Agricultural Credit System in the Selected Countries

As the sample for financing support services by government or NGOS, Cambodia, Japan, Thailand and Philippines were selected. In case of Cambodia, NGOs have supported farmers in providing micro-credit because of inadequate institutional services by the government.

1. Cambodia

The need for rural credit in Cambodia is demonstrated by the existence of a widespread informal credit market and by the high rates of interest charged, in the order of 20 to 30 percent per month. Within agriculture, loan in kind in the form of fertilizer generally demand repayment of double the value at end of a 3 to 4 month period, equivalent to a 20 to 25 percent monthly rate.

Credit needs are therefore to substitute for exploitative consumption loans to cover household rice deficit as well as to facilitate and improve rice production and yields by providing for fertilizer and seeds, which will help to provide food security among poverty groups and to provide more productive, sustainable farm households. Loans are further needed for income diversification through small-scale non-farm activities.

While 31 commercial banks existed in Cambodia in 1995, these were largely concentrated in Phnom Penh, capital of Cambodia, and provided credit for import-export activities, and none of them offered rural credit for smallholders or other rural households. As a result, apart from highinterest informal sector lending by moneylenders, rural credit has been left largely to NGOs using bilateral assistance funding, and concerned primarily with poverty relief.

The earliest pioneering NGO was the GRET (Group de Reserche et d'Echanges Technologiques). In 1991, GRET established a number of village banks. The GRET scheme has expanded rapidly and by October 1995, there were 70,000 loans in total amount of 2.2 million US\$, with client of 45,000. The average loans size is over 35 US\$ confirms the focus on loans. The length of the loans varies between six (6) to ten (10) months. The guarantee system relies on the constitution of a collective liability of group of five (5) people. The interest is paid monthly-the rate is currently four (4) percent a month- and the capital is repaid at the end of the cycle. The repayment rate is 94 percent upon the deadline, and 98 percent six (6) month later. However GRET scheme doesn't cover small-scale irrigation project at present, because of focusing mainly on production loan for poor people.

2. Thailand

BAAC (Bank of Agriculture and Agricultural Cooperative) provides, under the present scope of activities stipulated in BAAC Act, loans only for agricultural purposes, excluding agribusiness sector. Farmers who are members of cooperatives are not entitled to borrow directly from BAAC. An individual farmer should fulfill the following 10 criteria to be eligible to register as a BAAC client: 1) have Thai nationality

2) be at least 20 years of age

- 3) be a farmer with at least one year of farming experience
- 4) have a sufficient farming experience, or professional training in the field of agriculture
- 5) normally produce a reasonable annual marketable surplus of agricultural products, or have the potential to produce a surplus one he has access to BAAC credit. The surplus should be sufficient to repay their loans
- 6) not have been expelled by any BAAC branch in the past
- 7) have a reputation for honesty, industriousness and thrift
- 8) not be mentally unsound or infirm

9) not be bankrupt

10) not be a borrower from another financial institution, including agricultural cooperatives, farmer associations and commercial banks.

These are the usual requirements. They can be relaxed in exceptional cases, normally within the framework of a BAAC special investment project.

Short term loans fall under two main categories;

a) Short term loans for agricultural purpose, viz.

- 1) for main crop production to offset the seasonal production expenses incurred in producing the primary agricultural commodity usually paddy, cassava or maize,
- 2) for other agricultural purposes to defray expenses incurred in producing commodities such as pig and vegetables cultivation which are supplementary sources of income.
- b) Short term loans for postponement of sale, which are provided with the loan repayments and postharvest household expenses in the event that the farmers are willing to sell their products soon after harvest due to severely depressed market prices.

Short term production loans are based upon credit needs per rai (0.16 ha), fixed by crop, but adjusted to reflect the loan conditions in Changwat(district). Individual borrowers who are unable to provide collateral are required to join a small informal guarantee group (5 members in minimum), which enable BAAC to take advantage of the socio-economic sanctions arising from the joint liability characteristics of these groups particularly in the case of repayment. Each member is liable for his/her own loan and for loans guaranteed by the group. The maximum loan amount per group member is Bahts 30,000 (8,750 US\$, or 525,000 Ksh), but not exceeding 60 percent of the value of the expected marketable surplus produced. For loan between Bahts 30,000 and Bahts1,000,000 the farmer is required to mortgage his assets with BAAC. Interest on these loans is 14percent per year with repayment of one to 1/2 year.

The medium term loans are mainly provided for procurement of farm machinery and equipment, draught animas and land and refinancing of old debt. The security requirements and

interest rate charged are the same as for short-term loans (14 percent/year), and the loan repayment period is three (3) to five (5) years.

The long term loans are offered to individual borrowers for investments in agriculture and refinancing old debt. For investment in agriculture, viz. Purchase or develop agricultural resources or invest in agricultural assets which require a lengthy period before the borrower starts to receive a return on his investment, repayment is by installment within its period of up to 15 years or 20 years, in special cases and borrowers should submit their applications (for loan amount in excess of Bahts 160,000) in the form of detailed long term agricultural investment projects for BAAC's consideration. Borrowers are also required to furnish an equity contribution of at least 20 percent of the project's total investment costs and to secure the loan either by the use of two personal guarantors or by mortgaging their fixed assets with BAAC.

SSIRP (Small Scale Improvement and Rehabilitation Project) under the Social Improvement Project (SIP) Funded by OECF

Objectives of SIP are to assist the government of Kingdom of Thailand to respond effectively and rapidly to her financial and economic crisis through the rapid mobilization of resources to help increase her existing social safety net programs by a) improving basic infrastructure and services in places which attract tourism such as national parks, cultural archaeological sites, wildlife sanctuaries, nature preserves, public beaches, marine reserves and local muscums and thereby creating employment opportunities; and b) rehabilitation and improving existing small scale irrigation projects involving extending distribution system in existing projects and thereby creating employment opportunities.

Executing agency for SSIP is RID and Tourism Authority for the improvement of basic infrastructure to promote tourism. In the SSIRP 585 sub-projects will be constructed or rehabilitated under the loan condition agreed between the two government, that is, one (1) percent of annual interest, 25 year repayment and 7 year grace period. However, any cost sharing is not laid on the beneficial farmers under the SSIP funded by OECF. Organizing Water Users Association (WUA) is depending on irrigation method. When applying canal irrigation, WUA is required to set up.

3. Communal Irrigation System in the Philippines

The communal irrigation system is one of small scale irrigation project. When applying this project, beneficial farmers are required to organize Irrigators Association (IA) to manage irrigation facilities and IA organization by farmers themselves. And they also required to deposit equity fund amounting to 30 percent of the direct construction cost, and remainder 70 percent is subsidized by the government. No other cost sharing is not laid on farmers. However, it is necessary to collect water charge from members to maintain irrigation facilities and to manage IA.

If beneficial farmers cannot to deposit 30 percent of the direct construction cost as the equity fund, they must deposit 10 percent of the estimated direct construction cost and repay remaining 90 percent during 50 years at free of interest.

4. Irrigation and Drainage Projects in Japan

This is one of the land improvement project and its purposes are to construct newly or to rehabilitate irrigation facilities. Executing body will be varied depending on the scale of beneficial area and command area on farm level, that is, government-constructed, prefecture-constructed and group-based ones. Roughly irrigation and drainage projects are composed of following eight (8) types:

1) irrigation and drainage project to construct dam, headworks, pump station and irrigation and drainage canals

- 2) integrated irrigation and drainage project
- 3) integrated upland field improvement pilot project
- 4) water resources development project for upland field
- 5) rehabilitation works of government-constructed land improvement facilities
- 6) government-operated drainage canal improvement project
- 7) special drainage improvement project
- 8) agricultural water use rationalization project.

For those irrigation and drainage project, government of Japan has supported by applying subsidiary system. For example, cost sharing of prefecture-constructed irrigation and drainage project is 50 percent for government, 25 percent for prefecture and 25 percent for beneficiaries. For group-based irrigation and drainage project which is required to cover above 20 ha, 45 percent for government, 25 percent for prefecture, 20 percent for local government and 10 percent for beneficial farmers, are applied. It can be said that small-scale irrigation in Kenya corresponds to the scale of the group-based irrigation and drainage project of Japan.

Beneficial farmers must repay their share with 5.5 percent of annual interest and 15 years repayment period in case of group-based irrigation and drainage project.

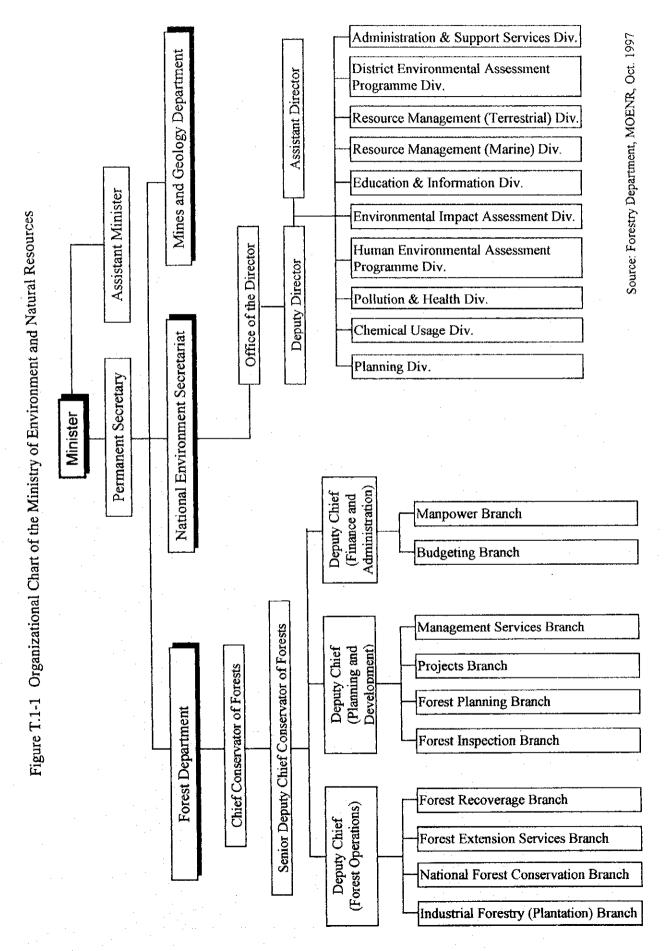
To support remote areas such as Hokkaido, Okinawa island, Amami island and other solitary islands, government of Japan applies higher subsidy than other areas.

