(6) Input Data

The input data for 0-D WQSM include; daily loads from Zala River, direct runoff, and atmospheric deposition; hourly wind; water-temperature measured once a day at 7:00 am; daily total solar radiation; and daily water level.

The loads from Zala River, direct runoff, and atmospheric deposition are considered as the external loads to Keszthely Bay. Daily measurement data for PO₄-P, T-P, and *Chla* are available for Zala River. Annual T-P load by the direct runoff estimated by PLDB is converted into daily load in proportion to the precipitation in the area. Contribution of PO₄-P in T-P is determined by measurements conducted by JICA Study Team. Atmospheric deposition data are assembled by using measurements for PO₄-P and T-P (Hidrological Kozlony, 1973) and daily precipitation (OMSZ).

The physical data except solar radiation, *i.e.* wind data, water temperature data, and water level data are linearly interpolated at every time step. The daily total solar radiation is distributed assuming a sinusoidal function each day from sunrise to sunset.

The data set of the year 1994 is utilized for calibration of 0-D WQSM, since the year was an anomaly in view of the extent of algal bloom, which spread to the entire lake basin and the maximum *Chla* reached 210 µg/l in the Keszthely basin. In addition, the Zala River load in 1994 is more representative of the current load condition than that in the earlier years prior to the completion of Kis-Balaton II.

The data set of the following year, 1995, is also utilized to test the multi-year reproducibility of the calibrated model. The year 1995 was noted for low productivity in the lake despite the steady trend in nutrients load condition.

(7) Calibration of 0-D WQSM

The equations of the four dependent variables shown in *Table 3.9* were solved using 4th-order Runge-Kutta method with a time step of 0.005 hour. The short time step was required to obtain stable solutions at very low PO₄-P levels. Start-time of the calculation was chosen just after the spring diatom-bloom when measured records are available. The initial conditions were taken as average values of *Chla* and T-P measured at the center and two locations near the west coast of Keszthely Bay. The calculation was terminated when the summer algal-bloom ceased. Simulated results were compared with measurements taken by KDT-KÖFE at three locations in Keszthely Bay indicated in *Figure 3.15*.

The calibration process was focused on matching the measured and calculated *Chla* due to the difficulty of using T-P and PO₄-P for the following reasons:

- PO₄-P analysis, for low levels of PO₄-P concentrations as in the lake, by KDT-KÖFE is unreliable (Herodek, 1986). Concentrations of PO₄-P of

the lake water analyzed by KDT-KÖFE in 1994 ranged $0\sim108~\mu g/l$ with an average of 20 $\mu g/l$, while those analyzed by Présing, Herodek, Vörös, and Kóbor (1996) were within $0\sim4~\mu g/l$.

- Major fraction of SS is formed by CaCO₃ and T-P (Tóth *et al.*, 1975), and large fluctuations of T-P concentration in the lake water have been observed. However, no data are available for the phosphorous release from SS other than in the form of PO₄-P. Therefore, T-P was excluded from the calibration process.

Alhough the model employs the parameters supported by existing data taken from field and laboratory studies for Lake Balaton, there still remain some uncertainties in those studies as well as in the model itself. Thus, the relevancy of model parameter were verified through extensive sensitivity analyses by changing the parameters within realistic range. Selected model parameter values are listed in *Table 3.12* with references.

Figure 3.16 shows calculated Chla in 1994 using the standard parameter values. In the figure, the measured Chla values were taken from the database at KDT-KÖFE except those at the center of Keszthely Bay in 1994 which were taken from Présing et al. (1996), whose data conform to the measurements taken by KDT-KÖFE except the peak value. The calculated Chla transition in 1994 reproduces the timing and the maximum peak as well as the overall trend very favorably. The PO₄-P level during the bloom stays at less than 1 μg/l, in agreement with the measurements by Présing et al. (1986).

A hindcast of *Chla* in 1995 was also performed using the same parameter values. The result is shown in *Figure 3.17*. The figure shows that the hindcast prominently replicates the much lower levels of *Chla*, 50 µg/l at the maximum, as compared to 1994. The lower water temperature is the most probable reason of the much lower productivity (Tóth and Padisák 1986; Padisák and Istvánovics, 1996). When the water temperature of 1995 is replaced by that of 1994, the maximum *Chla* approaches close to the 1994 level as shown in *Figure 3.17*, underlining the critical role of water temperature in the explosive algal bloom.

3.4 Two Dimensional Water Quality Model (WQSM)

(1) General Framework

A two-dimensional mass transport model has been developed, and 0-D WQSM has been incorporated into the mass transport model to form the two-dimensional water quality model (WQSM).

The mass transport equation of WQSM is a simultaneous set of multiple vertically integrated two-dimensional convective-dispersion equations, representing each of the modeling constituents in a water column including the reaction and source/sink terms as shown in *Table 3.13*. In the equation, R_i represents the combined biogeochemical reactions and internal source/sink

terms arising from 0-D WQSM. The convective terms are driven by the twodimensional flow fields generated by 2-D HDSM. The dispersion terms are evaluated as local parameters using the Smagorinsky's LES concept.

(2) Numerical Method of WQSM

The computational method for WQSM also utilizes the finite element method that is compatible with 2-D HDSM and shares the same mesh. The time-integration method utilizes a special implicit scheme to eliminate matrix operations as with the case for 2-D HDSM. The approach can achieve optimal computational efficiency with a significantly larger time step than in the usual explicit schemes.

(3) Parameter Adjustments

The property of the sediments differs between eastern and western basins. Although the sediment in Keszthely Bay is finer than those in the Szemes and Siófok basins, the former has about 3 to 4 times greater settling velocity than the latter (Somlyódy and Koncsos, 1991). In the 2-D computations, therefore, calibration of SS-related parameters in the eastern basins is also required as undertaken for Keszthely Bay. Measured SS data in the Siófok basin have been used for the calibration process in which the best-fit values for settling velocity and critical wave height are 0.018 cm/s and 14.3 cm, respectively, while those for Keszthely Bay are 0.022 cm/s and 0.0 cm. The differences are distributed in proportion to the square root of the normalized distance from Keszthely along the major axis of the lake.

Phosphorus diffusion rate in the Siófok basin is lower than that in Keszthely Bay, reflecting a difference in the mobilizable phosphorus contents in the sediments in the two areas (Istvánovics, 1988). The maximum diffusion rates of 0.3 in the Siófok basin and 2.8 mg-P/m²/day in the Keszthely basin were measured by Istvánovics in 1980, while those measured by JICA Study Team in August 1997 are 0.9, 2.2, 2.9, and 2.1 mg-P/m²/day on the third day of incubation, in the Siófok, the Szemes, the Szigliget, and the Keszthely basins, respectively. Although the variance among the data is rather large, the equilibrium concentrations are varied from a basin to a basin in proportion to the values measured by JICA Study Team.

(4) Input Database for WQSM

WQSM requires following data.

- Initial values of Chla, PO₄-P, T-P and SS in each of the four basins
- Daily loads from major tributaries
- Distributed direct runoff from 19 sub-regions
- Atmospheric deposition loads

- Hourly wind at the Keszthely and the Siófok stations
- Daily water-temperature at four stations in each basin
- Daily total solar radiation at the Keszthely station
- Daily precipitation at the Balatonakali and the Balatonszemes stations

Initial values of *Chla*, PO₄-P, T-P and SS in each of the four basins are determined by using measured values at station in the basin, and by distributing uniformly within a basin. Selected stations of measurement are 04FB03 in the Siófok basin, 04FB08 in the Szemes basin, 04FB17 in the Szigliget basin, and 04FB16 in the Keszthely basin, as shown in *Figure 3.15*.

Data of external loads from major tributaries, direct runoff, and atmospheric deposition are prepared by PLDB. Remaining physical data as well as water quality data are compiled together as an input database (IPDB).

Since the water temperature varies among the basins, higher toward the west as shown in *Figure 3.18*, measured water temperatures at the four stations are linearly interpolated along the major axis of the lake.

The input data, except the solar radiation, are linearly interpolated in time at every time step as in the case of 0-D WQSM calculations. The daily total solar radiation is distributed sinusoidally from sunrise to sunset in the manner as used in 0-D WQSM. The wind magnitudes and directions recorded at the Siófok weather station in 1994 and 1995 are shown in *Figures 3.19* and *3.20*.

(5) Verification of WQSM

Figure 3.21 shows computed SS distributions in the lake under two distinct wind events on July 4 and August 26 in 1994. In the former case, high concentrations of SS prevail in the southern region of Keszthely Bay corresponding to the northerly winds of about 5 m/s for 5 hours measured at the Keszthely station. In the latter case, the persistent easterly strong wind blow of 10~14 m/s for 12 hours at the Siófok station resulted in very high concentrations, about 180 mg/l, in the Siófok and the Szemes basins.

Figures 3.22 and 3.23 show the computed Chla distributions in 1994 and 1995 when Chla levels reached the maximum during the respective year. As seen in both the figures, the maximum Chla concentrations occurred in the Keszthely basin, while the minimum spread over the Siófok basin.

Figures 3.24 and 3.25 are comparisons of the computed and the measured timeseries of *Chla* values for 1994 and 1995 at the four stations of measurement. The computed time-series of *Chla* for both 1994 and 1995 compare favorably with the measurements at all the locations, capturing the overall trends effectively in the respective year. Nonetheless, in 1994, *Chla* levels at the Szigliget station are considerably lower than the measurements, and in 1995, the computed values are somewhat higher than the measurements in all the basins. Also, in 1994, there are significant phase lags between the computed and measured *Chla* except for the Keszthely basin. Whereas the peaks of computed *Chla* in the four basins occur simultaneously corresponding to the water temperature peaks, the measured *Chla* trails behind the temperature trend, notably eastward to the Siófok basin.

The most probable cause of this phase lags is attributed to the possibility that the water temperature data do not represent the reality. The measuring points are sparse and measurements are infrequent, only once a day at 7:00 am, when the water temperature is expected to be near its daily minimum. A diurnal temperature variation in shallow water bodies can easily exceed few Celsius degrees in a summer climate. Actual diurnal variation of vertical water temperature profile, observed by JICA Study Team at the center of Keszthely Bay on September 3, 1997, show that the surface water temperature varied from 22.5°C to 25.9°C, while that at the depth of 2.5 m stayed constant at 21.1°C. The sparse and infrequent water temperature records measured at an unspecified depth only once a day, cannot represent the transition of daily maxima in the upper water both in terms of their extents and phase lags.

In spite of this phase rag problem, WQSM has been confirmed to be able to hindcast *Chla* concentrations in 1994 and 1995, the two contrasting years in terms of algal productivity. WQSM is, therefore, believed to be qualified for prediction of *Chla* to a variety of weather and nutrient-load conditions.

4. Concluding Remarks

Whereas there are some uncertainties in both pollution load analysis and biogeochemical process of the lake, mainly due to an insufficiency of available data, JICA Study Team has managed to develop a set of decision making tools successfully.

The combination of PLDB and WQSM can demonstrate the attained lake water quality by various measures taken for the lake environmental improvement. This makes it possible to evaluate the effect and cost effectiveness of those measures.

Table 3.1 Point Source Pollution Loads in 1994 and 1995

PLM	Sub-Catchment	Name of Point Source	Point Source	Point Source Pollution Loads in 1994	ds in 1994	Point Source	Point Source Pollution Loads in 1995	ds in 1995
Code			T-P load	T-N load	COD load	T-P load	T-N load	COD load
			(kg/year)	(kg/year)	(ton/year)	(kg/year)	(kg/year)	(ton/year)
E-4	Tavi sed	Diana Camping STP.	4	118	0.1	7	318	0.2
E-5	direct	Holiday Camping STP., ZankaGyermekudul STP.	81	3,688	3.3	73	3,426	8.1
E-6	direct	Revfulop STP.	146	7,366	7.0	7.6	688'6	8.5
E-8	direct	Badacsonytomaj StP., Badacsony STP.	891	4,256	8.6	211	8,555	7.1
E-9	Tapolca patak	Tapolca varos STP.	2,769	127,398	46.8	1,954	87,096	36.8
Northern C	Northern Catchment Area TOTAL		3,168	142,826	65.7	2,342	109,284	48.7
D-7	Nyugati ovcsatorna	Balatonnujlak STP., Marcali STP., Baltonbereny STP.	1,406	32,581	63.4	1,240	39,158	63.8
Southern C	Southern Catchment Area TOTAL		1,406	32,581	63.4	1,240	39,158	63.8
	direct	Baiatongyorok STP.	290	33,120	12.7	316	21,629	8.8
Zala	Zala river	Keszthely STP., Heviz STP., Zalakalos STP., Zalaszentgrot STP., Zalaegerszeg STP., Zalaapati STP., Zalakomar STP., Sarmellek STP.	13,297	315,085	407.9	16,071	329,893	423.8
Zala Catchi	Zala Catchment Area TOTAL		13,887	348,205	420.5	16,387	351,522	432.6
Total Catch	Total Catchment Area		18,461	523,612	549.6	696'61	496,964	545.1

Note 1: STP=Sewage Treatment Plant Note 2: The unit of COD loads is in "ton/yr", while those of TP and TN loads are in "kg/yr".

