
CHAPTER 16

WASTE COLLECTION WORKER SURVEY

16. WASTE COLLECTION WORKER SURVEY

16.1 Objectives

The objectives of the Waste Collection Worker Survey is to evaluate the present working and health conditions of waste collection workers.

16.2 Methodology

16.2.1 Interview Targets

The Waste Collection Worker Survey was conducted by interview survey with a total of 60 collection workers at the San Mateo landfill (15 interviewees), Payatas open dumpsite (30 interviewees) and Las Piñas Transfer station (15 interviewees)

16.2.2 Outlines of Questionnaire

The outline of the Questionnaire is as follows:

- intervice's data
- employer's data
- income
- health conditions
- general information

The Questionnaire sheet is attached in Chapter 7 in the Data Book.

16.3 Results

16.3.1 Introduction

The obtained data from the Recycling Opinion Survey are presented in Chapter 7 in the Data Book.

The Basurero or garbage collector survey had the objective of bringing to discussion the working conditions of these workers in Metro Manila, as well as getting the perception of these individuals on the systems and methods of solid waste management in the region.

The knowledge derived from this survey shall be used not only to guide the enhancement of the working conditions of the basureros but also to give inputs to the institutional and technical proposals to improve the present solid waste services provision.

16.3.2 Profile of the workers

Majority of the basureros in Metro Manila is married young persons: only 24% are single and 90% of the surveyed individuals belong to the 20-39 years age interval. Coherently, almost all the workers (92%) have 6 or fewer years working as garbage collectors.

About 40% of the respondent's work for public government, and the other 60% for private concerns, hired by government, all of them full time employees.

The salary perceived by the majority of the basureros is quite low: 53% get less than \$3.000 pisos per month, and this situation may explain why 71% of them also sell recyclable, in order to complement their earnings, on an average of \$150 pisos per day.

Of course, most of them (63%) are not satisfied with their income, which is not the sole source of family resources for 68% of the interviewed. Most common situation (78%) is the wife also bringing money to home.

16.3.3 Working relations and conditions

Most of the workers (63%) do not have any fringe benefits, but 73% reported that they have insurance for medical care and sick leave.

All the basureros are full time employees reporting 8 hours or more of work per day. The work is done usually without protective gear: only 15% use boots, 5% gloves and 8% masks.

About half of those interviewed work on collector trucks, and the other half on 10 or 6 wheeler open truck, most of then (95%) saying that the garbage truck they use is appropriate for their work.

The lack of protective gear and training is reflected in the rate of accidents among the workers: 1/3 of the interviewed reported suffering one or more accident in the last 12 months. When on illness or accident leave, only 46% said that they continued to receive their salary.

Only 7% have reported to be in a job-training seminar, while 98% of those that have been trained (73% of the total) said they had "on the job training"

16.3.4 Self perception of the work

Amazingly, all the respondents expressed their satisfaction with their garbage collection job, although 90% of them expressed the view that their job should be eased if there were more "public cooperation" and 68% would like to have a better salary.

About half of the basureros interviewed said that garbage collection could be improved with more and better collection trucks, and 86% believe that public participation would also help the overall efficiency of their task.

Public participation would mean, storing the refuse properly in the opinion of 61% of the respondents and presenting it timely for 49% (answers not exclusive)

Only 7% think that less garbage should be produced and 19% recommend that the refuse should be separated into wet and recyclable.

Most of them also think that the garbage collection activity in their LGU is good (39%) or fair (54%) and almost all say that the garbage truck is appropriate for the job.

Finally, 88% rate their job performance as good (80%) or excellent (8%)

16.3.5 Conclusion and recommendations

Job conditions of the basureros, these very important workers, should be enhanced in Metro Manila in order to support any service improvement program.

A basic procedure would be to raise their salary to a minimum acceptable so that they ought not segregate recyclable for selling and complement their wage.

Protective gear and training should also be provided, in order to reduce the rate of accidents they are subject and to increase their work efficiency.

Improvement of their relations with the community should also be envisaged, since they are the main linkage of the public service with the producers of the waste, and therefore those that could more easily instruct the people how to contribute to the enhancement of the present conditions of the solid waste management services.

CHAPTER 17

JUNK SHOP SURVEY

17. JUNK SHOP SURVEY

17.1 Objectives

The objective of the Junk Shop Survey is to study activities of junks shops and prices of recycled materials.

17.2 Methodology

17.2.1 Interview Targets

The Junk Shop Survey was conducted by telephone interview with junk shop owners/operators. Out of the selected 339 junk shops 84 junks shops were contacted and interviewed. However, several interviewees not cooperative, and did not diclose prices of recyclables etc.

Of the remaining 255 junk shops, 241 could not be reached because of wrong telephone number or telephone out of order, and the remaining could not be contacted due to other reasons.

17.2.2 Outlines of Questionnaire

The outline of the Questionnaire is as follows:

- Junk shop data
- Data on purchasing and sales of recyclables
- Prices for various kinds of recyclables

The Questionnaire sheet is attached in the end of this chapter.

17.3 Results

17.3.1 Introduction

The obtained data from the Junk Shop Survey are presented in Chapter 8 in the Data Book.

38 of the interviewed junk shops gave information related to the buying and selling price of different items (hereinafter referred to as Category A). An additional16 Junk shops gave only incomplete information without prices (hereinafter referred to as Category B).

17.3.2 Source of Recycled Items

The handled items are bought from collectors in around 70% of the responding junk shops in Category A, and in around 60% of the responding junk shops in Category B. In Category A, other important sources of recyclables are factories and plants (around 40%) and other junk shops (25%). In Category B, recyclables are bought from

17 - 1

factories and plants in around 20% of the responding junk shops, and from other junk shops in around 45% of the responding junk shops.

17.3.3 Buyers of recycled items

In both Category A and B, the buyers of recyclables are other junk shops and dealers in around 70-75% of the responding junk shops, and factories in around 45% of the responding junk shops.

17.3.4 Recycled Items

Many of the surveyed junk shops deal both with glass bottles of different kinds and glass cullets. Generally the volume of glass bottles handled is much larger than the volume of glass cullets.

Many of the surveyed junk shops deal with news paper, cartoon and copied paper. The volumes of news paper and cartoon are in same order of magnitude in Category A, while the volume of copied paper handled is smaller. In category B, one junk shop are handling large volumes of both news paper, cartoon and copied paper.

The handling of plastic bags made of polyethylene is very limited. The average prices given in the table below are therefore not reliable. A majority of the junk shops in Category A and some of the junk shops in category B, on the other hand, handle other plastic products made of polypropylene.

The metal most commonly handled by the junk shops is ferrous metal. However, some junk shops also handle relatively large volumes of aluminum and copper.

A summary of the volumes of different items handled and their prices are given in Table 1. The Selling Price refers to the price charged by collectors etc. when sold to the junk shop. The Buying Price refers to the price when dealers, factories etc. buy items from the junk shop. The mark-up refers to the increase in buying price over selling price and reflects the junk shops revenue on the different items.

From the large variations in volumes it is evident that most items are handled both by small junk shops dealing with many different kinds of items and large junk shops specializing in some items. Furthermore, it is likely that some of the junk shops handling large volumes are secondary dealers buying large amounts from other junks shops.

RECYCLED ITEM	VOLUME	SELLING PRICE	BUYING PRICE	REVENUE	MARK-UP
	kg	Pesos/kg	Pesos/kg	Pesos/kg	%
Glass Bottles	200 50,000	0.15 1.85	0.40 - 2.20	0.25 0.35	166 19
Glass Cullet	50 5,000	0.9	1.45	0.55	61
News Paper	20 300,000	1.1	1.6	0.5	45
Cartoon	335 700,000	0.45	0.8	0.35	78
Copied Paper	120 300,000	1.15	1.9	0.75	65
Plastic Bags	100 2,000	2.0	4.65	2.65	132
Other Plastics	4 20,000	4.9	6.25	1.35	28
Ferrous Metals	100 450,000	2.45	3.0	0.55	22
Aluminum	33 30,000	16.6	20.5	3.9	23
Copper	50 — 30,000	38	43	5	13
Lead	10-30,000	6.7	9.3	2.6	39

Table 17.1 Summary of Results from Junk Shop Survey

A common view of the interviewed junk shop owners is that imported scrap materials, especially paper and cartoon, reduce the market prices for these materials, and thereby cause big losses for the junk shop owners.

CHAPTER 18

COMPARISON OF WASTE REGULATIONS AND ORDINANCES IN METRO MANILA

18. COMPARISON OF WASTE REGULATIONS AND ORDINANCES IN METRO MANILA

Ordinances and regulations for handling of waste etc. exist both on a Metro Manila level and on a LGU level. A comparison of provisions in the MMDA Regulation and the LGU Ordinances is given in the attached tables.

In MMDA Regulation No. 96-009, implementing rules, regulations and guidelines are given for the handling of waste etc. The regulation is intended to be valid for all Metro Manila. The LGU Ordinances are intended to be valid only within the respective LGU.

As can be seen in the attached tables, the coverage and level of detail in the MMDA Regulation, which was enacted later than the LGU Ordinances, are generally much more extensive than in the LGU Ordinances. However, there are also examples where LGU Ordinances contain specifications or regulations not covered in the MMDA Regulation.

