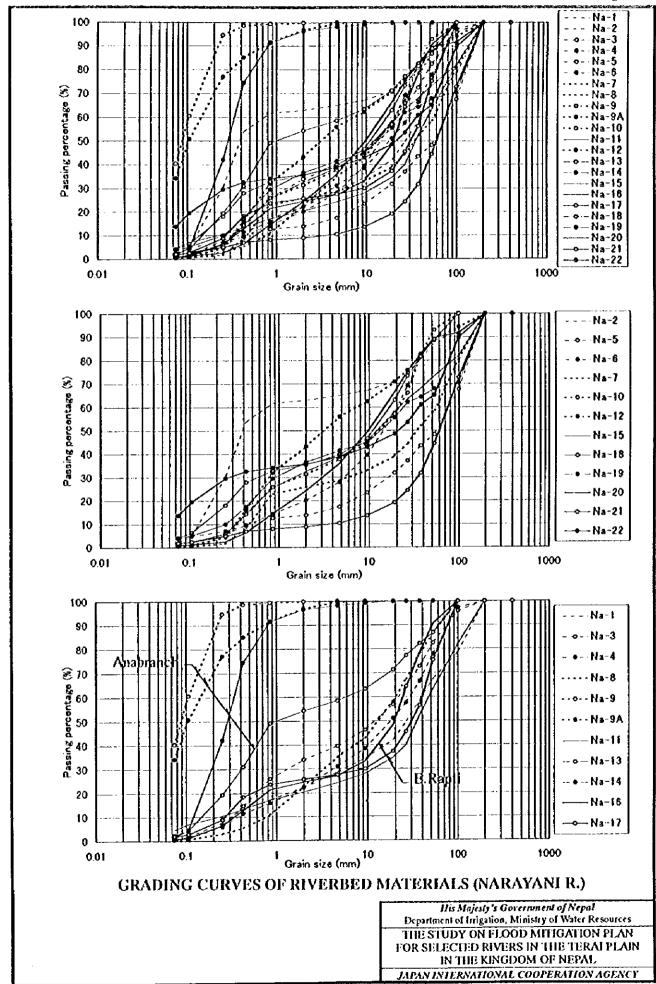

THE STUDY ON FLOOD MITIGATION PLAN FOR SELECTED RIVERS IN THE TERAI PLAIN IN THE KINGDOM OF NEPAL



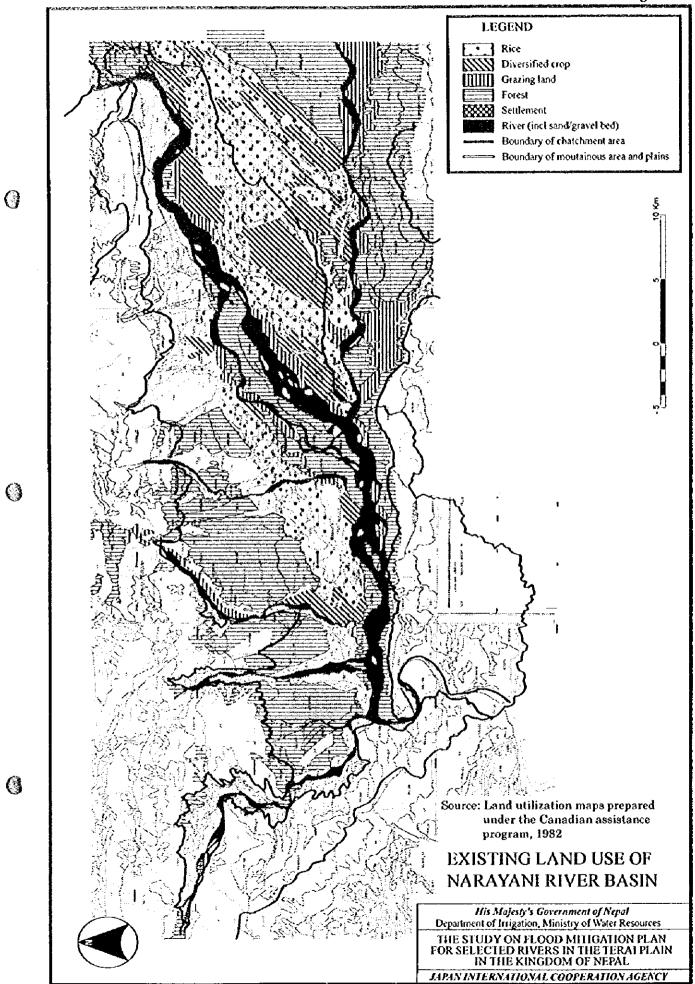

6

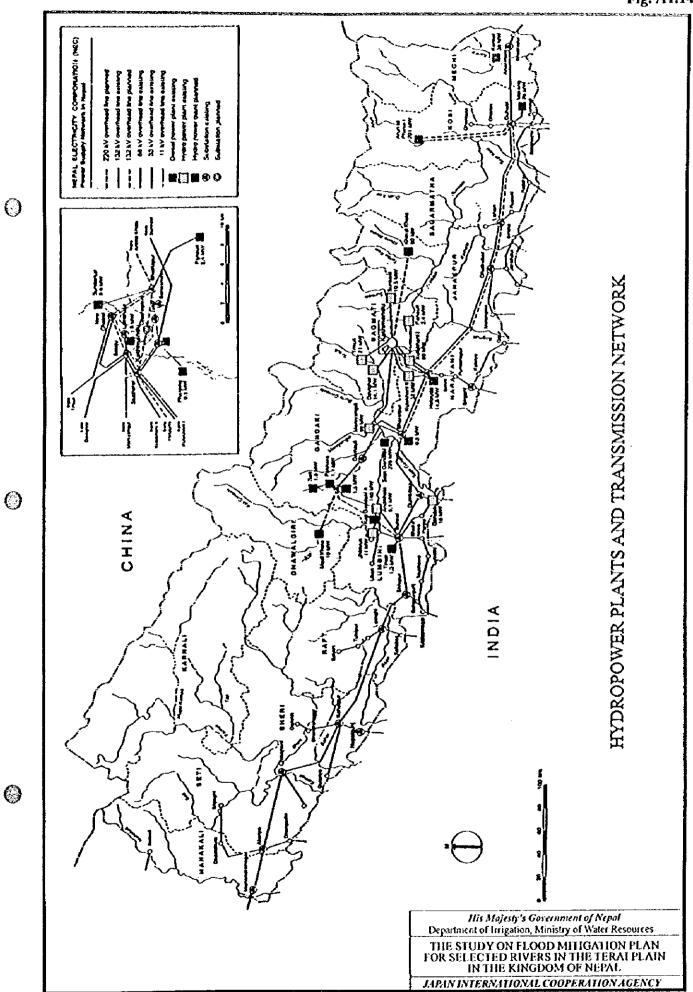


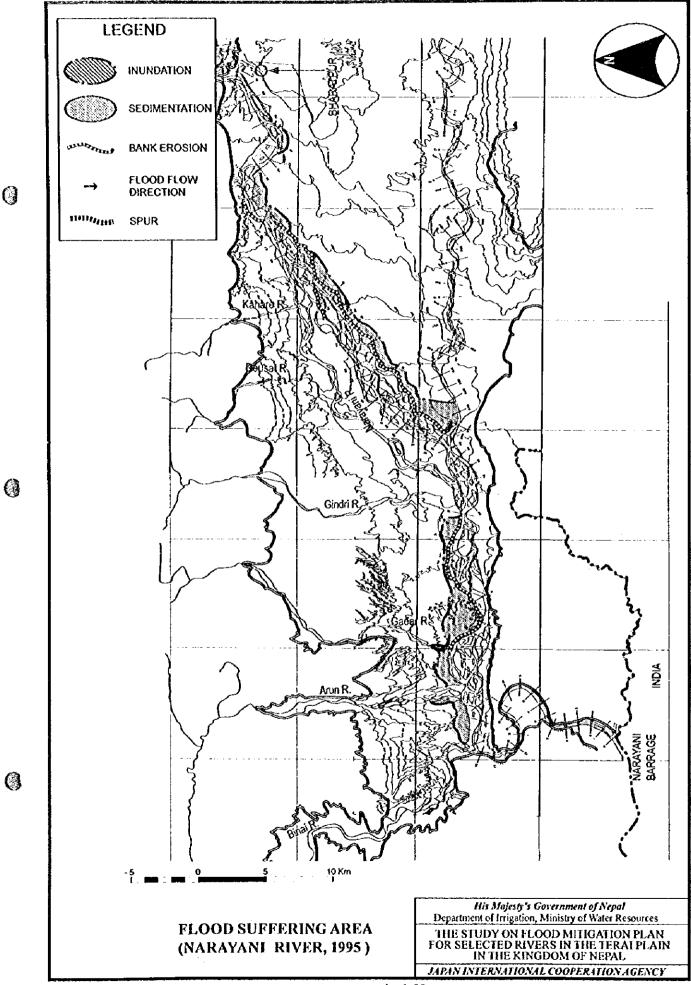
0

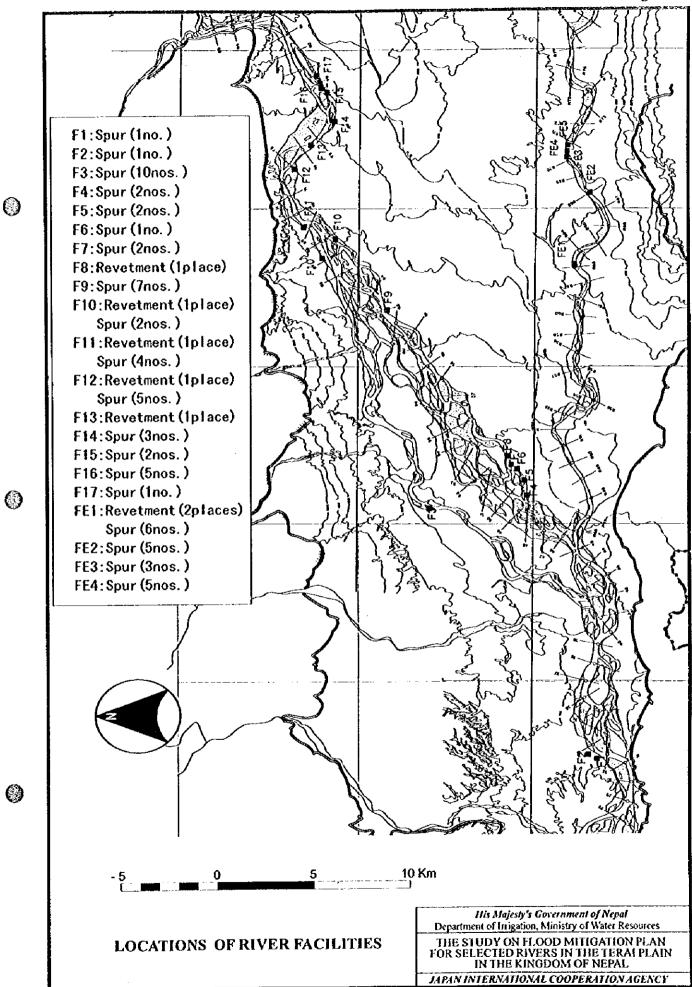

0

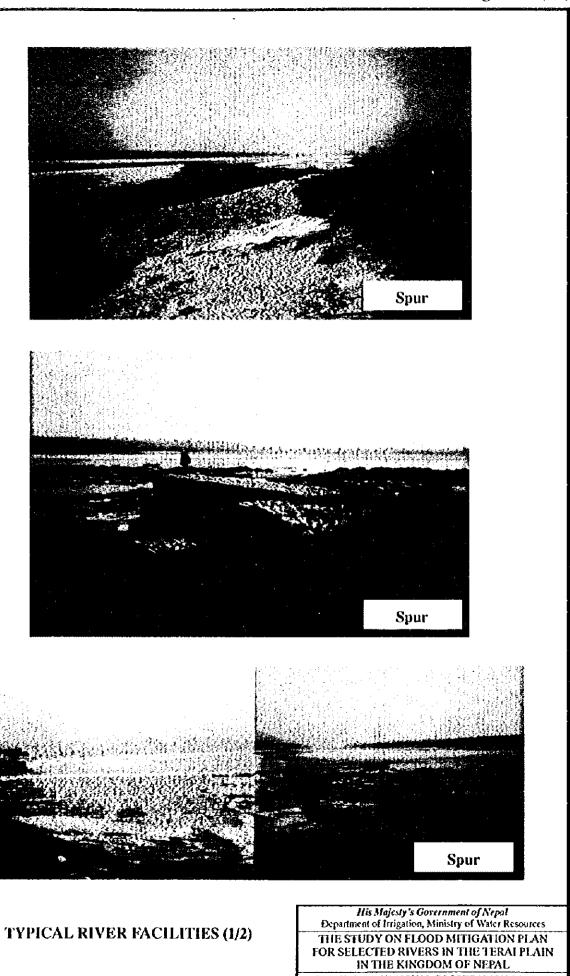
SN	Sample	Soil classification by eye	Description of	GPS R		FGA
	code		sampling place	N	E	(Y/N)
				00,040,024	63.63.3035	Y
)	Na-1	Boulder mixed sand	Dumkibas WN 6	27" 34.057"	83' 53.203'	
2	Na-2	Boulder mixed sand	Naya Belani WN 2	27' 32 802'	83*56.756*	Y
3	Na-3	Boulder mixed sand	Belani WN 8	27 36 882	83° 57.428°	Y
