Appendix 3. Miscellaneous Data for the Drilling Survey

Appendix 3-1(1) List of the Used Equipments for Drilling

(MJSN-11,14)

Item	Model	Quantity	Capacity, type and specification
Drilling machine	SKB-41	1	Capacity φ 76mm:300m φ 59mm:500m
Motor for drill	4434.100	 	Inner diameter of spindle:60mm
Motor for drift	4AM-180	1	22kw, rpm/1,500 ps
Pump	NB-4	1	Piston φ 50mm, Capacity 40/160 liter/min Pressure 4 kg/min
Motor for pump	4AM-132	1	7.5kw, rpm/1,500 ps
Wire line hoist	LB-5	1	1 1 1 N
Motor for hoist		1	4 kw
Generator		_	Power line
Engine for generator			
Mud mixer	GKL-2M	I	
Derrick	UKB-500	1	Maximum load 15T
Rod holder	TD	1	
Drill rods	SSK-59	70	4.50 m/pc
	φ 50mm	5	4.00 m/pc
	φ 42mm	5	4.00 m/pc
Casing pipes	φ 108mm	4	3.00 m/pc
	φ 89mm	5	3.00 m/pc
	φ 73mm	12	4.00 m/pc
Core tube assembly	SSK-59	6	3.00 m/pc
	SSK-59	6	2.50 m/pc
	φ 108mm	1	1.00 m/pc
	φ 93mm	1	1.00 m/pc
	φ 76mm	1	1.00 m/pc
	OKS-73	1	1.00 m/pc

Appendix 3-1(2) List of the Used Equipments for Drilling

(MJSN-12,13)

Item	Model	Quantity	Capacity, type and specification
Drilling machine	SKB-41	1	Capacity φ 76mm:300m φ 59mm:500m Inner diameter of spindle:60mm
Motor for drill	4AM-180	1	22kw, rpm/1,500 ps
Pump	NB-4	1	Piston φ 50mm, Capacity 40/120 liter/min Pressure 4 kg/min
Motor for pump	4AM-132	1	7.5kw, rpm/1,500 ps
Wire line hoist	LB-5	1	
Motor for hoist		ı	4kw :
Generator			Power line
Engine for generator	_		1 - H - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Mud mixer	GKL-2M	1	2
Derrick	UKB-200	1	Maximum load 15T
Rod holder	TD	1	
Drill rods	SSK-59 φ 50mm φ 42mm	60 5 5	4.50 m/pc 4.00 m/pc 4.00 m/pc
Casing pipes	φ 108mm φ 89mm φ 73mm	4 5 13	3.00 m/pc 3.00 m/pc 4.00 m/pc
Core tube assembly	SSK-59 SSK-59 φ 108mm φ 93mm	6 8 1 1	3.00 m/pc 2.50 m/pc 1.00 m/pc 1.00 m/pc
	φ 76mm OKS-73	1	1.00 m/pc 1.00 m/pc (Ejector)

Appendix 3-1(3) List of the Used Equipments for Drilling

(MJML-1)

Item	Model	Quantity	Capacity, type and specification
Drilling machine	SKB-41	Quantity	T
Diming machine	3KD-41		Capacity ϕ 76mm:300m
<u>'</u>			φ 59mm:500m
Motor for drill	4AM-180	1	Inner diameter of spindle:63mm
motor for Gilli	47/14/-100	1	22kw, rpm/1,500 ps
Pump	NB-4	1	Piston ϕ 60mm, Capacity 40/160 liter/min
			Pressure 4 kg/min
Motor for pump	4AM-132	, 1	7 kw, rpm/1,500 ps
Wire line hoist			
Motor for hoist	_	_	
·			
Generator	DES-60P	1	60kvA
Engine for generator	AM-01E	1	Diesel engine: 60kwh, rpm/1,500 ps
			•
Mud mixer	TD	1	
Derrick	MPGY-3	- 1	Maximum load 20T
Rod holder	PT-1200	1	
Drill rods	SSK-59	<u> </u>	4.50 m/pc
	φ 50mm	60	4.00 m/pc
	φ 42mm	25	4.00 m/pc
Casing pipes	φ 108mm.	: 5	3.00 m/pc
	φ 89mm	15	3.00 m/pc
	φ 73mm	3	4.00 m/pc
Core tube assembly	SSK-59		3.00 m/pc
	SSK-59	_	2.50 m/pc
	φ 108mm	_	3.00 m/pc
	φ 93mm	1	3.00 m/pc
	φ 76mm	4	3.00 m/pc
	OKS-73	2	1.00 m/pc (Ejector)

Appendix 3-1(4) List of the Used Equipments for Drilling

(MJML-2)

Item	Model	Quantity	Capacity, type and specification
Drilling machine	SKB-41	1	Capacity φ 76mm:300m
			φ 59mm:500m
			Inner diameter of spindle:63mm
Motor for drill	4AM-180	1	22kw, rpm/1,500 ps
Pump	NB-4	1	Piston φ 60mm, Capacity 40/160 liter/min
	·		Pressure 4 kg/min
Motor for pump	4AM-132	1	7 kw, rpm/1,500 ps
Wire line hoist			
Motor for hoist			
Generator	DES-60P	1	60kvA
Engine for generator	AM-01E	1	Diesel engine : 60kwh, rpm/1,500 ps
Mud mixer	TD	1	
Derrick	MPGY-3	1	Maximum load 20T
Rod holder	PT-1200	1	
Drill rods	SSK-59		4.50 m/pc
	φ 50mm	55	4.00 m/pc
	φ 42mm	20	4.00 m/pc
Casing pipes	φ 108mm	- 5	3.00 m/pc
_ - -	φ 89 mm	10	3.00 m/pc
	φ 73mm	3	4.00 m/pc
Core tube assembly	SSK-59	· _	3.00 m/pc
	SSK-59	· _	2.50 m/pc
	φ 108mm	_	3.00 m/pc
	φ 93mm	S 21 1	3.00 m/pc
	φ 76mm	4	3.00 m/pc
	OKS-73	2	1.00 m/pc (Ejector)

Appendix 3-2(1) Results of Drilling Works on Individual Drillhole

(MJSN-11)

						(M1214-11
				Breakdov	wn of period	Total
	Period		Total days	Working days	No working days	workers
Aug.	9, '98 ~ Aug	.24, '98	15.5	6.5	9.0	24
Aug.	24, '98 ~ Oct.	10, '98	46.7	45.7	1.0	228
Oct.	10, '98 ~ Oct.	10, '98	0.8	0.8	0.0	5
Aug.	9, 98 ~ Oct.	10, '98	63.0	53.0	10.0	257
		Drilling	g length			
ngth	280	.00 m	Overburden		11.	80 m
	0.	10 m	Core length		229	.00 m
	280	.10 m	Core recove	ry	81.8	%
W	/orking hours			Core	recovery each	100m
1,	orking hours			Length (m) Each (%) Cumula.(9		
Drilling 384.0H 30.3 9			3 %	0-103.9	80.8	80.8
Out drilling 518.0H 40.8			8 %	103.9-206.9	82.1	81.4
ent	190.0H	15.0	0 %	206.9-280.1	82.7	81.8
	25.0H	- 2.0	0 %		· · · · · · · · · · · · · · · · · · ·	
lization	44.0H	3.4	1 %			
	108.0H	8.5	%	:	Efficiency	
				Effect	ive length/Tota	al days
					4.45 m/d	Ť
al	1,269.0Н	100) %	Effectiv	-	ing days
	I	Drilling length	by diameter			
76 m/m	59 m/m	m/m	m/m	m/m	m/m	Total
15.0 m	265.1 m	-				280.1 m
9.3 m	219.7 m					229.0 m
		Inserted cas	ing pipes			
			lling length x	100	Casing R	ecovery
15.00 m		5.4	%			
m		<u></u>	%		-	%
			· · · · · · · · · · · · · · · · · · ·			
	Aug. Oct. Aug. ngth Wall ent lization 76 m/m 15.0 m 9.3 m by diameter 15.00 m	Period Aug. 9, 98 ~ Aug Aug. 24, 98 ~ Oct. Oct.10, 98 ~ Oct. Aug. 9, 98 ~ Oct. Aug. 9, 98 ~ Oct. Aug. 9, 98 ~ Oct. Oct. 10, 98 ~ Oct. Aug. 9, 98 ~ Oct. Oct. 10, 98 ~ Oct. Aug. 9, 98 ~ Oct. Oct. 10, 98 ~ Oct. Aug. 9, 98 ~ Oct. Oct. 10, 98 ~ Oct.	Period Aug. 9, '98 ~ Aug. 24, '98 Aug. 24, '98 ~ Oct. 10, '98 Oct. 10, '98 ~ Oct. 10, '98 Aug. 9, '98 ~ Oct. 10, '98 Drilling agth 280.00 m 0.10 m 280.10 m Working hours Working hours 384.0H 30. 518.0H 40. 190.0H 15. 25.0H 2. Ization 44.0H 3.4 108.0H 8.5 Drilling length 76 m/m 59 m/m m/m 15.0 m 265.1 m 9.3 m 219.7 m Inserted case by diameter Inserted length/Dries 15.00 m 5.4	Period Total days	Period	Period

Appendix 3-2(2) Results of Drilling Works on Individual Drillhole

(MJSN-12)

