Table 1 Drilling Data for the Wells

)			Ì							
L	location		Dia	Total	S.W.L	S.W.L ground casing	casing	casing	ر د	Screen position,	Scr	Gravel	Drilling	-	sampling comple.	comple.	Pump.	Water
Ne.	New (Lat, Long.)	Remarks	į i		<u>9</u>	jevel	stickup	material			Total	Total pack	method	R G	date	date	test (cont.) D.W.L/Disch	(hardness)
ò	(deg, min, sec)		(mm)	(m)	(AGLm	Œ	Œ	Œ					111					
		Fact of the Park	244	200.3	11.12	2165	0.29	200	56-6 FRP 152-	56-68, 86-92, 104-116, 128-140, 152-170, 182-194	2	yes		SM-300H 8th Sep	8th Sep	3rd Sep.	87.91m/2001/mi	1000
4			244	193.0		i ·	0.18	193	91-1 FRP 157	91-103, 109-127, 133-139, 157-169, 175-187,	8	yes	DTH, Rotary	SM-300H	6th Aug	4th Aug	SM.300H 6th Aug 4th Aug 7.8m/60l/min	3725
A A	N 46, 24, 29 F 96, 11, 19	Upstreem of Khadaasan	244	150.3	3.91	1	1	150		12.36, 60-72, 108-114, 138-144	84	yes	DTH, Rotary	SM-300H	13th Oct.	10th Oct.	SM-300H 13th Oct. 10th Oct. 64.58m/600l/mi	363
A 4		N 46, 22, 50 Across the oil F 96, 16, 42 reservoir	244	160.2	4.61	2120	0.18		16-2 RP 148	16-22, 28-40, 64-70, 100-118, 148-154	48	yes	Rotary	SM-300H	5th Oct.	23rd Sep.	SM-300H 5th Oct. 23rd Sep. 16.1m/1000l/mi	1875
-	<u> </u>			703.8	` 	1					228							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ğ	N 46, 22, 10 E 96, 14, 17	West of the park	244	56.2	20.14	2175	0.23	99	FRP 8-20	8-20, 26-38, 44-50	8	yes	Rotary	URB-2A	17th Sep.	5th Sep.	URB-2A 17th Sep. 5th Sep. 32.52m/74l/min	875
B-2		Easten edge of Sukhiin hooloi	244			2030	0.2	2	FRP 31-	31-43, 49-61	24	yes	Rotary	URB-3A	15th Aug	15th Aug 8th Aug	22.61m/30l/min	845
B-3		1	244	131.0	25.7	2050	0.33	130 FRP	RP 76-5	76-94, 106-118	8	yes	Rotary	URB-3A	URB-3A 6th July	10th July	10th July 116m/80l/min	1950
Ä		on a dry river	244	41.6	4.2	2020	0.1	41	FRP 5-23	5-23, 29-41	30	yes	Rotary	URB-2A	2nd July	20th June	URB-2A 2nd July 20th June 14.8m/75l/min	006
3.5	N 46, 20, 24 E 96, 19, 01	on a ex-riverbase	244	80.0	3.08	2157	0.2	္ထ	FRP 26-	26-38, 44-56, 68-74	30	yes	Rotary	URB-2A	19th July	10th July	19th July 10th July 23m/4001/min	225
9-9		outskirt of a fan on a small stream	244	120.0	24.51	2190	0.2	120	24- FRP 101	24-42, 48-54, 60-78 108-114	48	yes	Rotary	URB-2A	24th Sep.	5th Aug.	URB-2A 24th Sep. 5th Aug. 25.05m/605l/mi	258
	<u> </u>				:						192	-						
				1206.2							420							
ا																		