4	Na-4	Boulder mixed sand	Tamasaria WN 7	27, 39 543.	84 00 971	_ Y
5	Na-5	Boulder mixed sand	Narayani WN 3	27' 33.274'	84*00.607*	<u>Y</u> _
6	N2-6	Boulder mixed sand	Kumarwarti	27 33.126	84*05.0171	<u>Y</u>
7	Na-7	Boulder mixed sand	Kumarwarti, Amaltari	27" 33.229"	84,09.008,	Y
8	Na-8	Boulder mixed sand	Agauli WN 9	27" 37.427"	84 06.189	Y
9	Na 9	Sifty sand	Kawaswoti WN I	27 36.771	84*09.4211	N
92	Na-9a	Silty sand	Kawaswoti WN I	27 37.055	84*09.001	N
10	Na-10	Boulder mixed sand		27 34 442	84" 10.186"	Y
11	Na 11	Boulder mixed sand		27' 33.848'	84" [3.643"	Y
12	Na 12	Boulder mixed sand		27 36.781	84" 13.507"	Y
13	Na-13	Boulder mixed sand	Pithauli	27 38 547	841 10.9647	Y
14	Na-14	Silly sand	Rajaur WN 2	27 39.762	84" 14 094"	N
15	Na-15	Boulder mixed sand		27 38.502	R4, 19 559.	Y
16	N2-16	· · · · · · · · · · · · · · · · · · ·		27 33.6861	84" 16.341"	Y
17	Na-17	Boulder mixed sand		27 34 023	84"21.434"	Y
18	N2-18	Boulder mixed sand	Mangalpur WN B, Magargaon	27'40.403'	84" 18.882"	Y
19	Na-19	Boulder mixed sand	Mukuadpur WN 8	27 41.016	84" 18.578"	Y
20	Na-20	Boulder mixed sand	Gaindakot WN 5	27, 42, 239.	84" 21.823"	Y
21	Na-21	Houlder mixed sand	Mangalpur WN S, Barampur	27 41.6941	84"21.663"	Y
22	Na-22	Boulder mixed sand	Near highway bridge	27 42 074	84"25.259"	Y