1								
		Survey	period			n of period	Total	
		Period		Total days	Working days	No working days	workers	
Preparation	July 2	7, '98 ~ Aug. :	5, '98	9.5	3.4	6.1	31	
Drilling	Aug. 9	9, '98 ~Sept.2:	5, '98	51.0	50.0	1.0	244	
Dismount	Sept.2	5, '98 ~Sept.2	5, '98	0.5	0.5	0.0	5	
Total	July 2	7, '98 ~Sept.2	5, 98	61.0	53.9	7.1	280	
			Drilling	length	· · · · · · · · · · · · · · · · · · ·			
Programmed leng	ţth [220.0	00 m	Overburden		1.5	0 m	
Prolongation		0.0	0 m	Core length		178.	50 m	
Effective length		220.0	00 m	Core recover	y .	81.1	%	
	W	orking hours			Core	recovery each	100m	
		OIMING HOURS			Length (m)	Each (%)	Cumula.(%)	
Drilling		319.0H	24.	4 %	0-109.1	80.8	80.8	
Out drilling		546.0H	41.8 %		109.1-204.4	81.6	81.2	
Regain of accide	nt	347.0H	26.6 %		204.4-220.0	80.8	81.1	
Preparation		27.0H	2.	1 %	· .			
Dismount/Mobili	zation	30.0H	2.3 %					
Others	+ + ¹ 1	36.0H	2.8	3 %		Efficiency	t e	
					Effec	tive length/Tot	al days	
						3.61 m/d		
Tota		1,305.0H	10	0 %	Effectiv	ve length/Worl	ting days	
Tota	· 	1,303.011	10			4.05 m/d		
		I	Orilling lengtl	h by diameter				
Bit diameter	76 m/m	59 m/m	m/m	m/m	m/m	m/m	Total	
Drilling length	5.0 m	215.0 m					220.0 m	
Core length	3.3 m	175.2 m					178.5 m	
			Inserted ca	sing pipes	-			
Inserted length	by diameter	Inse	rted length/Di	rilling length	k 100	Casing	Recovery	
73 m/m	5.00 m		2.3	3 %		10	0 %	
m/m	m			%			%	

Appendix 3-2(3) Results of Drilling Works on Individual Drillhole

(MJSN-13)

		Survey	period		Breakdov	n of period	Total
		Period		Total days	Working days	No working days	workers
Preparation	Sept.2	0, '98 ~ Sept.	27, '98	7.5	3.9	3.6	19
Drilling	Sept.2	7, '98 ~ Oct.1	11, '98	13.7	13.7	0.0	- 60
Dismount	Oct.1	1, '98 ~ Oct.1	1, '98	0.8	0.8	0.0	
Total	Sept.2	20, '98 ~ Oct.1	11, '98	22.0	18.4	3.6	90
			Drilling	length			
Programmed leng	ţth	120.	00 m	Overburden		5.8	30 m
Prolongation		8.0	00 m	Core length		105.	10 m
Effective length		128.	00 m	Core recover	y 82.1 %		
	w	orking hours			Core	recovery each	100m
		orang nouts			Length (m) Each (%) Cumula.(%		
Drilling		147.0H	33.	6 %	0-104.6	80.8	80.8
Out drilling		79.0H	18.	0 %	104.6-128.0	88.0	82.1
Regain of accider	nt	101.0H	23.	0 %			
Preparation		24.0Н	5.	5 %			
Dismount/Mobili	zation	42.0H	9.6	5 %			
Others		45.0H	10.	3 %		Efficiency	
					Effect	ive length/Tota	al days
· · · · · · · · · · · · · · · · · · ·						5.82 m/d	
Total		438.0H	100) %	Effectiv	e length/Work	ing days
			100	, , , ,	: :	7.03 m/d	
· · · · · · · · · · · · · · · · · · ·			Orilling length	by diameter	١ .		
Bit diameter	76 m/m	59 m/m	m/m	m/m	m/m	m/m	Total
Drilling length	10.0 m	118.0 m					128.0 r
Core length	4.0 m	101.1 m					105.1 1
·	·		Inserted ca	sing pipes			
Inserted length b	y diameter	Inser	ted length/Dr	illing length x	100	Casing F	lecovery
73 m/m	10.00 m		7.8	%		100	%
m/m	m			%	%		

Appendix 3-2(4) Results of Drilling Works on Individual Drillhole

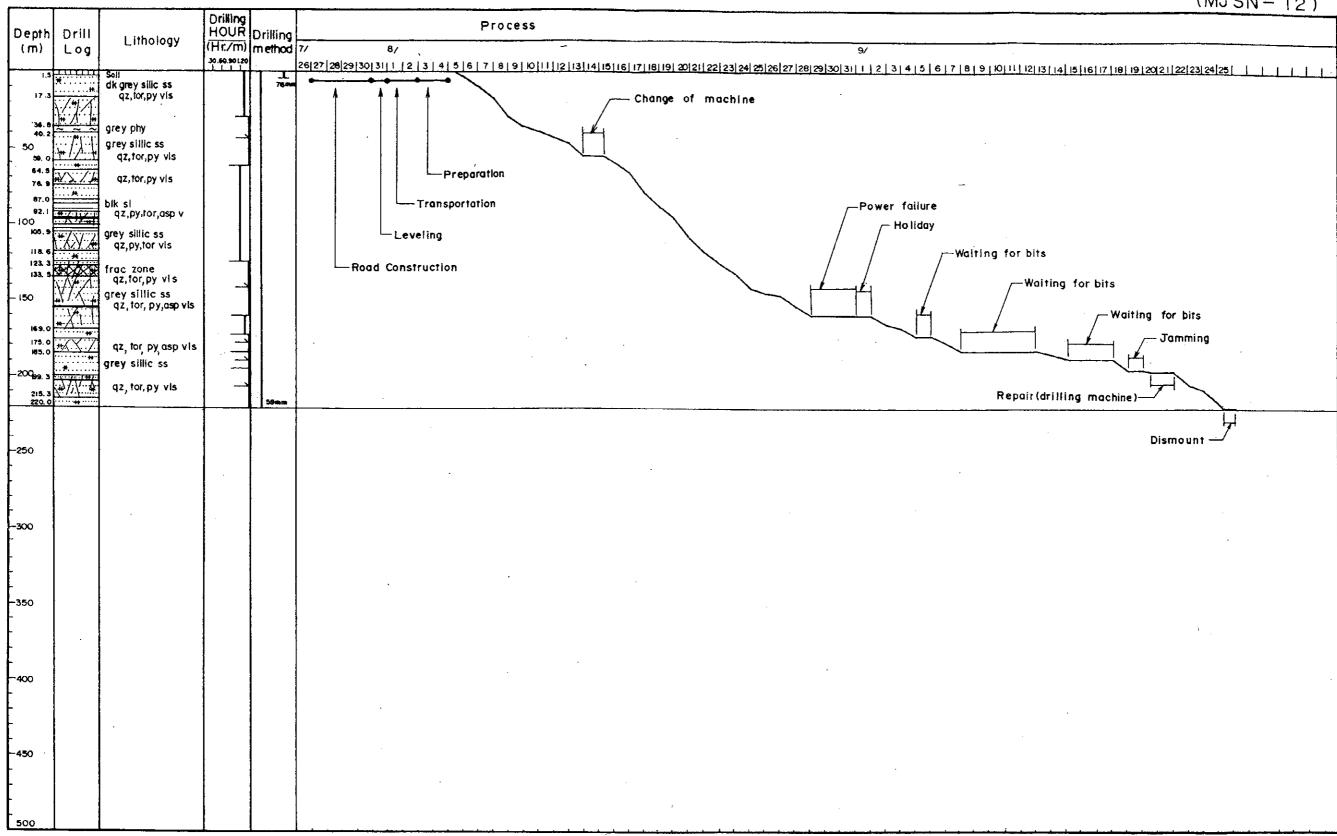
(MJSN-14)

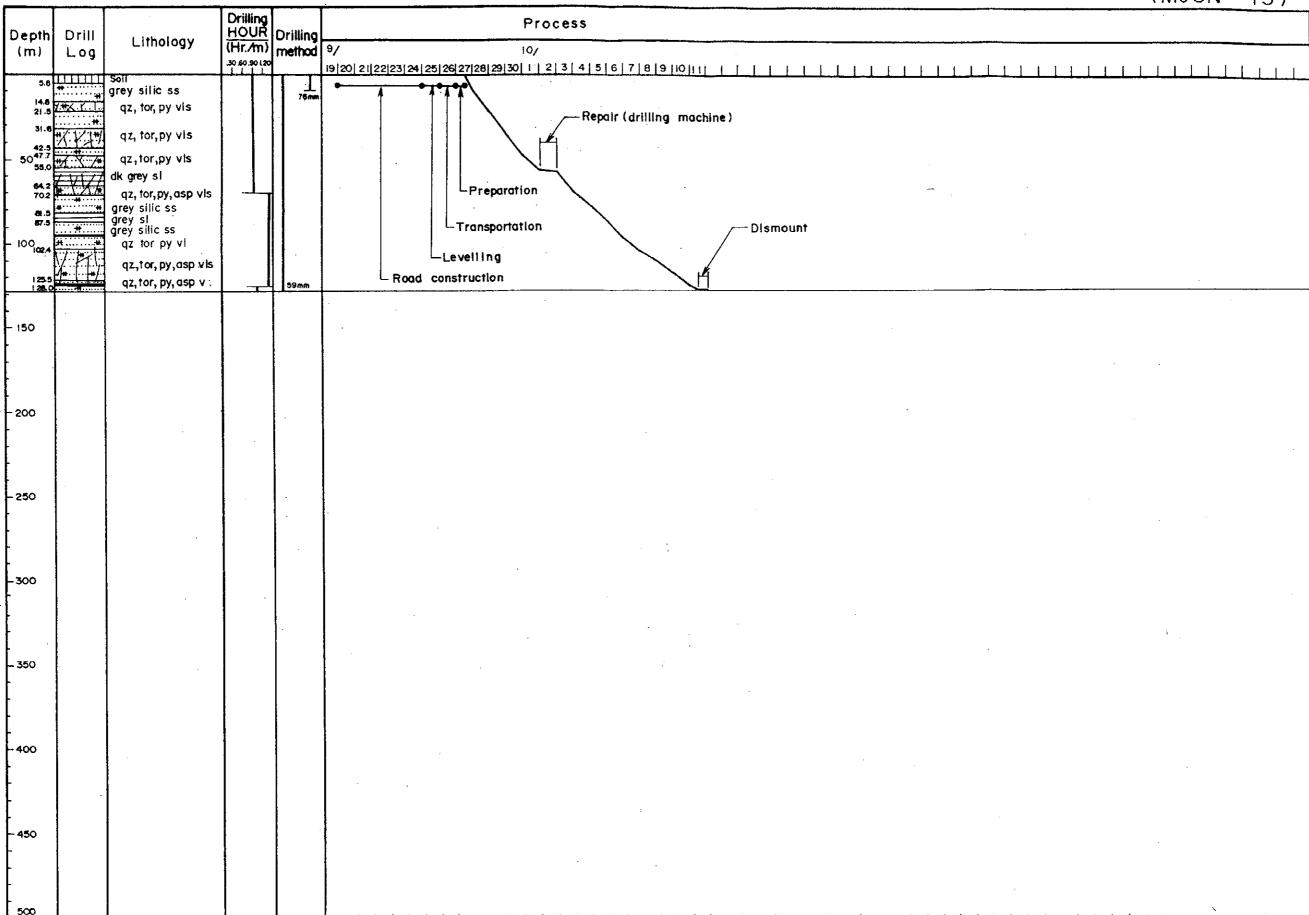
		Survey	period		Breakdow	n of period	Total	
-		Period		Total days	Working days	No working days	workers	
Preparation	July 20), '98 ~ July 2	8, '98	9.0	3.0	6.0	24	
Drilling	July 2	9, '98 ~Aug.2	1, '98	23.5	23.5	0.0	. 117	
Dismount	Aug.2	l, '98 ~ Aug.2	2, '98	1.5	0.9	. 0.6	7	
Total	July 2	0, '98 ~Aug.2	2, '98	34.0	27.4	6,6	148	
			Drilling	length				
Programmed leng	th	160.0	00 m	Overburden		4.0	0 m	
Prolongation	. •	2.3	0 m	Core length		131.	60 m	
Effective length		162.3	30 m	Core recover	y	81.1	%	
	w	orking hours			Core	recovery each	100m	
		orking hours			Length (m)	Each (%)	Cumula.(%)	
Drilling		228.0H	34.	7 %	0-105.6	78.9	78.9	
Out drilling		199.0H	30.3 %		105.6-162.3	85.2	81.1	
Regain of accider	at ·	137.0H	20.9 %		1 2 4			
Preparation		27.0H	4.	1 %				
Dismount/Mobili	zation	39.0H	5.9	%				
Others	· -	27.0H	4.1	. %		Efficiency		
					Effec	tive length/Tot	al days	
						4.77 m/d		
Tota	. ¹	657.0 H	100	0 %	Effecti	Effective length/Working days 5.92 m/d		
/ /		I	Orilling lengtl	h by diameter				
Bit diameter	76 m/m	59 m/m	m/m	m/m	m/m	m/m	Total	
Drilling length	6.0 m	156.3 m					162.3 m	
Core length	128.1 m					131.6 m		
			Inserted ca	sing pipes				
Inserted length	Inse	rted length/Di	rilling length	k 100	Casing	Recovery		
73 m/m	6.00 m		3.7 %			100 %		
m/m	m			%			%	

