
APPENDIX F

App.F.1-1

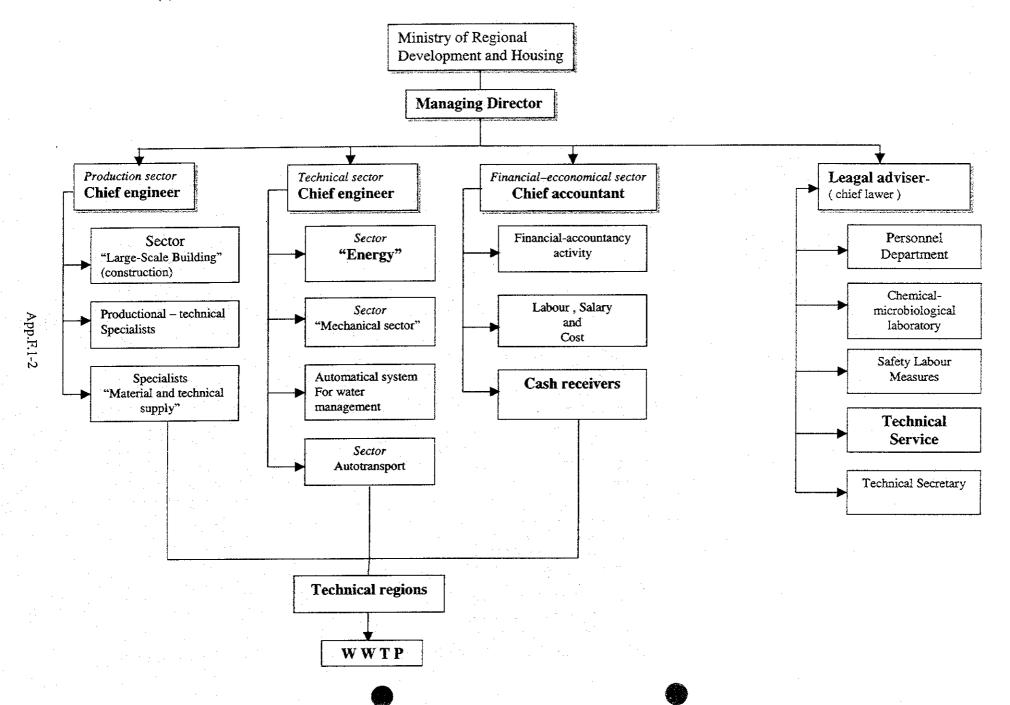
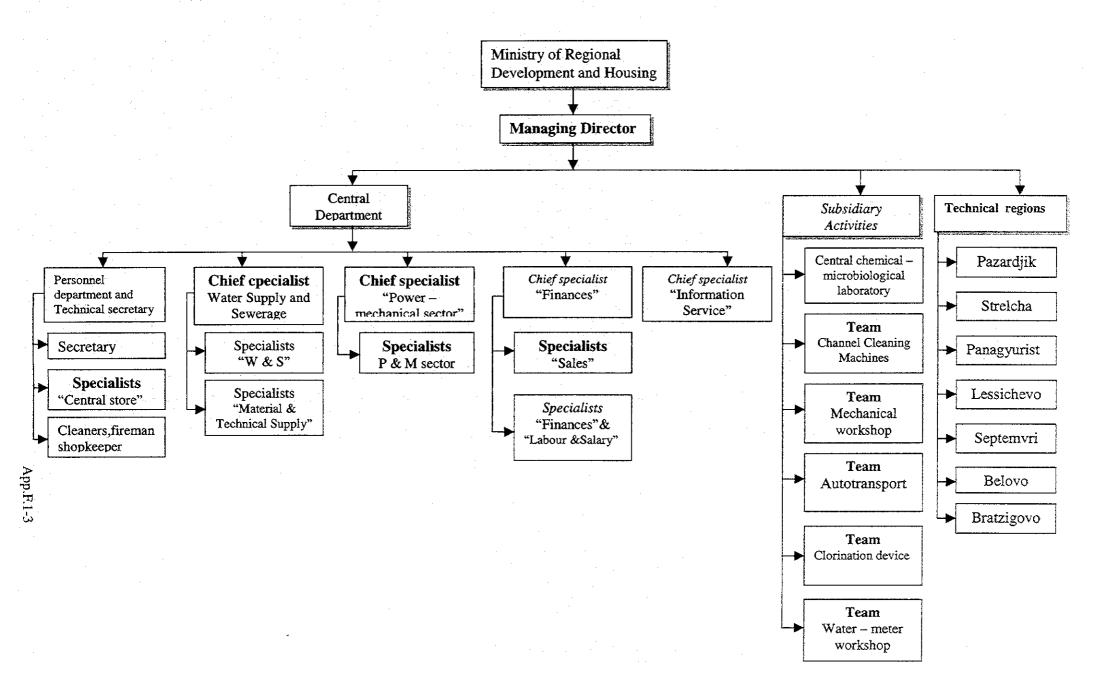



FIGURE F.1 (3) ORGANIZATION CHART OF PAZARDJIK WATER SUPPLY COMPANY

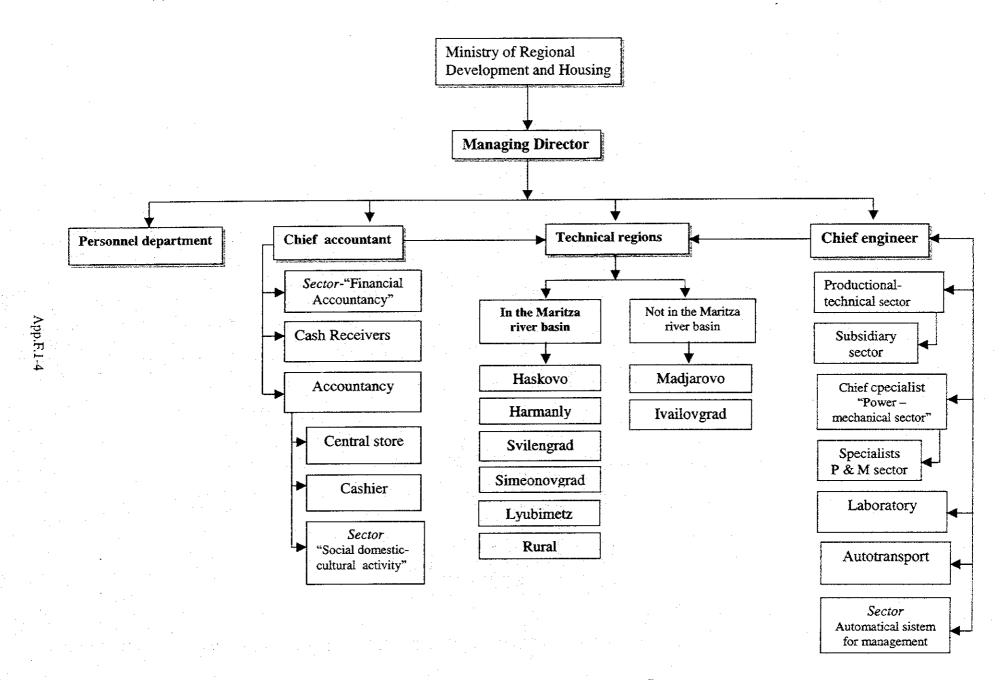
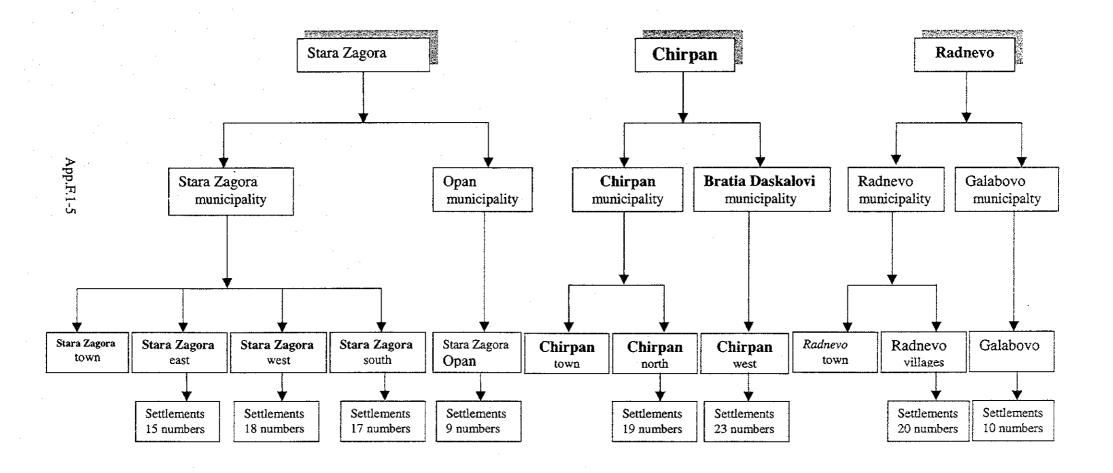



FIGURE F.1 (5) ORGANIZATION CHART OF STARA ZAGORA WATER SUPPLY COMPANY

Water Supply & Sewerage Company – Stara Zagora

SUPPORTING REPORT G WATER QUALITY

TABLE OF CONTENTS

			Page
SUF	PORTI	NG REPORT G WATER QUALITY	
1.	Introdu	action	G-1
2.	Water (Quality	G-2
	2.1	Monitoring System	G-2
	2.2	Water Quality based on Chemical Characterization	G-2
	2.3	Water Quality based on Biological Characterization	G-4
3.	Pollutio	on Source	G-6
	3.1	Domestic	G-6
	3.2	Industry	G-8
	3.3	Livestock	G-8
	3.4	Landuse Pattern	G-8
	3.5	Mining	G-9
	3.6	Solid Waste Dumping Site	G-9
4.	Water	Quality Management Plan	G-10
	4.1	Assessment of Existing Water Quality Management System	G-10
	4.2	Scenarios for Water Quality Management	G-13
-	4.3	Countermeasures	G-16
	4.4	Water Quality Monitoring Tools and Equipment Plan	G-20
	4.5	Costs of the Countermeasures	G-20
	4.6	Rough Cost Estimation for Industrial Wastewater Treatment	G-21
	4.7	Investigations	G-21
	4.8	Proposed Stage Program	G-22

LIST OF TABLES

		Page
SUPPORTING	REPORT G	
Table G.2.1	Monitoring Station of NCESD	G-23
Table G.2.2	Sampling Parameter	G-24
Table G.2.3	Summary of Water Quality in 1994-1996 by NCESD	G-25
Table G.2.4	Summary of Water Quality in 1994-1995 by NIMH	G-26
Table G.2.5	List of Water Quality Sampling Points	G-27
Table G.2.6	Summary of Water Quality Survey in 1997-1998 by JICA	G-28
Table G.2.7	Biotic Indices(Q Valies)and Water Quality Characteristics	G-29
Table G.3.1	Unit Load	G-30
Table G.3.2	Connection Rate of Sewer System Based on Population	
Table G.3.3	Top 50 Industrial Load	G-32
Table G.3.4	Pollution Load of Livestock	G-33
Table G.3.5	Summary of Pollution Load	G-35
Table G.3.6	List of Mines and Relating Facilities	G-37
Table G.4.1	Selection of Priority Towns and Priority Order	G-44
Table G.4.2	Selection of Priority Order	
Table G.4.3	Basic Alternatives for Pollution Reduction	G-45
Table G.4.4	Summary of Construction Cost of Municipal	
	Wastewater Treatment Plants	G-46
Table G.4.5	Proposed Stage Program of Water Quality Management	G-47

LIST OF FIGURES

		Page
SUPPORTING	REPORT G	
Fig. G.2.1	Updated Monitoring System of NCESD	G-48
Fig. G.2.2	Monitoring Station by NIMH	G-49
Fig. G.2.3	Seasonal Water Quality of BOD in 1994-1996	G-50
Fig. G.2.4	Seasonal Water Quality of NH4 in 1994-1996	G-51
Fig. G.2.5	Seasonal Water Quality of NO3 in 1994-1996	G-52
Fig. G.2.6	Seasonal BOD Concentration and Load in Major Towns	G-53
Fig. G.2.7	Seasonal NH4 Concentration and Load in Major Towns	G-54
Fig. G.2.8	Seasonal NO3 Concentration and Load in Major Towns	G-55
Fig. G.2.9	Monitoring Stations of Water Quality Survey by JICA Study	G-56
Fig. G.2.10	Biological Assessment of Water Quality	G-57
Fig. G.3.1	BOD and TN by Pollution Source	G-58
Fig. G.3.2	Pollution Load Per Sub-Catchment	G-58
Fig. G.3.3	BOD Load by Pollution Source	G-59
Fig. G.3.4	TN Load by Pollution Source	G-60
Fig. G.3.5	Composition of Pollution by Pollution Source	G-62
Fig. G.3.6	Number of Livestock in Maritza River Basin	G-64
Fig. G.3.7	BOD Pollution Load of Livestock	G-65
Fig. G.3.8	TN Pollution Load of Livestock	G-66
Fig. G.3.9	Location of Mining	G-67
Fig. G.4.1	Basic Procedure of Water Quality Management Plan	G-71
Fig. G.4.2	Zoning and Priority Town	G-72
Fig. G.4.3	Pollution Load from Prioritized Regions	G-73
Fig. G.4.4	Pollution Load from Major Towns in Prioritized Regions	G-74
Fig. G.4.5	New or Extended Treatment Works of National	
· · · · · · · · · · · · · · · · · · ·	Plan in 1989	G-75
Fig. G.4.6	Proposed Monitoring System	G-76
Fig. G.4.7	Location of Top 20 Industries in Terms of Pollution Load	G-77

SUPPORTING REPORT G WATER QUALITY

1. Introduction

There are more than 100 tributaries in the Maritza River basin. This study divides into 16 main basins and 110 sub-basins for the whole Maritza River basin.

Surface water quality is mainly monitored by NCESD with extensive stations in the basin. The quality is not well appeared. Main pollution is from domestic and industry for organic and nitrogen compound, respectively.

The reason for polluting water quality is, at first, a lack of WWTP. Then penalty for illegal emission from industry is not strict. Therefore, industry prefers to pay penalty instead of treating its wastewater.

Water quality should be improved. To do so, it needs to review existing conditions and systems, then propose the water quality management.

2. Water Quality

In this study, water quality includes surface and groundwater. Groundwater, however, is mentioned in the section "C", Hydro-geology. Therefore, this section does not mention about groundwater.

Water quality is evaluated with the Regulation No. 7 and Biotic Indices for chemical and biological characterization, respectively.

2.1 Monitoring System

Water quality in river is monitored by NCESD and NIMH. NCESD has more frequency sampling and more station than NIMH.

NCESD

In 1993, the monitoring system of the MoE and the REIs consisted out of about 60 observation and sampling points. They have been concentrated along the Maritza River and its main tributaries of Sazliyka, Banska Luda Yana, Topolnitza, Harmanliyska, Chepelarska, and Chepinska.

In 1998, NCESD updated the monitoring stations and sampling system, shown in Table G.2.1 and G.2.2, and Fig. G.2.1. NCESD added 13 new stations in Jan, 98 and deleted several stations.

NIMH

NIMH mainly measures discharge of river. The institute also measures water quality with much less frequency than NCESD (Fig. G.2.2).

2.2 Water Quality based on Chemical Characterization

For the chemical characterization, the water quality is evaluated by the regulation No. 7 issued in 1989. The regulation categorizes water quality into four:

- Category I usable for drinking water source
- Category II acceptable for recreational use and fish farming
- Category III acceptable for irrigation and industrial use
- Beyond Category III unsuitable to use water for any purpose

NCESD

Fig. G.2.3, G.2.4 and G.2.5 show the seasonal water quality for BOD, NH4 and NO3 in 1994 to 1996 based on percentile of 75%. Fig. G.2.6, G.2.7 and G.2.8 show water quality and pollution load (quantity data from NIMH) in main towns. The other parameters and comments are summarized in Table G.2.3.

Concentration and load varied seasonally with some tendency; the pollution load dropped in summer. It is not investigated exact reason. However, a large amount of water is utilized for irrigation in summer. This matter makes it change to the pollution load in river.

