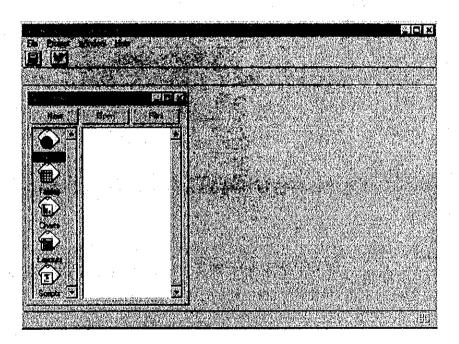
APPENDIX A
MANUAL OF GIS DATABASE


Quick Start Tutorial

This tutorial will briefly guide you how to use the Maritza GIS Database. Please refer to ArcView User Manual for more detailed information.

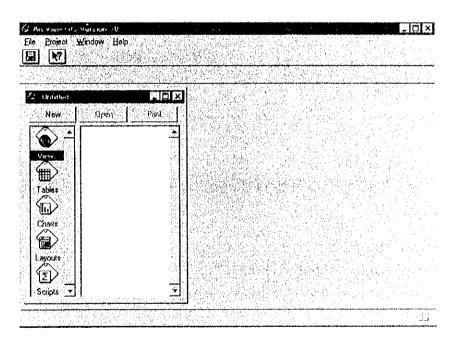
Open the Project

1) Start ArcView.

When ArcView opening window disappears, you will see the ArcView application window as shown below.

2) From ArcView's File menu, select "Open Project".

A project file is the file in which study team stored the work with ArcView. A project contains information of the views, tables, charts, layouts, and scripts operated by ArcView. The names of project file have an extension of apr.

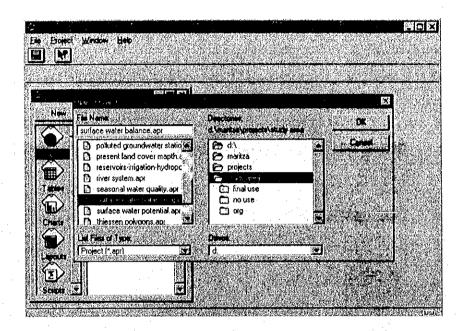

Quick Start Tutorial

This tutorial will briefly guide you how to use the Maritza GIS Database. Please refer to ArcView User Manual for more detailed information.

Open the Project

1) Start ArcView.

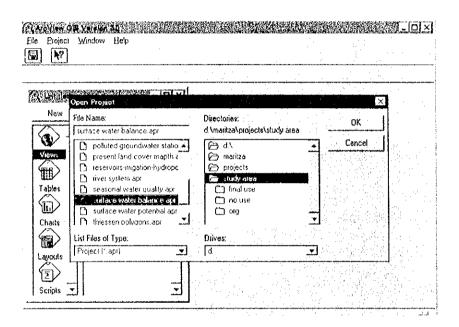
When ArcView opening window disappears, you will see the ArcView application window as shown below.



2) From ArcView's File menu, select "Open Project".

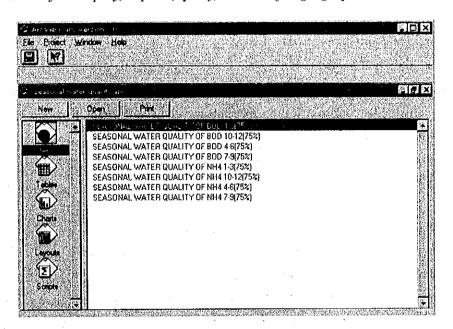
A project file is the file in which study team stored the work with ArcView. A project contains information of the views, tables, charts, layouts, and scripts operated by ArcView. The names of project file have an extension of .apr.

3) Open the Project file.

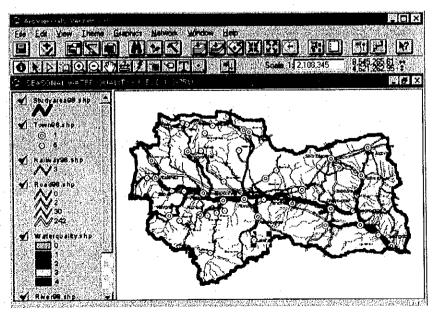

In the dialog of Open Project, navigate to the location of the directory named "maritza". The directory of "maritza" is located in D drive and contains all of the Maritza GIS data under this directory. Double-click the "projects" directory and then double-click the directory that contains the .apr file you want to open.

For example, please open the project file of "surface water balance.apr" in the directory of study area. Select the project file called "surface water balance.apr" from the list on the left side of the dialog and press OK.

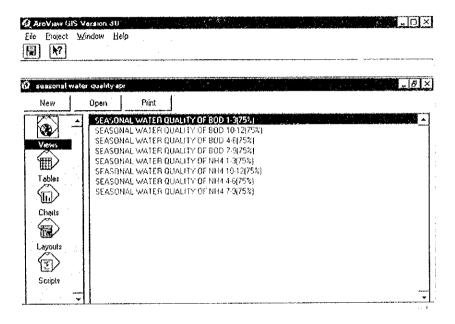
3) Open the Project file.


In the dialog of Open Project, navigate to the location of the directory named "maritza". The directory of "maritza" is located in D drive and contains all of the Maritza GIS data under this directory. Double-click the "projects" directory and then double-click the directory that contains the .apr file you want to open.

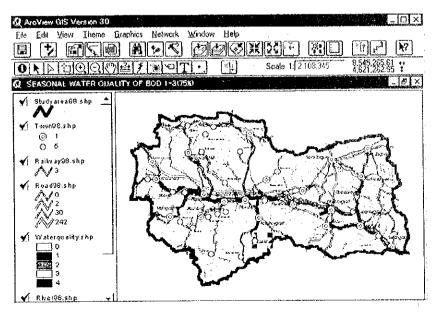
For example, please open the project file of "surface water balance.apr" in the directory of study area. Select the project file called "surface water balance.apr" from the list on the left side of the dialog and press OK.


4) Select View.

When the project opens, you will see a project window named "surface water balance.apr". The Project window gives you access to all the components contained in the project file. As you can see from the list in the Project window, "surface water balance.apr" contains eight (8) views. A view is an interactive map that lets you display, explore, query, and analyze geographic data in ArcView.


5) Open the Map.

Double-click the view called "Seasonal Water Quality of BOD 1-3(75%)" in the list shown in the Project window. The Seasonal Water Quality of BOD map appears.


4) Select View.

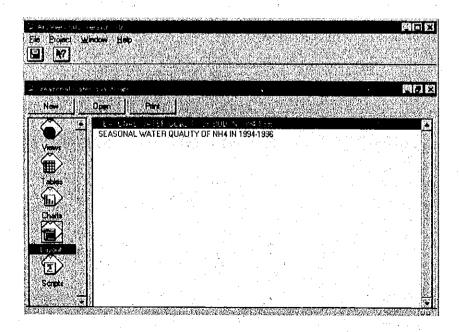
When the project opens, you will see a project window named "surface water balance.apr". The Project window gives you access to all the components contained in the project file. As you can see from the list in the Project window, "surface water balance.apr" contains eight (8) views. A view is an interactive map that lets you display, explore, query, and analyze geographic data in ArcView.

5) Open the Map.

Double-click the view called "Seasonal Water Quality of BOD 1-3(75%)" in the list shown in the Project window. The Seasonal Water Quality of BOD map appears.

App. A-3

A view is made up of layers of geographic information for a particular area or place. Each layer is a collection of geographic features such as study area, towns, railway, roads, water quality and river. In ArcView, these layers are called themes.


All the themes in a view are listed to the left side of the map. The check box next to each theme indicates whether it is currently turned on or off in the map, that is, whether it is currently drawn on the map or not.

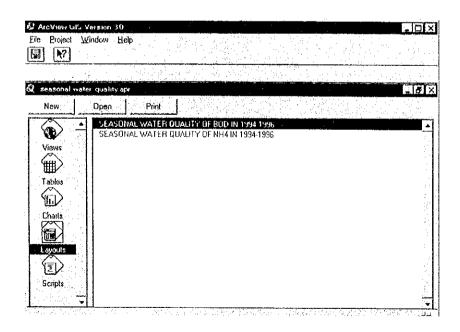
The order in which the themes are listed in the Table of Contents is also important. The themes at the top of the Table of Contents are drawn on top of those below it. The order of themes is easily changed by dragging the themes.

You can also change the width of the Table of Contents by dragging the border between the Table of Contents and the map either left or right. This is useful if you want to increase the width of the Table of Contents so that you can see long theme names or long labels in a theme's legend.

6) Open the Layout.

Close the Map window and select the "Layouts" icon listed in the Table of Contents in the project window. As you can see from the list in the Project window, the project file of "surface water balance.apr" contains two (2) layouts. Double-click the layout called "Seasonal Water Quality of BOD in 1994-1996" in the list shown in the Project window.

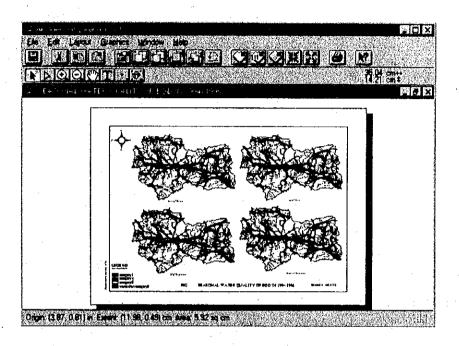
A view is made up of layers of geographic information for a particular area or place. Each layer is a collection of geographic features such as study area, towns, railway, roads, water quality and river. In ArcView, these layers are called themes.

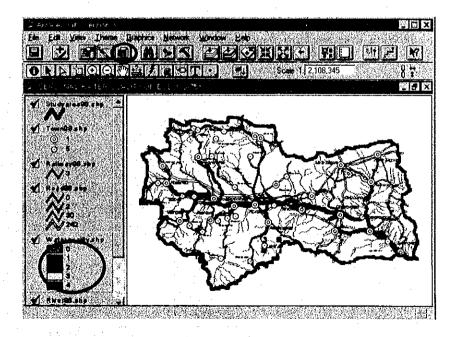

All the themes in a view are listed to the left side of the map. The check box next to each theme indicates whether it is currently turned on or off in the map, that is, whether it is currently drawn on the map or not.

The order in which the themes are listed in the Table of Contents is also important. The themes at the top of the Table of Contents are drawn on top of those below it. The order of themes is easily changed by dragging the themes.

