Tab.II-1-9 TABLA DEL RESULTADO DE LA PERFORACION(MIMI-1)

MUMILI							
CLASS	P	PERIODO DE TRABAJO	OL		DIAS	DIAS NO	
				TOTAL DE DIAS	TRABAJADOS	TRABAJADOS	TOTAL MITAS
PREPARACION	1998. 8. 20	~	1998. 8. 21	2	F -v4	1	14
PERFORACION	1998. 8. 21	~	1998. 9. 7	18	17	٢	96
TRASLADO	1998. 9. 8	?	1998. 9, 11	3	3	0	15
TOTAL	ി	₹	1998. 9. 11	23	21	2	125
	PROFUNDIDAD DE PERFORA(RFORACION		RECUPERAC	RECUPERACION DEL TESTIGO POR CADA 100m	30 POR CADA	100m
PROFUNDIDAD PROYECTADA	4DA 300m	GRAVAS	9.3m	PROFUNDIDAD(m)	RECUPERACION DELINTERVALO	SELINTERVALO	TOTAL
LANGITUD PROLONGADA		LONG.DE TESTIGO	295.8m	$0.0 \sim 101.4$	100.3m	98.9%	98.9%
PROFUNDIDAD SUPERVISADA	ADA 300.0m	RECOBRAR	98. 60%	101.0~194.2	90. On	97.0%	98.0%
TRABAJADAS	HORA	POR PERFORACION	POR TODOS	$194.2\sim300.1$	105.5m	99. 6%	98.6%
PERFORACION	<u> </u>	61.5%	53. 4%				
DTRO EXCEPTO PERFORACION	nois 79 h	23.9%	20.8%	EFICIENCIA	ICIA		
PARA ACCIDENTES	43 h	13.0%	11.3%	TTL AVANCE / TOTAL PERIOD	QOI	13.04	mts/dia
DEPENDIENTES	5 h	1.5%	1.3%	TTL AVANCE / DIAS TRABAJADOS	AJADOS	14. 29	mts/dia
SUB-TOTAL	330h	100%	86.8%	TTL AVANCE / PERIOD PERFORADO	CFORADO	16.67	mts/dia
PREPARACION	25 h		6.6%	TTL ADANCE / SOLO POR PERFORACION REAL	PERFORACION REAL	17.64	mts/dia
DESARME Y RETIRO	25 h		6.6%	TTL ADANCE/TOTAL MITA	¥	2.4	mts/mita
TOTAL	380h		100%		ON/TIL ADANCE	0.32	mitas/mts
PROFUNDIDAD DE			RECUPERACION DE				
ADEME POR CADA	B/A×100	A : LARGO PERFORADO	TUBOS (REVESTIMIENTO)	ARTICULO			
DIAMETRO	(%)	B : LARGO REVESTIDO	(%)				
DIAMETRO(mm) P(m)	n)						
76.2 32	32.0 10.6		100	En el tiempo de la obra de la base se ofectuó la construcción secundaria del soporte de	la base se ofectuó la co	nastrucción secundar	ia del soporte de
				la base, barrera y hoyo del agua etc.	gua etc.		Pilianga had

Tab.II-1-10 TABLA DEL RESULTADO DE LA PERFORACION(MIMI-2)

		S TOTAL MITAS	20	253	27	310	A 100m	TOTAL	98.6%	99.3%	99.3%			mts/dia	mts/dia	mts/dia	mts/dia	mts/mira	mras/mrs						daria del soporte de		
	DIAS NO	TRABAJADOS	0	∞	4.5	12.5	HO POR CAL	LINTERVALO	98.6%	96. 9%	99.3%			5.08	6. 45	6.00	7.14	°.	0.84						istrucción secun		
		DIAS TRABAJADOS		42	3.5	46.5	RECUPERACION DEL TESTIGO POR CADA 100m	RECUPERACION DELINTERVALO	98. Om	100.9m	98. 9m		EFICIENCIA	ЕКІОD	ABAJADOS	PERFORADO	R PERFORACION REAL	IITA	CION/TIL ADANCE						En el tiempo de la obra de la base se ofectuó la construcción secundaria del soporte de	l agua etc.	
		TOTAL DE DIAS	7	90	8	. 63	RECUPER	PROFUNDIDAD(m)	0.0~99.4	99.4~200.4	200.4~300.0		EFICI	TIL AVANCE / TOTAL PERIOD	TTL AVANCE / DIAS TRABAJADOS	TTL AVANCE / PERIOD PERFORADO	TIL ADANCE/SOLO POR PERFORACION REAL	TIL ADANCE/TOTAL MITA	MITAS TIL DE PERFORACION / ITL ADANCE			ARTICULO			En el tiempo de la obra d	la base,barrera y hoyo del agua etc.	
	VO		1998. 8. 21	1998. 9. 10	1998. 10. 17	1998, 10, 17		3.5m	297.8m	99.3%	POR TODOS	45.7%	23.0%	16.3%	11.8%	%2.96	0.7%	2.6%	100%	RECUPERACION DE	TUBOS	(REVESTIMIENTO)	(%)		-	100%	
	PERIODO DE TRABAJO		?	}	\ \ \ \	~	FORACION	GRAVAS	LONG.DE TESTIGO	RECOBRAR	POR PERFORACION	47.2%	23.8%	16.9%	12.2%	100%				Ē	-	A : LARGO PERFORADO (REVESTIMIENTO)	B: LARGO REVESTIDO				:
	PI		1998, 8, 20	1998. 8. 21	$\sim 100.10 \sim$	1998. 8. 20	PROFUNDIDAD DE PERFORAC	300m	0	300.0m	HORA	350 h	176 h	125 h	406	741h	5 h	20 h	766h			B/A×100	(%)			30, 70%	
							OFUNDI	YECTADA	NGADA	RVISADA			FORACION			vi -				Ξ E	V ∀			P(m)		92.0	
MJM!-2	CLASS		PREPARACION	PERFORACION	TRASLADO	TOTAL	1 .	PROFUNDIDAD PROYECTADA	LANGITUD PROLONGADA	PROFUNDIDAD SUPERVISADA	TRABAJADAS	PERFORACION	DTRO EXCEPTO PERFORACION	PARA ACCIDENTES	DEPENDIENTES	SUB-TOTAL	PREPARACION	DESARME Y RETIRO	TOTAL	PROFUNDIDAD DE	ADEME POR CADA	DIAMETRO		DIAMETRO(mm)		76.2	

Tab.II-2-1 TABLA DEL RESULTADO DE LA PERFORACION(MIMI-3)

)

r		S									1				Ī			7	$\neg \neg$			~~~				
		TOTAL MITA	10	215	15	240	. 100m	TOTAL	96. 1%	98.0%	98.6%			mts/dia	mts/dia	mts/dia	mts/dia	mts/mta	mitas/mts					nia del soporte		
	DIAS NO	TRABAJADOS	0	ıc	0.5	5.5	O POR CADA	LINTERVALO	96.1%	99.8%	99.9%			7.14	8. 22	8.11	8.96	1.25	0.72					astrucción secunda		
		DIAS TRABAJADOS TRABAJADOS TOTAL MITAS	1.5	33. 5	1.5	36. 5	RECUPERACION DEL TESTIGO POR CADA 100m	RECUPERACION DELINTERVALO	92.7m	100.0m	103.2m		NCIA	KIOD	BAJADOS	ERFORADO	PERFORACION REAL	ПА	CION/TTL ADANCE					: la base se ofectuó la cor	del agua etc.	
		TOTAL DE DIAS	2	37	3	42	RECUPERA	PROFUNDIDAD(m)	0.0~96.5	96. $5\sim196.7$	$196.7\sim300.0$		EFICIENCIA	TTL AVANCE / TOTAL PERIOD	TTL AVANCE / DIAS TRABAJADOS	TTL AVANCE / PERIOD PERFORADO	TTL ADANCE / SOLO POR PERFORACION REAL	TTL ADANCE / TOTAL MITA	MITAS TIL DE PERFORACION / TIL ADANCE	**	OFFICE			En el tiempo de la obra de la base se ofectuó la construcción secundaria del soporte	de la base,barrera y hoyo del agua etc.	
	00		1998. 9. 19	1998. 10. 20	1998, 10, 22	1998. 10. 17		3.0m	295. 9m	98. 60%	POR TODOS	44.3%	13.2%	22.3%	10.7%	90.6%	5.2%	4.3%	100%	RECUPERACION DE	TUBOS	(%)		100%	100%	
	PERIODO DE TRABAJO		~	₹	2		SFORACION	GRAVAS	LONG.DE TESTIGO	RECOBRAR	POR PERFORACION	49.0%	14.6%	24.7%	11.8%	100%					TUBOS TUBOS (OEVESTIMIENTO)	A : LARGO REVESTIDO				
	E. B.	;	1998. 9. 18	1998. 9. 19	1998. 10. 20 \sim	1998. 9. 18	PROFUNDIDAD DE PERFOR	300™	0	300.0⊞	HORA	258 h	77 h	130 h	62h	527h	30 h	25 h	582h		00534/0			8	18.3	
							OFUNDI	FCTADA	NGADA	RVISADA			ORACION						:	П	Ą		P(m)	24.0	55. 1	
MUMINS	CLASS		PREPARACION	PERFORACION	TRASLADO	TOTAL	•	PROFUNDIDAD PROYECTADA	LANGITUD PROLONGADA	PROFUNDIDAD SUPERVISADA	TRABAJADAS	PERFORACION	DTRO EXCEPTO PERFORACION	PARA ACCIDENTES	DEPENDIENTES	SUB-TOTAL	PREPARACION	DESARME Y RETIRO	TOTAL	PROFUNDIDAD DE	ADEME POR CADA	DIAMETRO	DIAMETRO(mm)	101.6	76.2	

Tab.II-2-2 TABLA DEL RESULTADO DE LA PERFORACION(MIMI-4)

M J M J - 4							
CLASS	PI	PERIODO DE TRABAJO	JO				
				TOTAL DE DIAS	DIAS TRABAJADOS	TRABAJADOS TOTAL MITAS	TOTAL MITAS
PREPARACION	1998. 9. 28	₹	1998. 10. 2	3	2	3	24
NOLOVACHARA	1998 10.3	~	1998, 12, 3	63	41	22	260
TRASI ADO	1998, 12, 3	~	1998. 12. 5	I	.	8	12
TOTAL	1998. 9. 28	~	1998, 12. 5	69	44	25	296
1.	PROFUNDIDAD DE PERFOR	RFORACION		RECUPERA	RECUPERACION DEL TESTIGO POR CADA 100m	NO POR CADA	100m
PROFINDIDAD PROYECTADA	300m	GRAVAS	2.6m	PROFUNDIDAD(m)	RECUPERACION DELINITERVALO	LINTERVALO	TOTAL
I ANGITID PROLONGADA		LONG DE TESTIGO	296.7m	0.0~98.3	96.8m	98.5%	98. 5%
PROFITMENT STIPER VISADA	300.0m	RECOBRAR	98.90%	98.3 \sim 196.3	96. 1m	98. 1%	98.3%
TRABAJADAS	HORA	POR PERFORACION	POR TODOS	$196.3\sim300.0$	103.8m	100.0%	%6 .86
PERFORACION	282 h	37: 4%	34.8%				·
OTRO EXCEPTO PERFORACION	220 h	29. 2%	27.2%	EFICI	EFICIENCIA		
PARA ACCIDENTES	212 h	28.1%	26.2%	TTL AVANCE / TOTAL PERIOD	ERIOD	4.35	mts/dia
DEPENDIENTES	40h	5.3%	4.9%	TTL AVANCE / DIAS TRABAJADOS	ABAJADOS	6.82	mts/dia
SUB-TOTAL	754h	100%	93. 1%	TT, AVANCE / PERIOD PERFORADO	PERFORADO	4.76	mts/dia
PREPARACION	40 h		4.9%	TTL ADANCE / SOLO POR PERFORACION REAL	R PERFORACION REAL	7.32	mts/dia
DESARME Y RETIRO	16 h		2.0%	TIL ADANCE/TOTAL MITA	(ITA	1.01	mts/mra
TOTAL	810h			MITAS TIL DE PERFORACION / TIL ADANCE	CION/TH ADANCE	0.87	mitas/mts
PROFUNDIDAD DE			RECUPERACION DE	記事			
ADEME POR CADA	B/A×100	A : LARGO PERFORADO (REVESTIMIENTO)	(REVESTIMIENTO)				
DIAMETRO	(%)	B: LARGO REVESTIDO	(%)				
DIAMETRO(mm) P(m)							
101.6 12.6	4		100				
76.2 97.0	32		100				
60.3 196.3	65		100				

Tab.II-2-3 TABLA DEL RESULTADO DE LA PERFORACION(MIMI-5)