It can be concluded by Table G.2.3 that the most polluted river by general parameter and heavy metal is Sazliyka and Luda Yana, respectively.

<u>NIMH</u>

NIMH also works for water quality sampling. However, the frequency of sampling is much less than NCESD. Between 1994 and 1995, the sampling was made at most 3 times a year for one station. It is not enough to evaluate water quality with the data. However, it is enough to use the data as a comparison of pollution tendency. NIMH data was summarized in Table G.2.4.

Some parameters do not belong to the same category as NCESD. However, the parameters appeared in the table is almost same as Table G.2.3. Concerning parameters are BOD, NH4, NO2, PO4, and SO4.

JICA Study

JICA Study team conducted water quality investigation in 1997 to 1998. The monitoring stations selected are shown in Table G.2.5 and Fig. G.2.9. Result for river water quality is

described in Table G.2.6.

Pollution by general parameters show similar result compared to NCESD. Again Sazliyka is the most polluted river in the study area.

However, results for heavy metal pollution is described more detail by JICA's investigation. NCESD measured only Fe and Mn. In the other hand, JICA measured Cu, Zn, Pb, Fe, Mn, Cd, As, and Hg. Hg pollution was found in Maritza and Topolnitza. According to this survey, it is concluded that the most severe problem by heavy metal is Topolnitza.

The other data such as water from municipal WWTP, industries, and sewerage are listed in data book, "4 Water Quality".

2.3 Water Quality based on Biological Characterization

NCESD assesses surface water quality with the help of macroinvertebrates.

From 1996 to 1997, the water quality was studied at 71 sites with an interval of about 5 km. Biotic indices (B.I.) and biotic scores are applied to assess the water quality of running waters, in most cases based on benthic macroinvertebrate community.

A relationship between the biotic indices and a characterization of the analyzed water (regarding chemical, biological points of view) is given in Table G.2.7.

The water classes are:

-BI 1: bad water quality

-BI 2: poor water quality

-BI 3: doubtful water quality

-BI 4: fair quality

-BI 5: good quality

Intermediate classes such as BI 1.5, 2.5, 3.5, and 4.5 are also possible.

Fig. G.2.10 shows the biological assessment. Major concerning rivers with heavily pollution is Sazliyka, Haskovska, Banska, and a part of Stara and Chepelarska. Pollution

mechanism to Sazliyka is clear from this map. Stara Zagora contributes significant pollution to Sazliyka.

It can explain same thing to Stara from Peshtera and Haskovska from Haskovo.

Many part of biotic index shows similar to chemical characterization.

3 Pollution Source

In this study, pollution source such as domestic, industry, and livestock is estimated. Of course, there is other pollution. However, data is not available and above three sources are considered to be major pollution in the Maritza River basin. Therefore, the three kind of pollution is enough to evaluate for the study area. For TN, landuse pattern is able to quantified and added. Pollution from landuse pattern is more dependent on rainfall. Unit load is estimated with several references (Table G.3.1).

Pollution based on source and sub-basin is summarized in Fig. G.3.1 to G.3.4. Domestic pollution emits the most with 46%. And Industry is the largest emission for TN with 33%.

For pollution load based on sub-catchment, SAZ-7 is the largest on both BOD and TN. The pollution is loaded from concentrated area; top 5 sub-basins load 48% and 46% of BOD and TN pollution, respectively. High loading sub-basin for BOD tends to high loading for TN, too.

High pollution loading and polluted water quality region are linked.

3.1 Domestic

About 1,750,000 people live in the Maritza river basin. Among them, 68 % lives in town/village more than 5,000 inhabitants.

The distribution of the population is shown below.

DISTRIBUTION OF POPULATION

Size of	Number	% in	Sum,	Towns
town		Maritza basin* ¹⁾	%	
>250,000	1	20	20	Plovdiv
100,000 -	1	9	28	Stara Zagora
250,000			,	
50,000	5	18	46	Haskovo, Pazardjik, Assenovgrad,

100,000				Dimitrovgrad, Velingrad
20,000 -	4	6	52	Karlovo, Nova Zagora, Harmanli,
50,000	1			Panagyurishte
10,000 -	10	9	60	Chirpan, Peshtera, Parvomay, Svilengrad,
20,000			1	Rakovski, Radnevo, Stamboliyski, Ihtiman,
				Sopot, Kostenetz
5,000	19	8	68	Galabovo, Septemvri, Hissarya, Krichim,
10,000				Rakitovo, Lyubimetza, Pirdop, etc

^{*1):} based on population

Roughly it can be said that in the 10 biggest towns about 3/4 of the urban population lives and about 1/2 of population of the total Maritza river basin.

The biggest three towns along Maritza River are Plovdiv, Pazardjik, and Dimitrovgrad, which cover 27% of total population in the study area.

In the sub-basin, Stara Zagora is the biggest town, 8% of total population in the whole Maritza river basin.

Pollution load by domestic is categorized into three;

- population not connected sewer
- population connected to sewer without WWTP
- population connected to sewer with WWTP

Table G.3.2 shows connection rate of sewer system. 58% of population connected sewer and 21% are connected WWTP based on the whole Maritza river basin.

Domestic load based on sub-basin is described on Fig. G.3.3 to G.3.5. High loading basin is Sazliyka, Harmanliyska, Maritza around Pazardjik, Plovdiv and Dimitrovgrad, up stream of Stryama and Chepinska, and downstream of Chepelarska.

All of the high loading basin locates top ranked town such as Plovdiv, Stara Zagora, Haskovo, Pazardjik, Assenovgrad, Dimitrovgrad, Velingrad, and so on, described in above table. As well as total pollution, emission of domestic pollution is from the limited area. Top 5 catchments load 48% of BOD and 50% of TN.

3.2 Industry

TN emission by industry is the largest among four pollution sources. Table G.3.3 shows top 50 industries, and Fig. G.3.5 describes loaded by sub-basin and top 20 industries.

Top 3 industries emit 54% of BOD and 88% of TN. The pollution is loaded only a few industries.

This tendency is the same as domestic source.

3.3 Livestock

Livestock pollution is distributed over the basin compared other source mentioned previously (Fig. G.3.3 to G.3.5). Sazliyka region is the highest loading. 73% of BOD and 65% of TN load is from pig and cattle, respectively.

Fig. G.3.6 shows a number of cattle, sheep, pig, and fowl in 1989, 1992, and 1994. As shown in the figure, all animal decreases from 1989 to 1994 in the Maritza River basin. One of the reason is expected the economical condition.

Fig. G.3.7 and G.3.8 show pollution by pig, fowl, and cattle per sub basin in 1994. SAZ is identified high loading by all three animals. Detail data is shown in Table G.3.4.

3.4 Landuse Pattern

The pollution from landuse discharges during rain. The distribution of pollution based on sub-basin is spread whole basin (Fig. G.3.4, G.3.5). Among them, SAZ is the highest load because of the largest agriculture landuse. Pollution effect by fertilizer and pesticide could not quantified. However, these area largely used for agriculture has high potential of fertilizer and pesticide pollution.

Pollution from domestic, industry, livestock, and landuse pattern is summarized in Table G.3.5.

3.5 Mining

The Maritza River basin has over 100 mines and their relating facilities (Table G.3.6, Fig. G.3.9). Pollution from mining activity is dangerous. Several type of heavy metal is detected (Table G.2.6). The pollution mechanism by heavy metal in rivers is not investigated. However, mining activity and heavy metal pollution in river is related. For example, there is a large copper mine in Panagyurishte, up stream of Luda Yana. Table G.2.6 shows copper in category III. This could be effect by mining activity.

There are also closed mines. Without proper management, it may have severe pollution.

3.6 Solid Waste Dumping Site

Pollution from dumping site is considered to leachate. However, data for leachate is not identified.

4 Water Quality Management Plan

Water quality is evaluated and pollution source is described in previous chapter. To improve water quality, it is necessary to improve water quality management in the basin.

The management plan is proposed for strengthening of monitoring system, reduction of pollution load, and necessary investigations.

Fig G.4.1 explained schematically the basic procedure of a water quality management plan. The integrated water quality management plan is developed through several steps from the awareness for the necessity of the management.

The water quality management plan was formulated as following steps:

- Assessment of existing water quality management system
- Scenarios for water quality management
- Countermeasures
- Water quality monitoring tools and equipment plan
- Cost
- Investigation
- Proposed stage program

4.1 Assessment of Existing Water Quality Management System

Existing water quality management system is assessed in this section. The problems of the existing management system are explained:

(1) Monitoring System

What is important for monitoring system is to identify the water quality and analyze pollution mechanism. Then the analysis is applied to the improvement of water quality.

NIMH and NCESD measure surface water quality. However, the sampling is not regularly taken, and data is not summarized. In addition, no data is exchanged between the institutes even though many of their stations are very close. In term of the location of the monitoring station, some place such as Pazardjik do not have monitoring station after town. Or even though there is a station after Plovdiv, no measurement took place after 1993.

The problems of the monitoring station are summarized below:

- Irregular frequency of data collection
- No data exchange between the institutes
- Insufficient summarize of data collected
- Inappropriate location of monitoring stations

NCESD updated monitoring system in January 1998. Some stations were added and deleted (Fig. G.2.1). "Frequency of sampling" and "Phys-Chem analysis" is described in Table G.2.1 and Table G.2.2. The sampling parameter is separated very detail. However, it is better to make simple system at first. After having appropriate amount of data, sampling parameter and frequency can be separated detail.

Some of the new stations are added in up stream of river. In this moment, these stations are not necessary even though sampling is twice a year. These stations should be added after well performance of monitoring in downstream.

(2) Control of Domestic Wastewater

There are only five WWTPs in the Maritza River basin. First, additional WWTPs are definitely needed to control domestic wastewater. Among 5 WWTPs, only Plovdiv is operated properly to the secondary treatment. However, including Plovdiv, all WWTPs are necessary to be rehabilitated or strengthening maintenance.

Also the sewer pipe should be rehabilitated. Overlapping part of pipe to pipe is very short and there is no proper protection for leakage. Therefore, wastewater leaks and groundwater flows into the sewer pipe. It makes groundwater pollution and inefficiency work of WWTP

regarding the pollution reduction.

In other aspect, the direct impact of domestic pollution to river is not investigated. The effluent quality to river should be measured. This measurement is applied to estimate sewerage leakage, too.

The problems are summarized below:

- Shortage of WWTPs
- Need of rehabilitation and lack of maintenance for WWTPs
- Pipe connection
- No measurement of sewer effluent quality

(3) Control of Industrial Effluent

Industrial effluent is controlled by MoEW. However, MoEW does not measure industrial effluent. Industry declares the effluent quality individually. MoEW gives penalty to industries according to the declaration. One third of TN is produced by industry. Pollution by NH4 and NO2 are found in many parts of the rivers. Therefore, it is expected that the declaration is incorrectly reported.

Industries emitting over the regulated effluent quality are imposed penalty. However, the amount of penalty is relatively low. In this moment, it is cheaper to pay money for illegal level of effluent than spending money for the treatment.

The problems are summarized below:

- Incorrect declaration of effluent quality by industry
- Low amount of fine over the regulated effluent level

(4) Mining

There are over 100 active and closed mines, and their relating facilities in the study area. The pollution from mining industry is significantly dangerous. The management such as water use, effluent quality, treatment of mining waste and wastewater, and monitoring system, etc. is not investigated.

Soil contamination survey was conduced around Zlatitza and Pirdop, down stream of Topolnitza and Luda Yana, and the north of Plovdiv. The contamination mechanism is not clearly defined. However, it is expected there is some relations between them.

(5) Solid Waste

Illegal solid waste dumping is found many places in the Maritza River basin. It is because insufficient public (municipal) service. One of the organized solid wastes dumping sites is located in Plovdiv. The site is well constructed. However, there is no fixed plan for leachate treatment.

The problems are summarized below:

- Insufficient public service
- No fixed plan for leachate

4.2 Scenarios for Water Quality Management

The target water quality in year 2015 is to meet class II. Three scenarios of water quality management are proposed for this achievement:

• Scenario 1: Reduction of pollution load

Scenario 2: Strengthening of monitoring system

• Scenario 3: Investigations

In this section, Scenario 1 is discussed. Scenario 2 is discussed in the part of the subsection 4.3. Scenario 3 is discussed in the sub-section 4.6.

The characteristic of pollution is mentioned in section 3. The pollution is emitted largely from limited catchments, towns and industries. Therefore, the reduction from big towns and top ranked industries is significant improvement to the study area. The approach of pollution reduction is proceeded:

- Select priority regions by high loading and deteriorated water quality regions
- Review pollution load from major towns in each region
- Select priority towns and its priority order
- Make draft alternatives for reduction of pollution
- Evaluate the water quality improvement of the alternatives by water quality model
- Select the optimum plan for water quality improvement

(1) Selection of Priority Regions

At first, main polluter giving a large effect to water quality is defined. The evaluation is based on catchment. From Fig G.2.3 and Fig G.3.3, the relationship of pollution load and water quality is definitely linked. So main polluter giving a large effect to water quality is designated. A few catchments are selected and formed as the priority regions (Fig. G.4.2).

- Up stream, Maritza MU2, STA, MM1, CPE-1
- Mid-stream, Maritza MM2, MM3
- Down stream, Maritza HAR
- Sazliyka SAZ

Fig G.4.3 shows the pollution load in regions. Eighty percent of pollution is loaded from these four regions. It means four regions are defined as main polluter in the study area. Among them, the largest polluter is up stream of Maritza emitting 26% of total pollution in the study area.

(2) Selection of Priority Towns and Priority Order

Priority towns are selected with three steps:

- Review and select priority towns from prioritized four regions (Fig G.4.4)
- Consider towns chosen by the National Plan of the Ministry of Construction in 1989 (Fig G.4.5)
- Select an important spot such as tourism area and mining activity area

The first priority is to reduce the pollution from the most effected town. Fig G.4.4 shows the pollution load from 19 major towns in 4 priority regions. A few major towns are loaded 66 - 90% in each priority regions. Therefore, the pollution reduction from these major towns makes it strong impact to water quality.

These 19 major towns are considered to be the priority towns. In addition, 13 towns and 2 districts are added from the non-prioritized region. The added towns are the selected towns by the National Plan (Fig G.4.5).

Some towns need severe consideration to environment such as tourist and mining activity area. Even though they may not load a large amount of pollution, these towns should be included for the priority towns. Four towns are selected from an important spot.

The selected priority towns should reduce the pollution load by implementation or rehabilitation of facilities by the year of 2015. It is proposed to separate 3 stages with 3 type of priority order. The execution period and priority order is as follows:

- 1st priority order project execution in the year of 2001 to 2005
- 2nd priority order project execution in the year of 2006 to 2010
- 3rd priority order project execution in the year of 2011 to 2015

The priority order for four prioritized regions and the important spots is determined with the present total pollution load and the future potential domestic load, shown in Table G.4.2. Towns with pollution of the present load over 3000 kg BOD/d and the future load over 2000 kg BOD/d are chosen as 1st priority. The selected 7 towns are:

- Pazardjik
- Plovdiv
- Assenovgrad
- Dimitrovgrad
- Haskovo
- Stara Zagora
- Velingrad

All towns in the non-prioritized region are considered as the third order because of relatively low load and much less impact to the Maritza River and the Basin.

(3) Alternative for BOD and TN Reduction

Next is how much pollution should be reduced to meet the target of class II for BOD and NH4. To achieve this goal, the three basic alternatives are made, shown in Table G.4.3. These alternatives are simulated and the pollution reduction plan is determined.

Alt. 1 is to reduce more domestic pollution load than industry and livestock pollution. Alt. 3 is the opposite concept of reduction plan. It is reduced more industrial and livestock load than domestic load. The reduction concept between Alt. 1 and Alt. 3 is Alt. 2.

Both the basic alternatives and the impact of only domestic reduction are simulated (Table M.3.1 in Supporting Report M). The result is applied to the selection of the alternative.

4.3 Countermeasures

Countermeasures for improvement of water quality management are composed of structural plan and non-structural plan. Structural plan is pollution reduction by WWTP. Non-structural plan is strengthening of monitoring system, regulation and investigation.