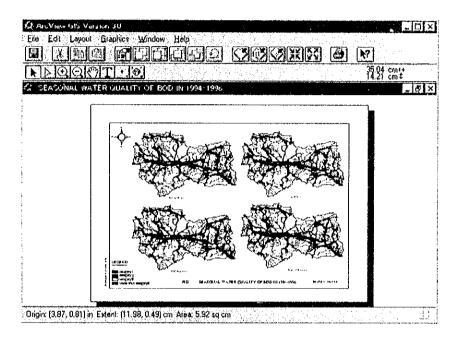
You can also change the width of the Table of Contents by dragging the border between the Table of Contents and the map either left or right. This is useful if you want to increase the width of the Table of Contents so that you can see long theme names or long labels in a theme's legend.

6) Open the Layout.


Close the Map window and select the "Layouts" icon listed in the Table of Contents in the project window. As you can see from the list in the Project window, the project file of "surface water balance.apr" contains two (2) layouts. Double-click the layout called "Seasonal Water Quality of BOD in 1994-1996" in the list shown in the Project window.

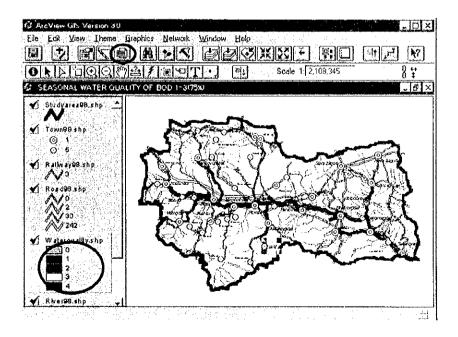


The layout of titled "Fig.X Seasonal Water Quality of BOD in 1994-1998" appears. You can print out this layout to the printer. This picture of Layout is the final productm which is listed in the report as figures.



7) Open the Theme's Attribute Table

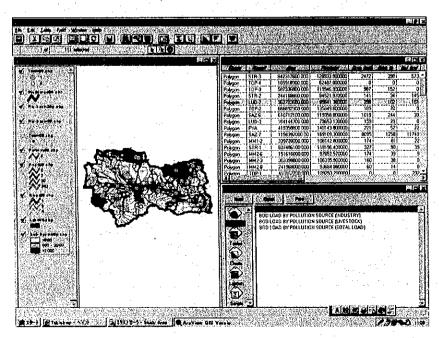
A theme has one attribute table and they are dynamically linked. Click the Open Theme Table button after you make one theme active by click the name of theme.



The layout of titled "Fig.X Seasonal Water Quality of BOD in 1994-1998" appears. You can print out this layout to the printer. This picture of Layout is the final productm which is listed in the report as figures.

7) Open the Theme's Attribute Table

A theme has one attribute table and they are dynamically linked. Click the Open Theme Table button after you make one theme active by click the name of theme.

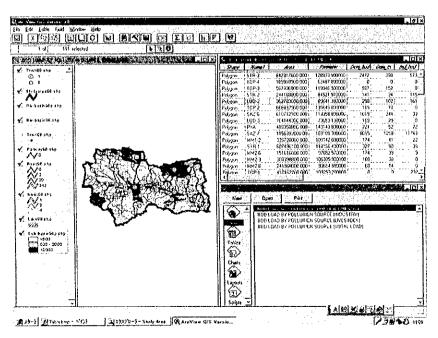


When the Open Theme Table button is clicked, theme's attribute table appears. This table contains all the attribute data of the corresponding theme.

	(] abbo Field (V] [NS] FW] [[Window ≅III∷	0	្រា					F) R	7 1	S
	و ليتاليون					MA	22X				
根据的	CARLES AND AND ADDRESS OF THE PARTY OF THE P	100		46	120	S Aborate			258635		12
Shipe	Francisco		210	R00175	800475	B207-75	MOJON	141179	NH4 T		
Polygon		4	105	2	2	2	2	4	4	41	
Polygon	Polyline	6	269	2	2	3	4	4	4	4	1
olygon	Polyline	8	331	2	2	2	2	3	3	2	
olygon	Polyline	6	104D	3	2	3	2	4	4	4	
olygon	Polytine	4	330	2	2	3	. 4	4	4	4	
olygon	Polyline	4	104	3	3	3	3	4	4	4	Ĭ
olvaon	Polyline	4	158	4	4	- 4	3	4	4	4	
Polygon	Polyline	4	110	. 1	1	1	1	2	2	2	
Polygon	Polyline	6	109	1	1	1	1	2	2	2	ì
Polygon	Polyline	4	102	2	2	1	2	2	2	2	Ň
Polygon	Polyline	4	262	2	1	2	2	3	2	3	1
Polygon	Polyline	4	105	2	1	1	1	2	3	2	
Polygon	Polyline	6	84	2	2	1	2	2	2	2	
Polygon	Polyline	4	85	2	1	1	2	2	2	2	
Polygon	Polyline	6	257	1	1	1	1	2	2	2	ľ
Polygon	Polyline	8	156	1	1	1	1	2	2	. 2	1
Polygon	Polyline	8	253	1	1	1	1	2	2	2	
Polinon.	Politine	1 4	2570	1	1	1		2		9 PK-180	ij

8) Dynamic link between Theme (Map) and Attribute table

Select "Tile" from ArcView's Window menu. You can make re-arrange the location of each window. Then, make active the theme titled "sub-basin" by click the theme's name. Notice a record of sub-basin is highlighted in yellow on the attribute table by click the feature on the map. ArcView's tool bar shows you how many sub-basins are currently selected, in this case, 1 out of 111. Thus theme and attribute table are dynamically linked.

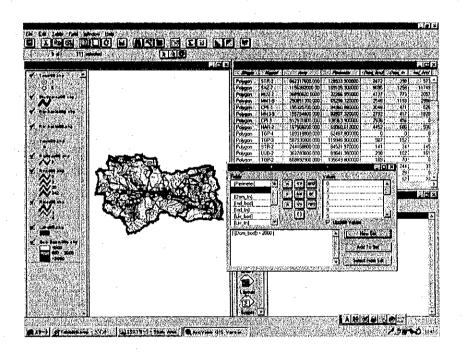


When the Open Theme Table button is clicked, theme's attribute table appears. This table contains all the attribute data of the corresponding theme.

	X IN CAN	wobniW 	0		MISU		\S			7	
. [0 0/ 4	4 selecte	d			R A	2				_
Attrib	utes of Waterqua	lity sho								. 0	D
5/424	Entiv	City	- ID	8001-75	8004.75	ROD7-75	8001075	NHI-3	NH4-75	NHTTE	Γ
Polygon	Polyline	4	105	2	2	2	2	4	4	4	1
Polygon	Polyline	6	269	2	2	3	4	4	4	4	1
Polygon	Polyline	8	331	2	2	2	2	3	3	2	
Polygon	Polyline	6	104D	3	2	3	2	4	4	4	
Polygon .	Polyline	4	330	2	2	3	4	4	4	4	1
Polygon	Polyane	4	104	3	3	3	3	4	4	4	Ī.
Polygen	Polyline	4	158	4	4	4	3	4	4	4	
Polygon	Polyline	4	110	1	1	1	1	2	2	2	-
Polygon	Polyline	ε	109	1	1	1	1	2	2	2	1
Polygon	Polyline	4	102	2	2	1	2	2	2	2	ľ
	Polyline	4	262	2	1	2	2	3	2	3	ľ
Polygon	Polyline	4	106	2	1	1 :	1	2	3	2	
Polygon	Polyline	6	84	2	2	1 ,	2	2	2	2	ľ
Polygon	Polyline	4	85	2	1	1	2	2	2	2	Ť
Polygon	Polyline	6	257	1	1	1	1	2	2	2	Ť.
	Polyline	8	156	1	1	1	1	2	2	2	1
Polygon	Polyline	8	259	1	1	1	1	2	2	2	i
	Politine	Δ	2570	1	1	1	. 1	2	,		12

8) Dynamic link between Theme (Map) and Attribute table

Select "Tile" from ArcView's Window menu. You can make re-arrange the location of each window. Then, make active the theme titled "sub-basin" by click the theme's name. Notice a record of sub-basin is highlighted in yellow on the attribute table by click the feature on the map. ArcView's tool bar shows you how many sub-basins are currently selected, in this case, 1 out of 111. Thus theme and attribute table are dynamically linked.

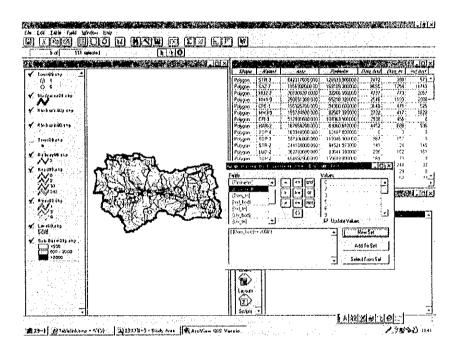


9) Query on Attribute Table

Click the Query Builder button. You use the Query Builder to find out a particular subset of the features represented in your theme, at the same time, highlight these features on map.

In the Query Builder dialog, build a query expression to select sub-basin that BOD is more than equal to 2000; double-click [bod dom] in the Field list, click the ">=" operator button, and then type "2000".

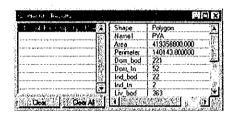
Press New Set. ArcView selects the sub-basin you specified. Close the Query Builder dialog. The sub-basin you have found are highlighted in yellow on the map. You can sort the highlighted record on the attribute table by click the Promote button.



9) Query on Attribute Table

Click the Query Builder button. You use the Query Builder to find out a particular subset of the features represented in your theme, at the same time, highlight these features on map.

In the Query Builder dialog, build a query expression to select sub-basin that BOD is more than equal to 2000; double-click [bod dom] in the Field list, click the ">=" operator button, and then type "2000".


Press New Set. ArcView selects the sub-basin you specified. Close the Query Builder dialog. The sub-basin you have found are highlighted in yellow on the map. You can sort the highlighted record on the attribute table by click the Promote button.

10) Query of Attribute Table

1 Identify Button

To get information about one of the features on your map, use the Identify tool. When you click on a feature with this tool, ArcView displays the attributes of the feature in a dialog.

🛂 Zoom To Full Extent button

Zooms to the full spatial extent of all the themes in your view. For example, if you have zoomed in a couple of times on your view, you can click this button if you want to see the whole view again.