Valenznela	- 1	•				<u></u>	1		T			<u> </u>			T	T		Ţ	T						Т	•	Ī	•		8
Tagig							8			Ť	٠	•						ľ	~~	•										
San Juan		0									٠				Ť			8		•										
ViiO noseuO		۲	.	•							٠			(8			-		•					-	•				
Pateros						•					٠					•	•			•	••			[~	T					
Pasig				٠							٠				T					•										
Pasay		•									•	•			8		T			•					T			0	8	8
Paranaque		•													-												~ -			. –
SBJOVB N																										and Maria				
aquininum							8				۲							8		•										
Marikina								Course			٠								242 277 277											
alinaM						8					٠				8		ļ			•										
Mandaluyong		•						50 D.S			•	•																		
Malabon											•									•										
Makati		•									٠				8		Ĩ			۲									8	
ssni9 ssJ		•									۲															in i				
Calookan							8																		8					
Admm		۲	۲	۲	۲				۲	۲	۲	۲)						۲	۲	(•	0			\odot	◙		
			hour				mells				ediate		etc. or i								eparate			t						
		ings	ents at least on			eros abutting th	other offensive	語の理論を設いて		out for collection	ays etc. and im	rucks	' part of the roa		tion	incineration	aste disposal				t sweepings, in		72 hour period	r commercial establishment			waste collection services		collection	
		mediate surroundings	Requirement to clean frontages of residential and commercial establishments at least one hour	places		Requirement for property owners and residents to keep the portion of esteros abutting their	property clean Destinition of dork arrows more emission from vehicles and factories and other offensive smells		bstructions,		Prohibition of littering and dumping of waste etc. in public places, waterways etc. and immediate	thorized carbade trucks		íffic.	o degradable fraction	Requirement to dispose of waste at residence through sorting, burying or incineration	Requirement to launch an educational campaign in all schools on solid waste disposal	te			Requirement to dispose residential waste and yard waste, including street sweepings, in separate		Requirement for waste receptacles to contain garbage generated under a 72 hour period	2	afares				Requirement to register push carts used for garbage and recyclables col	
		Requirement to maintain cleanliness of frontage and immediate	Requirement to clean frontages of residential and commercial esta	Prohibition of Irination defecation and spitting in public places	places etc.	ients to keep	rom vehicles		Benuirement to keep roads etc. clear from all kinds of obstructio	Requirement to flatten and tie cardboard etc.before putting them	te etc. in publi	surroundings Bookhition to him out carbane etc. hefore arrival of authorized	debris, junk v	sidewalks which may impede vehicular or pedestrian traffic.	Requirement to sort waste in bio-degradable and non bio degrad	nce through s	ipaign in all s	Requirements for handling and disposal of medical waste	では、その日本学校で行	ste	and yard wast		ain garbage c	Prohibition to place garbage bins etc. in front of any residential o	Requirement to provide trash cans along major throughafares		Prohibition of unauthorized entering into a contract or offering of		or garbage an	llartion
	General Cleanliness and Sanitary Conditions	nliness of fro	w MMDA 1	tion and spi	Prohibition to display posters etc. in open places etc.	ers and resid	a amission f		c. clear from	cardboard e	ping of was	a etc. hefors	construction	rehicular or	vio-degradat	ste at reside	cational can	disposal of		Requirement to provide receptacles for waste	ential waste		acles to cont	ins etc. in fro	cans along r		tering into a	enging.	carts used fo	Desidations for time and place of waste collection
	ss and Sar	intain clean	an frontage	ion defeca	v posters e	perty own	arey emoke	Waste Handling and Disposal	p roads etc	en and tie	ig and dum	out certag	or dump c	v impede v	t waste in b	pose of was	nch an edu	andling and	のなどの読みる	vide recept	oose reside		iste recepta	garbage bi	vide trash (horized ent	Prohibition of all forms of scavenging.	ister push c	
NOISINOA	leanline	ant to mai	ent to clea	of urinati	to displa	ant for pro	property clean	ndling ar	ant to kee	ant to flatt	of litterin	surroundings	to place,	which ma	ent to sort	ent to disp	ent to laur	ants for h	Waste Receptacies	ant to pro-	ant to disp		ent for wa	to place	ent to pro-	Waste Collection	of unaut	of all for	int to reg	- to time
	. 16 '	n X	१४ रे	5 I S	18	181	<u></u> 519	- 6	ll č	١č	15	.⊑I \$	- I S	-	12	ı ۳	ı۳	١٣	l Õ	١Ĕ	١Ĕ	receptacle	ž	15	ц	9	15	18	۱Ĕ	11

and a second second

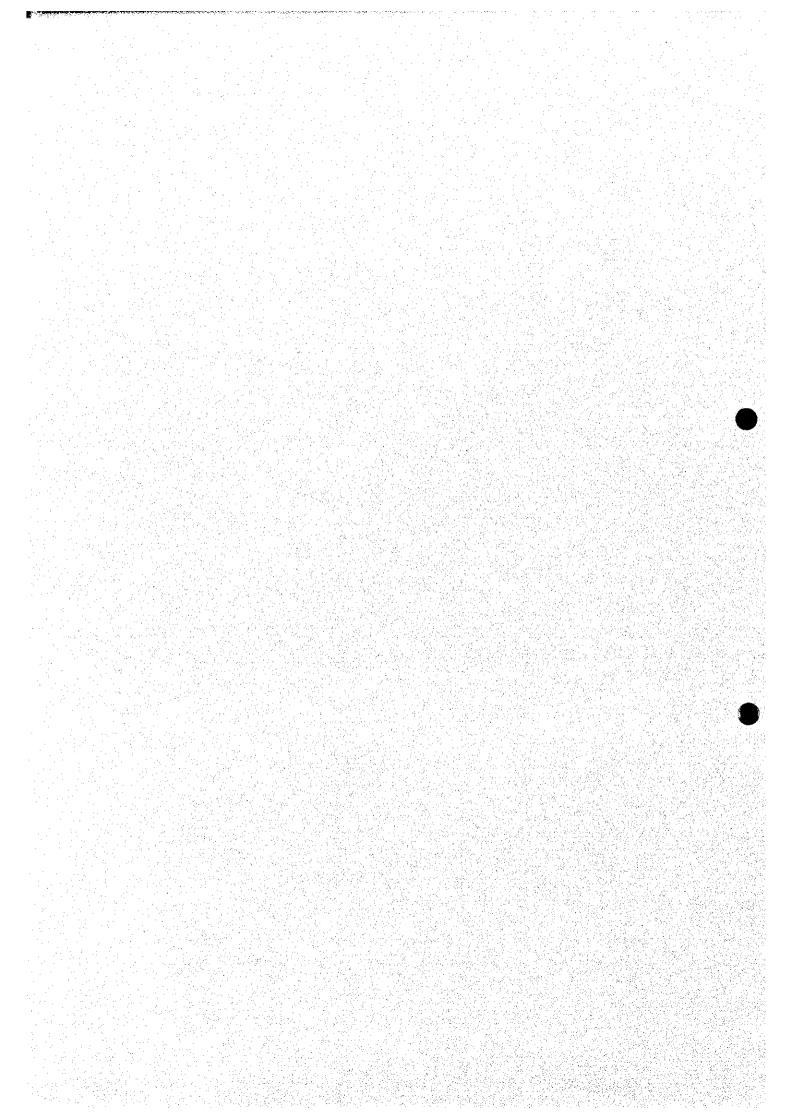
					· · · · · ·	<u>∮</u> [i ·		+		···-				•••••				····· • •	
រ្វីខេត្ត						1		~				_			-	•	•	C						-		
San Juan										•						-	0									
ViiO nozeuO	: • ••										_	_			_		•									
Pateros			•											_	_		•									
Pasig												_			: +:		0							_		
Pasay					.					•							•									
Paranaque														_		•	0						0			
Navotas			•			ļ											•			•						
Muntinlupa	3		_														0	-						_		
Marikina							. X			•				_			0	_								
BlinsM		•	•			ļ	1919 1919 1919	0									0									
BnotulsbnsM	3.5		•					0	٠	0		0		-			0							_		
Malabon					_	<u> </u>											•									·
Makati	6.9															•	•		>							
Las Pinas									ļ					8		٠	•	4_					0	4_		
Calookan						-		ļ	<u> </u>								•									
AGMM		۲	◉		۲	۲		۲	۲	۲	۲	•				۲	۲	(۲		۲	۲		•	•
NOISING	Cleaninese and Waste Disnosal on Public Utility Vehicles etc.	Decritement to maintain or this utility vehicles clean and sanitary	Requirement to provide sufficient number of waste receptacles in public vehicles	Waste Scattering from Transport Vehicles etc.	Requirement of commercial and transport vehicle operators etc. to provide adequate cover of their	load to prevent spiri, scatter etc. Prohibition of shill scatter or littering from commercial and transport vehicles of different kind.		Calls for creation of a separate environmental task group, under MMDA, to carry out regular inconstitute of strategic greas of Metro Manila	Inspections of strategic areas of more many more than a principle of the to organize and train their own environmental enforcers		Permit NGO's to participate in monitoring and enforcement after proper training	Provides guidelines for the conduct and time of inspection	Violation Receipts, payment of fines etc.	Deputizes elementary and high school students for apprehension of Ordinance violators		issuance of a environmental citation ticket to violators of the ordinance	Violators of the regulation are imposed fines of 500.00 to 1000.00 Pesos, and/or render either one	to three days community service or three to seven days imprisonment In case of failure to pay the fine, the violator might risk a fine of 2000.00 Pesos or from seven days	to one months imprisonment	In addition to environmental regulation violation penalities, an additional hauling tee of 200.00 managed and the penalisi for transport of illegally dumped bulky wastel factory/construction		In addition to environmental regulation violation penalties, an additional towing fee of 1500.00	Pesos has to be paid for transport of jurk verticles etc. Penalties may be imposed outright against the violator without the need to file a case in the court, if	the apprehending officer is from MMDA and in cases of deferred payment, the violator is		In case the violator fails or is unable to pay the fine or render the community service, the matter will be elevated to the Prosecutors Office

•

0

Valenzuela

Sienzuela							<i></i>	
							8	
San Juan Tagig	÷							~
Guezon City					.			8
Pateros Ouezon Citv								
Pateros								
Pasay						_	8	8
Paranaque							9	8
Navotas								-
ednjujunj	-							
Marikina		0		0				
Manila		•		•		8		
iuoAniepueM		0				-		
nodslaM		-						
Makati								
Las Pinas					8			
Calookan								
AGMM		۲	۲	0				
NOISION	Disposition of Fines	Specifies that collected fines should be distributed to the LGU where the violation was committed in case the apprehending officer is an LGU employee	If the apprehending officer is working for MMDA, the fines should be divided equally between MMDA and the LGU	Specifies that MMDA enforcement personnel shall receive 10% of all the fines collected by MMDA	Elementary or high school students making an apprehension are entitled to 25% of the fines	Specifies that part of the fines shall accrue to the Barangay where the apprehension was made	Specifies a division of collected fines between the City, the barangay and the apprehending team	Specifies that fines should be placed in a special fund


ere genne og som en en v

6

- Provision in MMDA Regulation
- Provision in LGU Ordinance corresponding to provision in MMDA regulation
- O Provision in LGU Ordinance with some similarity to provision in MMDA Regulation
- Provision in LGU Ordinance

CHAPTER 19

SITE VISITS AT PNR QUARRRIES IN THE PROVINCES OF QUEZON AND CAMARINES SUR

ITINERARY

June 5:

Car transport from Manila to Candelaria City, Quezon Province
Site visit at PNR Candelaria quarry
Car transport to Port Junction, Ragay City, Camarines Sur Province
Site visit at PNR Port Junction stock pile area
Car transport to Banga Caves, Ragay City
Site visit at PNR Banga Caves quarry
Car transport to Naga City, Camarines Sur

Overnight stay in Naga

June 6: Car transport from Naga to Iriga City Site visit at PNR Iriga quarry Car transport from Iriga to Manila

ATTENDANTS

Engr. Varquez, PNR (up to Lucena) Mr. Padua, PNR Ms. Millan, MMDA Mr. Syquimsiam, MMDA Mr. Byström, JICA Study Team

SUMMARY AND CONCLUSIONS

The site visits revealed that the four PNR sites in Quezon and Camarines Sur Provinces can not be utilized for development into landfills serving Metro Manila. The main reason is that the size of the sites, and the associated potential landfill volumes, are much too small to motivate the relatively large investments required for landfill development and systems for transport of waste from Manila to the sites.

The Iriga site is located just next to the municipal ground water pumping station, supplying water for Iriga City. Therefore, landfill operations can not be considered on this site.

It is preliminary believed, however, that landfills which could serve nearby communities possibly could be developed in Candelaria, and maybe also in Port Junction, should there be a need for additional landfill capacity in these communities.