(1) Pollution Reduction

The reduction alternative is determined with evaluation of Table M.3.7 and Table M.3.8 in Supporting Report M. Alt. 3_3 and Alt. 4_3 meet the target of the class II for BOD. For NH4, Alt. 4_3 is the best quality among the Alternatives. However, it does not meet the class II in upstream and mid-stream of Maritza in some area, and Sazliyka. Alt. 3_3 is the same as Alt. 4_3 except no nitrification at WWTP in Stara Zagora and Haskovo. The difference of the result is the category of Harmanliyska is down to the class III. The reduction of TN is more efficiency from industry and livestock. And it is possible to reduce pollution from industries largely by their production system and management. It is necessary to review and adjust the pollution reduction such as to keep the enough space for advanced nitrification/denitrification in WWTP.

It is proposed Alt. 3_3 execute for pollution reduction plan. The following is the Alt. 3_3:

BOD reduction

Domestic load reduction by WWTP

- 1st priority town 90% (primary and secondary treatment)
- 2nd priority town 30% (primary treatment)
- 3rd priority town 30% (primary treatment)

Industrial load reduction by regulation

- Top 1-10 90%
- Top 11-20 30% (equivalent to 80% reduction of industrial load)

Livestock load reduction by regulation

• farm 30%

• household 30%

Currently most animals are raised and kept in low number in small farmers. They are regarded as non-point pollution source. As for reduction of pollution load from household livestock, it is recommended to apply dry cleaning method instead of wet

cleaning for household livestock and to use sludge for agriculture after dried. This recycle is simple and inexpensive method for small number of livestock.

TN reduction

Industrial load reduction by regulation

• Top 2 fertilizer industries 90% (equivalent to 79% reduction of industrial load)

(2) Strengthening of Monitoring System

Monitoring of water quality:

Strengthening of monitoring system is necessary for the water quality management. At first the measurement organizations should be combined. Only one organization is enough to measure water quality.

Then the importance of the monitoring stations is evaluated. The updated monitoring system is not bad at all. However, It is recommended that the start of the new sampling system be simple. For example, frequency of sampling and measurement parameters are too detail. At first it is important to understand water quality and pollution mechanism. Then to execute countermeasure, additional stations are necessary on purpose. In addition, monitoring station in the very up stream is not necessary in this moment.

Two type of monitoring stations is recommendable. The principal and the auxiliary stations are selected and shown in Fig G.4.6.

Principal Station – 6 stations in Maritza River

6 stations in the tributaries

Auxiliary Station - 7 stations in Maritza River

24 stations in the tributaries

Water quality is necessary to grasp the impact of town pollution. New station is added in one place as the principal station on the Maritza River: after Luda Yana where existing

sewer in Pazardjik and effluent of future WWTP are discharged. Four new stations are added on tributaries as auxiliary station. Tributary of Topolnitza and Blatnitza where effluent from WWTP flows out. And one station is added in mid stream of Luda Yana for tracing the heavy metal pollution. Fourth station is in Batak reservoir, the largest reservoir in the study area. The study proposes frequency and parameter of sampling. Some are overlapped the existing system. The system is summarized:

The frequency of sampling should be:

Principal station — strictly once in a month

Auxiliary station — strictly once in two months (monthly sampling is recommendable)

The measurement parameters are:

General parameter: air temp, water temp, pH, DO, BOD, SS, NH4, NO2, NO3, PO4,

SO4, H2S, coliform

Heavy metal: Cu, Zn, Pb, Ni, Fe, Cr, Mn, Mg, Cd, As, Hg

The parameter and sampling frequency of heavy metals are to be modified considering the result.

Biological measurement:

In order to characterize and to support the assessment with the physical/chemical parameters, a biological parameter (Biotic Index) has been shown. To identify ecological "hot spots" these measurements have to be extended. Just nowadays the bacteriological load, as a thread to the health to the population, is measured in the Sazliyka Region. Microbiological parameters should be used at least for all other organic polluted rivers, so at least also for Maritza and Harmanliyska Rivers.

Industrial effluent:

For industrial effluent, each industry should have obligation to declare the effluent quality correctly. In addition, REIs are necessary to conduct effluent quality survey of industry occasionally. The strict observation is needed and recommendable to start from top 20

industries, then the others. With the observation, the effluent regulation should be reviewed. It is recommended that the effluent quality be the same as effluent level of WWTP.

Livestock:

Each farm should declare the effluent quality. And REIs conduct effluent quality survey occasionally. The strict observation is necessary.

For household animal, it is recommended for REIs to inspect cleaning methods and to change wet cleaning method to dry cleaning method. In addition, REIs had better to instruct the application of manure dried up for agriculture.

4.4 Water Quality Monitoring Tools and Equipment Plan

Equipment of water quality measurement is prepared and organized. There is no need for additional apparatus for the proposed sampling parameters.

HD (hydrodynamic) and WQ (water quality) models are well developed in this project. This is a powerful tool for water quality management. The model can verify the pollution impact to the rivers.

4.5 Costs of the Countermeasures

For structure cost, it is mentioned as follows:

		Costs (US\$ 1000)
Construction of municipal v	vastewater treatment plants (re	fer to Table G.4.4)
- 1 st Stage towns		122,021
- 2 nd Stage towns		36,437
- 3 rd Stage towns		55,272
	Total cost for WWTP	213,730

Above cost will be checked again and revised, if necessary, in the next study stage in Bulgaria. The detail is mentioned in Supporting Report H.

For non-structure, only software is needed.

4.6 Rough Cost Estimation for Industrial Wastewater Treatment

Rough cost estimation for the top 20 industrial wastewater treatment is conducted. The location of the industries is shown in Fig. G.4.7.

Rough cost for industrial LWWTP or rehabilitation of existing LWWTP is estimated with following assumption:

- Treated water quality from industry is as the one from municipal WWTP meeting the class III of Regulation of No. 7.
- Land is available for LWWTP.
- If industrial wastewater is necessary for municipal WWTP in terms of carbon source or others, the cost is not estimated. However, cost is estimated if the rehabilitation of pipe is needed.
- The cost is estimated the combined WWTP from several industrial wastewater if it is cheaper.

With the above assumption, the cost for top 20 industries is estimated.

Top 1-5	USD 36.5 mil
Top 5-10	USD 5.8 mil
Top 11-20	USD 13.3 mil
Total	USD 55.5 mil

4.7 Investigations

The reduction of pollution and strengthening of monitoring stations are mentioned previous section. Still data is not enough to execute the integrated water quality management. Some investigations are needed such as sewer system and its effluent, industrial effluent, mining waste and its wastewater, and solid waste. Then the implementation of improvement and management are planned.

The detail investigations are discussed as follows:

(1) Sewer System and Its Effluent

concentration to river should be measured. It is the direct impact of domestic load. Sewer network in each town and the pipe connection should be investigated. Then effluent

(2) Industrial Effluent

It is mentioned in the section 4.3

(3) Mining Waste and Its Wastewater

waste and wastewater, monitoring system, and duration of activity. The investigation should be carried out for water use, effluent quality, treatment of mining

(4) Solid Waste

investigated. capacity (duration), treatment of leachate, and monitoring system should be

4.8 Proposed Stage Program

Proposed programs are proceeded four stages:

- 1) Preparation stage Year 1999 2000
- Short term stage 2001 2005
- Mid term stage 2006 2010

 ω

t) Long term stage 2011 - 2015

The detail is shown in Table G.4.5

TABLE G.2.1 MONITORING STATION OF NCESD

							 		
No	Samling point code	Sampling point		Type of Phys- chem analysis*1	Frequency of Radiological control	Date of opening	Hydrom erty	NIMH S	Stations No.
133	30060256	Maritza rivez at Raduil village, HMS	2	Background			NIMH	231	71650
134	30060085	Maritza river at Belovol	12	Reference			NIMH	248	71700
135	30060521	Chepinska river at GS Cherdyovo	2	Background		1/1/1998	MINEL	256	71390
136	30060522	Matnitza river before Batak						230	71370
		ැය.	12	Reference		1/1/1998	RIEW Dams &		
137	30060523	Batak res, before reservoir					Cascade		
138	30060524	dam Matnitza river after Batak res.	2	Reservoir Reservoir		1/1/1998			ļ
		Chepinska river before inflow		Mestry of		1/1/1798	KIEW	 	
139	30060156	Maritza river at Kobachevo village	12	Reference	ŧ		NEMH	249	71420
140	30060387	Topolnitza river before town of							
		Koprivshtitza Topoliniza river at the bridge	2	Background			NIMH	422	71450
141	30060099	of town of Panagyurishte-							
		town of Pirdop Topolnitza before Topolnica	12	Reference			NIMH	250	71470
142	30060100	resat village of Poibrene	12	Reference	,		NIMH	240	71480
143	30060101	Topolnitza' res, before					Danis & Cascade		-
		reservoir dam	. 4	Reservoir			5	<u></u>	
144	30060525	Topolnitza after Topolnica res.	2	Reservoir		1/1/1998	RIEW	ļ	
145	30060259	Topolnitza before inflow			1		ļ		
		Maritza river Maritza at fown of Pazarjik on	12	Reference			RIEW	 	<u> </u>
146	30060260	the bridge of Sofia-Ploydiv Luda Yana river above town of	12	Reference			NIMH	252	71800
147	30060526	Streicha	2	Background		1/1/1998	NIMH	336	71250
148	30060102	Luda Yana river at village of	- 		1			2511	
149	30060468	Rosen After WWTP - Stamboliyski	12	Reference Reference			NIMH	251b 253	71550 71850
150	30060527	Vacha river above Trigrad	2	Background		1/1/1998		275	72020
151	30060107	Vacha river after town of Devin	12	Reference			NIMH	421	72340
152	30060108	Vacha river at village of			1		i	721	12370
		Y.Gruevo Marilza river at town of	12	Reference			RIEW		
153	30060265	Plovdiv(HMS 301)	12	Reference	1	l	NIMH	301	72700
154	30060091	Maritza river after Ploydiv to 1km.after municipal collector	12	Reference			RIEW		
			·				Carculat	i	
155	30060528	Chepelarska river above village of Progled	1 2	Background		1/1/1998	ed by NIMH		
156	30060110	Chepelarska river on the bridge						201	-0460
		to village of Bachkovo Chepelarska river before	12	Reference	<u> </u>		NIMH Calculat	324	72460
157	30060111	inflow Maritza river(stop	١,,	0.5	1		ed by		
		Kemera) Stryama river above town of	12	Reference			NIMH	<u> </u>	
158	30060529	Klisura Stryama river at village of	2	Background		1/1/1998	NIMH	326	72500
159	30060530	Banya	12	Reference		1/1/1998		325	72520
160	30060103	Stryama river before inflow			2		Calculat ed by		
100	20000103	Maritza at village of Manole	12	Reference	,		NIMH		
161	30060092	Maritza river at town of Parvomay(HMS 304)	12	Reference			NIMH	304	72850
162	30060094	Maritza river - 3km. after			3				12030
<u> </u>		discharge of the sewerage Bedechka river - village of	12	Reference	<u> </u>	 	NIMH	autom.	ļ
163	30060104	Mogila	12	Reference			RIEW		
164	30060531	Biainitza river above village of Konyovo	2	Background		1/1/1998	RIEW		[]
			† -				Calculat	 	
165	30060330	Blatnitza river before town of Radnevo	12	Reference			ed by NIMH		
166	30060532	Sinintliyka river above village				141.0000		20-	33.400
		of Rakitnitza Sazliyka river at town of	2	Background		1/1/1998	MMH	305	73400
167	30060105	Galabovo	12	Reference	2	·	NIMH Calculat	342	73480
168	30060270	Sazliyka river before inflow	1		2		calculat al by		
		Maritza river	12	Reference	<u>. </u>		NIMH	ļ	
	30060533	Harmanliyska river before village of Trakietz	2	Background		1/1/1998	RIEW		
169		Harmanliyska river at village	i		· · · · · · · · · · · · · · · · · · ·				
	30060394		l	ا مند	l				
170	30060394	of Dinevo Maritza river after town of	12	Reference			NIMH	308	73550
		of Dinevo	12	Reference Reference	1		NIMH NIMH	308	73750

^{*1:} Detail is shown in Table G.2.2

TABLE G.2.2 SAMPLING PARAMETER

Genaral Parameter

Type of	Tair	Twat	Ph	DO ^{*1}	DO _{sut} *2	EC*3	BOD5	Oxid*4	CODer	DS	SS	Cl	SO4	NH4-N	NO2-N	NO3-N	PO4
Analysis	- 312	77.						(perman)							į		
Reference	X	X		X	X	X		X	X *1	X	X	X	X				
Background	X	X	Х	Х	X	X	Х	Х		Х	X			Х	X	X	
Reservoir	X	X		Х	X	X	X	X		X	X	i		. X	X	X	>
Mouth of river	X	X		Х	X	X	X	X	X*1	X	X	X*3	X*3	X	X	X	>
Border of	Х	X	X	Х	X	Х		X	X*2	X	X	X*3	X*3				7
country	1		. }									i		ļ		1	

*1: when BOD>10 mg/L
*2: when BOD>5 mg/L
*3: Frequency of sampling is 4 times a year

Additional Parameter

Type of Analysis	Heavy Metal	detergents	Surface active substance	Phenol	Cyanides	Petroleum products	Chlorine org pesticides	Polyaromatic hydrocarbons	PCBs	Triazine pesticides	Mn
Reference	X	Х	X	X	X	X	X	X	X	X	
Background											X
Reservoir				Depending	on region and exp	ected polluter's type	e ·				
Mouth of river	Х	X	X	X	X	X	X	. X	X	X	
Border of country	Х	х	X	X	X	X	X	. X	X	X	1
Frequency of sampling per year	4	4	4	4	4	12	2	2	2	2	i i