Zoom to Active Themes button

Zooms to the spatial extent of the active theme in the view. The themes in a view often have different spatial extents. Some themes may represent features located all over the map, while others may represent features found in particular areas on the map. With this button you can easily zoom in on the area covered by a particular theme that interests you.

Zoom to Selected Features button

Zooms to the spatial extent of the currently selected features in the active theme. After you have selected particular features in a theme, click this button to zoom in on the area covered by the features you have selected.

Zoom In button

Zooms in once on the center of the view.

📆 Zoom Out Button

Zooms out once from the center of the view.

Zoom Previous Extent button

Goes back to the previous spatial extent you were viewing. Click this button to go back to where before you zoomed or panned. You can use this option to retrace your last five (5) steps.

Zoom In tool

To zoom in centered on a particular position on the view, click that position once with this tool. To zoom in to a particular area on the view, drag a box over the area with this tool.

Q Zoom Out Tool

Same as the Zoom In tool but zooms out from the position you click or the area you drag over.

Pan Tool

Lets you pan the view by dragging the display in any direction with the mouse. To pan, click this tool, move the cursor anywhere over the view, hold down the mouse button, and drag in any direction. Release the mouse button to leave the view in your desired position.

SUPPORTING REPORT B LAND USE

TABLE OF CONTENTS

Page

SUP	PORTING REPORT B	LAND USE	
1.	Assessment of the Existing	g Land Use and Related Physical Conditions B-1	

LIST OF TABLES

		Page						
SUPPORTING	G REPORT B							
Table B.1.1	Summary Table of Landuse and Physical Conditions	B-9						
Table B.1.2	Population by Sub-Basin	B-10						
Table B.1.3	Existing Landuse by Sub-Basin	B-11						
Table B.1.4	Elevation Distribution by Sub-Basin	B-13						
Table B.1.5	Area of Sub-Basin Categorized with Slope of Degree							
	by Sub-Basin	B-15						

LIST OF FIGURES

SUPPORTING	REPORT B	Page
Fig.B.1.1	Vegetation Map	 B-17

SUPPORTING REPORT B LAND USE

Land use and potential analysis is conducted based on the GIS data base. Geographic data has been digitized and stored into the computer as single data files such as topographical, geological, land use and population and so on. The whole study area is divided into 16 catchment areas and each catchment area is sub-divided into smaller sub-basins. The total number of these sub-basins is 110. For more detailed analysis of the regional characteristics of the study area, this sub-basin boundary is used as a basic unit for the calculation and analysis. The boundary data of a sub-basin is overlaid on each geographical parameter and calculated the area distribution of each category. The results of calculation are listed and compiled into a table format. In addition to these data tables, maps of data calculation are also presented. Another concept of the regional division is presented as a spatial framework previously according to the location of the river channel such as upstream, mid-stream, down stream and tributaries. This concept is also used to summarize the regional characteristics of the study area. In this section, land use and its potential of the whole study area are analyzed from an environmental management point of view and the characteristics of land use. Related physical conditions of the basin are described based on these data tables and maps as shown in Table B.1.1 – B.1.5.

1. Assessment of the Existing Land Use and Related Physical Conditions

(1) Upstream Area

The upstream area consists of 5 tributaries and a minor sub-basin, those are Topolnitza, Chepinska, Stara, Luda Yana, the most upstream part of the main Maritza River MU1 and the minor sub-basin MU2. These rivers are sub-divided into totally 27 sub-basins. The total coverage of this area is 5,483 km² and the population is 387,950 in 1992. The average population density is 71 person/km², the lowest value is 24 person/km² in the Topolnitza sub-basin and the highest value is 311 person/km² in the sub-basin MU2. The sub-basin MU2 has the highest density due to the location of Pazardjik as a regional urban center.

Topographically, elevation of most of the area varies in a range from 500 m to 2,500 m. It is a mountainous area which is a part of the Balkan mountain or the Rodopi mountain. In detail, the sub-basin CPI located at the most upper reach of the Maritza River composes of mainly high elevation area. Seventy one percent (71 %) of the total area of the sub-basin CPI is over 1,000 meters in altitude above mean sea level while twenty seven percent (27 %) is between 500 and 1,000 meters. In the sub-basin MU1, the mountain areas with the altitude of more than 1,000 meters occupies approximately 450 km² and the sub-mountain areas with 500 - 1,000 meters occupies nearly 441 km². The total percentage of area of these two categories is seventy nine percent (79 %) of the whole sub-basin MU1.

Slope characteristics of this upstream area generally shows a variation from a hilly slope to a mountainous slope. In the upstream basin, the flat land area with a slope of less than 3 degrees (approximately 5 %) is 1,662 km², the area with a slope between 3 to 8 degrees (approximately 5 to 15 %) is 2,367 km², the largest in the upstream, and the area with a slope of more than 12 degrees (approximately 20 %) is about 573 km². Sixty six percent (66 %) of the area or 285 km² of the sub-basin MU2 located along the Maritza main channel has a relatively wider flat land area. Distribution of the steep slope area with more than 15 degrees (approximately 30 % slope) is found only 2 % in this sub-basin. In the sub-basin CPI, a steep slope area with more than 15 degrees occupies 17 % or 155 km².

Basically, these mountain areas are densely covered by forest vegetation. The forest coverage ratio in this area is 49 % in average, the Chepinska sub-basin has the highest value at 71 % and the Luda Yana sub-basin has the lowest value at 35 %. The agricultural land ratio, on the contrary, is relatively low in this area. The average ratio of the agricultural land is 30 % with the upper range 55 % at the MU2 and the lower range 15 % at the Chepinska sub-basin.

Erosion potential in this area is basically high because of the high and steep slope mountain area, however, a dense coverage of the forest vegetation prevents the earth surface from severe erosion. Therefore, conservation of the existing forest and

reforestation in this mountain area should be promoted to keep the high quality water resource area.

(2) Mid-Central Stream Area

Mid-stream area is divided into 4 tributaries named as Vacha, Chepelarska, Pyassachnik, Stryama and 1 aggregated catchment area MM1. These catchment areas are sub-divided into totally 23 sub-basins. The total catchment area is 6,299 km² and the population is 686,068. The average density of the population is 109 person/km² by 1992 data. Plovdiv is the largest urban center in this area with a total urban population of 341,058 in the MM1-9 sub-basin and Assenovgrad is the second largest urban area with a total urban of population of 52,360. Population density of the MM1-9 sub-basin shows a very high value at 1,480 person/km². The lowest value in the mid-stream area is found in the Vacha river basin at 27 person/km².

Main topographical characteristics of the Vacha and the Chepelarska sub-basin are wide distribution of mountains. Totally 2,667 km² (78 %) of these two sub-basins is occupied by higher mountain areas with more than 1,000 meters in altitude above sea level. On the contrary, the sub-basin MM 1 is mostly a low-lying area with an area of 1,261 km² (83 %) located below 500 meters. The sub-basin PYA and STR have totally 2,113 km² and the ratio of mountain and lowland area is 46 % and 54 % respectively.

Slope distribution of the Vacha and the Chepelarska sub-basin is characterized by relatively wider distribution of steep slope area. The slope of more than 15 degree (or 30 %) occupies 164 km² of the Vacha sub-basin and 155 km² of the Chepelarska sub-basin. The area ratio of these steep slope areas is 9.7 % and 16 % for each sub-basin. The sub-basin STR also has a relatively wider steep slope area, of which 151 km² (9 %) is more than 15 degree. The sub-basin MM1 is characterized by an extensive flat land area of which 1,192 km² (78 %) belongs to less than 3 degrees and only 18 km² (1 %) is a steep slope area of more than 15 degrees.

Forest coverage ratio occupies 44 % of the total mid-central stream area and the highest value is 67 % in the Vacha river basin and the second highest value is 66 % at the Chepelarska river basin. Except 4 tributary basins, the MM1 area is an aggregated river basin area where the location is closer to the Maritza main channel with lower elevation, as a result, the forest coverage ratio shows the smallest value at 15 %. On the contrary, the agricultural land ratio of this sub-basin shows the highest value at 61 %. The average ratio of the agricultural land use in the mid-stream area is 33 %.

In the Vacha and the Chepelarska catchment area, the agricultural land ratio show the smallest value at 13 % and 15 % respectively. These two rivers originate in the Rodopi Mountain and flow into the Maritza main channel. Those basic physical conditions as topography, geology, elevation and vegetation are almost same type in both river basins.

Stryama River originates in the Balkan Mountains, flows down to the south and joins the Maritza River at Sadovo. This catchment is divided into 3 sub-basins those are STR-1, STR-2 and STR-3. The STR-1 sub-basin is located at the lower part of this basin and the STR-2 and STR-3 sub-basins are located at the upstream area. Physical characteristics of these two upstream sub-basins are almost same as that of mountainous ones having a higher forest cover ratio and a lower ratio of the agricultural land. The STR-1 sub-basin has a different type of physical characteristics compared to those upstream sub-basins. The sub-basin has a lower forest coverage ratio at 15 % and a higher agricultural land ratio at 59 %.

River basins of the Vacha, the Chepelarska and the upstream area of the Stryama are still mainly covered by dense vegetation and these areas have a significant meaning for the storage of the high quality water resources in the Maritza river basin. Conservation of the existing forest and reforestation practice should be also promoted in these catchments.

In the agricultural land area, especially those for steeper area, erosion control practice of the surface soil should be promoted.

Urbanization of Plovdiv will require an appropriate urban land use planning in order to absorb the future expansion of population and to strengthen urban functions as a regional center of the whole Maritza river basin.

(3) Mid-Low Stream Area

The mid-low stream area covers totally 3,569 km² and the population is 217,065. Many minor rivers flow to the Maritza main channel from both north and south side. These minor river basins are divided into 28 sub-basins and then grouped into two river basins, those are the Main-mid Upper Stream MM2 and the Main-mid Lower Stream MM3. Population density of this area is 61 person/km² and the highest value is 345 person/km² in the MM3-9 sub-basin where Dimitrovgrad, the local urban center of this area having 50,977 population is located.

Topographically, ratio of the mountain area is decreasing sharply but the ratio of the flat land area is increasing. The distribution of elevation in this area is that 3,273 km² (92 %) area is below 500 meters in elevation, and a gently sloped to flat land area is found extensively along the Maritza main channel. A low lying flat land area with less than 3 degrees (5 %) slope is found at 2,943 km² (83 %) in the mid-low stream area. Distribution of the steep slope area with more than 15 degrees is found only less than 1 % of the whole mid-low stream area.