Table 3.2 Land Use Pattern and Non-point Source Pollution Loads Generation

								1 2112	nort space from	Off Catal La	10000	1	,						T	Pollution Loads from	The same of the sa			total terminal	; ;
PLM Sub-catchment	1	Cross	ŀ	+		ale i	-	+	4	å W	, A		io.	ž,	200	1	Incyard &	Cichard	600	Chicago	Characted Chay water	<u>ا</u> و	Foliation Los	3	
code:	Area (4	L disput	7. (1. (1. (1. (1. (1. (1. (1. (1. (1. (1	QQ2	Area	TP T	(ku/vr) (fan/vr	D Area	the (ke/vr)	Z 3	COD (bayki)	Area (fta)	(Reyvr)	(kg/yr)	C (L/yeor)	Pres (Fra)	(kg/yr)	(kg/yr) ((kg/yr) (iN kÿ⁄yr) (to	ton(yr) (F	(P	kg/yr) (r	3 5
- u	9	1.		1.	-	∦≍	21	-	1	26.	100	0	0	0	0.0	428	338	12,669	8.8	0	o	00	4,163	70.344	E
Total State of	-	ı	1	-	1		22.851		0	-	0.0	322	126	1.159	13.8	961	155	\$ 802	4.0	0	ö	0	873	168 67	'n
Canada Parak	72.8	2 268	1	2473	89		34 577	1 4	0	:	0	250	75	06	10.8	99	S	1,924		0	0	0.0	3,417	54.674	88
	.i	į	5 330	76.4	13.12	40	510:		30	17	498	321	156	1.876	22.4	61	15	562	0.4	0	0	0.0	096	9,785	101
E-3 direct	669		1	195.4	291	ļ	8.614	6.0	124	7	58 3.	719	184	2,210	26.4	877	693	25,959		54	267	6.0	1,00,5	52,760	Ä
	309	!	:	87.1	160	862 32	L	22.5	408	į	73 13.0	5 677	203	2,437	29.1	348	27.5	10,301	7	329	1,972	9.0	77,77	58.65	8
Lovasi sed	39		768	0.1	748			5.4		103 3,1	04 5.1	9 168	350	4,205	50.2	454	359	13,438	\$ 4	255	1,532	33.0	1,763	45,188	Ç
E-4 direct	873		i	246.2	21.8		24.183	8.9	197	3,2	9	929	203	2,434	29.1	486	384	14,386	10.0	0	0	0	3,697	61 471	308
	7			2.0	201		5,950		-	6,1	94 2.	7 832	250	2,995	35.8	ö	0	0	0	ö	0	0.0	474	10,477	d.
Aracsi sed	30	- 		8.5	35		5,683	0.		15 4	65 0.	1.224	367	4,406	52.6	<u>o</u>	80	736	0.2	0	0	0.	623	1	3
Keki patak	107	289	_	30.2	134	98	3,670	2.6	4	7.	2.1	562		2,023	24.2	=	ō	326	0.2	0	0	0.0	589	8.857	Š
Saclosi sed	85		1	24.0	\$14	ļ.,	24.094	100	611	65 1.9	75 3.8	953		3,431	0.4	274	216	0 - -	5.6	153	816	25.0	1.593	40,203	111
Transaction			:_	- × 7	300	i	8 732	[9	12	84 2.5	40	_	<u> </u>	-	23.8	29	47	1.746	<u> </u>	~	303	. 0.9	627	15,647	3
Day San	010	i	122	50.5	1 063		31 5831	20.	105	17. 6.5	57 12 6		669		1001	65	750	28 090	19.5	99	395	8.0	3.142	79.146	22
Oliver C	2.0	1	0.4		723		12216	0	177	07	36	1 087	۰			529;	418	15.658	6 01	153	616	20 0	1.710	45.863	113
Oremsyl sea	702	2,00	!	i	2	8	700	26	0	61 59	75 3.8	005			Ė.	762	602	22 555	15.7	88	530	0.1.	1.653	35,861	12
	0.0	1	i.	i	1 0	i	10 607	7.7	aka	25	20	009	183	2 192	ļ	610	Ş	8 9 14	13.2	199	996	2 0	540	41.553	8
Csorszai parak	8 2	Ì	276	5.4	70.1	80	1670	2.6	Ĺ	36	2	202	1		i_	317	250	9.383	6.5		0	00	2.	16.760	25
Horogi sed	1	, с	, c		Ç		100	00	!		0	L			0.0	90	4	533	0	-0	. 0	0	**	83	
Burnethouse	, ¢	3.6	\$ 378	1	7437	:	72 135	502	1	123 33.881	22	1	<u> </u>	9 547	1140	834	689	24.686	17.2	378	2.267	48.0	5.618	147 894	5
E. o. Idison	j.		i.		88	1 6						<u>.</u>	į	1	1	950	834	31.258	218	0	0	00	380	40,039	5
	867	7 121	ľ	í	L		357,124 248		6.79	735 112.7	311 216.0	14.846	4.454	53,446	ľ	1,517)	1,198	44,903	31.3	1,813	10,877	232.0	13.072	191,965	1,610
F.O Cirrot			! -	1.				9		17 3.5	9 6	<u> </u>		1		5	2	385	0	0	0	00	372	8,893	A
	449	i	L	126.6	1,357		40,167 2	28.0	595	877 26,477	77 50.7		198	2,376		140	348	13,024	0.1	275	1,651	35.0	3,982	92,540	133
E-10 direct	88	157		16.4	346	2731 10										o	o	0	0.0	223	1,337	29.0	599	17,614	1
Ketoles patak	107		2,108	30.2	776		22,970	16.0	165	641 19,339				6,761	80.8	9	32	1,184	9.6	0	0	0	2,138	52 362	30
Vilagos patak	15			4.2	386			8.0				1		2,790	_	0	0	0	0.0	ō	0	0	5.01	29.469	7
Lesence patak	270		5,319	76.1	1,542	1,218 45	45,643 31	50		470 14,176	76 27.2	5,934	1,780	21,362	23	113	&	3,345	53	528	3,167	0.89	4.814	93,012	460
Nemesvitai Ovarok	34	I	-1		429		İ	80		86 2,6(3.0	8		335	0.4	0	0	0	00	Z.	445	0.6	619	16,754	ત્ર
Northern Catchment area TOTAL	7,1021	9,1771 139	В		- 11	23,493 880.	880,245 612	6	833 9,2	~		-	3	148,492		10.454	8,239	309,457	275.4	1.59	27,346	268.0	7.7	83,056	
D-1 direct	469			1323	!			12.7	_	232 6,989		648	76	2,333		103	811	3,049	2.1	0	0	00	2,261	39,903	33
	124			35.0	1,635	1,292 48		7	212	17 3,519				3.521	42.1	à	0	0	00	259	1,555	3.0	2.296	7.	ä
D-2 idirect	71		3,369	48.2				10	i	Ĺ				ł		0 ;	0	ô	0.0	0 5	_	0 0	3	3.591	* ;
Koroshegyi sed	288	<u> !</u>	ĺ		1,353	-	25 01049	5,) 	3,350	0.0	0771	200		27.7	7 .	47.	814	2 0	3 5	000	2 6	2000	3	ž y
	653	//0"	12,00,01	156.7	3LP 9	1000				415 11 12 14		L		2 1 8		457	36	13.577	770	100	ŀ	5.0	8.463	30.08	Š
direct	102	1.				1	1	0				_		l	Ŀ	33	92	77.6	0	0	0	0.0	8	12.063	6
Teroes patak	242	653		68.2	ļ.,		127 102 88	100		439 13,247	7 25.4	3,920	-	14 112	168.6	727	572	21,519	15.0	466	2,794	0.09	6,700	83 541	Ċ
А-В-С съатогла	44				İ			3			53 9.5	129	39	464	5.5	381	301	11,278	7.8	٥	55	0.7	796	23,784	3
D-5 direct	287	٠.		80.9	o	i		0.0	51		191 0.5	0	0	õ		0	0	0	0.0	0	٥	00	78.3	5,903	×ò
Рото аток	72					- 1		3	112	62 1,859		4	12	148	80	200	158	5,920	4.1	0	0	0,0	306	19,853	5
Jamai patak	358	1		1	1		77,286 5		53	7		806		2,82		701	554	20,750	4.4	389	2,331	20.0	4,302	17,961	ŝ
D-6 direct	265	- }-	-	1	- 1		Ĺ				0.0	9	<u></u>	× ·		ō	٥	٥	0 :	0	6	0	27.8	5,478	F :
Kelet- Nyugti Focsatoma	30	. !	2,561	.1.	- !		_ _			.		1	ĺ	0	0.0	e i	477	4 :00		9 5	Ι.		250	3	
Kelets bozot	4	3,451 23	j	360.4	8,028	14,242 533,629	25,629 371.4		200	066/1	0.00	307	704	17.424	7.1	7/7	217	100.1	0 0	153	100	200	300	62.630	3
V-7 Jamesi		4_		ᆚ.	1	-	Ĺ		"	\$1 LOZ 18	26 705 7	20.082	8009	72 796	262.7	687	543	20 435	2 2	269	051.9	345.0	305	62 635	8
Southern Catchinent Area TOTAL.	8,823 2		~		76.294	0,272 258,30	ľ	-	٦	56 191,77	91 367.3		10,829	129 944	1,551.5	1,390	3.468	29.9.15	20.6	330		139.0	2,079 2,5	7,776 7	, oux
Zala direct	i	II	L.	L)[[769 28	28,830 20.	0.1	24	23 3,7	8 7.1	2,291	289	8,248	98.5	08	63	2,368	16	24	142	3.0	4,617	64,838	138
Zala river	10,549	i	ا!	!	128,699 10	101,672 3,809,490	-7	12 25 (54 13	80 415.85	796.7	78.327	23,498	281.977	3,368.1	2,374	1,875	70,270i	6.82	8.692	11,611 2,3	381.0 18	7.999	15,059 12	22
Zala Catchment Area TOTAL	11.642 3	31,433 229	229,347 3,2,	3,283.0 12	129,673 10.	102,441 ,838,320 2,671.	320 2.671	1.3 25.3	7.8 13.5	03 119.61	4 803.8	80.618	24.185	290,225	3.466.6	2,454	1.938	72,638	50.5	8.716 1	1,753: 2,3	384.0 19	2,616 . 4,5	61.897 12	659
								ĺ																	ŀ

Note: The unit of COD load is in "tonlyr", while those of TP and TN loads are in "kglyr".

Table 3.3 Empirical Values of Unit Pollution Loads Generation

			Т-Р	T-N	COD	Source
Human life		Japan	1.2	12	28*	1)
(g/day/capita)	ŀ	Hungary(1)	2	12	100	2
		Hungary(2)	3.0			3
Land use	City, Town	Japan	2.7	19.7	141*	①
(kg/ha/year)	İ	Hungary(1)	1.89	9.45		4
		Hungary(2)	1.1~5.6	6.0~10		(5)
		Hungary(3)	2.91~4.83	52.6~66.2	208~610	8
		Hungary(4)	0.53~1.54	2.0~9.7	9.4~73.9	9
	Arable land	Japan	0.79	29.6	10.3*	①
		Hungary(1)	1.68	5.37		4)
		Hungary(2)	0.7~8.2	0.7~53		⑤
	Pasture	Japan**	0.55	16.6	15.9*	①
		Hungary(1)	1.22	3.92		4)
		Hungary(2)	0.3~1.5	1.1~5.3		⑤
	Forest	Japan	0.3	3.6	21.5*	. ①
		Hungary(1)	0.05	0.16		4
		Hungary(2)	0.02~1.0	1.4~33		(5)
	Vineyard	Japan	0.79	29.6	10.3*	(1)
		Hungary(1)	2.57	8.22		4
		Hungary(2)	0.8~20	0.1~260		(3)
Atmospheric		Japan	0.55	11.5	56.9*	①
deposition		Hungary(1)	1.056	17.64		6
(kg/ha/year)		Hungary(2)	0.14~1.56	10~31		4)
Amount of	Arable land	Hungary	15.0			7
fertilizer use	Vineyard	Hungary	24.4			7
(kg/ha/year)	Green	Hungary	14.3			7
	Garden	Hungary	29			7

- * : Value as COD_{Mn} , and $COD_{Cr} = 2.0COD_{Mn}$
- **: Pasture = (Forest + Arable land) / 2
- ① Common values by the Manual for the planning of the sewer system in Japan
- 2 Estimated by the influent water quality of some sewage treatment plans around the Lake Balaton, in this study
- 3 Estimated by VITUKI (Report 1985)
- 4 Estimated by VITUKI (Report 1996)
- (5) Range of literatures investigated by VITUKI (Report 1996)
- ® Hidorological Kozlony, 1973, in Hungary
- 7 Pollution Land Map (PLM), by KDT KOFE (1997)
- ® Identification of Pollution Land on Kesthely Resion Runoff, by Szombathely KOFE (1997)
- 9 Study of Urban Runoff, by Pecs KUFE (1997)

Constants of the Best Fit Function and the Correlation Coefficients Table 3.4

	110 - C		QT.	-			Zi	1			COD	٥	
	Natific Of	-	ļ		27	Ϋ́	K,	K,	R ²	Kı	K_2	, K	R,
	Tributaries	ΙΔ1	IN2	P ₃	† ¥	+		762 6	0,000	577.0	15 367	080.8	0960
	Rurnotri	8.518	-25.396	239.790	0.913	0.000	4.454	975.7	0.947	0.243	13.305	200.0	2000
	Dear wig	752.9	35 610	211.230	0.659	0.010	4.449	7.157	0.911	0.000	27.854	6.775	0.945
	בצמו אונ	0.730	250.00	0000	0.136	0000	7 986	0.000	0.478	0.000	12.158	17.643	0.455
	Tapolca p.	27.370	203.330	0.000	OCT-O	2000	22:				000	000	0,000
	Volcin	5090	29865	1616.700	0.751	0.024	5.572	76.958	0.943	0.088	J&/.0-	069.707	0.703
	DCM P.	200				0.00	2000	N30 N3	0.200	0.083	K 545	337 530	0.925
_	Firston sed	0.200	148.412	1437.244	0.532	0.010	7.782	24.724	0.323	200.0	CF CFC		
1	1000					0.028	7.029	0.000	0.789	1	ı	•	L
5	Orvenyesi sed*		_	_		2				000		06 471	0.000
Ž	o ionication o	8 477	-139 700	975.610	0.956	0.010	1.717	5.348		0.000	170.10	-20.1/1	0.250
Ź	inclifesvital a.	ì	20011		20,0	1000	020	4.450	0.875	0.253	11.352	25.740	0.838
	Tamai n	0.311	69.592	66.149	0.683	0.00	0.770	1.t.					
	Survey F.	200	411 150	0000000	0.085	0000	4.193	4.117	0.970	1.800	-25.383	117.301	0.993
	Terves p.	20.02	OCT.1.4-	77.5077	20,000	2					2000	000	0.010
L	Zala	0.411	0.099	0.000	0.603	5.384	1.556	0.068	0.808	47.535	32.395	0.000	0.710
	- Trains												

*) For Orvenyesi sed, the best fit functions are as fillows:

TP : L = 197.98Q - $4026.9Q^2 + 25654Q^3$, R² = 0.941 COD : L = 27.654Q + $616.83Q^2 + 4338.4Q^3$, R² = 0.976

Legend: $L = K_1 + K_2 Q + K_3 Q^2$

L = load (g/s) $Q = discharge (m^3/s)$

s) R² = correlation coefficient

Table 3.5 Pollution Loads Discharge and Runoff Ratio of Selected Tributaries

()/C)	1995	TN COD	0.45 0.20	2.25 0.61	0.31 0.25	0.24 0.34	0.06 0.10	-0.21 0.39	0.37 6.61	0.25 0.83	0.04 0.20	0.12 0.89
(=(A-B)/C	15	TPT	0.15	0.34 2	0.10	0.12	0.03	0.40 -0	1.33	0.55	0.05	0.14
D. Runoff Ratio		800	0.11	0.37	0.12	0.31	60.0	0.25	15.47	0.22	0.16	0.79
Rano	1994	Z.	0.26	1.51	0.26	0.22	90.0	-0.77	0.46	0.13	0.03	0.11
Д		£1	0.13	0.45	90.0	0.13	0.03	0.12	0.93	0.24	0.05	0.14
ource	neration	COD (ton/vr)		58.6	113.3	371.3	1,610.7	277.8	36.4	425.7	259.0	12,220.7
C. Non-point Source	Pollution Loads Generation	LT. (Ke/vg)	9,785	8,857	45,863	147,894	191,965	92,540	16,754	183,541	112,961	4,897,059
Ü	Pollution	TP (kg/vr)	096	685	1,710	5,618	23,072	3,982	619	6,700	4,302	187,999
		COD	0.0	0.0	0.0	0.0	0.0	36.8	0.0	0.0	0.0	423.8
	1995	Zi (2)	0	0	0	0	0	87,096	0	0	0	329,893
Point Source Loads		TP (ko/vr)	0	0	0	0	0	1,954	0	0	0	16,071
B. Point S.		COD (Jan/41)	0.0	0.0	0.0	0.0	0.0	46.8	0.0	0.0	0.0	407.9
ш	1994	TN (ke/vr)	0	0	0	0	0	127,398	0	0	0	315,085
		TP (xe/yr)	0	0	0	0	0	2,769	0	0	0	13,297
		COD		35.5	28.1	126.1	155.0	145.5	240.7	352.8	51.6	11,261.1
arge	1995	T.V.		856'61	14,069	34,772	35,885	67,431	6,182	45,146	4,415	912,017
A. Pollution Loads Discharge		TP (kg/vr)		203	172	299	734	3,546	826	3,669	220	42,811
Pollution L		COD		21.4	14.0	116.4	144.8	116.3	563.2	6 16	42.1	856,599 10,113.1
A. I	1994	TN (TVa/VT)		13,368	12,038	31,970	34,825	56,136	7,714	22,979	3,728	
		TP	126	263	901	725	753	3,254	575	1,640	195	39,299
		Sub-catchment	Fuzfoi sed	Keki patak	Orvenesyi sed	Burnot patak	Eger viz	Tapoica patak	Nemesvitai Ovarok	Tetves patak	Jamai patak	Zala Zala river
		PLM		4.4	E-5	E-7	% ₩	6-3	E-10	D 4	Ä	Zala

Note: The Unit of COD load is in "ton/yr", while those of TP and TN loads are in "kg/yr".