TABLE G.2.3 SUMMARY OF WATER QUALITY IN 1994-1996 BY NCESD

			Code	Catego	ory II	Catego	ry III	Worse than	Cat III	
Basin	River	Location	No	General*2	Heavy	Conoral	Heavy	C	Heavy	Conunents
				General "	Metal*3	General	Metal*3	General	Metal*3	
MUI	Maritza	Kostenetz	84	BOD,NH4		NO2				- Cosiderably clean in Maritza River
******	IVICI II Za	ROSICIALZ	0.4	,PO4	Ì	INUZ].		,
	Maritza	Belovo	85	BOD,NH4	†			<u> </u>		
		· .		,NO2			-			
	Maritza	Vetren	257	N114,NO2		i				
	Maritza	Pazaardjik	260	NH4,P04		NO2	i			
MMI	Maritza	Govedare	263	NH4,PO4	Fe			NO2		- More polluted in down stream
·	Maritza	Stamboliyski	468	BOD,NH4	Fe			NO2	~	- Heavy metal pollution in mid-stream
				,PO4			<u> </u>			- Banska - most polluted river (impac
	Maritza Maritza	Plovdiv	265	NH4,PO4		NO2				from Haskovo industrial WWTP)
	Maritza	Mirovo Parvomay	157 92	NH4	Mn	NO2,PO4				
	Mecha	Parvomay	392	BOD,NH4 NH4,NO2	ļ	NO2,PO4	Mn	ļ		
	IVICCIIA	raivollay	392	BOD,NO2	ļ	PO4	<u></u>			
	Maritza	Skobelevo	267	,NH4		PO4	Mn			
MM3	Banska	Dobrich	- 393		Mn	H2S,N114	ļ	BOD,NO2	·····	
							į ·	, PO4		
	Maritza	Dimitrovgarad	93	BOD,NH4	Mn	NO2	·	PO4		
	Maritza	Simeonovgrad	268	NH4	1	1		NO2		·
	Maritza	Harmanli	96	BOD	Mn	NH4		NO2,PO4		- Polluted by N and P compound
	Maritza	Svilengrad	272	BOD,NH4		PO4		NO2		
TOP	Pirdopska	Pirdon	98	BOD,NH4 ,SO4,PO4	Fe			NO2	-	- Better water quality after Topolnitza
	rett-	n:	00	,304,P04 NH4,NO2,	ļ	ļ				reservoir
	Topolnitza	Pirdon	99	PO4			Mn			
	Topolnitza	Petrich	388	NH4	Mn	NO2				
	Topolnitza	Poibrene		NH4,NO2	Mn					
	Topolnitza	Pazardjik	259	NH4,NO2		<u> </u>				· ·
	Chepinska Chepinska	Nikolov		NH4,PO4	re	I STOR		NO2		- Only problem by NO2
	Luda Yana	Kovachevo Panagyurishte	156 390	NH4,PO4 PO4	17-	NO2		\$173A		
	Banska Luda				Fe	BOD,NH4	ļ	NO2		- Worst condition by heavy metal in
	Yana	Banya	391	NH4,NO2		SO4	Fe		Mn	the study area - More polluted in up stream
	Luda Yana	Popintzi	262	BOD,PO4	Fe	NH4	Mn	NO2		wore ponused in up siream
ļ	Luda Yana	Rosen	102	BOD,NH4	Fe			NO2	Mn	
	Luda Yana	Pazardjik	154	,SO4,PO4 NH4,NO2		ļ:_				
1	Stara	Byaga	264	BOD	Fo	NIOA DOM		NICO		
VAC	Vacha	Gruevo		NH4,NO2	Fe	NH4,PO4	<u> </u>	NO2		- N and P compound pollution
	Yugovska	Yugovo		NH4,NO2	Mn	 	<u> </u>			- Cleanest river shown in this table
				NH4,NO2,	1	 				- Polluted after Assenovgrad
	Chepelarska	Bachkovo	110	PO4						
1	Chepelarska	Kemera	111	PO4		NO2	Mn	NH4		
STR	•			NH4,NO2,	 					- Considered to be clean
SIK	Stryama	Manole	103	PO4						
SAZ	Sazliyka	Mogila		NO3	 	BOD,H2S	 	NH4,NO2		- Most polluted river in whole Maritza
	Blatnitza	Radnevo	330	BOD,NO3	-	NH4		NO2		river basin
]	Sazliyka	Radnevo	331	BOD,NO3		NH4	<u> </u>	NO2,PO4		- No heavy metal pollution
1	Sazliyka	Konstantinovetz.	269	BOD,SO4		H2S		NH4,NO2,		yourney
1								PO4 SO4,NH4,		
	Sazliyka	Galabovo	105	BOD				NO2		
,	Sazliyka	Simeonovgrad	270	BOD .				SO4,NH4,		
		Dinevo	394	BOD,NH4	Mn			NO2 NO2,PO4		- Highly polluted, especially in
HAR	Harmanlivska		377	202,1114	1			BOD,NH4		- riignly polluted, especially in
HAR	Harmanliyska			1				ロッシン・ルリングー		
			158		Mn					Haskovo
	Harmanliyska Harmanliyska		158		Mn			,NO2,		Haskovo
-		Haskovo	158		Mn Mn	NH4,H2S				Haskovo

^{*}I: Worse than Category III

^{*2:} Assessment of parameters - BOD, NH4, NO3, NO2, Cl, SO4, PO4, H2S *3: Assessment of parameters - Fe, Mn

TABLE G.2.4 SUMMARY OF WATER QUALITY IN 1994-1995 BY NIMH

			Code	Catego	ry II	Catego	ry III	Worse than	Cat III*1
Basin	River	Location	No	General*2	Heavy Metal*3	General	Heavy Metal*3	General	Heavy Metal*3
MUI	Maritza	Raduil	71650	NH4				NO2	
	Ochushnitza	Ochusha	71330	BOD,NH4, NO2,PO4					
	Maritza	Belovo	71700	NH4,PO4		BOD,NO2			
MU2	Maritza	Pazadjik	71800	NH4,NO2		PO4			
MM1	Maritza	Plovdiv	72700	NH4,NO2, PO4					
MM2	Maritza	Parvomay	72850	BOD,NH4, NO2,PO4					
MD	Maritza	Harmanli	73750		Fe	NH4		BOD,NO2, PO4	
	Maritza	Svilengrad	73850	BOD		PO4		NH4,NO2	
TOP	Topolnitza	Medet	71470	BOD,NH4, NO2,PO4	l .			SO4	
	Topolnitza	Poibrene	71480	BOD,NH4, NO2	Fe				
CPI	Chepinska	Nikolovo	71420	NH4,NO2, PO4					
CPE	Yugovska	Yugovo	72240	NH4,NO2		:			
	Chepelarska	Bachkovo	72460	BOD,NH4, NO2,PO4					
SAZ	Sazliyka	Galabovo	73480	SO4,PO4		DO		BOD,NH4, NO2	
HAR	Harmanliyska	Harmanli	73550			BOD,NH4		PO4,NO2	

^{*1:} Worse than Category III

^{*2:} Assessment of parameters - DO, BOD, NH4, NO3, NO2, Cl, SO4, PO4

^{*3:} Assessment of a parameter - Fe

TABLE G.2.5 LIST OF WATER QUALITY SAMPLING POINTS

		ı

No	Code-No	Location	Sampling	Total
	<u> </u>	·	Per Month	Number
1	256	Maritza river - Raduil	2 times	12
2	86	Maritza after Septemvry - the bridge to Zlokutchene	1 time	6
3	260	Maritza in Pazardjik - the bridge Sofia-Plovdiv	2 times	12
4	263	Maritza after Pazardjik - Govedare	1 time	6
5	612	Maritza before junction of Vatcha	2 times	12
6	90	Maritza after junction of Vatcha - 6th klm	I time	6
. 7	265	Maritza in Plovdiv /HMS 301/	2 times	12
8	267	Maritza after Parvomay - the bridge Skobelevo	1 time	6
9	94	Maritza-3 klm after NEOCHIM Dimitrovgrad	1 time	6
10	95	Maritza after junction of Sazliyka	2 times	12
11	97	Maritza after Svilengrad	1 time	6
12	100	Topolniza before Topolniza reservoir - Poibrene	1 time	6
13	259	Topolniza before junction in Maritza	1 time	6
14	156	Tchepinska before junction in Maritza - Kovatchevo	1 time	6
15	262	Luda Jana -Popintzi	1 time	6
16	154.	Luda Jana - the bridge to Ognyanovo	1 time	6
17 .	103	Stryama before junction in Maritza - Manole	1 time	6
18	111	Chepelarska before junction in Maritza /Kemera/	I time	6
19	329	Bedetchka - after junction of 4 sewage collectors of Stara Zag-	1 time	5
20	104	Bedetchka- Mogila	1 time	6
21	628	Sazliyka - the bridge to Znamenosetz	1 time	6
22	331	Blatniza before junction in Sazlíyka	I time	6
23	270	Sazliyka before junction in Maritza	1 time	6
24	394	Harmanliyska in Dinevo	1 time	5
25	271	Harmanliyska in Harmanli	1 time	6

Municipal WWTP - inlet and outlet

No	Code-No	Location	Sampling	Total
v .			Per Month	Number
1	4	WWTP-Ihtiman - intlet	l time	. 6
2	5	WWTP-Ihtiman - outlet	1 time	6
3	10	WWTP-Peshtera - inlet	1 time	6
4	. 11	WWTP-Peshtera - outlet	1 time	6
5	20	WWTP-Ploydiv - inlet	1 time	6
6	21	WWTP-Plovdiv - outlet	1 time	6
7	36	WWTP-Nova Zagora - inlet	1 time	6
8	37	WWTP-Nova Zagora - outlet	1 time	5
9	44	WWTP-Haskovo, Cooperative WW Station - inlet	1 time	6
10	45	WWTP-Haskovo, Cooperative WW Station - outlet	1 time	5

Outflow From Industrial Waterwater

No	Code-No	Location	Sampling	Total
			Per Month	Number
1	I*	WWTP-MDK Pirdop - inlet	1 time	Ï
2	П*	WWTP-MDK Pirdop - outlet	1 time	• 1
3]][*	"Assarel-Medet" Corp Pump Station before Medet river	1 time	1
4	1	"Assarcl-Medet"Corp Banska Luda Jana, before Banya	1 time	6
5	27	Bulcons-Parvomay	1 time	4
6	16	Celhart-Stamboliyski	1 time	6
7	22	Cristal-Katunitza	1 time	6
8	26	Manole-pig breading farm	1 time	6
9	30	Neohim-Dimitrovgrad	1 time	6
10	34	Agrobiohim-Stara Zagora	1 time	6
11	40	TEC Maritza III, Galabovo	1 time	5

Outlet From Sewage System

No	Code-No	Location	Sampling	Total	
			Per Month	Number	
1	13	Pazardzhik	1 time	6	
2	24	Plovdiv-North collector	1 time	6	
 3.	29	Dimitrovgrad	1 time	5	
4	33	Stara Zagora - collector	I time	5	
 5	43	Haskovo-Haskovska river after Junction of all collectors WW	I time	6	

TABLE G.2.6 SUMMARY OF WATER QUALITY SURVEY IN 1997-1998 BY JICA

			Code	Catego		Catego		Worse than	Cat III
Basin	River	Location	No	General*2	Heavy	General	Heavy	General	Heavy
				L	Metal*3	General	Metal*3	General	Metal*
MUI	Maritza	Raduil	256	NO2				T	
	Maritza	Zlokuchene	86	NO2					
MU2	Maritza	Pazaardjik	260	NO2			Hg		
MM1	Maritza	Govedare	263	COD, BOD NH4	Fe, Mn			NO2	
	Maritza	Jen of Vacha	612	NH4		NO2	I		
	Maritza	Orizare	90	COD, BOD					
	Maritza	Plovdiv	265	NH4, NO2		·	Hg		
MM2	Maritza	Skobelevo	267	COD, BOD NH4	Fe	NO2			
ММ3	Maritza	Dimitrovgrad	94	COD, BOD NH4	Cu, Fe, Mn			NO2	
MD	Maritza	Simeonovgrad	95	NH4,PO4				NO2	
	Maritza	Svilengrad	97	COD,BOD NH4	Fe, Mn		Hg	NO2	
ТОР	Topolnitza	Poibrene	100	NH4	Fe, Mn, As		Zn, Hg	NO2	
	Topolnitza	Pazardjik	259	NO2	Cu,Fe, Mn				
CPI	Chepinska	Kovachevo	156	NH4				NO2	
LUD	Luda Yana	Popintzi	262	COD,BOD NH4,PO4		71.1	Cu	NO2	
	Luda Yana	Pazardjik	154	NO2	Cu				
STR	Stryama	Manole	103	NO2		·			
CPE	Chepelarska	Кетега	111	NH4	Zn	NO2	Pb		Cd
SAZ	Bedechka	Stara Zagora	329	BOD,NH4 PO4	Fe	COD		NO2	
	Sazliyka	Mogila	104	PO4				COD,BOD NH4,NO2	
	Sazliyka	Radnevo	628	COD,BOD PO4				NH4,NO2	
	Sazliyka	Radnevo	331	COD,BOD NH4,PO4				NO2	:
	Sazliyka	Simeonovgrad	270	COD,BOD PO4				NH4,NO2	
HAR	Harmanliyska	Dinevo	394	NO2	[Ī ·		
	Harmanliyska		271	COD,BOD NH4,PO4				NO2	

^{*1:} Worse than Category III

^{*2:} Assessment of parameters - COD, BOD, NH4, NO3, NO2, Total P. *3: Assessment of parameters - Cu, Zn, Pb, Fe, Mn, Cd, As, Hg.

TABLE G.2.7 BIOTIC INDICES (Q VALUES) AND WATER QUALITY CHARACTERISTICS

Q Ratings	5	4	3_4	3	2	1
Water quality	Good	Fair	Doubtful to Fair	Doubtful	Poor	Bad
Pollution Status	Unpolluted	Unpolluted	Slight pollution	Moderate pollution	Heavy pollution	Gross pollution
Biodegradable organic wastes	Absent	Absent	Absent	In advanced stages of mineralization	Heavy load	Very heavy load
BOD	Normal i.e.less than 3 mg/l	Normal i.e.less than 3 mg/l	Close to or normal	May be high at times	High	Very high
ро	Typically ranges from 80-120% of saturation	May fluctuate above and below 80-120%	Fluctuates widely	Fluctuates very widely. Potential fish-kills	Low during the day. May be zero at night	Very low or zero at all times
Bottom Siltation	None	None	May be light	May be considerable	Heavy	Heavy and commonly
'Sewage Fungus'	Absent	Absent	Absent	May be small amounts	Usually abundant	Usually abundant
Algae	Diverse communities not excessive in development	Moderate, sometimes	Abundant	Abundant. May completely blanket river bed	May be abundant	Ranges from none to abundant
Macrophytes	Usually diverse communities. Development not excessive	May be well developed	Usually abundant	Abundant. May completely overgrow river if blanket algae allows	Tolerant forms only. May be abundant	Only the most tolerant types
Macroinvertebrates (from fast areas)	Usually diverse communities. Sensitive species numerous.	Some reduction in diversity; density increases	Sensitive forms absent or scarce. Total numbers may be very high	Sensitive forms absent. Diversity falls. Tolerant species common	Tolerant forms only.	Only the most tolerant types or none
Potential Beneficial Uses Condition	High quality waters suitable for supply and all other abstractions. Game fisheries. High amenity value	Waters of somewhat less high quality than Q5 but usable for substantially the same purposes Satisfactory	Usually good game fisheries but fish at risk due to possible fluctuations in DO. Suitable for supply. Moderate to high amenity value Transitional	Coarse fisheries. Not likely to support a healthy game fishery. Suitable for supply after advanced treatment. Unsatisfactory	Fish absent or only sporadically present. May be used for low grade industrial abstraction. Low amenity value	Fish absent. Likely to produce nuisance smells. Very low or zero amenity value

TABLE G.3.1 UNIT LOAD

	Category of Pollution Source	BOD	TN	NH4	NO3	Q	Reference
	Category of Foliation Source	(kg/d)	(kg/d)	(kg/d)	(kg/d)	(L/d)	
tic	Non-sewered	0.0135	0.0032	0.00119	0.0012		UNDP report
Domestic	Sewered without treatment	0.054	0.008	0.00476			
å	Sewered with Treatment	0.0054	0.0032	0.0012	0.00168	1 4 4	JICA WQ survey 1997
	Pig wet cleaning no treatment	0.145	0.038	0.027	0	0.085	TN&NH4: Danish Standard pig, Q: Manole pig farm
	Pig dry cleaning, Liquid manure only	0.07	0.017	0.015	0	0.004	TN, NH4 &Q: Danish Standard pig BOD :UNDP report
	Pig wet cleaning 3 step WWTP	0.014	0.008	0.001	0.006	0.085	JICA investigation, Manole pigfarm
<u>ب</u>	Pig wet cleaning mechanic WWTP	0.035	0.01	0.008	0	0.085	Getimate
Livestock	Cow wet cleaning no treatment	0.682	0.285	0.18	0	0.04	BOD, TN, NH4 & Q:Danish Standard cow
	Cow dry cleaning, liquid manure only	0.06	0.12	0.11	0	0.024	TN: Danish Standard cow BOD: UNDP report
	Cow wet cleaning mechanical WWTP	0.045	0.09	0.083	0	?	Getimate
	Sheep total	0.06	0.027	0.016	0	-	Danish Standard sheep
	Fowl wet cleaning liquid manure	0.006	0.00147	0.001	0	?	Danish Standard chicken
	Fowl wet cleaning mechanical WWTP	0.003	0.0007	0.0005	0	?	Getimate
	Bare+urban+water body	0			0.2		
usc	forest+grass	0			0.2		Japanese related textbook
Landuse	non-irrigate+irrigate+fruit	0			0.68		(Forest+Grass) + 5% of applied fertilizer (3500kgN/km2/yr in 1995)