ANNEX T

ENVIRONMENT

List of Tables and Figures

T.1 Master Plan Study


- Table T.1-1 District Training for Soil and Water Conservation 1995/96
- Table T.1-2 Target of District Training for Soil and Water Conservation 1997/98
- Table T.1-3
 High Priority Forest Groups Ranked by Biodiversity, Environmental and Local Use

 Values and Threat
- Table T.1-4 Endemic Trees and Shrubs in the Study Area
- Table T.1-5 Definition and Characteristics of the Government Forest
- Table T.1-6 Endangered Wildlife in Kenya
- Table T.1-7 Pesticide Maximum Residue Levels (MRL) for Some Crops and Specific MRL Authorized in France
- Table T.1-8 Health Facilities
- Table T.1-9 Chemical Analysis of Water in Nyeri
- Table T.1-10 Bacteriological Examination of Water in Nyeri
- Table T.1-11 Chemical Analysis of Water in Meru
- Table T.1-12 Bacteriological Examination of Water in Meru
- Table T.1-13 Bacteriological Examination of Water in Embu and Mbeere
- Table T.1-14 Water Analysis by the Study Team
- Table T.1-15 Main Diseases Reported in the Hospitals
- Table T.1-16 AIDS Related Deaths and HIV Positive Population
- Table T.1-17 Initial Environmental Examination
- Table T.1-18 Mitigation for the Hypothetical Problem
- Figure T.1-1 Organizational Chart of the Ministry of Environment and Natural Resources
- Figure T.1-2 Pesticides Usage in Coffee Production in Meru
- Figure T.1-3 Mobilization of Main Diseases in Embu and Mbeere

T.2 Feasibility Study

- Table T.2-1 Result of Water Quality Analysis Rupingazi Ngerwe Irrigation Scheme
- Table T.2-2 Result of Water Quality Analysis Ngomano / Nyangati Water Furrow Project
- Table T.2-3 Result of Water Quality Analysis Ruungu / Karocho Irrigation Project
- Table T.2-4 Result of Water Quality Analysis Nkunjumo Water Project and Tana River

- Figure T.2-1 Location Map of Rupingazi Ngerwe Irrigation Scheme
- Figure T.2-2 Example of the Land Use in Rupingazi
- Figure T.2-3 Effective Land Use for the Soil Conservation in Rupingazi
- Figure T.2-4 Location Map of Ngomano / Nyangati Water Furrow Project
- Figure T.2-5 Effective Land Use for the Soil Conservation in Nyangati
- Figure T.2-6 Location Map of Nkunjumo Water Project
- Figure T.2-7 Example of the Land Use in Nkun-Njumo
- Figure T.2-8 Location Map of Ruungu / Karocho Irrigation Project
- Figure T.2-9 Example of the Land Use in Ruungu
- Figure T.2-10 Example of the Traditional Land Use in Ruungu
- Figure T.2-11 Water Sampling Location of Tana River

T-1

-		-					0	Ð						ŀ			ſ
	T A Detroin* ¹		Teachers	orc	Ć	Chiefs	ы М С	WG & LF. *2		Catch.Com.* ³	Nursery Manage.	fanage.	Others * ⁴	S *4		Total	
	Male Female Male Female		ale Fe	male	Male	Male Female		Male Female		Female	Male	Female	Male Female	Female	Male	Female	Total
DIBIN				ſ					1	13	Ċ	C	1 540	2,030	1.692	2.090	3,782
Nven	27	e O	2	'n	0	ວິ	>	>	110	1	> <) (2 C				100
Vinimoao	C C	v	C Y	30	C	ō	0	0	100	50	0	0	1,36U	1,2/0	1,320	CCC.I	C/0'7
Numyaga	2	<u>, o</u>)		ç	ē	105	35		74	6	13	3.168	1,717	3,381	1,837	5,218
Embu & Mbeere	7	0	T T	5	>	ົ					, (4		1.0.0	200 c	1000 0	000 2
Tharaka Nithi	1	Ŷ	20	0	0	Õ	- -	100	94	62	0	5	1,5/5	l con'c	7,00,2	707.0	0,407
	<u>,</u> (, ``	, 4		<	Ċ	С С	120	170	46	C	Ċ	1 723	3.181	1.940	3,359	5,299
Meru	ע	0	+	0	>	ר ר	+ 1	21		2	> «	• «					
Missihana	C	C	C	0	0	0	0	0	160	60	0	0	1,385	2,097	1,545	7,12/	2,/UZ
				200		C	170	245	710	545	6	13	11.054	13.360	12.085	14,030	26,115
Total	c /.	30	011	22	2		741								100 00	01 1 101	100 100
Other Districts	415	60	988	221	295	0	.796	1,147	4,859	1,902	458	191	52,210	44,019	170,00	48,1/2	108,195
Outor Disurves		ł))))			ľ	200	ľ			271	VUC	72 221	57 070	101 101	1656 72	160 473
Grand Total	488 1	122 1,(1,098	260	295	0	C26	_	49C,C 262,	C+2,2	104	407	107,00	11,212	101,101	10,404	100,100
					4	ي ا	O TAOM			•							

Table T.1-1 District Training for Soil and Water Conservation 1995/96

Source: Annual Report 1995/96, Soil & Water Conservation Branch, MOALD

 Table T.1-2
 Target of District Training for Soil and Water Conservation 1997/98

				ŀ		$\left \right $		ľ		~			Ċ	Ţ		F	ſ
	T A Retrain* ¹		Teachers	7.84	Chiefs		W.G. & I.F.* ²	I.F.* ²	Catch.(Catch. Com. *'	Nursery Manage.	Manage.	Ctř	Others *		I otal	
Dietrict	Male Female	-	Male Female		Male Fem	ale	Male F	Female	Male	Female	Male	Female	Male	Female	Male	Female	Total
NV. cont	00	Ģ	6	c	6	6	50	110	86	70	15	10	1,610	1,640	1 ,793	1,830	3,623
	0 0			2			0	40	50	24	15	\$	1.675	670	1.810	662	2,609
Kunnyaga		21			> <	<u> </u>		00	001		00		2 105		2.275		2.375
Embu	50	5	- -	⊃	Þ	>	20	N 7		>			4,100				
Mhaere	1	x	0	0	0	0	16	00	120	80	0	0	780	840	976	056	1,804
Therefor Mitchi	1) v r		01	C	0	20	20	192	0	0	0	2,665	75	2,902	110	3,012
TIMENT EVENENT	\ \ -) C					6	0	170	48	16	0	3,160	140	3,393	188	3,581
	2 4	5 4					30	0.5	170		0	0	1.110	1.150	1.325	1,185	2,510
Nyambene											277	21	12 105		14 476	5 148	19 574
Total	107	7 <u>8</u>	60	60	0	0	188	277	200	777			LJ, 100				1
Other Districts	388	123 24	241	174	314	01	1,283	3,191	5,417	2,319	202	84	54,444	37,997	62,289		127,721
Grand Total		1 ·		234	314	0	0 1,471	3,419 6,317	6,317	2,541	268	66	67,549	42,592	91,141	54,184	145,325
Course Workman 1997/98 Soil & Water Conservation Branch, MO/	1997/98 Soil &	Water (Conserva	tion Br	anch, MO.	H											
					•												

urce: Workplan 199//98, Soli & Water Conservation Dialicit, Inderes

*1: Technical Assistant Retraining Course for 1 week

*2: 3-day course for Women Group members and Innovative farmers including one day tour

*3: Course for the catchment committee members

*4: 4K Club members (young farmers club), Young Farmers, Farmers Field Day and Collaboration Workshop

Table T.1-3 High Priority Forest Groups Ranked by Biodiversity, Environmental and Local Use Values and Threat

	ľ			10111111	annantal Protection	taction .	1,003	Local Forest Use	Jse		F	Threats	
	ឪ	Biodiversity value	value							<		Desidention	Wahitat
Econd Conne			:		Water	Water	Fuelwood,	U	Crating	Over	EXCISIOIL,	roputation	Tautet
	Habitat	Species		Threatened Soil Erosion	Catchmant	Source	Polewood.	noney,	Giazing,	Exploita-	Develop-	Pressure/	Damage by
(★: in the Study	Rarity	Richness	Species	Protection	Detection	Suring I ine	Charcoal	Medicine	Thatching	tion	ment	Forest Size	Wildlife/Fire
Area)					I DICCUDII	VILLE SILLIG					, ,	**	***
Abardaro 🔶	**	*	*	***	***	***	*	*	*	**			
AUGINAIC				+,	***	**	***	***	***	**	***	**	*
Embobut	*	+	*							+++	***	***	*
Volomana	***	***	**	*	*	*	**	***	***				
Nahaurea			**	**	*	***	**	***	***	**	*	**	*
Kitui								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***	***	*	**	**
Meni 🖈	**	*	*	* *	*	***							111
	3 3 3 3	***	***	***	***	***	***	***	*	* *	**	**	***
IMt. Kenya 🛪	***						1.4.4	4	***	××	**	**	¥¥
Mt Tondiani	*	**	*	*	**	. : X	***	÷					
		1	**	***	*	**	***	*	*	¥	**	**	**
Nyambene 🛪	**	**					444	;	***	***	*	***	*
NF rari	**	**	*	**	*	**	***		* * *				
					,		***	*	¥	***	*	***	***
Taita	*	**	**	¥. #.	*								
the state of the second s		** Madin	w statute or thr	oot *· I ovy v	alue or threat	•							

**. High value or threat, **: Medium value or threat, *: Low value or threat

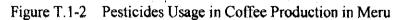
Note: Significance should not be placed upon precise order of individual forests in this table. As a general guide to planning and resource allocation however, the most important 10 forests among 50 are shown in the table.

Source: Kenya's Indigenous Forests, IUCN - The World Conservation Union, 1995

Table T.1-4 Endemic Trees and Shrubs in the Study Area

Family	Species	Sample Localities
VERBENACEAE	Premna maxima T.C.E. Fries	Marsabit, Meru
MIMOSACEAE	Albizia tanganyicensis Bak.f.ssp adamsoniorum Brenan	Meru Park
MYRSINACEAE	Embelia keniensis R.E. Fries	Tigoni, Mt. Kenya
MYRTACEAE	Eugenia sp Taxon A of KTSL	Nzaui, ?Mt. Kenya
RUBIACEAE	Ixora scheffleri K. Schum. ssp keniensii Bridson	Mt. Kenya, Embu
RUBIACEAE	Brucea macrocama Stannard	Thika Falls, Kiambu, Meru Park

Source: Kenya's Indigenous Forests, IUCN - The World Conservation Union, 1995


		Governm	nent Forest
	Item	Gazetted Forest	Trust Land Forest
Definition		Surveyed forest owned by the Government	Surveyed forest owned by the trust of local county councils
Kind of	Plantation	0	×
Forest	Indigenous Forest	0	Ó
	Bushland	0	0
	Grassland	0	0
	Bamboo Forest	0	0
Permission	Animal Grazing	0	0
	Fuelwood Collection	0	0
	Non Wood Product Collection	0	0
	Cutting	Only in the plantation forest	×
	Hunting	×	×

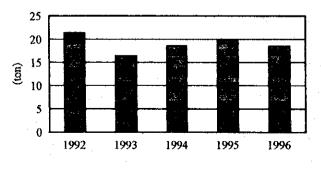

 Table T.1-5
 Definition and Characteristics of the Government Forest

Table T.1-6 Endangered Wildlife in Kenya

		Name	Number	Category
1.	Black Rhinoceros	Diceros bicornis	500	A
2.	Elephant	Loxodonta africana	16,000	A
3.	Wild Dog	Lycaon pictus	400	A
4.	Cheetah	Acinonyx jubatus	N.A.	A
5.	Tana River Mangabey	Cercocebus galeritus galeritus	100	В
6.	Red Colobus	Colobus badius rufomitratus	N.A.	В
7.	Aders' Duiker	Cephalophus adersi	N.A.	B
8.	Hunter's Hartebeest	Damaliscus hunteri	300	В
9.	Grevy Zebra	Equus grevyi	N.A	A
10.	Dugong	Dugong dugon	N.A.	A
11.	Small mammals		N.A.	В

Note: Category A; Inhabitant in Africa, Category B; Inhabitant only in Kenya and neighboring area Source: Wildlife Protection Report, 1990

Pesticides: Copper Oxychloride, Copper Mordox, DACO NIL, Dyrene, Byleton, Fenitrothion, Folimat, Ethion, Dursban, Lebaycide, DECIS, DELAN, Somition