The average forest coverage ratio in this area is low at 15 %, as a result, the rest of the area is utilized as an agricultural land. The MM2 river basin shows the highest agricultural land ratio in the whole study area at 66 %. The agricultural land ratio of the MM3 basin has also a high value at 60 % in average. The grass land and fruit tree area occupies 13 % of this area.

Though the area is located at the central part of the Maritza river basin, the urbanization potential will not be high except the existing urban center such as Dimitrovgrad. Most of the area will grow as a major agricultural production area.

(4) Sazliyka River Area

The Sazliyka river basin located in the north-eastern part of the study area is another main agricultural production area. This river basin is divided into 8 sub-basins. The total area of this basin is 3,343 km² and population is 273,543. Stara Zagora developed at the foot slope area of the western part of the Balkan Mountain is the largest urban center of this basin having 149,666 urban population. Nova Zagora is the second largest urban center in this basin, however, the urban population is rather low at 26,260 only. The population density is 82 person/km² in the whole basin and the highest value is 161 person/km² in the SAZ-7 sub-basin.

Topographically, most of the area is lower than 500 meters in altitude and a flat land area with a slope of less than 3 degree is found extensively along the Sazliyka River. For elevation, totally the area 2,444 km² (73 %) is found below 250 meters and 703 km² (21 %) is found between 250 and 500 meters. A hilly upland area with between 500 meter to 1,000 meter in elevation occupies only 6 % of the whole Sazliyka basin.

A flat land area with a less than 3 degree slope is totally 2,785 km² (83 %), the area with a 3 to 8 degree slope covers 526 km² (16 %) and the area with a more than 8 degree slope covers only 32 km² (less than 1%).

Under these flat land areas, tertiary sedimentary rocks and earlier quaternary sediments have developed. The surface area has been suffering from the chemical and mechanical weathering through quaternary period. Rich accumulation of humic materials provided by

vegetation through a long time makes the soil so productive that the agriculture in this area called Trace plain can be traced back to several thousand years ago.

Forest coverage ratio of this basin has the lowest value at 13 % in the whole study area and agricultural land ratio is the second largest at 65 %. The agricultural land ratio in such subbasins as the SAZ-3, 4, 5 and 6 basin exceed 70 %.

Irrigation system has been developed densely in this river basin and river water is extensively used for the agriculture, therefore, flow volume of the river is rather limited.

Urbanization of Stara Zagora as an urban center of this area should be considered and a proper development plan for future urbanization should be prepared. The agriculture will continuously play an important role of main economical activities in this river basin.

(5) Down Stream Area

Down stream area is located close to the boundary of Turkey and Greece. Total area is 2,620 km² and population is 182,722. This catchment is divided into two basins, those are Harmanliyska (HAR) and the Main down stream (MD). The Harmanliyska river basin is subdivided into totally 3 sub-basins and the main down stream basin is subdivided into 21 sub-basins. Population density of the Harmanliyska basin is 134 person/km² and the highest value is 591 person/km² in the HAR-2 sub-basin where Haskovo is located. In the main down stream area MD, the population density is 31 person/km².

Hilly to gently sloped upland topography is well developed both in the east and west of the Maritza main channel and the elevation of this area is almost less than 500 meter. Totally the area 2,498 km² (95 %) is below 500 meter of which 1,611 km² (61 %) is below 250 meter in elevation. A flat land area is also widely distributed in this basin. The area 2,046 km² (78 %) is less than 3 degrees and 551 km² (21 %) is 3 to 8 degrees in slope.

These hilly to gently sloped lands are mainly used for agriculture and cattle grazing. The agricultural land ratio in the Harmanliyska basin is 50 % and the grass land occupies 12 % of the area. In the MD area, the agricultural land ratio is 52 % and the grass land ratio is 13 %. The distribution of forest is limited to the top of the upland and the forest coverage ratio is 22 % in Harmanliyska and 19 % in the main down stream area.

Erosion potential of this area is rather high due to an intensive use of hilly upland for agricultural. A gently sloped or undulated hill side has been dissected by small streams when it has stronger rainfall. Frost action in winter season also contributes for the surface erosion as a form of mass waste. For the protection of surface soil erosion, cultivation should be practiced along the contour line and meadows, or grass land type land use should be practiced in the sloped area to cover the soil surface.

Haskovo is the largest urban center and Harmanli having 21,349 population is the second largest in this area. Svilengrad is the nearest town to Turkey having 18,643 population. The urbanization potential of these towns is not low from a long term point of view because these towns are located along the main road connecting to Sofia and Istanbul. According to the future economic growth in the East Europe and Asia Minor or middle east countries, more commodities, traffics and tourists will move on this corridor, so that service industries will have a large potential.

The present land cover and vegetation map derived from the Corine database is shown in Fig. B.1.1.

TABLE B.1.1 SUMMARY TABLE OF LANDUSE AND PHYSICAL CONDITIONS

				Population	(1992)	3	Existing	Land	Use		Natural Condition								
		Name of Catchment	Area (km2)	Total	Density per	Main Orban	Fore	est	Agrici La (Inrigate	nd	Geology	1	Elevation				Slope		
				. YOUN	km2	Center	Area (km2)		Arca (km2)	Ratio (%)	Rock Type	< 500m (%)	500 - 1000m (%)	>1000m (%)	<3° (%)	3°-8° (%)	8°-12° (%)	12°-15° (%)	>15° (%)
		Topolnitza (TOP) (TOP1~TOP4)	1,857	. 43,785	24	Ihitiman (12,860)	852	46	559	30	PR3,MC1 MC2,MC3	16	64	20	28	48	16	5	:
		Main Upstream1 (MU1) (MU1-1~MU1-10)	1,173	67,187	57	Kostinetz (10,641)	630	54	278	24	PC2,PR3 MC1	. 22	39	39	25	38	18	10	5
	Upstream	Main Upstream2 (MU2) (MU2-1~MU2-6)	429	133,619	311	Pazardjik (80,921)	70	16	236	55	PR3, Qa, Qr	85	1	5	66	21	8	3	:
	Upsti	Chepinska (CPI) (CPI-1~CPI-3)	919	59,937	65	Velingrad (26,020)	657	71	142	15	PR3, PC2	2	27	71	20	47	20	7	
		Stara (STA)	366	44,996	.123	Peshtera (20,002)	198	54	90	24	PR3, TP4	30	21	49	19	43	24	8	6
		Luda Yana (LUD) (LUD-1~LUD-3)	739	38,426	52	Panagyurishte (20,944)	262	35	363	49	PC2, MC1 MC4, Qd	38	6	2	41	47	9	2	I
	E	Vacha (VAC) (VAC-1~VAC-4)	1,689	46,353	27	Krichim (8,761)	1,139	67	220	13	PR3, PR2 TP4, Qa	7	12	81	16	38	25	11	10
ver.	Stream	Chepelarska (CPE) (CPE-1~CPE-3)	979	84,454	86	Assenovgrad (52,360)	650	66	146	15	PR3, PR2 TP4	4	23	73	8	28	30	18	16
Maritza River		Main-mid Stream (MM1) (MM1-1MM1-12)	1,518	434,329	286	Plovdiv (341,058)	222	15	929	61	Qd, TN1 PR3, Qr	83	E'	7	78	11	6	3	2
Marit	Mid-Central	Pyassachnik (PYA)	419	16,393	39	-	164	. 39	174	42	PC2, PR3 TN1	62	32	6	54	31	11	3	1
	2	Stryama (STR) (STR-1~STR-3)	1,694	104,539	62	Karlovo (27,291)	539	32	640	38	PR3, PC2 TN1, Qa, Qd	52	26	22	48	27	11	5	9
	! ===	Main-mid Upper Stream (MM2) (MM2-1~MM2-16)	1,993	130,783	66	Chirpan (19,694)	309	15	1,317	66	PC2, TP4 TN1, Qr	90	1	0	80	14	4	1	1
-	Mid- Lowe Strear	Main-mid Lower Stream (MM3) (MM3-1~MM3-12)	1,576	86,282	55	Dimitrovgrad (50,977)	231	15	947	60	TN1, TP1 TP4	96	. 4		85	13	2	-	}
	Sazliyka	Sazliyka (SAZ) (SAZ-1~SAZ-8)	3,343	273,543	82	Stara Zagora (149,666) Nova Zagora (26,260)	440	13	2,179	65	TN1, TP1 Qd, MC3	94	6	-	83	16	1	-	
	Downstream	Harmanliyska (HAR) (HAR-1~HAR-3)	986	132,092	134	Haskovo (80,700) Harmanli (21,349)	220	22	. 492	50	TP4, TN1 PR3, Qr	94	6		76	22	1		
	Dow	Main down Stream (MD) (MD-1~MD-21)	1,634	50,630	31	Svilengrad (18,643)	308	19	852	52	PC2, PR3 TN1, TP1	96	4		79	20	1	-	
T	otal	Maritza	21,314	1,747,348	82	Urban Pop. (1,177,038)	6,891	32	9,562	45	PR3, PC2 TN1, TP4 Qd. Qa. Qr	60	19	21	56	26	10	4	4