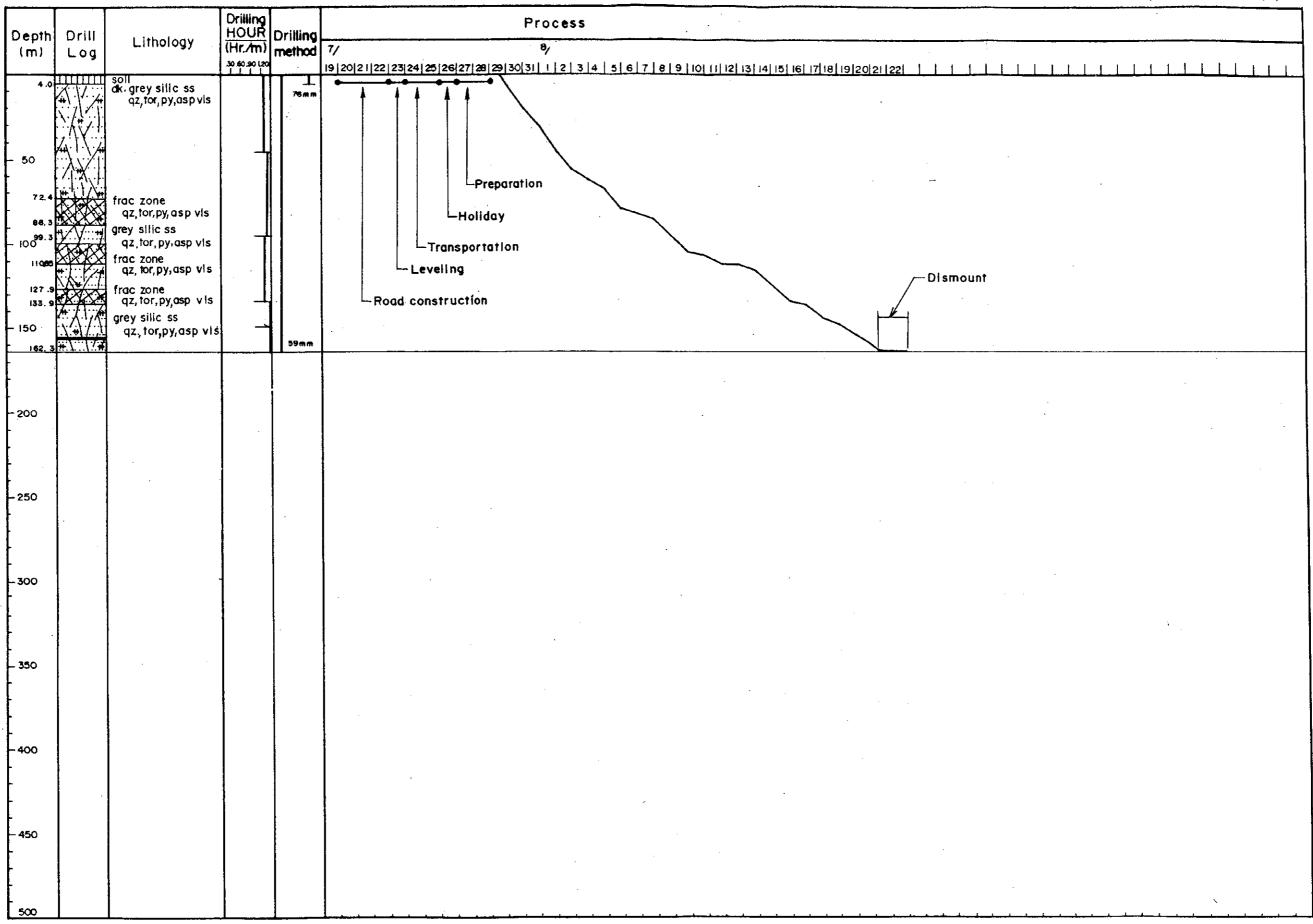
Appendix 3-2(5) Results of Drilling Works on Individual Drillhole

(MJML-1)

		Survey	period		Breakdov	vn of period	20.	
		Period		Total days	Working days	No working days	Total workers	
Preparation	Aug.1	0, '98 ~ Aug.:	27, '98	18.0	6.4	11.6	59	
Drilling	Aug.2	28, '98 ~Sept.2	25, '98	28.2	28.2	0.0	140	
Dismount	Sept.2	25, '98 ~Sept.2	25, '98	0.8	0.8	0.0	5	
Total	Aug.1	0, '98 ~Sept.2	25, '98	47.0	35.4	11.6	204	
			Drilling	length	•			
Programmed len	gth	200.	00 m	Overburden		0.0	00 m	
Prolongation		1.	10 m	Core length	·	168.	90 m	
Effective length		201.	10 m	Core recover	у	84.0) %	
	w	orking hours			Core	recovery each	100m	
		orang nours			Length (m) Each (%) Cumula.(%)			
Drilling		379.0H	33.4 %		0-103.5	83.8	83.8	
Out drilling		427.0H	37.6 %		103.5-201.1	84.2	84.0	
Regain of accide	nt	262.0Н	23.1 %					
Preparation		12.0H	1.1 %					
Dismount/Mobili	ization	9.0 H	0.8	8 %				
Others	· <u>-</u> -	45.0H	4.0) %		Efficiency		
					Effec	tive length/Tota	al days	
						4.28 m/d		
Tota	1	1,134.0Н	100) %	Effectiv	e length/Work 5.70 m/d	ing days	
		I	Orilling length	ı by diameter	١.			
Bit diameter	76 m/m	m/m	m/m	m/m	m/m	m/m	Total	
Drilling length	201.1 m	m					201.1 m	
Core length	e length 168.9 m m					168.9 m		
			Inserted cas	sing pipes				
Inserted length	by diameter	Inser	ted length/Dr	illing length x	100	Casing F	Recovery	
89 m/m	20.00 m	9.9 %				100 %		
m/m	m			%			%	


Appendix 3-2(6) Results of Drilling Works on Individual Drillhole


(MJML-2)


		Survey	period		Breakdow	n of period	Total
		Period		Total days	Working days	No working days	workers
Preparation	July 21	1, '98 ~ Aug.1	2, '98	22.5	2.8	19.7	90
Drilling	Aug.12	2, '98 ~ Sept.2	21, '98	40.0	40.0	0.0	195
Dismount	Sept.2	1, '98 ~Sept.2	1, '98	0.5	0.5	0.0	5
Total	July 21	1, '98 ~ Sept.2	21, '98	63.0	43.3	19.7	290
			Drilling	length			
Programmed leng	th _	180.0	00 m	Overburden		2.9	00 m
Prolongation		3.0	0 m	Core length		155.	30 m
Effective length		183.0	00 m	Core recover	у	84.9	%
1.7.	XXI		·		Core	recovery each	100m
	W	orking hours			Length (m)	Each (%)	Cumula.(%)
Drilling		384.0H	32.	5 %	0-100.8	83.2	83.2
Out drilling		431.0H	36.6 %		100.8-183.0	86.9	84.9
Regain of accides	nt	286.0H	24.	3 %			,
Preparation		12.0H	1.0 %				15.54
Dismount/Mobili	zation	21.0Н	1.	8 %		,	
Others		45.0H	3.8	3 %	· .	Efficiency	
				· · · · · · · · · · · · · · · · · · ·	Effec	tive length/Tot	al days
		•				2.90 m/d	
Tota	1	1,179.0H	10	0 %	Effectiv	ve length/Worl	king days
			Orilling lengt	h by diameter			·
Bit diameter	76 m/m	m/m	m/m	m/m	m/m	m/m	Total
Drilling length	183.0 m	m				<u> </u>	183.0 m
Core length	155.3 m	m	r		·	155.3 m	
	<u> </u>		Inserted ca	sing pipes		1	
Inserted length	by diameter	Inse	ted length/Di	rilling length x	100	Casing	Recovery
89 m/m	15.00 m			2 %	100 %		
m/m	m			%			%
•							