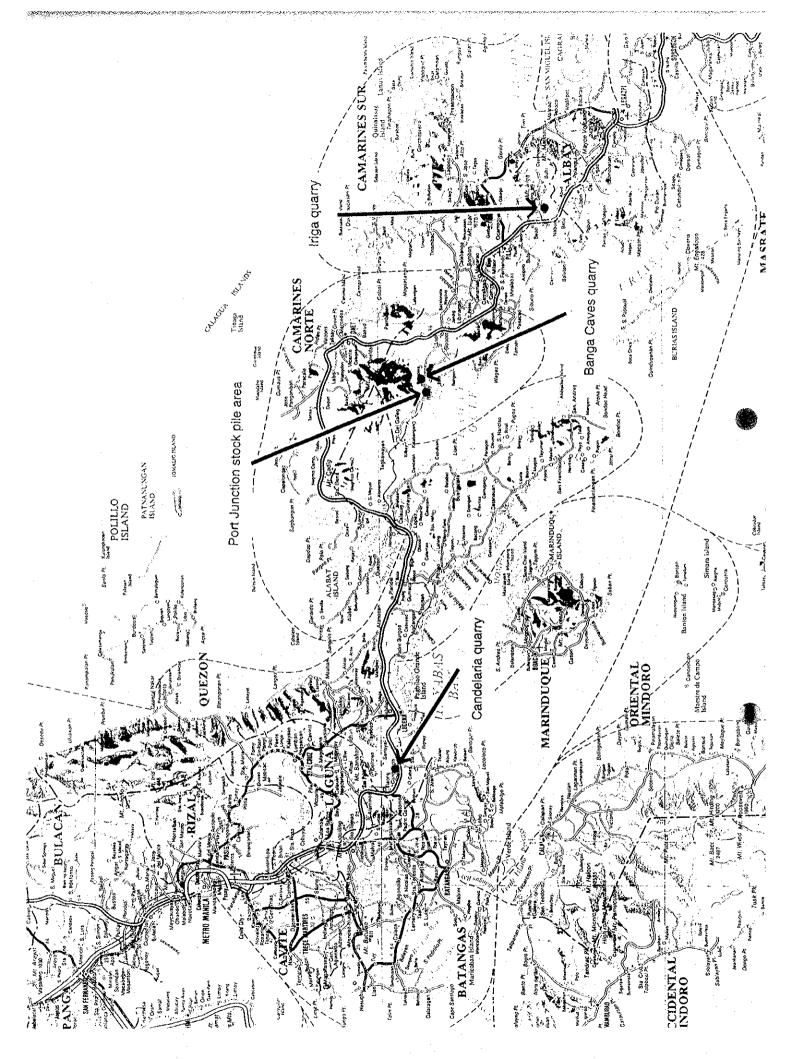


Figure 1

Location of the four PNR sites

DETAILED SITE DESCRIPTION

Candelaria

Quarry Operation. The Candelaria quarry was operated by PNR from the 60's to the early 1980's. Since then, the Provincial Government occasionally has taken material from the quarry after approval from the PNR General Manager. Furthermore, private contractors are illegally taking material from the quarry, even though PNR have tried to stop these activities. During the time of the site visit, crushing and sorting equipment belonging to a private contractor, was present in the quarry.

Location. The quarry is located in Barangay Malansiya in Candelaria City, around 100 km from Manila, and around 1.4 km from the main railway line from Manila to Legaspi. The track, which crosses the provincial road from Manila to Lucena, has been dismantled, and houses and shanties have been built along a large part of the former tracks (Pictures 1 and 3). Some of the houses are located on land leased by PNR, while the rest are illegal settlements. In many places the remaining path is only 2-2.5 m wide. A badly deteriorated, around 20 m long wooden railway bridge, is located along the path (Picture 2).

The site. The PNR lots where quarrying has been carried out totals around 10 ha. In addition, PNR own a 15 wide strip along the former railway track to the quarry from the main railway line. According to Mr. Varquez, PNR is now trying to sell their lots to the highest bidder to cover deficits in PNR pension funds.

The quarry. The quarrying operations have extracted volcanic cinder both above and below ground in the northern part of the site. Around a third of the PNR lots (3 ha) has been excavated down to 10-15 m below surrounding ground level. The remaining southern portion is hilly (Picture 5).

During the site visit, water was found in four different parts of the quarry. According to a nearby resident, the water is visible also during dry periods, which indicates that the water is surfacing groundwater.

The surrounding. The quarry is surrounded by rice fields in the North and West. In the South the quarry is bounded by the remaining hill, and in the East by shanties. 2-3 shanties are present inside the quarry, and an additional 20-30 shanties are built on the border of the quarry.

Landfill development potential. The possibility to develop a landfill in the quarry exists. However, the estimated available total landfill volume of around 500,000 m³ in the quarry is too small to motivate the investments associated with transport of waste from Metro Manila. The costs will include loading facilities in Manila, special trains and waste containers etc., new tracks to the quarry (by PNR estimated at1,600,000 P/km), construction of a new railway bridge, compensations to residents living on, and along the former tracks to the quarry, compensations to squatters in and around the site and construction of a manned railway crossing at the provincial road from Manila to Lucena.

19 - 3

<u>Iriga</u>

Quarry operation. The Iriga quarry is one of PNR's original quarries which has been operated from the 30's until the early 80's. Last year quarrying operations were resumed by the Australian contractor John Holland which has been contracted by PNR to rehabilitate tracks on the main railway line from Lucena to Legaspi.

Location. The quarry is located In Barangay San Isidro in Iriga City, around 450 km from Manila, and around 200 m from the main railway line. The track, which still remains, are presently utilized by the contractor John Holland.

The Site. The PNR lots, where quarrying has been carried out, are totally around 5-6 ha. However, five lots of totally around 2 ha, have been sold to private persons.

The quarry. The quarrying operations have extracted both volcanic cinder and hard rocks. Around half of the original PNR lot has been excavated. The remaining southern portion is hilly (Picture 6).

The surrounding. A municipal ground water pumping station, incorporating a spring, and retention ponds, which according to PNR is the single water supply for Iriga City, is located 50 m NW of the site.

Landfill development potential. Considering the proximity to the ground water pumping station, and the limited area available, the quarry can not be regarded as an alternative for development into a landfill serving Metro Manila.

Ragay - Banga Caves

Quarry operation. The Banga quarry is a small quarry that was operated only a couple of years from the late 70's to early 80's. The quarry supplied crushed hard rock, a material that was disliked by PNR engineers.

Location. The quarry is located in Banga Caves in Ragay City, around 340 km from Manila, and next to the main railway line.

The Site. The PNR lots where quarrying has been carried out are totally around 4-5 ha.

The quarry. Only approximately 1 ha of the original PNR lots, has been excavated down to surrounding ground level. Today, rice fields cover the excavated parts. The remaining portion of the lots is partly hilly (Picture 7).

The surrounding. The quarried area is surrounded by rice fields and hilly terrain. In the East, the site is bounded by the railway.

Landfill development potential. Considering the very small area available, the former quarry site can not be regarded as an alternative for development into a landfill serving Metro Manila.

Ragay - Port Junction

The Sites. Port Junction consists of two PNR lots. One lot, around 9 ha, is located next to the Ragay Bay, around 3 kilometers from the main railway line from Manila to Legaspi. It was used as an unloading and stockpile area during the earlier part of this century when the railway was built. The tracks to this site has been dismantled.

The second lot is around 6 ha, and is located next to the main railway line. It is a stock pile area that was used from 1983-84 to 1992 by the Australian Contractor John Holland, who used to crush and store material transported from the Pacolago river on the site (Picture 8).

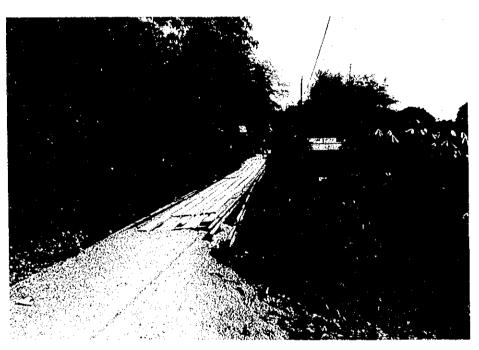
Location. The Port Junction sites are located in Ragay City, around 310 km from Manila.

The surrounding. The 9 ha site at Ragay Bay could not be visited due to inferior road conditions. The main part of the 6 ha former stock pile area next to the main railway line has been transformed to rice fields. The site is surrounded by coconut plantations. In the East, the area is bounded by a house and the railway.


Landfill development potential. Considering the small area available, the former stock pile areas in Port Junction can not be regarded as an alternative for development into a landfill serving Metro Manila.

<u>Pili</u>

In Pili, private landowners donated the land where the main railway line is located. On the neighbouring 2.5 ha lot, quarrying for ballast material, and subsequently also for other purposes was carried out. The lot is elongated and stretches along the tracks for around 3 km. The lot is owned by Consuelo L. Vda de Prieto. Behind this lot there are a number of small privately owned lots where quarrying presently is carried out.


Since the Pili quarry is privately owned, and furthermore the layout of the lot is unfavourable for development into a landfill, no site visit was carried out at the Pili quarry.

19 - 5

Picture 1

View along former tracks to Candelaria quarry

Picture 2

Deteriorating wooden railway bridge along former tracks to Candelaria quarry

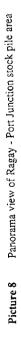
Picture 3

View along the former tracks to Candelaria quarry. The Quarry can be seen in the background of the picture.

Picture 4

View of the Masosu groundwater pumping station supplying water for Iriga City. The PNR Iriga quarry can be seen in the background of the picture..

Picture 5 Panorama view of Candelaria quarry



Panorama view of Iriga quarry Picture 6

Picture 7 Panorama view of Ragay - Banga Caves quarry

Z.