TABLE B.1.2 POPULATION BY SUB-BASIN

Main	Sub	Population	Area	Density
Basin	Basin		(km2)	(PE/km2)
CPE	CPE-1	68699	195	352
	CPE-2	5200		16
	CPE-3	10555	449	24
Sub-Total		84454	979	86
CPI	CPI-1	0		
	CPI-2	16288		
	CPI-3	43649	513	85
Sub-Total	LIAD 1	59937	919	65
HAR	HAR-1 HAR-2	24999 98753	177	141
		8340	167	591
Sub-Total	HAR-3	132092	642 986	13 134
LUD	LUD-1	132032		134
LOD	LUD-2	32001	363	88
	LUD~3	6425	164	39
Sub-Total	v	38426	739	52
	MD-1	1081	3	360
	MD-2	0	3	Ö
	MD-3	246		123
	MD-4	0	4	0
	MD-5	341	67	5
	MD-6	1032	46	22
ļ	MD-7	348	128	3
	MD-8	19788	195	101
	MD-9	2816	96	29
	MD-10	0	95	0
	MD-11	139	55	3
l' .	MD-12	870	56	16
· .	MD-13	1765	88	20
	MD-14	785	41	19
	MD-15	Ö	15	0
	MD-16	685	73	9
	MD-17	0	119	0
	MD-18	10715	42	255
	MD-19	6727	394	17
	MD-20	2443	37	- 66
	MD-21	849	75	11
Sub-Total		50630	1634	31
MM1	MM1-1	2117	19	111
•	MM1-2	12915	340	38
	MM1-3	0	12	0
	MM1-4	4650	22	211
	MM1-5	18643	431	43
	MM1~6	5257	43	122
	MM1-7	0	102	0
•	MM1-8	0	34	. 0
	MM1-9	371407	251	1480
	MM1-10	4729	205	23
l	MM1-11	354	40	9
Cut T	MM1-12	14257	1510	750
Sub-Total	MM2 1	434329	1518	286
MM2	MM2-1	28834	99	291
	MM2-2	178		8
	MM2-3	11858		39
1	MM2-4	4662	68	69
} :	MM2-5 MM2-6	11647		0
	MM2-7	11647		77
	MM2-7	4480	2 242	0
	MM2~9	17795	 	19
	MM2-10	·	117	152
1	MM2-10	5711	88	65
	VIIVIA	0	291	0
) · · · · · · · · · · · · · · · ·	7065		27
1	MM2-12	7965	,	
l .	MM2-12 MM2-13	20646	106	195
	MM2-12 MM2-13 MM2-14	20646 7281	106 253	195 29
	MM2-12 MM2-13 MM2-14 MM2-15	20646 7281 9726	106 253 80	195 29 122
Sub-Total	MM2-12 MM2-13 MM2-14 MM2-15 MM2-16	20646 7281	106 253 80 9	195 29

Main	Sub	Population	Area	Density
Basin	Basin		(km2)	(PE/km2)
MM3	MM3-1	8294	157	53
	MM3-2	1992	338	6
	MM3-3	5668	125	45
	MM3-4	0	145	0
	MM3-5	0		0
	MM3-6	1295		324
		134		
	MM3-7	* *************************************	40	3
	MM3-8	0	6	0
	MM3-9	53860	156	345
	MM3-10	10084	285	35
	MM3-11	4379	58	76
	MM3-12	576	217	3
Sub-Total		86282	1576	55
MU1	MU1-1	0	244	0
	MU1-2	32965	119	277
	MU1-3	11422	134	
	MU1-4	0		85
			36	0
	MU1-5	0	105	0
	MU1-6	0	29	0
	MU1-7	0	88	0
	MU1-8	10641	6	1774
	MU1-9	1768	146	12
	MU1-10	10391	266	39
Sub-Total		67187	1173	57
MU2	MU2-1	0	.71	0
	MU2-2	132392	37	3578
	MU2-3	102002	21	0370
	MU2-4	1227		22
	MU2-5		56	
		0	197	. 0,
	MU2-6	0	47	0
Sub-Total	V	133619	429	311
PYA	PYA	16393	419	39
Sub-Total		16393	419	39
SAZ	SAZ-1	0	109	0
	SAZ-2	2666	319	8
	SAZ-3	1647	653	3
	SAZ-4	20535	440	47
	SAZ-5	0	30	0
	SAZ-6	62122	611	102
	SAZ-7	186573	1156	161
	SAZ-8	100373		
Sub-Tat-		273543	25	0
Sub-Total	STA		3343	82
STA		44996	366	123
Sub-Total		44996	366	123
STR	STR-1	28170	608	46
' '	STR-2	10469	244	43
	STR-3	65900	842	. 78
Sub-Tota		104539	1694	62
TOP	TOP-1	0	410	0
	TOP-2	21731	669	32
	TOP-3	22054	588	38
	TOP-4	0	190	0
Sub-Total		43785	1857	24
VAC	VAC-1			
170	VAC-2	24284	612	40
		2957	237	12
	VAC-3	12701	428	30
	VAC-4	6411	412	16
		, 46353i	1689	27
Sub~Total Total		46353 1747348	21314	82

TABLE B.1.3 EXISTING LANDUSE BY SUB-BASIN (1/2)

Landuse	FOR	EST Ratio*	GRASS- LAND	BARE LANDS	NON IRRIGATED	Agricultural IRRIGATED		Řatlo*	URBAN AREA	FRUIT TREE	WATER BODY	TOTAL
Sub-basin	(km2)	(%)	(km2)	(km2)	(km2)	 (km2)	(km2)	(%)	(kın2)	(km2)	(km2)	(km2)
CPE-1	127	65	23	5	27	2	29	15	9	2	0	199
CPE-2	231	69	38	28	36	0	36	11	1	0	0	33!
CPE-3 CPE: Sub-total	292 650	65 66	108	22 56	80 144	0 2	80 146	18	8	0	0	979
CPI-1	108	63	25	2	32	2	34	20	3	1	0	17
CPI-2	132	56	16	3	51	1	51	22	12	. 0	21	23
CPI-3	418	82	23	5	57	0	57	11	10	0	0	513
CPI: Sub-total HAR-1	657 31	72 17	65	9	140	2	142	15	24	1	21	919
HAR-2	24	14	24 6	2 <u>1</u>	88 102	0	88 102	50 61	9 15	14	0	17 16
HAR-3	165	26	89	46	302	ő	302	47	19	16	0 5	642
HAR: Sub-total	220	22	119	73	492	0	492	50	44	33	5	986
LUD-1	22	10	11	2	92	63	155	73	11	11	0	212
LUD-2 LUD-3	159	44 50	27	15	147	, o	147	40	10	4	0	363
LUD: Sub-total	262	36	<u>11</u> ·	- 5 22	61 300	63	61 363	37 49	3 24	17	0	164 739
MD-1	0	2	0	0	. 3	0.5	3	97	0	0	0	/3
MD-2	0	2	0	0	1	ž	3	97	Ö	<u>0</u>	ŏ	3
MD-3	0	3	0	0	<u>t</u>	1	1	71	1	0	0	
MD-4	1	14	0	0	0	2	2	60	0	1	0	4
MD-5 MD-6	5 1	7 2	15	3	43 33	0	43	63 73	2 2	0	1	67
MD-7	20	16	19	11	69	0	69	73 54	2	4	0	128
MD-8	42	22	55	16	66	4	70	36	5	7	0	195
MD-9	5	6		2	54	11	65	68	4	10	3	96
MD-10	15	15	15	15	45	0	45	47	3.	3	0	95
MD-11 MD-12	8	14. 5	12 14	3	28	1 4	29	53	0		<u>1</u>	55
MD-13	7	8	12	13	45	4	28 49	50 56	3 2	6	0 1	56 88
MD-14	8	19	10	2	20	0	20	49	2	4 0	0	41
MD-15	1	4	1	4	10	0	10	65	0	0	0	15
MD-16 .	10	14.	5	0	33	14	47	65	3	6	1	73
MD-17 MD-18	40 6	34 15	<u>8</u>	0	63 17	3	65 25	55 59	7	4	0	119
MD-19	124	31	29	38	165	10	175	45	13	12	2	394
MD-20	7	19	3	0	13	8	21	57	1	.4	<u>-</u>	37
MD-21	5	7	9	9	46	0	46	62	3	1	1	75
MD: Sub-total	308	19	216	122	778	74	852	52	56	70	10	1634
MM1-1 MM1-2	21	0	40	0 3	133	91	11	57	3	5	1	19
MM1-3	0	0	0	0	8	2	224	66 87	22 1	23	6.	340 12
MM1-4	. 1	5	0	0	11	Ō	11	48	10		ö	22
MM1-5	6	1.	27	3	187	164	351	81	25	. 19	j.	431
MM1-6	0	0		0	21	14	36	83	4	2		43
MM1~7 MM1~8	2	2	1	0	36 26	52 0	88 26	86 77	6	3	0	102
MM1-9	42	17	12	2	56	52	108	43	52	33	1	34 251
MM1-10	144	. 70		5	35	3	38	18	5	7	o	205
MM1-11	6	14	1	0	6	15	21	52	2	10	0	40
MM1-12 MM1: Sub-total	222	0 15	<u>1</u>	1. 14	5 532	397	929	37 61	137	5 115	<u>0</u>	19
MM2-1	2	2	6	0	80	0	80	81	137	5		1518
MM2-2	1	4	2	0	18	0	18	78	0	0	1	23
MM2-3	80	26	13	5	176	0	176	58	17	12		303
MM2-4	6	9	8	2	45	0	45	67	3	4	1	68
MM2-5 MM2-6	31	20 30	4	1	100	0	100	66	5	12	0	153
MM2-7	46 0	2		7	78 1	3	81	53 47	9	3 1	0	152 2
MM2-8	27	11	14	2	86	84	170	70	10	16		242
MM2-9	2	1	5	1	36	59	95	81	12	2	<u>_</u>	117
MM2-10	1	1	7	1	70	0	70	80	4	6	0	88
MM2-11	0	1	2	0	5	0	5	74	0	0	<u>0</u>	7
MM2-12 MM2-13	66 4	23	<u>25</u> 8	. 1	169 79	0	169 79	58 74	1 <u>5</u>	10	2	291
MM2-14	43	17	19	8	155	0	155	61	15	7 12	1	106 253
MM2-15	1	1	2	0	64	0	64	80	8	5	<u> </u>	80
MM2-16	0		0	1	7.	0	7	78	0	0	0	9
MM2: Sub-total	309	16	123	32	1171	146	1317	66	109	95	9	1993

TABLE B.1.3 EXISTING LANDUSE BY SUB-BASIN (2/2)