1						
•						
:						
÷						
	•					
				•		
j.						
			_			
# #						
1 }						
4		-				
į						
•						
,						
:						
i						
:						
į						
3						
j. N						
:						
1						
i						
:						,
÷						
į						
:						
					<u> </u>	
3 4						•
:			•			
ŧ						

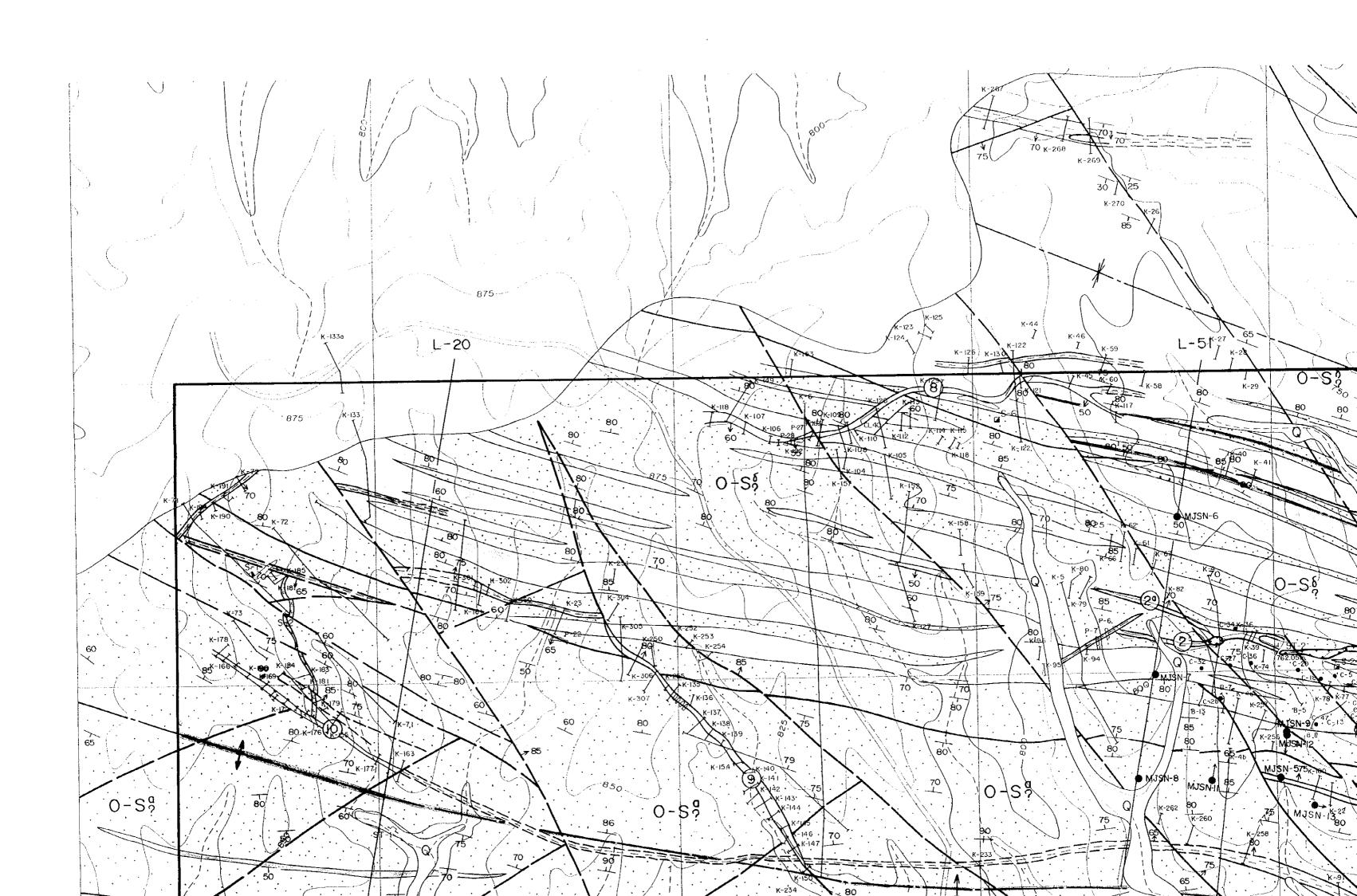
					,	(MJSN-)
Depth	Drili		Drilling HOUR (Hr/m)	Drilling	Process	
(m)	Log	Lithology	(Hr/m)	method	8/ 9/ · N/	
			30,60,90 1,20	<u> </u>	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 1	5 6 7 8 9 10
11.8 38.5	# . #.	Soil dk grey silic ss qz, tor,py vis		76 mm	Power failure Holiday Waiting for bits Waiting for bits	
- 50 56.6 63.9	1/1// 1///	grey silic ss qz, tor,py vis		1	Transpo tation and preparation Waiting for bits	
83.1		qz,py v: dk.grey silic sl qz, tor,py vıs			Leveling	
109.8		grey silla ss qz,tor,py,asp v frac zone			Repair (bulldoser) Road construction	
150 150	1	qz,tor,py,asp vls			Repair (buildoser)	
177.3 185.0	7 7 7 7 7 7	grey silic ss qz, tor,py,asp vls grey silic sl	.		Road construction	
-200 ^{198,4}	· ***	grey silic ss				
-250 250		qz,tor,py.asp vis qz,tor,py v				DIsmount
		frac zone qz, tor, py vis		59mm		
-300 -						
-350 -						i .
- -400						
- 450						
; -						
500	l	L	<u> </u>		<u> </u>	

grey 28.6 28.6 48.2 57.9 68.7 60.1	Lithology ey sdy phy qz, py, chi v qz, vis ac zone qz vis ey silic sdy phy qz, py vis ac zone qz vis ey silc sdy phy qz, py v qz, py v qz, py v qz, py, Au v eg silic sdy phy		rilling ethod	9 10 11 12 13 14 5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 1 1 1 1 1 1 1
28.6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ey sdy phy qz,py,chi v qz,vis ic zone qz, vis ey silic sdy phy qz,py vis ic zone qz vis ey silc sdy phy qz,py v qz,py v qz,py v qz,py v	-3		9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 1 1 1 2 3 4 1 5 16 17 18 19 10 11 12 13 14 15 16 17 18 19 20 12 12 23 24 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
28.5 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	qz,py,chi v qz,vis qz zone qz vis ey silic sdyphy qz,py vis cc zone qz vis ey silc sdy phy qz,py v qz,py v qz,py v qz,py v		93.00	— Preparation — Transportation
- 250	ey sdy phy qz,py vis		76 m an	Repair (bulldoser) Road construction
-300				
-350				
-400				
-450				

					(IVIO IVIL —	/
Denth	Drill		Drilling HOUR	Drilling method	Process	· · · · · · · · · · · · · · · · · · ·
Depth (m)		Lithology	(Hr./m)	method	7/ 8/	
,,,,,	~ v y		30,40,90 (20	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 6 17 8 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 17 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	
2.9	<u> </u>	soil grey phy grey sdy phy qz vis dk grey phy	11		Waiting for diesel oil	
14.3	λ %-λ.:\	grey sdy phy		\$3 mm	Walting for parts	
24.8 34.5	~~~	dk greyphy				
42.0	~ X.7. ~. X.1	grey say phy qz vis		[Jamming	
- 5046.7	~ ~	qz v				
64.7	~ ~	qz,py vls	-	11		
77.5	~	42,py 413			Preparation	
. 66, 6 52, 5	1/~1/1	qz,py vis		11	Waiting for drilling materials	
100	-2	qz, side, chl, vls		1.1	—Waiting for arining materials	
116.7	î wî	-		11	Transportation	
131.5	アイブ	qz,py vls qz,py v				
ļ	~~~	dk greyphy	-	!	L—Road construction	pair
- 150 153.6	~ ~ ~ ~	qz ,py vls		1	(drilling	pair ng machine)
1	~\/\~\			1		
170.7 178.0		froc zone qz, py vis				
1 183/0		4-(1)		76mm		
- 200			1		${\mathcal F}$	
ł		1				
t			1		Dismount——/	
[
- 250						
ŀ		!				
ľ						
[
-300						
ł			1			
}		1				
t						
350		1	1			
<u> </u>						
}	1					
t	[-			
L		1				
-400			1			
<u>}</u>	1]				
ŀ	1	1				
!						
450	1		1	1		
		1				
ŀ				1		
}	1					
500		L	<u> </u>	1	<u></u>	

Appendix 3-4 Results of Hole Devitation Measurement

	MJSN-11	
	Direction	Dip
5		74° 45′
20	9°	74° 30'
40	9 °	74° 30′
60	9°	73° 30'
80	10°	73° 00'
100	10°	73° 00'
120	10 <u>°</u>	72° 00'
140	11°	71° 30'
160	11°	71° 00'
180	11°	70° 45'
200	12°	70° 30'
220	13°	70° 30'
240	13°	70° 30'
260	13°	70° 15'
270	14°	<u>70° 15'</u>