CHAPTER 20 FORECAST OF FINAL DISPOSAL AMOUNT

		_	(ton/day)	(ton/day)	(ton/day)	(ton/dzy)	(ton/day)	(ton/day)	(ton/day)	(ton/day)	(ton/day)	(ton/day)	(ton/day)	(ton/day)	(toa/day)	(ton/day)	(ton/day)	(ton/dav)	(ton/dav)	'환
Manila	Disposal Waste Inland DWA	729.00	742.33	755.67	769.00	799.64	830.29	860.93 860.93	891.58	422.22	469.37	516.52	563.67	610.82	39.32	62.48	86.10	110.20	134.77	1
	incinerated WA Sea DWA									500.00 75.00	75.00	75.00	500.00	75.00	167.80	1.118.05	1,118,05	167.80	167.80	
Quezon	Disposal Waste Inland DWA	756.00	819.33 819.33	882.67 882.67	946.00 946.00	1,022.64	1,099,29	1,175,93	1,252,58 1,252,58	1,329.22	1,408.55 1,408.55	1,487.89	1,567,22	1,646.56	1,725,89	1,760.41 912.84	1,795.62 948.05	983.96	1,020.59	
	incinerated WA									0.00 0.00	880	0.0 0.0	880	880	847.57	847.57	847.57 127.14	847.57	847.57	~~~
Caloocan	Disposal Waste	159.00	176.33	193.67	00112	168.80	126.60	84.40 84.40	42.20	368.93 368.93	418.07	467.21	516.36	565.50 565.50	614.64	626.93	639.47 356.22	652.26 369.01	663.31 382.06	ojn I
	incinerated WA		cc.0/1	10,021	A0.1 14	00.001	A01071	5	<u>A</u>	00.0	00.0	0.00	0.00	0.0	283.25	283.25	283.25	283.25	283.25	~
Navotas	Sea DWA Disposal Waste	39.00	42.00	45.00	48.00	38,40	28.80	19.20	9.60	74.98	83.72	92.47	TOLEY	36.601	118.70	121.07	123.50	16 521	128.48	
	Inland DWA	39.00	42.00	45.00	48.00	38.40	28.80	19.20	9.60	74.98	83.72 0.00	92.47 0.00	101.21	109.96 0.00	0.00	0.00	0.00	0.00	0.00	~
	SeaDWA								× * *	00.0	00.0	00.0	00.0	800	00.0	0.00	00.0	00.0	00.00	ſ
Valenzueia	Utsposal Waste	148.00	164.33	180,67	00.761	157.60	18.20	78.80	39,40	275.64	299.25	322.86	346.46	370.07	393.68	401.55	409.58	417.78	426.13	
	incinerated WA									0000	0.00	00.00	000	88	0.00	880	0000	000	0.00	
6 Malabon	Disposal Waste	95.00	104.00	00.611	122.00	03.79	73,20	48.80	24.40	06.681	199.46	215.01	230.57	246.12	261.68	206.91	272.25	277.70	283.25	
	Intand DWA	00.56	3.4	00.011	122,00	N97/6	15.20	48.80	74.47	0.00	0:00	00.0	00.0	00'0	00:00	0.0	0.00	0.00	00.0	
	Sea DWA						2-75			0.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.0	0.00	1
Marikina	Unsposal Waste	83.00	89.67	96.33	103.00	113.87	124.75	135.62	146.50	157.37	180.28	203.20	226.11	249.03	271.94	277.38	282.93	288 58	294.36	Soc
	Incinerated WA									0.00	0.00	0.00	0.00	0.0	0.00	0.0	800	880	8.0	ĺ
Pasig	Disposal Waste	271,00	294.67	318.33	342.00	363.96	389.93	413.89	437,86	461.82	484.68	507.54	530.41	553.27	576.13	587.65	599.41	65 119	623.62	536
	Inland DWA	271.00	294.67	318.33	342.00	365,96	389,93	413.89	437.86	461.82	484.68	507.54	530.41	553.27	576.13	587.65	599.41	61139 0.00	623.62	
	Sea DWA									800	000	380	000	0.00	0.00	0000	0.00	0.00	0.001	
Pateros	Disposal Waste	17.00	18.00	00'61	20.00	21.41	22.81	24.22	23.62	27.03	28.65	30.27	31.89	33.51	35.13	35.83	36.55	37.28	38.03	
	Inland DWA	17.00	18.00	19.00	20'02	21.41	13.22	24.22	70.07	27.03	23.00 0 00	00.0	0.00	1000	0.00	00.0	000	00.0	00.0	
	Sea DWA									0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:0	0.00	00.0	
10 San Juan	Disposal Waste	52.00	54.00 54.00	56.00 26.00	58.00	61.99	65.98 65.08	86.69	73.97	77.96	82.51 80.51	87.05 87.05	09.16	% 14 % 14	100.69	102.70	104.76	106.85	08.99	
	incinerated WA									0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	00.00	
	Sea DWA	84.00	04.67	14.2		74.43		127.70	76.65	0.00	0.00	0.00	00.00	0.00	0.0	88	0.00	800	0.00	
11 taguig	Inland DWA	81.00	94,67	55.201 55.233	116.00	130.76	145.33	160.29	175.06	189.82	217.97	246.13	274.28	302.44	330.59	337.20	343.95	350.82	357.84	36
	incinerated WA									0.00	800	0.00	0.00	0.00	0.0	0000	00.00	0.00	0.00	
12 Makati	Disposal Waste	462,00	484.33	506,67	529.00	549.96	570.93	591.89	612.86	635.82	652.96	672.10	691.25	710.39	729.53	744.12	759.00	774.18	789.67	
	Inland DWA	462.00	484.33	506,67	529.00	549.96	570.93	591.89	612.86	633.82	652.96	672.10	691.25	710.39	729.53	744.12	759.00	774 18	789.67	8
	Sea DWA									0.00	800	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	
Pasay	Disposal Waste	279.00	295.67	312.33	329.00	345.21 345.21	361.43 361.43	377.64	393.86 393.86	410.07	425.02	439.97	454.91	469.86	484.81	494.51	504.40 504.40	514.48	524.77 524.77	
	incinerated WA	~~~~~								0.00	0.00	00:0	0.00	0.00	00.0	00.0	00.0	0.00	0.00	
	Sea DWA		1.2.2.2	1 55 285	0.000	20.92		4 2 2 0	100	0.0	0.00	0.00	000	00.0	100.0	0.00	0.00	0.00	00.0	
14 Insummups	Inland DWA	215.00	250.67	286.33	322.00	359.96	397.92	435.88	473.84	511.80	556.02	600.24	6445	688.67	732.89	747.55	762.50	777 75	795.30	8
	incinerated WA									88	000	90'0 0'0	0.0	0.00	0.00	0.0	0.00	0.00	00.0	1
15 Mandaluyong	Disposal Waste	178.00	188.33	19861	209.00	218,93	228,87	238,80	248.74	258.67	267.46	276.24	285.03	293.81	302.60	308.65	314.83	321.12	327.54	
	Inland DWA	178.00	188.33	198.67	209.00	218.93	228.87	238.80	248.74	258.67	267.46	276.24	285.03	293.81	302.60	508.05	514.85	21.12	HC 175	ļ
	Sea DWA									00:00	0.00	800	0.00	0.00	0.00	0.00	00.0	000	0.00	
16 Paranaque	Disposal Waste	129.00	141.33	153.67	166.00	182.02	198.04	214.05	230.07	246.09	265.41	284.72	304 04	323.35	342.67	349.52	356.51	303.64	370.92	
	Inland DWA	00.621	141.33	10,501	00.00	70.781	196.04	CU.412	10.067	0.00	0.00	0.00	0.00	0.00	342.67	342.67	342.67	342.67	342.67	ļ
	Sea DWA									0.00	0.0	0.00	0.00	0.00	51.40	51.40	51.40 {	51.40	51.40	
Las Pinas	Disposal Waste	204.00	231.67	259.33	287.00	309.70	332.40	355.09	377.79	400.49	427.50	454.52	481 53	508.55 508.55	535.56	546.27	557,20	568.34 160.48	171.85	1
	incinerated WA									0.00	00.0	00'0	00.0	00'0	407.86	407.86	407,86	407.86	407.86	
Lotal Lotal	Sea DWA	1 00 00	1012	4 482 67	4.774.00	4 942 48	\$114.95	5.285.43	5.455.90	6.529.83	0.00	403.94	7.840.99	8.278.05.1	8 15 10	8 883 40 1	9 09 19	9.248.53	9433501	þ
	Infand DWA	3 900 00	4,191.33	14	4,774,00	4,944,48	5,114.95	5,285,43	5,455,90	6,029,83	6,466,88	6,903.94	7 340 99	7,778,05	5,715,10	5,889,40	6.067.19	6,248,53	6,433,50	6.623
	Incinerated WA	0.00	0.00	0.00	0.00	0.00	0.0	0.0	88	500.00	500.00	500.00	500.00	500.00	3,000.00	3,000.00	3,000.00	3,000.00	3,000.00	0.0
oming Waste	37	3,000	4,191	4,483	4.774	4,944	5,115	5,285	5,456	6.030	6,467	6,904	7,341	1778	5,715	5,889	6,067	6.249	6,434	
-qo-	(m3/dav)	14,640	15,733	16,827	17,920	18,560	19,200	19,840	20,480	22,634	24,275	25,916	27,556	29,197	21,453	22,107	27.75	25,455	24,150	<u></u>
rposal Waste		4,8/2	786	841	508 268	426	656	166	1.023			204	1.376	458	1.072		1.138	1.1.1	1202	
INC STREET			S	110																ļ

. . ..