: used for estimation of pollution loads

TABLE G.3.2 CONNECTION RATE OF SEWER SYSTEM BASED ON POPULATION

Main	Sub-	Sewered		Non-		% of	% of
Basin	Basin	Not		Sewered	Total	Sewered	
1		Treated	Treated				rreated
	CPE-1	51649	0	16117	67766	76	0
	CPE-2	2713	0	2393	5106	53	0
	CPE-3	1200	0	9035	10235	12	0
Sub-To		55562	0	27545	83107	67	0
CPI	CPI-1	0	0	0	0	-	
1	CPI-2 CPI-3	2566 49321	0	13501	16067 66711	16 74	$\frac{0}{0}$
Sub-To	. ,	51887	0	30891	82777	63	
	HAR-I	17013	0	7854	24867	68	0
II/AIC	HAR-2	75869	0	21799	97667	78	· · · · · · · · · · · ·
	HAR-3	0	ŏ	8227	8227	0	ö
Sub-To		92881	0	37880	130761	71	<u>0</u>
	LUD-1	0	0	0	0	-	-
	LUD-2	0	16323	15243	31566	52	52
1	ĽÚD-3	1748	0	4590	6338	28	0
Sub-T	otal	1748	0	19833	21581	8	0
MD	MD-1	0	0	1066	1066	Õ	0
	MD-2	0	0	0	0	-	-
	MD-3	0	0	243	243	0	0
	MD-4	0	0	0	0	-	-
	MD-5	0	0	336	336	0	0
1	MD-6	0	0	1018	1018	0	0
ļ	MD-7	0	0	343	343	0	0
	MD-8	7322	0	10079	17401	42	0
	MD-9	0	0	2778	2778	0	0
1	MD-10	$\frac{0}{0}$	0	127	127	-	0
ł	MD-11 MD-12	0	0	137 858	137 858	0	0
	MD-12	0	0	1741	1741	0	0
i .	MD-14	0	0	774	774	0	0
	MD-15	0	0	0	0	<u> </u>	
	MD-16	0	0	676	676	ō	0
	MD-17	0	0	0	0		·
I	MD-18	2892	0	7558	10450	28	0
	MD-19	Ō	0	6636	6636	0	Ö
ŀ	MD-20	Ö	0	2410	2410	0	0
	MD-21	0	0	837	837	0	0
Sub-T	otal	10214	0	37491	47705	21	0
MM1	MM1-I	0	0	2088	2088	0	0
l .	MM1-2	0	0	12740	12740	0	0
l	MM1-3	0	0	0	0		
1	MM1-4	0	0	4587	4587	0	0
	MM1-5	6709	0	11681	18390	36	0
	MM1-6	0	0	5186	5186	0	0
	MM1-7	0	0	0	0	ļ	<u> </u>
	MM1-8 MM1-9	0	0	63912	63912	0	Ô
	MM1-10	1	0	4665	4665		0
1	MM1-11	_	305685		306034		
1	MM1-12	1	0	6416	14201	55	0
Sub-T		14494	305685	111623	431803	74	71
MM2	MM2-I	17483	0	10959	28442	61	0
1	MM2-2	0	0	176	176	0	Ő
1	MM2-3	0	0	11697	11697	0	ő
	MM2-4	- O	0	4599	4599	Ô	0
	MM2-5	0	0	0	0		-
	MM2-6	444	0	10940	11384	4	0
	MM2-7	0	0	0	0		
1	MM2-8	0	0	4419	4419		↓
	MM2-9	15584		1969	17553		0
	MM2-10	. I	1	5633	5633	0	0
1	MM2-11		i		0		
	MM2-12			·	7857	0	.1
1	MM2-13		·i	. 1	20248	- L	0
ĺ	MM2-14				7182	-1	0
1	MM2-15	· 2 — — — —	. 0	6983	9594	4	0
Ja	MM2-16		_1		0	. 1	ļ
Sub-T	otal	46027	0	82758	128785	36	0

Main	Sub-	Not Not	ered	Non-	Total	% of	% of
Basin	Basin	Treated	Treated	Sewered	10(8)	Sewered	Treated
ммз	MM3-1	4892	0	3261	8153	60	0
	MM3-2	0	ő	1965	1965	0	ő
	MM3-3	2567	0	3024	5591	46	0
	MM3-4	0	0	0	0	-	
	MM3-5	Ö	0	ö	0		
i	MM3-6	0	0	1277	1277	0	Ő
	MM3-7	0	0	132	132	0	0
	MM3-8	0	0	0	0	-	-
	MM3-9	50285	0	2844	53129	95	0
	MM3-10	0	0	9947	9947	0	0
	MM3-11	0	0	4320	4320	0	0
	MM3-12	0	0	568	568	0	0
Sub T		57743	0	27339	85082	68	0
MUI	MUI-I	0	0	0	0		
	MU1-2	8005	0	24513 7802	32517	25	0
i	MU1-3 MU1-4	3465	0		11267	31	
i	MU1-4	0	0	0	0		
	MUI-6	o		ŏ	0		
	MU1-7		0	ŏ	ŏ		
	MUI-8	8397	0	2099	10496	80	0
	MU1-9	0	0	1744	1744	0	0
	MU1-10	4958	0	5292	10250	48	0
Sub-T	otal	24825	0	41449	66275	37	0
MU2	MU2-1	0	0	0	0		-
	MU2-2	71840	0	58754	130594	55	0
	MU2-3.	0	0	0	0	-	-
	MU2-4	0	0	1210	1210	0	0
	MU2-5	0	0	0	0	-	-
	MU2-6	0	0	0	0	-	-
Sub-T		71840	0	59964	131804	55	0
PYA	<u> </u>	0	0	16170	16170	0	0
Sub-T		0	0	16170	16170	0	0
SAZ	SAZ-I	0	0	0	2630	0	
	SAZ-2 SAZ-3	$-\frac{0}{0}$	0	2630 1625	1625	0	0
	SAZ-3	8223	0	12033	20256	41	0
	SAZ-5	0223	0	12033	0		
	SAZ-6	9107	24192	28372	61671	54	39
	SAZ-7	135822	0	48217	184039	74	0
	SAZ-8	0	0	0	0	-	<u>-</u>
Sub-T	1,	153152	24192	92877	270221	66	9
	STA	12075	9322	31223	52620	41	18
STA		1		31223	52620	41	18
Sub-T		12075	9322	21772	32020		
		12075 0	9322 6186	21414	27600	22	22
Sub-T	otal	0				22 0	0
Sub-T	otal STR-1	0	6186	21414 10327 26471	27600	22 0 59	· · · · · · · · · · · · · · · · · · ·
Sub-T	otal STR-1 STR-2 STR-3	0	6186 0	21414 10327	27600 10327	22 0	0
Sub-T STR	otal STR-1 STR-2 STR-3 otal TOP-1	0 38535 38535 0	6186 0 0 6186	21414 10327 26471 58212 0	27600 10327 65005 102932 0	22 0 59 43	0 0 6
Sub-T STR Sub-T	otal STR-1 STR-2 STR-3 otal TOP-1 TOP-2	0 0 38535 38535 0 0	6186 0 0 6186 0 12685	21414 10327 26471 58212 0 8751	27600 10327 65005 102932 0 21436	22 0 59 43 - 59	0 0 6 59
Sub-T STR Sub-T	otal STR-1 STR-2 STR-3 otal TOP-1 TOP-2 TOP-3	0 38535 38535 0 0 16783	6186 0 0 6186 0 12685	21414 10327 26471 58212 0 8751 4972	27600 10327 65005 102932 0 21436 21755	22 0 59 43	0 0 6 59
Sub-T STR Sub-T TOP	otal STR-1 STR-2 STR-3 otal TOP-1 TOP-2 TOP-3 TOP-4	0 38535 38535 0 0 16783	6186 0 0 6186 0 12685 0	21414 10327 26471 58212 0 8751 4972 0	27600 10327 65005 102932 0 21436 21755	22 0 59 43 - 59 77	0 0 6 59
Sub-T STR Sub-T TOP Sub-T	otal STR-1 STR-2 STR-3 otal TOP-1 TOP-2 TOP-3 TOP-4 otal	0 38535 38535 0 0 16783 0 16783	6186 0 0 6186 0 12685 0 0	21414 10327 26471 58212 0 8751 4972 0 13722	27600 10327 65005 102932 0 21436 21755 0 43190	22 0 59 43 	0 6 59 0
Sub-T STR Sub-T TOP	otal STR-1 STR-2 STR-3 otal TOP-1 TOP-2 TOP-3 TOP-4 otal VAC-1	0 0 38535 38535 0 0 16783 0 16783 5578	6186 0 6186 0 12685 0 0 12685	21414 10327 26471 58212 0 8751 4972 0 13722 18438	27600 10327 65005 102932 0 21436 21755 0 43190 24016	22 0 59 43 	0 0 6 59 0 29
Sub-T STR Sub-T TOP Sub-T	otal STR-1 STR-2 STR-3 otal TOP-1 TOP-2 TOP-3 TOP-4 otal VAC-1 VAC-2	0 38535 38535 0 0 16783 0 16783 5578	6186 0 0 6186 0 12685 0 0 12685 0	21414 10327 26471 58212 0 8751 4972 0 13722 18438 2917	27600 10327 65005 102932 0 21436 21755 0 43190 24016	22 0 59 43 	0 0 6 59 0 29
Sub-T STR Sub-T TOP Sub-T	otal STR-1 STR-2 STR-3 otal TOP-1 TOP-2 TOP-3 TOP-4 otal VAC-1 VAC-2 VAC-3	0 38535 38535 0 0 16783 0 16783 5578 0	6186 0 0 6186 0 12685 0 0 12685 0 0	21414 10327 26471 58212 0 8751 4972 0 13722 18438 2917 12529	27600 10327 65005 102932 0 21436 21755 0 43190 24016 2917 12529	22 0 59 43 	0 0 6 59 0 29 0
Sub-T STR Sub-T TOP Sub-T	otal STR-1 STR-2 STR-3 otal TOP-1 TOP-2 TOP-3 TOP-4 otal VAC-1 VAC-2 VAC-3 VAC-4	0 38535 38535 0 0 16783 0 16783 5578	6186 0 0 6186 0 12685 0 0 12685 0	21414 10327 26471 58212 0 8751 4972 0 13722 18438 2917	27600 10327 65005 102932 0 21436 21755 0 43190 24016	22 0 59 43 	0 0 6

TABLE G.3.3 TOP 50 INDUSTRIAL LOAD

,		······································				 		<u> </u>			Cone (i	ng/L)	Load	(kg/d)	% of	BOD	% 0	TN
¥o.	MOE Ref.	Location	Catch	Institution	Business	Tributary	Discharge to	WWTP.	Working days/yr	Quantity (m3/d)	ворз	ኒኒ	ворѕ	7:	telative Load	Accum of Rel.	Relative Load	Rel Accum.
	-			· · · · · · · · · · · · · · · · · · ·	Food			-							er Pierre		8	(K-1)
2		Katunitza Stara Zagora	MM2-15	"Kristal 91" "Agrobiohim"	processing Chemical	Maritza Sazlika	Maritza Bedetcka	Ϋ́	260 365	3000 69120	4500 105	90 125	9616 7258	192 8640	26.6 20,1	27 47	1.2 55.3	<u>: 1</u> 57
		w		r growning	Food	CALL DAK	Descrea		303	67120	103	2	72,16	8040	20,1		33.3	- 3,
3		Stara Zagora Dimitrovgrad	SAZ-7 MM3-9	"Zagorka" Brewery Ltd SC Neohim		Sazliika Maritza	TS Marit2a	Y	365 365	4200 45100	600 38	20 103	2520 1698	84 4645	7.0	54 58	0.5 29.7	57 37
	10	Canada dii abi		#31:	Food		[7					~	
5					processing Food	Maritza	Maritza	Y	260	12700	150	2	1357	18	3.8	62	0.1	87
6		Pazardjik	MU2-2		processing Food	Maritza	TS	Y	260	15297	120	10	1308	109	3.6	66	0.7	88
7		Plovdiv WWTP-Haskovo	MM1-9	sweet factory	processing Waste	Maritza	TS	Y	260	5240	300	20	1120	75	3.1	69	0.5	88
8				Joint Ind TWWKS	Treatment	Banska r.	Banska r.	Y	365	5375	152	-10	817	54	2.3	71	0.3	88
9	14	Galabovo	SAZ-4	TEPS "Maritza East" 1	Electric Power Food	Sazliika	slag pond	Y	365	49740	15	1.3	746	65	2,1	73	0.4	89
10	6	Parvomai	MM2-13	"Bulkons" Ltd.	processing	Maritza	TS	Y	260	6340	150	10	677	45	1.9	75	0.3	89
1)	78	Stara Zagora	SAZ-7	Meat Factory Ltd.	Food processing	Sazliika	TS	Y	260	1281	500	50	456	46	1.3	76	0.3	89
12		Stamboliiski		"Tzelhart" Ltd.		Maritza	Maritza	Ÿ	260	67400	9.2	- 10	442	480	1.2	78	3.1	92
				"Plovdivska konserva"	Food													
13	45	Plovdiv	MM1-9	dep.1	processing Food	Maritza	TS	Y	260	4000	150	10	427	28	1.2	79	0.2	93
14		Stara Zagora	SAZ-7	"Gali Zagoretz" Ltd.	processing	Sazliika	TS	Y	260	1167	500	50	416	42	1.2	80	0.3	93
15		Belovo	MU1-3	KMH "Belovo" Ltd.		Maritza	Maritza	Y	365	16500	25	2	413	33	1.1	. 81	0.2	93
16 17		Pazardjik Plovdiv	MU2-2 MM1-9	"Trakia papir" Ltd. "Alen mack" Ltd.		Maritza	Pismanka TS	Y	260	10000	50	3.18	356	23	1.0	82	0.1	93
18		Plovdiv	MM1.9	"Pulpudeva" Ltd.	Cosmetics Tannery	Maritza Maritza	TS	Y	260 260	2450 1600	200 300	10 20	349 342	17 23	0.9	83 84	0.1	93 94
19		Stara Zagora	SAZ-7	"Biser Oliva" Ltd.	Food processing	Sazliika	TS .	γ	260	6000	80	20	342	85	0.9	85	0.5	94
	1			Stoianovi Brothers	Wine	l				- 1								
20		Oriahovitza		Maenad 1901	Production Food	Sazliika	TS		260	290	1500	56	310	12	0.9	86	0.1	94
21	91	Assenovgrad	CPE-1	"Askon" Ltd. "Mictchana	processing Food	Chepelarska	TS	Y	260	2800	150	10	299	20	0.8	87	0.1	94
22	7	Pazardjik	MU2-2	promisienost" Ltd. "Mietchana	processing Food	Maritza	TS	Y	260	1096	360	40	281	31	0.8	87	0.2	94
23	57	Plovdiv	MM1-9	promisienost* Ltd.	processing Food	Maritza	TS		260	1300	300	30	278	28	0.8	88	0.2	95
24		Karlovo	STR-3	"Mesokombinat"	processing	Striama	Striama	Y	260	1172	300	50	250	42	0.7	89	0.3	95
25		Velingrad	CPI-1	Milk Industry	Milk Industry Food	Maritza	-	Ÿ	260	500	600	70	214	25	0.6	89	0.2	95
26	79	Stara Zagora	SAZ-7	"Serdika" Ltd. "Petko Enev"	processing Food	Sazliika	TS	Υ	260	770	300	40	165	22	0.5	90	0.1	95
27		Stara Zagora	SAZ-7	[Can Factory] I.td	processing	Sazliika	TS	1	260	1500	150	, 10	160	11	0.4	90	0.1	95
28 29		Panagjurishte Sopot	LUD-2 STR-2	"Oborishte" Ltd. "VMF Supot"	Textile Machinery	Luda Ians Manastirska	TS Manastirska	Y	260 260	1800 4492	112.6 45	10	144	13	0.4	91 91	0.1	95
30		Karlovo	STR-3	"Karlovska Koprina" Ltd.	Textile		TS	Y	260	2870		Ţ						ļ
		i		"Zagorka Malt	Food	Strianta					. 70	3	143	10	0.4	92	0.1	95
31 32		Chirpan Mednikarovo	MM2-1 SAZ-2	Factory" TEPS "Maritza East" 3	processing Electric Power	Maritza Sokolitza	Dry Gully Sokolitza	Y	260	1260 28500	150	5	135	4	0.4	92	0.0	96
33		Velingrad	CPI-1	"Kristal" Ltd.	Chemical	Maritza	Tchepinska	Y	60	2487	6.6 305	1.65	134 125	33	0.4	92	0.2	90
34		Tzerovo	TOP-1	'Vitehprom' Ltd.	Wine	Topolnitza	Topolnitza		260	33	5000	50	118		0.3	93	0.0	
35		Kalugerovo	TOP-1	"Vitehprom" Ltd.	Wine	Topolnitza	Topolnitza	Ÿ	260	100	1600		114	1	0.3	93	0.0	
36	89	Plovdiv	MM1-9	"KCM" 1.td. "Plovdivska konserva"	Lead, cooper Food	Chepelarska	Chepelarska	Y	365	32400	3.5	3	113	97	0.3	94	0.6	9
37	47	Plovdiv	MM1-9	dep.3 "Vinprom Tehirpan"	processing Food	Maritza	TS	Y	260	714	200	10	102	5	0.3	94	. 0.0	9
38	13	Chirpan	MM2-1	Ltd	processing	Maritza	TS	Υ	160	700	300	10	- 92	3	0.3	94	0.0	90
39	-	Brezovo	CPE-1	"Vinprom" Ltd	Food processing	Maritza	non evietica		60	100	5000	. 30				٠,		
39 40		Ljubimetz	MD-18	BK *Sakar* ltd	Wine	Maritza	non existing	-	60		5000 5000	20 25	82 82	0	0.2	94	0.0	
4 <u>1</u>	16	Velingrad	CPI-I	"Kristel" Ltd.	Chemical	Maritza	Tchepinska	1	200		60		82	5	0.2	95	0.0	
42	58	Pestera	STA	Biovet" Ltd.	Pharmaceutical	Stara Reka	Stara Reka	Ÿ	365	5338	15	0.13	80	ī	0.2	95	0.0	9
15		Haskovo	HAR-2	Manuella	Textile	Harmanliiska	TS	Y	260	2160	50		77	0	0.2	95	0.0	9
	25	Dimitrovgrad	MM3-9	TEPS: Maritsa 3	Power Plant	Maritza	Maritza	Y	365	5000	15	1.65	75	8	0.2	. 95	0.1	9
		Velingrad	CPI-1	Mototecnika	car repair & cleaning	Maritza	TS	Y	260	993.6	100	6	71	4	0.2	96	0.0	9
43 44 45		Venngrau		"Plovdivska konserva"	Food	14.2	200			l					_ _ ا			
44		1		1		Maritza	TS	Y	260 260	1260	200		63	3	0.2	96	0.0	
44 45 46	46	Plovdiv	MM1-9	dep.2	processing Paper	Maritan	Te	4 Y										
44 45 46 47	46 110	Plovdiv Plovdiv	MM1-9	"Rodina" Ltd. "Mletchna	Paper Food	Maritza	TS	1	1					12.7	0.2	96		
44 45 46	46 110	Plovdiv	MM1-9 MM2-13	"Rodina" Ltd. "Mletchna	Paper	Maritza	TS TS	Y	260		360			7	0.2	96	0.0	
45 46 47	46 110 70	Plovdiv Plovdiv	MM1-9	"Rodina" Ltd. "Mletchna	Paper Food processing			1	1	237		40		12.7		1		9
44 45 46 47 48	46 110 70	Plovdiv Plovdiv Parvomai	MM1-9 MM2-13 MU2-2 STR-3	"Rodina" Ltd. "Mletchna promishlenost" (dairy)	Paper Food processing Food processing	Maritza	TS	Y	260	237 693	360 120	40 25	61 59	7	0.2	96	0.0	9