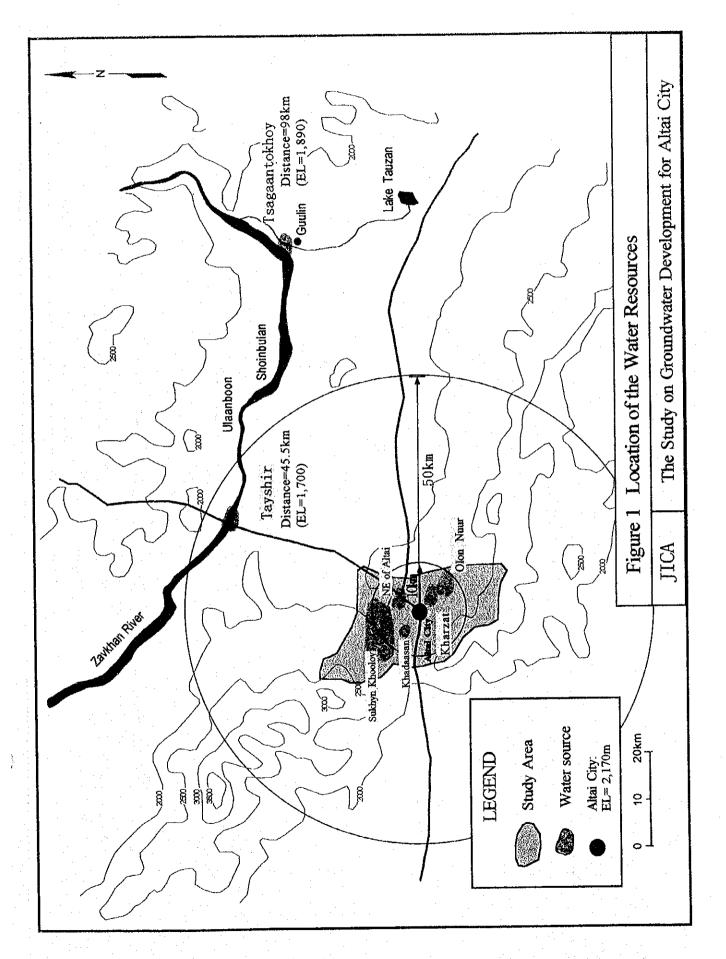

* Completion date: defined as the date when the rig was removed

Table 2 Water Quality for Water Supply Facilities

ie ie			Reserve	Reservoir water			Tap water			Water	Water wagon		Stor	Stored water in ger	ger		Mongolian
ź	ltem	Unit	DR-1	DR-2	DT-1	DT-2	DT-3	DT-4	DT-5	DW-1	DW-2	DG-1	DG-2	DG-3	DG-4	DG-5	Standard
Ŀ	Ha		8.2-8.3	8.2-8.3	8,1-8.3	8.2-8.4	7.9-8.2	8.0-8.1	8.2	1678	58.63	8.2	8.0-8.3	7.8-8.3	8.3	8.3	6.5-8.5
7	Temperature	ပ္	3.0-5.2	4.0-5.2	12.0-20.0	5.0-20.0	7.0-18.0	9.0-10.0	5.7-14.5	5.0-9.0	7.0-9.0	8.0-19.0	9.4-19.4	11.6-19.7	9.8-19.7	16.0-19.4	
ы	Odor	dilution factor	Ÿ	V	!>	[>	l>	<1	۲>	<1	\	⊽		-			NVB
4	Taste	dilution factor	⊽	~	[>	i>	<1	⊳	>	<1	⊽	⊽		-	~	⊽	IS2
s	Color	mg/l Pt scale	<1-4	4-I>	<1-7	9-1>	<1-2	×15.20	<1.2	2.0-5.0	<1.4 <1.4	2.0-4.0	2.0-4.0	<1-5	0Z-1×	<1-2	S 138
9	Turbidity	kaolin (JIS)	<1-2	⊽	l>	!>	i>	<1-5	<1-6	<1	Ī	<1-2	<1-2	I-i∨	<1-3	⊽	
10	Conductivity	mS/m(at 25°C)	58-85	54-93	54-68	57-93	54-82		98-95	58-94	58-85	55-86	56-73	58-69	54-75	53-64	
∞	8 Hardness	mg CaCO ₃ /I	265-310	240-300	220-288	188-250	220-300	05 1016	05.FEE	240-313	238-300	230-250	225-300	230-375	285-320	220-275	₹350
0	10 COD(KMn0, alkali)	mg O ₂ /1	<	⊽	1,0-2.0	1.0-2.0	<1-3.0	<	<1-1.5	<1-2.2	<1-2	<1-3	<1-3	<1-2	1.0-3.5	<1-2.8	
E	Nitrite	mg NO ₂ /1	40.01	<0.05	0.01-0.03	<0.01-0.13	0.01	<0.01	<0.01-0.02	<0.01	0.01	<0.01-0.02	<0.01	<0.01-0.5	<0.01-0.25	<0.01	
12	12 Nitrate	mg NO ₃ /1	4.0-7.4	3.1-8.6	0.4-7.0	4.6-7.0	4.7-8.0	0.4-9.0	4.1-8.2	4,2-9,2	3.0-2.0	4.0-8.0	4.0-8.2	4.1-9.4	4.9-7.0	2.0-9.0	≨ 44.3
15	15 Bicarbonate	mg HCO ₃ /i	217-244	232-250	214-275	232-250	220-244	220-262	177-275	244-366	214-266	238-275	214-256	226-305	220-275	214-275	
16	Carbonate	mg CO ₃ /I	0.86-1.22	1.00-1.25	1.00-1.73	0.97-2.50	0.77-1,39	0.69-0.97	1,12-1,38	1.09-11.57	1.35-2.68	0.87-1.50	0.89-2.03	0.77-1.79	1.73-1.99	1,70-2,18	
7	Calcium	mg Ca/l	24-30	21-30		22-26	25-29	26-38	22-27	20-40	26-70	24-44	11-28	23-52	25-32	24-27	≥100
7	Magnesium	mg Me/l	06.60	45.55	38	145C	37.55	18.87	10.00		38.46	34.46	43:39	105/14	\$2.62	38-42	≥30
2	22 Magnesium#	mg Mg/l	31							110							₹30
ដ	22 Magnesium##	mg Mg/l						1									₹30
23	Copper*	mg Cu/l	0.04-0.14	0,04-0.13	0.06-0.2	0.05-0.4	<0.04-0.05	0.05-0.09	<0.03	<0.04-0.16	90.0×	<0.05-0.08	<0.03-0.05	0.04-0.05	0.03-0.06	<0.05-0.31	∑i