	Green	haana	Man	0000	Pinea	Unit: mg/k nnles
(1)	EU	France	EU	goes France	EU	France
Compound	EU		EU	0.02		0.02
Acéphate		0.02		0.02		0.02
Aldrine		0.01		0.01		0.2
Amétryne	0.00	0.05	0.05	0.05	0.05	0.05
Aminotriazole	0.05	0.05	0.05	0.03	0.03	0.03
Atrazine	0.1	0.1	0.1	0.05	0.1	0.05
Azinphos-éthyl	0.5			0.05		0.05
Azinphos-méthyl	0.5	0.05		0.05		0.05
Barbane	0.05	0.05	0.05	0,03	0.05	0.05
Bénalaxyl	0.05	0.1	0.03	0.1	0.05	0.1
Bénomyl	0.1	0.1	0.05	0.1	0.05	0.1
Benfuracarbe	0.05	0.2	0.05		0.05	<u> </u>
Bentazone	0.2	0.05	0.05		0.05	<u> </u>
* Binapacryl	0.05	0.05	0.03	1.0	0.03	1.0
Bromophos	0.05	0.05	0.05	0.05	0.05	0.05
* Bromophos éthyl	0.05	1.0	0.05	0.05	0.05	0.05
Bromopropylate	0.05	·	0.05	0.05	0.05	0.05
* Bromure de méthyle	0.05	0.05	0.03	0.05	0.05	0.05
* Camphéchlore	0.1	0.02	0.02	0.02	0.02	0.02
* Captafol	0.02	2.0	0.02	0.02	0.02	0.02
Captane	5	1.0	<u> </u>	1.0		1.0
Carbaryl	2	0.1		0,1		0.1
Carbendazime	0.1	0.1	0.1	V.1	0.1	
Carbofuran Carbosulfan	0.05	0.5	0.05	·	0.05	
	0.05	0.3	0.00	0.3	0.05	0.3
Chinométhionate Chlordane		0.05	<u> </u>	0.05		0.05
		0.05		0.05		0.05
Chlorvenphos Chlorméquat		0.1	+	0.05		0.05
Chlorobenzilate		0.2		0.2		0.2
Chlorothalonil	5	0.02	+	0.01		0.01
Chloroxuron		0.2		0.2		0.2
Chlorpyriphos éthyl		0.05		0.05		0.05
Chlorpyriphos méhyl		0.05		0.05		0.05
Cycloxidime	1	0.5			1	
Cyfluthrine	0.05	0.01	0.02	0.01	0.02	0.01
Cyhexatin	0.05	0.05		0.05	1	0.05
Cyperméthrine	0.2	0.5		0.05	1	0.05
* DDT	0.05	0.05	0.05	0.05	0.05	0.05
Daminoside	0.03		0.02		0.02	-
Deltaméthrine	0.02	0.2		0.2	-	0.2
Déméton S méthyl et S	0.2	0.4		0.4	1	0.4
méthyle sulfone						
Diallate	-	0.1		0.1		0.1
Diazinon	0.2	0.5	-	0.5		0.5
* Dibromure d'éthylène	0.01	0.01	0.01	0.01	0.01	0.01

Table T.1-7	Pesticide Maximum Residue Levels (MRL) for Some Crops and
	Specific MRL Authorized in France

		Green	beans	Mar	igoes	Pinea	pples
	Compound	EU	France	EU	France	EU	France
	Diclofluanide	2	5.0		5,0		5.0
k	Dichlorprop	0.05	0.05	0.05	0.05	0.05	0.05
	Dichlorvos	0.5	0.1		0.1		0.1
	Diclofop méhyl		0.05		0.05		0.05
	Dicofol	2	0.5		2.0		2.0
	Dieldrine		0.01		0.01		0.01
	Diéthon		0.1		0.1		0.1
	Diéthofencarbe		0.1				
	Diméthoate	2	1.0		1.0		1.0
	Dinocap		<u> </u>		0.1		0.1
*	Dinosèbe	0.05	0.05	0.05	0.05	0.05	0.05
*	Dioxathion	0.05	0.05	0.05	0.05	0.05	0.05
_	Diquat		0.1		0.05		0.05
	Disulfoton	0.2		· .	1		0.1
-	Dithiocarbamates	0.05	0.05		0.05		0.05
	Dithiométon	·	0.5		0.5		0.5
	Doguadin		0.2		0.2	:	0.2
	Endosulfan	0.5	1.0		1.0		1.0
*	Endrine	0.01	0.01	0.01	0.01	0.01	0.01
	Ethéphon	0.05			· · · · · · · · · · · · · · · · · · ·		1.0
	Ethoprophos		0.01	1			1
	Fénarimol	0.02	1	0.02		0.02	
	Fenbutine oxyde		1.0				1
*	Fenchlorphos	0.01	0.01	0.01	0.01	0,01	0.01
	Fénitrothion		0.5		0.5		0.5
	Fentin acétate et hydroxyde		0.05				
	Fenvalérate	1	0.05	1 .	0.05		0.05
	Fluazifop P butyl		0.1	t			
	Fomésafène		0.05		-		
	Formothion		0.1		0.1		0.1
	Furathicarbe	0.05	0.5	0.05		0.05	1
	Lindane (Y HCH)	0,05	1.0	0.05	1.0	0.00	1.0
	Glufosinate		0.5			:	
	Glyphosate		0.1		0.1		0.1
*		0.01	0.01	0.01	0.01	0.01	0.01
	Heptenophos	0.01	0.1	0.01	0.1	0.01	0.01
	Hexachlorobenzène		0.05		0.05	ł	0.05
	Héxythiazox	0.5	0.03	-			0.05
*		1.0	1.0	1.0	1.0	1.0	1.0
•	Imazalil	1.0	0.02		0.02		0.02
	Iprodione	2	0.02	+	0.02		0.02
	Isophenphos	²	0.02			1	0.04
	Lambda cyhalothrine	0.2	0.05	0.02		0.02	
	Malathion	2	3.0	0,02	0.5	0.02	0,5
	Mercaptodiméthur	<u> </u>	0.1	+			+
	Métalaxyl	0.05		+		<u>+</u>	
<u>.</u>	Métaldéhyde	0.05	5.0	+			
	Méthamidophos		0.01	-	0.01	- <u>1</u>	0.01

. .

	Green	beans	Mar	igoes	Pinea	pples
Compound	EU	France	EU	France	EU	France
Méthidathion	0.1	0.2		0.2		0.2
Méthomyl		0.5				
Méthoxychlore	-	10.0		10.0		10.0
Mévinphos		0.1		0.1		0.1
Naled		0.2		0.2		0.2
Néburon		0.05		0.05		0.05
Nitrofène	-	0.1				
Ométhoate	0.2	0.2		0.2		0.2
Oxadiazinon				0.05		0.05
Paclobutrazol				0.5		0.5
Paraquat	0.05	0.05	0.05	0.05	0.05	0.05
Parathion (éthyl)		0.5		0.5		0.5
Parathion méthyl	0.05	0.2		0.2		0.2
Perméthrine	0.5	0.5		0.05		0.05
Phosalone		1.0	1	1.0		1.0
Phosétyl Al	-					1.0
Phosphamidon	0.2	0.15	1	.0.15		0.15
Procymidone	2.0	2.0		0.02		0.02
Prométhryne		0.2				
Propiconazole	0.05					
Propyzamide				0.1		0.1
Pyrèthres		1.0	· ·	1.0		1.0
Pyrimicarbe	:	0.5		0.5		0.5 ,
Pyrimiphos éthyl		0.01	· · · · ·	0.01		0.01
Pyrimiphos méthyl		2.0		2.0		2.0
Roténone		0.05		0.05		0.05
Séthoxydime		0.5		0.5		0.5
Soufre		50.0	-	50.0		50.0
Sulfotep		0.2		0.2		0.2
* 2.4.5 T	0.05	0.05	0.05	0.05	0.05	0.05
* TEPP	0.01	0.01	0.01	0.01	0.01	0.01
Tétrachlorvinphos		0.5		2.0		2.0
Thiodicarbe	_	0.5				
Triadiméfon				1.0	· .	2.0
Triadiménol					· ·	2.0
Triforine	1.0	1.0		1.0		1.0
Vamidothion		0.05		0.05		0.05
Vinclozoline	2.0	0.05		0.05		0.05

Note :

* : MRLs for pesticides not permitted for agricultural use in the EU. MRLs for pesticides not mentioned in this list are fixed to 0.01 mg/kg.

Source: MCP, France

Manual for Horticultural Export Quality Assurance, 1994, Natural Resources Institute, UK

District	Division	Population (1997)*	Hospital	Mater- nity	Health Centre	Dispen- sary	Outreach Clinics	Nursing Homes	Total
Nyeri	Municipality	109,974	3		1	6		3	13
	Tetu	97,782	0		3	9		0	12
	Othaya	102,288	0		2	8		t t	11
	Mathira	175,165	2		1	8		1	12
	Kieni West	69,243	1		1	9		0	11
	Kieni East	66,778	0		1	7		0	8
	Mukurweini	106,729	0		1	9		2	12
	Forests	1,636						· · ·	
	Total	729,595	6		10	56	0	7	79
Kirinyaga	Ndia	220,066	1		3	13	2	2	21
	Gichugu	137,064	0		2	13	1	· · 1	17
	Mwea	135,812			1	21	3	2	28
	Total	492,942	2		6	47	6	5	66
Embu	Manyatta	66,036	. 0		. 1	6		· · · ·	7
•	Runyenjes	72,162	1		0	2			3
	Nembure	60,319	0	. ·	1	6			7
	Kyeni	52,585	1	l I	1	4			6
	Central	47,240	3	L	0	5	•	•	8
	Total	298,342	5		· 3	23			31
Mbeere	Evurori	40,050	1		.0	2			3
	Gachoka	58,957	0		2	12			14
	Mwea	42,588	0		. 1	5			6
	Siakago	33,622	0		: 4	5			9
1	Total	175,217	1		7	- 24		0	32
Tharaka Nithi	Chuka	57,130	2		- 1	9		Ť	12
	Magumoni	45,099	ō		Ô	5			.5
	Muthambi	36,040	Ö		1	10	· ·		- 11
	Mwimbi	75,733	1		3	11			15
	Igambangombe	17,119	Ō		.1	2			3
	Tharaka South	23,541	0		2	3	[.		5
· .	Tharaka Central	38,118	Ö		1	4			5
	Tharaka North	32,997	0		Ō	4	· ·	· ·	4
	Total	325,777	3		9	48		- 0	60
Meru	Nkuene	59,422	1	- · · ·	1	3		1	6
	Igoji	51,432	1		Ö	1		0	2
÷	Abothuguchi East	45,228	. 0		0	2	ł	0	2
	Abothuguchi Central	36,185	0		0	ō		0	Ō
	Abothuguchi West	63,481	0		2	0	· ·	1	3
	Mirigamieru West	70,464	3	1	1	5		2	11
	Mirigamieru East	66,407	0		0	3		0	3
	Timau	43,320	0		1	2		0	3
	Abogeta	61,723	0		1	2		0	3
	Buuri	42,706	0		0	o		: 0	
	Mt. Kenya Forest	68					· ·	<u> </u>	[*.
	Total	540,436	5		6	18	Γ	4	33
Nyambene	Igembe South	15,927	0	0	0	1	1	1	2
	Igembe Centre	43,578	1	1	0	1	Ō	1	3
	igembe North	56,509	0	0	0.	1	1.]	2
	Igembe South East	18,495	0	0	0	0	0	1 1	ō
	Igembe South West	20,899	0	0	0	0	0	1 .	l o
	Igembe East	15,774	0	0	0	0	0		. 0
	Ndoleli	46,926	. 0	0	0	0	0	1	Ó
	Mutuati	50,411	0	0	0	1	1	1	2
	Laare	61,312	0	1 i	0	Î.	i se i		: 3
	Tigania North	83,443	1	l o	. 0	4	Ô	ł	5
	Tigania West	37,867	1 1	Ŏ	Ő	l'i	Ő	1	2
								E	
		60.788	0	1 1	0	2	0	1	1 3
	Tigania Centre	60,788 34,859	0	1 0	0	2	0		3
		60,788 34,859 44,974		1 0 0	0 0 1	2 0	000000000000000000000000000000000000000		3 0 2