M J M I —5							
CLASS	표	PERIODO DE TRABAJO	JO			DIAS NO	
				TOTAL DE DIAS	DIAS TRABAJADOS	TRABAJADOS	TOTAL MITAS
PREPARACION	1998, 10, 13	₹	1998, 10, 13	1	1	0	15
PERFORACION	1998, 10, 13		1998. 10. 27	14	13	2	81
TRASLADO	1998, 10, 28		1998. 10. 29	2	↓	0	15
TOTAL	1998. 10: 13		1998. 10. 29	17	15	2	111
	PROFUNDIDAD DE PERFORACION	VFORACION		RECUPERA	RECUPERACION DEL TESTIGO POR CADA 100m	30 POR CADA	100m
PROFINDIDAD PROYECTADA	300m	GRAVAS	2.0m	PROFUNDIDAD(m)	RECUPERACION DEL INTERVALO	LINTERVALO	TOTAL
LANGITUD PROLONGADA	į	LONG DE TESTIGO	292. 9m	0.0~66.8	92.6ш	92.8%	92.8%
PROFINDINAD SUPERVISADA	300. Om	RECOBINAR	92.60%	99.8~207.8	108. Om	100.0%	96. 5%
TRABAJADAS	HORA	POR PERFORACION	POR TODOS	207.8~300.0	92. 3m	%6 '66	97.6%
PERFORACION	235 h	95. 9%	81.0%				
OTRO EXCEPTO PERFORACION	10h	4.1%	3.4%	EFICI	EFICIENCIA		
PARA ACCIDENTES	0 h	0.0%	0.0%	TIL AVANCE/TOTAL PERIOD	екор	17.65	mts/dia
DEPENDIENTES	ЧО	0.0%	0.0%	TTL AVANCE/DIAS TRABAJADOS	VBAJADOS	20.00	mts/dia
SUB-TOTAL	245h	100%	84.5%	TIL AVANCE / PERIOD PERFORADO	ERFORADO	21. 43	mts/dia
PREPARACION	30 h		10.3%	TTL ADANCE / SOLO POR PERFORACION REAL	R PERFORACION REAL	23.08	mts/dia
DESARME Y RETIRO	15 h		5.2%	TTL ADANCE/TOTAL MITA	OTA	2.7	mts/mita
TOTAL	290h		100%	MITAS TIL DE PERFORACION/TIL ADANCE	CION/TIL ADANCE	0.27	mitas/mts
PROFUNDIDAD DE			RECUPERACION DE				No.
ADEME POR CADA	B/A×100	A : LARGO PERFORADG	(REVESTIMIENTO)	ARTICULO			land, Parka, I nch
Diraweino	(%)	B: LARGO REVESTIDO	(%)				ent menjaga,
DIAMETRO(mm) P(m)							Por m
101.6 16.0	5.3		100	En el tiempo de la obra d	En el tiempo de la obra de la base se ofectuó la construcción secundaria del soporte	instrucción secunda	nia del soporte
				de la base, barrera y hoyo del agua etc.	del agua etc.		adeciment :

Tab.II-2-4 TABLA DEL RESULTADO DE LA PERFORACION(MIMI-6)

M J M I —6

ION 1998. 10. 24 — 1998. 10. 25 ION 1998. 11. 19 — 1998. 11. 19 PROFUNDIDAD DE PERFORACION 1998. 11. 19 — 1998. 11. 19 PROFUNDIDAD DE PERFORACION GRAVAS 2. 3m PROFUNDIDAD DE PERFORACION GRAVAS 2. 3m ROLONGADA 0 LONG DE TESTIGO 299. 7m SUPERVISADA 300. 0m RECOBRAR 99. 90% AS HORA POR PERFORACION POR TODOS ION 390'h 95. 9% 81. 0% ATES 0h 0. 0% 0. 0% LES 0h 0. 0% 0. 0% LES 0h 0. 0% 0. 0% LES 0h 0. 0% 0. 0% LON 10h 5. 2% ETIRO 5h 100% CADA B/A×100 A: LARGO PERFORADO (%) B: LARGO REVESTIDO (%) B: LARGO REVESTIDO	PERIODO DE TRABAJO			DIAS NO	
1998. 10. 24		TOTAL DE DIAS I	DIAS TRABAJADOS	TRABAJADOS	TOTAL MITAS
1998. 10. 25	?	2	y4	0	12
1998. 11. 19	7	25	23	2	129
1998. 10. 24	`	ľ	1	0	12
FUNDIDAD DE PERFORACION SCTADA 300m GRAVAS 2.3m GADA 0 LONG DE TESTIGO 299. 7m VISADA 300. 0m RECOBRAR 99. 90% HORA POR PERFORACION POR TODOS 390 h 4.1% 3.4% RACION 55 h 4.1% 3.4% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	?	28	25	2	153
GCTADA GRAVAS 2.3m GADA LONG DE TESTIGO 299. 7m VISADA 300. 0m RECOBRAR 99. 90% VISADA POR PERFORACION POR TODOS RACION 55 h 4. 1% 3. 4% RACION 55 h 4. 1% 3. 4% RACION 55 h 0. 0% 0. 0% 10 h 0. 0% 0. 0% 10. 0% 5 h 10 h 5. 2% 5. 2% 5 h 10 h 100% 84. 5% 8/A×100 A : LARGO PERFORADO RECUPERACION DE TUBOS R(%) B : LARGO REVESTIDO (%)	DE PERFORACION	RECUPERAC	RECUPERACION DEL TESTIGO POR CADA 100m	3O POR CAD	A 100m
GADA 0 LONG DE TESTIGO 299.7m VISADA 300.0m RECOBRAR 99.90% HORA POR PERFORACION POR TODOS 390.h 95.9% 81.0% RACION 55 h 4.1% 3.4% 0h 0.0% 0.0% 475h 100% 84.5% 10h 10.3% 5.2% 5h 5.2% 5.2% 290h 100% TUBOS R/A×100 A:LARGO PERFORADO RECUPERACION DETUBOS (%) B:LARGO REVESTIMENTO) (%) B:LARGO REVESTIDO	S	PROFUNDIDAD(m)	RECUPERACION DELINITERVALO	LINTERVALO	TOTAL
VISADA 300.0m RECOBRAR 99.90% HORA POR PERFORACION POR TODOS 390.h 95.9% 81.0% RACION 55 h 4.1% 3.4% RACION 0.0% 0.0% 0.0% 0h 0.0% 0.0% 0.0% 475h 100% 84.5% 10.3% 5h 5.0 10.3% 10.3% 290h 100% 5.2% 100% 8/A×100 A:LARGO PERFORADC (REVESTIMIENTO) (%) B:LARGO REVESTIDO (%)	LONG DE TESTIGO	0.0~100.7	100. 4m	99. 7%	99.7%
HORA POR PERFORACION POR TODOS 390 h 4. 1% 3. 4% 81. 0% 81. 0% 81. 0% 81. 0% 82. 6% 95. 9% 96. 9% 97. 0% 97	RECOBRAR	100.7~207.3	106. 6ш	100.0%	96.66
390 h	POR PERFORACION	207. 3~300. 0	92. 7п	100.0%	96.68
Nacion 55 h	95.9%				
30 h 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	4.1%	EFICIENCIA	ICIA		
0h 0.0% 0.0% 84.5% 100h 100% 84.5% 100h 100% 10.3% 290h 5.2% 100% RECUPERACION DETACKO PERFORADC (REVESTIMIENTO) (%) B:LARGO REVESTIMIENTO) (%) (%)	0.0%	TIL AVANCE/TOTAL PERIOD	con	10.71	mts/dia
10 h 100% 84.5% 10 h 10.3% 5 h 5.2% 290h 100% RECUPERACION DE TUBOS (%) B:LARGO PERFORADO (REVESTIMIENTO) (%) B:LARGO REVESTIMIENTO)	0.0%	TIL AVANCE / DIAS TRABAJADOS	AJADOS	12	mts/dia
10 h 5. 2% 290h 5. 2% RECUPERACION DE TUBOS B/A×100 A:LARGO PERFORADC (REVESTIMIENTO) (%) B:LARGO REVESTIMO (%)	100%	TTL AVANCE / PERIOD PERFORADO	RFORADO	12	mts/dia
5 h 5.2% 290h 100% 8/A×100 A:LARGO PERFORADG (REVESTIMIENTO) (%) B:LARGO REVESTIMIENTO) (%) (%)		TTL ADANCE / SOLO POR PERFORACION REAL	PERFORACION REAL	13.04	mts/dia
290h 100% RECUPERACION DE TUBOS B/A×100 A:LARGO PERFORADG (REVESTIMIENTO) (%) B:LARGO REVESTIDO (%)		TTL ADANCE/TOTAL MITA	Α.	1.96	mts/mra
RECUPERACION DE TUBOS B/A×100 A:LARGO PERFORADG (REVESTIMIENTO) (%) B:LARGO REVESTIDO (%) P(m)		MITAS TIL DE PERFORACION / TIL ADANCE	ON/TIL ADANCE	0.43	mitas/mts
B/A×100 A:LARGO PERFORADG (KEVESTIMLENTO) (%) B:LARGO REVESTIDO (%)		DE ARTICULO			
P(m)	A : LARGO PERFORADO	()	of all Assessment of the second of	Series and an artist and	مبيريوري آمار ونبوئا
		de la base, barrera y hoyo del agua etc.	el agua etc.		
	4 100	Hasta la terminación del barreno final de esta área se dejó como reserva la máquina	rreno final de esta area	se dejó como res	erva la máquina
75. 9 214. 9 71. 6 100 sin		sin hacer eldesmontaje de la máquina de la perforación y el retiro	a máquina de la perfora	sción y el retiro	

Tab.II-2-5 TABLA DEL RESULTADO DE LA PERFORACION(MIMI-7)

9

MJM1-7							
CLASS	P	PERIODO DE TRABAJO	JO			DIAS NO	
				TOTAL DE DIAS	DIAS TRABAJADOS	TRABAJADOS TOTAL MITAS	TOTAL MITAS
PREPARACION	1998.10.24	}	1998.10.26	.2	2	0	4
PERFORACION	1998.10.26	~	1998.11.20	25.5	23	1.5	22
TRASLADO	1998.11.20	~	1998.11.21	1.5	1	0	18
TOTAL	1998.10.24	~	1998,11,21	29	25	1.5	141
	JAD DE PEI	PROFUNDIDAD DE PERFORACION		RECUPERA	RECUPERACION DEL TESTIGO POR CADA	O POR CADA	100m
PROFUNDIDAD PROYECTADA	300m	GRAVAS	51.8m	PROFUNDIDAD(m)	RECUPERACION DELINTERVALO	LINTERVALO	TOTAL
LANGITUD PROLONGADA	0	LONG.DE TESTIGO	287.0m	0.0~105.0	92.3m	87.9%	87.9%
PROFUNDIDAD SUPERVISADA	300.0m	RECOBRAR	95.60%	105.3~221.2	115.9m	99.7%	94.1%
TRABAJADAS	HORA	POR PERFORACION	POR TODOS	221.2~300.0	78.8m	100.0%	%9:56
PERFORACION	315h	%L'6L	72.4%				
DTRO EXCEPTO PERFORACION	80 h	20.3%	18.4%	EFICIE	EFICIENCIA		
PARA ACCIDENTES	0 h	0.0%	0.0%	TTL AVANCE/TOTAL PERIOD	TOD	10.34	mts/dia
DEPENDIENTES	Oh	0.0%	0.0%	TIL AVANCE / DIAS TRABAJADOS	BAJADOS	12	mts/dia
SUB-TOTAL	395h	100%	90.8%	TTL AVANCE / PERIOD PERFORADO	ERFORADO	1.76	mts/dia
PREPARACION	20h		4.6%	TTL ADANCE / SOLO POR PERFORACION REAL	R PERFORACION REAL	13.04	mts/dia
DESARME Y RETIRO	20 h		4.6%	TTL ADANCE/TOTAL MITA	ПA	2.13	mts/mita
TOTAL	435h		100%	MITAS TIL DE PERFORACION/TIL ADANCE	CION/TIL ADANCE	0.26	mitas/mts
PROFUNDIDAD DE			RECUPERACION DE TUBOS	ARTICULO			
DIAMETRO	B/A×100	A: LARGO PERFORADO (REVESTIMMENTO)	(REVESTIMMENTO)		arreno final de esta área s	e dejó como reser	va la máquina sín
	(%)	B : LARGO REVESTIDO	(%)	hacer eldesmontaje de la máquina de la perforación y el retiro	náquina de la perforación	y el retiro	
DIAMETRO(mm) P(m)							
101.6 51.8	17.3		100				
							abalthelib