Table 3.6 Pollution Load Discharge of the Whole Catchment Area

Contract Table T						1							ĺ									
Control Cont		•					}		Log	ads Generatio	Ę		ł	_		ŀ		Į.	- 1-		Г	1
1, 10, 10, 10, 10, 10, 10, 10, 10, 10,		Catchment	TP load		COD load	TP load	$\overline{}$	Deol GOC	TP load (ke/vr)	TN load (ke/vr)	COD lead	£									TN inad (Kg/yr)	Sol COO
1,000 1,00	0	7 750	0	0	00	0	0	00	4.163	70.344	331.3	⊥ _	L	L	ļ	00 0.80	3,3	0		L	\$6,275	×
1,2,100 1,000 1,	Т	1,196	0	9 0	200		,	0.0	873	29.891	34.8	L	┖	<u>L</u>	ļ_	00 0.40	0	L		L	11,956	
Third Thir	- 3	2 403	0	10	2) c	G	0.0	3.417	\$4.674	283.5	L	!	L	L	00 0.80	0 2.7	L		2,734	43,7391	શ
1,125 1,12	7	947	0	0	0.0	0	0	0.0	096	9,785	101.3	0.131	0.256 C	.115 0.	150 0.4	_				144	4,376	.,
1,100 1,100 1,00	.1	2.828	0	0	0.0	0	0	0.0	3,091	52,760	255.8		_	_	_	_		_	ļ	2,4731	42,20S	레
1,154 10 10 10 10 10 10 10 1	Т	2,833	0	Ó	0.0	0	0	0.0	2,727	59,864	200.9			_	_		_	┙	1	-	23.946	٦"
1,124 0 0 0 0 0 0 0 0 0	Lovasi sed	2,596	0	0	0.0	0	0	0.0	1,763	45,188	124.9	1	_	_	4	4	_			ľ	18,075	
1,455 0 0 0 0 0 0 0 0 0	Τ.	3.281	0	0	0.0	0	0	0.0	3,697	61,471	308.4	: I	008.0	800	_	_		_		2	49,177	8
1,145 10 10 10 10 10 10 10 1	Т	1.124	o	0	0.0	o	0	0.0	474	10,477	44.6	. 1	0.400	400 0.	200 0.4			_			4,191	
1,106 16 16 17 17 18 18 18 18 18 18	Aracsi sed	1.485	0	0	0.0	0	0	0.0	623	11,441	66.2		0.400	400	200 0.4	00 0.40	0	5 4,57			4,576	"
1,686 1,880 1,880 1,880 1,880 1,880 1,880 1,880 1,890 1,890 1,890 1,99	Kelvi natak	848	0	0	0.0	0	0	0.0	685	8,857	58.6	0.447	_	.365 0	345 2.2	51 0.60					19,938	"
1,1066 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Szolosi sed	2.248	0	0	0.0	0	0	0.0	1,593	40,203	111.2	Ш	<u> </u>	,400 0	200 0.4	00 0.40	3	9 16,08			16,081	4
1,112 1,11	Tay sed	1.086	4	118	0.1	1	318	0.2	627	15,647	46.8	0.200	0.400 G	.400 0.	200 0.4	00 0.40					6,577	
2,156 14	T	\$.129	8	3.688	15	73	3,426	1.8	3,142	79,146	221.4	Ц		_			Ц			C.	66,743	178
2159 146	1	2.569	0	0	0.0	0	0	0.0	1,710	45,863	113.3	0.062	0.262	124 0.	101 0.3	07 0.24	8, 10				14,0691	
S129 C C C C C C C C C	1	2,159	146	7,366	7.0	26	688'6	2.8	1,653	35,861	127,1	_	١						٦		38,578	2
819 0 0 0 0 150 0 0 0 150 0 </td <td>1</td> <td>2,129</td> <td>0</td> <td>0</td> <td>0.0</td> <td>0</td> <td>0</td> <td>0.0</td> <td>1,549</td> <td>41,553</td> <td>5.66</td> <td></td> <td>- 1</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>16,621</td> <td>"</td>	1	2,129	0	0	0.0	0	0	0.0	1,549	41,553	5.66		- 1	_	_						16,621	"
8.22	Horogi sed	618	0	0	0.0	0		0.0	246	16,760	28.2		-4	_:	_	爿	10	6,70	İ		6,704	
8,125 60 0.0 <td>T</td> <td>22</td> <td>0</td> <td>0</td> <td>0.0</td> <td>0</td> <td></td> <td>0.0</td> <td>14</td> <td>533</td> <td>0.4</td> <td></td> <td> </td> <td></td> <td>_</td> <td>00 0.80</td> <td></td> <td>1 42</td> <td> </td> <td></td> <td>426</td> <td></td>	T	22	0	0	0.0	0		0.0	14	533	0.4				_	00 0.80		1 42			426	
1115 168 4 126 8 8 6 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 1 8 1 1 1 1 8 1 1 1 1 8 1 1 1 1 8 1 1 1 1 8 1 1 1 1 8 1	П	8,262	0	0	0.0	0	ĺ	0'0	5,618	147,894	371.3	_1	_		4	_		1			34,772	2
Section Sect		2,155	168	4,256	8.6	211:	8,555	7.1	1,390	40,039	77.0	ـ	_ļ_	_	-1	-		1			40,586	Š
417 2.66 17.584 46.8 1.554 87.056 56.8 2.457 5.257 1.541 2.751 1.257		36,122	Ö	0	0.0	ő	0	0.0	23,072	596,161	1,010,7	0.033	4-	4	3/	-1		1			32,885	315
4,000 2,100 17,200 17,200 40.0 1,504 61.00 20.0 2,104 1,50		517	0	0	00	5	- 1	2.0	7/5	0,000	2.53	5 2		4	1	+	ľ	1			K7 //31	<u>'</u>
3,567 0 0 0 0 0 0 0 0 0	Tapolca patak	4,493	7,709	865,721	9 0	1,504	1	0.00	863	17.614	71.4	0.800	0.800	800	1			1.			14.091	1,
Control Cont	Vatoler vater	1,66	50		000	0		0	2.138	52,362	164.8	0.200	4_	╄	<u> </u>	_		L.			20,945	6
Column	Villages patak	202	6	0	0.0	Ö		0.0	1,075	29,469	74.2	0.200	Ŀ	<u> </u>	Ļ	-		<u> </u>			11,788	Ç.I
TOPE 10 0 <td>T esence natalc</td> <td>8.714</td> <td>0</td> <td>0</td> <td>0.0</td> <td>0</td> <td></td> <td>0.0</td> <td>4,814</td> <td>93,012</td> <td>460.6</td> <td>0.200</td> <td>Ļ</td> <td>_</td> <td><u> </u></td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td>37,205</td> <td>184</td>	T esence natalc	8.714	0	0	0.0	0		0.0	4,814	93,012	460.6	0.200	Ļ	_	<u> </u>	L					37,205	184
1,000, 1,000,	Nemesvitai Ovarok	713	0	0	0.0	0	0	0.0	619	16,754	36.4	0.929	0.460 15	473	334 0.3	19.9 69	3 57	51 7,71.		826	6,182	7.5
1,000 1,00	thern Calchment area TOTAL	106,725	3,168	142,826	63.7	2,342	109,284	48.7	77,154	1,785,056	5,728.3	0.314	0.306 0.	504 0.5	337 0.3	12 0.46	27		7	27.885	720,255	2.70
3,008 0 0 0 0 0 0 0 0 0	dreet	2.288	0	0	0.0	0	0	0.0	2,261	39,903	188.4	0.800	0.800	.800 0.1	800 0.8	00 0.80		Ц	-		31,922	15
190 0 0 0 0 0 0 0 0 0	100	3,028		0	0.0	0	0	0.0	2,296	59,434	150.5			_	_	00 0.40	. 45	23,77		459	23,774	Ŷ
3425 0 0 0 0 0 0 0 0 0	1	190		0	0.0	0	0	0.0	468	3,591	48.6		_;	_	4	4					2,873	10
1,0,104		3,425		0	0.0	0	0	0.0	2,619	60,025	191.4	٠.	_	4	_	1	ľ	_		ľ	24,010	
1,000 0	_1.	2,544		٥	000	0	0	0.0	3,000	178,84	0.702		_	4	_ļ_		1			1	289.89	3 2
10,104 0 0 0 0 0 0 0 0 0		070'01		3 0	200	3 0	s	200	200	12.063	92.0	L.	1_	1	1	J.	L	L			9,650	-
1,422 0 0 0 0 0 0 0 0 0	Т	10 104	6	100	00	0	0	0.0	6 700	183,541	425.7	0.245	0.125 0	216 0.	548 0.2	46 0.82		L			45,146	8
Table Tabl	A-P-C coatoma	1 432	0	Ó	0.0	0	0	0.0	962	23,784	40.5	L	Ļ	Ļ	Ŀ	Ļ	L	_			9.514	~
780 0	_	323	0	0	0.0	0	0	0.0	783	5,903	81.4	L.	Ļ.	.800	800 0.8			1		929	4,722	9
4,574 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		780	0	0	0.0	0	0	0.0	206	19,853	37.1	Ŀ	L	400 0.2	200 0.4		_				7,941	
3-66 0 0 0 0 0 0 0 0 0	Jamai patak	4,974	0	0	0.0	0	0	0.0	4,302	112,961	259.0	<u>_</u> ,	0.033 0	163 0.(0.0	39 0.19	. 15				4,415	$^{\circ}$
0500000000000000000000000000000000000		396	0	10	0.0	٥	0	0.0	728	5,478	75.8			300	800 0.8			l			4,382	٩
27,192 0 0 0 0 0 22,550 617,521 1,313.2 0.200 0.400 0.200 0.400 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.200 0.400 0.100 0.400 0.100 0.400 0.200		3,727		0	0.0	0	0	0.0	2,904	90,545	129.5	<u>.</u>	. 1	400 0.2	200 0.4					_	36,218	S
3.365 6 0 0 0 0 0 0 4.205 63.610 365.0 0.800 0.8	Keleti bozot	27,192		o	0.0	0	0	0.0	22,550	617,521	1,313.2	0.200	0.400 0	400 0.	200 0.4	00 0.40	_			4,510	247,008	S
ma 68,365 1,406 32,581 65.4 1,240 35,158 65.8 48,301 1,534,205 2,288,2 0.200 0,400 0,400 0,400 0,400 0,1,000 0,500		3,365	1 1	0	0.0	٥	0	0.0	4,205	63,610	365.0	0.800	0.800	800	800					3,364	50,888	8)
146 32,881 63.4 12.40 39,158 63.8 112,079 2.27,776 7,087 0.263 0.383 0.443 0.422 30,271 (183.343 31,720 32,500 4,970 550 33,120 12.7 316 21,692 28,600 0.800 0.800 0.800 0.800 0.800 0.800 4,284 34,290 3,623 4,010 1,070 550 13,085 477 15,095 48,87 0.800 0.800 0.800 0.800 4,284 34,290 3,633 4,010 1,070 1,080 1,080 0.800 0.800 0.800 0.800 0.800 1,080 0.800 1,080 0.800 1,080 <t< td=""><td>Nyugati ovesatorna</td><td>68,395</td><td></td><td>32,581</td><td>63.4</td><td>1,240</td><td>39,158</td><td>8.69</td><td>48,301</td><td>1,342,035</td><td>2.882.2</td><td>0.200</td><td>0.400</td><td>900</td><td>200</td><td>0.40</td><td>11.06</td><td><u>.</u></td><td></td><td>10,900</td><td>575.972</td><td></td></t<>	Nyugati ovesatorna	68,395		32,581	63.4	1,240	39,158	8.69	48,301	1,342,035	2.882.2	0.200	0.400	900	200	0.40	11.06	<u>.</u>		10,900	575.972	
4970 590 33,120 12.7 316 21,629 8.8 4,617 64,838 438.5 0,800	thern Catchment Area TOTAL	143,339	1,406	32,581	63.4	1,240	39,158	63.8	112,079	2,927,776	7,008.7	0.263	0.393 0.	443 0.2	382 0.40	11 0.48.	30.92	1	_[32,809	1.212,775	~
263,777 13,297 315,085 407.9 16,071 325,893 425,8 18,599 15,220,7 12,639, 0.114 0.794 0.126 0.138 0.119 0.687 35,299 10,115.1 42,631 7707d. 268,697 13,887 348,205 420,589 10,387 33,522 43,582 43,582 43,582 0.0,476,6 46,821	direct	4,970	8	33,120	12.7	316	21,629	88	4,617	64,838	438.5	0.800	0.800	000	000	080	4,28	26,99	303.5	4,010	200	
10/2L 286(99) 33,867 346,293 42,00 23,247 32,247 32,007 32,007 32,007 0.724 0.	Zala river	263,727	13.297	315,085	407.9	16.071	329,893	423 8	187,999	4.897,059	12,220.7	0.138	0.111	704	250	10.00	35.25	200,000	2 10 11 1 1	168.77	17.07.14 045 576	
0 000 / 200 000 000 000 000 000 000 000	a Catchment Area 101AL	268 697	13.88/	348,200	670.3	10,347	37,0,1,0	434.0	070.747	4,707,437	12,039.2	0.734	0.1.20	17.	0	0.00	42,30	247.00	1,10,470,0	7.000	20.00	40,65

Note: The unit of COD load is in "ton/yr", while those of TP and TN loads are in "kg/yr".

Table 3.7 Summary of Pollution Load Discharge Calculations

1994

	Poin	t Source I	_oad	Non-p	oint Sourc	e Load	,	Total Load	1
	TP	TN	COD_{Cr}	TP	TN	COD_{Cr}	ТР	TN	COD _{Cr}
	(kg/yr)	(kg/yr)	(ton/yr)	(kg/yr)	(kg/yr)	(ton/yr)	(kg/yr)	(kg/yr)	(ton/yr)
Northern	3,168	142,826	66	24,238	546,575	2,885	27,406	689,401	2,951
Catchment Area	(3%)	(5%)	(0%)	(24%)	(19%)	(17%)	(27%)	(24%)	(18%)
Southern	1,405	32,581	63	29,516	1,150,763	3,107	30,921	1,183,344	3,171
Catchment Area	(1%)	(1%)	(0%)	(0%)	(41%)	(19%)	(30%)	(42%)	(19%)
Zala Catchment	13,887	348,205	421	29,696	593,384	10,056	43,583	941,589	10,477
Area	(14%)	(12%)	(3%)	(29%)	(21%)	(61%)	(43%)	(33%)	(63%)
Total	18,460	523,612	550	83,450	2,290,722	16,048	101,910	2,814,334	16,598
Catchment Area	(18%)	(19%)	(3%)	(82%)	(81%)	(97%)	(100%)	(100%)	(100%)

1995

	 			1000	<u> </u>				
	Poin	t Source I	_oad	Non-p	oint Sourc	e Load	•	Total Load	i
	ТР	TN	COD_{Cr}	ТР	TN	COD_{Cr}	TP	TN	COD_{Cr}
	(kg/yr)	(kg/yr)	(ton/yr)	(kg/yr)	(kg/yr)	(ton/yr)	(kg/yr)	(kg/yr)	(ton/yr)
Northern	2,342	109,284	49	25,543	610,971	2,658	27,885	720,255	2,707
Catchment Area	(2%)	(4%)	(0%)	(24%)	(21%)	(15%)	(26%)	(25%)	(15%)
Southern	1,240	39,158	64	31,569	1,173,617	3,378	32,809	1,212,775	3,441
Catchment Area	(1%)	(1%)	(0%)	(29%)	(40%)	(19%)	(31%)	(42%)	(19%)
Zala Catchment	16,387	351,522	433	30,434	633,994	11,188	46,821	985,516	11,621
Area	(15%)	(12%)	(2%)	(28%)	(22%)	(63%)	(44%)	(34%)	(65%)
Total	19,968	499,964	545	87,547	2,418,582	17,224	107,515	2,918,546	17,769
Catchment Area	(19%)	(17%)	(3%)	(81%)	(83%)	(97%)	(100%)	(100%)	(100%)

Table 3.8 Two Dimensional Hydrodynamics Equations

$$\frac{\partial H}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0 \quad ... \tag{1}$$

$$\frac{\partial q_x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q_x^2}{H} \right) + \frac{\partial}{\partial y} \left(\frac{q_x q_y}{H} \right) \\
= -\frac{\partial N_p}{\partial x} + \frac{1}{\rho} \left(\frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{yx}}{\partial y} \right) + fq_y + \frac{1}{\rho} \left(\tau_{xx} - \tau_{hx} \right) + g\eta \frac{\partial h}{\partial x} \cdot \dots$$
(2)

$$\frac{\partial q_{y}}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q_{x} q_{y}}{H} \right) + \frac{\partial}{\partial y} \left(\frac{q_{y}^{2}}{H} \right) \\
= -\frac{\partial N_{p}}{\partial y} + \frac{1}{\rho} \left(\frac{\partial N_{yy}}{\partial y} + \frac{\partial N_{xy}}{\partial x} \right) - fq_{x} + \frac{1}{\rho} \left(\tau_{sy} - \tau_{by} \right) + g\eta \frac{\partial h}{\partial y} \cdots (3)$$

$$N_{ij} = \left\langle \tau_{ij} + \rho u_i' u_j' \right\rangle \equiv \int_{h}^{\eta} \left(\tau_{ij} + \rho u_i' u_j' \right) dz \cong \rho \varepsilon_{ij} \left(\frac{\partial q_i}{\partial x_j} + \frac{\partial q_j}{\partial x_i} \right) \quad ; (i, j = x, y) \quad \cdots \quad (4)$$

$$N_p = g\eta h + \frac{1}{2}g\eta^2 \cdot \cdots (5)$$

$$\tau_{sx} = \rho_{air} C_D U^2 \cos \theta_w \cdots (6) \quad \tau_{sy} = \rho_{air} C_D U^2 \sin \theta_w \cdots (7)$$

$$\tau_{bx} = \frac{C_f \rho q_x \sqrt{q_x^2 + q_y^2}}{H^2} \dots (8) \quad \tau_{by} = \frac{C_f \rho q_y \sqrt{q_x^2 + q_y^2}}{H^2} \dots (9)$$

where q_i =mass flux per unit width; h =depth; η =surface elevation; $H = h + \eta$; f =Corioli's parameter; g =gravitational acceleration; ε =eddy viscosity; ρ_{air} =air density; τ_S =wind stress; τ_b =bottom shear stress; U =wind speed at 10 m above the water surface; C_D =drag coefficient (Wu, 1973); θ_W =angle between the wind direction and the x axis; friction coefficient $C_f = n^2 g H^{-1/3}$; n =Manning's roughness coefficient.