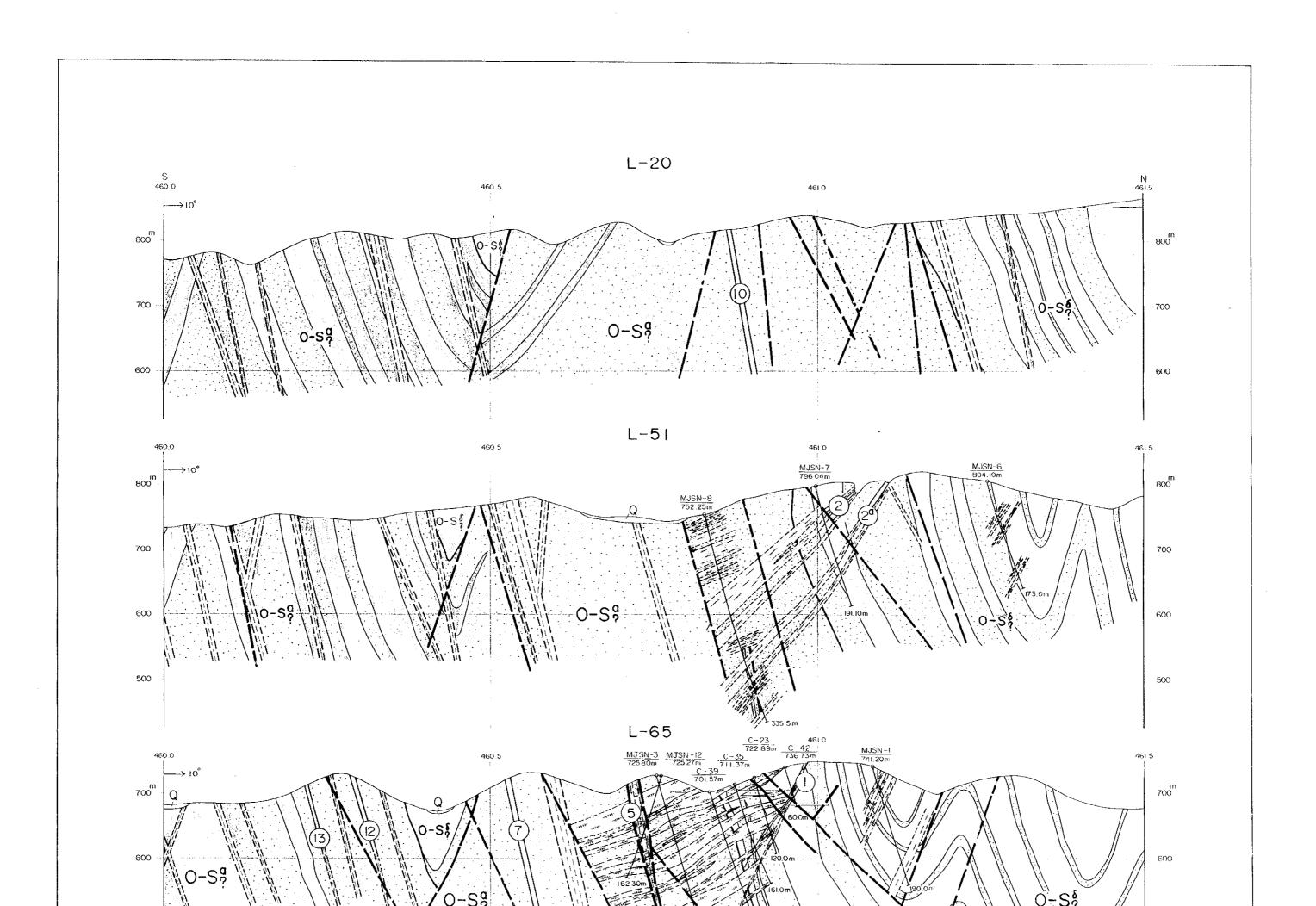

	MJSN-12	
Depth(m)	Direction	Dip
5		74° 30'
20	193°	74° 00'
40	195°	73° 00'
60	197°	72° 30'
80	200°	72° 30'
100	200°	72° 00'
120	201°	71° 45′
140	201°	71° 30'
160	200°	71° 00'
180	203°	71° 00'
200	203°	70° 45'
216	203°	70° 30'


	MJSN-13	_
Depth(m)	Direction	Dip
5	_	75° 00'
20	103°	74° 00'
40	105°	74° 00'
60	105°	73° 00'
80	1 05 °	72° 30'
100	105°	72° 00'
120	106°	72° 00'
125	1 06 °	72° 45′


	MJSN-14	
Depth(m)	Direction	Dip
5	192°	75° 30'
20	194°	75°00'
30	197°	74° 45′
40	200°	72° 45'
50	205°	72° 00'
60	208°	71° 15′
80	209°	70° 30'
100	209°	68° 45'
110	208°	67° 30'
120	208°	67° 00'
140	206°	67° 15'
160	203°	67° 15'

	MJMI-1	
Depth(m)	Direction	Dip
5	204°	74° 45′
20	204°	74° 15'
40	203°	74° 00'
60	203 °	72° 15'
62	203°	71° 00′
80	202°	70° 30'
100	200 °	69° 30'
120	200°	69° 00'
140	199°	68° 15'
160	193°	67° 00'
162	193°	66° 45'
180	192°	66° 00'
194	191°	65° 30'

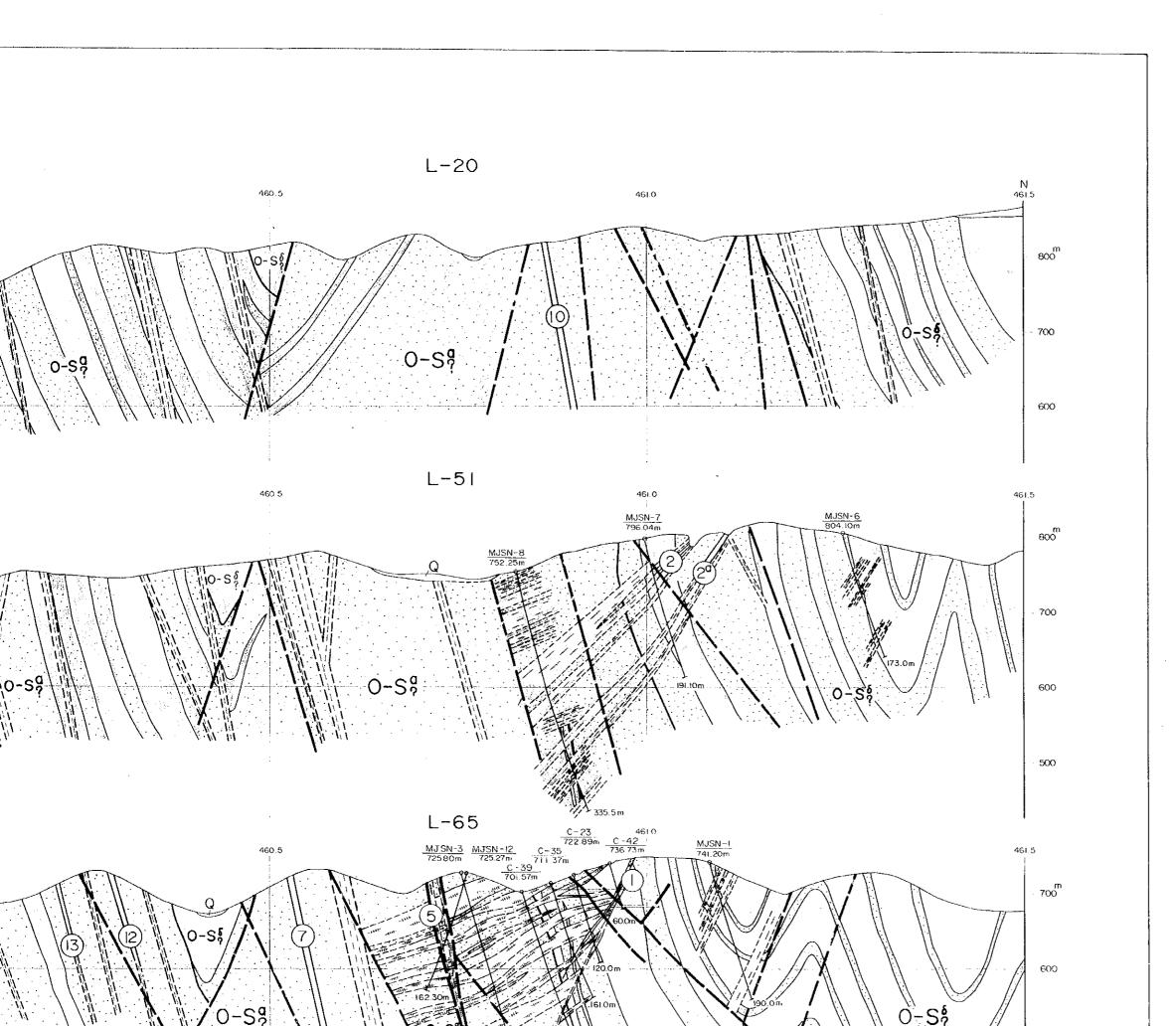
	MJML-2	
Depth(m)	Direction	Dip
5	220	75° 30'
20	211°	75° 30'
40	207°	75 [°] 15′
60	202°	75° 30'
62	202°	75° 30'
80	203°	75° 45′
100	197°	75° 30′
120	197°	75° 15'
140	192°	74° 45'
160	194°	74° 15'
162	194°	74° 00'
178	194°	73° 15'

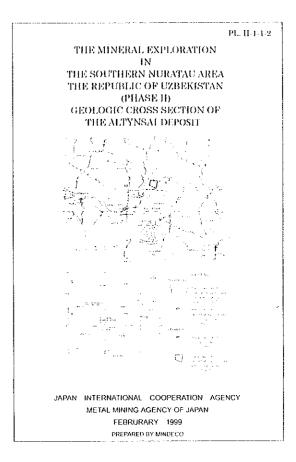


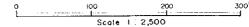
Legend Quaternary $Q = 1 \, \mathrm{dim} \, \mathrm{gravel} \, \mathrm{sand}$ 👾 States, Sillistones Quartz sandstones 10 to Cherty states Siturian Middle Formation Standardness Ordovician 0.5 Cherty slates COS2: Sandstones Lower Formation Dyke Lamprophyres Fractures : 1. Traced : 2. Supposed Zones of brecaution and adicification Zones of quartz veins and veinlets 1. 144 Ore zone and its number \sim Strike and dip : 1, Bedding - 2, Fractures * 1. Anticlinal axes 2. Synclinal axes Ks. Trench and its number ■ 55 Shall and its number 4 St. Adit and its number

Cold workings

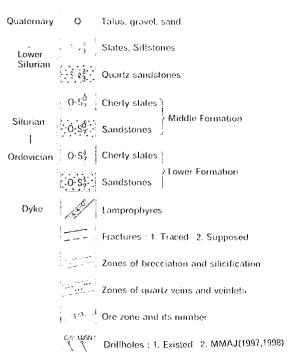
Drittholes: 1. Existed 2. MMAJ(1997)
3. MMAJ(1998)