MJI Terri	CEDEOGY	ROCK	DESCRIPTION	MENER	ALTR.	Nο	FROM	10	L	Au	A.g. (g1)	(a)	Pb	Z.n
(m)			**************************************				(01)	(m)	(m)	(81)	(gt)	(3)	(%)	(*4)
	1												1	
					1									
		· ·	-											
		Sott	Supergene kaolinite					1						i
93	2333						i i		Ċ				: 1	
,,		l	Gray massive Andesite			l								
	* * * *	1	partly strongly altir		argillic									
	3 3 3 3	Andesite	along fracture	W-	-									
		lava	415 65-15.85m strong silicified vein	-20cm	-		į į	1.			•	1		
	* 5 5 5	(massive)	*17.0m~ strongly ali'r hem net											
	1111		*19.7m~ massive Andesite lava	İ	-	1								
	1111				~					ŀ				ŀ
	1111				-			j i	;	ĺ				
>5.1	2333				~		1				1	1	1	Ì
• • • •	2424		Gray ah'r		-	1								
	د د د د	tuff-breccia	andesitic tuff-breceia	١.,	-	i i								
	2 4 4 2		*27.2~27.3m quartz vein frags.	≠10cm		l			i				1	Ì
31.0					-	İ		1		ĺ				
	• • • • • • •	lositi suO	*32 6m - clay along fracture	1		1	1					1	ļ	1
35.1	1 2 4 2	lapilli-tuff	*35 1~35,4m quartz vein	=30cm	-	04	35.10	35.90	0.80	01	2	0.01	001	0:
	2 2 2 2	tuff-breecia	*35.4~35.9m silicified vein	50cm	-	1					-			
37.1		Andesite		1	~~~~			1	1		1	į .		
	1333	Java				1	1				i	1		
	3.3.3.3	(massive)			-	ĺ	1			ļ				
	1311		*46 85in quarte vein frags	*5cm*	_					1				
46.9	9 - 4 4 4	*****	40 oane dusses eem trags	-X.1.2	Ţ	ı		i	1	l		ļ		
	1424		Weak subcified		-	1	i		1	ĺ	1			l
	2424	tuff-breceia	and hematite net in frac		propilitie	1	ĺ				}	1		
	1224			l	Frence									1
	1242		,	1	1			1		1			1	
	2 B A 4 .		i	1	[.		1	1	1				1	l
	3 4 4 4				} •		ļ			l	İ	1		1
	2422				1.	1	1	1		l	1	1		1
	3 2 2 2 3				ļ <u>.</u>				l	l		1		1
	1222			1	-	1		1	1	1			ł	
	1:22:			1	1:			ļ		1.	ŀ			
64.	C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Volcanic					Į.	1	1	1			1	
	552.		Purplish gray	į.	}-	1								
	1.2.2.2		*67 55m w=1 5cm Qu. Vein	-1 5cm	į.	1	1			1				
	1 2 2 2 3		240]-			İ		1				1
	، ت ش ت	Į.			ŀ		1	1	1			-		
	1 4 4 4	į	*70 0m w=1cm Qtz. Vein ∠30 *70.45m w=1cm Qtz. Vein ∠30	-tem-	ľ.		1	1	1				1	
	12.2.2	1	10.45/11 11 11/11 2.50	1	ļ.		1				1	1		1
'			1	1	Ŀ	1	1							
	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		Į.		1		i				1	1
	444.		1		ŀ	1	ŀ	1	1	1		}		1
	1	1	1		j:	1	j	1	1	1	1	Į	1	
]	<u>"</u>	1	-	İ			1					
	1223				 	1			l					
9.4	1-45.	tuff-breccia			1.	1	1		1	1				
	· C _1 _2 , _1	ion-ciccos	Mainly consists of		j.			1						-
	2242	ł	glassy andsite frags		<u> </u>	1				Ì			1	
	2 2 2 2	· ·	and rare accidental frag	5	[:		1				1		1	
1	2.2.2.2				-	1			1	1	1			
ŀ	1322		•94.1~94.6m strong argillic alt'r			1	1							1
i		1	*94 2m w=1cm Qtz vein	*Icn:*	[-	1			1					1
1	7 7 7 7					1		1	1		1			1
l	0.3.1.1	1						1	1		1			
l	1	1	1		ı		1	1	1	1	1	r .	1	1

Fig.II-1-9 COLUMNA DE LA PERFORACION DEL BARRENO MJMI-1

MIMI-1-(2)

(3)

	MJI	MI-1-	(2)									100	m-2	:001	ıì.
		CEOLOGY	ROCK	DESCRIPTION	MONER	ALTR	No	FROM (m)	OT (a)	(m;)	Au (31)	Ag (31)	Cu (**)	Pb L'+J	Zn (**)
ĺ	103.3 103.8	2225	Andesitic tuff-breecia	Strong clushed zone by fault Sandy andesitic tuff	W+ 1-2cm										
110	105 5 106.5 107.6	2 4 4 4 2 4 4 4	Andesitic tuff-breceia	Strongly argillic ah'r W=1-3cm,cilicified vein Gray andesitic tuff-breecia with argillic ah'r	Зопа										
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Medium argillic afte											
120	120,85	1 2 4 5 . 2 2 2 2 2 2 3 2 2 3 2 2 2 2 2		Purplish gray lapilli-tuffjelongsted lapilli			ļ								
	125.0	[·····/		Sandy tuff Fault breecia O gray andesitic tuff-breecia with propilitic altr			į								
130		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													
140		2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4													
150	147.0	1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Sheared zone(10cm)	ļ									:	
	1517	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	į	W=Smm_quartz veinlets*4	ວັສນາກ	- - -		1				İ			
160	158 2	1 2 4 6 1 4 5 4 8 1 4 5 4 6	********	Z 60		<u> -</u>									
	162.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Andesite tava (auto-breceiated)	Volcanic conglomerate- D.gray Andesite, breeciated with stheified and Py. Diss		~~ NXX ~~ NXX									
170	£70 :	5	Andesite lava (massive)	Gray massive andesite *172 2m Cal veinlet Z 80 173 5-altered and w siticified with drusy que net(1=30cm) *178 8m drusy que. Net(1=50cm) with pyrite diss	set		Dł-2	£73.50	173.80	0-30	0.0	0	0 02	0.01	0.04
180		1		*180.tm w-5cm qtz-hem. Vein		_	Df-3	179.00	179.30	030	0.0	0	0.00	0.00	0.01
		1111		*185.4m w-1~3num qtz net *186.8m w-5mm qtz veinfets 	t -3mm 5mm	•	D1-1	183.45	183.85	0.40	0.0	C	0.00	0.00	001
190	190	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	. Andesite Lava	P greenish gray andesite auto-breeciate. *190.3m- py disseminated		:									
	195	5 (A) A () A) A () A) A	Andesite fava (massive)	Dark gray massive andesite											
200		<u></u> _			L	<u> </u>	<u>L</u>	<u> </u>	L	<u> </u>	L	<u> </u>	L	L	L

^{~ ~}argillic alteration

^{**} propilitie alteration ** silicification

(3/3)

MJMI-1-(3)

200m-300m

1	(VIJI	WH-1-	(3)									ZUU	m-3	UUII	1 -
	DEPTH (m)	CEOLOGY	ROCK	DESCRIPTION	MINER	ALTR	No	FROM (m)	10 (m)	(m)	.4u (18)	Ag (g.t)	Cu (**)	86 1°11	Zn t'aj
	200.9	A A A A A A A A A A A A	Andesite fava	p greenish Andesite lava auto-breecisted		, , , , ,		(11)	(III)	()	30			1.2	<u>,,,,,</u>
210	2100	A A A A A A A A A A A A A A A A A A A	Andesite toff-breceia	209 5m- weak silicified Andesitie Tuff breecia		* ¥									
236	220 4	2 3 3 4 2 4 6 4 4 4 4	Andesite lava	219.9m~220.4m Fractuated Purplish gray Andesitie Iava, brecciated									·		
230															
240		A A A A A A A A A A A A A A A A A A A		Calcite net											
250		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
260	262 (44444	Andesite vol-breccia Andesite	Andesitic Volcanse breecis *254-255m calcite net many Gradually change to Andesitic tuff-breecis											
270			tuff-breccia	*265.2m-50cm siticified with Py. dissemination *268.4m-weak aftr			DI-5	265 20	2 65 .70	0.50	0.0	٥	0.00	0.60	0.01
280	278.1	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Andesite vol-breccia	276 1~277.1m strongly fracutuated Dark gray Andesitic volcanic breecit calcite net											
290															
360															

~ ~argillic alteration

** propilitic alteration

** silicification

		MI-2-		7	MINER	ר מרווים	· · · ·	Ep 14	17.			0m			
	(m) OF 1.1H	CEOLOGY	ROCK	DESCRIPTION		ALTR	No.	FROM (m)	10	(m)	A4 (31)	Ag (g t)	Cu (*+)	(da	Zn (**)
		1 + 1 + 2 2 + 2 + 5 3 + 2 + 5 3 + 2 + 3	So:1		i	l supergene kaolinite									
10	11.9	2 + 1 + 7 1 + 0 + 2 2 + 1 + 3 5 + 1 + 3 1 + 1 + 3		Dark gray stlongly weathered											
	14.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Andesite fava	andesite, massis e	/P.=							1			
20		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*18 3~18.5m weak argiffized zone with w=1~5mm Qtz not *19.8m~ weak argiffic afte	1-5สมท	,									
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*24.7~24 8m w=0 5~1cm Qtz. Veinlets	lem										
30		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*30.8m -calcite net											
40	41.4	Δ Δ Δ Δ Δ Δ Δ Δ Δ	Andesite lava (auto-brecciated)	Stlongly clushed zone by faulting *45.8m-w=1~5mm cal veinlets								,			
50				48 Om fault breccia		Supergene						į.			
સ્ક		00000000000000000000000000000000000000				overprint									
70	70 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Andesite (massive)	Dark gray massive andesite with calcite veinlets	cal net										
80		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•77.85m w=2cm Qtz. Veinlet £7Q •78.0m w=3cm Qtz. Veinlet £70 •~79.0m w≠1~5mm Qtz. net	*2cm *3cm Quet		D!-6	78 00	78 05	0 .05	0.0	0	0.00	0.00	00
		1 1 1 1 1 1 1 1		83.3-84 9m argillized with Py, diss. 85 0m - d gray nassive with Py. 86.5-86.9m Py. Diss. rich	Py: Py	~~	D1-7	86 50	8690	0,40	0.0		0 0 1	0.00	• • 0
90		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		91 Sm- clushed,w. argiffized											
too		V A V A V A V A V A V A V A V A													

()

Fig.II-1-10 COLUMNA DE LA PERFORACION DEL BARRENO MJMI-2

(2/3)

MJMI-2-(2)

		11-2-1	(4)									100	,,,,,	400		
[0	(Π)	FOLOGY.	ROCK	DESCRIPTION	MINER	ALTR	Nэ	FROM (m)	TO (m)	L (m)	(g)	Ag (g t)	(2)	₽b (°÷)	Zn (%)	ł
}-		1 1 1	Andesite				1									l
	,	. 3 3 3	(massive)	l		1										į
- 1	103 6			Strongly fractuated massive Andesite	Py diss											į
ļ	- 1			masive reaceste	1											
	1063			D gray massive Andesite	Py 5:55	•										l
1		. 5.5.5		reolite(chabazite) veinlets	ŀ	i										
116		1111		109 7m-strongly Eactuated zeolite-pyrite veinfet	Py diss		DI-8	110 30	110.40	0.10	0.0		0.13	0.00	0.01	
- 1				111 Om-d gray massive	.,						1					ĺ
				ì		1		1					,			ĺ
ı				117.6m - 10cm diss. Pytrich	Pyrionic	ì							Ì			
					,		i			!						
				la transita												ĺ
120	119.3			Spongly argillic alt'r 120 5m~ weak argillic alt'r	ŀ		1				ĺ					l
	1227]		clay veinlet ∠ 30			1	1	Į				1			1
	1			D gray massive Andesite			1		i	ļ		ļ		'		
ı	L			zeolite nel	1	1	1			1	ŀ	1				l
				<u>}</u>		1	1	1					1		,	
	1	1 1 1 1		128.3m-weak argillic altr	1		1		ŀ	i			1			1
130				129.8m- strong alt'r			}			1	1			1		
j		1111		130 2m-weak alt'r massive And		-	i		1	1		1		1		
1		1 1 1 1		*131.9~132 2m Py. Diss. rich	P) conc	}-	1									
1	1	1111		zeolite(chabazite) net Digray massive Andesite	<u> </u>	[ļ.				1	Į		
	l			O.S.Ly massive randome					}	1	l			į		
	İ					1			1					1	ļ	ĺ
140	- 1	1111		Ì		1		l		}		1	l			
ĺ	- 1						1	ļ							}	
						İ	1	1			1		1			1
		1111		į			ł		Ì		1				1	
	147.5			strong fractuated			1			1		1	1	1		ı
		1111		Py. diss along fractur	e Py diss		1				ł					
150	•	1111		D gray massive compact 151.0m-strong fractuated			1		ł				1	-		
ļ				*152 2m W-5cm Qtz.veinlet	W+5cm		D(-9	152.20	152.23	0.65	0.1	d .	0.0	0.00	0.00)
- 1			4 . 3	*355.5-155.8m Py rich		1			1						l	1
	1367	Δ Δ Δ Δ	Andesite (brecciated)	D gray Andesite lava brecciate	4	1	i	1			İ					
		ΔΔΔ	(22727477		1							1				
.,,		$\Diamond \land \Diamond$			1			1	ļ	1	1	1	ļ			
160		5		*161 6m w=1cm Qtz. Veinlet	=1ces=	}	1		1		1		1	1		
		5 A A				1			1	1				1	1	1
]		i			İ	İ		1			1	-	-		
		A A Z		*167.4m w=5mm Qtz. Veinlet				1	ļ		1					
		5 5 C		∠7	0 = 5mm	•	1		1		1	1	1	1		
170	159.7	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Andesite	169.4~169 7m strong factuated d gray Andesitic	ł	i			1	1			1			1
•••	l		(Vol Brc)	Volcanie breedi	a			1			1		Į.	1]	
	1	2 2 2 3	1		1	1	i				1	1		ĺ		ı
	[1 2 2 2	1	1	1						1					1
	1	3 1 2 2	ł			1				1	1					1
				*177.8 - strong fractuated(fault) *179.4m w=1cm Qtz. Veinlet	1,00				1	1		1		1		
180	1		1	1 1 1 3 4 th M= 1 cm Grs. A curier	lens io	l			-		Į				1	1
	}	1 1 1 1	1	D. gray Andesitic	1	[~			1		1			1	1	
	1		1	Volcanie breeei meak to medium argillized	3,]			1				1	
		2 4 4 4	1	*184,4~185.0m Qtz. vein Gags					1		.				1	
	186.5			frags with Cp, in fault cle	ay 5 ags		DI-10	184.4	0 85.0	0 0.6	0.	1	0.0	5 0,00	0.0	ų.
		<u></u> -	Andesite (toff bro)	D gray~reddish gray Andesitic tuff brece	(a)		1					ĺ			1	ļ
190		1111	(ton the)	resonante test estet	~		1]	1	1					1	1
		5 2 2 3	ł	}												
		1 2 4 2	ĺ			1			1	j						
	i	1111		1	1	1			1						1	
		1215		1		1				1			1		1	J
		5 4 4 ±	1	ĺ		l l		l				1		1		1
260			1					-				1		1		
					<u> </u>											_