Table T.1-8 Health Facilities

Source: MOH Nyeri 1997, District Medical Office of Health Kirugoya 1996 MOH Embu and Maua 1996, MOH Meru 1995,

* Population Projections: District Planning Unit, Nyeri, Kirugoya and Chuka, 1996,

District Statistics Office, Embu, Meru and Maua, 1996

T-8

					Water Source	₩ <u>₩₩₩₩₩₩₩₩₩₩</u> ₩	
Parameter	Unit	Stan- dard	Burgured River (Bantu Rock Hotel)	Mureru River (Mureru Shopping Centre)	Nairobi River (Kaboru Chaka Rd)	Ihwagi W/Supply (Treated)	Furrow below Kimahui Shopping Centre
			17/4/97	7/4/97	10/4/97	22/5/97	28/5/97
Temperature	C		21	21	21	22	18
pH		6.5-8.5	6.9	7.1	7.2	7.2	7.3
Turbidity	N.T.U.	<15	16.5	2.7	6	4.3	18.0
Conductivity	µ mhos/cm	2,000	83.6	576.9	110.7	56.5	73,6
Iron	mg/l	0.3	0.01	0.02	0.02	0.02	0.02
Manganese	mgMn/l	0.1	-	-	-	-	_
Calcium	mgCa/l		39.2	4.8	2.9	4.8	4.0
Magnesium	mgMg/i	-	<0.5	2.6	1.6	2.2	0.1
Total Hardness	mg/CaCO ₃ /l	500	74	146	16	22	18
Total Alkalinity	mg/CaCO ₃ /I	500	6	226	22	38	38
Chloride	mgCl/l	250	1.0	NIL	1.0	3.9	2.0
Sulphate	mgSO ₄ /l	400	4.4	28	0.3	4.2	0.8
TDS	mg/l	1,000	54.4	375	71.9	36.7	47.8
Free carbon dioxide	mgCO ₂ /l		3.99	10	44.24	4.0	22.1
20 min PV*	mgO ₂ /l	20	31.6	31.6	2.0	53.7	6.0

 Table T.1-9
 Chemical Analysis of Water in Nyeri

Source: Provincial Water Office, MOWD, Nyeri

* 20 min PV: Permanganate Value (20 min. boiling)

Table T.1-10 Bacteriological Examination of Water in Nyeri

Sampling Date	Water Source and Sampling Site	Protection	Coliform/100 ml
26/5/97	Ihwagi Water Supply		
	Water Supply Chamber	Completely coverd.	20
	Tap at Karatina Municipal Market	Piped.	95
28/5/97	Furrow below Shopping Centre	No protection.	550
28/5/97	Furrow (middle line)	No protection.	130
9/6/97	Naru Moru Tourist Lodge Treatment Works from the filter	Piped	550

Source: Provincial Water Office, MOWD, Nyeri

		T	Water Source					
Parameter	Unit	Stan- dard	Kabuki Spring	Araigua Spring 18/5/94	Koonyo Spring 18/5/94	Rwarera Spring 18/5/94	Gikui Well 27/6/94	
			18/5/94				5.0	
pH		6.5-8.5	6.3	6.4	7.1	6.3		
Colour	mg/t/l	<15	<5	Nil	<5	<5	<5	
Turbidity	N.T.U.	<15	Nil	Nil	Nil	Nil	Fairly	
Conductivity	μ mhos/cm	2,000	1,600	530	3,650	1,200	35	
Total Alkalinity	mgCaCO ₃ /1	500	1,100	286	1,940	730	10.0	
Phenolphtalein	mgCO ₃ /l		Nil	Nil	Nil	Nil	Nil	
Methyl Orange	mgHCO ₃ /l		1,100	286	1,940	730	10.0	
Chloride	mgCl/l	250	5.0	8.0	140.0	6.0	Nil	
Sulphate	mgSO₄/l	400	2.0	5.0	75.0	1.0	7.0	
Nitrate	mgNO ₃ /l	10	Nil	1.1	Nil	Nil	Nil	
Nitrate	mgNO ₂ /l	10	Nil	Nil	0.02	Nil	Nil	
Fluoride	mgF/l	1.5	0.1	0.2	Nil	0.1	Nil	
Sodium	mgNa/l	200	63.0	29.5	676	54.0	3.0	
Potassium	mgK/l		12.0	6.0	68.7	11.5	1.8	
Calcium	mgCa/l		80.0	36.0	72.0	80.0	1.6	
Magnesium	mgMg/l		168.0	37.0	149.0	86.5	1.0	
Iron	mgFe/l	0.3	0.04	0.01	Nil	0.01	0.01	
Manganese	mgMn/l	0.1	0.91	0.03	0.03	. 0.86	0.06	
Ammonia -Free & Saline	mgNH₄/l		Nil	Nil	0.11	Nil		
Ammonia - Albuminoid	mgNH ₄ /l		Nil	Nil	0.02	Nil	-	
Total Hardness	mg/CaCO ₃ /	1 500	90.0	244.0	800.0	560	8.0	
Free Carbon Dioxide	mgCO ₂ /l		8.0	28.0	12.0	8.0	25.0	
Silica	mgSiO ₂ /l		60.0	65.2	10.0	85,0	35,0	
4 hr. PV*	mgO ₂ /l	20	0.15	Nil	0.5	0.1	1.8	
TDS	mg/l	1,000	1,100	370	2,550	800	25.0	

Table T.1-11 Chemical Analysis of Water in Meru

Source: MOH, Meru

* 4 hr. PV: Permanganate Value (4 hours boiling)

Table T.1-12 Bacteriological Examination of Water in Meru

	Р	rotecte	d Sprin	igs (Sampli	ng date	: No. 1-	-7 on 6/	/11/96,	No. 8-	13 on 1	1/5/96)
	. 1	. 2	3	4	5	6	7	8	9	10	11	12	13
EC (μ s/cm)	151	181	163	251	144	218	80	199	195	254	1,633	269	523
Coliform/100 ml	160	200	560	580	40	400	100	0	0	120	200	0	60

	Unprotected Springs			(Sampling year: 1995 - 1996)					
	1	2	3	4	5	6	7	8	9
EC (μ s/cm)	190	30	50	60	70	120	30	70	220
Coliform/100 ml	7	2	0	0	20	29	0	3	20

Source: MOH, Meru

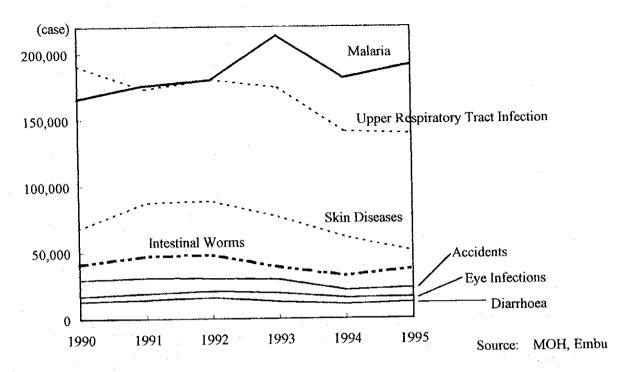


Figure T.1-3 Mobilization of Main Diseases in Embu and Mbeere

Table T.1-13 Bacteriological Examination of Water in Embu and Mbeere

Date	Division	Location	Source	Coliform 100ml
	Embu			
15/5/96	Runyenjes	Ena Water Treatment Plant	River before treatment	>1,000
31/7/96		Gaturi South	Protected spring	50
31/7/96	Nembure	Gaturi South	Unprotected spring	2,000
31/7/96	Nembure	Gaturi South	Kangiri stream	1,100
31/7/96	Nembure	Gaturi South	Kirurumo River	2,000
5111120	Mbeere			
15/5/96	Siakago	Health Centre	Treated water of storage tank	>1,000
15/5/96	Siakago		Protected spring	40

Source: MOH, Embu

Table T.1-14 Water Analysis by the Study Team

Date	District	Area	pH	EC	General	Coli-
Date	District				Bacteria	form
	(River	r water for irrigation and drinking)		$(\mu \text{ s/cm})$	(/ml)	(/ml)
16/9/97		Mitunguu Irrigation Scheme	8.2	192	30	3
		Niorimba Irrigation Scheme	8.2	0	100	45
19/9/97	· · · · T · · · · · · · · · · · · · · ·	Gakui	8.1	59	5	30
22/9/97		Kimahuri	8.4	40	7	4
22/9/97	• • • • • • • • • • • • • • • • • • •	Island Farm Irrigation Scheme	8.2	46	4	4
	Kirinyaga	Kibirigwi Irrigation Scheme	7.8	71	40	7
	Mbeere	Mweiwa (Handpump of bore hole)	7.2	167	0	0
	Mbeere	Umau Market Centre (Protected spring,	7.7	79	80	>100
			Bacteria		ORITSU T	

EC : HORIBA Conductivity Meter B-173

Bacteria count : Coliform count : KYORITSU TPA-CG

						(Unit: Case
		Nyeri			Meru	
Diseases	1994	1995	1996	1993	1995	1996
Microscopically Malaria	3	N.A.	N.A.	9,182	24,051	23,367
Clinical Malaria	18,072	3,400	4,621	16,235	705	402
Amoebiasis	353	222	475	1,004	4,509	4,609
Gastroenteritis	949	446	531	1,597	821	880
U.R.T.I.*	56,913	10,538	16,731	28,932	2,224	7
Pneumonia	4,717	1,463	1,508	1,543	1,715	1,634
Gonorrhoea	3,036	115	413	971	433	402
Chicken Pox	1,025	135	283	495	40	36
Mumps	816	252	223	40	66	65
Measles	371	. 35	118	<u>1</u> 47	50	- 44
Thphoid				N.A.	522	3
Other Dysentery		· · · ·		N.A	299	265
AIDS	242	N.A.	N.A.	N.A.	290	262
Ankylostomiasis				N.A.	118	116
Tuberculosis				154	331	12
Salmonellosis				N.A.	412	2

Table T.1-15 Main Diseases Reported in the Hospitals

Source: MOH, Nyeri and Meru District Development Plan 1997 - 2001 *U.R.T.I.: Upper Respiratory Tract Infection

	1 A		· · · · ·	(Unit	thousand)
· · · ·	1990	1993	1994	1995	1996
HIV Related Deaths			:		
Rural	7	15	19	25	30
Urban	13	29	37	46	56
Male	11	24	30	38	56
Female	9	20	26	33	40
Total	20	-44	56	71	96
HIV Positive Population					
Rural	151	284	334	383	428
Urban	298	558	655	752	842
Male	244	457	537	617	689
Female	205	384	452	518	581
Total	449	841	989	1,135	1,270
Population (Projection)	23,900	26,002	26,424	27,519	28,267
Rate in Population	1.9 %	3.2 %	3.7 %	4.1 %	4.5 %

Source: National Development Plan, For the Period 1994 to 1996 Population Projections, April 1996