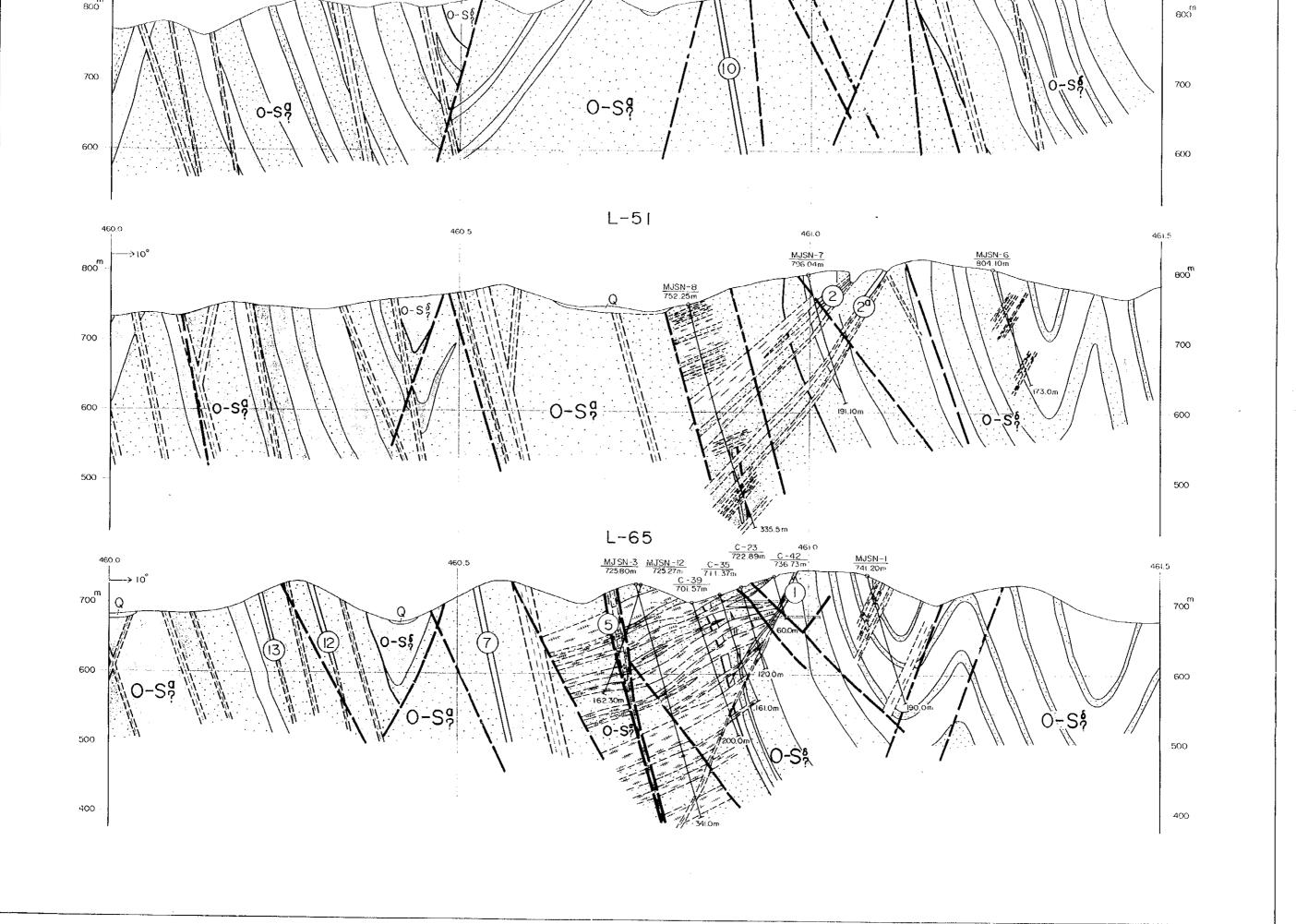

Detailed survey area




T] T] (

. •

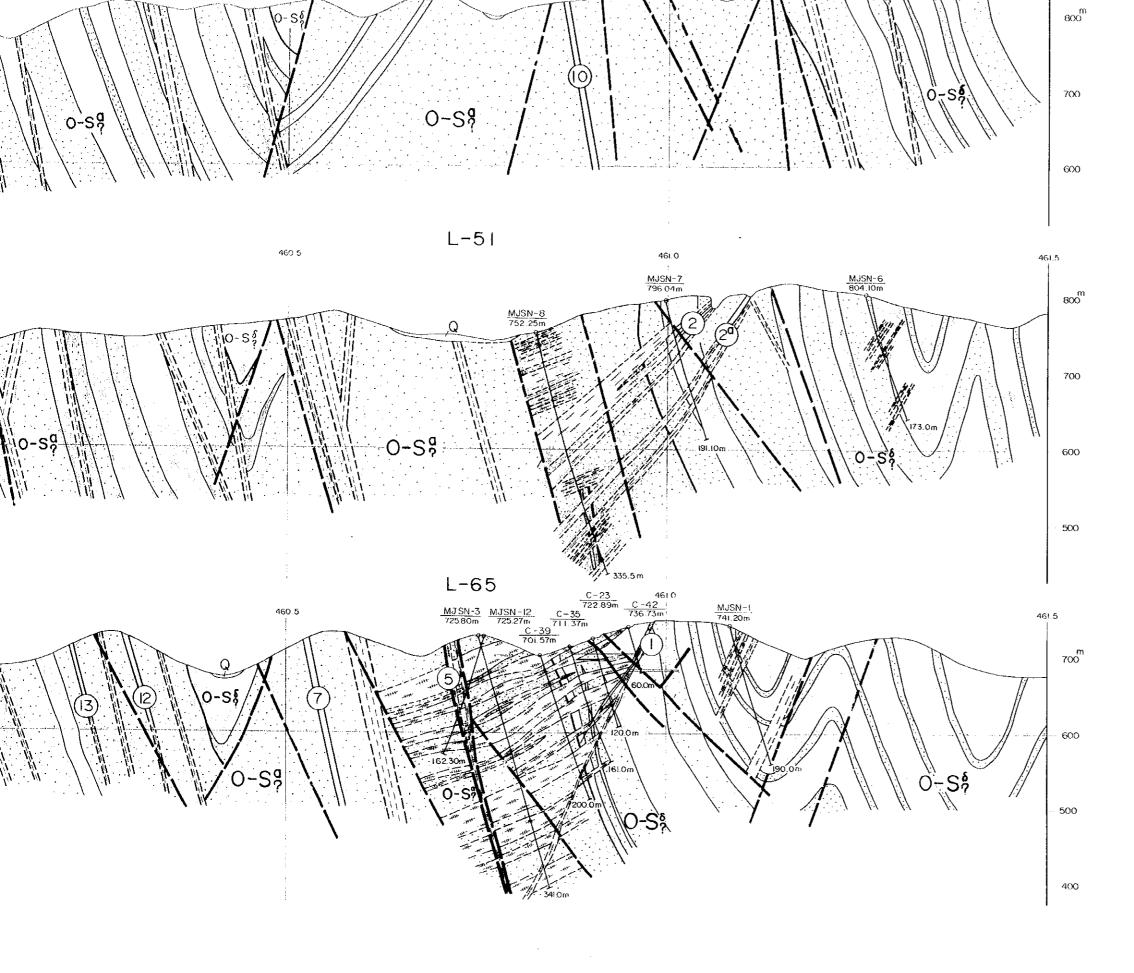

ower ilurian



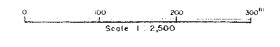
Legend

JA.

Ů....