^{~ ~}argiffic alteration

[&]quot;* propilitic alteration

^{**} silicification

NAINAL O (2)

200m 200m

	MJ:	MI-2	-(3)									200	m-3	300a	n
	DEPTH	GEGROCI		DESCRIPTION	MINER	ALTR	No	FROM (in)	TO (m)	ī.	Au	Ag (§1)	Cu (*+}	fb (*)	Žn (*+}
- }	(m)			\$200.4-fractisted oxidized				(17)	- (m)	(m)	(g.t)	-(8-1)		`**	·"
	202.7			Reddish brown Andesitic				: I	i			ļ			l
			Andesite (tuff brc.)	lapilli tull						l		ļ		ľ	J
- 1			(tunt energy							- 1					1
													ļ	Į	
210				2(0.)~211 3m fractuated				1						ĺ	į
														ĺ	
					İ								- {	ļ	- 1
							i							i	- 1
		.]	·i	*216.0n/- w=1-2mm zeobte v.									ļ	Į	l
	217.5 219.5	5 4 4 4 4		Gradually change to Sandy tuff Andesitic tuff breedia									i	Ì	ĺ
220		2 2 4 2	Andesite	ļ		Ì	1								- 1
		2 4 4 4	(teff brc.)											ļ	Į.
	1	3 4 4 4	1		1]						1		
	ĺ	3 4 4 4	ł			ļ	1	ļ					1		J
		2 2 2 2	i	*228 0-228 8m w=3-5mm	zone			ì	ļ						- 1
	ļ	2 2 2 2	ł	Quartz-dolomits-zoolite veinfets			DI-11	227.90	228 50	0.60	9.2	1	0.09	0.00	0.02
230		2 4 4 5	1	*231 5m w=1cm Qtz-dot, Veinlet	w=lcm	}	1			ļ					
		2242	1	. 260)		1				ļ				
	1	2 8 4 8 2 8 2 8	1	*233 3m w=5mm Qtzdol. Veinlet 260	w=5inm	1		1		l					
		1222	1												
		÷										1			
240		2444										1	}		·]
	ļ	2 4 4 4		flow unit boundary		1		1		Ì					
	243.	3		Reddish brown Coarse tuff	Į	}		1	ļ						. 1
		1	Andesite				1					ŀ	1		
	l		(Coarse tuff.)				1					1			ĺ
	i i							}					i		
250	249.	.0] a a a a [0.		D. gray Tuff breccia •249.0~749.5m Qtxcat net,Cp.	net 50cm		D5-12	250.50	250.70	0 20	0.0	, ,	017	0.00	0.01
	1	1 2 2 2		1250 2-250.7m Qtrcal vein Cp	zone 30kr		1		1			1			i
		2 4 4 4		\$257 2~252 7m w-1~3cm Qtz-cal net with Cp. 4.6	net Minn		DI-13	252.20	252 70	0.50	0.0	2	036	0 00	0.01
				255.7-256.7m strong argillized	1		-				l				
	256	7		Digray massive Andesite		-	İ	ł		Į		1	ļ	1	li
260	0	1 2 2 2 2		ł.		[-		1		1	1		1	ļ	1
		3333		260.0m v=1cm cal veinlet		•	1	1						ļ	1
	1	X A V A V A V A		P greenish gray massive											
		1000	\	266-5~268.0m Cal net.	1							1	ĺ		1
	1	1 3 3 3		D. gray massive			1			1				1	lĺ
27	0		\	• •]		•	1	1				
		1 3 3 4		Calcite net		1		1		1	1				
		15.55	\		ĺ		İ		ì	1	1]
		1 1 1 1 1		1		1		1							
	1			278m- fractuated						1					
28	0 280),4 \(\text{\\circ{\(\text{\int}\exitingset\exitinget\exitinget\exitinget\exitin\e		D gray Andesitic tuff breeci	a			1		1		ĺ	1	ĺ	
				•				1							
		164.							1						
		C C A	Δ.	Calcite net-veinlets								1			
	İ	1 A &						ļ		Į			1		
	1	4.3.4				1		1							
29	ю	1 4 4	P	289.2~293.6m w=5mm~1cm Cal. net~veinlets ∠:									1		
	29	3.6		Gray Andesitic lapilli tuff	~[1			ļ	1		
	1		Andesite	porei	ıs	1	1	1		ł		1	1	ĺ	[.]
		,	(Lapslii tuff.)	Calcite not					-				-		
			• •				-			1			1		
30	x 30	0.3		END	1		-	1	1	1			1		
- '							-								

~-argillic alteration ** propilitic alteration ** silicification

MJMI-3-(1) 0m-100m FROM (In) DEPTH CLOCOCY MONERY ALTR | No **ΤΟ** (πι) FORMATION DESCRIPTION 7.s (•) Soil SelMs Alternation 1.00 4 00 EMEZCALERA Ms>Silt>Ss fine altin 9 10 Weathered Porphyry Porpary 9.1-Oxidized and weak altered 180massive Plagioclase Porphyry 26 Ms>Ss graded bedding EMEZCALERA (turbidite) Gray Plagioclase Porphyry 30 **. .** . . *.* . Porpyry 32.10 Black Mudstone EMEZCALERA 34 3~ Ss>Ms Monzonitic Porphyry Gray Silt>Ss alt'n Рогругу 35 10 EMEZCALERA 41.2 Altered Monz, Porph. Porpyry 46.20 Greenish gray Siltstone EMEZCALERA 49.5-mainly black Ms
50.7-Ss>Ms Graded bedding 30 53.3 - Ms>Ss alt'n Porpyry Gray fresh Porphyry d gray Msifine Ss altin 58 10 EMEZCALERA . . . - - . - -Gray monzonitic Porphyry Perpyry • • • • • • 680 Fine Ss>Ms Alternation EMEZCALERA DO Quartz Vein 73.6~74.25(0.65m) Qtz Vein 100 0.35 0.00 0.01 Que-cal set in all'e Porph 748 0.0 Quartz Network 003 73.95 74.55 74.55 24.85 0.60 0.30 0.00 0.02 Ditto, afterted 003 0.00 0.60 1.00 1.50 0.50 0.70 0.0 0.00 0.01 0.02 77 9 Quartz Vein 77.95-79.15(1 2m) Occ. Vein 004 005 74.85 75.45 75.45 0.00 79.15-83.20 Qtz V.frags in clay 76.4 0.00 76,45 77,95 78,45 27.9 0.00 80.55-81 20(0.65m) Quz. Vein 007 0.00 78.45 79.15 00000000 0 00 Quartz Network Strong spicified Porphyry Qtz net 0.00 79.65 80.55 80.95 0.50 009 79.15 79.65 0.00 84 5~85.1(0.6m) Quz. Vein Strong argillized Silt>Ms alt'n 88 5~89.7 strong altered Quartz Vein 0.00 0.00 0.00 011 80.55 0,40 012 013 80.95 81.75 81.75 0.80 0.00 0.00 87.50 0.55 6.00 0.00 0 01 90 014 1.00 0.00 0.00 0.02 015 86 60 87.00 0.40 0.01 0.60 0.01 92.7~97.3 strong aftered 97.3- Ms>silt fine alternation 100.0

Fig.II-2-10 COLUMNA DE LA PERFORACION DEL BARRENO MJMI-3

< ระชาสิตส์จาก

"" propanie alteration

~ ~argillic alteration

MJMI-3-(2)

(3)

100m-200m

	MJI	ML-3-	(2)									10	0m-1	200ı	n
[(%)	CEUFOCA	FORMATION	DESCRIPTION	MINER	ALTR	No	FROM:	OT (m)	L (១)}	Au (g. l)	4g [y])	(°4)	P6 (%)	74
	101 0 102 2	* * * * * 	Porphyty FMFZCALFRA	P.gray oxidized, arg. Porphy ry Gray compact hard Ss with samll amount of Ms *106.4-109 8m Breccia(Fault) with clay and yein fragment		, ,									
110			Dacite EMEZCALERA	White rhyolite dyke sulficeous,Py.diss D gray Conglomerate d gray Compact hard *111.7m w=10cm Quartz Vein	w = IGcm		DD -16	111 70	11260	0 90	0.3	2	0.00	0 01	0 03
120	1181	Taranta Taranta Errorita Taranta		*111 9-112 6m, Qtz-Cal viets zone *115 8m, w=20 Dotomite V. 260 *118 0m, w=10 cm Cal-Det V. Gray massive Ms/Ss. alt'n											
		1 - 2 - 7 1. 1 - 2 - 7 1.		Calcite veinlets											
130		Expression Francis Express Francis Francis Francis		Ss >Ms		:									:
140		* 7 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2				منابد مسابق في كرا كون المسابق في المسابق في المسابق في المسابق في المسابق في المسابق في المسابق في المسابق في									
		1272 1072 9 1074 1075 1075 1075													
150	151 C	COLUMN CO	Porphyry Porphyry F.MEZCALERA	Dacite Porphyry, Py. S5.>Ms. Gray Dacite Porphyry Ms.>Ss. ait'n *156.5-157.2m(0.7m) Sph-Gn-Qu.V	u=0.7 (Zn,Pb)	ļ,,	DD +17	155 50	157.10	0 .70	02	6.	0.03	0.14	25 50
150	162 (*******	Monzonite	Gray Compact hard Ss. with Conglomerate, hornfels Gray Monzonite, equigranular		77 71 71 71									
170	164 (168 (169 (torota sessera reas ta	F.MEZCALERA Monzonite F.MEZCALERA	P. greenish Silu'Ss. with reddish brown Ms by Hornfels Pyrite>Pyrnbotite Menzonitic dyke~sheet P. greenish Stlu'Ms. alt'n Hornfels		11 111 111 111 111 111									
		* SECOS * SECOS * SECOS * SECOS * SECOS * SECOS	Porphyry F.MEZCALERA	Pyrite>Pyritotite Porpyritic rock with frags. Pigreen Silt> roddish Ms *gradually stronger Hornfels		111 111 111 111 1111									
180				Pyribotite=Pyrite *185 5~190 7m		//// //// //// ////									
190		 P. 15043 A. 21044 B. 20045 M. 20045 A. 20045 A. 20045 		w=1-3cm Calcite veintets 2/50°		//// //// //// //// ////									
	194	FORMULAN SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE		reddish brown Mfs.>>Ss *195.7~196 0m Py. Rich		1111 11 11 11 11 11	DD -18		196 00	030	00	o	0.00	0.00	0.12
200	·L	149-50	L		ļ	<u></u>	1	<u> </u>	<u>1</u>		<u> </u>	<u> </u>	L,		

~~argiffic alteration

** propilitic alteration

ราการขึ้นสถึงค

1111 hornfels

(3/3)

200m-300m MJMI-3-(3) FROM TORMATION DESCRIPTION MINER ALTR 10 (m) DEPTH CFOLOGY No E (m) **EMEZCALERA** *Hornfels weaken Pinkish gray Porphyry Porchyn 013 Gray Ms.>Ss fine Alternation ÐĐ 210 269 EMEZCALERA *211 6-211 8ta Qtz net.Cp. -0 2m -19 211.60 211 80 0.20 02 31 0.14 0.18 0.37 D.gray Conglomerate, Py conc 215.9,216 8m w-2cm Cal V. *215.8-216 8m fenticular Py conc 2156 (segregation origin) 220 230 *230 2~230 3m v=3~5cm O net Quant Wh-milky gray Rhyofitic Tf. *238.0 w=5cm Cat vein 260* 238.6m w=3-5cm Cat v. 2303 EMEZCALERA (Acidic tuff) Digray Conglomerate EMEZCALERA 240 D gray Ms, Cal, net 240 DD *246 9~247 0m Qtz net Cp On w.o.lw 246.90 247 00 0.10 0.4 0 52 0.04 1.10 250 10 0.4 0.01 0 17 0.05 *248 5~250.1m Qiz net "Py ≯ Gn. w≈16ma -21 248 50 1 60 250 Plag Porphyry (w)sltr,Py rich Ms>Ss fine altn(turbidite) 25 Ł 4 Perphyry 2328 *** / 1 F.MEZCALERA 26 260 € mainly digray Conglomerate Ms>Ss 268 5 276 Ss>Ms 213- MoSs gradually increase Ss 280 2846~M\$>\$s 290 DD v. ∺O 15m 0.03 0.07 3.06 *293.65~293 8m Otz-cal,Sph 293 65 298,00 0.15 0.2 16 300m END