Table T.1-17 Initial Environmental Examination

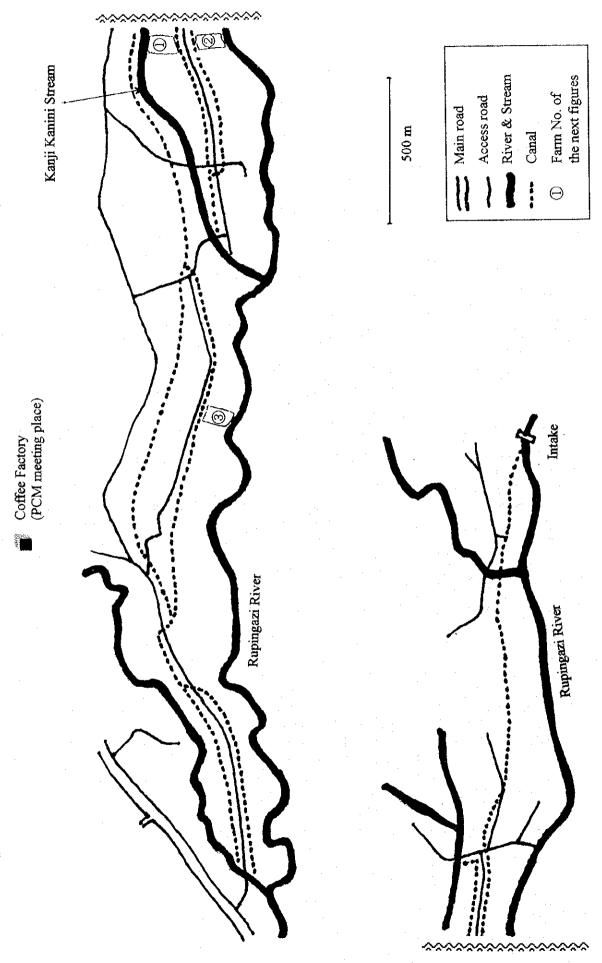
 $\times \times \times :$ Serious negative impact expected

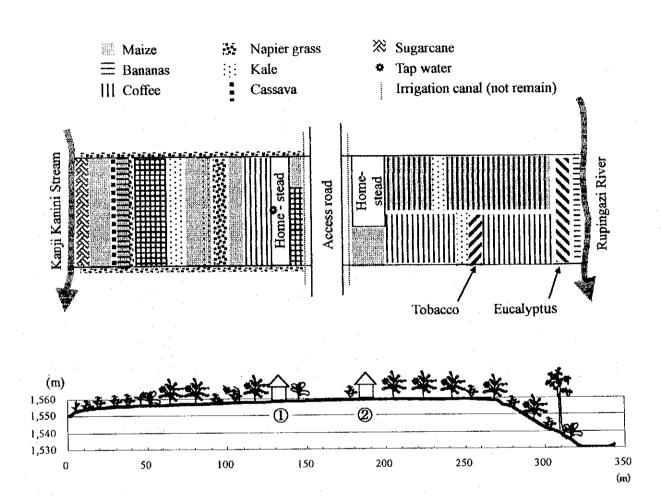
- : Some negative impact expected х×
- : Extent of negative impact not known х
- 20
- ••• : Important positive impact expected : Some positive impact expected
 - : Extent of positive impact not known

1/2

: No impact \Box

		Ín	case of no problem in the project	Ir	a case of problem in the project
	Environmental Item	Evalu-	Hypothetical items	Evalu-	Hypothetical items
	Environskina nem	ation	for the evaluation basis	ation	for the evaluation basis
1	Settlement		No settlement.		
$\frac{1}{2}$	Involuntary resettlement		No settlement.		
		••	Increase of farm income by improved	× ×	Increase of women's work in
3.	Substantial changes in the way of life		farming.		agriculture.
4.	Conflict among people		Good relation by well-organized community.	××	Difficulty of fair water distribution.
5.	Impact on native people		No ethnic minorities.		
6.	Population increase	хx	Increase of job opportunities will bring it.	××	Increase of job opportunities will bring it.
7.	Drastic change in population composition				
8.	Changes in bases of economic activities				
9.	Occupational change and loss of job opportunities	••	Job opportunities will increase by irrigation farming.	. 🗆	
10.	Increase in income disparities	×		хх	By the partial water distribution.
11.	Adjustment of water or fishing rights	×	Adjustment of water right of downstream area may be needed.	×	Adjustment of water right of downstream area may be needed.
12.	Changes in social and institutional structures	•••	Strengthening of rural organization is included in the project.		Training of farmers and community leaders will be insufficient.
13.	Changes in existing institutions and customs	•••	Decision making by women will be easier by training.		Training of women will be insufficient.
14	Increased use of agrochemicals	××	Agricultural development bring the increase of agrochemical use.	××	Use of agrochemicals is increasing gradually.
15	Outbreak of endemic diseases	xx	Water related diseases such as Malaria and Amoebiasis may increase.	××	Water related diseases such as Malaria and Amoebiasis may increase.
16	Spreading of endemic diseases	××	Malaria may increase.	××	Malaria may increase.
17	Residual toxicity of agrochemicals		MOALD will support farmers for the appropriate use of agrochemicals.	××	Use of high toxic agrochemicals may increase.
18	Increase in domestic and other human wastes	××	Increase of population will bring it.	××	Increase of population will bring it.
19	Impairment of cultural assets		No cultural assets.		No cultural assets.
20	Damage to aesthetic sites	••	Water source in N.P. of downstream area will protected by watershed management in the project area.	××	Water source in N.P. of down- stream area will be damaged by over irrigation in the project area.
21	Impairment of buried assets		No buried assets.		No buried assets.
22	. Changes in vegetation	••	Watershed management will improve the vegetation.		


					2/2
		In	case of no problem in the project		case of problem in the project
Enviror	nmental Item	Evalu-	rijpotnom name	Evalu-	Hypothetical items for the evaluation basis
		ation	for the evaluation basis	ation	Conflict between farmers and
23. Negative		×			elephants will increase by farming in
importai fauna an	nt or indigenous				the dry season.
24. Degrada		[]	Project area is only in the farm land		
ecosyste		ļ	including road rehabilitation and		
	al diversity		construction of irrigation facilities.		N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ation of exotic	×		××	Malaria mosquito will increase through irrigation canals.
	azardous species tion of wetlands				inough ingation cusaio.
and pear				_	
	e of tropical rain		No tropical rain forest. Wild land is		
	and wild lands		conserved in the high ground N.P.		
28. Destruc	tion of mangrove		No mangrove forest.		
forests		ļ			<u> </u>
•	ation of coral		No coral reefs		
reefs 30. Soil erc	wion		Soil conservation plan is included in	×х	Negative participation of farmers
30. Son erc	SIGN		this project.		for the soil conservation activities.
31. Soil sal	inization		Salinity of irrigation water is very		
			low and it seems that the salinity of		
			soil is also low.		
	oration of soil	•••	Soil conservation plan is included.	××	Negative participation of farmers for the soil conservation activities.
fertility	ntamination by		Enforcement of extension service	××	Extension service will be
	emicals and others		with the promotion of proper	1	insufficient.
-B			agrochemical use is planned.		
34. Devast		••	Soil conservation plan is included.	××	Negative participation of farmers for the soil conservation activities.
	fication of land			[]	for the soll conservation activities.
	ation of hinterland		No exploitation of groundwater.		No exploitation of groundwater.
	d subsidence		Proper water allocation is promoted.	×××	
57. Chang hydrol	e in surface water.		Watershed management is promoted		project will be failed and water will
	~8)		for water conservation.		decease in the downstream by the
· · · · · · · · · · · · · · · · · · ·					irrigation in the upstream area.
	e in ground water		Infiltration of irrigated water is a little		Infiltration of irrigated water is a little and no exploitation of ground
hydrol	ogy		and no exploitation of ground water.		water.
39. Inund	ation		No inundation.	: []	No inundation.
40. Sedim				. ××	Failure of soil conservation
			the sedimentation.		activities will bring it in the
				-	downstream.
	bed degradation				No inland navigation
	liment of inland		No inland navigation.		
naviga 43 Deter	ioration of water	× ×	Agricultural development will	××>	Insufficient support of farmers for
qualit			deteriorate water quality.		the use of agrochemicals will
· · · · ·				_	accelerate it.
44. Water	r eutrophication	×	It may increase by the increase of	××	It will increase by the increase of chemical fertilizer.
		<u> </u>	chemical fertilizer.		
·····	vater intrusion	of 🗆			
46. Chanj water	ge in temperature	N			
47. Air p					
47. All p	onution			1	


Table T.1-18 Mitigation for the Hypothetical Problem

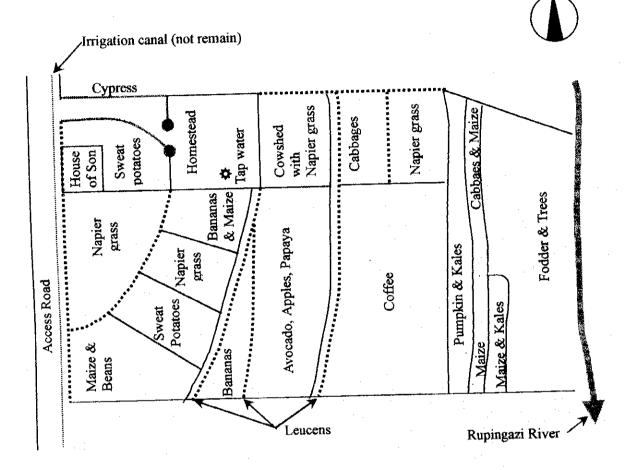
	Environmental Item		In case of problem	
			Evaluation basis	Mitigation
	Substantial changes in the way of life	×х	Increase of women's work in agriculture.	
	Conflict among people	××	Difficulty of fair water distribution.	Establishment of water distribution monitoring system.
<u> </u>	Population increase	×х	Increase of job opportunities will bring it.	Promotion of health education including family planning.
14.	Increased use of agrochemicals	××	Use of agrochemicals is increasing gradually.	Promotion of use of organic fertilizer and rotation cropping.
15.	Outbreak of endemic diseases	××	Water related diseases such as Malaria and Amoebiasis may increase.	Promotion of health education including hygiene and protection of water source.
16.	Spreading of endemic diseases	××	Malaria may increase.	
17.	Residual toxicity of agrochemicals	××	Use of high toxic agrochemicals may increase.	Establishment of support system by MOALD.
20.	Damage to aesthetic sites	××	Water source in N.P. of down-stream area will be damaged by over irrigation in the project area.	Establishment of water distribution monitoring system.
23.	Negative impact on important or indigenous fauna and flora	×××	Conflict between farmers and elephants will increase by farming in the dry season.	
25	Proliferation of exotic and/or hazardous species	××	Malaria mosquito will increase through irrigation canals.	
30	Soil erosion	××	Negative participation of farmers for the soil conservation activities.	Enforcement of soil conservation programme including farmers' training.
32	Deterioration of soil fertility	××	Negative participation of farmers for the soil conservation activities.	Enforcement of soil conservation programme including farmers' training.
33	Soil contamination by agrochemicals and others	××	Extension service will be insufficient.	Establishment of extension service programme.
34	Devastation or desertification of land	××	Negative participation of farmers for the soil conservation activities.	Enforcement of soil conservation programme including farmers' training.
37	7. Change in surface water hydrology	×××		e monitoring system.
40). Sedimentation	××	Failure of soil conservation activities will bring it in the downstream.	Enforcement of soil conservation programme including farmers' training.
4	3. Deterioration of water quality	× × >	1	 Promotion of health education and establishment of monitoring system of water quality.
4	4. Water eutrophication	××	It will increase with the increase of chemical fertilizer use.	Promotion of watershed management including the improvement of vegetatio to filter eutrophic water.

Figure T.2-2 Example of the Land Use in Rupingazi

The farm of Mrs. Faith Ngendo, 1 acre (left side) and
 The farm of Mrs. Jane Kiini, 1 acre (right side)

Rupingazi Ngerwe Irrigation Scheme is divided into four blocks from Block A of the upstream to Block D of the downstream.

The above two farms belong to the Block B and about 2,200 m down from the intake. The irrigation canals on both sides of the road are completely filled up.

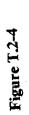

The left farm has two cows and they grow Napier grass for fodder. Though, there is not enough litter for the cowshed and the cows stand in the dung mud. They have a tap water that is allowed for the use of domestic and livestock. Coffee is growing mixed with Bananas in some plots.