24	24 Iron	mg Fe/i	0.09-0.12	0.10-0.15	0.08-0.10	0.10-0.12	0.06-0.25	0.05-0.10	0.04-0.10	0.06-0.13	16/04/60/0	0.03-0.2	0.05-0.21	0.04-0.30	0.01-0.3	0.02-0.10	₹0.3
25	25 Manganese*	mg Mn/l	<0.06	0.1042	<0.07	<0.05	<0.04	<0.02-0.04	<0.0€	<0.04	<0.02	<0.06	<0.04-0.06	<0.05	<0.06	<0.02-0.04	VII
56	Zinc*	mg Zn/l	0.11-0.48	0	0.21-0.28	0.2-1.28	0.29-0.43	0.21-0.7	0.1-0.37	0.25-0.43	0.11-0.21	0.17-0.35	0.06-0.26	0.12-0.57	0.23-0.41	0.07-0.26	S≘
27	Lead**	mg Pb/1		0.03		0.04				•	•		LEC O				₹0.03
78	28 Chromium(VI)	mg Cr(VI)/I	0.01-0.04	0.02-0.03	0.02-0.03	0.01-0.02	0.02-0.05	0.02-0.03	0.02-0.03	0.02-0.03	0.01-0.02	0.02-0.04	0.02-0.03	0.01-0.02	0.02	0.01-0.04	
		mg Cr/l		0110		0.01				٠	ľ				•		≥0.05
65	29 Cadmium**	mg Cd/I		and the last		0.028,0.03				•	1		97(0)				\$0.01
8	30 Arsenic**	mg As/l		0.03		0.03-0.035		<0.05	<0.02	•	•		0.024				≥0.05
31	Cyanide	mg CN/I	0.04-0.06	0.03-0.05	0.03-0.05	0.03-0.05	0.03-0.05	0.03-0.06	0.03-0.05	0.03-0.05	0.03-0.06	0.02-0.75	0.03-0.05	0.03-0.05	0.04-0.06	0.02-0.05	I 5 0.1
33	Fluoride	mg F/)	0.05-0.2		0.05-0.54	<0.05-0.52	<0.05-0.82	_	<0.05-0.62	<0.05			_	<0.05-0.69	~~	<0.05	0.7-1.5
38	Total Coliforms	No. in 11	08:4	10.0	4.0.7.0	- < 1.		10	0.00	2000			1023	TI-60	0.10	3	(3 in 11)
39	General Bacteria	No. in 1 ml	143-1000	102-700	42-500	250-580	30	300-350	22-150	200-720	300	102-300	240-1000	100-950	345-780	143-850	
6	40 Residual Chlorine	mg CIO/I	0.02-0.7	0.02-0.1	<0.1	<0.1	<0.1	<0.02-0.1	₩	0.03-0.1	<0.02-0.1	<0.02-0.1	<0.02-0.2	<0.02-0.2	<0.02-0.2	<0.02-0.2	
€	43 Acidity	mg CaCO ₃ /1	35-65		35-100	28-85	43-78	63-85	35-100	30-80	35-80	30-65	20-60	40-65	20-60	30-60	
44	44 Alkalinity	mg CaCO ₃ /1	178-200	190-205	175-225	190-205	180-200	180-215	145-225	200-300	175-220	195-225	175-210	185-250	180-225	175-225	
	Nickel*	mg Ni/I	>0.06		<0.0>	0.03-0.05	<0.04	<0.05		<0.02-0.03	<0.05	<0.05	\$ 8.0 8	<0.05		<0.02-0.03	
	Selenium*	mg Se/l	<0.03	1	<0.05	<0.03	<0.03	<0.04	<0.02	<0.04	<0.07	<0.07	<0.05	<0.04	<0.05	<0.04	0.001
		mg Sr/l	0.54-0.61		0.52-0.58	0.52-0.55	0.62-0.63		0.51-0.52	0.58-0.60	0.53-0.64	0.58-0.61	0.19-0.63			0.42-0.63	.≤2
	Bromine*	mg Br/l	0.12-0.15	0.14-0.23	0.14-0.34	0.09-0.14	0.14-0.3	0.1-0.17	0.11-0.17	0,11-0.25	0.12	0.13-0.3	0.12-0.14	0.13-0.15	0.07-0.12	0.07-0.28	
ĺ			•														