^{~ ~}argillic alteration

^{**} propilitic alteration

^{**} sibelScation

															/3)
]	MJI	MI-4-	(1)									0n	i-100)m	
		CEOLOGY	FORMATION	DESCRIPTION	MINER	ALTR	Nο	FROM (m)	TO (m)	t.	Au (8.0)	Ag (81)	Cu (P5 (%)	7n (*•)
	30	ሷቸው 1 500 ይቸው 2012 ሷዊው 1111 8 3 5 21 1==111	Soil Ms.~Ss (MEZCALERA)	Weathered Ss.>Ms. alternation Stit>Ss.>Ms. fine altin					, way		13.7			- 22/2	
20	13 3 14 2 15 0 17,7	# = 8 TV # # + 7 Z * # # + 7 Z * # # * * * * * * * * * * * * * * * * *	Porphyry (MEZCALERA)	P gray weak arg. Porphyry (w)arg. Silt>Ss.>Ms. fine alt'n. P gray weak arg. Porphyry Strong Silicified Silt>Ms.										100	
	23.9	# 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ms.>Ss. fine alternation											
30	i	## # # 17 g 17 f # # # # # 17 f # # 15 g 18 f # 15 g 18 f # 15 g 18 f # 15 g 18 f # 15 g		*37.2~39 2m argifticd		 									
40	41 5	27.		Ss.>Ms.		****	DE-								
50	53.4	10 2000 10 2000 17 0 200 27 0 200 27 0 200		with quartz veinlets \$1.6~53.4m strong fractuated (w) silicified Ms>Ss. alt'n.	Quzaet Quzaet Quzaet		2		47,60 \$1,60 \$3,40	2.10	0.0	1	0.00	0.00 0.01 0.13	0.10 0.19 0.13
60	57.1	77 P 5 7 E 8		*55.7-57.1m Qu. net,Py. rich D gray Ms. ≯Ss. fine alt'n.	Quznet	KKKK	4				0.0				
	63 2 68,6	********	Porphyry	*62 1-62 9m Mixed by gred clay P gray plagioclase Porphyry Black Ms, strong deformed	} &										
70	69.5 72.3		Porphysy Vein	Plagioclase Porphy ry with chilled margin Clay oxidized(Fault clay) *73.2-73.9m Cal-qtz vein	-(j tv		1	73.20	73.90	0.70	00	o	0.00	0.00	0.03
80		1 121 22 2 1 172 74 1 174 74 2 1 7 1 1 1 1 1	Fault	Ss-Ms. altin. silicified and fractuated D.gray Fault breedia with smeetite clay			6	74 60	76 50	1.90	0.0	e e	0.00	0.00	0.02
90	83.6	2	(MFZCALERA)	Gray Ss. with cal net Black Ms. with Ss. fragments *84.0m w=0 3m cal vein *86.5m w=3cm Qtz veinlet ∠20' *87.1m w=1cm Qtz veinlet ∠20' *87.8m w=1cm Qtz veinlet ∠20' *90.8m w=5cm Qtz veinlet ∠50' Py.rich *97.5m w=1cm Qtz veinlet ∠40' with Sph. Cp *98.2m w=1cm Qtz veinlet ∠80' *drusy cal vein parallel to core											,

Fig.II-2-11 COLUMNA DE LA PERFORACION DEL BARRENO MJMI-4

"" propilitie alteration -- ** sibolication

~ ~argilli: alteration

(2/3)

MJMI-4-(2)

		/11-4-	(<i>4)</i>									10	VIII*	2001	11
[E	(m)	OF COLOGY	FORMATION	DESCRIPTION	MENER	ALIR	No.	FROM (m)	TO (m)	L (m)	Au	Ag (§1)	(°•)	₽5 (~•)	Zn (*4)
100		4 2 4 4 F I	(MEZCALERA)		} ··· - ··- ÷			-7:::2			(31)	-13.7			
	108.7			Mainly gray Ss. with black Ms. matrix 104.4-107.0m drusy catche 1107.65m w=2cm Sph,Gn. 1107.90m w=2cm Sph,Gn.Cal,Qtz 1108.7m w=1cm Sph,Go.Qtz V 250' P. greenish gray stificeous Ss. with 1-2mm Py veinlets			DE-								
120	120 2		Conglomerate (MEZCALERA) Porphysy Conglomerate (MEZCALERA)	Gray Conglomerate *119.05m~ Py > Gn net Alt'r Porphy ry with Py > Gn *121.4-122.35m Py rich > Gn Gray Ss > Ms. fine alternation	ար 4 Ջ5գդ Քր 3 Gդ		7 8 9 10 11 12 13 14 15		116,00 112,00 118,00 119,05 119,85 120,20 121,40 122,35 123,35	1.00 1.00 1.00 1.05 0.80 0.35 1.20 0.95 1.00	0.0 0.1 0.0 0.0 0.4 0.7 0.1 0.9	0 15 2 3 34 84 43 45 26	0.02 0.05 0.01	0.01 0.02 0.07 0.28 0.04 1.52 0.03	0.00 0.04 0.12 0.01 0.02 0.18 0.03 1.50
130	1340	**************************************	i	(Gradualty)Mainly Ss.			17	123.35	124 35	1.60	0.0	2	0.61	0.01	0 09
140															ļ
	146.0	10 13 1 * 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ss.>Ms.		:									
150		## 125 1 ## 25 5 ## 2511		*Catcite net-veinfets											
150	157.5			°156.4m w=1mm barite ∠70° Ss. rich											
	162 1			Black Ms.>Ss tine alt'n.			İ				İ	Ì			
	166 5]	Ss >Ms	1	:]			1				
170		4		*169.4m w=1 5cm Cal vain ∠ 70"											
180	177.1	1	Acidic Tuff (MEZCALERA)	Milky gray Acidic tuff											
	181 0			Gray Ss.>Ms. fine alt'n. *187.1m x=3cm Csl.xein ∠40'								1			
190	193 3			•187.2m w=2cm Calvein ∠60° d gray-black Ms. ≯Ss											
	199.8	1 5 55 88 2 - 5 83 8 5 5 23 8 5 5		with milky white acidic T	(ander of terroid de Visit de Personal							
200	L	<u> </u>	<u> </u>	1		<u>.i</u>	⅃	1	1	L	J	<u></u>	<u> </u>	<u> </u>	1

^{~ ~}argillic afteration

^{**} propilitie afteration

^{* &}lt; รเกิดเมือสกัจก

MIMILAL(3)

()

200m-200m

	MJI	MI-4-	(3)									20	0m-3	300ı	n
	DEPIH (m)	CEOLOGY	ROCK	DESCRIPTION	MINER	ALTR	No	FROM (th)	10 (m)	L (m)	Au (3.6)	Ag (g1)	Cu ;	Pb (**)	7.n (**)
Ì		1.1.1	Tuff										:		
	204.2	ተጨተባ ተ ሊሚጭጭ		D gray fine conglomerate				ŀ		ļ	İ	Ì			
1		1.1.1		D gray fine conglomerate Mdky white thy olite Tuff or lava								}			
			- TD - CD'							İ	Ì	}			1
210		.1.1.1	Tuff	> w=1mm Calcite veinlets many ∠60°											
	213.4	12121 5555		Black Ms. ≯Ss. block					1	1		į	;		
		122	Tษกั	Milky rhyolite lava(?) flow-banding					ĺ	l					
		1, 1, 2, 1, 1 1, 1, 1, 1, 1		Gray Conglomerate				ŀ							
220		lare to a	(A1526A15B1)	D gray Ms. ⇒Ss. Ss. ⇒Ms											
		488 ST 6899ST	(MEZCALERA)	gradually with fine Conglomerate, grading					ļ						
	224.4	Δ▼• Λ. Α. Υ. • # ¥ + Υ. Υ.		Ms ≯Ss.											
		188 57 188 17													
230		SES D													
		4.8 4 5 7 7 4.4 4 5 5 7													
	233 5	 9 .9 %		Ss.>Ms.											
		* # (5 57 5 5 * # (7 2 5 5							ļ						
		** 50 00 00 00 00 00 00 00 00 00 00 00 00					ŀi								
240		★ ● 1 111 15★ ● 1 12 17			Ì										
		e e notico. La constant			1									ì	
	245 2	eas to		Ms. > Ss. fine alt'n.								!			
]	187 17		Calcite veinlets											
250		* 4 × * 2		parallel to core											-
				ſ											
		145.57											i		
		6.18 NO 8.84 NO										'			
260		145 NV 454 AZ	j								,				
	261 6	ELEKTI Selekti		Ms./Ss. fine alt'n. grading											
		1 2 5 1 1 2 7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1													
		10 000 L	}											:	
270		1 202 10													
•		5,5550													
	225	7		Ms.⊅Ss											1
	1	1 4 X 10 Y		(413. * 33			1								
		6 # # AS # # A 2													
280	i	***:572 ***:57.7		*280.8-281.5 Calcite net	ĺ										
	i	8 • • • · · · · · · · · · · · · · · · ·		Cal>Qtz vein, Py rich						ľ					
	283.	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Ms/Ss. alt'n.	1							ĺ			
	288	4 6 8 8 9 8 9 5 4 9 100		Ms. >Ss. fine ah'n, grading			DE					Ì			
290		111 27		*289.2~289 3m Que-cal Vein	·Qu ×			289.20	289.30	0,10	0.0	0	0.00	0.00	0 00
		134 //			1 31										
		* * * ********************************				!	1					1			-
	1	1 4 4 7 7 1 4 4 7 7				:							İ		
300	<u>, </u>	194 27 348 25									L		į		

~ ~argillic alteration "" propilitic alteration

* - ราในเรียกส่อน

	MH	 MI-5-	(I)									0m	-100)m		
		CFOLOGY	ROCK	DESCRIPTION	MENER.	ALTR	No	FROM (a)	70 (m)	L (m)	Au igi)	Ag (g1)	Cu (°+)	Pb (*•)	Zn (*•)	
ŀ			Soi!						- 722	-5::/	***	3.7	``~			
Ì	3 0.		F.MFZCALERA	Altered and oxiduzed Ss./Ms		7 7									- 1	
				6.1m- weathered zone										- 1	ĺ	
ŀ				Ms.>Ss. Alternation altered				Ì		1			-			
10	90			Mis. 25s. Auternation, attered		~~		.							- 1	
ı		# A K		12 Im-reddish oxidized		~ ~			ļ					- 1	l	
	150			D gray to black Ms					-	1	ļ]		
							-						1			
	195			Ms.>Ss. Alternation			1							Į		1
20				Calcite net						- 1				1	j	
		** ± 120		į į			1	İ	Ì							
	26 5			Ss.>Ms. fine Alternation	 		ı						1	•		
		• 55 5 4 • 525 5 4		*27 2m Calcite net rich						1			ŀ			
30	28 I			Ss.>Ms. Black Ms. with fragments	Į		1		1]		
					1								1		ļ	
		2 2 2 2 2 2 2 3			ļ]				İ		
				34 Jm~Strongly altered Bk Ms fractuated along Fault				.				'		1		
		5 9 4 127 4 9 9 1 2 2		(gradually change to) D gray Ms /Ss. fine alternation		1				, ,						
40		4 1 2 2 2 2					1									
	l			Canalananta												
	"	9		Conglomerate>Ss.			İ						1			l
	47	\$ 1.25 5.25 \$ 1.25 5.25		Gray compact hard Ss ≫Ms			ł									
50	j	• • • • •														
	51			*51.7~51 8m fault clay Clushed black Ms(fault bre.)	Ì											ļ
] "	177.434	/C 3:1	Crossed crack resignable city	ŀ											
	l	127444	(fault breccia)													
	58	0	EMEZCALERA	Black Ms. ≯Ss.			1			1	Į				İ	
60	61			Pigreenish gray acidic tuff		ļ										
	62	1 ***		Ms >Ss. P green altered Porphysy			DF]		. '			ĺ
	63	******	Intrusive	*63.8-64.2m Py, Gn-barite not	w=0 tm		-01	63.80	64.20	0.40	0.4	, 7	0.02	0.01	000	
	65	127747	EMEZCALERA	Black Ms, segregation Qtz	V}-8+ nct						İ		İ		ĺ	١
70		a remain	1	*69.8~70.5m Brt-Qtz net Sph,Gn	w=0.7m		03	69.80	70.50	0.70	0.	5 15	0 00	0 26	0.60	,
		15 4 2 7 7		Black Ms.>Ss	Q-Banes				1							
	1	145-1								1		İ				
		1 M (4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														l
	75	**************************************		*77.6~78.4m Barite-Qtz V.Gn>sph 470	wr0.5m V zune		-03 -15									
8	"	525 *** 526 ***	(fault breccia)	Strong arg. & clushed Ms			İ	ļ		1]					
	*:	4 6 4 5 5 5	Schist	Black phyllite(politic schot) *83.9-84 2m Barite v ,Gn	w=0.3m		-04	83.90	84 20	0.30	1.	6 31	0.01	0.04	0.02	,
		20525 53515	(Jurassic)	*83.9*84 2ft Ballet (eff	Bervin		1-01	85.90	0.420	1 0.30	Ί	3	""	0.04	1 0.0.	
	1	* * * * * * * * * * * * * * * * * * * *	İ		1			İ						İ	1	ı
9	9	5 N 5 N D														
	1	5 0 3 5 1		Milky gray altered Porphry	ŀ						ĺ	1				
	1		Intrusive	*94.65-96.65m Barite v. (Cin)												
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20202 20202	Schist	Black phyllinte with fenticular quart	2.				I					1		1
		95858	(Jurassic)	*97 30m w=3cm Qtz veinlet 2.70						1						
100.0	<u> </u>	65645	.1	1		1			<u> </u>	<u></u>		1	<u> </u>	<u></u>	<u> </u>	J

Fig.II-2-12 COLUMNA DE LA PERFORACION DEL BARRENO MJMI-5

×× salication

or propilitie alteration

~ ~argillic alteration

MJMI-5-(2)