	FOR	EST	GRASS-	BARE	·	Agricultural	Land	URBAN	FRUIT	WATER	TOTAL	
I,anduse		Ratlo*	LAND	LANDS	NON	IRRIGATED	Sub-Total	Ratio*	AREA	TREE	BODY	
		Į			IRRIGATED							
Sub-basin	(km2)	(%)	(km2)	(km2)	(km2)	(km2)	(km2)	(%)	(km2)	(km2)	(km2)	(km2)
MM3-1	31	20	12	10	86 220	2	87 257	56	8 17	6	2	157
MM3-2 MM3-3	30 4	9	11	13	102	37	102	76 82	5	10	0	338 125
MM3-4	18	12	24	3	83	0	83	58	6	10	1	145
MM3-5	2	5	5	1	31	0	31	68	5	2	0	45
MM3-6	0	0	1	0	3	0	3	87	0	0	0	4
MM3-7		2	3	1	29	0	30	74	5	<u> </u>	0	40
MM3-8	0 34	0	1		71	0	71	61 46	0	1	0	150
MM3-9 MM3-10	71	22 25	18 51	11 18	133	0	133	47	15 8	3	2	156 285
MM3-11	6	10	4	1	43	Ö	43	75	3	1	0	58
MM3-12	35	16	47	12	101	0	101	47	8	13	2	217
MM3: Sub-total	231	15	183	76	908	39	947	60	79	54	7	1576
MU1-1	73	30	28	9	74	11	86	35		36	1	244
MU1-2	49	41 85	3	3	29	19	48	. 41	8	7	1	119
MU1-3 MU1-4	114 21	58		7.	8	0	8 7	18	1 0	0	0	134 36
MU1-5	60	57	17	18	4	0	4	4	2	0	4	105
MU1-6	22	76	1	1.	6	0	6	19	0	0	0	29
MU1~7	54	62	11	5	15	0	15	17	3	0	0	88
MU1-8	1	11	0	0	3	0	3	56	2	0	0	6
MU1-9	7 <u>6</u> 160	52 60	11 26	2 23	48	3	52 50	35 19	5	1	0	146
MU1-10 MU1: Sub-total	630	54	99	76	243	35	278	24	40	. 45	5	266 1173
MU2-1	0	0	0	1	40	12	52	73	9	9	0	71
MU2-2	0	ŏ	ŏ	Ö	14	12	26	69	11	0	0	37
MU2-3		5	1	1	3	11	13	64	1	2	2	21
MU2-4	11.	1	14	12	15	10	24	44	2	3.	1	56
MU2-5	68	35	16	10	26	61	86	44	11	5	0	197
MU2-6 MU2: Sub-total	70	0 16	32	23	18 114	17	34 236	73 55	43	3 22	1 3	47
PYA	164	39	30	8	159	15	174	42	12	.18	14	419
PYA: Sub-total	164	39	30	8	159	15	174	42	12	18	14	419
SAZ-1	12	. 11	- 11	7	74	0	74	68	3	2	1	109
SAZ-2	47	15	31	22	187	0	187	59	15	13	3	319
SAZ-3	18	3	21	83	185	281	466	71.	31	18	16	653
SAZ-4	21	5 4	15	11 0	230	127 15	357 24	81 81	26	8	2	440 30
SAZ-5 SAZ-6	39	6	43	27	101	330		71	39	29	3	611
SAZ-7	299	26	63	34	271	361	632	55	83	42	2	1156
SAZ-8	3	11	2	4	8	0	8	30	7	11	2	25
SAZ: Sub-total	440	13	186	189	1065	1114		65	208	113	. 29	3343
STA	198	54	35	13	. 84	.5	90	24	18	12		366
STA: Sub-total	198	54	35	13	84	107		24	18	12	1	366
STR-1 STR-2	92 101	15 41	57 59	24	232 60	127		59 25	30	43	3	608 244
STR-3	346	41	165	54	215	6		26	31	19	5	842
STR: Sub-total	539	32	281	88	507	133		38	68	69	9	1694
TOP-1	125	31	34	15	142	53	195	48	15	24	2	410
TOP-2	366	55	64	5	206			31	16	6	6	669
TOP-3	274	47	143	35	117	<u> </u>		20	17	2	1	588
TOP-4	87	46	26	27	42	0		22	51	5	0	190
TOP: Sub-total	852 386	63	268	82 27	506 73			36 15	10	36	5	1857 612
VAC-1 VAC-2	141	59	62 28	19				19	3	33	0	237
VAC-3	297	69	38	26				15			0	428
VAC-4	316	77	42	27	20	.0	20	5	2	0	5	412
VAC: Sub-total	1139		171	98						33	10	1689
Total	6891	32	2056	982	7345	2216	9562	45	949	735	139	21314

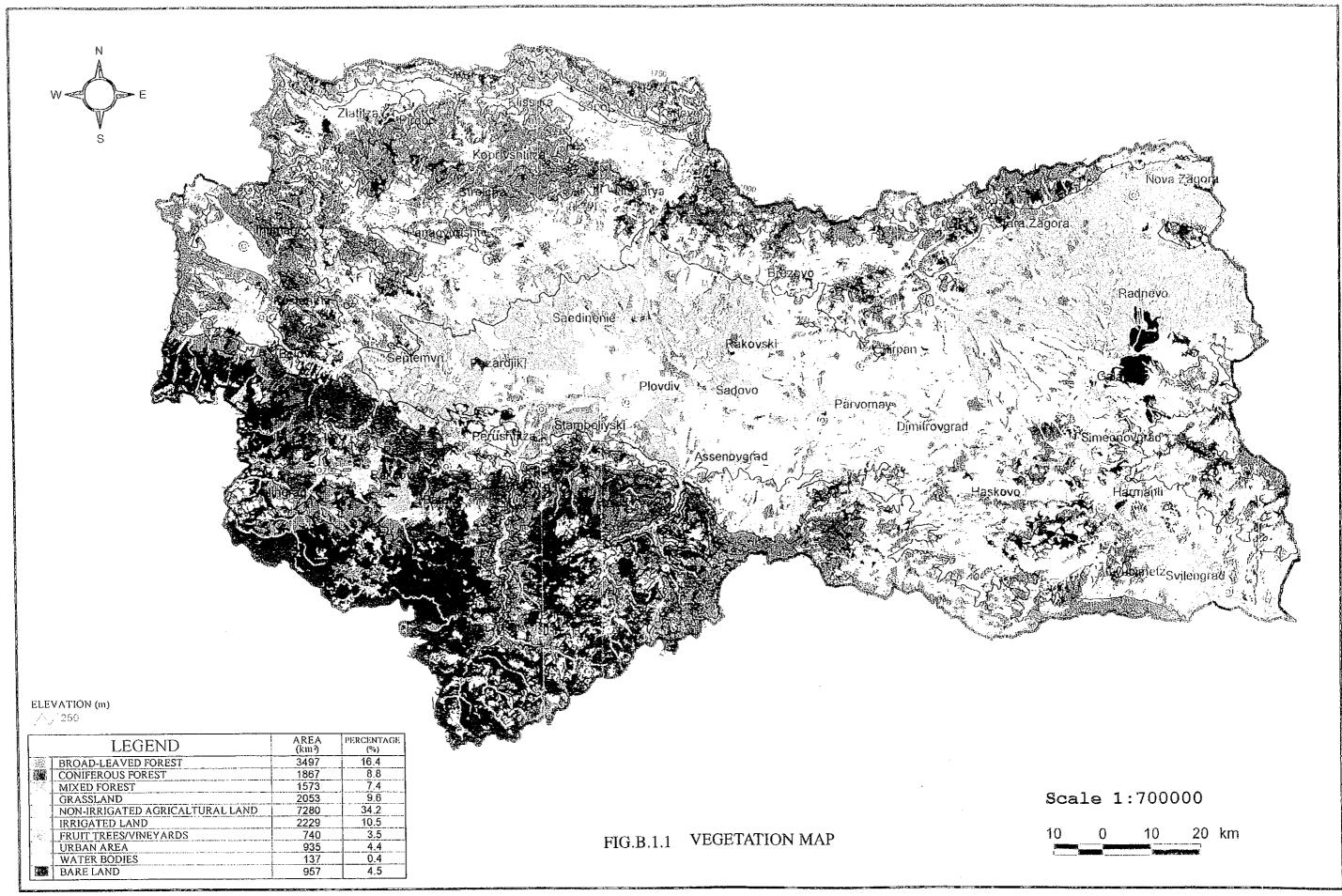
^{*:}Ratio to total area of sub- or main-basin

TABLE B.1.4 ELEVATION DISTRIBUTION BY SUB-BASIN (1/2)

(unit:km2) Elevation Sub-Main Basin 100 -250 -500 -1500 -1000 over Basin Total 1500m 2000m 2000m 100m 250m 500m 1000m 195 CPE CPE-1 ō 22.7 16.4 67.4 88.0 0.4 Ö CPE-2 0 õ Ô 85.9 196.5 52.7 0 335 CPE-3 ō 0 73.5 106.7 0 449 0 22.7 16.4 226.8 553.3 159.8 0 979 Sub-Total CPI-1 171 0 47.2 0 CPL 10.0 8.9 103.4 1.4 0 0 13.7 0 235 CPI-2 92.2 129.5 0 152.1 513 õ 0 0 49.5 308.4 3.1 CPI-3 10.0 8.9 245.1 485.1 167.2 919 Sub-Total 0 3.1 HAR HAR-1 5.6 160.8 10.7 0 ō 0 0 177 HAR-2 0 125.3 41,7 0 0 0 0 167 57.0 HAR-3 0 240.3 344.6 ō 0 Ö 642 Sub-Total 5.6 526,4 397.0 57.0 0 0 0 986 LUD-I 0 83.4 120.7 õ 0 0 212 LUD LUD-2 0 47.9 266.7 48.4 õ 0 363 LUD-3 0 0 25.6 95.5 42.8 0 0 164 83.4 370.1 91.2 194.3 0 0 739 Sub-Total 0 MD-1 3.0 0 0 0 0 3 2 MD 0 Û 0 0 a MD-2 3.4 n n 0 0 0 1.7 0 0 MD-3 0 0 MD-4 4.0 0 n n 0 0 0 37.0 67 MD-5 7.8 22.1 ก n O n MD-6 5.6 29.5 10.6 0 0 0 0 46 MD-7 9.5 47.3 61.7 9.5 0 0 0 128 MD-8 11.5 46.4 98.0 39.0 0 0 ō 195 51.0 0 0 0 Ö 96 MD-9 30.4 14.3 47.5 0 0 0 95 MD-10 2.3 37.8 8.0 MD-11 4.1 21.9 27.1 1.8 0 0 0 55 56 0 0 Ô õ 32.0 MD-12 2.8 21.7 65.0 0 ō 88 14.0 9.4 0 0 IMD-13 õ 41 14.3 n 0 0 MD-14 n 6 25.7 15 10.9 0 0 0 MD-15 4.0 0 0 6.3 ō 0 73 MD-16 41.3 25.2 0 0 65.9 119 MD-17 20.0 29.2 4.0 0 0 0 MD-18 22.7 17.6 2.1 Ó 0 0 0 42 2.3 394 MD-19 14.3 252.0 124.9 0 0 0 MD-20 25.2 11.5 0 0 0 ō 37 0.5 MD-21 14.9 59.5 0 0 ō ō 75 489.7 64.6 ō 0 0 1634 Sub-Total 243.1 836.2 MM1 MM1-1 0 18.9 0 0 0 ō 19 135.6 0.6 0 0 340 MM1-2 ō 185.0 18.3 0 0 0 ō 12 MM1-3 0 0 11.5 22.3 0 0 ō 22 0 0 MMI-4 431 168.1 0 0 0 MM1-5 0 260.3 3.1 õ ő Ö 0 43 MM1-6 43.0 0 0 102 6.9 O ñ n MM1-7 0 95.1 O 34 MM1-8 0 33.8 0 0 0 0 O 10.9 42.4 MMI-9 0 163.3 34.4 n 0 251 37.1 MM1-10 0 13.6 18.2 33.7 102.4 0 205 MM1-11 0 29.2 5.7 5.2 0 ō 0 40 0 19.0 0 0 0 0 0 19 MM1-12 Sub-Total 0 895.0 368.9 102.7 113.9 37.1 0 1518 0 99 MM2-1 0 73.7 23.9 1.5 0 0 MM2 22.9 23 MM2-2 0 0 0 0 0 ō MM2-3 0 95.9 0.0 303 152.6 54.7 0 Õ 0 0 68 0 0 0 68.0 . 0 MM2-4 Ô 0 153 66.7 0 82.7 3.7 0 MM2-5 152 MM2-6 0 67.8 31.7 51.2 1.3 O 0 o n MM2-7 0 1.7 0 0 n 59.0 242 158.7 24.1 MM2-8 0 0 n O 117 MM2-9 Ő 117.0 0 0 0 Ð 0 MM2-10 0 87.3 0.7 0 ō 0 0 88 0 6.9 0 0 0 0 0 MM2-11 MM2-12 0 126.2 111.9 48.3 4.8 0 0 291 MM2-13 0 106.0 0 0 0 ö 0 106 0 37.6 14.7 0 0 253 MM2-14 123.6 77.2 0 0 0 80 MM2-15 0 80.2 ō 0 0 0 0 0 9 0 9.2 0 MM2-16 1227.6 0 523.6 221.0 20.7 0 1993 Sub-Total