	free/reer			(ton/vear)	(ton/vear)	(ton/vear)	(ton/year)	(ton/year)	(ton/year)	(ton/year)	(ton/year)	(ton/year)		(ton/year)	(ton/year)	(IODVCAT)	(IOR/VCAL)	(100/VC21)	(ton/vear)
oosal Waste	266,085	270,952	275.818	280,685	291,870 291,870	303,055	314,240 314,240	325,425 325,425	336,610 154,110	353,820	371,030 188,530	388,240 205,740			22 805	439,734 31,427	40.222	49, 192	58,342
Inland DWA Incinerated WA	0 007			0	00	00	00	00	182,500 27,375	i 82,500 27,375	182,500 27,375	182,500 27,375		1 i i		408,307 61,246	408,307 61,246	408,307	408.307 61.246
Sea DWA Disposal Waste Inland DWA	275,940	0 299,057 299,057	322,175	345,290	373,265 373,265	401,240	429,215	457,190	485,165 485,165	514,122 514,122	543.079 543.079	572,036 572,036	600,99 600,99	320	642 549 333 186	246,037	559,145 359,145	681.878 372.515	695,516 386,152 200,353
incinerated WA			0		00	00	0	00	00	00	00	0 0		309,365	46,404		46,404	46.404	16,404
Disposal Waste	58,035 58,035	64,362 64,362	70,688	210.77	61,612 61,612	46,209 46,209	30,806 30,806	15,403 15,403	134,659	152,596	170,533	188,470 188,470	206,407	224,344 120,957	125,444		134,689	139,450	144,307
incinerated WA Sea DWA	00				00	00	00	0 0	000	00	0	0 0 70	0	15.508	15,508	15,508	15.508	15,508	15.508
Disposal Waste Inland DWA	14,235	15,330	16,425	17,52	14,016 14,016	10,512	7,008	3,504	27,368	90,559	33,751	36,942	40,134	43,326	44,192	45.076	45,977	46,897	47,835
incinerated WA Sea DWA					00	00	00	00	00	0	0	0	0.0		142 247	0	0	0	0 148 649
Disposal Waste Inland DWA	54,020 54,020	59.982 59.982	65,943 65,943	506.12	57,524 57,524	43,143 43,143	28,762 28,762	14,381 14,381	100,609	109.226	117,842	126,459	0/0.cc1 0/0.cc1 0	145,693	146,567	0 367'611	152,488	155,538	158,649
nerated WA DWA	00			0	0 0	0 0	00	0 0	0		0	0	0000		0 473	0 0 277	0 01	0	105.454
Disposal Waste Inland DWA	34,675 34,675 54,675	37.960 37.960 0	41,245 41,245 0	44,530 44,530	35.624 35,624 0	26,718 26,718 0	17,812 17,812 D	8,906 8,906	67, 124 67, 124 0	72,801	78,479	84,157 0	0 89,835 0		97,423 0	99.372 0	0,359	103,387	105,454
Incinerated WA Sea DWA Disposal Waste	30,295	32.72	35,16	37,595	0 41,564	45,533	0 49,502	0 -53,471	0 57,440	0 65.804	74,167	82,531 82,531	90,894	0 99,258 00.758	0 101,243 101 743	0 103,268	0 105,333	107,440	0 109.589 109.589
Inland DWA Incinerated WA	30,295			37,595	41,564	45,533	49,502 0	53,471	044/2	00,804	/4, Io/ 0	0	000		0	0	00	00	00
Sea DWA Disposal Waste	98,915	0 107,553	0 116,192	124,830	133,577	142,324	120,121	159,817	0 168,564 168,564	176,909	185,254	193,598	201,943	210,287	214,493 214,493	218,783 218,783	223,159 223,159	227,622	232,174
Ind DWA	016'86	11	0	0	0	0	0 0	0	00	0	0	00	00				0	00	00
posal Waste	6,205	6.570 6.570	6,935	7,300	7,813	8.326 8.326	8,840 8,840	9,353	9,866 9,866	10,457	11,049	11,640	12,231	12,82	13,07	76°51 76°51	13,607	13,879	14,157
nerated WA	0	\downarrow	0	00	0	00	00	00	00	00	00	00	00				c o	00	00
Disposal Waste	18,980	19.710	20,440	21,170	22,627 22,627	24,084	25,541 25,541	26,998 26,998	28,455 28,455	30,115	31,774 31,774	33,433 33,433	35,093 35,093	36,75	37,48	38,237	100'65	39,781	40,577
nerated WA	00		00	00	00	00	00	0	00	0	00	00	00		00			200	
Disposal Waste Inland DWA	30,660 30,660	34,553 34,553 0	38,447 38,447 0	42,340 42,340 0	47,729 47,729 0	53,118 53,118 0	58,507 58,507 0	63,895 63,895 0	69,284 69,284 0	79,561	89,837 89,837 0	100,113 100,113 0	0 110.389	120,665	0 0 0 0 0 0 0 0	125,54	128,051	130,612	155,224
Disposal Waste	0 0 168,630	176.78	184,93	0 0	0 200,737	208.389	216,041	223,692	0 231,344 231,344	156,352 166,352 0	0 245,318 245,318	252,305	0 259.252 740.747	0 266,278 766,278	0 271,604 271,604	0 277,036 277,036	0 282,577 282,577	288,228	293,993 293,993
Incinerated WA Sca DWA	168,630			0	0	0	0	0	0	00	00	00	0				0 0 0	0 0 0	0.0
posal Waste nd DWA	101,835	816,701	114,002 114,002 0	120,085	126,003	131,921 131,921 0	137,839	143,757 143,757 0	149,676 149,676 0	155,132	160,588	100,044	0051171	0 0 0	180,495	184,105	187,787	191, 542 0	195.373
Sea DWA	78.475		104512	5/11	0	145.241	0 0 0 0 0 0 0 0	172,952	0	202,947	0 219,086	235,226	0 251,365		272,855	0 : 278,312	0 283,878	289,556	295,547
Incinerated WA	78,475	91,493	104,512		131,385	145,241	0 960'651	172,952 0 2	186,807 0 0	202,947	219,086 0	235,226	251,365	267,505 0	272,855		285,878	0000.482	/#5'567 0 0
Sca DWA Disposal Waste	0 64,970	0 68,742	0 72,513 72,513	76,285	110,07	83.537	87,163 87,163	90,789 90,789	94,415 94,415	97,621 97,621	100,828	104,035	107,242	110,449	112,658	114,911	117,209	119.554	121,945
Incinerated WA			0	0	00	00	00	00	00	00	00	00	00		L		0	00	00
Disposal Waste	47,085	51.587 51.587	56,088 56,088	60,590 60,590	66,437 66,437	72,283	78,130	83,976 83,976	89,823 89,823	96,873 96,873	103,924	110,974	118,024				132,730	135,385	138,092
incinerated WA Sea DWA				00	00	00	00	00	0 0	0 0 4	00	0 0	000		┉┿╍╋╸	192,81	670,621 18,761	192 81	18.76
Disposal Waste Infand DWA	74,460	84,558 84,558 0	94,657 94,657	104,755 104,755	113,040 113,040	121,325	129,609	137,894	146,179	950,021 0 0	105.899	175,759	185,619	46,611			58,575	62,724 148,869	66,956 148,869
Sea DWA Disposal Waste	1,423,500	0 1,529,837	0 1.636,173	0	0 1,804,734		0 181,929,181	0 1,991,405	0 2,383,388	2,542,91	0 2,702,437	2,861,962	3,02		22,330 3,244,632	22,330 3,309,524	22,330 3,373,715 3,375,715	22.330 3,443,229 3,448,229	22,330 3,512,094 2,417,094
and DWA	1,423,500		ł	1,742,510	1,804,734	1,866,957	1,929,181		2,200,888		166,616,2	2,019,404		4	. ł.				100,200

20 - 2

	Acumulated Disposal Amount of Inland Landfill
	280 1818 226 217 280 682 1
	032 759,717 1,051,587
	m3 254,017 598,790 949,646
	ton/year 224,293 322,173 345,290 373,265
	100 224,293 546,466 891,750 1,205,021 1
	m3 322,420 785,545 1.281,899 1.818,468 2
	100/year 48.271 70.688 77,015 61,612
	m3 60,539 148,699 244,968 321,983
	m5 69,390 171,004 281,713 370,281
	010/24 102.71 102.40 10.450 10.450 10.450 10.450 10.450
	m3 14.372 34.903 56.803 74.323
	m3 16.528 40.139 65.324 85.472
	ton/year 44.986 65.943 71.905 57.524
	ton 44,986 110,950 182,855 240,559
	1315 202 1 203 034 1 130 051 1 207 05 1 207 051 201 1 202
	indiver 28.470 - 17.245 - 44.530 - 35.624
	100 100 100 100 100 100 100 100 100 100
30.0444 30.211 30.611 30.610 30.611	m3 35 588 87,144 142,806 187,336
	m 1 40 926 100 215 164 227 215 437 1
$ \begin{array}{ $	ton/vear 24.546 35.162 37.595 41.564
	101 24 546 59 708 97,303 138,867 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	m3 30.683 74.655 121.629 173.584
	m3 55,285 85,830 139,873 199,621
(1) (1) <td>ton/vear 1 80.665 1 16.192 1 124.830 133.577 1</td>	ton/vear 1 80.665 1 16.192 1 124.830 133.577 1
	100 80 665 196.857 321.687 455.264
(1) (1) <td></td>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	indicate 1 200 1 200 1 7 200 7 2 8 3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
(5535) (5535) (5735) (5735) (5735) (5735) (5735) (5737)<	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Wey Wey <td></td>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m3 184.0/ 184.0/ 44.029 44.029 184.029 184.029
XXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	160°011 +00°19 200°00 100717 1 1 500
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1011/9281 20,910 36,441 44,240 41,127
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TO 100 100 100 100 100 100 100 100 100 10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100/year 102,000 104,901 104,900 200
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/1,200 003,600 996,899 036,400 036,400
117.155 117.150 <t< td=""><td>m3 1 190,593 456,434 1 733,994 1</td></t<>	m3 1 190,593 456,434 1 733,994 1
N0.10 State State <th< td=""><td>ton/year 80,939 114,002 120,085 126,003</td></th<>	ton/year 80,939 114,002 120,085 126,003
1833 (ab) 1033 (35) 1031 (35) <t< td=""><td>ton 80,939 194,940 315,025 441,029</td></t<>	ton 80,939 194,940 315,025 441,029
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	m3 101,173 243,676 393,782
193066 172,393 166,607 2.20,347 2.51,256 2.21,355 2.23,356 2.24,356 2.26,366 2.26,356 <th< td=""><td>m3 116.349 280.227 452.849 633.979</td></th<>	m3 116.349 280.227 452.849 633.979
775(384 589(316 1.066(14) 1.266(05) 1.561(15) 2.467(16) 2.365(16) 3.107(16) 4.105(16) 4.	ton/vear 1 68.620 1 104.512 1 117.530
With With <thwith< th=""> With With <thw< td=""><td>200 KG 400 173 130 700 KG 400 400</td></thw<></thwith<>	200 KG 400 173 130 700 KG 400 400
(add (17) (1267)(95) (1267)(15) (1264)(17) (1264)(12) (1264)(17) (1264)(1	
WT151 WT154 WT154 <th< td=""><td></td></th<>	
36,163 37,175 36,163 37,175 36,163 37,175 36,115 1,11,255<	m.s 95,041 248,577 417,520
43.065 51.173 50.108 73.173 50.0108 71.271 50.011 70.0112 <th70.0112< th=""> <th70.0112< th=""> <th70.0112< td=""><td>ton/year 51,556 72,513 76,285 79,911</td></th70.0112<></th70.0112<></th70.0112<>	ton/year 51,556 72,513 76,285 79,911
66.706 67.119 716.711 716.711 716.712 <th716.712< th=""> <th716.712< th=""> <th716< td=""><td>ton 51,556 124,070 200,555 280,265</td></th716<></th716.712<></th716.712<>	ton 51,556 124,070 200,555 280,265
(662) 778/71 914.402 105.823 119.976 124.914 130.024 1	m3 64,445 1 155,087 250,443
37,110 25,976 36,371 37,371 36,373 36,320 36,371 37,371 36,373 36,373 36,373 36,373 36,373 36,373 36,373 36,373 37,353 36,373 37,353 36,373 37,353 37,373 37,353<	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
372.18 456.196 56.07 57.05 76.315 986.305 10.337 10.332 10.337 10.332 10.337 10.335<	
1 1	tortycar 38,690 36,088 60,390 60,437 7
56.271 570.253 660.501 800.611 993.517 1077.254 1.210.765 1.229.260 1.239.260 1.238.740 1.239.145 1.231.264 1.231.264 1.231.264 1.231.264 1.231.265 1.231.266 1.231.265 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 1.231.266 2.231.266 1.231.266 2.231.266<	[on] 38.690 94.778 155.368 221.805 294
93:066 63:779 764:89 261:10 200 1400 790 1400 790 1400 790 1400 790 1400 790 1400 790 1400 790 1400 790 1400 790 1400 790 1400 790 7000 1400 780 7.233 1201 120	
755.000 117.55 157.15 157.5<	
Color Color <th< td=""><td>m3 55.617 136,244 223,342 318,845 42</td></th<>	m3 55.617 136,244 223,342 318,845 42
055.064 746.058 10377 1060516 1406.158 1406.158 1406.158 1407.152 1407.152 1407.152 1407.152 1507.152 1	ton/vear 63.419 94.657 104.755
783.365 958.873 1,138.366 1333.467 1,460.718 1,960.742 2.051.005 2.114,155 2.182.260 2.263.500 2.033.515 10.301 1.009.254 1.009.366 1.333.667 1.373.175 2.034.825 2.321.653 2.341.278 2.369.643 2.464.002 2.644.147.6176 2.646.012 2.649.612	
Willington Willington Willington Willington Zentifier Zentifier <thzentifier< th=""> <thzentifier< th=""></thzentifier<></thzentifier<>	
1 201 (10) 1019-10-2 100 938 1 200 10 21/10/217 2 200 482 1 258 10 2 10 20 10 20 2 20 20 2 2 2 2 2 2 2	m3 [/9,273 [197,394] 3.28.
2.245.247 12.245.259 12.05.248 12.245.2452 12.557.542 12.555.57 12.555.542 12.555.57 12.555.542 12.555.57 12.555.54 12.555.54 12.555.54 12.555.555.555.555.555.555.555.555.555.5	m3 [91,164 227,233 377,819 540,313
0.126.033 [12.18.338 [4.2.19.226 [6.679.639 [19.199.576 21.579.038 [24.718.025] 26.504.057 26.935.668 [31.168.191 53.448.908 [35.797.13 58 2658.667 [15.147.923 [17.899.033 20.905.549 29.999.476 27.538.798 [36.897.531 [35.500.646 [36.192.085 38.960.24] [41.341.124 [47.345.21] 47 4557.467 [17.420.111 [20.583.588 [23.996.961 [27.599.391 [31.451.118 [35.532.161] 35.530.503 [41.620.858 [44.604.277] [48.692.165 [47.345.454 [44.345.45]] 47 4557.467 [17.420.111 [20.583.588 [23.996.961 [27.599.391 [31.451.118 [35.532.161] 35.530.503 [41.620.858 [34.604.277] [48.692.165 [34.545.454 [34.545]] 43.545.454 [34.545]] 44.545.454 [34.545] 44.545.454 [34.545] 44.545.454 [34.545] 44.545.454 [34.545] 44.545.454 [34.545] 44.545.454 [34.545] 44.545.455 [34.545] 44.545.455 [34.545] 44.545.455 [34.545] 44.545.455 [34.545] 44.545.455 [34.545] 44.545.455 [34.545] 44.545.455 [34.545] 44.545.455 [34.545] 44.545.455 [34.545] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545.455 [34.555] 44.545 [34.555] 44.545 [34.555] 44.555 [34.555] 44.5	ton/year 1 1,147,378 1,536,173 1 1,742,510 1,804,734
12.688.667 17.147.922 17.899.003 03.9089.29 22.999.470 27.548.798 10.897.531 33.505.046 35.192.035 38.960.241 41.811.154 44.746.201 147.545 147	ton 1,147,378 2,783,551 4,526,061 6,330,795
14257467 174201111 20583 888 235976 981 27599591 31451118 35552 161 35552 161 36 600 41 600895 144806 277 148.082.805 154 858 384 154	m3 1.434.222 3.479.439 5.657.576 7.913.493
	m3 1.649,355 4.001,354 6.506,212 9,100,517