	MJ	M1-5-	·(2)									10	0m-2	200r	11	
ĺ		CECLOCY	ROCK	DESCRIPTION	MINER	ALTR	No.	FROM (m)	(m) 10	L (m)	(81)	Ag tg1)	Cu (°4)	Pb (**)	Zn (**)	
		98886 98%* 9644		*101 3m w=5cm Qrz V,Py Z 30 Gray fine Conglomerate Physilite/milky toff alth						National III					an in access of	
	104 3	565V 595V	Schist (Jurassic)	Gray Ss(psammitic schist)				İ						1	ļ	
110		5 5 7		(gradually) fine Conglomerate	·	!				ļ						
	1196	##5#\$ # 6".".		Black Ms(phyllite),boudine Congd greenish Ss										ļ		
	1354	0000 24444 44444 44444	Basah (Intrusiye)	Dp green Basalt(?) amugdule stracture												
120		5	Schist	Fine conglomerate					.	1			}			ĺ
•••		120002	Basalt (Lava)	Dp green Basolt(?) with porphyritic texture					ì							
		****	EMEZCALERA	124-change to Lava facis												ĺ
		*****		*128 6m Fault clay												ı
130	130	###### 1 22522 V	Fault	Weak siticified greenish Ss											ı	ĺ
		120000 120000 140000	EMEZCALERA	(gradually)change to Congl	ļ					:				:	I	
140	137 : 137 :	0, 5, 5, 5, 5 5 c s u s u a a 3 c s s u s u a 5 d u u u u 1 d u u u u	Fhyllite	(gradualty)Black Ms. Milky colored fine tuff Black phyllite 139,4-segregation qtz lens												
	!	8 : F 1 1 0 0	(Block)	Op green Basalt or Andesite												
	143		F.MEZCALERA	Black Ms. Fine conglomerate												
	146	3 8 • • • Δυ 8 • • Δυ		Black Ms. ≫ Ss.												
150)	###/A/J # # # # ###/ %V		149,5~149.8m milky tuff												
				*segregation quartz lens,Py *153,0m-153,5mBarite-Py net *154,2m w=7cm Barite-Py V, Z/90*			DF -13 -14	153.60 154.10			0.0 0.4		0.00 0.00		0.19 0.04	
160	160	**************************************		159.1-159.4m Max w=4cm Barite-Py (Gn) vein P. green rhyolitic tuff,massive	u~03m ud tote		-05	159,10	159.40	0 30	48	274	0 22	3.24	0,08	
	165		Rhyotitic (tuff)									ļ				
	167	127218	F.MEZCALERA	Black Ms, segregation qtz. *165.8m w=2cm Calvein. \(\alpha \) 70 P. green rhy obtic tuff, massive												l
170			Rhyolitic (tuff)	*168.9m w=1cm Mn-cal V. ∠40* *173.4m w=1cm Cal V. ∠40*												
						ĺ										l
180	0	- · · · · ·														l
																l
													[
	187	2 444427	Lava	Dp green Basalt, amy gdule •187.7 w=2cm Cal veinlet												ı
19	0 188		Rhyolitic (tufi)	P. green rhyolitic tuff, soapy ditto tuff breccia												
	192		Intrusive	Gray monzonitic Porphyry			DF		1					į		
		430		*195.9-196.7m Cp-Py veinlets with undetermined stringer mineral	u=0 \$m Net tone		-05	195.90	196.70	0.80	01	3	0.00	0.02	0.02	
	197	15	Rhyolitic	P. green rhyolitic tuff, soapy		1										
20	٠	<u> </u>	(toli)		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$						<u> </u>	<u></u>	L	<u>L</u>	<u> </u>	J

^{~ ~}argillic alteration

[&]quot; propilitic alteration

^{»។} ទារីប៉ារីcation

(3/3)

MJMI-5-(3)

200m-300m

		1411-D-	(~)									20	OHIT-		
	DEPTH (m)	CEOLOGY	ROCK	DESCRIPTION	MINER	ALTR	Νo	FROM (m)	TO (m)	(m)	Ач (ў U)	Ag (g1)	(°)	P5 (*+)	(**)
216			Rhyolitic (toff)	P. greenish massive thy olitic tuff *203 fm W-5mm Gn-Sph veinlet Z 50* *207.7m W=20cm Z 40* Barite veinlets zone with Gn,Sph			DF -7	207.60	207.80	0 20	20	61	0.19	1.17	0 20
	231 4		(F MEZCALERA)	Black conglomerate Ф1~2cm rarely Ф5~5cm											
220		\$ 1, 4, 5, 4 \$ 1, 5, 5, 5, 5 \$ 2, 5, 5, 5, 5 \$ 2, 5, 5, 5		Calcite nets •223.4m W=2cm Barite veinlet ∠70°											
230		6633 1555 1533 1533 1533 1533 1533		*224 2m w=2cm Barite veinlet (Gradually) Reddish brown fine Conglemerate				į į							1
240	235.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(F MEZCALERA)	Reddish brown Ms. •236 3m w=3cm Cat vein ∠50*											
240		5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -												:	
250	248.	6	(F MEZCALERA)	Greenish gray Ss. *251 3-251 8m Barite net									-		
260	263	0	(F MEZCALERA)	*255.6 ~256.8m w=1-5mm Qrz veinle with Sph.,G *257.0~257.2m Barite veinlet \(\alpha \) or with Sph.,Gr Reddish brown Andesitic hapilli (ut	*Cn.=		08 09	256.60	256.80 257.20	0 20 0 20			0.09	0 28 0.02	5.34 0.07
270															
280	275	经管理	(F MEZCALERA)	P gray glass-patch tuff (Acidic pumice tuf) *275.7-276 Sm Veinlets zone 2.80" with Py>Gn,C Reddish brown And, Lap tuff	1	:	DF 10	275.70	276 50	0.80	0:	2	9.00	0.01	0.01
100			(F MFZCALERA)	*284 8m w=5cm Qtz-brt Vein Z70	Qu. Brt G		DF 11	284.80	284.8	0.G	0 .1	4	0.00	0.06	0.03
299		.5	Intrusive	Gray homblende porphysy fresh ,hai *292 8-293.6in w=3-5mm Quz veinlet zone with Sph,C Black Mudstone			DF 12		293.00	0-20	0.1	4	0.01	0 26	0 37
300	299		(F MEZCALERA)	P green Rhy olitic tuff Black Ms ,END											

^{~ ~} argillic alteration

^{**} propilitic alteration

^{**} shouldation

		MI-6-		Deachanter	IMPNER (ALTR	No	FROM	TO 1	ן ז	Aa T	UIII	1-100 ∾	Pb [74
Ι,	(m)	CRICOSI	FORMATION	DESCRIPTION				(m)	(m)	<u>(a:)</u>	(81)	<u> (39</u>	<u>. ĉŝ</u> .	(*)	_(=0)
	23	ere	**** * * * * * * * * * * * * * * * * * *	Milky gray thyolite, massive			DG						ļ		ĺ
	2 6	1'1'1	Rhyolite	(type Dome) with many hematite net			01	2 80	3 90	1 10	0.0	ı	0.00	0.01	100
	60	1.1.1		Gray compact hard Ss. with									ļ		
	• •	5355555	Ss.>Cong	conglomerate	140 i i						ĺ		ĺ		
10		ាំ្ត្រី ស៊ីកាំ្ត សុខភាពសម	alternation (FMEZCALERA)	* w=1-2mm Qtz. vein many ×50-60° (graduary) increase	5.8n										
	11 2	55555 592929		(graduary) increase conglomerate	2		•				Į		[
		5.5.5.5		*oxidized and Sdicified			02	17.30	18 30	1.00	00	44	0 00	0.06	0.05
	173	172741 1151		l	····		03	18 30	1930	1 00	0.0	13	0.00	0.02	0.05
20		192920 1431		Gray Ss.>bk~d gr. Cong.tomerate	Q2 V4		04 05	19.30 20.30	20.30 21.50	3.00 1.20	0.0	7 28	0.00	0.02	0.04
		SYATAY			← d.2m → Ozz Vesnlets							}			
	24.0	\$ \$ \$ \$ \$ \$ \$200000		Reddish oxidized zone along fracture				1				1			
	256	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		almost Conglomerate			Į.							ļ	
ı	20.5	[-555-		Dass grass grave And Ref											
30	293	*11111	Basalt?	Deep green amyg. And.~Bs.? porphyritic texture											
	32.5	1000000 10000000		Gray comp. hard. Ss.			1								
l	34 £	41111	Basalt?	Dp. green Amyg. Bs.~And.											
	36 2	525277		Gm-gray fine Ss.~Ss.>Cong.											
		1900000 (graded bedding									:		
40		102029 1414	F.MEZCALERA	graduary increase a rate of Conglomerate			ŀ								
	43 6	1		Conglomerate								:			
	44 4	*****	Basalt?	Dp green amygdal Basalt											
		******		*48 6m w≃1mm Cn (Au)seis∠30*	-Gn**					1	'				
50	49.9	*****		Gray-milky gray Şilt *49 Sm w=2-Smm Gn. Cal vein ∠ 30"	=Cn / =						l				
70	52 I	1 4 4 2 2	F.MEZCALERA	*49.6m w=1cm Barite vein ∠40*											
	540	3 8 8 AV		oxidized zone gray fine Ss.~fine Cong	•										l
İ		• 522 VAV				İ	1								
	58 5	e trhene		oxidized zone			DG 06			0.60	0.0	,			۱ ",
60		* VAVAV		159.0m v=5cm CatQtz.vein ∠30°	-64 CB-		"	58 50	59.40	0.00] 0.5	ì	000	0.00	0.02
ļ	648	# (VAVAV ###36V		Milky gray Silt											
1	67 5			*65.0m w=5mm-1cm hmt.V. ∠70° (gradually)increase Ss.	l			'	1]			1	
	67,	* 'YAYAY	İ	*67,8m v.=5mm hemt,vein∠70*						1					ŀ
	690	E EVICATAV Para para		167 9m 4×1 - Seminegular Quz. V 2 10 (gradually) change to	=Quz •		DG			1	İ				1
70		1.1.1.1.1 1.1.1.1.1		Conglomerate •72.0m w=tcm CalQu.V. ∠70"	-Qtz=		07	68 50	69.30	0,80	00	3	0.00	0.01	0.0
	72 3	1 September		Gr. Cong.>Ss. graded bedding				1			ĺ				
	74 5	5555* AVAYAV		Ss.>Conglomerate	İ			ŀ			i				
	27:	\$\$\$\$ 500000		Gray Cong. > Ss.											
80		\$ 5 5 5 5 5 2 A 5 A 2								1	}				ŀ
•		*, *, *, *, *		0.50.1							1				
	821	Name ya Mangana		Ss.>Conglomerate		į	DG			1					
	\$6.3	AMAM.		(graduary) silicified Cong	. ₽₽	****	08	86.65 88.05							
		farrar.	1	į.	indexed carried	****** ****	"			'		 	'''	'''	
90		AVAT.		strong silicific *91,5m w=5mm Cal, ∠80*	T	````									
				°91.9m ss=1cm Qtz.vein Z.70°	. Ørz =	**	10	92 80	94 50	1.80	0.0	٥	0.00	0.00	0 00
		17.57.67		n=3~5mm Callvein		/ 			1		1	[
	95.0	o wasas		Ss.>Conglomerate	1	ļ									
	97	7. 12 7. 15 5 12 7. 15 15		Conglomerate>Ss.	1										
100 0		., ., ., .	l			1.14		<u> </u>		J	<u>L</u>	L	1	<u> </u>	L

FIG.II-2-13 COLUMNA DE LA PERFORACION DEL BARRENO MJMI-6

💌 ระหิดเลียสหลอ

** propilitie alteration

~~argillic alteration

(2/3)

MJMI-6-(2)