TABLE G.3.4 POLLUTION LOAD OF LIVESTOCK

(unit: kg/d)

	(unit: ain Sub- Pig Cattle Fowl Total							-	
Catch	Catch	BOD	TN	BOD	TN	BOD	TN	BOD	tat TN
CPE	CPE-1	58	17	57	113	83	20	198	150
C1 13	CPE-2	37	11	28	57	0.5	0	65	6
	CPE-3	19	5	56	112	13	3	88	120
Sub-Total	10.00	113	32	141	282	96	24	351	33
CPI	CPI-1	49	14	27	54	0	0	76	6
	CPI-2	14	4	28	56	0	0	42	61
	CPI-3	76	22	107	214	0	0	183	23.
Sub-Total		139	40	162	324	0		301	36
	HAR-I	151	43	41	82	2	1	194	12
.,, .,.	HAR-2	68	20	45	90	3	1	116	110
	HAR-3	165	47	134	269	7		306	31
Sub-Total	!	384	110	220	440	13	3	617	55
	LUD-1	481	138	47	94	5	1	533	23
LOD	LUD-2	48	14	32	65		0	80	7
	LUD-3	37	11	11	21	0	0	48	3
Sub-Total	1	566	162	90	180	5	1	661	34
MD	MD-1	1	0	0	100		,	2	
MD	MD-2	1	0	0	<u>-</u> 1	0	0	1	
	MD-3		0	0	1	0	0	<u>-</u>	
	MD-3 MD-4	1	0	1	1	0	0	2	
	MD-4 MD-5	23	7	10	19	0	0	33	
	MD-5	16	5	7	13	0	0	23	1
ί.	MD-6 MD-7	44	13	18	37	0	0	62	4
. !	MD-7 MD-8	120	34	27	54	0	0	147	8
. !	MD-8	38	11	14	28	0	0		3
	MD-9 MD-10	122	35	15	30	0	0	52 137	6
	MD-10 MD-11	81	23	15				90	4
·	MD-11 MD-12	90	26	9	18	0	0	90	4
	MD-12 MD-13	142	40	14	28	0	0	156	
	MD-13 MD-14	58	17	9	18	0	0	67	6
	<u> </u>	18	5	5	9	0	0	23	
	MD-15 MD-16	26	7	11	21	0			1 2
	MD-17	59		18	36	0	0	36 77	5
	MD-17	20	6	6	13	0	0	26	1
	MD-18	380	109	83	165	1	0	464	27
	MD-20	52	109	- 6	103	Ö	0	58	21
	MD-20	104	30	17	33	0	0	121	6
Sub-Total	1	1397	399	278	557	1	0	1677	95
MM1	MM1-1	117	34	3	. 6	0	0	120	3
IATIALI	MM1-2	689	197	57	114	0	0	746	31
	MM1-2	38	11	1 .	114.	0	0	39	1
	MM1-4	69	20	<u>1</u>	2	0	0	70	
	MM1-5	1011	289	75	151	1	0	1087	44
	MM1-6	262	75	6	131	0	o l	268	8
	MM1-7	434	124	21	41	1	0	456	16
	MM1-8	17	5	10	21	0	0	28	2
	MM1-9	420	120	- 51	102	118	29	588	25
4	MM1-10	1279	366	29	59	0	0	1309	42
	MM1-10	251	72	6	12	0	0	257	8
· • •	MM1-11	116	33	3	5	0	. 0	119	3
Sub-Total		4703	1344	263	526	120	29	5086	189
MM2	MM2-1	60	1344	42	84	64	16	166	11
WIN Z	MM2-1	9		7	14		0	17	1
	MM2-3	49	3	59	119	15	4	124	13
	MM2-4	13		14	28		0	27	3
	MM2-4 MM2-5		4		60	0 3	1	51	
		18	5	30	78		2	76	
	MM2-6	31	9			6			
	MM2-7	114	0	1	. 1	0	0	200	1.
	MM2-8	114	33	78	155	8	2	200	19
	MM2-9	331	95	33	66	0	0	364	16
	MM2-10	33	9	26	52	0	0	59	. (
	MM2-11	4	1	3	6	3	1	10	
	MM2-12	63	18	77	155	0	0	141	1'
-	MM2-13	45	13	31	63	0	0	76	
	MM2-14	48	14	66	132	0	0	114	14
ı	MM2-15	40	11	24	49	0	0	65	(
				1	6	0	0	6	
Sub-Total	MM2-16	862	1 246	<u>3</u> 534	1068	102	25	1497	133

Main	Sub-	Pig	T	Catt	le i	Fow	1	Tota	nit: kg/d al
Catch	Catch	BOD	TN	BOD	TN	BOD	TN	BOD	TN
	MM3-2	296	85	124	248	102	25	523	358
	MM3-3	67	19	49	99	30	7	146	125
	MM3-4	90	26	63	127	98	24	252	170
	MM3-5	28	8	- 20	39	31	8	78	
	i	20		20					5
	MM3-6		1	- 1	3	0	0	4	
	MM3-7	20	6	15	30	1	0	36	30
	MM3-8	. 3	1	2	5	2	. 1	8	
	MM3-9	91	26	52	104	i	0	144	13
	MM3-10	97	28	80	160	1	0	179	188
	MM3-11	29	8	22	43	0	0	50	57
	MM3-12	86	25	69	137	0	0	155	163
Sub-Total	· i	896	256	536	1072	268	66	1700	139
MU1	MU1-1	109	31	18	37	0	0	127	- 68
MOI	L	53	15	8	17		0		
	MU1-2					0		62	37
	MU1-3	15	4	12	23	0	0	26	28
	MU1-4	3	1	1	2	0	0	4	
	MU1-5	9	3	3	6	0	0	12	(
	MU1-6	3	1	1	2	0	0	4	
	MU1-7	23	7	6	12	0	Ō	29	. 18
	MU1-8	1	Ö	0	1	0	0	2	
	MU1-9	38	11	17	34		0	56	4:
	MU1-10	56	16	95	191	4	<u>i</u>	155	20
Sub-Tota	J	311	89	162	324	4	1	477	414
									·
MU2	MU2-1	216	62	19	38	2	0	237	100
	MU2-2	109	31	10	20	1	0	120	5
	MU2-3	55	16	5	10	. 1	0	60	2
L.	MU2-4	99	28	15	31	20	5	134	6
	MU2-5	395	113	41	81	4	- 1	440	19:
	MU2-6	103	29	10	20	1	0	114	- 50
Sub-Tota	í	977	279	100	201	28	7	1105	48
PYA	PYA	299	86	63	126	0	0	363	21
Sub-Tota		299	86	63	126	0	0	363	21
SAZ	SAZ-1	110	31	31	62	0	0	141	9
DAL	SAZ-2	75	21	41	82	0	0	116	10:
	1								
	SAZ-3	453	129	151	302	63	15	666	441
	SAZ-4	262	75	90	181	12	3	364	25
	SAZ-5	24	7	7	. 15	1	0	32	2
	SAZ-6	601	172	210	419	136	33	946	62
· .	SAZ-7	1786	510	409	818	239	58	2434	138
	SAZ-8	10	3	6	12	. 0	. , 0	16	1
Sub-Tota		3320	948	945	1891	450	110	4715	294
STA	ISTA	51	14	37	73	27	7	114	9
Sub-Tota		51	14	37	73	27	7	114	9
STR	STR-1	434	124	150	300	7		591	42
211	STR-2	32	9	46	92				
							1	81	10
	STR-3	109	31	141	282	0	0	251	31
Sub-Tota		576	165	337	674	10	2	923	84
TOP	TOP-1	345	99	56	112	3	1	404	- 21
	TOP-2	101	29	71	142	Ö	0	172	. 17
	TOP-3	61	17	89	178	0	0	150	19
	TOP-4	7	2	15	31	0	0	22	3
Sub-Tota		514	147	232	463	3	1	748	61
VAC	VAC-I	111	32	111	222	199	49	421	30
* AC					222				
	VAC-2	1	0	11		0	0	12	2
	VAC-3	2	<u>l</u>	43	87	0	0	45	8
	VAC-4	24	7	34	68	0	0	.58	7
Sub-Tota	al	138	39	199	399	199	49	536	48

TABLE G.3.5 SUMMARY OF POLLUTION LOAD

Main						Livestoc				Total (% of I	
Catch	Catch	BOD	TN	BOD	TN	BOD	TN	BOD	TN	BOD	TN	BOD	TN
CPE	CPE-I	3048	471	526	54	198	150	0 ;	53	3772	729	3.6	1.6
	CPE-2	181	30	0	0	65	68	ő	85	247	182	0.2	0.4
	CPE-3	189	39	0	0	88	120	0	128	277	288	0.3	0.6
Sub-To		3419	540	526	54	351	338	0	266	4295	1199	4.1	2.6
CPI	CPI-1	0	0	553	48	76	68	0	51	629	167	0.6	0.4
ÇI I	CPI-2	325	65	33	0	42	60	- 0	72	371	197	0.4	0.4
			456	- 0			235		129	?		3.0	
	CPI-3	2938			0	183		0		3121	821		1.7
Sub-To		3263	521	557	48	301	363	0	252	4120	1185	3.9	2,5
HÀR	HAR-I	1039	163	42	4	194	125	0	79	1274	372	1.2	0.8
	HAR-2	4452	686	936	60	116	110	0	89	5504	945	5.3	2.0
	HAR-3	113	27	0	0	306	318	0	281	419	625	0.4	1.3
Sub-To	tal	5603	876	978	65	617	553	0	449	7198	1943	6.9	4.1
LUD	LUD-1	0	0	0	0	533	233	0	122	533	355	0.5	0.8
505	LUD-2	298	102	161	17	80	78	0	145	540	342	0.5	0.
	LUD-3	159	29	0		48	32	0	63	206	124	0.3	0
									· — – — – –				
Sub-To	<u> </u>	456	131	161	17	661	343	0	330	1279	822	1.2	l.
MD	MD-1	15	3	0	0	2	1	0	1	16	6	0.0	0.0
	MD-2	0	0	0	0	1	1	0	42	1	43	0.0	0.
	MD-3	3	1	0	0	1	1	0	26	4	28	0.0	Û.
	MD-4	0	0	0	0	2	1	0	28	2	29	0.0	0.
	MD-5	5	1	0	0	33	26	0	43	37	70	0.0	0.
										36		0.0	
	MD-6	14	3	. 0	0	23	18	0	18		39		0.
	MD-7	5	1	0	0	62	49	0	8	67	58	0.1	0.
	MD-8	539	92	31	5	147	88	0	39	717	225	0.7	0
	MD-9	38	. 9	0	0	52	39	0	58	. 90	106	0.1	0.
	MD-10	0	0	0	0	137	65	0	21	137	86	0.1	0.
	MD-11	2	0	0	0	90	41	0	171	92	212	0.1	0.
	MD-12	12	3	0	0	99	44	0	2	111	. 49	0.1	0.
	the discount in the second			0	$-\frac{0}{0}$		69		19				0.
	MD-13	24	6			156		0		. 179	93	0.2	
	MD-14	11	. 3	0	0	67	34	0	37	78	74	0.1	0.
	MD-15	0	0	0	0	23	. 14	0	1	23	16	0.0	0.
	MD-16	9	2	0	0	36	28	0	3	45	33	0.0	0.
	MD-17	0	0	0	0	77	53	0	31	77	84	0.1	0.
	MD-18	262	48	99	i	26	19	0	27	387	94	0.4	0.
	MD-19	91	22	0	0	464	274	0	63	555	359	0.5	0.
									75				44.00
	MD-20	33	8	0	. 0	58	27	0		91	110	0.1	0.2
	MD-21	11	3	0	0	121	63	0	56	132	122	0.1	0.
Sub-To	tal	1072	204	130	6	1677	956	0	769	2879	1936	2.7	4.
MM1	MM1-1	29	7	0	Ö	120	39	. 0	12	149	58	0.1	0.
	MM1-2	174	41	22	1	746	311	0	62	943	415	0.9	0.
1	MM1-3	0	0	0	0	39	12	0	23	39	35	0.0	Ö.
	MM1-4	63	15	0	0	70	22	0	9	133	46	0.1	0.
		527	92	2	ō	1087	440	. 0	187	1617	720	1.5	1.
	MM1-5					I							
	MM1-6	71	17	13	1	268	.87	0	7	352	113	0.3	0.
	MM1-7	0	0	0	0	456	166	0	10	456	176	0.4	0.
	MM1-8	0	0	0	0	28	26	0	262	28	288	0.0	0.
	MM1-9	2548	1199	2988	617	588	250	0	. 26	6124	2092	5.8	4.
	MM1-10	64	- 15	0	0	1309	424	0	66	1373	505	1.3	1.
	MM1-11	5	1	0	0	257	83	0	20	261	105	0.2	0.
	MM1-12		84	1799	498	119	39	0	119	2432	739	2.3	1.
C.L.T		3995	1471	4825		5086	1899	0	804	13906	5292	13.3	11.
Sub-To					1117								
MM2	MM2-1	1107	177	329	30	166	117	0	60	1602	385	1.5	0.
	MM2-2	2	1	0	0	17	.17	0	55	20	72	0.0	0.
	MM2-3	160	38	. 0	0	124	136	0	3	284	178	0.3	0.
	MM2-4	63	15	0	0	27	32	0	144	90	191	0.1	0
	MM2-5	0	0	0	0	51	66	0	61	51	127	0.0	0.
	MM2-6	174	39	9	0	76	89	0	132	259	260	0.2	0
					0		1	$-\frac{0}{0}$	48	1	50	0.0	0.
	MM2-7	0	0	0.		1						I	
	MM2-8	60	14	0	0	200	190	0	6	260	210	0.2	0.
	MM2-9	880	133	13	4	364	161	. 0	14	1257	312	1.2	0
	MM2-10	77	18	0	0	59	62	0	151	136	231	0.1	0
	MM2-11		0	0	.0	10	7	ō	38	10	46	0.0	0
	MM2-12		25	0	o	141	173	0	83	248	281	0.2	0
			i	771	53	76	76	0	72	1531	315	1.5	0
	MM2-13		114		<u> </u>	1						·	
l	MM2-14		23	0	0	114	146	0	1	212	170	0.2	0.
	MM2-15		44	9616	192	65	60	0	136	9919	432	9.5	0.
ļ						,					000		0.
	MM2-16	0	0	. 0	0	6	. 7	0	70	6	77	0.0	U.