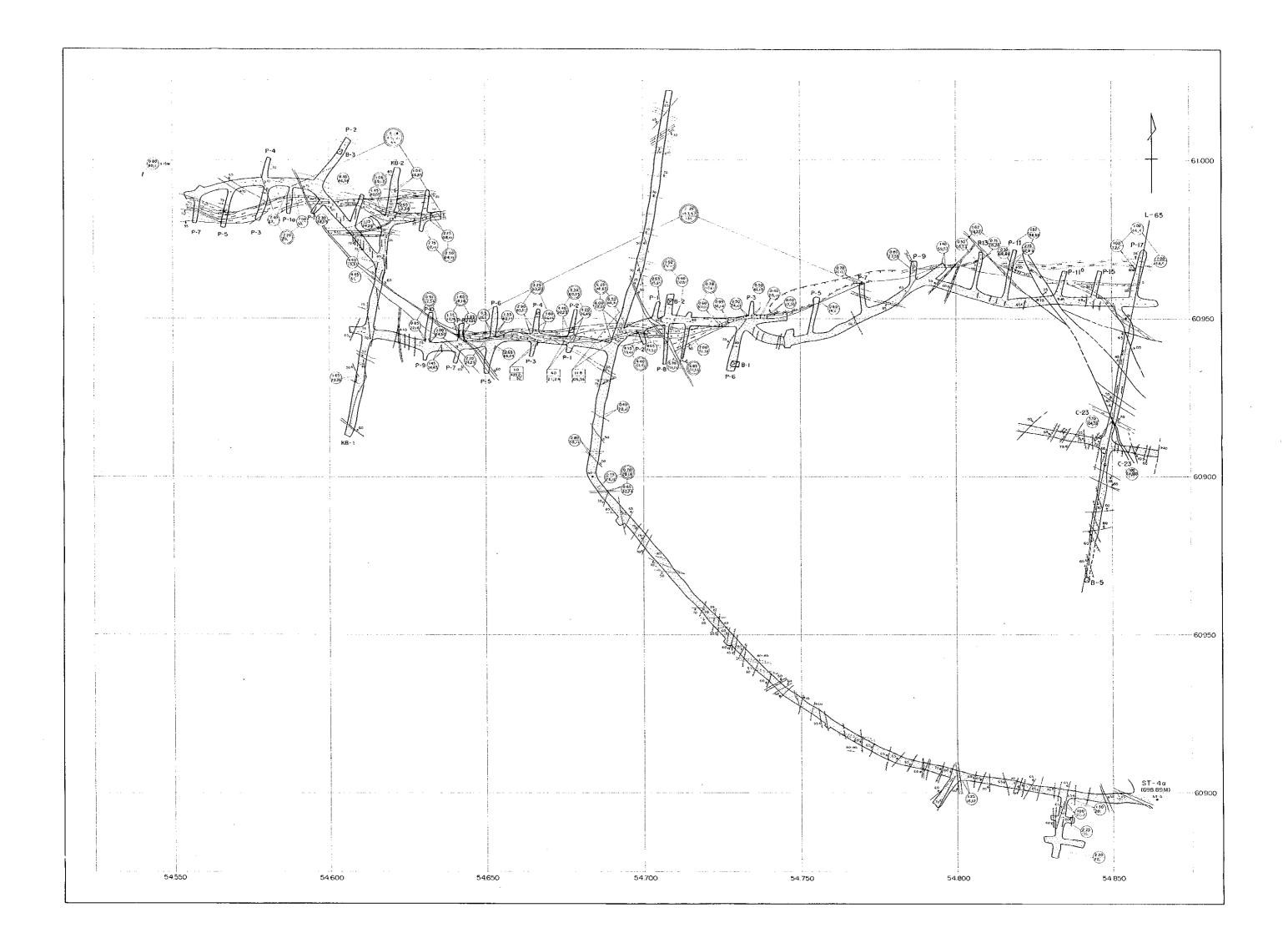

Dualemar

Lower Siluriar


Junan

ardovičiar

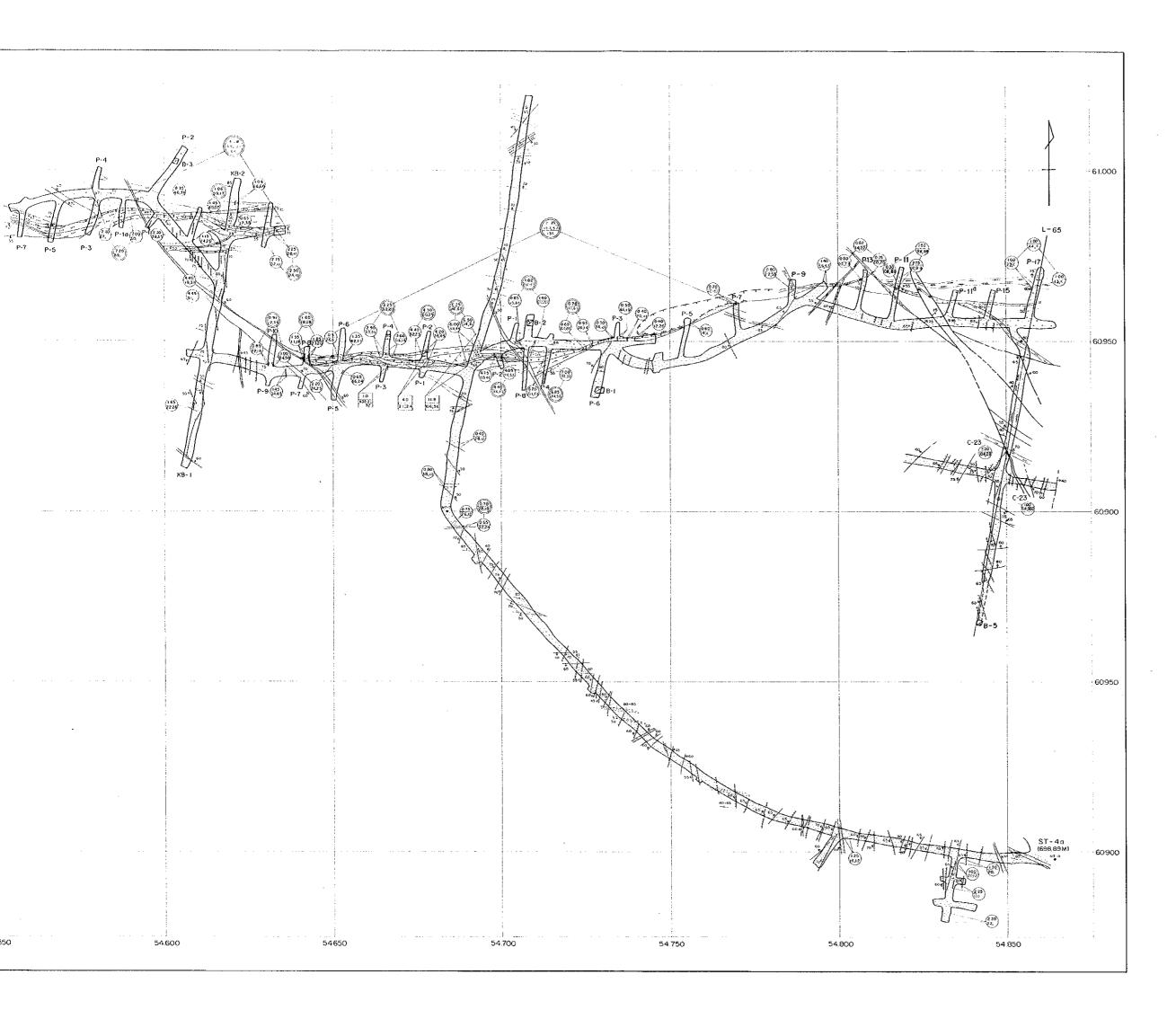
Dyke

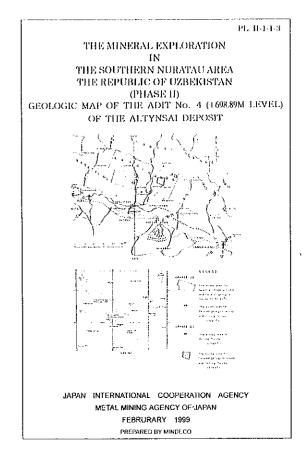


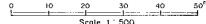
JAPAN INTERNATIONAL COOPERATION AGENCY
METAL MINING AGENCY OF JAPAN
FEBRURARY 1999
PREPARETORY INSPIN (1)

Legend

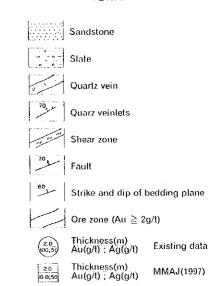
Quaternary	Q	Talus, gravel, sand
Lower	. 74	Slates, Siltstones
Silurian	$\cdot \cdot \circ i_3^* \cdot \cdot$	Quartz sandstones
Silurian I	$0.5^\delta_2.$	Cherty slates Middle Formation
' Ordovician	0-5	Cherty states }
	:0-S%:	Sandstones Lower Formation
Dyke	150	Lamprophyres
		Fractures : 1. Traced 2. Supposed
	,	Zones of brecciation and silicification
		Zones of quartz veins and veinlets
	<(5)	Ore zone and its number
	CE WEST	Drillholes: 1. Existed 2. MMAJ(1997,199