_		WII-U-	(2)										VIII-	300	
ſ		CEOLOGY	FORMATION	DESCRIPTION	MENER	ALTR	No	FROM	TO	L	Αu	Ag (g1)	(°) (°)	Pb (%)	Zπ
ŀ	(m)			Ss ,fractuated and oxidized	<u> </u>		┨──┤	(m)	{nı}	(m)	(\$1)	(81)	_02	-69	(*)
i	102.0			Ss.>fine Cong											
l		(, week siticified	!					ŀ					
- 1		* 17 5.7				ļ							ŀ		
	107 8			Deep greenish Ss. > Cong.		1	1 1		- 1		l			- 1	
						1	l I	1	- 1					- 1	1
110	1100	32.57		Gray Cong., strong silicified					1	- 1				- 1	- 1
	1116	······································	Dt	Deep greenish gray			H			- 1				- 1	
1		l	Porphyry	Homblende Porphyry	ł	ŀ		l l						- 1	
	1144			Gray silicious Cong. Py. diss	ĺ	1								- 1	
		5425		'		11		l i		l				l	
		2555				, L	1		l					ı	
126				Į		Silicification	1		ļ					- [
110				i	}	i i	1		1					1	
					1				1	1				1	
		1.555		l	1	[]		!						1	
	126 D			graduary change to		11			ŀ						. i
		55 55 5		Conglomerate ≯Ss. strong silicified	, I]		ľ					.	
				30 00 31101300	Ϊ	11									. 1
130		112224			ŀ	H	1	1							
		5555										1			
	1	20 989 1 58581		1	Ì	11						İ			
		10.00						i [.	
		5555						1				ŀ		.	}
		1005784				11	1						i		
140		1.50.50.50		!									i	i	
150				1		H	1						i :		
	142 0	# AAAA		Calcareous Ss. ≥ Cong.		[]									
		# AAAA	FMFZCALERA	1								i			
	1	# A A A A	(Cafcareous Sed)			1									
	i	# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				1									1
	1435	■AAAA		silicifie	1		DG	1		100		ļ			
150	1	# 5.5.5.5.				1 .	011	150.20		1.00	0.0			0.00	0,00
	151 2	T. A. S. W. L. S.	Cl	Garnet-Py. Skarn (w)oxidized 2.7	0 :::::	l .	012	151 20	152,00	0.80	0.1			0.00	0.02
	152 0 152 6	2.25 1 4 1 4	Skam zone	Gamet-Py diss with Cp in Sil-Ss brownish Gamet Skam Py >Spec >Cp	11	1	013	152.00 152.60	152.60 153.60	0.60 1.00	03			0.03	0,03 0,11
	156 8			*156.8m w=2cm Qtz.vein // 50"		ļ	015	153.60	154.60	1.00	0.6			0.05	0.07
	•	21.1	l	Garnet-Py: diss in argillized Ss			016	154.60	155.70	1.10	1.8	2]	1 92	0.00	0,01
	157 2	COLUMN THE PARTY	Į	Siliceous Silt-Ss. Gn in Qtz. vein			017	155.70	156 60	1.10	0,4			0.00	0.01
160	157 9		1	Garnet-Skarn gray Garnet Skarn	:::::::	1	018	156.80 157.50	157,50 158,30	0.70	0.1			0.00	0.02
	162 3			Siliceous Silt with Grn-Skam	::::::		020	158.30		1.20	0.0	1		0.01	0.02
		24 5 5 2		*162.4m w=5cm,162.7m w=30cm	(1:1);		021	159 50		0.90	0.1	4		0.01	0.03
	l	****		163.65m w=25 cm Skarn fayer	: 2 :		022	160.40		1.00	0.1			0.00	0.01
	16-16		1	(w)Sili-P gray Cong *166.7m 10cm oxidized zone	1		023 024	161.40 162.00			0.2			0.00	0.00
	167 0			gray Calcarcous Ss	1		025	162 30							
	163 0		j	Calcareous Conglomerate	1	1	026		164.60	1.30	0.0				0.01
170	170 0	150000	1	Calcareous Ss.	.l	1	027	169.20				1 .			0.05
		-X.43.3	ı	with garnet Skan 172 2-172.8m, Ont-Skam	n ::	1	028 029							0.03	0.08
	174 5		1	strong oxidized (w)Skam in	::	1	030			100	0.0			0.01	0.06
	I	★ AAAAA	J	calcareous Ss. Hmt. "Azurit	e::::::	1	031	173.10	174,00	0.90	0,0	29	0.04	0.05	: 0.07
	I	* \$50,500)	i	*177.0-177.4(0.4m) Garnet Skarn in Calcareous St	.}	ĺ	032								
	178 :	4		P.gray aftered Perphyry	::::2	1	033 034			0.85	0.1 0.1				
180			ł	with vein in margin.		1	035				1				
	1		Porphyry				036	177.95	178,40	0.45	01	4	0 29	0.00	0.03
	1		1	*185.8~186.0m Perph exidized Cal-Ss.with Skarn	ł	1	037								
	1	-445)		* 186.0~187.4m(\(\)) Skara	1	1	038 039				0,0		0.01		1 1
	1		Skarn zone	*187.4-188 3m(0.9m) Skarn oxidized	<u>::</u>	İ	C40								
	1	**	Į.	*188 3 -189.tm(w) Skarn oxidized in	C{::::::		041	187.65	188.45	0.80	0.1	78	0.18	0.13	0 15
10		1 33555	ENERGICAL CO.	gray Cong >Calcareous Ss.	::	1	C42								
190	Ί		F.MEZCA! FRA	· [1	043	189.25	190.03	0.80	6.1	1 3	0.11	0.00	0.01
	1	17 4 4 4		1		1	1	1	1			1	1	}	, l
	1	1, 1, 5, 5, 1	1	*194 2~195 2m w=1~5mm	1	1	1.	1	i		1	1	1		
		V 25V	1	calcite ∠30°	1	1	1	1	1	ļ		1	1	1	I
	ĺ	12 13 1 3 13 13 13 13 13 13 13 13 13 13 13 13 13		strong silicific		1					•	1	1	1	l
	1			1 seong silicino	٦	1	1	1				1		1	1
204		1 1	<u>i </u>		_L	. 1	1			1	l	1	1		ļl
								-	_				-		

^{~ -} argillic alteration

[&]quot;" propilitic alteration

^{* *} sibrification

^{::::} skalnization

MIMI_6_(3)

200m-300m

	MJi	MI-6-	(3)									20	0m-:	300i	11	
Ī	DEPIH (m)	GEOLOGY	FORMATION	DESCRIPTION	MINER	ALTR	No	FROM (m)	10 (re)	(m)	Au (g't)	Ag (g1)	Çu (°6)	Pb (*•)	ζη (°•)	l
ŀ	(10)	5555	EMEZCALERA	Gray strong silicities			-	(115)	- (16.7	7.07	1817.	- 15.7 -			-\''-	
- 1				fine Conglomerate		Ì					1					
l		55555 55555					i				İ					
		1.515.55			1								}			ĺ
- 1		11111111111111111111111111111111111111	;	*Cp. along fracture strongly fractured zone (fault)		!	, [l
210	• • • •			, , , , , , , , , , , , , , , , , , , ,					- 1	j			1			ı
				Mainly p. gray Conglomerate.				- 1	i i]	1					
	2120	1, 5, 4, 4, 4 		with subangular fragment rich				1			1					ĺ
- 1		1.55.55				1	ļļ				ĺ					ı
		* * * * * * * * * * * * * *								l						ı
		4,4,4,4		(gradually)					- 1							
220]		5.5.50		Gray Ss. Rich 220 8m w=2~3cm Calvein 220"	1			l								ı
		N. 1 1 1 1 1 1		*223.2m w=1cm Calvein ∠30	1	[1	1	- 1						ı
l		5.597.7		with Gn.,Cp					i	- 1						l
	224 5	አካካለት መካካካት		Ss.>Cong. Gray		·				1	Ì					l
				Milky colored Tuff(rhyolitic)									,			ı
230		5.55 5.5 5.55 5.5	F MEZCALERA	Gray Cong >\$s. (gradually)	1				ļ	- 1						l
2,50		501 250		Ss.>Cong			l i		1	1			!			l
- [2320	September								ļ	1					l
- 1	235 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Gray Cong >Ss ,silicified		•										l
	i	120100														l
		1,5,5,5° 1,5,5,5°			1	1										l
240		vva va a			1											١
		1,5,5,5,5 1,5,5,5,5		*223.2m w=5mm~tem Py.(Cp)V.	1											
1	!	15.5		parallel to con	.				Í							İ
	244 3			Taffacious Cng ,Py.vein Z 20°	l	}		1					1	l		L
		1.5.1.5.1				1	DG									l
7.00	2494	4,0 4,0,1		Fine taffacious Cong ~Ss. with	===		044	249.50	250,40	0.90	0.1	5		0.02	0.09	
250	2513	and in		*249.6m w≈tem Cal.with Py, ≯(Zn)∠ Tf:/Ss. alt'n.	70 I:::		045	251.30 252.20	252 20 253 20	0.90 1,00	0.0	1 0		0.00		
	252 Z	2000	Skam zone	Garnet Skarn in parallel to	:::		047	253 20	253.90	0.70	0.0	0	0.02	0.00	0.00	>
	253 9	# 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2	(Calcareous Sed)	bedding ∠45~50° (weak) Skarn in Ss./Silt	:::	1	048	253,90 254.80	254.80 255.80	0.90	0.0		0.03 0.04			
		= AAAA	(22/42/2020/045)	with Py. ≯(Cp.)∠60°	1::		050	255,80	256.40	0.60	0.1	0	0.07	0.00	0.00	y .
	258 4			P.gray sil- Ss. Py. ≫(Cp) Garnet Skam	:		051 052	256,40 257,40	257.40 258.40	1.00	0.0 0.1	0				
260		Esternas.		Pink PL-Hb porph, with gamet Po	1 ::::::	l	053	258,40	258.90	0.50	0.0					
	261.5		Porphyry	Pink fresh Porphyry	::	•	054	258 90	260 20	130	0.0					
	263.13	Participal	Skarn zone	Garnet Skarn > Ss.	::::::	1	055	260.20 263.15	261 50 264 00	1 30 0.85	0.0 0.0					
	265 2	* ∴		Silt-Ss. with (w) Skam	1:::		057	264.00	265 20	1 20	0.5					
	265 I 267 2		E MEZCALERA	Pigreen Ss. with Skarn lens Fine Cong.~Ss. alt'n.			058 059	265.20 266.10	266 10 266 40	0.90	0.1 0.0					
	268 5			strong silicified by Hornfel's Po	t		060	266.40	267.20	0.80	0.0					
270		ሲዲዲዲል ሲዲዲዲል	ļ				ŀ	1								
	272 0			Ss.>Cong. (graduary)		1										
	1	521010 10200			1	horafels						i				Į
		172.77.7			1	Horas										İ
	l	and the		Mainha Canadamana]	t		:	ļ						I
280) 		Mainly Conglomerate			DG									ı
	287 0	\$ 1.7.77 V	1	Ss. > Cong. strong hornfels			061	281.05	283.60	0.55	0.0	۰	0.01	0.00	0.00	7
		1555	[ł		ł										
	285 0		}	(graduary) increase Ss.	1		DG]						١		
	286 :			Strong silicified(Hi) Ss.~	ļ.,.	I	062 063	286.50 287.50		1.00	0.0		0.03			
		1 2		taff-Ss.with garnet skarn	:5:		064	288 50	289.50	1.00	0.0	1 2	0.07	0.00	0.01	1
290		>-40%	4	along bedding Pot P			065	289,50		0.80	0.0 0.0		0.07			
	199	l =	Skam zone	(građuary) increase Skarn	::::		066 067	290.30 291.00		0.70	0.0	;	0.12		0.02	2
	293	ı Parşeşî	3	Garnet-Cal Skarn	::::		068	292 00	293.10	1.10	0.0		2 0.11			
	294	5	1	with Py. ≯Po Mainly Ss. with Skarn lens	E :::::		069 070	293.10 294.50		1.40 0.60	0.0 0.1		0.10			
		= 0.707 Z	(Calcarcous Sed))	::		071	295.10	296.10	1,00	0.0	1 -	0,01	0.00	0.0	1
300		1	Rhyobte	 Dacite-Rhyolite intrusive milky gray-white, Qtz. phenocrys 	::	!	072 073	296.10 297.10		1.00 1.00	0.0 0.0		0 04			
3 131	·	ALL THE	1 20,000	many gray come, que postores		·					L	·	1 22		1, -, -, -,	J

^{~~}argillic alteration ** propilitic alteration ** sibrification :::: skalnization

1	MJMI-7-	·(1)					`				0n	ı-10	0m	
[°	EPTH GEOLOGY	FORMATION	DESCRIPTION	MENER	ALTR	No	FROM (m)	TÓ (m)	L (m)	Au (§1)	Ag (g t)	(b (%)	₽ δ (%)	7A (74)
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Debris												
10			Debris from thy offite dome											
20	20 2	Soit	Reddish gray soil											
30														
49					A									
50	51 8 a a x x x x x x x x x x x x x x x x x	SS'Ms. alternation (F MEZCALERA)	D gray-black Ms > Ss. altin with segregation Qtz. lens											
60	*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***		graduary Ms. rich											
70	### ###############################		graduary Sts. (ICB											
80	3 K B N B M B B B B B B B B B B B B B B B B		Black Ms. with Ss.											
90	578,000 5315347 535347 536853 538,00	* *			17 Ja						***************************************			
100.0	627 C + 2 627 2 4 2 7 4 4 2 5 2	-1	on "propilitic alteration	5p-	militation									

Fig.II-2-14 COLUMNA DE LA PERFORACION DEL BARRENO MJMI-7

MJMI-3-(2)