The right farm has not a cow and has a goat. Coffee is growing mixed with Maize in some plots. Tobacco is growing for home consumption. The water of Rupingazi River is used as domestic water.

(Surveyed on July 16, 1998)

Figure T.2-3 Effective Land Use for the Soil Conservation in Rupingazi

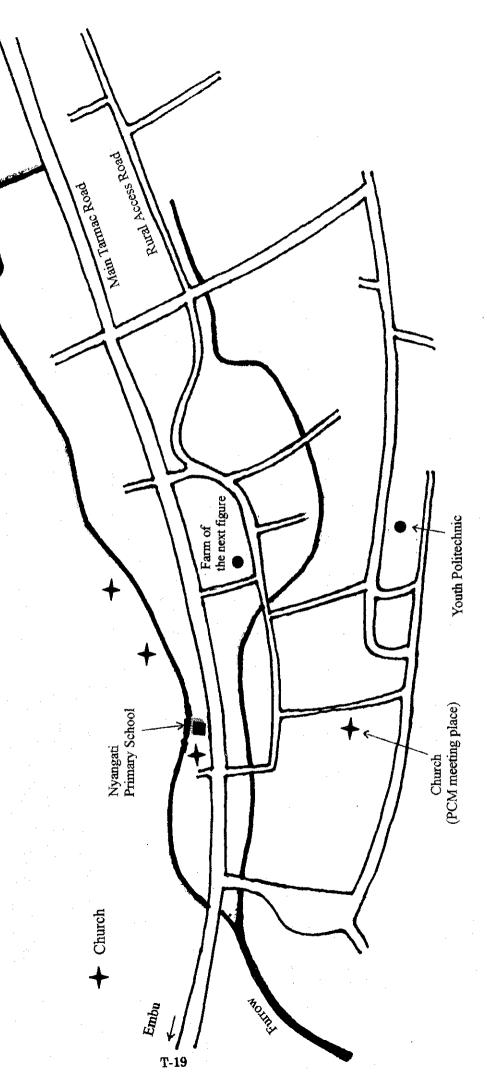
(3) The Farm of Mrs. Purity Wanjiko, 4 acres

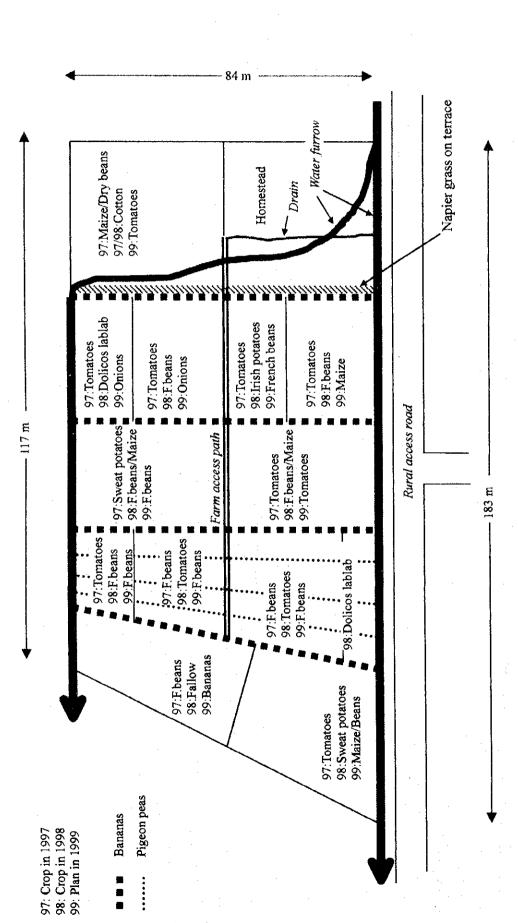

Mrs. Wanjiko is the treasurer of the Irrigation Scheme. Her husband is a driver of Ministry in Embu and she manages the farm land.

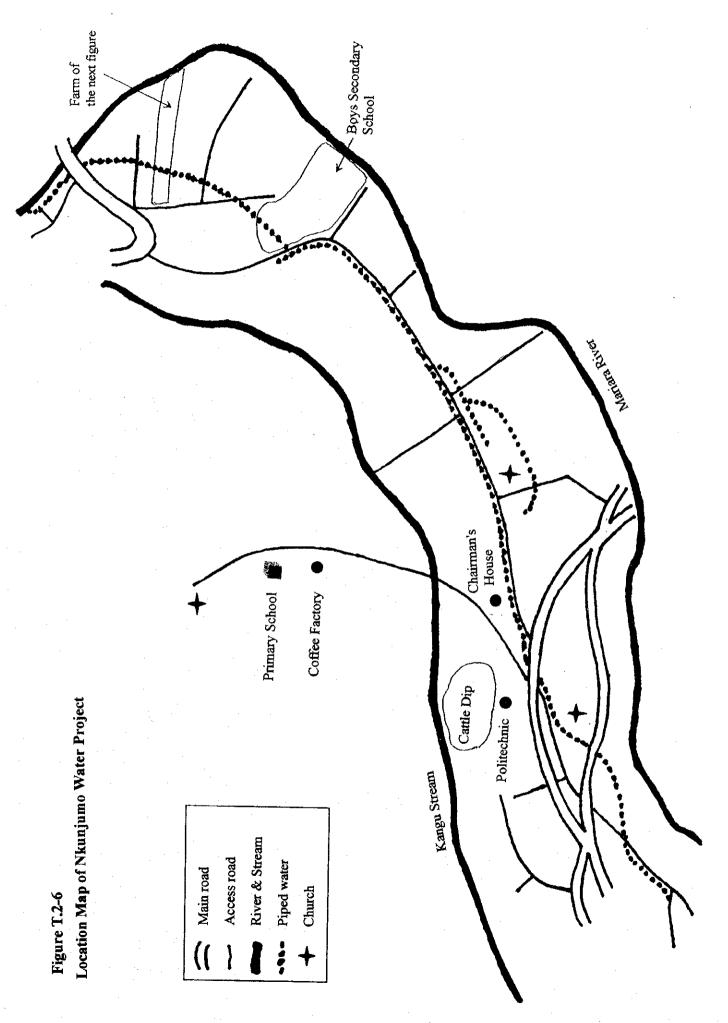
The land was measured in 1991 by the National Extension Project that has been implemented from 1984 to 1998 (World Bank). At that time, extension officers visited all farmers in this area to explain the project of land measurement. Then, 10 farmers requested the measurement of their lands and only 4 farmers practiced the land adjustment by making of terrace along the contour line. Mrs. Wanjiko is one of 4 farmers. And she became the district winner of the Small Scheme Farmers Competition.

She has three cows with fine fur, one pig and 1 goat in the clean concrete houses. She takes care of them very well and produces a lot of manure from livestock to put in the soil, even in the plot of Napier grass.

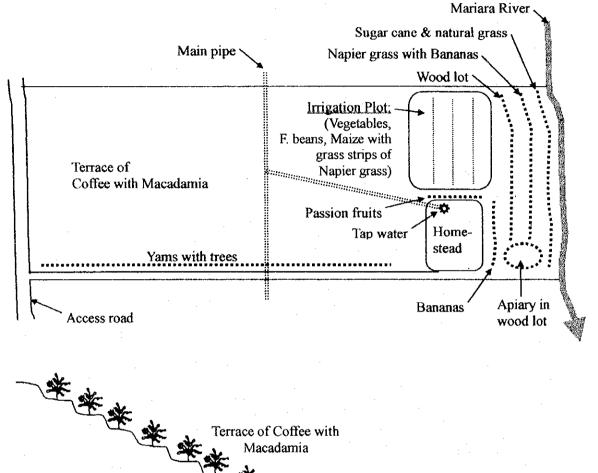
She assists the experience of KARI (Kenya Agricultural Research Institute) and grows Leucens that is a kind of fodder to be introduced in this area. One variety did not grow well, but the present variety grows well and she grows it along the plot and contour line.


(Surveyed on July 15, 1998)


Location Map of Ngomano/Nyangati Water Furrow Project


Mairobi

Effective Land Use for the Soil Conservation in Nyangati The Farm of Mr. Karimi Kaiguri, 4 acres Figure T.2-5

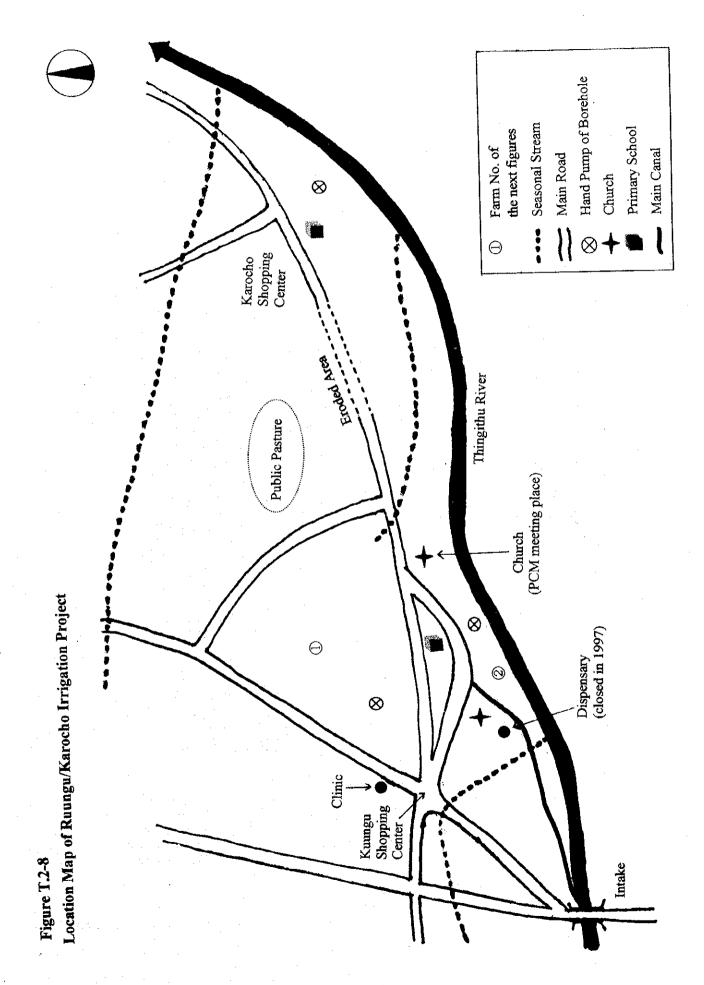

(Surveyed on July 1, 1998)

T-21

Figure T.2-7 Example of the Land Use in Nkun-Njumo

Farm of Mr. Isaya Kithakwa, 3 acres

Terrace of Coffee with Macadamia

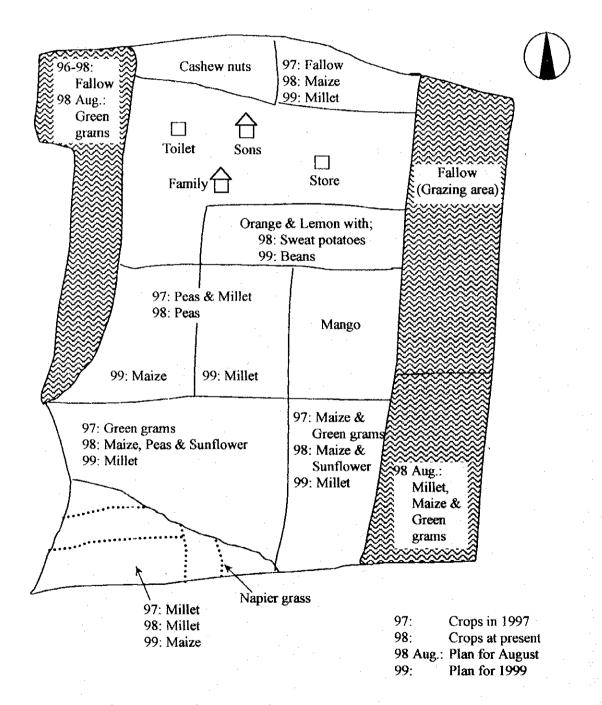

Apiary

In this area, three farmers produce honey for home consumption and selling to neighbors. Bored log is used as hive and it is put on the tree.