Main	Sub-	Domesti	c (kg/d)	Industry	(kg/d)	Livestoe	k (kg/d)	Landus	(kg/d)	Total (kg/d)	% of I	nad*
Catch	Catch	BOD	TN	BOD	TN	BOD	TN	BOD	TN	BOD	TN	BOD	TN
мм3	MM3-1	312	50	0	0	125	101	0.	76	438	227	0.4	0.5
	MM3-2	27	6	0	0	523	358	0	121	550	486	0.5	1.0
	MM3-3	182	31	0	0	146	125	0	34	328	190	0.3	0.4
	MM3-4	0	0	0	0	252	176	0	99	252	275	0.2	0.4
	MM3-5	0	ō	0	0	78	55	0	196	78	251	0.1	0.5
	MM3-6	17	4	Ö	0	4	4	0	75	21	83	0.0	0.3
	MM3-7	2	0	0	0	36	36	0	74	37		0.0	
l											110		0.2
l	MM3-8	0	0	0	0	8	6	: 0	24	8	30	0.0	0.1
1	MM3-9	2792	417	1828	4658	144	131	0	2	4764	5208	4.5	11.1
	MM3-10	136	32	0	0	179	188	0	24	315	244	0.3	0,5
l	MM3-11	59	14	0	0	50	52	0	3	109	69	0.1	0.1
	MM3-12	8	2	0	0	155	162	. 0	67	163	231	0.2	0.5
Sub-To	tal	3535	557	1828	4658	1700	1394	0	795	7063	7403	6.7	15.8
MUI	MU1-1	0	0	0	0	127	68	0	108	127	175	0.1	0.4
	MU1-2	774	144	104	6	62	32	0	77	939	260	0.9	0.6
	MU1-3	296	53	417	34	26	28	0	51	740	165	0.7	0.4
1	MU1-4	0	0	0	0	4	3	0	30	4	33	0.0	0.1
	MU1-5	0	0	Ō	0	12	9	. 0	11	12	19	0.0	0.0
	MU1-6	0	ō	0	0	4	3	ō	23	4	26	0.0	0.1
1	MU1-7	0	0	0	0	29	18	0	9	29	27	0.0	0.1
	MU1-8	488	75	0	$\overset{\circ}{0}$	2	i	ō	25	490	101	0.5	0.2
	MU1-9	24	6	0	0	56	45	0	23	80	53	0.1	0.1
	MU1-10	344	57	0	0	155	208	0	54	499	319	0.1	
Sub-To		1926	336	521	40	477	414		389	2924	1179		0.7
								.0				2.8	2.5
MU2	MU2-1	0	0	0	0	237	100	0	43	237	144	0.2	. 0.3
	MU2-2	4737	773	2057	181	120	51	. 0	20	6913	1025	6.6	2.2
	MU2-3	0	0	. 0	0	60	26	0	11	60	37	0.1	0.1
	MU2-4	17	4	0	0	134	64	0	25	151	93	0.1	0.2
	MU2-5	0	0	0	0	440	195	0	83	440	278	0.4	0.6
	MU2-6	0	0	0	0	114	50	0	27	114	- 77	0.1	0.2
Sub-To		4753	777	2057	181	1105	487	0	210	7915	1654	7.6	3.5
PYA	PYA	221	52	22	2	363	212	0	176	606	442	. 0.6	0.9
Sub-To	tal	221	52	22	2	363	212	0	176	606	442	0.6	0.9
SAZ	SAZ-1	0	0	0	0	141	94	0	57	141	151	0.1	0.3
	SAZ-2	36	9	134	33	116	103	0	161	286	306	0.3	0.7
1	SAZ-3	22	5	0	0	666	446	0	363	689	814	0.7	1.7
1	SAZ-4	615	106	749	65.	364	258	0	261	1727	690	1.6	1.5
1	SAZ-5	0	0	0	0	32	22	0	17	32	39	0.0	0.1
	SAZ-6	1019	244	33	1	946	624	0	343	1999	1212	1.9	2.6
l	SAZ-7	8095	1258	11749	8960	2434	1387	0	557	22278	12162	21.3	25.9
	SAZ-8	0	0	0	0	-16	14	0	. 9	16	24	0.0	0.1
Sub-To		. 9788	1622	12665	9059	4715	2949	ō	1767	27167	15398	25.9	32.8
STA	STA	1088	199	103	4	114	95	. 0	122	1306	420	1.2	0.9
Sub-To		1088	199	103	4	114	95	0	122	1306	420	1.2	0.9
STR	STR-1	327	90	39	11	591	426	0	313	957	839	0.9	1.8
SIK	STR-2	141	34	145		81	102	0	81	367	223	0.9	السنسمسسا
	STR-2	2472			6								0.5
C. J. C.			398	573	77	251	313	0	284	3295	1073	3.1	2.3
Sub-To		2940	521	756	94	923	841	0	679	4619	2135	4.4	4.5
TOP	TOP-1	0	0	232	2	404	212	0	188	636	401	0.6	0.9
	TOP-2	189	70	0	0	172	171	0	234	361	475	0.3	1.0
	TOP-3	987	152	0	0	150	195	0	175	1137	522	1.1	1.1
l	TOP-4	0	- 0	0	0	22	33	0	60	22	93	0.0	0.2
Sub-To		1176	222	232	2	748	611	0	657	2156	1491	2.1	3.2
VAC	VAC-1	558	105	3	0	421	302	0	182	982	589	0.9	1.3
	VAC-2	40	9	0	0	12	23	0	70	52	102	0.0	0.2
	VAC-3	171	41	0	0	45	87	Ö	116	217	244	0.2	0.5
	VAC-4	170	30	0	0	- 58	-75	0	91	228	196	0.2	0.4
Sub-To	_i	939	185	3	0	536	487	0	459	1478	1131	1.4	2.4
Total	:	47828		36104	1			Ö		104801	46965	100	100
				<u>'</u>			سنتسب						

^{*: %} of pollution load to the study area

TABLE G.3.6 LIST OF MINES AND RELATING FACILITIES

No	Name and type of the object	Status	Prod	ucts
the				y
map	(Company)		main	others
1	Medet mine, open pit ("Assarel- Medet" Corp.)	mined out	Cu, Mo	
1a	Medet floatation plant	closed	Cu, Mo	
2	Medet tailings pond (in the	closed	Cu, Mo	
	Topolnitsa r. bed)			
3	"Union Minier Pirdop - Copper" smelter (former: MDC - Pirdop)	active	Cu, Au	Ag, Se, Te, H ₂ SO ₄
4	Chelopech floatation plant (BIMAC)	active	Au, Cu	pyrite
5	Chelopech mine, underground ("Chelopech" Corp.)	active	Au, Cu	pyrite , Ag,
5a	Karlievo deposit	unassimi lated	·Cu	Se, Te Mo
6	Chelopech tailings pond - slimes	active	Cu	As,
0	from floatation plant Chelopech	accive	Cu	Fe,
			ŀ	
	(BIMAC)			Pb, Zn etc.
7a	Elatsite mine, open pit	active	Cu,	Se.
	(" Elatsite Copper" Corp.)		Au, Mo	Re Pt
7	Mirkovo floatation plant - ores	active	Cu	Mo, Au
	from Elatsite open mine pit ("Elatsite Copper" Corp.)			,
8	Benkovsky 1 and Benkovsky 2	active	Cu	Мо
	tailings ponds - slimes from			etc.
	Mirkovo floatation plant and from			
	MDC - Pirdop		;	
9	Svishti Plaz gold deposit -	unassimi	Au	U, Pb,
	ancient surface extraction,	lated	, Au	Zn, As
		Taceu		etc.
ĺ	contemporary geological	•		ecc.
<u> </u>	exploration - drills, tunnels			
9a	Kapalu (Svishti Plaz west) -	closed	Au	Pb,
	ancient surface extraction			Zn, As
ļ				etc.
1.0	Assarel mine, open pit ("Assarel-	active	Cu	Au,
	Medet" Corp.)			As,
				Pb,
				Zn,
				Mn, Fe
10a	Orlovo Gnezdo deposit	unassimi	Cu,	Mo,
		lated	Au, Ag	Pb, Zn
11	Assarel floatation plant	active	Cu	pyrite etc.
12	WWTP Assarel	active	Cu, As	Pb,
				Zn,
				Mn,
D.				Fe,
L				Al, S
13	Lyulyakovitsa tailings pond -	active	Cu, As	Pb,
9 :	slimes from Assarel floatation			Zn,
	plant	<u> </u>		Mn,

No on the	Name and type of the object	Status	Prod	ucts
map	(Company)		main	others
				Fe,
	•			Al, S
14	Mechka (Oborishte vill.)	closed	Mn	Fe
14a	manganese deposits - small	Crobca	****	
1 4 4 4	extraction before 1944			
15	Milkina Cheshma and Tangur	closed	Mn	Fe
1.7	(Panagyurishte) - manganese	LIOSCU	1411	1.6
	deposits - small extraction	,		
	before 1944			
16	Streicha pegmatite field - 8	closed	feldsp	beryl
10	deposits: Nyagolovitsa VI,	Closed	ar	(Be)
	Stramonos, Chimerikite,		aı	(Be)
	Djafaritsa I, Cherny Bachii III,			
	Smilovene V, Vluk III, Varbeto			·
160		-1	5-1-2	
16a	Panagyurishte pegmatite field - 3	closed	feldsp	
	deposits: Muleiska Chukara,		ar	
1.7	Mulei, Stara Reka	alee-3	011	
17	Byalata prast (Engl.: "White	closed	Cu	pyrite
	soil") copper-pyrite deposit -			
	small extraction before 1944			
18	Krassen mine, underground	closed	Cu, Au	pyrite
	(" Panagyurski mini" Corp.), mine			
	dump			
19	Petelovo gold deposit -	unassimi	Au	Cu Fe
	geological exploration: drills,	lated		
	tunnel			
19a	Kominsko Chukarche deposit	unassimi	Cu .	
		lated		
20	Chervena Mogila (Engl.: "Red	closed	Cu, Au	pyrite
	Hill") mine, underground - shaft,			
	small extraction before 1944			
21	Radka mine, underground and open	mined	Cu,	pyrite
	pit, 1928 - 1996 ("Panagyurski	out	Au, Ag	, Pb,
	mini" Corp.)			Zn
22	Radka floatation plant	closed	Cu,	As,
	(" Panagyurski mini" Corp.)		pyrite	Pb,
megratura .				Zn, Fe
22	Dadka tailinga pand	alaasa	- C.,	etc.
23	Radka tailings pond	closed	Cu,	Pb,
ĺ			Fe, S,	Zn, Au
	Many Agan 1 wins one with		As	etc.
24	Toar Assen 1 mine, open pit	active	Cu	Au
24-	(" Panagyurski mini" Corp.)		0	
24a	Tcar Assen 2 mine, same	active	Cu	Au
25	Momin Skok manganese deposit -	closed	Mn	Fe
	small extraction before 1944			H
25a	Toplika manganese deposit - small	closed	Mn	Fe
251	extraction before 1944	-1	1.5-	5 -
25b	Goliya Vrah manganese deposit -	closed	Mn	Fe
	small extraction before 1944			
26	Elshitsa mine, underground	active	Cu, Au	pyrite
	(" Panagyurski mini" Corp.)			, Ag
27	Elshitsa floatation plant - ores	active	Cu, Au	pyrite
	from Elshitsa, Tcar Asen, Radka		1	, Ag
	and Vlaikov Vrah (" Panagyurski			
<u></u>	mini" Corp.)			

No on the	Name and type of the object	Status	Prod	lucts
map	(Company)	:	main	others
28	Vlaikov Vrah mine, open pit	mined	Cu	
	(" Panagyurski mini" Corp.), huge mine dump	out		
28a	Popovo Dere deposit, geological exploration	unassimi lated	Cu	Au
29	Luda Yana r. (Popintsi) placer gold deposit - alluvial, small production	active?	Au	gravel
29a	Luda Yana r. (Chernogorovo) placer gold deposit - alluvial	active?	Au	gravel
30	Topolnitsa r. (Dinkata) placer gold deposit - alluvial, exploration and production	active?	Au	grave1
30a	Topolnitsa r. (Kalugerovo) placer gold deposit - alluvial, exploration and production	active?	Au	gravel
31	Grancharitsa tungsten deposit - geological exploration: drills and tunnels	unassimi lated	W	Mo, Pb, Zn, Au
32	Mihalkovo ore field - fluorine deposits - CaF ₂ (underground mining): a - Neitchov Chiflik, b - Baalaka, c - Gagovi Nivi, d - Kirezlika, e - Mineralen Izvor, f - Petvar, g - Koteshnitsa	closed	fluori ne	
33	<pre>KCM - Combine for non-ferrous metals - Plovdiv, smelter (KCM Corp.)</pre>	active	Pb, Zn	Cd, Ag, Au
34 34a	Chaya r. (Chepelarska r.) placer gold deposit - alluvial	active?	Au	gravel
35	Narechen (Levi Tsarvul) tungsten deposit - geological exploration: tunnel	closed	W	Mo, U
35a	Narechenski Bani occurrence	unassimi lateđ	Мо	
35b	Visokat Kamak occurrence	unassimi lateđ	Мо	
36a	Yugovo fluorine deposit, small,	unassimi	fluori	Pb,
	geological exploration	lated	ne	Zn, Mo, U
36b	Yugovo molybdenum deposit	unassimi lated	Mo, U	Pb, Zn
36c	Yugovo fluorine occurrence	unassimi lated	fluori ne	Pb
37	Chepelare kyanite deposit, open mine pits: a - Sivkovo - Chiflika, b - Chepelare 1, c - Chepelare 2	closed	kyanit e	indust rial minera ls
38	Lakki ore field ("Gorubso" Corp., Madan) - lead-zinc deposits (underground mines): c - Braikovitsa (Mo, Pb, Zn), d - Persenk (Tcar Assen) (Pb, Zn, Ag, Cu), e - occurrence of Hg, f - Goranska Padina (Pb, Zn), g - Lakavitsa (Pb, Zn, Cu), h -	active	Pb, Zn, Ag	Au, ±U