Table 3.9 0-D WQSM Equations

Dissolved inorganic phosphorus: P_1 [mg-P/m³]

$$\frac{dP_1}{dt} = -k_f P_1 - k_u \frac{P_1 B}{P_{1k} + P_1} \frac{\psi_{max} - \psi}{\psi_{max} - \psi_{min}} + k_m \theta_m^{T_w - 20} P_3 + (1 - f_{op}) d_p \theta_p^{T_w - 20} P_2 + Sop(SS) + c_{ex} (P_{eq} \theta_m^{T_w - 20} - P_1) + L_1 + L_2 + C_{ex} (P_{eq} \theta_m^{T_w - 20} - P_1) + L_2 + C_{ex} (P_{eq} \theta_m^{T_w - 20} - P_1) + L_3 + C_{ex} (P_{eq} \theta_m^{T_w - 20} - P_1) + L_3 + C_{ex} (P_{eq} \theta_m^{T_w - 20} - P_1) + L_3 + C_{ex} (P_{eq} \theta_m^{T_w - 20} - P_1) + C_{ex} (P_{eq}$$

Algal phosphorus: P_2 [mg-P/m³]

$$\frac{dP_2}{dt} = -k_f P_2 + k_u \frac{P_1 B}{P_{1k} + P_1} \frac{\psi_{max} - \psi}{\psi_{max} - \psi_{min}} - d_p \theta_p^{T_w - 20} P_2 - \frac{v_{s4}}{h} P_2 + L_2$$

Algal biomass: B [mg dry-wt/m³]

$$\frac{dB}{dt} = -k_f B + \mu_{\text{max}} f(\psi) f(I) f(T) B - d_p \theta_p^{T_w - 20} B - \frac{v_{s4}}{h} B + L_B$$

Detrital phosphorus: P_3 [mg-P/m³]

$$\frac{dP_3}{dt} = -k_f P_3 + f_{op} d_p \theta_p^{T_w - 20} P_2 - k_m \theta_m^{T_w - 20} P_3 - \frac{v_{s3}}{h} (1 - r) P_3 + L_3$$

Chla [mg/m³]

$$Chla = B/(\frac{\alpha I_{opt}}{\mu_{\max} e} c_{b/c})$$

where

k: flushing rate

 k_u : maximum uptake rate

 P_{lk} : half-saturation constant for uptake

 ψ : cell quota, $\psi = P_2/B$

 ψ_{max} , ψ_{min} : maximum and minimum cell gotas

 d_p : mortality rate

 θ_p : temperature factor for mortality

 v_{s3} : settling rate of detritus

 v_{sd} : settling rate of algae

h: depth

 L_i : external loads

 μ_{max} : maximum specific growth rate

 $f(\psi)$: cell quota growth limiting factor.

a: initial slope of P-I curve

lon: optimum light intensity

$$f(T) = \exp[-2.3 \left(\frac{T - T_{opt}}{T_x - T_{opt}}\right)^2]$$

$$T_x = T_{min} \quad for \quad T \le T_{opt}$$

$$= T_{max} \quad for \quad T > T_{opt}$$

cex: exchange coefficient of the sediment phosphorus release

 P_{ea} : equilibrium concentration of the sediment phosphorus release

 $c_{b/c}$: ratio of algal biomass to carbon

 $f(\psi) = 1 - \psi_{min}/\psi$

f(T): temperature limiting factor

 T_{min} : minimum temperature for algal growth

 T_{max} : maximum temperature for algal growth

 T_{opt} : optimal temperature for algal growth

 $\overline{f(I)}$: light limiting factor (see Table 5.3)

 k_m : mineralization rate

 θ_m : temperature factor for mineralization

Sop(SS):sorption as a function of suspended sediments

fraction of organic phosphorus in TP contained in dead phytoplankton

y. fraction of detritus that is dissolved

Table 3.10 Modified Steele's Light Limiting Function for Non-light Inhibition

Conventional Steele's light limiting function is modified to non-inhibiting function as follows.

$$f(I) = \begin{cases} 1 & \text{for } I \ge I_s & -----(1) \\ \frac{I}{I_s} \exp(1 - \frac{I}{I_s}) & \text{for } I < I_s & -----(2) \end{cases}$$

where I = light intensity in the water column: $I = I_0 e^{-K_c z}$, z = distance from the water surface, $I_s = \text{saturation}$ light intensity, $I_0 = \text{surface}$ light intensity, $K_e = \text{extinction}$ coefficient.

At the depth, where light intensity reaches a saturation light intensity, $I = I_s$ at $h_s \rightarrow I_s = I_0 e^{-K_s h_s}$.

The depth of a saturation light intensity can be induced as,

$$h_s = -\frac{1}{k_e} \ln \frac{I_s}{I_0}$$

Integrating equation (2) over $z=h_s \sim h$ and taking its average, equations (1), (2) can be converted as,

$$\overline{f}_1(I) = 1$$
 for $z = 0 \sim h_s$ --- (3)

$$\overline{f}_{2}(I) = \frac{e}{k_{e}(h - h_{s})} \left\{ \exp(-ae^{-k_{e}h}) - \exp(-ae^{-k_{e}h_{s}}) \right\} \quad \text{for } z = h_{s} \sim h \quad ---- (4)$$

where $a = \frac{I_0}{I_s}$

For all the depth, equations (3) and (4) are combined as,

$$\overline{f}(I) = \frac{1}{h} \left\{ h_s + (h - h_s) \overline{f}_2(I) \right\}$$
 ---- (5)

Table 3.11 Suspended Sediment Model Equations (Luettich et al., 1990)

$$\widetilde{c} = c_e + c_{bak} + (\widetilde{c}_i - c_e - c_{bak}) \exp[-\frac{\beta}{h}(t - t_i)]$$

where

 \widetilde{c} : depth-averaged suspended sediment concentration, $\widetilde{c} = \int_{b}^{0} \overline{c} \ dz$

 \widetilde{c}_i : initial condition of \widetilde{c} at $t = t_i$

c_e: equilibrium suspended sediment concentration, $c_e = K[\frac{H - H_C}{H_{ref}}]^n$

H, H_{ref} , H_C : wave height, reference wave height, and critical wave height n: model parameter

 β : settling velocity

 c_{bak} : non-settling background suspended sediment concentration K: model parameter (mg/l)

Wave height equations (CERC, 1974),

$$\frac{gH}{U_{10}^2} = 0.283 \tanh[\alpha] \tanh[\frac{\gamma}{\tanh \alpha}]$$

$$\alpha = 0.53 \left(\frac{gh}{U_{10}^2}\right)^{0.75}$$

$$\gamma = 0.125 \left(\frac{gF}{U_{10}^2}\right)^{0.42}$$

where

g = gravitational acceleration

 U_{10} = wind speed at 10m above the water surface

F = effective fetch

Table 3.12 Parameter Values for Completely-mixed Biogeochemical Model Calculations

Descriptions	symbol in equations	terms in graphs	unit	standard value	Reference
maximum cell quota	q max	psı_max	ND	0.018	Shafik et al., 1987
minimum cell auota	g min	psi_min	ND	0.002	Shafik et al., 1987
maximum P uptake rate	, k	p_up_max	1/day	1.5	Shafik et al., 1987
half-saturation constant for P uptake	P.1.K	half_sat	mg/m³	18.0	Shafik et al., 1987
mineralization rate	k _{m0}	R_mineral	1/day	0.04	Tezuka,1989
temperature correction factor for mineralization	θ,,	T_mineral	ND	1.18	Tezuka,1989
death rate	d p0	R_mortal	1/day	0.092	Bowie et al., 1985
temperature correction factor for death	9.	T_mortal	ND	1.04	Bowie et al., 1985
maximum specific growth rate	μ max	Growth_max	1/day	1.8	Shafik et al., 1987
surfase area of Keszthelv bav	A	,	km²	38	Herodek et al., 1988
settling rate of algal biomass	V 53	Ws-bmass	p/m	0.01	Sommer, 1984
settling rate of detritus	¥8. V	Ws-det	p/m	0.05	Sommer, 1984
fraction of organic-P in dead algal-P	f_{op}	Fop	ND	0.7	Tezuka, 1989
fraction of detritus that is dissolved	7	gamma	ND	0.1	Tezuka, 1989
initial slope of P-I curve	α	alpha	mg C/mg Chla/ly	2.6	Balaton Limnol.Res.Inst., 1996
biomass carbon ratio	C_{bc}	P/C ratio	mg d.w./mg C	0.02	IBP,1971
equilibrium concentration of PO ₄ -P in the sediment	P_eq	P_eq	mg P/m³	30	Istvanovics et al., 1989
exchange coefficient of sediment P-release	C_ex	C_ex	1/day	0.15	
P-desorption rate	4 C/ss	P_release	mg P/g DM	0.008	Gelencser et al., 1982
	e e				
			ND=no unit		

Table 3.13 Two Dimensional Mass Transport Equations

$$\frac{\partial C_{i}}{\partial t} + \frac{\partial ((q_{x}/H)C_{i})}{\partial x} + \frac{\partial ((q_{y}/H)C_{i})}{\partial y} \\
= -\frac{\partial M_{x}}{\partial x} - \frac{\partial M_{y}}{\partial y} \pm R_{i} \quad ; i = 1, 4 \quad \cdots$$
(1)

$$M_{x} = -E_{xx}H\frac{\partial \overline{c}_{i}}{\partial x} - E_{xy}H\frac{\partial \overline{c}_{i}}{\partial y} \quad \cdots \quad (3)$$

$$M_{y} = -E_{yx}H\frac{\partial \overline{c}_{i}}{\partial x} - E_{yy}H\frac{\partial \overline{c}_{i}}{\partial y} \cdot \cdot \cdot \cdot (4)$$

where

 C_i =consituent concentration per unit area

 \bar{c}_i =depth average concentration

 $H = h + \eta$, h = depth, $\eta =$ surface elevaton

 R_i =internal reactive source/sink;

 E_{xx} , E_{xy} =longitudinal and lateral dispersion coefficient.

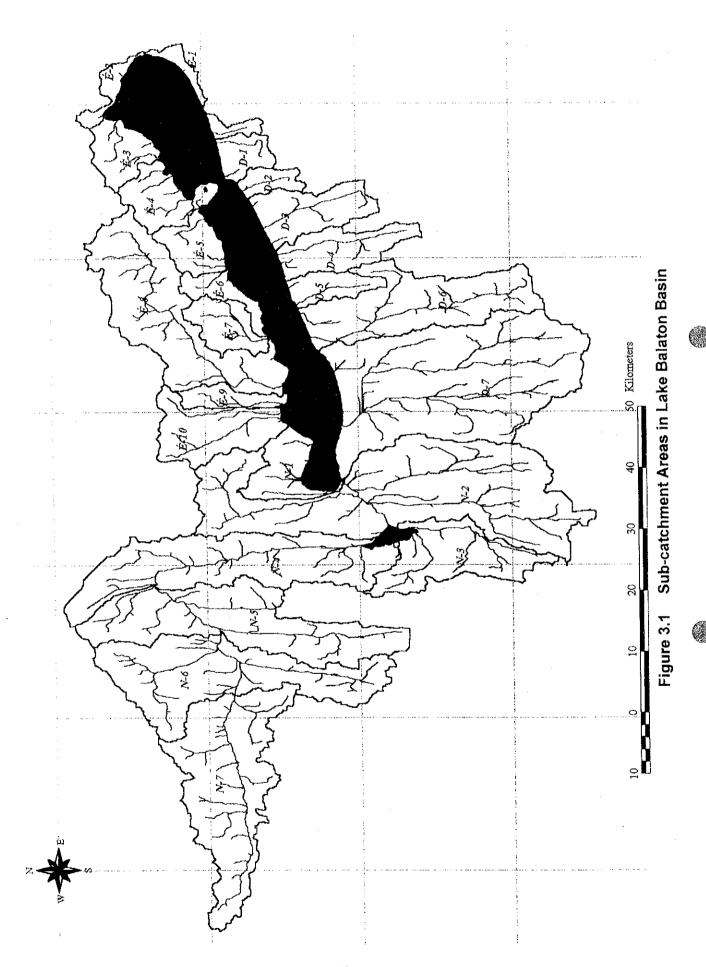
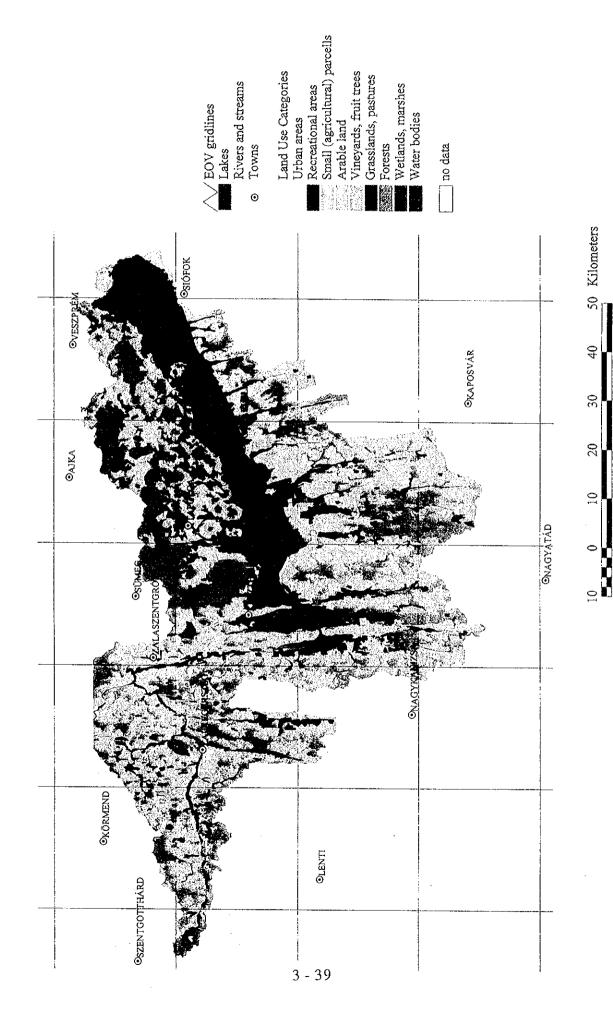
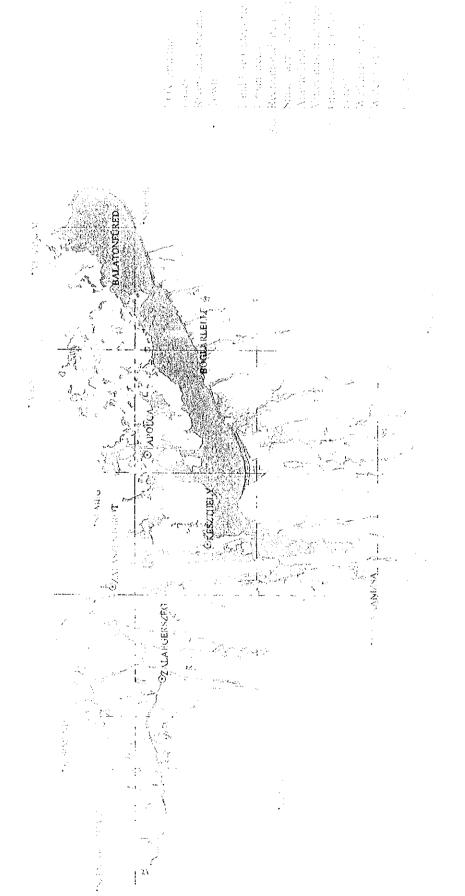
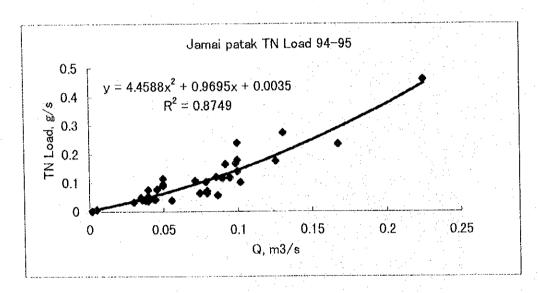