20 - 3

1054

CHAPTER 21 TOPOGRAPHIC MAPPING

TOPOGRAPHIC MAPPING

- 1. Working Outline
- (1) Four Survey Teams worked on the project for twenty (20) calendar days during the period October 2, 1998 to October 22, 1998.
- (2) A total of thirteen (13) ground control points for photogrammetric mapping was established by GPS using TRIMBLE 4000 Series GPS Receiver.
- (3) The GPS Survey was tied in to the PRS '92 System using MMA0 and M34 asd reference points.
- (4) Elevations of eight (8) control points were determined by differential leveling while the elevations of the others points were derived from the GPS observations by applying the corresponding spheroidal heights.
- (5) Reference BMs for the leveling are BMR1-72 (PC & GS) 1956 and M34 (HSDC).

2. Coordinates and Elevations of the Control Points

The list of coordinates and elevations of the control points are attached herewith.

(1) STARTING POINT OF HORIZONTAL CONTROL

STATION DESIGNATION	NORTHINGS	EASTINGS	ELEVATION
MMA 0	1618610.526	504490.728	54.832

(2) STARTING POINT OF VERTICAL CONTROL

STATION DESIGNATION	NORTHINGS	EASTINGS	ELEVATION
1) M 34			179.425
2) BMR1 72			17.853
_,			

C. CONTROLLED PICTURE POINTS

STATION DESIGNATION	NORTHINGS	EASTINGS	ELEVATION
1) SW 1		· · · · · · · · · · · · · · · · · · ·	30.626
2) SW 2			30.986
3) SW 3			34.710
4) SW 8			357.028
5) SW 9			416.812
6) SW 10			420.678
7) SW 12			372.762
8) SW 13			292.875

3. GPS Survey: MMDA Montalban

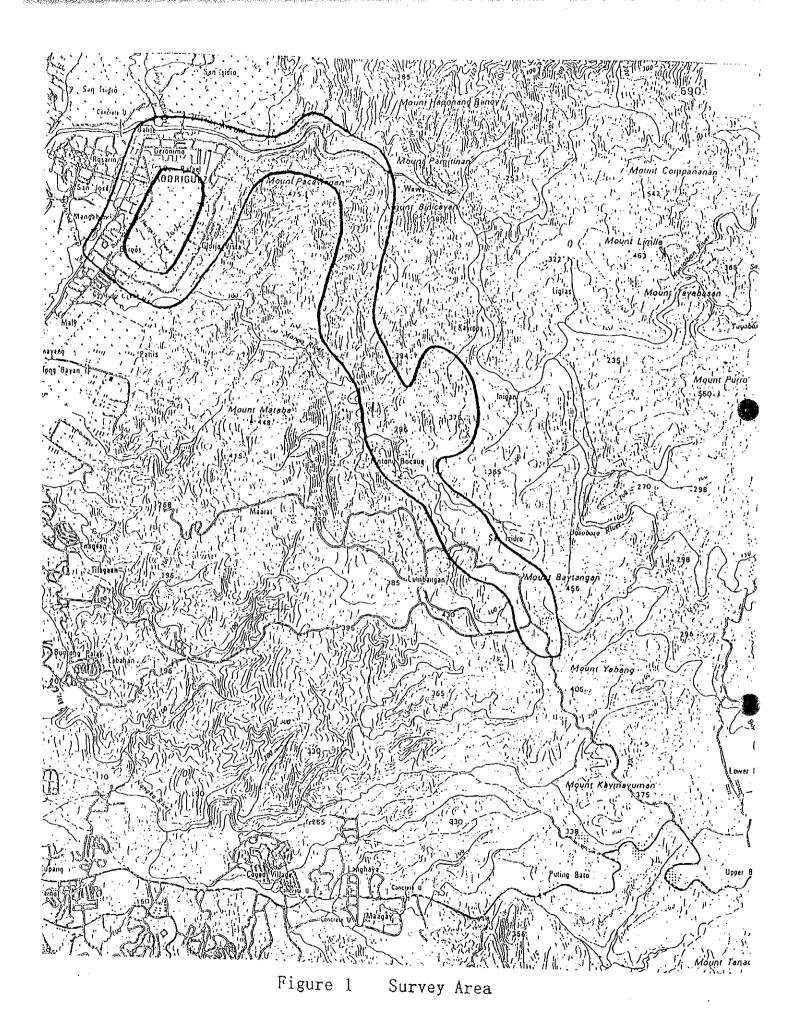
(1) PTM GRID COORDINATES (C.M. 121)

Station	Nothing	T2 4 ^t
		Fasting
MMA 0	1,618,610.526	504,490.729
SW 1	1,629,558.464	517,062.464
SW 10	1,621,787.494	522,191.045
SW 11	1,622,455.145	522,709.954
SW 12	1,621,075.103	522,649.799
SW 13	1,620,021.351	523,192.625
SW 2	1,629,892.611	518,493.777
SW 3	1,629,204.688	519,646.249
SW 4	1,628,077.020	519,535.144
SW 5	1,627,147.585	519,325.144
SW 6	1,628,156.592	521,166.378
SW 7	1,625,883.256	519,077.884
SW 8	1,623,911.094	521,780.848
SW 9	1,622,936.135	522,344.086
M 34	1,617,559.198	526,251.359

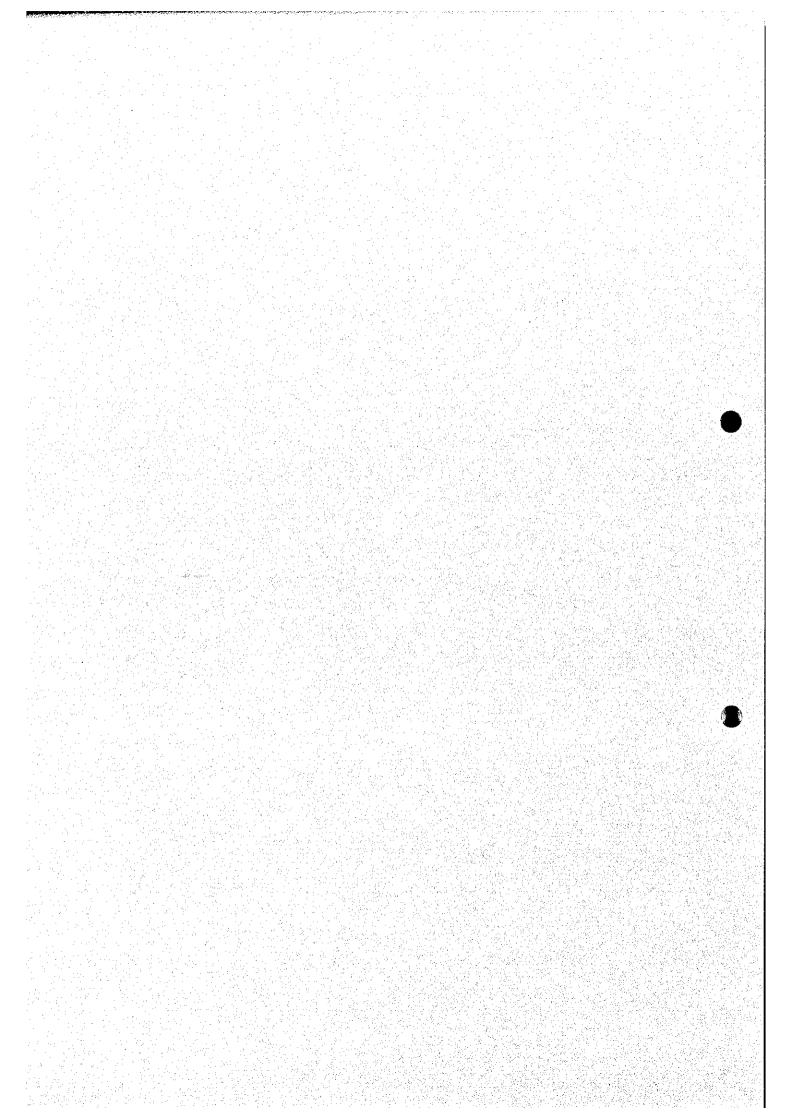
(2) PRS'92 GEOGRAPHIC COORDINATES

Station			<u>H.A.E.</u>	ELEVATION
	Latitude	Longitude		- -
MMA 0	14°38'12.089"N	121°02'30.072"E	57.148	54.834
SW 1	14°44'08.151"N	121°09'30.451"E	34.888	30.626
SW 10	14°39'55.152"N	121°12'21.678"E	425.173	420.678
SW 11	14°40'16.662"N	121°12'39.042"E	453.288	(448.801)
SW12	14°39'31.958"N	121°12'36.988"E	377.232	372.762
SW 13	14°38'57.652"N	121°12'55.097"E	297.370	292.875
SW 2	14°44'18.990"N	121°10'18.313"E	35.382	30.986
SW 3	14°43'56.576"N	121°10'56.825"E	39.027	34.710
SW 4	14°43'19.885"N	121°10'53.081"E	71.294	(66.969)
SW 5	14°42'49.647"N	121°10'46.035"E	186.230	(181.905)
SW 6	14°43'22.429"N	121°11'47.617"E	62.568	(58.243)
SW 7	14°42'08.512"N	121°10'37.736"E	118.452	(114.127)
SW 8	14°41'04.265"N	121°12'08.032"E	361.586	357.028
SW 9	14°40'32.524"N	121°12'26.828"E	421.342	416.812
M 34	14°37'37.434"N	121°14'37.231"E	184.081	179.425