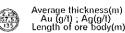

GEOLOGIC M

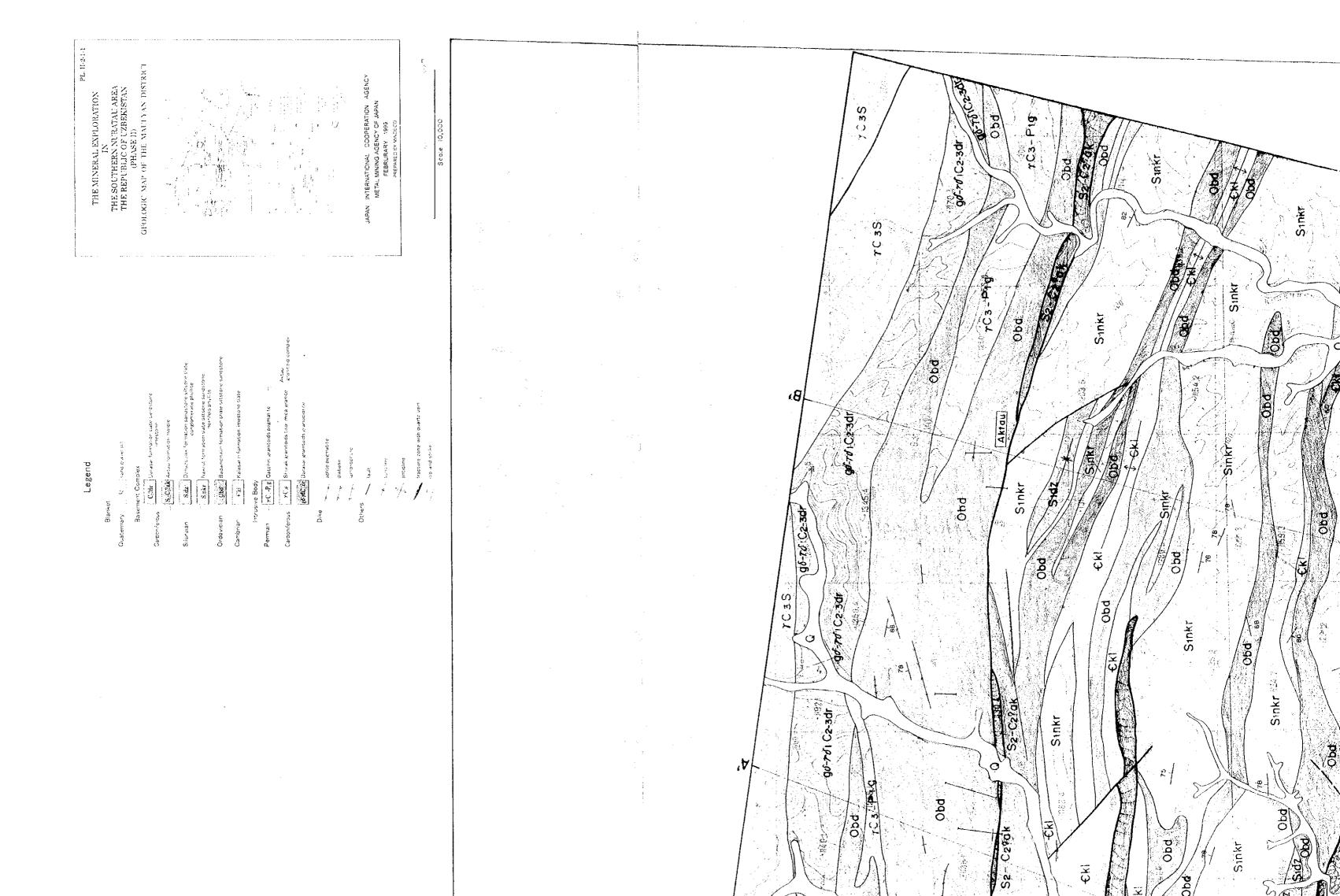

JAPAN

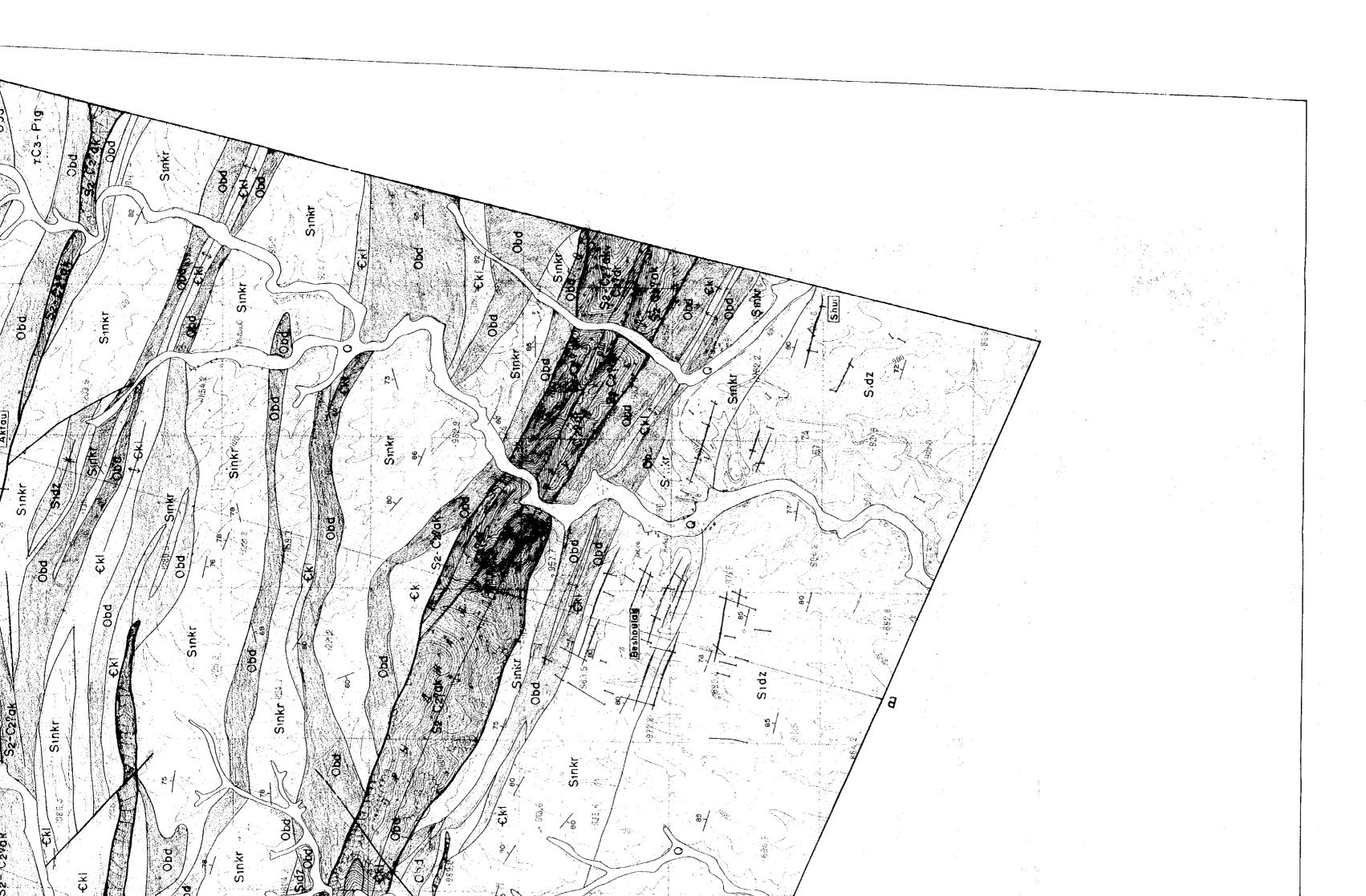

о <u>і</u>—

70

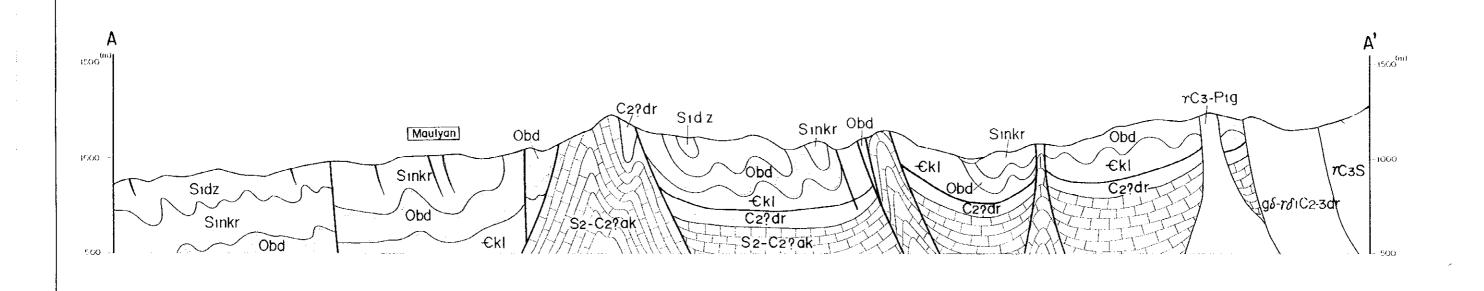

2.000 0.00

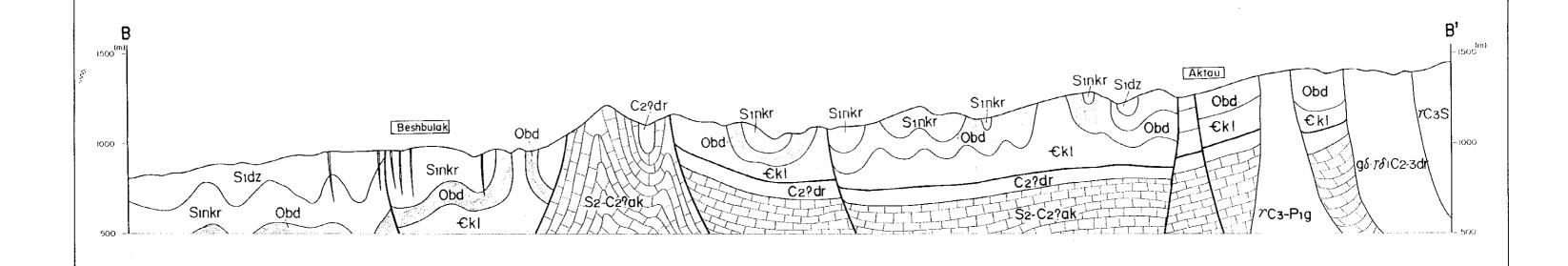


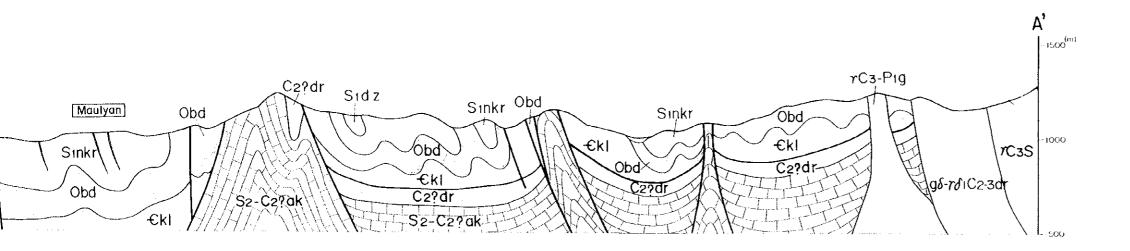


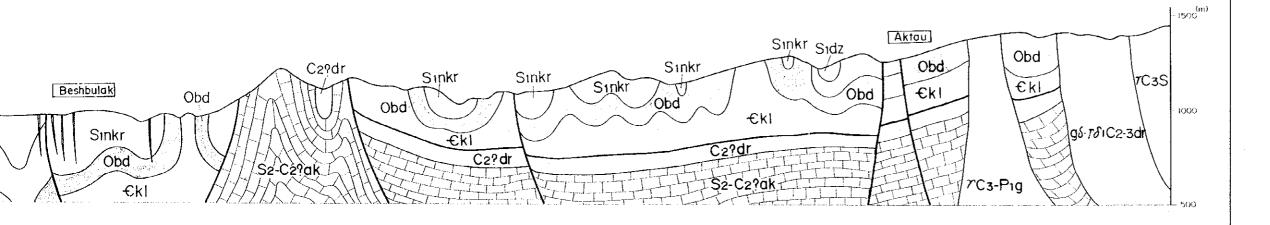


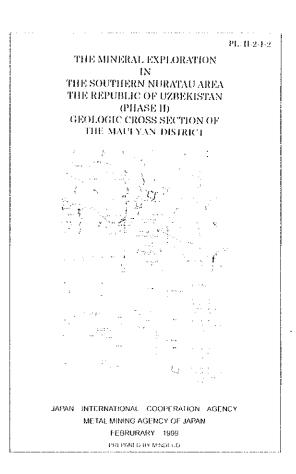
Legend

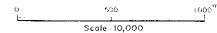












Legend

B'

Blanket

Quaternary

Q sand gravel silt

Basement Complex

Garboniferous

C.2dr Darasai formation state sandstone. Innestone

S.-C.2ak Aktau formation marble

Siluruian

S.dz Dzhazbulak formation sandstone siltsone slate. conglomerate phyllite

S.nkr Nakrut formation state siltsone sandstone hornfels phyllite

Ordovician

Olid Badamchalin formation shale siltstone sandstone

Cambrian

Ckl Kalasarin formation limestone slate

Intrusive Body

Permian

VC. P.B Gatchin granitoids permatic

Carboniferous

FC. B Shurak granitoids permatic

Dike

aplite permatite

diabase

lamprophyre

Others

fault

syncime

Aktau
granitoid complex

Aktau
granitoid complex

aplite permatite

diabase

aplite permatite

Aktau
granitoid complex

aplite permatite

Aktau
granitoid somplex

aplite permatice

Aktau
granitoid somplex

aplite permatice

Aktau
granitoid somplex

aplite permatice

Aktau
granitoid somplex

Akt

 $\frac{\rho_0}{T}$ dip and strike