Figure 3.1 Sub-catchment Areas in Lake Balaton Basin


Figure 3.2 Re-classified Land Cover Map

Condition of the Condition of Conditions of the Condition of Conditions Recording to

Pigure 3.2 Re-classified Land Cover Map

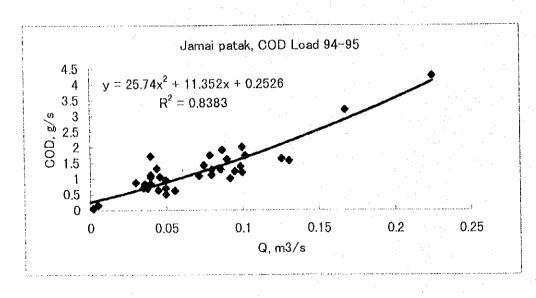


Figure 3.3 Best Fit Curve for Load-Discharge Correlations (Jamai)

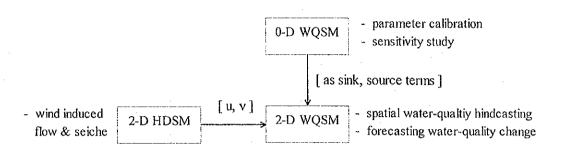


Figure 3.4 Conceptual Structure of WQSM

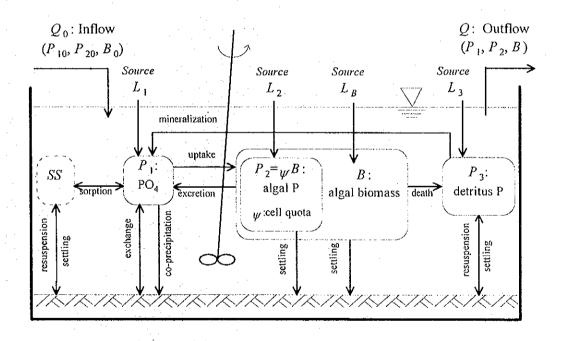


Figure 3.5 Conceptual Structure of 0-D WQSM

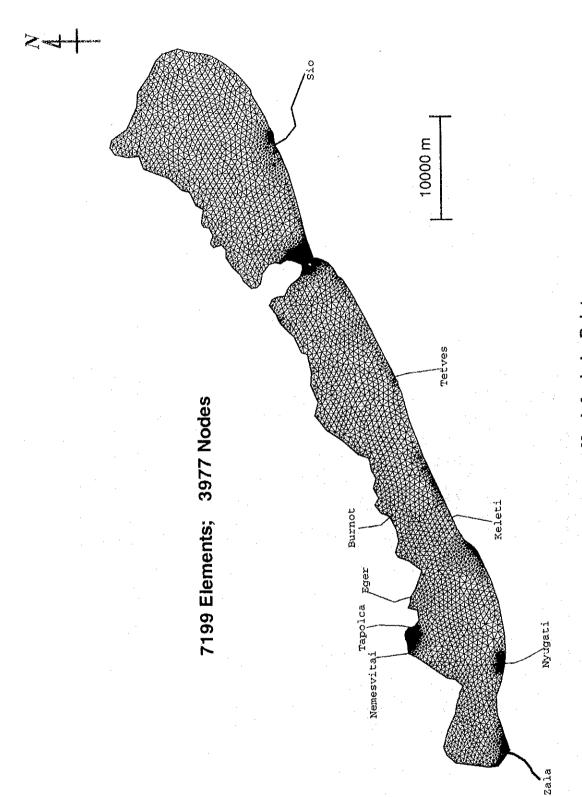


Figure 3.6 Finite Element Mesh for Lake Balaton

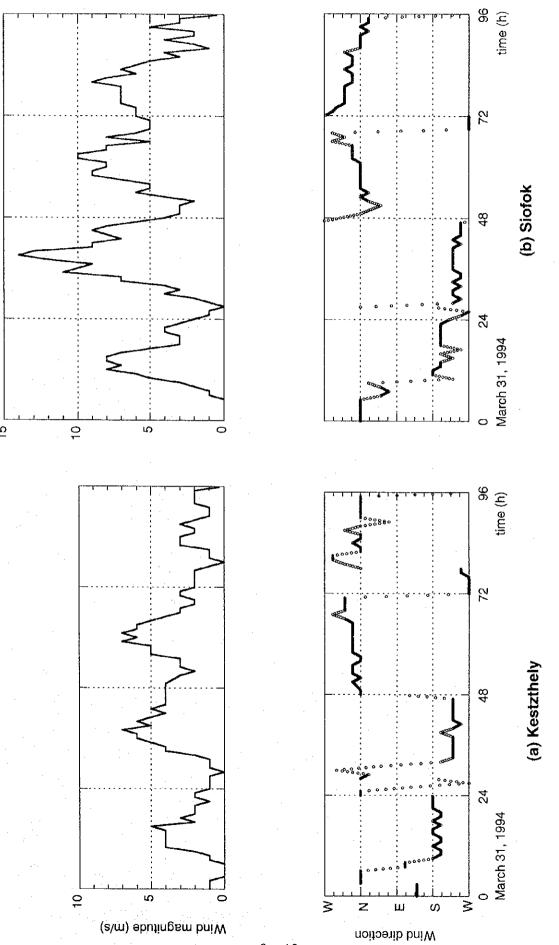


Figure 3.7 Wind Speed and Direction during Storm Event, 31 March - 3 April, 1994 (OMSZ)