SAMPLING SITES OF RIVERBED MATERIALS (NARAYANI RIVER)

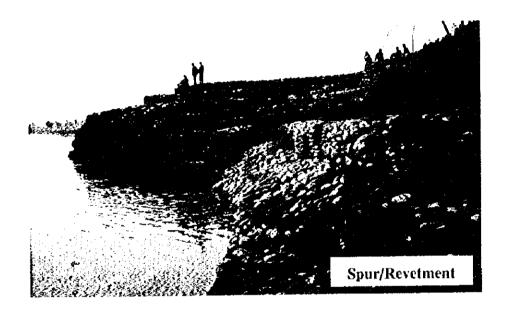

His Majesty's Government of Nepal
Department of Irrigation, Ministry of Water Resources
THE STUDY ON FLOOD MITIGATION PLAN
FOR SELECTED RIVERS IN THE TERALPLAIN
IN THE KINGDOM OF NEPAL

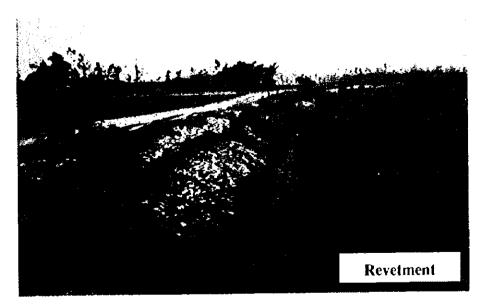

JAPAN INTERNATIONAL COOPERATION AGENCY




0

(


0


0

JAPAN INTERNATIONAL COOPERATION AGENCY

0

TYPICAL RIVER FACILITIES (2/2)

His Majesty's Government of Nepal
Department of Irrigation, Ministry of Water Resources
THE STUDY ON FLOOD MITIGATION PLAN
FOR SELECTED RIVERS IN THE TERAI PLAIN
IN THE KINGDOM OF NEPAL

JAPAN INTERNATIONAL COOPERATION AGENCY