* ED-TRXRF

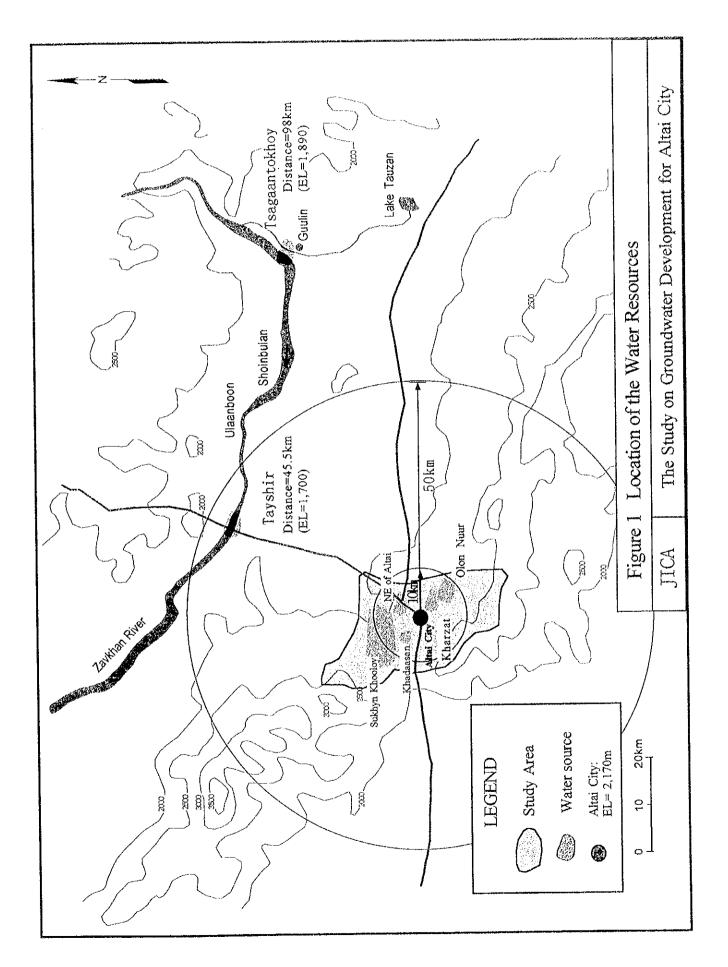
** Colorimetry in Ulaanbaatar
Analyzed in Japan: the test method for tap water
Calculated from the charge balance
\$ WHO guideline
\$\$ 0.05 {mg/l} as maximum contaminant level (MCL) for the Primary Regulation of USA