TABLE B.1.4 ELEVATION DISTRIBUTION BY SUB-BASIN (2/2)

				······································	·				(unit:km2)
	Sub-		1.00		Elevation		1.600		
Main Basin	Basin	0 - 100m	100 - 250m	250 - 500m	500 ~ 1000m	1000 - 1500m	1500 - 2000m	over 2000m	Total
им3	MM3-1	11.5	145.5	0	0	0	200011	200011	157
VIIVIS	MM3-1	5.9	285.5	46.6	0	0	0	0	338
	MM3-3	1.1	120.9	2.9	0	0	0	0	125
	MM3-4	0	92.4	50.6	1.9	0	0	ŏ	145
	MM3-5	0	44.7	0	0	0	0	ő	45
	MM3-6	3.2	0.9	0	0	0	0	0	4
	MM3-7	6.9	33.2	0	0	. 0	0	0	-40
	MM3-8	0	6.0	0	0	0	0	0	6
	MM3-9	19.3	136.8	0	0	0	0	0	156
	MM3-10	0.9	128.1	117.8	38.2	0	0	0	285
	MM3-11	1.1	56.7	. 0	0	0	0	0	58
	MM3-12	0	101.4	99.6	16.1	0	0	0	217
Sub-Total	15.177.	49.8	1152.0	317.5	56.2	0	0	0	1576
MUI	MU1-1	0	20.0	135.2	88.8	0	0	0	244
	MU1-2 MU1-3	0	29.7	40.7 6.5	26.7 18.0	20.9 68.4	0.8 41.2	0	119
	MU1-3	0	$\frac{0}{0}$	12.2	16.8	7.0	41.2	0	36
	MU1-5		0	1.3	11.1	26.5	47.7	18.5	105
	MU1-6	0	29.0	0	0	20.5	0	10.5	29
	MUI-7	0	0	1.0	26.8	17.1	21.1	22.2	88
	MUI-8	ō	0	2.2	3.9	0	0	0	6
	MU1-9	0	0	1.1	138.0	6.8	0	0	146
	MU1-10	0	0	0	111.5	50.8	47.4	56.5	266
Sub-Total		0	78.7	200.1	441.5	197.4	158.1	97.1	1173
MU2	MU2-1	0	71.0	0	0	. 0	0	0	71
	MU2-2	0	37.2	- 0	. 0	0	0	0	37
	MU2-3	0	14.5	6.5	0	0	0	0	21
	MU2-4	0	26.9	29.2	0	0	0	0	56
	MU2-5	0	57.9	78.5	41.8	18.3	0	0	197
	MU2-6	0	47.0	0	0	0	0	0	47
Sub-Total	1737.4	0		114.2	41.8	18.3	0	0	429
PYA Sub-Total	PYA	0	62.7 62.7	198.7 198.7	133.2 133.2	24.3	0	0	419
SAZ	SAZ-1	12.6	68.2	28.1	133.2			<u></u>	109
one.	SAZ-2	2.6	178.4	130.9	7.1	0			319
	SAZ-3	4.4	603.6	45.1	0				653
	SAZ-4	18.1	419.7	2.7	0	0			440
	SAZ-5	1.7	28.1	0	0	0	0	0	30
	SAZ-6	0	497.2	110.6	3.4	0	0	. 0	611
	SAZ-7	0	584.9	385.5	185.6	0	0	0	1156
	SAZ-8	6.8			0		-1		25
Sub-Total		46.1	2398.3		196.1	0			3343
STA	STA	0			80.2	**			366
Sub-Total	loop .	0		·	80.2				366
STR	STR-1	0						 	608
	STR-2	0					1		842
Sub-Total	STR-3	000							1694
TOP	TOP-1	0							410
1	TOP-2	- 0		4					669
	TOP-3	C			- 				588
	TOP-4								190
Sub-Total	. 1	1 0							1857
VAC	VAC-1	1							612
1	VAC-2	1		_}					237
1	VAC-3	(428
L	VAC-4) . () (268.0	1.6	412
Sub-Total		(67.1	32.2	203.6				1689
Total		344.6	8037.	4426.5	4081.9	2962.7	1335.3	125.3	21314


TABLE B.1.5 AREA OF SUB-BASIN CATEGORIZED WITH SLOPE OF DEGREE BY SUB-BASIN (1/2)