Mr. Kithakwa has two hives. One hive makes 5 kg of honey and can be harvested 3 times per year. He sells honey at 160sh/kg.

(Surveyed on July 8, 1998)

F.+.



т-23

Figure T.2-9 Example of the Land Use in Ruungu

① The Farm of Mr. Japhet Kirugi, 15 acres

Mr. Kirugi is a active farmer and he is growing some trees; Cashew nuts, Mango, Orange and Lemon. He raised Sunflower in this year. He has 5 cows. Their drinking water is from a borehole.

(Surveyed on July 14, 1998)

The Farm of Mir. Silas Murryua, approximately 20 acres. With Mirryua is one of the first settlers to Rungu in 1963 and he has the biggest family in this area; 5 wiles, 13 ones and 3 daughters. He had a corr, but it diel fast year is portage of foci. They use manage each plot and he stocks their harvest for the quality is good. They use the averet of borehole nearby for dinking water and they asy that the quality is good. They use the averet of borehole nearby for dinking water and they asy that the quality is good. They use the averet of borehole nearby for dinking water and they asy that the quality is good. They use the averet of borehole nearby for dinking water and they asy that the quality is good. They use the averet of borehole nearby for dinking water and they asy that the quality is good. They use the averet of borehole nearby for dinking water and they asy that the quality is good. The plan and the state and the s		97: Crops in 1997 98: Crops at present	98 Aug.: Plan for August		\bigoplus 1st wife /	Sons Daughters		97: Mullet & reas 98: Peas	97: Millet 98: Millet & Maize	97: Maize & Beans	98: Peas	
The Farm of Mr. Silas Munyua, approximately 20 acres of the first settlers to Ruungu in 1963 and he has the biggee d 3 daughters. He has 8 goats. He had a cow, but it dieces manage each plot and he stocks their harvest for the shorts of borehole nearby for drinking water and they say that the q. Access R huse for the shorts of borehole nearby for drinking water and they say that the q. Access R huse for the shorts of the shorts of the shorts of the shorts of borehole nearby for drinking water and they say that the q. Access R huse for the shorts of the		t family in this area; 5 I last year because of age of food. Jality is good.	oad	aize	Con Son		Sons	97: Maize & Peas 98: Peas & Sorghum		88 Aug.: Millet, Sunflower, Sorghum	97: Maize & Green grams 98: Sorghum 98 Auro Maize & Beans	
 The Farm of Mr. Silas Mun of the first settlers to Ruungu d 3 daughters. He has 8 goe est plot and he stores manage each plot and he stores manage each plot and he stores for the has 8 goe of the stores for the has 8 goe of the stores of borehole nearby for drinking of the stores of the store	unyua, approximately 20 acres	in 1963 and he has the bigges its. He had a cow, but it diec ocks their harvest for the shorta y water and they say that the qu	Access R						97: Sufflower (98:	mflower & Maize	laize 1g.: Maize & E	www.ensuingeringeringeringeringeringeringeringer
Fallow Line are water	2 The Farm of Mr. Silas Mun	ta is one of the first settlers to Ruungu sons and 3 daughters. He has 8 gos Five wives manage each plot and he st the water of borehole nearby for drinking			5th wife	1	<u>; </u>	97: 98:		97: S	ca)	

T-25

(Surveyed on July 22, 1998)

Parameters	Standard	Ru-1.	Ru-2	• D-W1	D-W2
					•
1. Date of Sampling	-	19.07.98	19.07.98	19,07.98	19.07.98
2. Time	-	10:55	11:55	08:00	12:00
3. Climate	-	cloudy:	cloudy	cloudy	fair
4. Air temperature		18.5°C)	18°C	15°C	24°C
5. Water temperature	-	17.0°C	20°C	_ 18°C	19°C
6. River Width (m)	-	8,0	2.0	-	-
7. River Depth (m)	-	0.5	0.5	-	-
8. River Velocity (m/s) 9. pH	-	3.5	1.5		
-	6.0-8.5(1)	8.1	7.8	7.9	9,6
10. EC (µmho/cm)	10-103(2)	110.0	n.a	140.0	8.1
11. COD (Cr) mg/i	20 or< ⁽²⁾	n.d	72.0	64.0	n.d
12. BOD (mg/l)	1. or <(1)*	4.0	3.0	1.0	. 4.0
13. TDS (mg/i)	200-15004	73.0	111 0	270.0	73.0
14. T-SS (mg/l)	25 (1)**	63.0	22.0	9.0	. 63.0
15. HCO3 (mg/l)	<25(2)	33.6	0.00	137.3	33.6
16. SO4 (mg/l)	2-80(2)	2.6	. 8,8	16.0	2.6
17. Na+ (mg/l)	200(3)	3.4	6.8	38.4	3.4
18. K+ (mg/i)	10(2)	1.6	2.4	. 8.0	1.6
19. NO3-N (mg/l)	10(1,3)	4.7.	4.4	20.4	4.9
20. PO4-P (mg/l)	0.005 (1)	0,10	0.12	n.d	n.d
21. Copper (Cu) (mg/l)	3(1)	n.d	n.d	n:d	n.d
22. Manganese Mn++	10(1)	n,d	n.d	n.d	n.d
23. CaCO3 (mg/i)	<15(2)	10.0	10.0	5.0	20.0
24. Magnesium (Mg++)	n.v.s.h(3)	n.d	n.d	n.d	n.d
25. ron (Fe++) (mg/l)	<100 µg/[(2)	0.7	1.7	n.d	0.28
26. Diazinon (µg/I)	10 ⁻² (2)	n.d	n.d	n.d	n.d
27. Fenitrothion (μg/l)	10-2 (1)	n.d	n.d	∘n.d	n.d
28. Malathion (µg/l)	10 ⁻² (2)	n.d	n.d	n.d	n.d
29. Endosullan (µg/l)	10-2 (2)	. n.d	n.d	n.d	
30. Coliform/250 ml	Shall be absent ⁴	present	present	n.a present	n.d present
31. E.Coli/250 ml	Shall be absent ⁴	present	present	present	present

Table T.2-1 **Result of Water Quality Analysis** Rupingazi Ngerwe Irrigation Scheme

Notes:

1	Environmental Water Quality Standards in Japan	
---	--	--

- 2 Concentration Observed in Unpolluted Surface water (WHO)
- 3 WHO

4 Kenya Bureau of Standards

* Agricultural water should have BOD of 8 mg/l or less

** Agricultural water should have T-SS of 100 mg/l or less

- No value set by WHO n.v.s
- No health related value set by WHO n.v.s.h
- n.d Not detectable
- Not sampled 11.8
- Not analysed n,a

- Ru-1: Intake of Rupingazi River
- **Ru-2**: 11 km downstream from the intake D-W:
 - Deep well

(Source: EIA Survey, July 1998)

Parameters	Standard	Mu-1	M u - 2	D-Well	S-Well	O-Well	Spring
1. Date of Sampling		19.07.98	19.07.98	19.07.98	19.07.98	22.07.98	22,07.98
2. Time	-	08:00	09:00	10:15	10:45	09:30	09:00
3 Climate	-	Bright	· Bright	Bright	Bright	Fair	Fair
4. Air temperature	·* · ·	24°C	23.5°C	24°C	· 24°C	22°C	22°C
5. Water temperature	•	20°C	20°C	25°C	25°C	21°C	21°C
6. River Width (m)		3.0	1.0	-	-	-	-
7. River Depth (m)	•	· 0.5	0.3	-	-	~	
8. River Velocity (m/s)	-	0.5	0.5	-	-	7.3	7.6
9. pH	6.0-8.5(1)	8.2	8.4	8.1	8.1		104.0
10, EC (µmho/cm)	10-10 ³ (2)	65.0	135.0	490.0	400.0	110.0	
11. COD (Cr) mg/l	20 or< (2)	n.đ	16,0	72.0	-	28.0	n.d
12. BOD (mg/l)	1 or < ^{(1)*}	2.0	. 3.0	3.0	2.0	4.0	1.5
13. TDS (mg/l)	200-15004	72.0	155.0	376.0	342.0	86.0	88.0
14 T-SS (mg/l)	· 25 (1)**	19.0	26.0	7.0	1.0	. n.đ	n.d
15. HCO3 (mg/l)	<25(2)	n,d	0.0	170.8	115.9	n,ď	n.d
16 SO4 (mg/l)	2-80(2)	0.2	9.0	6.1	8.7	0.6	n.c
17. Na+ (mg/l)	200(3)	4.8	7.4	20.8	17.6	5.8	5.0
18. K+ (mg/l)	10(2)	0.8	1.2	7.0	2.2	0.8	0.6
19. NO3-N (mg/l)	10(1,3)	6.0	7.3	39	53.2	8.0	8.6
20. PO4-P (mg/l)	0.005 (1)	0.02	0.04	0,18	0.4	0.02	0.02
21. Copper (Cu) (mg/l)	3(1)	n.d	n.đ	n.d	n.d	n.d	n.d
22. Manganese Mn++	10(1)		n.d	n.d	n.d	n.d	n.c
23. CaCO3 (mg/l)	<15(2)	15.0	20.0	90.0	85.0	25.0	20.0
24. Magnesium (Mg++)	n.v.s.h(3)	5.0	26.0	72.0	57.0	10.0	21.0
25. Iron (Fe++) (mg/l)	n.v.s.n(*)	2.1			1	0.1	0.4
	<100 µg/i ⁽²⁾ 10 ⁻² (2)	n.d				n.d	n.c
26. Diazinon (µg/l)					1		n.e
27. Fenitrothion (µg/l)	10-2 (1)		1				1
28. Malathion (µg/l)	10 ⁻² (2)			1			1
29. Endosulfan (µg/l)	10-2 (2)		1				
30. Coliform/250 ml	Shall be absent						
31. E.Coli/250 ml	Shall be absent ⁴	resen	presen	t presen	t present	1.8	<u> </u>

Table T.2-2Result of Water Quality AnalysisNgomano/Nyangati Water Furrow Project

Notes:

n.s

ກ.ສ

Not sampled

Not analysed

1	Environmental Water Quality Standards in Japan
2	Concentration Observed in Unpolluted Surface water (WHO)
3	WHO
4	Kenya Bureau of Standards
*	Agricultural water should have BOD of 8 mg/l or less
**	Agricultural water should have T-SS of 100 mg/l or less
n.v.s	No value set by WHO
n.v.s.h	No health related value set by WHO
n.d	Not detectable

Mu-1: Intake of Murubara River	Mu-1:	Intake	of	Murubara	River
--------------------------------	-------	--------	----	----------	-------

Mu-2: 7.5 km downstream from the intake

D-Well: Deep well S-Well: Shallow well

O-Wel: Open well

(Source: EIA Survey, July 1998)