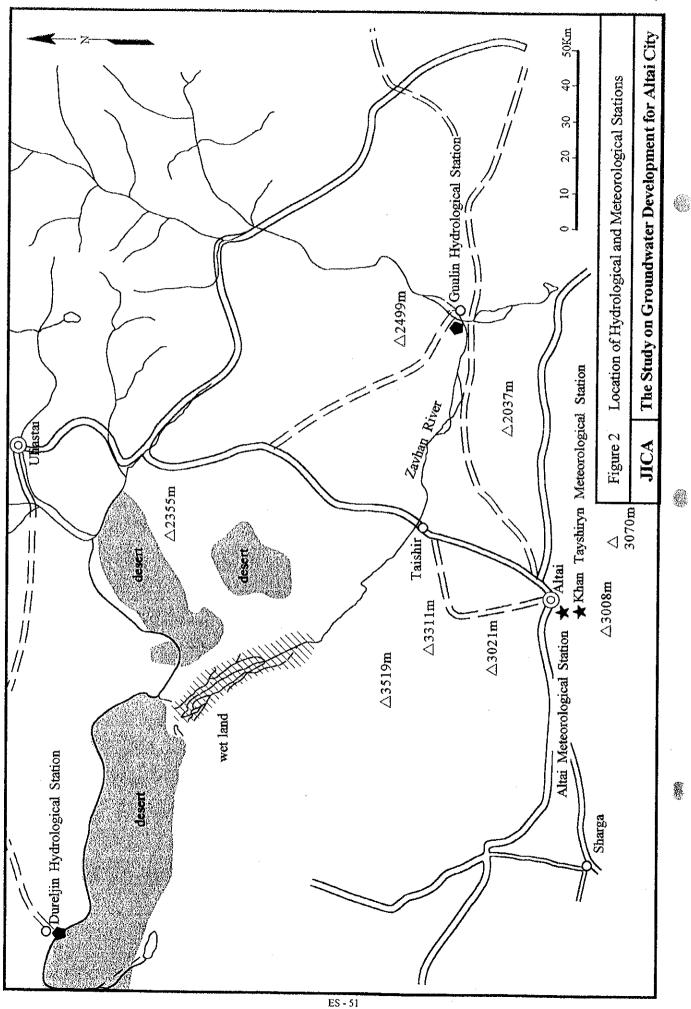
Table 2 Water Quality for Water Supply Facilities