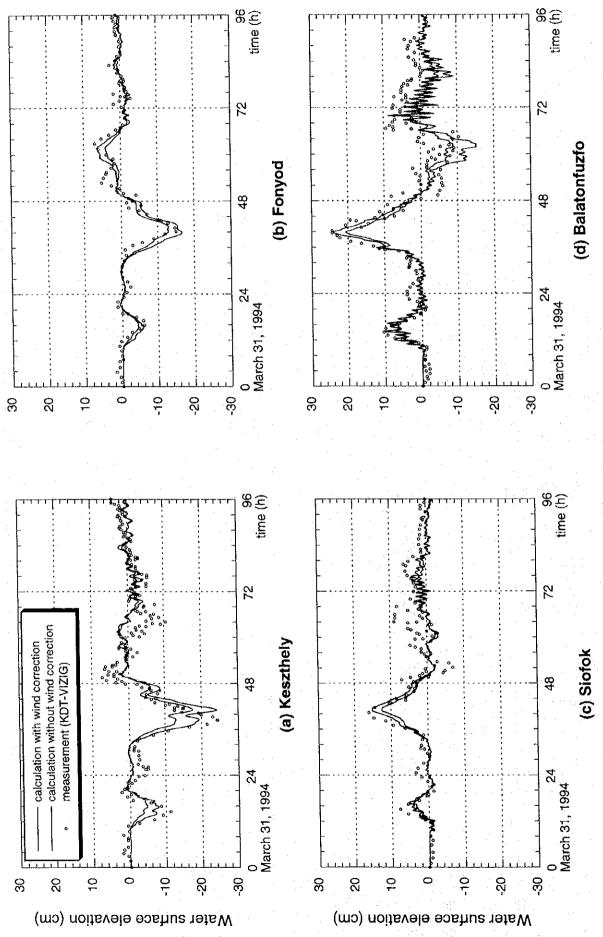


Figure 3.8 Sensitivity of Predicted Seiche to Wind Speed Correction

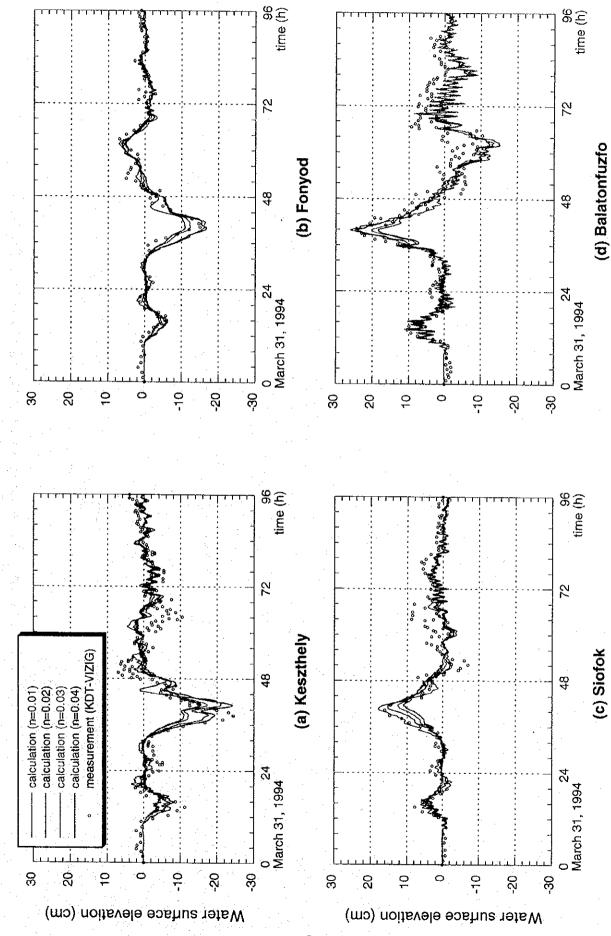


Figure 3.9 Sensitivity of Predicted Seiche to Manning's Roughness Coefficient

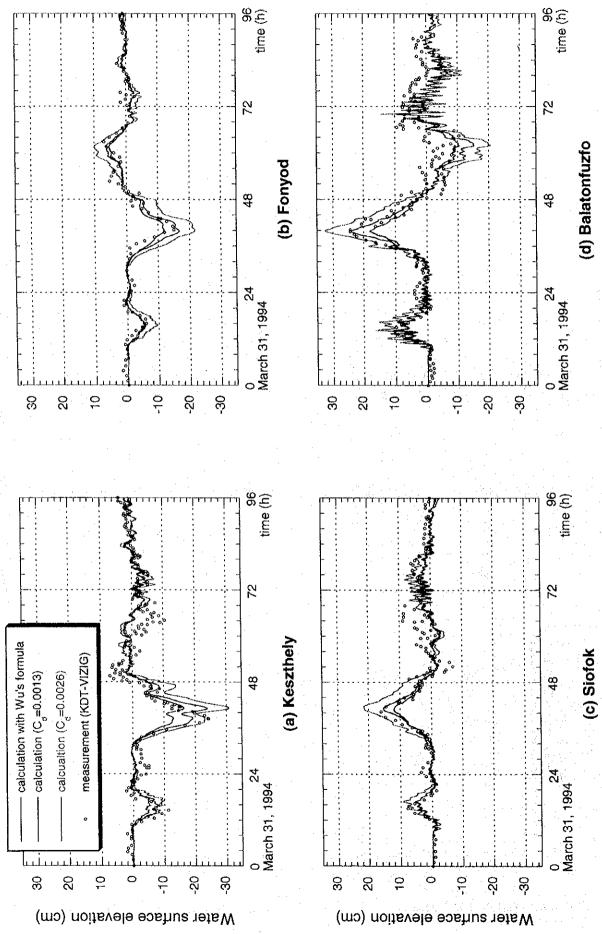


Figure 3.10 Sensitivity of Predicted Seiche to Wind Shear Drag Coefficient

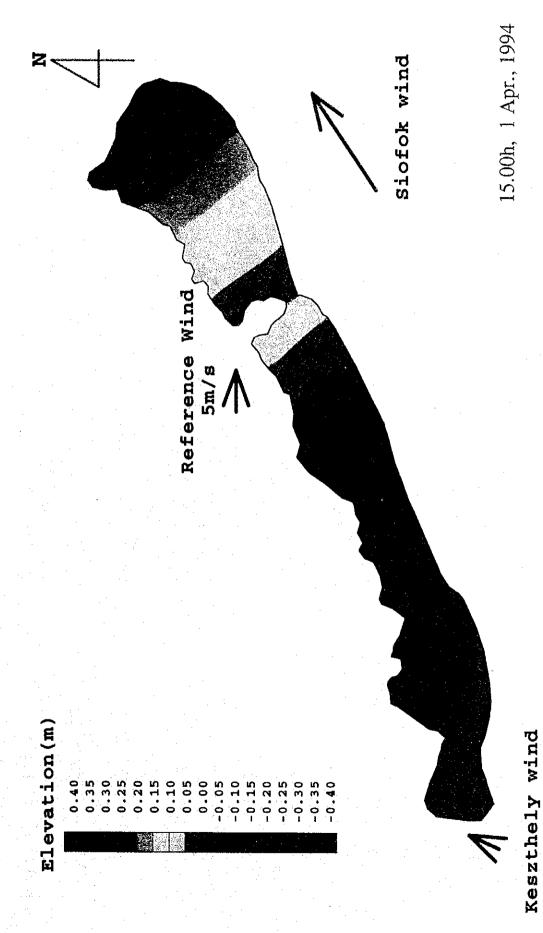


Figure 3.11 Water Surface Elevation during Storm Event, 31 March-3 April, 1994

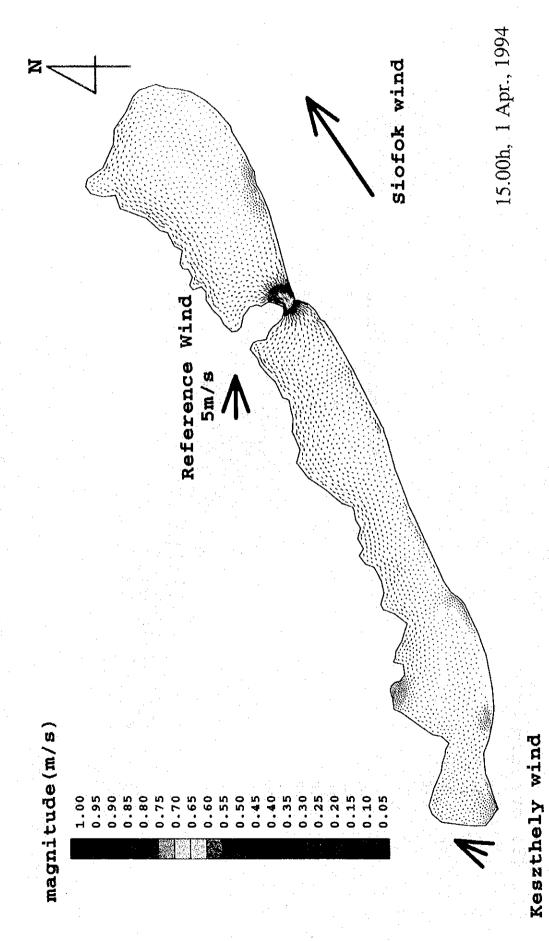


Figure 3.12 Flow Field during Storm Event, 31 March-3 April, 1994

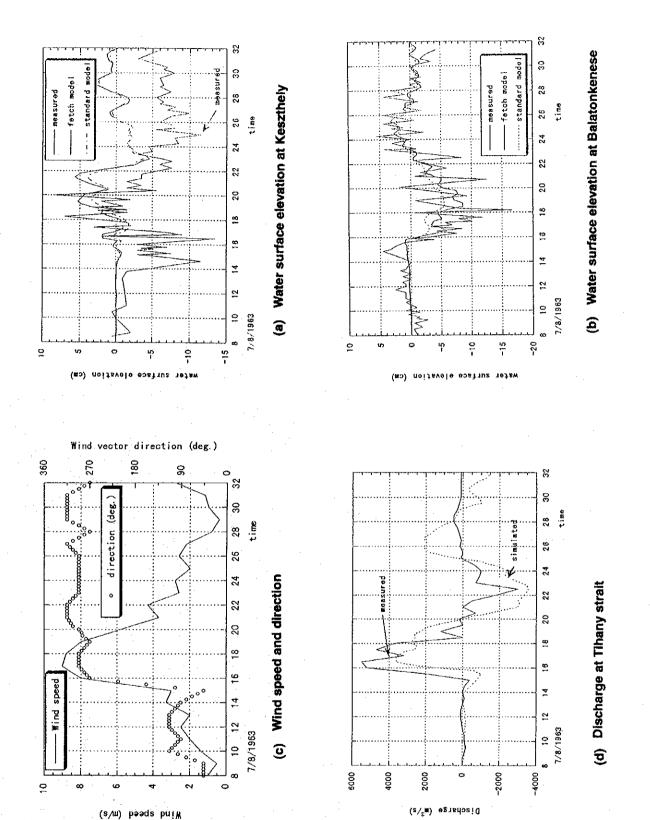


Figure 3.13 Water Surface Elevation and Discharge Time-series during Storm Event, 8-9 July, 1963 (measured data from Muszkálay)

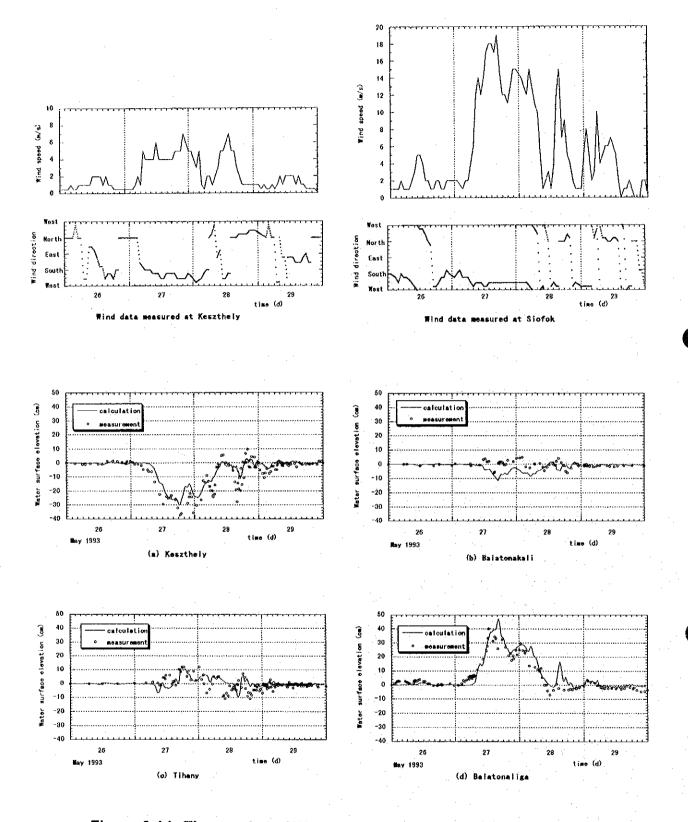
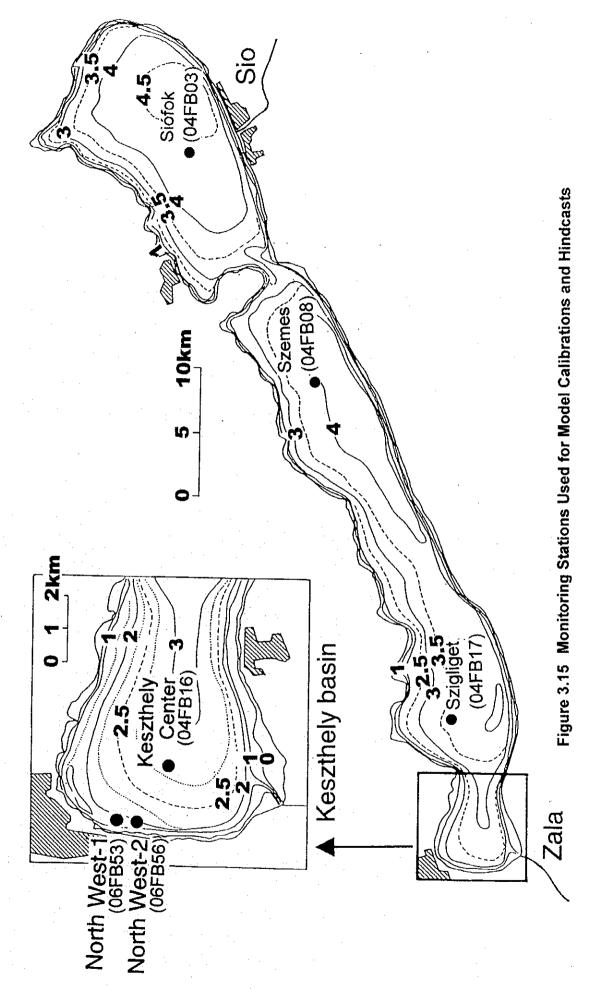



Figure 3.14 Time-series of Water Surface Elevation during Storm Event, 26-30 May, 1993 (measured data from KDT-KÖFE)

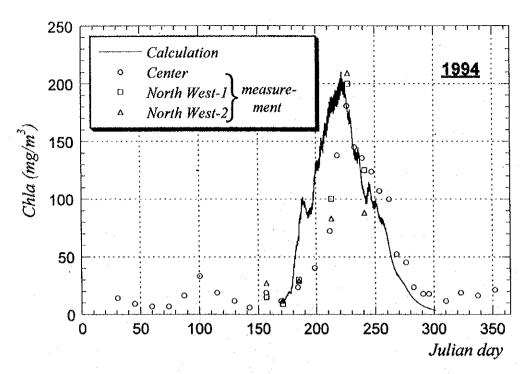


Figure 3.16 Chlorophyll-a Hindcast Compared with Measurements (Présing and KDT-KÖFE) in 1994

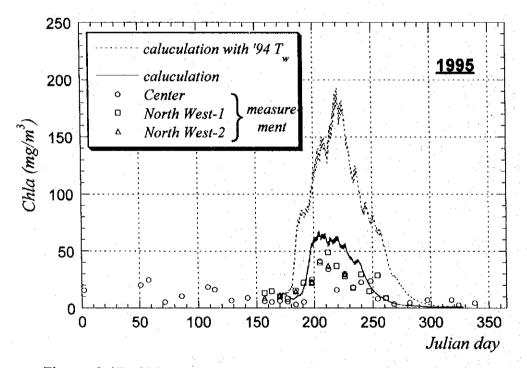
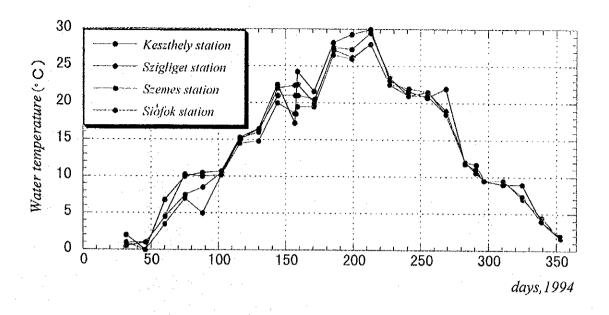



Figure 3.17 Chlorophyll-a Hindcast Compared with Measurements (KDT-KÖFE) in 1995

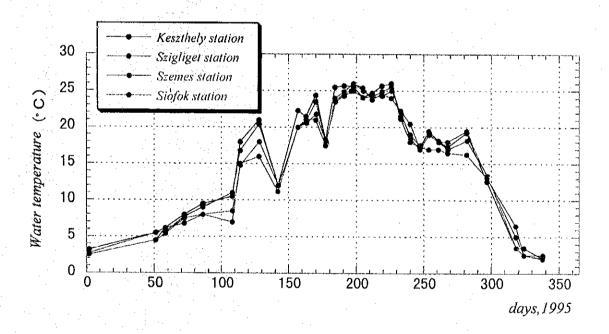


Figure 3.18 Water Temperatures in Each Basin of Lake Balaton (KDT-VIZIG)

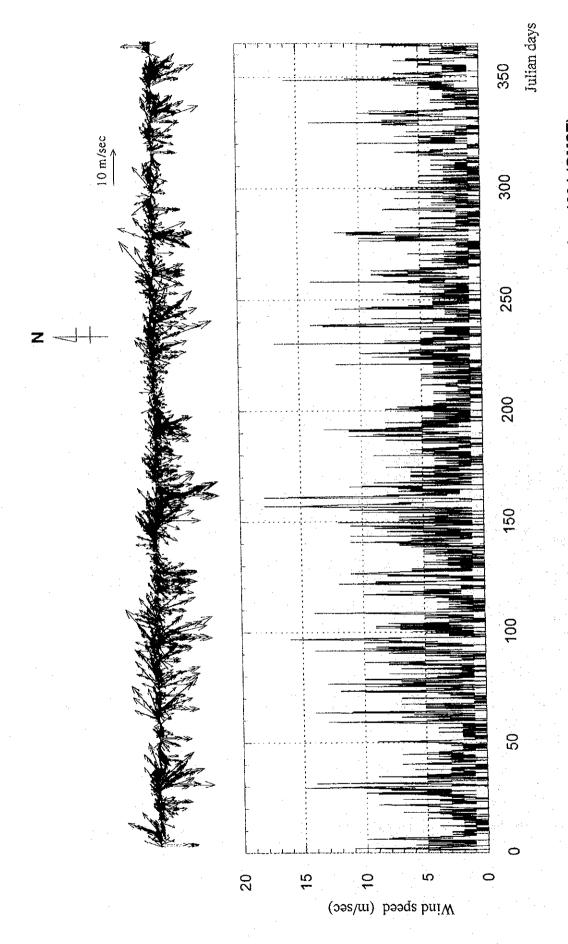


Figure 3.19 Wind-vector and Wind-speed at the Siófok Weather Station, 1994 (OMSZ)

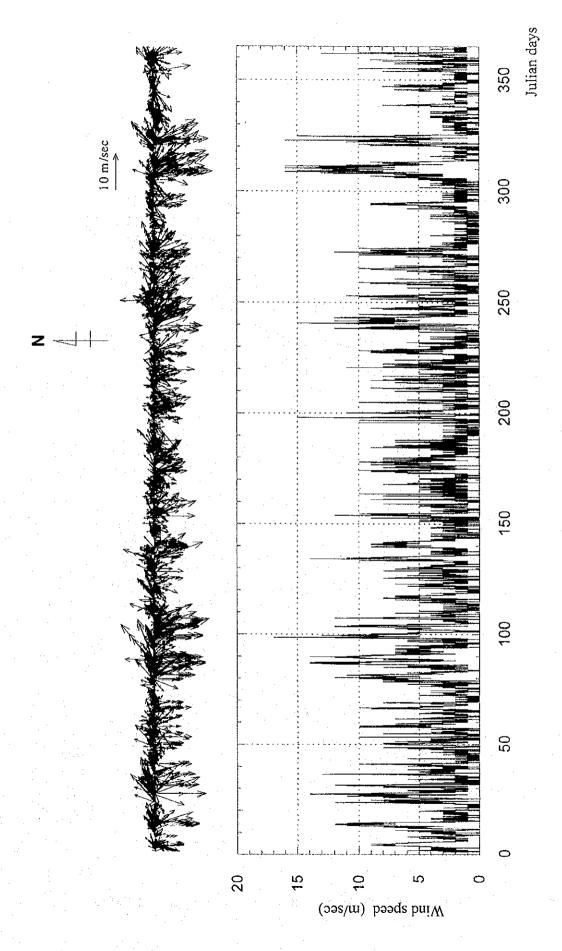
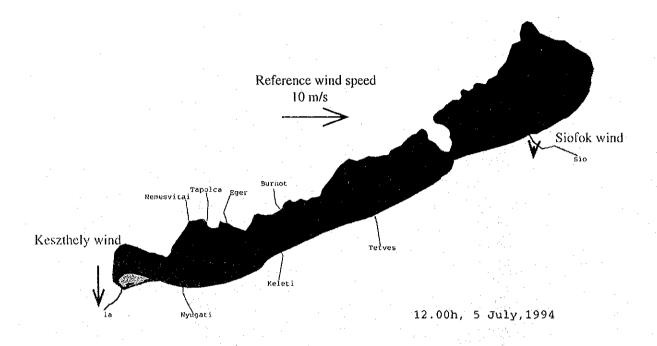



Figure 3.20 Wind-vector and Wind-speed at the Siófok Weather Station, 1995 (OMSZ)