4. Horizontal and Vertical Control


(1) Starting of Horizontal Control1. MMA 02. M34 (HSDC)

(2) Starting of Vertical Control


	Elevation
1. BM R1-72 (PC & GS) 1956	17.853
2. M34 (HSDC)	179.425

5.	Output of the Topographic Works	
	1) Original map sheets at 1:2,000	1 set
	2) Duplicated map sheets at 1:2,000	1 set
	3) Floppy disk (Auto Cad)	1 set
	4) Blue copy	3 sets
	5) Final report	1 set

21 - 3

CHAPTER 22 GEOLOGICAL SURVEY

GEOTECHNICAL REPORT

SUBSURFACE INVESTIGATION THE STUDY ON SOLID WASTE MANAGEMENT FOR METRO MANILA

1.0 INTRODUCTION

This report embodies our findings and conclusions on the recently concluded Subsurface Soil Investigation Program conducted as part of the Study On Solid Waste Management For Metro Manila, located at Bo. Wawa, Montalban, Marikina, Rizal.

Some 6 Shallow Boreholes each 15 meters depth were program at the proposed site to determine the thickness of the overburden soils which is of particular interest. However, initial soil boring showed a much shallower depth of overburden soils. This resulted into 12 Shallow Boreholes group into 6 general locations as shown in Table 1. The test results of these Boreholes are summarised and Appended in this Report. Actual drilling works were carried out during the periods from October 29 - November 3, 1998.

Although not included in the Terms of Reference (TOR), some 18 Test Pits were also excavated at the proposed site at an average depth of about 1 meter, to extract samples for Laboratory Compaction Tests (Moisture Density Relations of Soils) and Laboratory Permeability Tests. Also, six (6) Permeameter Tests were performed in the field using a 75mm diameter PVC pipe and set to a 100 mm drilled hole about 0.50 m below existing ground surface. Water percolation rate of the overburden soils at the proposed site can also be observed. Locations of Test Pits are defined by their Coordinates as presented in Table 1. Summary of Test pits investigations are also Appended in this report. Actual test pits work and percolation tests were performed during the periods from October 29 - November 3, 1998.

The Field Test results together with the Laboratory tests on samples extracted at site and our observations and findings served as bases for our conclusions and recommendations.

TEST			nvestigations	<u></u>	
LOCATIONS	BOREHOLES / TEST PITS		COORDINATES		REMARKS
	NO.	Depth (m)	Northing	Easting	
A	BHA1	4.09	14 deg 92' 24.3 "	121 deg 11' 43.2"	Supplementary
	BH-A2	4.30	14 deg 42' 23.8"	121 deg 11' 44"	-do-
	BH-A3	7.10	14 deg 42' 23"	121 deg 11' 45"	Reference Borehole for Group A (Samples for Laboratory Tests)
	TP-A1	1.00	14 deg 42' 25.6"	121 deg 11' 39.5"	For Lab Tests
	TP-A2	1.00	14 deg 42' 27.5"	121 deg 11' 38.8"	-do-
······································	TP-A3	1.00	14 deg 42' 28"	121 deg 11' 36.1"	-do-
B	BH-B1	8.05	14 deg 42' 21"	121 deg 11' 41"	Reference Borehole for Group B (Samples for Laboratory Tests)
	BH-B2	7.11	14 deg 42' 22"	121 deg 11' 39"	Supplementary
	TP-B1	1.00	14 deg 42' 22.5"	121 deg 11' 40.9"	For Lab Tests
-	TP-B2	1.00	14 deg 42' 20"	121 deg 11' 38.9"	-do-
	TP-B3	1.00	14 deg 42' 20.7"	121 deg 11' 38.7	-do-
С	BH-C	15.00	14 deg 42' 17"	121 deg 11' 35"	Reference Borehole for Group C (Samples for Laboratory Tests)
	TP-C1	1.00	14 deg 42' 17.9"	121 deg 11' 39"	For Lab Tests
	TP-C2	1.00	14 deg 42' 15.5"	121 deg 11' 38.3"	-do-
	TP-C3	1.00	14 deg 42' 18.2"	121 deg 11' 36.9"	-do-
D	BH-D1	10.09	14 deg 42' 14.4"	121 deg 11' 36.7"	Reference Borehole for Group D
	BH-D2	7.09	14 deg 42' 15"	121 deg 11' 35.4"	Supplementary
	TP-D1	1.00	14 deg 42' 14.8"	121 deg 11' 35.1"	For Lab Tests
	TP-D2	1.00	14 deg 42' 16.1"	121 deg 11' 36.4"	-do-
	TP-D3	1.00	14 deg 42' 14"	121 deg 11' 35,9"	-do-
E	BH-E1	8.65	14 deg 42'09"	121 deg 11' 33"	Reference Borehole for Group E (Samples for Laboratory Tests)
	BH-E2	7.10	14 deg 42' 06"	121 deg 11' 35.6"	Supplementary
	TP-E1	1.00	14 deg 42' 7.2"	121 deg 11' 37.8"	For Lab Tests
	TP-E2	1.00	14 deg 42' 6.7"	121 deg 11' 33.1"	-do-
	TP-E3	1.00	14 deg 42' 5.9"	121 deg 11' 34.1"	-do-
F	BH-F1	7.25	14 deg 42' 08"	121 deg 11' 33"	Supplementary
	BH-F2	7.40	14 deg 42' 8.4"	121 deg 11' 35"	Reference Borehole for Group F (Samples for Laboratory Tests)
	TP-F1	1.00	14 deg 42' 07"	121 deg 11' 34.8"	For Lab Tests
	TP-F2 TP-F3	1.00 1.00	14 deg 42' 7.4" 14 deg 42' 7.9"	121 deg 11' 33.9" 121 deg 11' 34.5"	-do- -do-
		1.00	~		-40-

TABLE 1: Scope of Subsurface Investigations

22 - 2

2.2.5 Plastic Limit and Plasticity of Soils

ASTM D 424-59

The plastic limit of a soil is the water content, expressed as a percentage of the mass of the oven-dried soil, at the boundary between the plastic and semi-solid states.

2.2.6 Density of Soil Particles

In-situ density at depth (Borehole samples) can be measured by the Drive Cylinder Method (Sampling Tube). Immediately after the sample is removed from its container it shall be weighed. Using the field data of the length of sample recovered, the In-Situ Density shall be computed. (DESIGN MANUAL 7.1: NAVFAC DM-7.1-109, May 1982)

- 2.2.8 <u>Laboratory Permeability Test of Soils</u> ASTM D 2434 - Falling Head Method
- 2.2.9 <u>Laboratory Compaction Test of Soils</u> ASTM D 698- Standard Proctor Test

3.0 GEOLOGY AND TOPOGRAPHY

3.1 <u>Regional Geology</u>

The project area generally lies along the western foothills of the N-S trending Sierra Madre range and east of the Marikina valley. The hills immediately east of the valley are underlain by metamorphosed lava flows with interbedded minor amounts of meta-clastics and ferruginous cherts. Layering or banding dips moderately to the east. This metamorphic series has been dated as pre-Tertiary in age.

Uncomformably overlying the metamorphic rocks are the steeply dipping Tertiary sedimentaries consisting of basalt conglomerate, sandstone, shales and limestone. Fossils contained in the limestone have been dated as Miocene. The main limestone ridge underlies the existing Wawa Dam. Immediately upstream of the limestone canyon, younger volcanic flows were observed resting on top of the Tertiary clastic. Further upstream of the dam towards the upper reaches of the Marikina river, pre-Tertiary metavolcanics and meta-clastics underlie the region.

22 - 3

3.2 <u>Topography</u>

The project site is on a gently rolling to rolling relief generally covered with bushes and trees as the main vegetation. Few small creeks are found traversing the site and draining to the river. Drainage in the area is expected towards the river.

4.0 OBSERVATIONS OF RESULTS AND FINDINGS

4.1 <u>General</u>

Soil investigation results based on six (6) referenced Boreholes as presented on the foregoing tabulation showed a two(2)-layer overburden soils(Clayey Silt (MH) and Clayey Silt (ML)) to constitute the soil covers in the project site. This is shown on 2-section profiles :- Soil Profile "1" and Soil Profile "3" appended in this report. The generalized subsurface stratification is described below:

Layer Identification

Description

Layer 1

: Consisting of light to yellowish gray Clayey SILT (MH), medium plasticity, stiff to very stiff in the uppermost 3 to 5 meters depth (N-values range from 10 to 23, average of 28) and hard consistency (N values greater than 30) down to depth of about 7 to 8.5 meters depth.

Layer 2

:Consisting of light gray Sandy Silt (ML), low plasticity to non-plastic with traces of fine gravel, encountered at depth of 3.5 to about 10 meters in the vicinity of BH-D1(Soil Profile 1) and at depth of 6.0 to 15 meters in the vicinity of BH-C (Soil Profile 3). Consistency of this layer is generally hard to very hard (N values range from 41 to 89).

The test pit investigations also showed that surficial soils consist mainly of Clayey Silt (MH and ML) in the uppermost 1 meter depth, with medium to low plasticity. Natural moisture content of these soil types range from 19% to 37 %, average of 27 %. Liquid limits range from 43% to 63%, average of 55 %. Plasticity Index (P.I.) range from 11 to 29 %, average of 19 %. Optimum Moisture Content (OMC) determined from laboratory compaction tests (Standard Proctor Test) for the Clayey Silt soils range from 21 % to 35 %, average of 29%. Maximum Dry Density (MDD) is average 1.424 g/cc. Laboratory permeability tests of the Clayey Silt have coefficient of permeability, k_{20} to range from 1.326 x 10-5 cm/s to 4.068 x 10-5 cm/s. Such range of the coefficient of permeability values is categorised as impervious, such that a naturally occurring impermeable barrier against seepage prevails at the project site.

For <u>foundation design of structures</u>, a very competent layer is found within the normal founding levels of footings for light to moderately loaded structure. Assuming a footing embedment of 2 meters below existing ground surface, an Allowable Bearing Capacity of 1.5 tons per square foot is recommended for design.