Mongolian	DG-5 Standard	8.3 6.5-8.5	16.0-19.4	1 ≤2	<1 ≤2	<1-2 ≤155	<1	53-64	220-275 ≦350	<1-2.8			214-275	1,70-2,18	24-27	38-42 ≤30	≥30	≤ ≤ 30	0.03-0.06 <0.05-0.31 ≤1	0.02-0.10	<0.02-0.04 ≦0.1	0.07-0.26 ≦5	€0.03	0.01-0.04	- ≦0.05	10.0₽	≥0.05	0.02-0.05 ≦0.1	<0.05 0.7-1.5	3 3 0 43 (<3 in 11)	143-850	<0.02-0.2	30-60	175-225	<0.02-0.03	<0.04 0.001 \$\$	
ı ger	DG-4	8.3	9.8-19.7			<1-20	<1-3		285-320	1.0-3.5	<0.01-0.25	4.9-7.0		1.73-1.99	25-32	\$2.62				0.01-0.3	<0.06	0.23-0.41		0.02				0.04-0.06	<0.05-0.61	3.0-21.0	345-780	8	.	180-225	<0.04	<0.05	
Stored water in	DG-3	7.8-8.3	11.6-19,7	_		<1-5	1-1>		230-375	<1-2	<0.01-0.5		226	0.77-1.79	23-52	41-59			0.04-0.05	0.04-0.30	<0.05	0.12-0.57		0.01-0.02	•			0.03-0.05	19'0-50'0> 69'0-50'0>	11-460	100-950	8		185-250	<0.05	<0.04	
Stor	DG-2	8.0-8.3	9.4-19.4	-		2.0-4.0	<1-2	56-73	225-300	<1-3	<0.01	4.0-8.2	Ш	0.89-2.03	11-28	~ 43.59			<0.06 <0.05-0.08 <0.03-0.05	0.03-0.2 0.05-0.21	<0.06 <0.04-0.06	0.06-0.26	140'0	0.02-0.03	-	-0.026	0.024	0.03-0.05	<0.05-0.7	4.0.28	240-1000	Ÿ		175-210	<0.04	<0.05	
	DG-1	8,2	8.0-19.0	>	>	2.0-4.0	<1-2	98-55	230-250	<-1>	0.01 < 0.01 - 0.02		_	0.87-1.50	24-44	34-46			<0.05-0.08			0.17-0.35		0.02-0.04	-			0.02-0.75	<0.05-0.74	3.0-11	102-300	ଚ		195-225	<0.05	<0.07	
Water wagon	DW-2	8.3.8.5	7.0-9.0	<	>	<1-4-1-4	\[\nabla\]		238-300	<1-2		3.0-5.0		1.35-2.68	26-70	38-46				0.06-0.13 0.03-0.91	<0.02	0.11-0.21	-	0.01-0.02	•	-		0.03-0.06	<0.05	II SECTION	300	Ŷ		175-220	<0.05	<0.07	_
Water	DW-1	8.2.9	5.0-9.0	~	V.	2.0-5.0	V	58-94	240-313	<1-2.2		4.2-9.2	\blacksquare	1.09-11.57	20-40	46-58	SE 33 - 1		<0.03 <0.04-0.16	L	<0.04	0.25-0.43		0.02-0.03		•		0.03-0.05	<0.05	7.0514	200-720	0.		200-300	<0.02-0.03	<0.04	
	DT-5	8.2	5,7-14,5	[>	<	<1-2	9-1>	98-98	230-450	<1-1.5	<0.01-0.02	4.1-8.2	177-275	1.12-1.38	22-27	S6:68				0.04-0.10	<0.06	0.1-0.37		0.02-0.03			<0.02	0.03-0.05	<0.05-0.62	3.04.0	22-150			145-225	<0.03	<0.02	_
1.5	DT-4	2 8.0-8.	0.01-0.6	~	∵	2 - < 1-20	- <-	54-68	210-450	0 <1-2	10:0>	0.4-9.0	1 220-262	26'0-69'0	3 26-38	36-87		TENNING TO	60.05-0.09	0.06-0.25 0.05-0.10	<0.04 <0.02-0.04	0.21-0.7		0.02-0.03			90.0>	90.03-0.06	<0.05-0.88	S < 3.4	300-350	8	63-85	180-215	<0.05	<0.04	
Tap water	DT-3	4 7.9-8.2	0 7.0-18.0	~	~	5 <1-2	~	3 54-82	220-300	> <1-3.0	10.0	4.7-8.0) 220-244	0.77-1.39	5 25-29	37-55			0,05-0,4 <0.04-0.05	1		0.29-0.43	-	0.02-0.05				0.03-0.05	<0.05-0.82	100 mg	30	<0.1	43-78	180-200	<0.04	<0.03	L
	DT-2	8.2-8	0 20-500	~	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	9-1> 2	~	8 57-93	-	0.1.0-2.0	3 < 0.01-0.13	0.7-9.9	5 232-250	3 0.97-2.50) 22-26	3 25-47		は経験には	<u>_</u>	0.10-0.12	7 <0.05	3 0.2-1.28	±0.0	1 0.01-0.02	10.0	0.028-0.03	0.03-0.035	0.03-0.05	<0.05-0.52	4.0	250-580	<0.1	28-85	190-205	0.03-0.05	<0.03	
	DT-I	1	12.0-20.0	▽	~	1 <1-2	⊽	3 54-68	220-3	1.0-2.0	0.01-0.03	0.4-7.0	214-275	5, 1.00-1.73	23-30	35-53			0.06-0.2	01.0-80.0	<0.07	0.21-0.28		0.02-0.03				0.03-0.05	0.05-0.54	3 0:70	42-500	<0.1	35-1	175-225	<0.09	<0.05	
Reservoir water	DR-2	<u> </u>		~	V	4 <1-4	2 <1	9 54-93	24	2 <1	10.0	3.1-8.6	<u> </u>	2 1.00-1.25	0 21-30	0 45-55	12		4 0.04-0.13		5 0 1-0.42	8 0.14-0.27	0.03	1 0.02-0.03	0.10	0.03-0.04	0.03	5 0.03-0.05	<0.05	4.0-21	102-700	0		190-205	<0.05	3 <0.06	
Reserv	DR-1	1 ~~	3.0-5.2	▽	⊽	<u>↓</u> .	<1-2	58-89	265-310	<-i>	0.0>	4.0-7.4	217-244	0.86-1.22	24-30	49-70	37		0.04-0.14	0.09-0.12	>0.06	0.11-0.48		0.01-0.04				0.04-0.06	0.05-0.2	2.39	143-1000	0.02-0.7	35-65	178-200	<0.0>	<0.03	
	Unit		ပ္	dilution factor	dilution factor	mg/l Pt scale	kaolin (JIS)	mS/m(at 25°C)	mg CaCO ₁ /I	7	mg NO ₂ /!	mg NO ₃ /I	Ing HCO ₃ /!	mg CO ₃ /I	mg Ca/l	mg Mg/l	mg Mg/l	mg Mg/l	Img Cu/I	mg Fc/I	mg Mn/l	mg Zn/I	mg Pt/I	mg Cr(VI)/I	Img Cr/l	mg Cd/I	mg As/l	mg CN/l	mg F/1	No. in 11	No. in 1 ml	mg CiO/I	mg CaCO ₃ /1	mg CaCO _y /1	mg Ni/I	ing Se/i	
	Item	İ	Temperature	Odor	Taste	Color	Turbidity	Conductivity	Hardness	COD(KMn04, alkali)	Nitrite	itrate	15 Bicarbonate	16 Carbonate	21 Calcium	22 Magnesium	22 Magnesium#	Magnesium##)pper*	u.	25 Manganese*	nc*	ad**	Chromium(VI)	Chromium**	Cadmium**	30 Arsenic**	/anide	noride	Total Coliforms	39 General Bacteria	1 Chlorine		ity	Nicke!*	Selenium*	
Item	- S	급	2 Le	 -	r.			т-	또 ∞	2	ž =	12 Nitrate	15 Bi	<u>ال</u> 20	2 2 2	22 M.	22 M	22 M	23 Copper*	24 Iron	25 M.	26 Zinc*	27 Lead**	28 Ch	<u> ်</u>	29 Ca	30 Ar	31 Cyanide	33 Fluoride	38 To	39 Ge	40 Re	43 Acidity	44 AS	ź	Se	