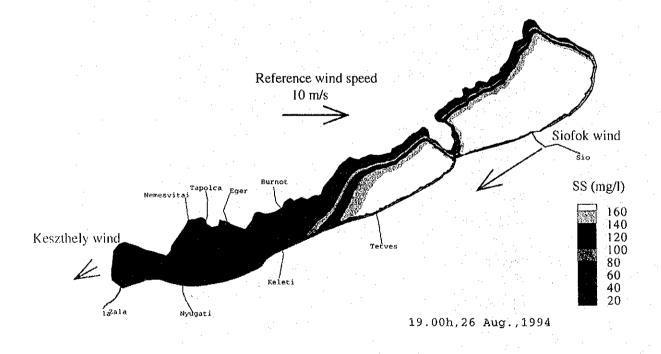


Figure 3.21 Suspended Sediment Distribution Calculated by WQSM

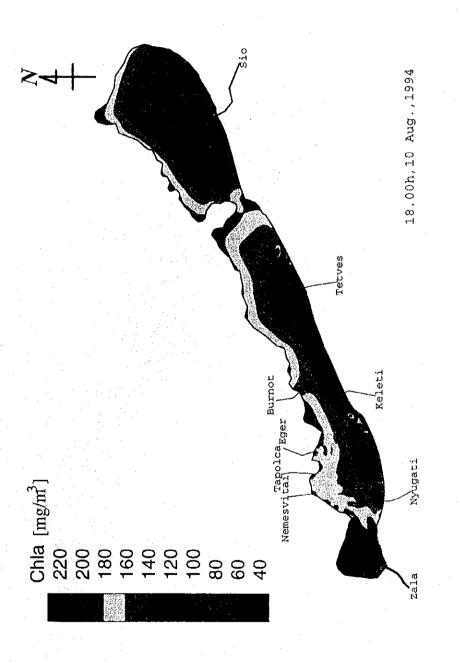


Figure 3.22 Chla Distribution at the Time of Peak Bloom in Keszthely Bay in 1994

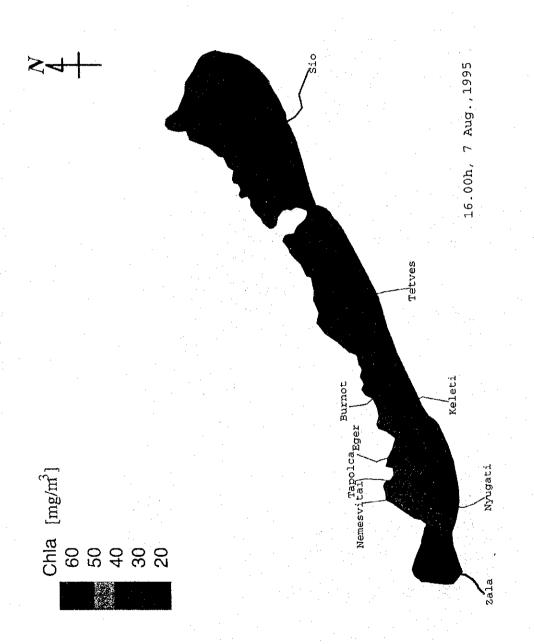


Figure 3.23 Chla Distribution at the Time of Peak Bloom in Keszthely Bay in 1995

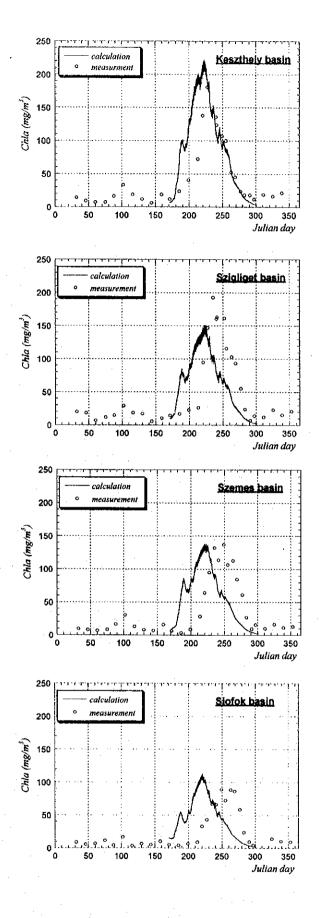


Figure 3.24 Computed, by WQSM, and Measured (KDT-KÖFE) Time-series of *Chla* in 1994

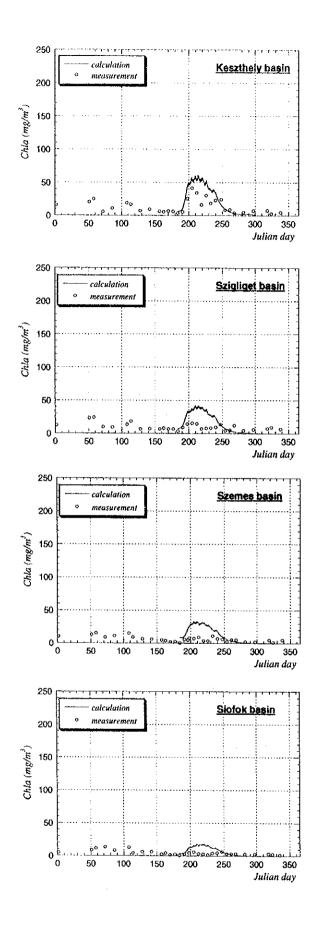
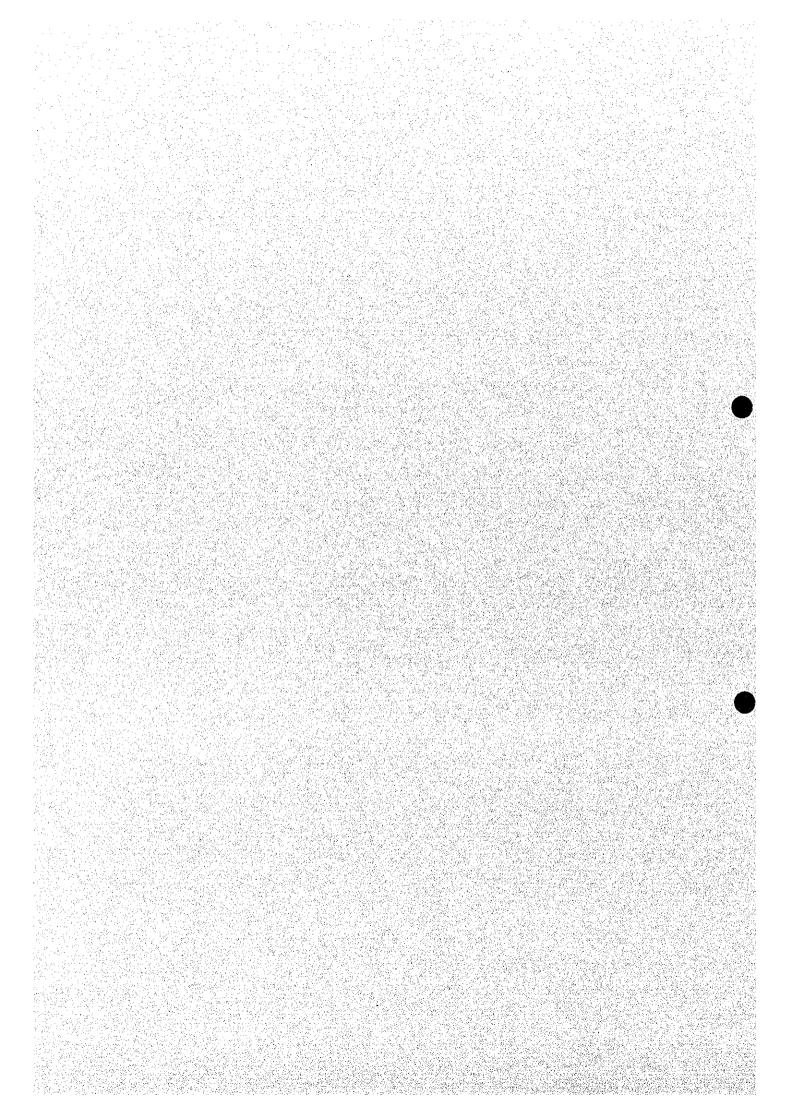



Figure 3.25 Computed, by WQSM, and Measured (KDT-KÖFE) Time-series of Chla in 1995

CHAPTER - 4

STUDY OF THE COMPREHENSIVE PLAN

CHAPTER - 4

STUDY OF THE COMPREHENSIVE PLAN

1. FRAMEWORK OF THE COMPREHENSIVE PLAN

1.1 TARGETS

(1) Target Year

A significant improvement of lake water quality would not be achieved within a short time period even if any control measures are realized, in other words, there would be time lag between pollution load reduction and lake water quality improvement.

On the other hand, a target year in the too far future would make it difficult to predict future conditions that compose the background of the plan. Uncertain future conditions would make the Comprehensive Plan unreliable.

The Government of Hungary compiled almost all kinds of necessary improvement measures for lake environment for the period from 1994 until 2010 in the "Action Plan for the Environmental Protection of Lake Balaton" (Resolution No.1049/1994). "Water Management Development Program for Lake Balaton (1995-2000)" (Governmental resolution No.2100/1995) has also set up the target year at the year 2010. The Comprehensive Plan considered in the Study should respect these plans.

Taking the above into account, the target year is set up as 2010.

(2) Targets for Water Quality Improvement

Target is determined following the existing plan "Water Management Development Program for Lake Balaton from 1995 to 2000" (Governmental resolution No.2100/1995). Target water qualities are converted into trophic categories as shown below, based on the classification of OECD.

Target Area	Water Quality	(Trophic Category)
(Sub-basin)	Recent Situation	Target
Keszthely	"Hypertrophic" or "Eutrophic"	"Eutrophic"
Szigliget	"Hypertrophic" or "Eutrophic"	slightly "Eutrophic"
Szemes	"Eutrophie"	"Mesotrophic"
Siófok .	"Eutrophic" or "Mesotrophic"	"Mesotrophic"

The target is not necessarily possible water quality levels to be realized by possible technology, but desirable levels to be recovered within a decade. Therefore, it might be revised at the final stage of the Study when feasibility of environmental improvement measures are concluded.

In general, targets of water quality improvement are set up so as to secure existing and/or expected water uses of targeted water bodies. There are five significant water uses in Balaton, *i.e.* water supply, irrigation, industrial water, fishery, and tourism. It might be possible to determine the targets by referring to water quality standards for each water use. However, in case of Lake Balaton, problems are caused by the aesthetic or sensitive deterioration of the lake water quality, which is strongly related to the eutrophication conditions of the lake, rather than by the hygienic or chemical deterioration. Thus, it is more practical to set up the targets by trophic conditions than by various water quality items.

1.2 FUTURE CONDITIONS

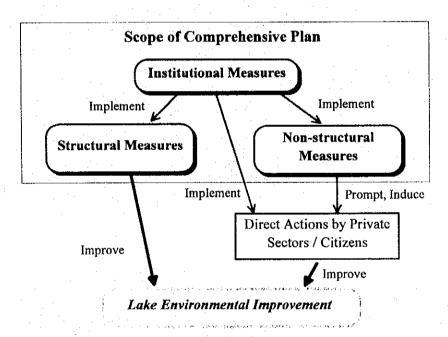
The future conditions adopted in the Comprehensive Plan are assumed to be same as the present. Following three facts may be keywords in the prediction of the Hungarian future conditions:

- Hungary is a country well developed and industrialized in past.
- Hungarian economy is in the transitional state since the adaptation of market economy.
- Hungary will join the European Union (EU) in the near future.

The first fact suggests stability in changes of population and industrial structure. In European countries including Hungary, where industrialization has gradually taken place with experiencing various trials and errors in its process, it is considered that the industrial structure has reached to a stable state. It would hardly occur that population in agricultural industry rapidly shifts to manufacturing industry, causing eruption of urban population and rapid change of land use pattern, which are common causes of environmental concerns in developing countries.

On the other hand, the second factor may indicate a potential increase of its economy. It is said that the production levels decreased by 30% just after the corruption of the socialism system, by losing its markets in eastern European countries and the former Soviet Union. Although recovery of the production level has not been significant, it is a matter of fact that potential demands exist there. Hungarian production level could be affected by recovery of the former markets. However, it would be difficult to predict its timing and degree.

Joining EU may cause substantial quantitative and qualitative structural changes in Hungarian economy, which are expected to help growth of its economy as it was so in Greek and Portuguese. However, it is difficult to draw up its transitional or final state quantitatively at present, too.


As such, future trend of Hungarian economy would be understood as a combination of a stable trend, which is a result of historical industrialization and development, and external factors, which probably increase its economy. Although the external factors could not be neglected, they are too uncertain to determine future conditions for a framework of a master plan or comprehensive plan, where quantitative expression is required. Therefore, it is judged to be more realistic to fix the present conditions towards the target year than to newly forecast future conditions based on uncertain factors.

2. CONCEPTS OF THE COMPREHENSIVE PLAN

From the viewpoint of governmental side, possible efforts to improve the Lake environment are composed of following three components:

- Structural measures
- Non-structural measures
- Institutional measures

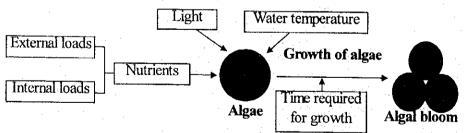
The concept is illustrated below.

In the Study, a structural measure is defined as the measure taken by the governmental side to physically improve Lake Balaton environment.

A non-structural measure is defined as the measure aiming to motivate citizens or private sector to take some actions directly improving water quality (hereinafter referred to as "direct actions"). For example, when the government enacts water quality standards for industrial wastewater discharge for the reduction of industrial pollution loads, the purpose can be achieved by some direct actions of the manufacturer such as installation of wastewater treatment facility or revision of production process for reducing discharged

loads. Water quality standards themselves only can prompt or induce such direct actions.

Institutional measures are required to provide an institutional framework which makes implementation of the abovementioned measures possible.


The fact that a prevention or mitigation of the eutrophication problems of large shallow lakes is extremely difficult has been accepted worldwide. Lake Balaton is not an exceptional case and there is no panacea to improve water quality of the lake. Tackling with this difficult problem necessitates step-by step and hardworking efforts of not only central government but also local governments and even individual citizens. Thus, non-structural and institutional measures should be studied in the Comprehensive Plan as well as structural measures, even though their effects can not be estimated quantitatively.

Furthermore, most environmental improvement projects are implemented as public works because beneficiaries of such projects are hardly specified, resulting in extreme difficulty to recover the project cost from beneficiaries. Whether environmental improvement projects are realized or not depends on the state or local governments' policies, which are to be affected by citizens' or taxpayers' will. Therefore, all of three components should be studied to make the Comprehensive Plan more realistic.

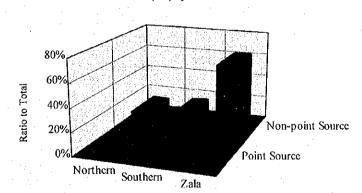
3. STRUCTURAL MEASURES

3.1 GENERAL

Deterioration of Lake Balaton environment is caused by excess growth of algae, which was resulted in along with progress of the eutrophication process of the lake. Major factors that affect the algal growth is schematically illustrated in a figure below.

The growth of algae can be controlled if one of these factors can be controlled. There are various methods, which are actually in operation or proposed, aiming to control the above growth factors, as summarized in *Table 4.1* and *Table 4.2*. Table 4.1 presents methods other than the nutrient reduction together with applicability to Lake Balaton, while *Table 4.2* presents methods to reduce nutrient loads to the lake.

(1) Methods Other Than the Nutrient Reduction


As shown in *Table 4.1*, those methods mainly related to lake's physical conditions are of site specific and are applicable only in a limited scale. The size of Lake Balaton, even it is divided into sub-basins, apparently exceeds an applicable scale. In addition, some of them will damage the water uses and injure the beauty of the Lake. Thus, it is judged that those methods can be excluded from further study.

(2) Methods for Nutrient Reduction

Table 4.2 presents methods for nutrient reduction. As discussed in the previous section, it is widely accepted that phosphorous is the limiting factor of algal growth in Lake Balaton. Thus, the nutrient control means the phosphorous control in the following parts of this report. The table also indicates present status of application of each method in the Lake Balaton catchment. The sources are classified into internal sources and external sources, and the external sources are further divided into point sources and non-point sources. Existing measures applied to the lake cover all nutrient sources.

1) External load

According to results of the pollution load analysis in the Study, non-point pollution loads are dominant as shown in the figure below, counting about 80 % of total external pollution loads. This means that further point source loads reduction would not have a significant water quality improvement effect, and the reduction of non-point source load should have a higher priority in the Comprehensive Plan.

Pollution Loads (TP) by Catchments and Sources

Several measures have been already installed in the catchment as shown in *Table 4.2*, however, implementation of those measures is considered as trials and their effects have not been confirmed, except the Kis-Balaton project. In general, effective methods to control non-point source loads have not been technically established, although there are various trials in the world. The

Comprehensive Plan should include development of measures for non-point source reduction.

2) Internal load

The water quality of Lake Balaton has not shown significant improvement, while external loads have been substantially reduced by development of sewerage system with phosphorous removal and effluent diversion. This fact suggests considerable contribution of the internal load to the lake water quality.

3) Comparison between external and internal loads reduction measures

Table 4.3 shows the values of annual maximum chlorophyll-a concentration by sub-basin of the lake. These values for following cases have been predicted, using WQSM developed in the Study.

- Hindcast: A base case. Actual values of chlorophyll-a concentration in 1994 and 1995.
- Case A1: Phosphorous loads of all rivers flowing to the lake are reduced by 30 percent.
- Case A2: Phosphorous loads of all direct runoff such as urban drainage channels are reduced by 30 percent.
- Case B1: Phosphorous loads of bottom sediment of all sub-basins are reduced by 40 percent.
- Case B2: Phosphorous load of bottom sediment of the Keszthely basin is reduced by 40 percent.

Spatial distribution of annual maximum chlorophyll-a concentration for these cases are shown in Figures $4.1 \sim 4.5$.