Parameters	Standard	Th-1	Th-2	D-W1	D-W 2
			47.07.00	17.07.98	17.07.98
1. Date of Sampling	-	17.07.98	17.07.98 12:35	13:00	13:30
2. Time	-	11:50	Sunny	Sunny	Sunny
3. Climate	-	Sunny 28°C	29°C	30°C	30°C
4. Air temperature		28°C	23°C	n.s	n.s
5. Water temperature		15.0	10.0	11.0	-
6. River Width (m)		0.6	0,5	-	
7. River Depth (m)		2,5	2.5		-
8. River Velocity (m/s)	6.0-8.5(1)	. 8.0	8.6	8.3	7.3
9. pH	10-103(2)	85.0	180.0	480.0	160.0
10. EC (µmho/cm)		n.d	n.d	24.0	344.0
11. COD (Cr) mg/l	20 or< (2)	10.0	5.0	2.5	5.0
12. BOD (mg/l)	1 or < ^{(1)*}	77.0	159.0	n.d	249.0
13. TDS (mg/l)	200-15004	13.0	12.0	n.d	n.d
14, T-SS (mg/l)	25 (1)**	0.00	76.3	332.5	79.3
15. HCO3 (mg/l)	<25(2)		10.5	25.3	13.8
16. SO4 (mg/l)	2-80(2)	7.4		54.0	18.4
17. Na∔ (mg/l)	200(3)	6.4	8.0		8.0
18. K+ (mg/l)	10(2)	3.8	3.9	30.0	
19. NO3-N (mg/l)	10(1,3)	5.8	6.2	14.8	1.6
20. PO4-P (mg/l)	0.005 (1)	0.8	n.d	0.3	0.3
21. Copper (Cu) (mg/i)	3(1)	n.d	n.d	n.d	n.d
22. Manganese Mn++	10(1)	n.d	n.d	n.d	n,d
23. CaCO3 (mg/l)	<15(2)	10.0	10_0	n.a	n.a
24. Magnesium (Mg++)	n.v.s.h(3)	n.d	n.d	n.a	n.a
25. Iron (Fe++) (mg/l)	<100 µg/l ⁽²⁾	n.a	1.6	3.1	n.d
26. Diazinon (µg/l)	10-2 (2)	n.d	n.d	n.d	n.d
27. Fenitrothion (µg/i)	10-2 (1)		n.d	n.d	n.c
28. Malathion (µg/l)	10-2 (2)		n.d	n.d	n.c
29. Endosultan (µg/l)	10-2 (2)		n.d	n.d	n.c
30. Coliform/250 ml	Shall be absent ⁴		present	present	presen
31. E.Coli/250 ml	Shall be absent ⁴		present	present	presen

Table T.2-3Result of Water Quality AnalysisRuungu/Karocho Irrigation Project

Notes:

1 Environmental Water Quality Standards in Japan

2 Concentration Observed in Unpolluted Surface water (WHO)

3 WHO

4 Kenya Bureau of Standards

* Agricultural water should have BOD of 8 mg/l or less

- ** Agricultural water should have T-SS of 100 mg/l or less n.v.s No value set by WHO
- n.v.s No value set by WHO n.v.s.h No health related value set by WHO
- n.d Not detectable

n.s Not sampled

n.a Not analysed

Th-1: Intake of Thingithu River

Th-2: 5.3 km downstream from the intake

D-W: deep well (40 m)

(Source: EIA Survey, July 1998)

Result of Water Quality Analysis Table T.2-4 Nkunjumo Water Project and Tana River

Parameters	Standard	Ma-1	Ma-2	.Ta-1	· Ta-2
1. Date of Sampling	· -	17.07.98	17.07.98	19.07.98	21.07.98
2. Time		08:10	09:00	12:30	15:30
3. Climate	. -	cloudy	 cloudy 	Fair	Fair
4. Air temperature	-	18°C	18°C	_ 1β°C	23°C
5. Water temperature	-	22°C	22°C	21°C	28°C
6. River Width (m)	-	10.0	10.0	77.0	80.0
7. River Depth (m)	-	0.2	1.0	. 3.0	2.0
8. River Velocity (m/s)	• -	2.8	3.5	4.0	4.0
9. pH	6.0-8.5(1)	7.9	7.8	7.7	8.6
10. EC (µmho/cm)	10-103(2)	. 87.0	86.0	120.0	190.0
11. COD (Cr) mg/l	20 or< (2)	112.0	178.0	n.d	n.d
12. BOD (mg/l)	1 or <(1)"	7.5	5.0	<u>2</u> .0	2.0
13, TDS (mg/l)	200-1500 ⁴	130.0	50.0	92.0	78.0
14. T-SS (mg/l)	25 (1)**	3.0	26.0	19.0	5,0
15: HCO3 (mg/l)	<25(2)	51.9	42.7	54,9	n.d
16. SO4 (mg/l)	2-80(2)	9.6	16.5	0.14	36.4
17: Na+ (mg/l)	200(3)	7.6	6.8	5.2	13.6
18: K+ (mg/l)	10(2)	3.4	3.4	1.4	2.0
19 NO3-N (mg/l)	10(1,3)	6.4	3.5	6.2	4.4
• • • • • • • • • • • • •	0.005 (1)	n.d		0,22	0.02
20., PO4-P (mg/l)	3(1)			n.d	n.d
21. Copper (Cu) (mg/l)	10(1)			n.d	n.d
22. Manganese Mn++				20.0	30.0
23. CaCO3 (mg/l)	<15(2)	n.d		38.0	28.0
24. Magnesium (Mg++)	n.v.s.h(3)	11.0		1.8	4.5
25: Iron (Fe++) (mg/l)	<100 µg/l(2)	n.a		n.d	n.d
26. Diazinon (μg/l)	10 ⁻² (2)			n.d	1.
27. Fenitrothion (µg/l)	10 ⁻² (1)	n.d		n.d	n.d
28. Malathion (μ g/l)	10 ⁻² (2)			1	1.
29. Endosulfan (µg/l)	10-2 (2)			n.d	
30. Coliform/250 ml	Shall be absent ⁴			present	
31. E.Coli/250 ml	Shall be absent ⁴	presen	present	present	present

Notes:

Environmental Water Quality Standards in Japan

Concentration Observed in Unpolluted Surface water (WHO) 2

3 WЮ

I

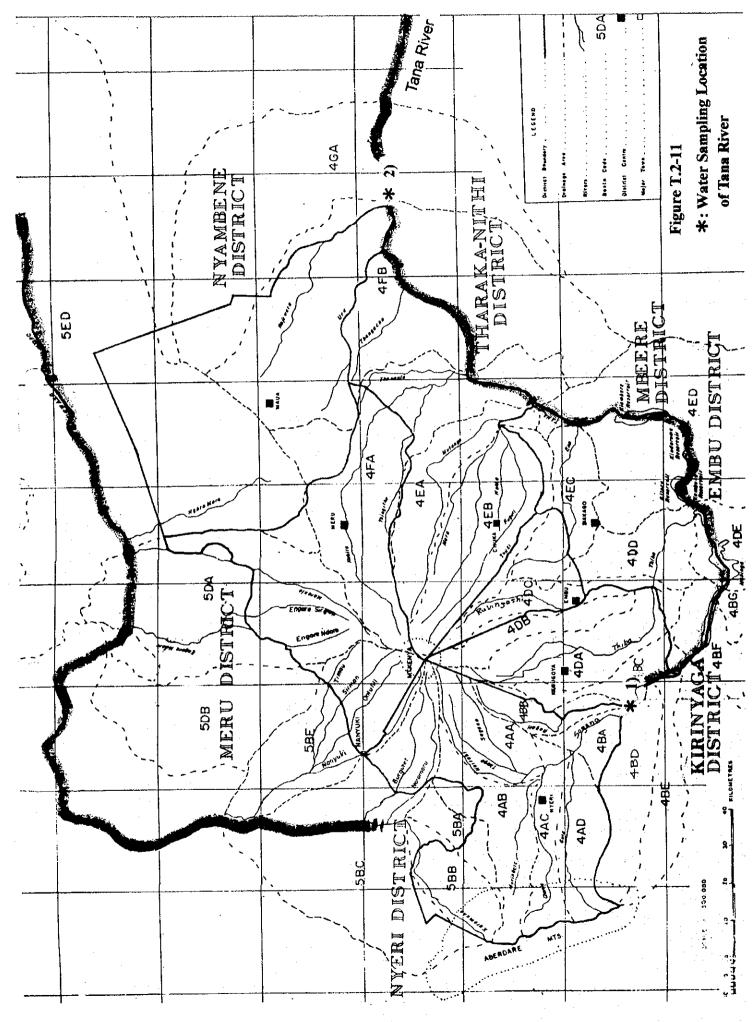
- Kenya Bureau of Standards
- 4 Agricultural water should have BOD of 8 mg/l or less *
- Agricultural water should have T-SS of 100 mg/l or less. **

No value set by WHO n.v.s

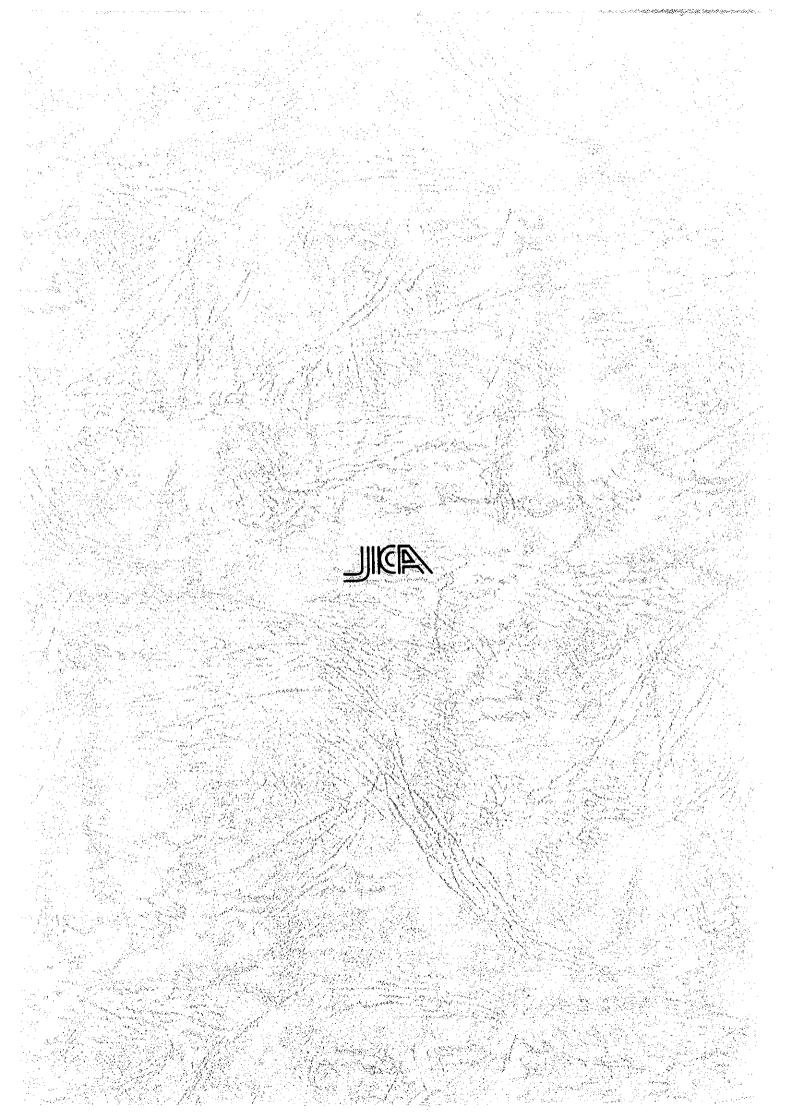
- No health related value set by WHO n:v.s.h
- Not detectable n.d
- Not sampled n.s
- Not analysed n.a

Intake of Mariara River Ma-1:

Ta-1:


Ta-2:

7 km downstream from the intake Ma-2:


. ; ,

Tana River (see the next figure)

Tana River (see the next figure)

×