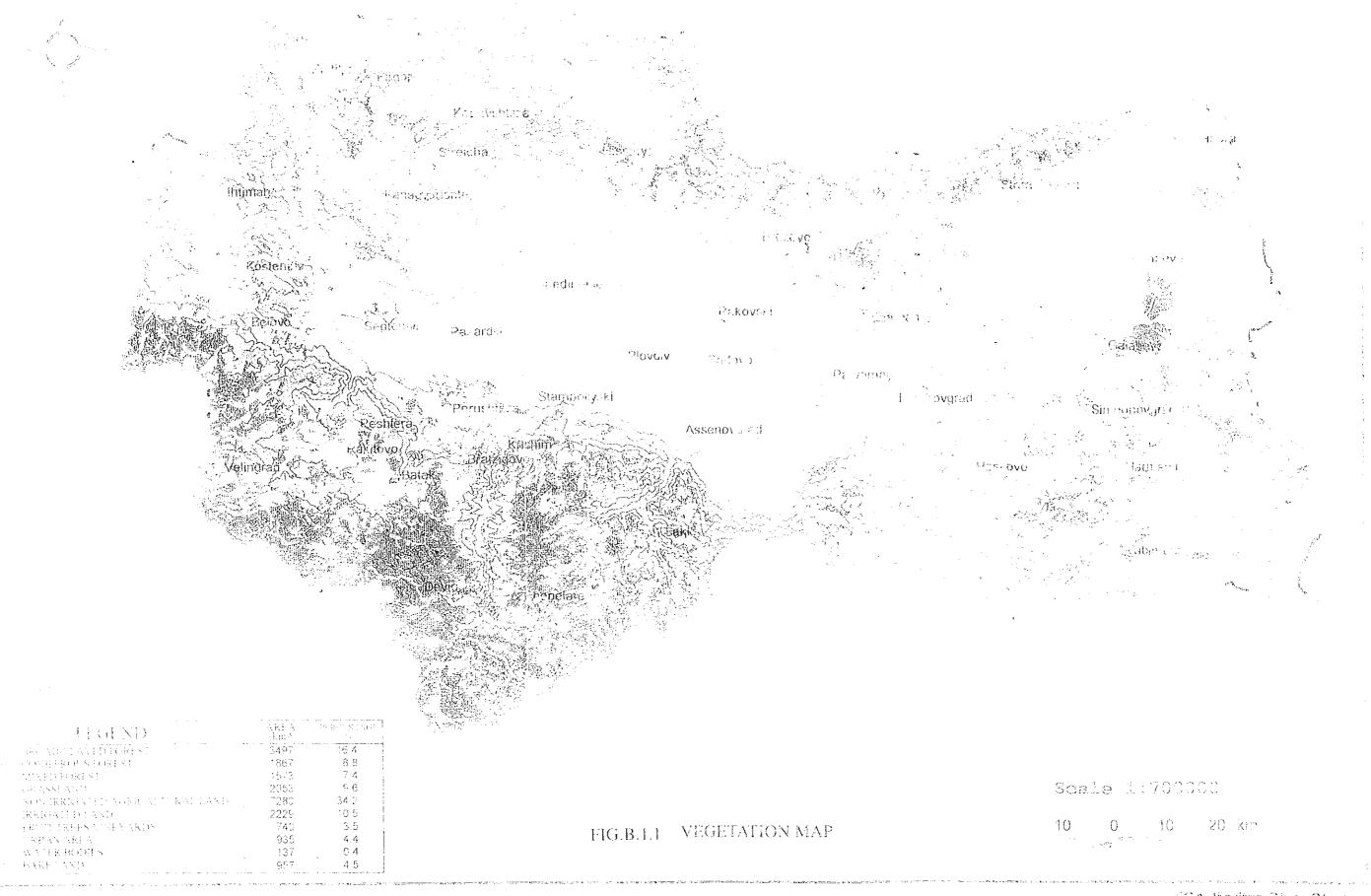

No.	Tout.					lana (Danie	-1		-		(unit:km2)
Main Basin	Sub- Basin	0-3	3-8	8-12	12-15	lope (Degree 15-20	20-25	25-30	30-35	35-40	Total
PF.	CPE-1	32.5	56.9	50.0	27.5	20.9	7,1	0,5			195
	CPE-2	19.8	78.3	97.6	64.8	60.4	12.5	1.3	0.3	-	335
	CPE-3	22.9	135.2	150.3	88.0	45.1	6.7	0.5			449
ub-Total		75,2	270.5	297.9	180,3	126.3	26.3	2.3	0.3		979
CPI	CPI-I	26.7	48.1	35.0	24.8	29.4	6.8	-		-	171
	CPI-2	62.2	116.3	44.0	11.6	1.3				Ĭ-	235
	CPI-3	97.8	272.0	104.9	25,3	11.7	1.2		-		513
Sub-Total		186.7	436.4	183.9	61.6	42.3	8.0				919
HAR	HAR-1	146.4	30.4			-		-			177
	HAR-2	164.5	2.3								167
	HAR-3	442,4	188.4	10.6	0.8						642
Sub-Total		753.3	221,1	10.6	0.8	•		-			986
LUD	LUD-1	180.2	31.9	-	-	-		-		-	212
	LUD-2	85,3	221.5	45.6	9.0	1.3		-	-		363
	LUD-3	36.8	95.9	22.2	6,9	2.3	-	-	-		164
Sub-Total		302.4	349.3	67.8	16.0	3.5	-				739
MD	MD-1	3.4		-		-	-	-	-	-	3
	MD-2	3.1	-	-		-	-	-			3
	MD-3	2.0	-	-			-	-			2
	MD-4	3.3	0.3			-		-			4
	MD-5	54.5	12.5			-	-	-		-	67
	MD-6	44.9	1.3	-		-	-				46
	MD-7	88.6	38.0	1.1		-	-	-			128
	MD-8	125.8	65,2	3.8	0.3	-	-	-			195
	MD-9	86.6	8.9	•			-	-			96
	MD-10	67.4	27.1	0.5			-	-			95
	MD-11	40.8	14.0	-	-		-			·	55
	MD-12	51.3	4.8			-			-		56
	MD-13	74.9	13.3		-	-	-				88
	MD-14	38.7	2.2			<u>-</u>				<u>-</u>	41
	MD-15	15.0				 					15
	MD-16	64.1	8.8					· .		:	73
	MD-17	80.2	35.3	3.5		 	-	-			119
	MD-18	39.5	2.8						·		42
	MD-19	309.6	83.0	1.8			ļ	l			394
	MD-20	27.7	9.1			<u> </u>					37
•	MD-21	71.5	3.6			├ <u>-</u>	<u> </u>	<u> </u>			75
Sub-Total	MID-21	1292.7	330.3	10.7	0.3	·					1634
MM1	MM1-1	19.3	330.3	10.1	0,3						19
WINT 1	MM1-2	315.1	16.5	4.8	3.0	0.3					340
	MM1-3	12.5	10.5	7.0	3.0	0.5					12
	MM1-4	22.3									22
	MM1-5	414.4	16.2								431
	MM1-6	43.2	10.2							<u>-</u>	- 43
	MMI-7	101.0	0.6			<u> </u>					102
ļ	MMI-8	33.9						<u> </u>			34
		157.2	42.5	28.9	18.3	4.0					251
	MM1-9	24.1	80.2	61.8	25.4	12,0	1.8	<u>-</u>			205
	MM1-10	29.9	9.5	0.8	23.4	12.0	1.0	ļ			40
	MM1-11	18.6	9.3		<u> </u>	 	ļ ⁻	 	L		19
Cub Tere!	MM1-12		1657	96.4	46.7	16.3	1.8	<u> </u>	i		1518
Sub-Totai	hara i	1191.5 89.3	165.4 9.5	0.3	40.7	10.3	1.0	 			99
MM2	MM2-1		9.5	U.3	ļ -					-	23
	MM2-2	23.3	110.1			ļ	ļ	ļ			393
	MM2-3	182.3	110.1	11.1	 	ļ		ļ <u>-</u>	<u>-</u>		293
	MM2-4	67.7		0.1		}	<u> </u>	ļ			153
	MM2-5	136.8	15.7		2.5	1.3	·	 			152
	MM2-6	86.7	40.8	20.5	2.3	1.3	 	 		-	2
	MM2-7	2.3		110	ļ		`			<u></u>	242
	MM2-8	196.1	34.6	11.0	ļ	ļ	-	ļ	<u>-</u>		117
	MM2-9	117.0	-		l:	1		<u>-</u>	ļ		88
	MM2-10	88.0		:		·		ļ			7
l .	MM2-11	6.7			ļ <u>.</u>		ļ <u>.</u>	<u> </u>		-	291
· ·	MM2-12	225.2	29.4	22.4	7.0	5.6	1.2	<u> </u>			
	MM2-13	104.8	0.9	* ***		ļ	ļ	ļ			106
	MM2-14	180.3	31.9	18.7	11.4	9.5	1.0	<u> </u>			253
t	MM2-15	80.0	-	ļ <u>.</u>		 	ļ	<u> </u>	-		80
l	MM2-16	9.4				 :	·	1 .		ļi	1993
Sub-Total		1596.1	272.8	84.2	20.9	16.4	2.2	_	1 -		199.

TABLE B.1.5 AREA OF SUB-BASIN CATEGORIZED WITH SLOPE OF DEGREE BY SUB-BASIN (2/2)

Main	Sub-				S	ope (Degree	2)				CONTERMA
Basin	Basin	0-3	3.8	8-12	12-15	15-20	20-25	25-30	30-35	35-40	Total
мм3	MM3-1	152.5	4.0					-		-	157
NA,WES	MM3-2	318.6	19.7	-							338
	MM3-3	123.5	1.6								125
	MM3-4	119,9	24.3	1.0							145
	MM3-5	44,7	0.3								45
	MM3-6	4.1	0.3								4
	MM3-7	36.4	3,4]	4.44.44.44.44						40
	MM3-8	5.0	0.9								6
	MM3-9	143.6	12.2			<u>_</u>					156
	MM3-10	193.1	73.9	16.0	2.1			<u>-</u>			285
				10.0	2.1					<u> </u>	
	MM3-11	56.2	2,0								58 217
	MM3-12	149,6	54.2	10.8	2.3	-			•		
Sub-Total		1347.2	196.8	27.7	4,4		-	<u>-</u>			1576
MUI	MU1-1	110.7	119.0	11.3	2.6	0.4					244
	MU1-2	51.2	20.9	29.3	11.6	5.8	0.8	:			119
	MU1-3	10.2	48.1	39.6	18.9	15.1	2.0	0.3			134
	MU1-4	6.5	13.6	8.1	3.8	3.8	0,3	-			36
	MU1-5	4.4	31.4	28.7	21.1	17,2	1,8	-	-		105
	MU1-6	1.9	12.0	10.9	2.9	1.3	-				29
	MU1-7	12.1	20.1	18.9	16.4	16.9	3.6	0.5			88
	MU1-8	4.6	1.2	-		-	-	•			6
	MU1-9	37,3	92.4	11.6	4.4	0.5	-			-	146
	MU1-10	53.1	92.3	50.4	35.2	23.0	10.2	1.5	•	-	266
Sub-Total		292.0	450.9	208.8	116.8	84.0	18.6	2.3	-	-	1173
MU2	MU2-1	70.8	0.4	0.0	-	-	-	-		-	71
	MU2-2	36.9		-				-	-	-1	37
	MU2-3	19.4	1.6			-	-	-	•	ii	21
	MU2-4	25.2	26.1	4.7		•	-		•		56
	MU2-5	85.6	60.7	28.8	11.6	9.3	0.5		-	-	197
	MU2-6	46.9	-	-	-	-	-	-	-	-	47
Sub-Total		284.8	88.7	33.6	11.6	9.3	0.5				429
PYA	PYA	224.6	129.2	46.5	12.0	5.8	1.3	-			419
Sub-Total		224.6	129.2	46.5	12.0	5,8	1.3	· · · · · · ·	-		419
SAZ	SAZ-1	103.6	5.4	· · · · ·	· · ·	- -	-	-	-		109
	SAZ-2	277.0	41.8	0.3	-	l	-	<u> </u>	-	-	319
	SAZ-3	641.6	11.4				_			-	653
	SAZ-4	436.2	3.5		-		-	ļ			440
	SAZ-5	29.3	0.2					· · · · · · ·		 	30
	SAZ-6	520.4	90.1	0.3	-	ļ	-	!	<u> </u>	-	611
	SAZ-7	751.6	373.0	30.2	1.5	<u>-</u>		<u> </u>	-	t <u>- </u>	1156
	SAZ-8	25.5	2,13.0	30.2		<u> </u>	ļ <u>-</u>				25
Sub-Total		2785.2	525.5	30.8	1,5	<u>-</u>	l				3343
STA	STA	68.9	156.6	92.8	27.5	20.0	0.3	 	<u> </u>	 	360
Sub-Total	lo 1 A	68.9	156.6	92.8	27.5	20.0	0.3	 		<u>-</u>	366
STR	STR-1	499.1	94.1	12.9	1.5	20.0	0.3	 	ļ	 	601
31K	STR-2	65.5	112.2	24.3	9.4	14.8	10.0	6.8	0.8	0.5	244
	STR-2	236.7	256.5	151.9	79.4	79.8	31.7	5.5	0.8	0.3	842
Sub-Total	1917.3	801.2	462.8	189.2	90.2	94.6	41.7	12.3	1.5	0.5	169
TOP	TOP						41.7	14.3	1.3	0.3	410
	TOP-1 TOP-2	176.0	193.6	35.4	4,4	0.8	ļ		ļ	ļ	669
	Landing Control	205.8	366.1	82.6	11.9	2.5	6.8		ļ	1	
	TOP-3	111.0	234.3	138.0	53.7	44.2	0.8		ļ		581 191
0.1.701	TOP-4	34.6	90.7	38.7	15.1	10,8	<u> </u>	·	ļ	ļi	
Sub-Total		527.3	884.7	294.7	85.2	58.3	6.8	ļ	· · · · · · · · · · · · · · · · · · ·		185
VAC	VAC-1	91.2	154.2	180.8	97.6	70.1	16.2	2.0	0.3	-	61
	VAC-2	10.6	83.0	85.3	37.7	18.1	2.4		`	1	23
	VAC-3	63.6	188.0	93.0	42.7	34.7	5.6	0.3	ļ		42
	VAC-4	101,6	216.1	59.7	19.9	12.9	1.8	L:			41
Sub-Total		266.9	641.3	418.8	197.9	135.8		2.3	0.3		168
Total		11996.0	5582.4	2094.3	873.8	612.5	133.3	19.0	2.0	0.5	2131