The results show the following predictions:

- Load reduction measures for bottom sediment of all sub-basins would reduce chlorophyll-a concentration (annual maximum) of the lake by 9~17 percent.
- Measures for bottom sediment of the Keszthely basin would reduce chlorophyll-a concentration of the basin by 10~11 percent, however would contribute very little to chlorophyll-a reduction of other three subbasins.
- External load reduction measures for all rivers or direct run-off flowing to the lake would reduce chlorophyll-a concentration (annual maximum) of the lake by at most 3 percent.
- Quick effect would be expected from internal load reduction rather than external load reduction.

These predictions may suggest that internal load reduction measures should be taken with the highest priority to realize quick effect something like a surgical operation. Such a quick effect may not be expected from external load reduction. The effect of external load reduction may be slow but steady like preventive medicine, since external loads are sources of internal loads.

Based on these facts, both internal and external load reduction measures are studied and included in the Comprehensive Plan. This general approach can be justified from the viewpoints of continuation of the present policies and coordination of existing projects and plans.

3.2 Measures for External Loads Reduction

(1) Measures for Non-point Source Loads Reduction

Non-point source loads can be reduced by reduction of runoff into a lake directly or indirectly through rivers/drainage channels, or purification of river water discharging to a lake, or combination of both.

In rural areas, soil erosion control works consisting of sedimentation and infiltration of storm water are applicable measures for non-point source loads reduction. Infiltration of storm water can not only reduce peak flood discharge but also feed a river base flow. Therefore, the erosion control works will improve overall water environment, if harmful materials such as chemicals and heavy metals are not contained in soils.

Urban storm runoff occurs within a short time like a few hours after a storm rainfall, and carries accumulated sediments as well as solid wastes and unnatural pollutants. As a result, storm water from urban area is highly polluted. Taking this fact into account, water flows from urban areas should be treated as much as possible, if collection of the water flows is not difficult.

Following measures for reduction of non-point source loads are evaluated in this study.

- River water purification to cope with the loads from its whole watershed
- Soil erosion control of rural areas in upper catchment areas
- Urban runoff control in direct catchment areas which have no typical rivers

Figure 4.6 shows a classification of measures for non-point source loads reduction based on location. It is remarkable that these measures have already been practiced in Hungary since 1980's. For example, river water purification facilities have been constructed for several rivers such as Lesence patak, Lovasi séd, Örvényesi séd, etc., the retention facility in Zánka is a soil erosion control system in an agricultural area, and the infiltration system at the mouth of Szent László árok is one of the measures for pollution loads from urban area. However, the effects on pollution loads reduction of those facilities have not

been examined due to lack of periodical monitoring, or the scale of the facilities were not necessarily designed with reasonable engineering grounds.

1) River water purification

There are various methods to remove phosphorous from natural water bodies. Among them, the followings are selected as generally possible methods for river water purification.

- Settling reservoir method
- Coagulation sedimentation method
- Anaerobic-aerobic activated sludge method
- Mixture of coagulation and activated sludge method
- Soil infiltration method
- Crystallization for phosphorous removal method
- Vegetation purification method

Applicability of above methods to Lake Balaton has been evaluated as shown in *Table 4.4*. Evaluation criteria include availability of land, topographic conditions, hydrological/hydraulic conditions of rivers, natural conditions around the lake, construction/maintenance costs, environmental acceptability, phosphorous removal efficiency, easiness of operation and maintenance, and examples to follow. Finally, following three methods have been selected as applicable ones taking local characteristics of Lake Balaton into account.

a. Settling reservoir method

This method requires a large area for the site, but land for the site can be easily found in the middle reach of river. Maintenance cost is low, though construction cost is relatively high. System of the facility is simple and maintenance is easy. There are some examples in the middle reaches of rivers around Lake Balaton.

b. Vegetation purification method

Comparing to the settling pond method, this method requires smaller area of site, construction cost is lower, removal efficiency is almost same, and maintenance cost is higher. Land for the site would be acquired along the river or around the river mouth where reed bushes are grown. This is advantageous to ecosystem and natural scenic view, which means that this method is environmentally friendly. There are some examples in the lower reaches of rivers around Lake Balaton.

c. Coagulation sedimentation method

This method has been practiced in sewage or industrial wastewater treatment. Comparing to the above-mentioned two methods, phosphorous removal efficiency is higher, land for site is smaller, construction and maintenance costs are higher, and operation and maintenance is not easier due to machinery system. This method uses chemicals as coagulants, which may be not environmentally friendly. This method would be advantageous when land area for the site is limited.

2) Soil erosion control of rural areas in upper catchment areas

Assuming that the soil particles larger than 0.02 mm are settled, 55 % of the sediments can be reduced by sedimentation, judging from the soil particle distribution in the Study Area.

The volume of sediments caused by surface runoff would be reduced as follows:

$$Sr = 0.55 * Ar * Ep / \Sigma (Ai * Epi)$$

where, Sr: reduction of sediments

Ar: total catchment area covered by Erosion Control Facilities

Ep: average potential erosion volume

Ai: area of certain land use i

Epi: potential erosion volume of certain land use i

The proposed erosion control areas are selected as shown in *Figure 4.7* based on following conditions;

- soil erosion potential analyzed by MTA-TAKI is more than 1 ton/ha/year,
- infiltration capacity is less than 150 mm/hour, and
- excluding forest areas.

Total area covered by the facilities is 6,362 ha, however, this area is something like a soil erosion potential area determined on the basis of the existing analysis by MTA-TAKI. It should be noted that actual erosion would greatly be depend on the local conditions, and it would be necessary to conduct a survey to confirm the areas actually eroded.

3) Urban run-off control in direct catchment areas

In direct catchment areas many small drainage channels and small creeks directly flow into the lake. The most important things are how to intercept these waters and how to transport them to the purification facilities. Coagulation sedimentation method would be applicable to water purification due to the limitation of land acquisition in urban area.

Pipelines are installed paralleling the lake shoreline to intercept waters from many small drains or creeks and lead them to the treatment facilities.

(2) Measures for Point Source Loads Reduction

In the catchment area of Lake Balaton, pollution loads of point sources are considerably controlled and treated. Therefore only the followings are considered as remaining measures for point source loads.

- Further development of sewerage systems
- Upgrading/improvement of sewage treatment level

1) Further development of sewerage systems

Permanent population (395,900) and seasonal population (673,600) discharge wastewater in the whole catchment area of Lake Balaton. About 40% of them are provided with public sewerage systems (off-site systems) and about 50% of them are provided with public utility substitutions (on-site systems).

According to the existing sewerage development program based on the governmental resolutions No.2100/1995 and No.1068/1996, public sewerage systems are to be provided for about 920,000 persons equivalent to 86 % of total population in the whole catchment area, which means that present service level will be doubled by the year 2010. It is expected that sewerage coverage ratio will significantly increase in the southern catchment area. On the other hand, the full-scale program need a great amount of investment, approximately 53,000 million HUF estimated by the existing program in 1996.

The program should be accelerated to follow the planned schedule as much as possible from the hygienic point of view. The benefit would be more significant in villages or cities where groundwater is used for drinking water and polluted by untreated or badly treated sewage. However it may not be expected that the program will contribute so much to reduction of phosphorous loads flowing into Lake Balaton in the whole catchment area. Phosphorous load is reduced by a natural-purification effect during flowing down on/in the ground, and the efficiency of sewage treatment system can not exceed that of the natural-purification where the load is discharged far from the lake.

2) Upgrading/improvement of sewage treatment level

The governmental resolution No.2100/1995 prescribes 95% nutrient removal in case of treated water being led directly to the lake and 80% nutrient removal in case of being led indirectly to the lake.

For determination of water quality of effluent from sewage treatment plants in the area, the program has targeted limit values of T-P 0.5 mg/l ~0.7 mg/l in the lakeside areas and cities of the catchment area and 1.8 mg/l in other settlements of the catchment area.

According to the data in recent years (1994~1996), effluents from Zalaegerszeg STP (sewage treatment plant), Keszthely STP, and Tapolca STP did not meet these requirements. These three plants discharge relatively large quantity of treated water into the western part of Lake Balaton (the Keszthely and the Szigliget basins) even if it is indirectly led to the lake; about 15,800 m³/day (Zalaegerszeg STP), 12,000 m³/day (Keszthely STP), and 4,200 m³/day (Tapolca STP). Furthermore capacities of Zalaegerszeg STP and Keszthely STP will be expanded to 22,700 m³/day and 31,000 m³/day respectively by 2010 according to the existing program. Therefore, upgrading/improvement of these three major plants should be emphasized. It would be technically possible if an advanced wastewater treatment is properly applied.

(3) Evaluation of External Loads Reduction Measures

1) Phosphorous reduction efficiency

River water purification

The lower reservoir of Kis-Balaton is expected to reduce T-P load of Zala River by 30~40% as a long-term effect. As already mentioned in the chapter of pollution load analysis, Zala River discharges approximately 45 tons/year of T-P load into Lake Balaton. Thus the lower Kis-Balaton would reduce T-P load to the lake by 14~18 tons/year.

As a whole, river water purification systems are expected to reduce T-P load discharged into Lake Balaton by 30 %. The total T-P load of rivers except Zala River is estimated to be 53 tons/year (including T-P load of four stormwater pumping stations). Thus the river water purification systems except Kis-Balaton would reduce T-P load to the lake by 16 tons/year.

Soil erosion control of rural areas in upper catchment areas

Reduction of TP by soil erosion control in upper rural areas is estimated based on the equation below:

$$\frac{\sum E_{pi} \times A_{ci}}{\sum E_{pi} \times A_{i}} \times L_{rural} \times E_{TP} = L_{reduction}$$

where i: erosion potential category,

erosion potential (ton/ha/year),

area covered by the facilities with erosion potential of $E_m(ha)$,

 A_i : area with erosion potential of $E_{ni}(ha)$,

 L_{nural} : total TP load from rural areas (tonTP/year),

reduction efficiency for TP, $L_{reduction}$: reduction of TP (tonTP/year)

Assuming E_{TP} is about a half of reduction efficiency of SS, which is 0.55 based on the soil particle distribution of the Study Area, E_{TP} of 0.3 is employed. The total erosion potential in the area covered by the erosion control facilities is estimated by MTA-TAKI Data to be $\Sigma(E_m \times A_{ci}) = 25,411$ tons/year, and the total erosion potential in rural areas in the whole catchment area to be $\Sigma(E_{pi} \times A_i) = 61,452$ tons/year. Thus values of L_{reduction} are estimated as follows:

Catchment Area	L _{rural} (tonsP/year)	L _{reduction} (tonsP/year)
Northern	24.9	3.1
Southern	30.5	3.8
Zala (Western)	30.1	3.7
total	85.5	10.6

Total TP load reduction in whole catchment area by soil erosion control in upper rural areas is estimated 10.6 tons/year, consisting of 3.1 tons/year in the northern area, 3.8 ton/year in the southern area, and 3.7 ton/year in the western area.

Urban run-off control in direct catchment areas

As a whole, urban run-off control systems are expected to reduce T-P load discharged into Lake Balaton by 30 %. As already mentioned in the chapter of pollution load analysis, the total T-P load of whole systems is estimated to be 32 tons/year. Thus the urban run-off control systems would reduce T-P load to the lake by 10 tons/year.

Further development of sewerage systems

T-P load reduction by further development of sewerage systems is estimated as follows:

Catchment Area	Northern	Western	Southern	total
Population newly covered by sewerage (person)	21,355	28,869	30,250	80,474
T-P load reduction (gray water: t/year) unit load = 0.5g/d/c	3.9	5.3	5.5	14.7

The figures mean loads of gray water discharged from houses except excreta, because the load of excreta is treated by cesspool even at present though its contribution to external load is uncertain. About 15 tons/year of T-P load would be reduced before being collected by sewer network. These loads are collected by sewer network, treated by sewage treatment plants and finally discharged to the lake or diverted to other catchment areas.

Upgrading/improvement of sewage treatment level

When three major sewage treatment plants are upgraded or improved to meet the target (T-P 0.7 mg/l) of the sewerage development program, T-P load will be reduced as follows:

Sewage Treatment Plant	Zalaegerszeg	Keszthely	Tapolca	total
Present T-P concentration of effluent (mg/l)	1.0	2.8	1.1	-
Future treatment capacity (m³/day)	22,700	31,000	4,800	58,500
Net reduction of T-P load by upgrading or improvement (ton/year)	2.5	23.8	0.7	27.0

About 27 tons/year of T-P load would be reduced after being treated by these major three plants. These loads are finally discharged to Lake Balaton through rivers or channel. Thus the total T-P load discharged to the lake would be reduced by 22 tons/year when runoff rate is assumed 0.8.

2) Cost efficiency

River water purification

Kis Balaton Project would cost 8,278,690 thousand HUF (construction) and 845,500 thousand HUF/year (O/M). This means that the total project cost for 20 years is 25,189,000 thousand HUF to reduce T-P load by 14~18 tons/year. This means that an investment of one (1) HUF can reduce T-P load by 11~14 mgP/year.

As for purification facilities of other rivers than Zala River, the total project cost for 20 years is 9,054,200 thousand HUF to reduce T-P load by 16 tons/year. This means that an investment of one (1) HUF can reduce T-P load by 35 mgP/year.

Soil erosion control of rural areas in upper catchment areas

The most likely facility is a type of settling reservoir or sedimentation pond. A typical facility is shown in *Figure 4.8*, which is designed for a capacity of 0.28 m³/sec to cover a catchment area of 1 km². Assuming 0.116 m³/sec (=10,000 m³/day) is a typical design capacity, the construction cost of settling reservoir is 326,190 thousand HUF and the O/M cost is 370 thousand HUF/year (see Appendix-D of Supporting Report). The total area covered by soil erosion facilities is estimated 6,362 ha, thus the total project cost for 20 years is 51,228,000 thousand HUF. This means that an investment of one (1) HUF can reduce T-P load by 4 mgP/year.

Urban run-off control in direct catchment areas

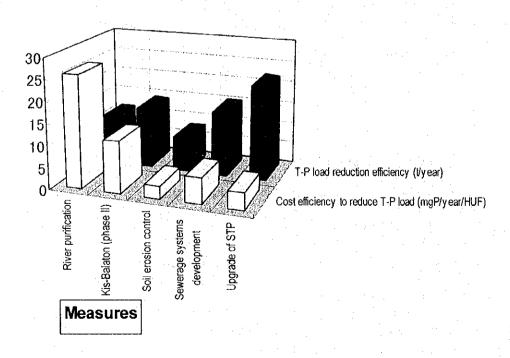
Cost efficiency of urban run-off control must be lower than that of river water purification. Because, this method needs more costs for collection of run-off water from many small creeks and drains and for land acquisition than the river water purification method does.

Further development of sewerage systems

According to the report on sewerage development by KHVM (1996), the total project cost is about 53,000,000 thousand HUF excluding O/M cost. T-P load would be reduced by 15 tons/year at most. Thus an investment of one (1) HUF can reduce T-P load by 6 mgP/year.

Upgrading/improvement of sewage treatment level

According to the latest report of KHVM (1998), cost efficiency for upgrading of the existing sewage treatment plant (STP) is several hundred HUF/year to reduce one (1) gram of T-P load. For example, improvement of sewage treatment level of Tapolca STP (from T-P 1.8 mg/l to 0.7 mg/l) means that an investment of one (1) HUF can reduce T-P load by 4 mgP/year.


3) Results of evaluation

Above discussions are summarized in the following table.

From the view point of cost efficiency, river purification systems including Kis-Balaton are the most effective measures for external phosphorous reduction.

Upgrading/improvement of sewage treatment level is not cost-effective, but it would be the most effective measures from the technical point of view in order to reduce phosphorous load intensively.

Type of Measures	T-P load Reduction Efficiency (tons/year)	Cost Efficiency to reduce T-P load (mgP/year/HUF)	
River water purification (Kis-Balaton)	14~18	11~14	
River water purification (29 rivers (except Zala River) and 4 pumping stations)	16	35	
Soil erosion control of rural areas	11	4	
Further development of sewerage systems	15	6	
Upgrading/improvement of sewage treatment level	22	4	