No	Name and type of the object	Status	Prod	ucts
on the map				
map	(Company)		main	others
	Zn), j - Djurkovo (Pb, Zn), k -			
	Chetroka (mine Han Asparuh) (Pb,			
	Zn, U), l - Karnar Dere (Pb, Zn,			· .
	Ag), m - Garkovitsa (Pb, Zn), n -			
	Govedarnika (mine Druzhba) (Pb,			
	Zn), o - Balkan Mahala (Pb, Zn,			
	Ag), p - Kenan Dere - zones 1, 2,			l
	5 (Pb, Zn), q - Studenets (Pb,			
	Zn), r - Yanchova Reka (Sv. Duh)			
	(Pb, Zn), s - Karachelebiitsa			
38a	(Pb-Zn)		45.1	
30a	Lakki floatation plant ("Gorubso" Corp.) - in the town	active	Pb,	Au
	of Lakki		Zn, Ag	
38b	Lakki tailings pond (in the		22-	
200	Yugovska r. bed)	active	Pb,	Au
39	Spahievo ore field - lead-zinc,	active	Zn, Ag Pb,	Mo,
	gold and uranium deposits	active	Zn,	
	(underground and open mining): a		Ag, Au	Cu, ±U
	- Bukovo (Pilashevo) occurrence		Ay, Au	
	(Pb, Zn), b - Madjarsko Dere			
	occurrence (Pb, Zn, Cu), c -		•	
	Kotkite occurrence (Pb, Zn), d -	* . *		
	Bryastovo (Pb, Zn, Cu, U), e -			
	Mineralni Bani occurrence (Pb,			
	Zn, Cu), f - Ramadanska Chuka		·	
	occurrence (Pb, Zn, Cu), g ~			
ŀ	Chala (Au, Pb, Zn, Cu, U), h			
	Ramadanska (Dimitrova) Chuka			
	occurrence (Mo), i - Erek Dere	· .		
	(Pb, Zn, Au), j - Severen Kontakt			
	- SKMI (Pb, Zn, Cu), k - Kain			
	Bunar (Pb, Zn, Au), 1 - Iredje			
	Dere (Pb, Zn, Cu), m - Sazhe			
	(Spahievo) (Pb, Zn, Cu, U), n -			·
	Mezarlak Sart (Pb, Zn, Cu), o - Sarnitsa - South (Pb, Zn, Cu), p			-
	- Gabrovo (Pb, Zn, Cu)			
40	Lozen ore field ("Madjarovo"	closed	Pb,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-	Ltd.) - small lead-zinc deposits:	0.0000	Zn, Cu	Ag, (Au)
	a - Eremichki Dupki, b - Hvoinija			````'
	Yamach, c - Madanya - Chinarya			
41	Krepost iron deposit, small	closed	Fe	
42	Polski Gradets deposit, small -	unassimi	W, Au	Mo
	geological exploration	lated		
43	Prohorovo porphyry copper deposit	unassimi	Cu	Au, Mo
	- geological exploration: drills,	lated		
<u></u>	shaft			
43a	Zlatari occurrence	unassimi	Cu	Au
<u> </u>		lated		
44	Hristo Danovo deposit, occurrence	unassimi	Мо	pyrite
	exploration: tunnel	lated		
45	Kazanite occurence - geological	unassimi	Мо	Cu
15	exploration: trench works	lated	<u> </u>	
46	Sarnena Gora ore field - a number (about 25) of small vein gold	closed	Au	Ag,
	(about 25) of small vein gold deposits: a - Kolyo Marinovo, b -			Pb,
<u> </u>	acposites, a - norgo marrinovo, D +	1	<u></u>	Zn, W,

T		T	T	тан на при н
No on the	Name and type of the object	Status	Prod	ucts
map	(Company)		main	others
	Chehlare SW, c - Chehkare -		1110111	Mo,
	Kucheshki Vrah, d - Lisichi			As,
	Dupki, e -Yamite , f - Sveti			Sb, Bi
	Nicola, g - Slavyanin, h - Gorno			etc.
	Novo Selo, i - Malko Dryanovo, k		<u> </u>	600.
	- Nova Mahala etc Ancient]	
	surface extraction of gold and		1	
	small extraction of gold about			
	1922 - 1924. Source of gold for			
	alluvial placer deposits along			
	the rivers flowing southwards			
47	Ruda molybdenum deposits: a -	closed	Мо	Cu,
	Minata, b - Kazanka - Small	ļ		Pb,
	extraction in the near past			Zn, Au
48	Stara Zagora barite deposit -	mined	barite	Au
	open mine pit	out		
49	Stara Zagora ore field - small	closed	Cu	Ba,
	copper deposits: a - Rakitnitsa,			Fe,
	b - Starozagorski Bani, c -			Au,
-	Zmeevo, d - Hrishteni	ļ		Pb, Zn
50	Elenovo quartz deposit	mined	quartz	
F 1	7.1	out		
51	Sakar vein quartz deposits (10): Bogomil, Radovets, Hlyabovo,	active	quartz	
	Glavan, Bulgarksa Polyana,			
	Mladinovo, Lissovo, etc.			
52	Radnevo gypsum deposits	unassimi	gypsum	
J	$(CasO_4.2H_2O)$ - 9 deposits in the	lated	gypbam	
	areas of Radnevo and villages of	1		
	Gypsovo, Gledachevo, Kovachevo,			
	Staroselets, Radetski and			
	Novoselets			·
53	East Maritza coal basin - 7	active	lignit	
	deposits: a - EMCB, b - Malka		e coal	
	Detelina, c - Skalitsa, d - West			
	of Polski Gradets, e - West of	·		
	Kovachevo, f - Kovachevo, g -			·
	Madrets. Opencast mining			
54	(" Maritza-East" Corp.)	n a t i	1	
94	West Maritza coal basin (" Maritza basin" Corp.) - Dimitrovgrad	active	lignit e coal	
	(mines G. Gospodinova and		e coar	
	Sminensky)		· ·	
55	Karlovo coal basin	unassimi	lignit	
		lated	e coal	
56	West Rhodope pegmatite field: 56a	closed?	feldsp	mica
	- Vlashkite Chuki (feldspar,		ar	
	mica), 56b - Sofan Dere			
	(feldspar)			
57	Lepenitsa deposit - quarry	active	marble	
	(" Chepino" Corp., Velingrad)			
58	Pravoslav deposit - quarry	active	brecci	
	(" Chepino" Corp., Velingrad)		a	
			marble	
58a	Ognyanovo deposit	active	lime	
59	Golak deposit	closed	Fe	
60	Sarnevets deposit	closed	Fe, Au	Pb, Zn

Map Gompany Mined magnes out ite out out out out out out to out out to out out	No on the	Name and type of the object	Status	Prod	ucts
61 Gornoslav deposit mined out ite out ite out ite out te mined out assimi photocore and in a series in a se		(Company)		main	others
62 Gornoslav deposit mined out te dout	61			magnes	
Second Province Second Pro					
63 Peyuvi Nivi deposit	62	Gornoslav deposit	i		
Out Closed Au Pb, Zn, Cu As As As As As As As A	63	Downey Nivi donogit	· · · · · · · · · · · · · · · · · · ·		
Stryama r. (Lozen) placer gold deposit Stryama r. (Pesnopoy) placer gold deposit Stryama r. (Malko Dryanovo) placer gold deposit Stryama r	0.3	reyuvi Nivi deposit		MII	
lated Zn, Cu Unassimi Au, Sb As lated Unassimi Unassimi Lated Unassimi Unassimi Lated Unassimi	64	Vodenitsite small deposit	closed	Au	Zn, Cu
Banska Reka occurrence lated unassimi Cu lated lated unassimi Cu lated unassimi Cu Au lated unassimi umassimi lated unassimi umassimi	65	Topolovo occurrence			
67 Banska Reka occurrence unassimi lated 68 Mostovo occurrence unassimi lated 69 Haikanska Chuka occurrence unassimi lated 70 Malko Gradishte occurrence unassimi lated 71 Placer gold deposits - alluvial 71 Maritza (Belovo) placer gold active? Au gravel deposit 72 Maritza (Septemvri) placer gold active? Au gravel deposit 73 Chepinska r. (Lozen) placer gold active? Au gravel deposit 74 Pyasachnik r. (Lyuben) placer gold active? Au gravel deposit 75 Stryama r. (Pesnopoy) placer gold active? Au gravel deposit 76 Luda Yana r. (Dolnoslav) placer gold deposit 77 Mechka r. placer gold deposit active? Au gravel deposit 78 Rahmanliiska r. (Zelenika) placer gold deposit 79 Medovska r. (Medovo, Chehlare, Slavyanin) placer gold deposit 80 Cmurovska r. (Gorno Novo Selo - Bratya Daskalovi) placer gold deposit 81 Suha r. (Malko Dryanovo) placer gold deposit 82 · Uranium deposits:	66	Novakovo - East occurrence		T	As
Mostovo occurrence	67	Banska Reka occurrence	unassimi	Cu	
Haikanska Chuka occurrence Unassimi lated Au agate, Au	68	Mostovo occurrence	unassimi	Cu, Au	
Malko Gradishte occurrence unassimi lated Nau	69	Haikangka Chuka occurrence		D	
Malko Gradishte occurrence Unassimi lated				agate,	
Placer gold deposits - alluvial	7.0	180110 Gen #		*	· .
Maritza (Belovo) placer gold active? Au gravel	70	maiko Gradishte occurrence		U	
deposit		- Placer gold deposits - alluvial			
72 Maritza (Septemvri) placer gold deposit 73 Chepinska r. (Lozen) placer gold active? Au gravel deposit 74 Pyasachnik r. (Lyuben) placer gold active? Au gravel deposit 75 Stryama r. (Pesnopoy) placer gold deposit 76 Luda Yana r. (Dolnoslav) placer gold deposit 77 Mechka r. placer gold deposit active? Au gravel gold deposit 78 Rahmanliiska r. (Zelenika) placer gold deposit 79 Medovska r. (Medovo, Chehlare, slavyanin) placer gold deposit 80 Omurovska r. (Gorno Novo Selo - Bratya Daskalovi) placer gold deposit 81 Suha r. (Malko Dryanovo) placer gold deposit 82 · Uranium deposits: 82 · Uranium deposits ("geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo			active?	Au	gravel
Chepinska r. (Lozen) placer gold deposit Au gravel deposit Au gravel deposit Stryama r. (Pesnopoy) placer gold deposit Luda Yana r. (Dolnoslav) placer active? Au gravel gold deposit Rahmanliiska r. (Zelenika) placer active? Au gravel gold deposit Medovska r. (Medovo, Chehlare, slavyanin) placer gold deposit Omurovska r. (Gorno Novo Selo - Bratya Daskalovi) placer gold deposit Suha r. (Malko Dryanovo) placer gold deposit Luda Yana r. (Malko Dryanovo) placer gold deposit Closed Luda Yana r. (Dolnoslav) placer gotive? Au gravel gravel gravel	72	Maritza (Septemvri) placer gold	active?	Au	gravel
74 Pyasachnik r. (Lyuben) placer gold deposit 75 Stryama r. (Pesnopoy) placer gold active? Au gravel deposit 76 Luda Yana r. (Dolnoslav) placer active? Au gravel gold deposit 77 Mechka r. placer gold deposit active? Au gravel gold deposit 78 Rahmanliiska r. (Zelenika) placer active? Au gravel gold deposit 79 Medovska r. (Medovo, Chehlare, Slavyanin) placer gold deposit 80 Omurovska r. (Gorno Novo Selo - Bratya Daskalovi) placer gold deposit 81 Suha r. (Malko Dryanovo) placer gold deposit 82 - Uranium deposits: 82 - Uranium deposits: ("geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo	73	Chepinska r. (Lozen) placer gold	active?	Au	gravel
Stryama r. (Pesnopoy) placer gold deposit Au gravel gravel Au gravel gravel Au gravel gravel Au gravel	74	Pyasachnik r. (Lyuben) placer gold	active?	Au	gravel
Luda Yana r. (Dolnoslav) placer gold deposit active? Au gravel	75	Stryama r. (Pesnopoy) placer gold	active?	Au	gravel
77 Mechka r. placer gold deposit active? Au gravel 78 Rahmanliiska r. (Zelenika) placer active? Au gravel 79 Medovska r. (Medovo, Chehlare, slavyanin) placer gold deposit 80 Omurovska r. (Gorno Novo Selo - Bratya Daskalovi) placer gold deposit 81 Suha r. (Malko Dryanovo) placer active? Au gravel 82 - Uranium deposits: closed U A. Infiltration (exogenic) sediment- hosted deposits (" geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo	76	Luda Yana r. (Dolnoslav) placer	active?	Au	gravel
Rahmanliiska r. (Zelenika) placer active? Au gravel 79 Medovska r. (Medovo, Chehlare, Slavyanin) placer gold deposit 80 Omurovska r. (Gorno Novo Selo - Bratya Daskalovi) placer gold deposit 81 Suha r. (Malko Dryanovo) placer gold deposit 82 Uranium deposits: Closed U A. Infiltration (exogenic) sediment- closed U hosted deposits ("geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo	77		active?	Au	gravel
79 Medovska r. (Medovo, Chehlare, Slavyanin) placer gold deposit 80 Omurovska r. (Gorno Novo Selo - Bratya Daskalovi) placer gold deposit 81 Suha r. (Malko Dryanovo) placer gold deposit 82 Uranium deposits: closed U A. Infiltration (exogenic) sediment-hosted deposits (" geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo		Rahmanliiska r. (Zelenika) placer			
80 Omurovska r. (Gorno Novo Selo - Bratya Daskalovi) placer gold deposit 81 Suha r. (Malko Dryanovo) placer gold deposit 82 Uranium deposits: A. Infiltration (exogenic) sediment- hosted deposits (" geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo	79	Medovska r. (Medovo, Chehlare,	active?	Au	gravel
Bratya Daskalovi) placer gold deposit 81 Suha r. (Malko Dryanovo) placer gold deposit 82 Uranium deposits: 100 A. Infiltration (exogenic) sediment- hosted deposits ("geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo	80		active?	Au	gravel
Suha r. (Malko Dryanovo) placer active? Au gravel 82 - Uranium deposits: closed U A. Infiltration (exogenic) sediment- closed U hosted deposits ("geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo		Bratya Daskalovi) placer gold			
82 - Uranium deposits: Closed U A. Infiltration (exogenic) sediment closed U hosted deposits ("geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo	81	Suha r. (Malko Dryanovo) placer	active?	Au	gravel
A. Infiltration (exogenic) sediment- closed U hosted deposits ("geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo					
hosted deposits (" geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo	ii .		closed	U	
(" geotechnological method of mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo	A.		closed	U	
mining" - wet mining, leaching with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo					
with sulfuric acid solutions by a system of injection boreholes): 82 Kaloyanovo					
system of injection boreholes): 82 Kaloyanovo					
82 Kaloyanovo					* * * * * * * * * * * * * * * * * * *
	82		<u>† </u>		
					

No on the	Name and type of the object	Status	Prod	lucts
map	(Company)		main	others
84	Tzeretelevo			
85	Trilistnik			
86	Belozem			
87	Pravoslaven			
88	Haskovo			
89	Navassen			
90	Maritza			
91	Troyan			
92	Madrets			
93	Vladimirovo			
94	Orlov Dol			
В.	Hydrothermal (endogenic) deposits	closed	ט	
	(classic mining):		L	
95	Kostenetz 1			
96	Kostenetz 2 (Byalata Voda - Dolna			
	Banya)	<u> </u>		
97	Zdravetz			
98	Byala Cherkva 1			
98a	Byala Cherkva 2			
99	Narechen (incl. Central, West and			
	East sectors)			
99a	Narechen - Yugovo Sector			
100	Sarnitsa (Spahievo ore field)	unassimi	U	Pb,
		lated		Zn, Cu
101	Sveta Marina ore field: a - Altan	closed	Pb, Zn	Ag, Cu
	Dere occurrence (Pb, Zn), b -			
	Golyamata Reka occurrence (Pb,			
	Zn, Cu), c - Sveta Marina deposit			
	(Pb, Zn, Cu)			

Source:

Metallogenic map of Bulgaria (Dokov et al., 1989) Metallogenic-prognosticating map of Bulgaria (Naphtali et al., 1991) Metallogenic map for uranium in Bulgaria (Dragomanov et al., 1994)

Maps of the mineral resources (Vassilev et al., 1994)