CHAPTER 23 ENVIRONMENTAL SURVEY

23.1 Environmental Survey for San Mateo Environmental Improvement Project

23.1.1 Survey for Dry Season

ENVIRONMENTAL SURVEY I (DRY SEASON) FOR SAN MATEO ENVIRONMENTAL IMPROVEMENT PROJECT

OF

THE STUDY ON SOLID WASTE MANAGEMENT FOR METRO MANILA IN THE REPUBLIC OF THE PHILIPPINES

A OBJECTIVE

The objective of the survey is to obtain information on the existing condition of the environment around the San Mateo Sanitary Landfill Site, which will be used as basic data to forecast and evaluate the environmental impacts caused by the project.

B SAMPLING POINTS AND SCHEDULE

TABLE 1 shows the sampling stations at San Mateo Sanitary Landfill Site. The exact sampling points shown in FIGURES 1 to 2 were indicated by the Environmental Engineer of the JICA Study Team, and descriptions of which are shown also in TABLE 1. Method of sampling followed the Philippine standards.

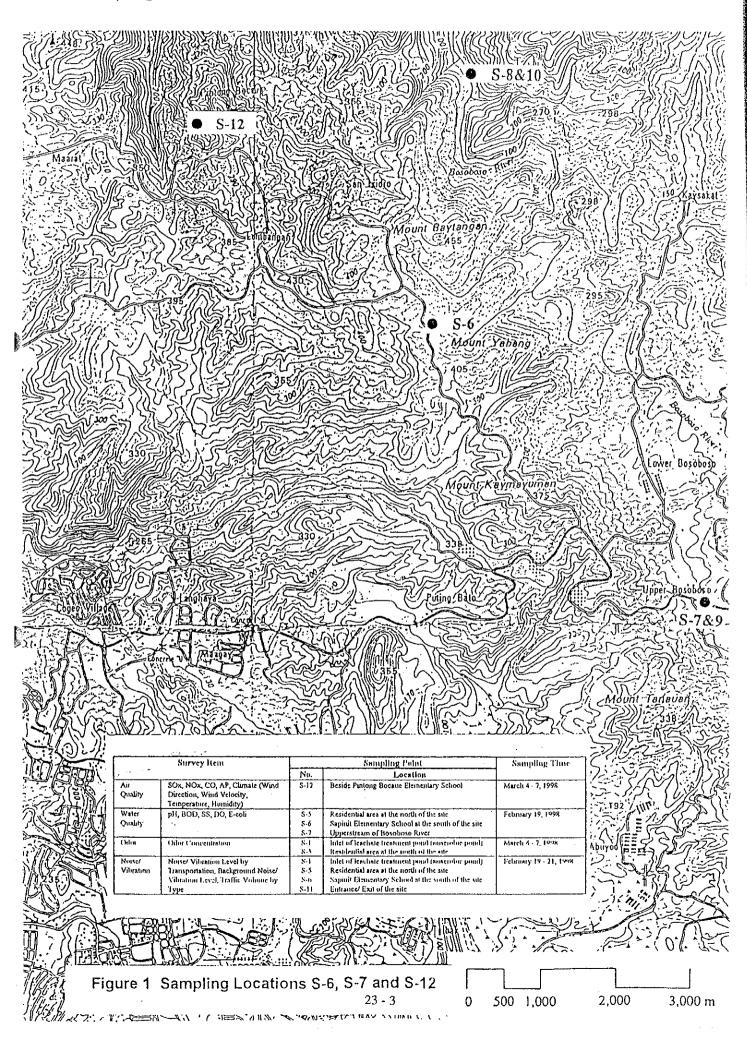
The dry season sampling was conducted on February 19 to 21, February 19, and March 4 to 7, 1998 for Noise and Vibration, Water Quality, and Air Quality and Odor, respectively.

C ITEMS FOR ANALYSIS

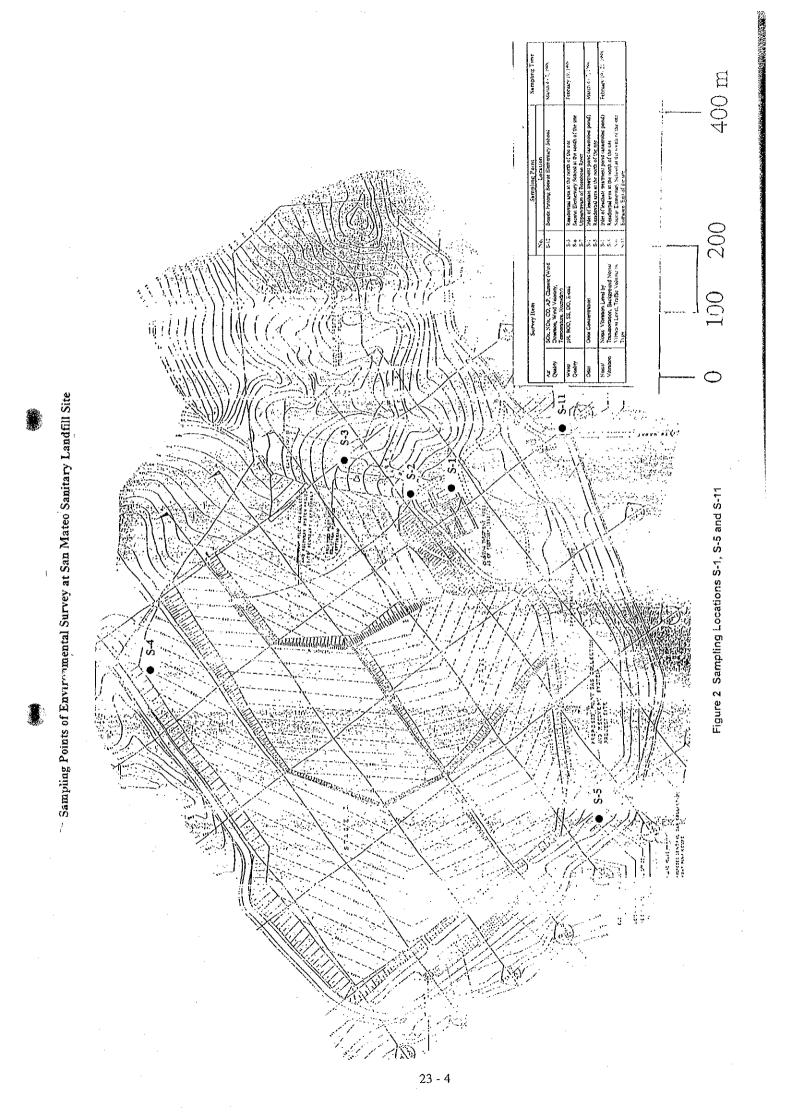
1

TABLE 1 also shows the items for analysis, sampling stations and sampling time.

D RESULTS OF ANALYSIS


The methods of analysis and results of the laboratory tests are shown and discussed in following sections.

Survey Item			Sampling Time	
		No.	Location	
Air Quality	SOx, NOx, CO, AP, Climate (Wind Direction, Wind Velocity, Temperature, Humidity)	S-12	Beside Pintong Bocaue Elementary School	March 4 - 7, 1998
Water Quality	pH, BOD. SS, DO, E-coli	S-5 S-6 S-7	Residential area at the north of the site Sapinit Elementary School at the south of the site Upperstream of Bosoboso River	February 19, 1998
Odor	Odor Concentration	S-1 S-5	Inlet of leachate treatment pond (anacrobic pond) Residential area at the north of the site	March 4 - 7, 1998
Noise/ Vibration	Noise/ Vibration Level by Transportation, Background Noise/ Vibration Level, Traffic Volume by Type	S-1 S-5 S-6 S-11	Inlet of leachate treatment pond (anaerobic pond) Residential area at the north of the site Sapinit Elementary School at the south of the site Entrance/ Exit of the site	February 19 - 21, 1998


Table 1 Survey Item, Sampling Point and Sampling Time

n de la parte de

Sampling Points of Environmental Survey at San Mateo Sanitary Landfill Site

AIR QUALITY

SAN MATEO LANDFILL

Ambient Air Sampling for TSP, SO2, NO2 and CO

Sampling Location: A vacant lot near elementary school of Sitio Pintong Bocaue (North of Landfill Site)

Date/Time	TSP ug/Ncm	SO2 ug/Ncm	NO2 ug/Ncm	CO ppm
March 04 (5:30 pm) to March 05 (5:30 pm)	231	< 4	< 0.10	< 1
March 05 (6:00 pm) to March 06 (6:00 pm)	509	< 4	< 0.10	< 1
March 06 (7:30 pm) to March 07 (7:30 pm)	356	9.21	< 0.10	< 1
DENR Standard	230	180	150	9 [.]

Sampling Procedure:

TSP	Graseby High Volume Sampler	-		Gravimetric Analysis
SO2	Graseby Gas Bubbler Sampler	-		Pararosaniline Method
NO2	Graseby Gas Bubbler Sampler	-		Griess Saltzman Method
CO	Quest Envirotrack IV Gas Monitor	-		Direct reading
	(UL registered instrument with		•	(with disposable sensor)
	accuracy traceable to US-NIST)			
Mater TCD	المتباد ومعمانية فيقصد والاستنابية المعتد			· · ·

Note: TSP - total suspended particulates or dust

Ncm - normal cubic meter at 25 deg. C and 760 mmHg (per DENR A.O. 14) ug - microgram ppm - parts per million

Description of Sampling Condition:

Ambient air sampling was conducted during dry weather condition. Ambient temperature ranges from 20 to 32 degress celsius with daily average temperature close to 25 deg. C. (hourly values obtained by PAGASA). The sampling site is about 5 meters from uncemented road which is the main source of dust. Variation on dust concentration is attributable to frequency of vehicles coming to the area as well as the wind direction. Traffic density is very light which is composed mainly of passenger jeepneys which arrive and leave the area every 15 to 30 minutes during daytime. The highest dust concentration of 509 ug/Ncm was recorded on March 05 to 06 sampling. This is attributable to the arrival of more than twenty motorbikes which held a sports cycling activity in the nearby area. In general, the traffic volume in the area does not cause significant contribution to the ambient SO2, NO2 and CO level.

2128 19 19 19 19 19 19 19 19 19 19 19 19 19		EEM,	INC.		DATE CLIENT REE NO. P & NO. CURT NO. INVOICENC. SHEET NO.	: •1	si ch 17, 1993 3477 8 - 252 2015 	دی بیدان اور ایر ایر ایر ایر ایر ایر ایر ایر ایر ای
		C	ERTIFICA	TE OF A	ANALYSIS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	ples received ch=09, 1998							
	ples taken from I MATEO, RIZ,		·					
				\$O;	a, ng/nera		NO2, byncm	
	SAMPLE.	1	24 HRS		<4		-0.10	
	SAMPLE	2	24 HR3		<4		- (U) Ø	
	SAMPLE	3	24 HRS		9.21		<0.10	
		•		•				
	•	·	林的小学生	NOTHING	FOLLOWS *	1茶 NS ik We		
The tea to the se	MUTHODREMAR t. results parain amples submitted .Ex <u>3</u>	only and tested.	ANALYSIS	б	CERTIFIEI	9 BY:	Dellay Lorna G. SV	

23 - 6