* ED-TRXRF

** Colorimetry in Ulaanbaatar

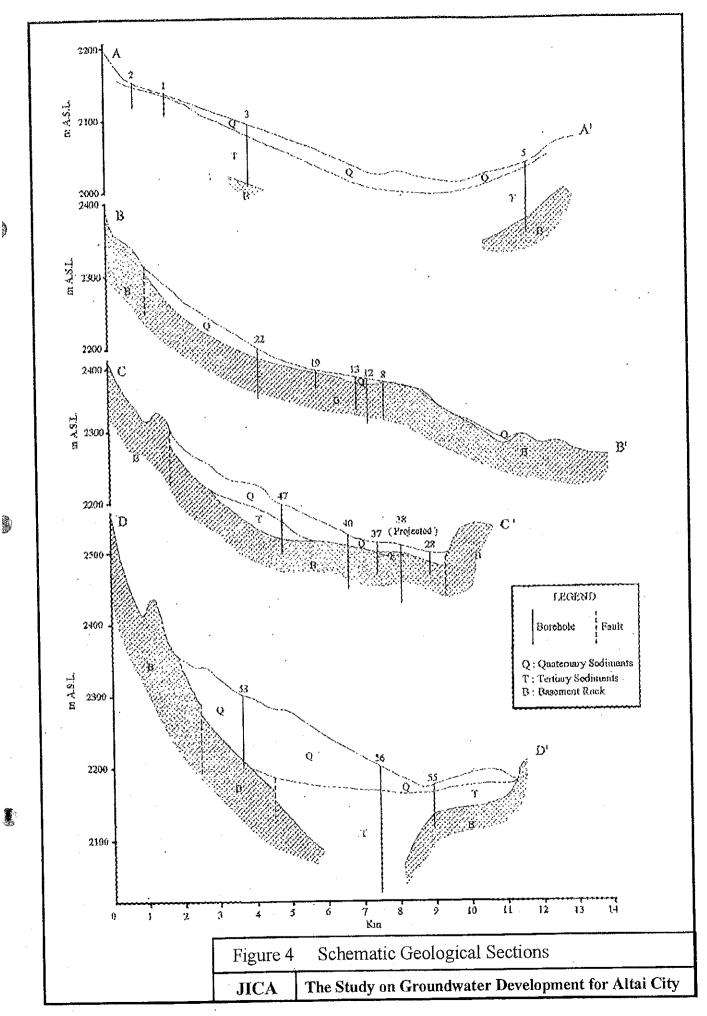

Analyzed in Japan: the test method for tap water

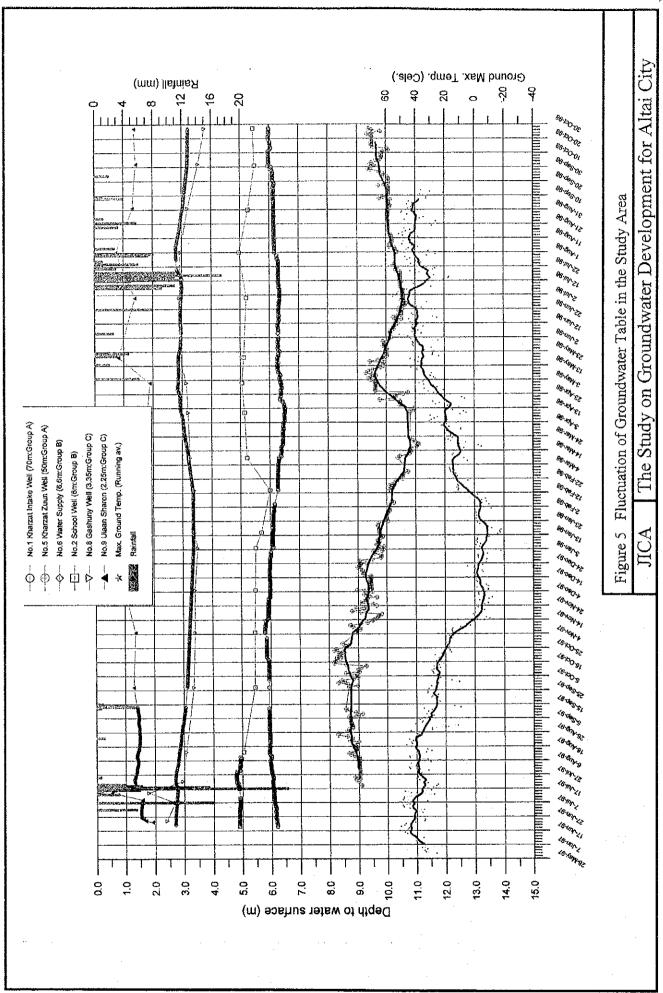

Calculated from the charge balance

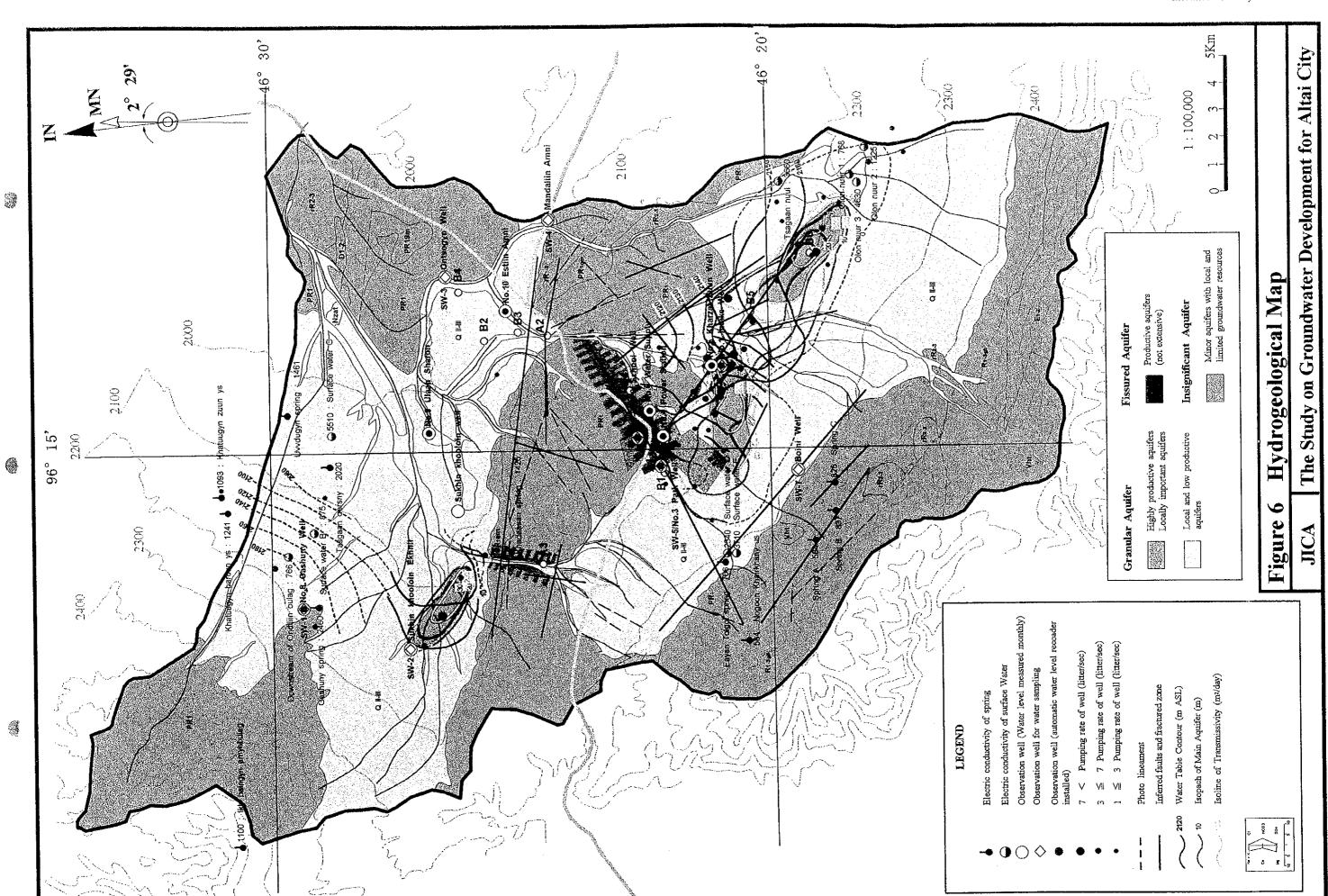

\$ WHO guideline

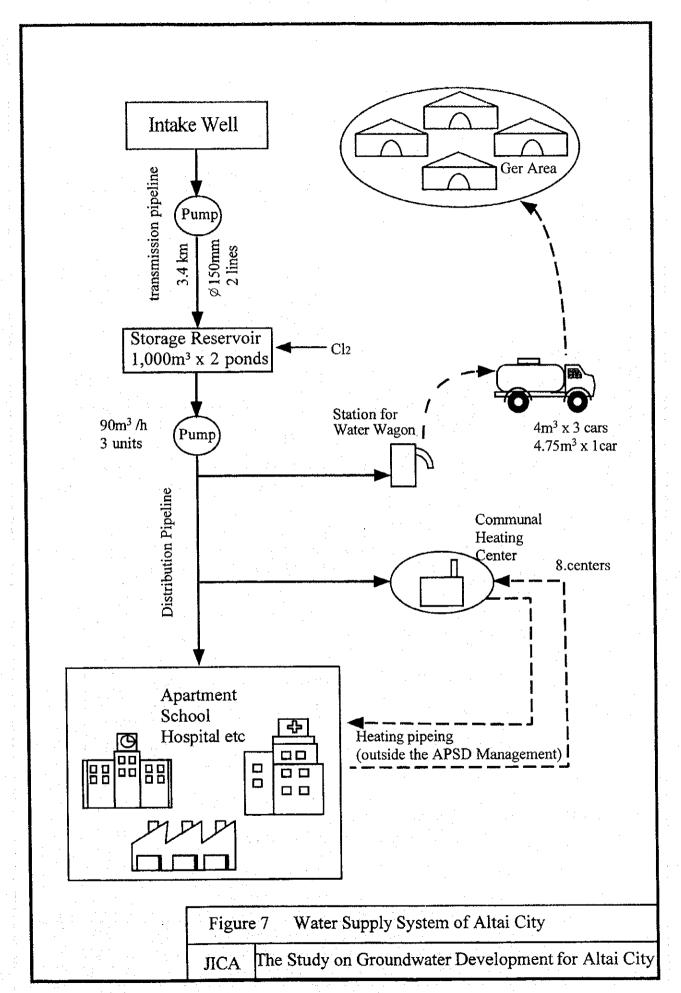
\$ WO (mg/l) as maximum contaminant level (MCL) for the Primary Regulation of USA

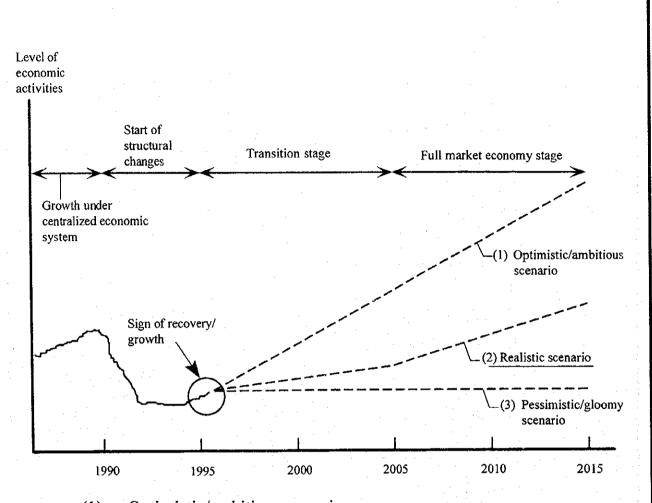
*



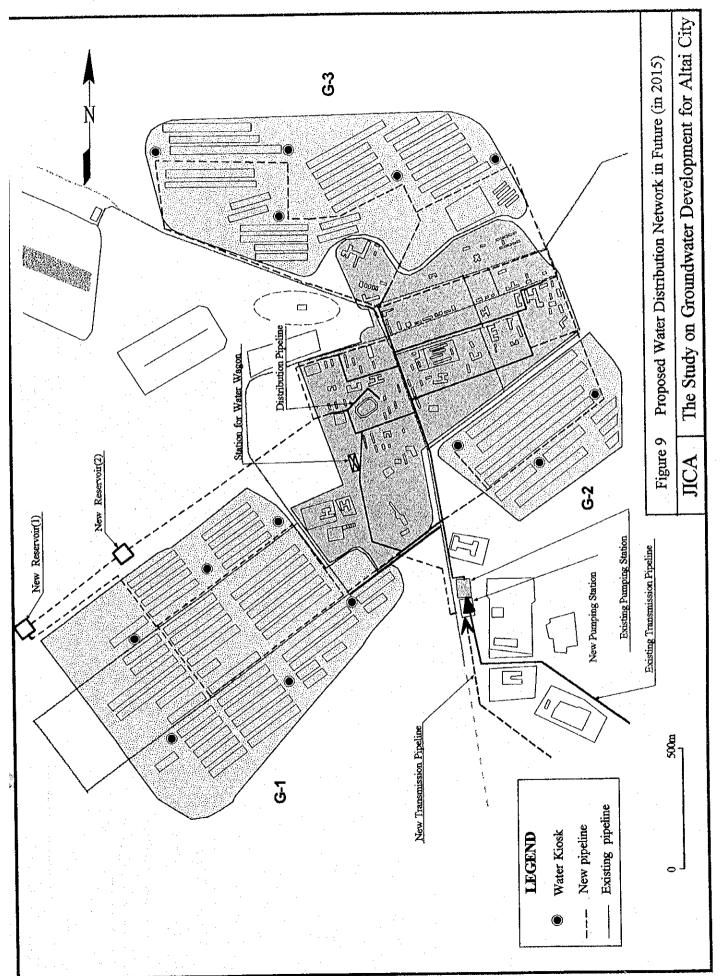


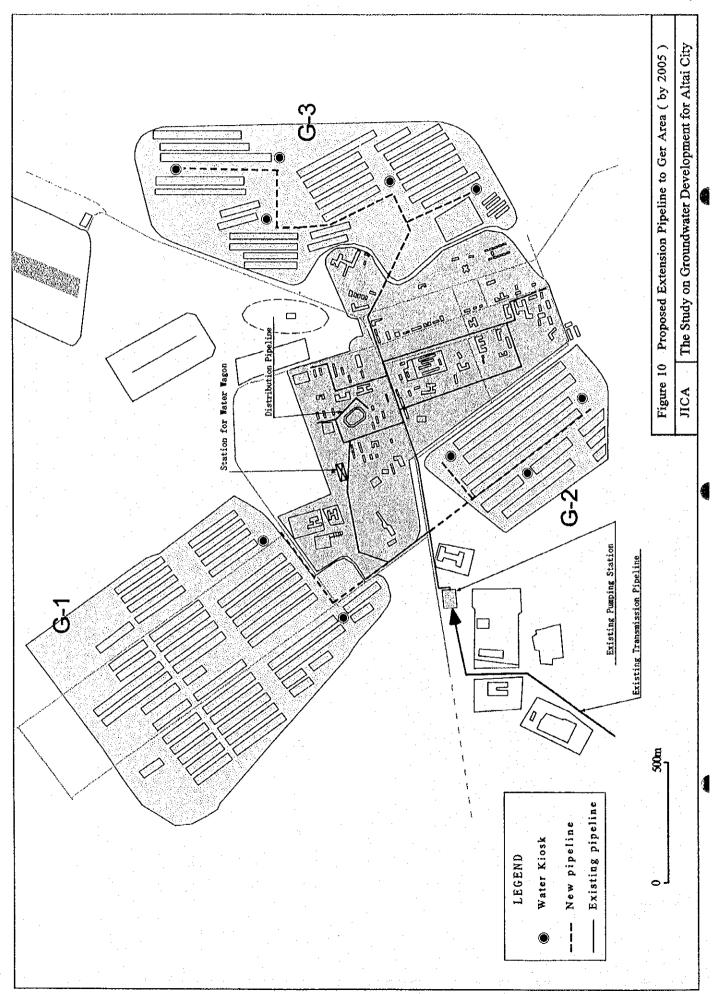

(9)





)


(1) Optimistic/ambitious scenario:


Water demand projection by Altai City Public Service
Department (18.2% / year for industry and 12.5% / year for total)

(2) Realistic Scenario		
Economic Growth (%/year)	<u>1995-2005</u>	2005-2015
Economy	3.0	4.0
Industry	4.0	5.0
Population (000)	18.8 (2005)	21.0 (2015)

(3) Pessimistic/gloomy scenario: stagnation or deterioration of economy

Figure 8	Growth Targets of Altai City
JICA	The Study on Groundwater Development for Altai City

Carlo