	MJI	MI-3-	·(2)									10	0m-	200	m
ſ	DEPIH	CEOLOGY	ROCK	DESCRIPTION	MiNER	ALIR	No	FROM (m)	TG (m)	(m)	Au (§1)	Ag (gt)	(\i) (70)	170)	7n (%)
_ }	100 6			strong fractuated (fault)						t - '		13.9			22
			F 11676 41 1 D 1	Gray Conglomerate	}					[[
- 1	102 3	5555°	EMEZCALERA (Conglomerate)	Gray Congromerate										,	
ı			, ,		i		ļ			1					
		5455* 5555*													
110								ļ							
l		5555					1								
		51551 51551						1				1			
		3333					l]							
		11111								i					
	1190	******* *********	mainly Ss	Ms. ≫Ss.		i	1		l						
120		∗ts svav			İ	•	1		ļ						
		 ¥ - ∀ ∆ ∀ ∆ ∀ ¥ - ∀ ∆ ∀ ∆ ∀]		
- 1		10000000													
ľ		*(************************************				•			İ				į	ĺ	!
		* (***********************************	i					ĺ				ļ]
	129 1) venyaw		Gray siliceous Ss.		4				ł	l				
130		12222						1			1		İ		1
l		595947				4 * *		ļ	1					ļ	
	1319	STATES	ľ	Black Ms. with milky				•						ĺ	
				acidic Tuff	r	į	1	i				ĺ	ļ	ļ	
	:	1 R 3 1m *	mainly Ms.	1			1	i					i		i I
140		4.5 2 2 2 4	(F MEZCALERA)				1					ļ	1		
		E 7 1 16 P						1		1		1			
	244.3	1						1		l	1		į		ļ ļ
				A N. B. C. P. A. C. S. C. T. C. S. M.		į	1					į .			
	1461	B	Acidic Tf.	(w)altered Acidic Tf>Ms.			1			İ					
			(F MEZCALERA)			-	1		1		1				
150				11				1			1	1		ĺ	i i
						-				1				ĺ	
		- △		(graduary) increase Tf part with Porph. fragments		-						1			1 1
				Will total nagments		-	1				İ	ļ	1	ĺ	
		- 4 - 4 -		altere	4 1	-		1		1	1	1	1		
160	į	* & ****					1		1					1	1 1
,]	+ A +A+	1			-						-			
	164	3]	P gray altered Monzonitic	1	-	1							•	
	l '``		Monzonitic	Porphyr	y	-	ł						ĺ		
	İ	******	Porphyry								1				
			.]			-					1		-		
170				P.gray Taffacious rock		-	ì		i	İ			İ		1 1
	'''	1 - 2 - 2		fractured after altere			Į	1		ì	1				1 1
		-3-5	Porphyry?	Porphyry with Call-net	5		1	}		}				Ì	1
		-2-2	(fractuated)				1			1		1		1	1 1
	ļ	- 2 - 2	(1	1		1		1		1 1
180		- A-2	İ						1	}	1			i	1 1
	l	• 4 • 1 • •						ŧ		1	1	İ			1 1
		- 3 - 2	1				1				1	1		}	; 1
	186	5	.]	strong altered Porphyry			1	İ						į	
			4				1		}			l	! •	1	
	1		Mpnzonite Porphyty	•		~ ~ ~ ~							ì	į	1
190			4						1		1		1	-	1 1
	190	8	1	p gray, strongly altered Porphyry fractuated (taffacious	d.						1		1	}	ļ
	1				"		1				1			}	1 . 1
	193	9	4	altered Porphyry	.		1		1			1	ĺ		
	1		:1	specularite dis	,		1	1		1			-		∮ [
	J		•				-							1	
200	<u> </u>	1388111	<u> </u>	<u> </u>	_L			1	J	ь.	<u>. i</u>	Т	<u> </u>	.1	<u> </u>

^{~~}argillic alteration

[&]quot;" propilitic alteration

(3/3)

MJMI-7-(3)

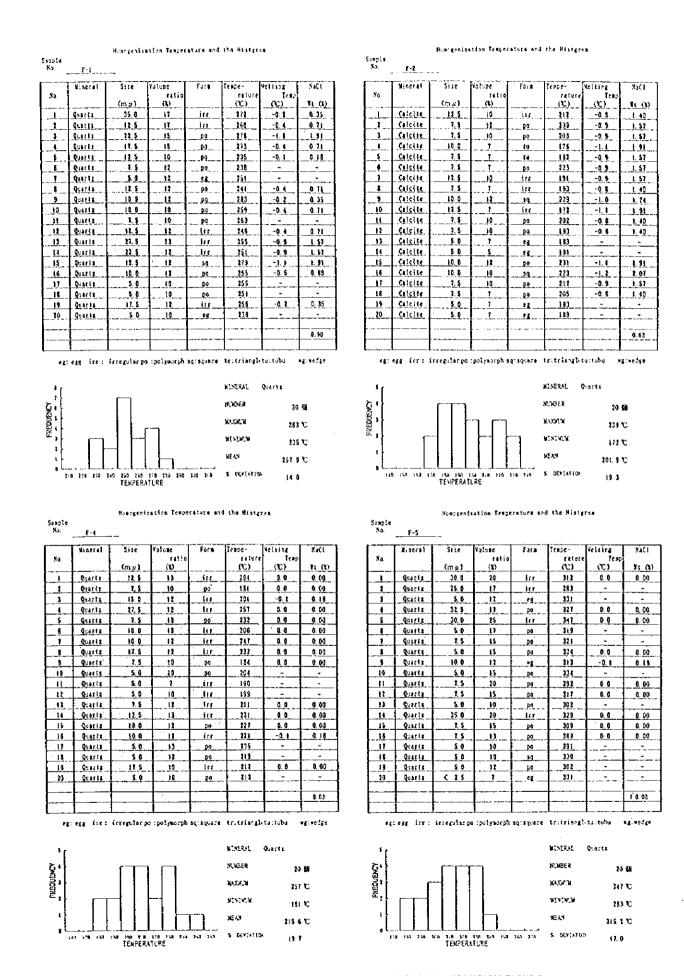
200m-300m

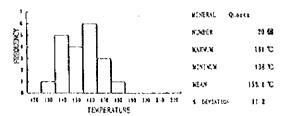
ı	AIDIA	11-/-	(3)									200	ли-,	SUU	164
[0	(fi)	1 Y 200 103	FORMATION	DESCRIPTION	MINER	ALTR	No 1	FROM	10	ī	Au	Ag (g1)	Cu	₽6	Zn
- I	(6)		1010-0111011	DESCRIPTION			I	(m)	(m)	(m)	(81)	(81)	(70)	(70)	170)
	111		i				1 !		l l		ĺ		Į	į	- 1
ŀ	<u> </u> ''		Monzonite				1		- 1	- 1	i	!	1	l	
- 1	- 1··		Porphyry					- 1	- 1		J	- 1	1		- 1
1	1.	••••••				!	li	1				1	1		- 1
	·		į		ļ			- 1			}	1	- 1		
	ļ.	******	i				1	- 1	- 1	ı		- 1	!	1	-
	i i		1				1	- 1	ŀ	1	- 1	ŀ			j
210	ŀ						1 1		l	- 1			1		i
	ŀ	• • • • • • • • • • • • • • • • • • • •				1			1	Į.	j	į		ĺ	ļ
- 1	-	******			ł				ĺ		- 1	i	•	ł	- 1
	· '		1	A	l	1	1 1				- 1	- 1	i	- 1	1
1	216 61-	······································		P.gr-grn-gr. altered Porphyry	I	-					- 1		į	- 1	
- 1	1				i	-			ļ	ĺ	[.	[ŀ	l l
- 1	1^	•••••			!	-	1 !		1		į	. !	į	ľ	- 1
220	['	•••••	ļ		•	[1 !			- 1	- 1		1		
2.50	ľ		ļ		Ì	; -	1 1			1		ĺ	•	ĺ	
1	- 1	1	1]	1	1 1	j							- 1
	l'		i	*225.9m w=2cm Calcite with frags		1	1 1				. 1	ĺ	1	- 1	
Ì	l li		1	veia Z 70°		[1							1	
- 1	- 1			*226.2m w*2cm Py cone vm / 80°	ĺ		1				li				- 1
- 1	- 1.			220 2m w 2cm Fy cone ven 2 so			1 1			1	1	. 1		- 1	
	,			*229 5m w=3cm fingroests vain 2 50°	1					Ī	ì	, I	ĺ	İ	I
230	2296]		P-dp green massive Perph.	1	[1 1					l	Ì	I	1
		1	ŀ	- of Presumontine Letter	l		1					, 1	1	ļ	- 1
i			1			•	1	i				, 1	-	ļ	- 1
- 1	- 1.		ļ		I	1	1					. 1	ł	1	- [
	J.		j		ļ	1	1					, [ļ	į	- 1
ļ].		,		1	1						, 1)	i	
l	Į.]		1	Ì	i				i		i	İ	- !
	2395			fractuated and oxidized zone		i-		•			i	. 1	1		1
246	1			with many coloite V	.]	-	1						- 1	ł	- 1
- 1	241.5			P gray-greenish gray		-	1					i i		1	
l	- 1			altered Porph	.l	-							1	1	- 1
t				-		-	L					1 1		į	
1					1	-	ı	I	:			li	- 1	i	
- 1	1				1	-	i	İ				()	1		
- 1				i	1	}~	1					1 1	į		- 1
l	į.					-	1				l		1	. !	
250	- 1				ļ	-	1				l			. !	- 1
- 1	1				1	-				İ	1	1		,	.
					1	-	DH				1	1 1		. #	
l	254.0			graduary fractuated with strong altin	-		001	254.60	255.70	110	0.0	4	0.00	0.01	0.13
l	ĺ			*255 5~258 3m Ctay	i		1	1		İ	l	1 1			
1					Ι.					مد، ا	١.,	۱. ا			اا
1	2583			oxidized			002						0.00		-0.10
260	260.0	******		\$5\$			003						0.00	0.00	0.10
200	2600			Strong fractuated like lithic Tf.	11	1	004						0.00	0.01	0.05
				(close to the boundary of intrusion)	1 1		006						0.00	0.01	0.06
	i i		}		1		007						0.00	0.01	0.04
)	oxidize	4		008						0.00	0.01	0.06
			1	, oddise			009						0.00	0.00	0.03
					Ì		010	1					0.00	0.16	0.29
			1	İ	<u>\$</u>		011						0.00	0.06	0 14
270			1		IRIZ-Pynie network	~ ~	012							0.13	0.10
			ł	Ì	1 4		013	1					0.00	0.01	0.05
			ł	-	1 5		014						0.00		0.03
			<u>{</u>		₹		015	7					0.00	0.02	0.05
			{		1	1	016	272.30	273.30				0.00	0.01	0.02
			{		1		017								0.05
		******	1		1		OLS						0.00		
_			1		11		019								0.05
280	l	· • • • • • • • • • • • • • • • • • • •	1		† I		020								0.05
	282.0		1	Strongly oxidized Perph.			021						0.00		0.08
	[1	(fractuated) with Qtz. Veinfel	s		022								
	j		1	h			023								0.17
			1	2 stock work zone	1 +	j	024								
	2859		1	P. green week altered Porph.	1	i-	025								0.15
	1		1	1	1	-	026								0.14
290	1]	1	1	-	027								
- 40	291 &		}	Fractioned and acidinal	۱.	1	928	284.80	286 30	1.50	0.2	10	0.00	0.01	0.10
	****]	Fractuated and oxidized	ŢŢ			Ĭ.	l	1	1	ļ	!	İ	
	294.2		}	Porpl Strong oxidized Porph, with			-	1	1	1	1		!		1 1
	1771]	Qtzveinlet Hmt P	, j		029	294 20	295.20	1.00		41	0.00	0.00	ارين
	l	1]	Accusementing (Š	i.	030								
	297.63	ļ]	Strong sil-v. with Gn Sph.	-Si v.=		030							1	
	""			Z80		1	032								
300	298.60	PICCILL	Rhyolite	White thyolite(dyke)	' [i.	1 332	277.0.	275.00	, 0.9.	Ί "	1	0.00	, ,,,	0.38
			1						Ь	·			1		ــــا

^{~~}argillic alteration

^{*&}quot; propilitie alteration

<< sibolication



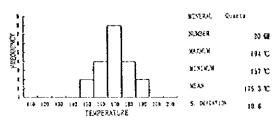

Fig.II-2-15 HISTOGRAMA DE LA TEMPERATURA DE INCLUSION FLUIDA

Homogenication Temperature and the Historia

Sample No. F-8

[Mineral	2115	Value	Fora	Tenge-	Welting .	NuCt
Na.			ratio		rature	[[cep]	
	·	(m µ)	(1)	!	10)	(0)	T((t)
	Calcite	25.0	10 1	<u>00</u>	155	-3.9	3.23
1_1_	Calcite	17.5	10		163	1	1.55
3	Calcite	33. 5	13	10	154	-1.5	3, 23
1	Calelte	11.5	1	leg	138	-1.5	3.11
. 5	Calelte	10.0	10	pa	10	-1.3	1.35
	Catelie	5.0	11	po	144		-
_1	Calcile	\$.0	5	po	147		
1	Calcite	17.5	12	((r	113	2.4	4.03
	Calcite	15.0	10	- êrr	111	-1, 1	3 11
10	Calcite	5.0	10	00_	155	<u> </u>	
11	Cifelte	5.0	10	20	150	-	· -
11	Calcite	5.0	- 13	11	1111		
13	Caleile	31.5	1	10	167	-11	3. 55
14	Calcite	30.0	10	tu	170	-1.3	3. 23
15	Calcite	5.0	10	30	162		
16	Cutelte	S.D.	1 7	pa	15)	·	
17	Calcite	7.5	10	P0	163	-1.3	3.81
111	Calcite	\$ 6	1	pa .	111	<u> </u>	<u> </u>
19	Calcite	17.5	12	iti	188	-2.5	4.18
29_	Calcite	12.5	10		1+1	-1.3	3, 87
l	1		1		L		L
	1		I]			3.49
]			1	1	l

egolegg Sinno deregular po opolymorph squaquere trottfanglitustubu ngowedge

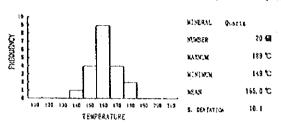


Hospigalization Temperature and the Historian

Sample No. F-S

	Mineral	Site	Volume	Form	Tenne-	Melting	MaCL
No	i l		satio		127814	Te≉⊅	
		(m p)	(3)		(U)	(0)	11 (1)
1	Querta .	15.0	13	D¢.	177	-0.	6.18
1	Der 12	37.5	10	20	111	0	0, 00
3	Quartx	15.0	10		157	-0.1	0.71
4	Quarte	12.5	3	irc	168	-0.1	0.71
. 5	Quarte .	15.9	10	ist	138	-5. S	8. 88
6	Querte	17.5	12	pe	194	-0.5	88.0
1	Quarts	12.5	7	, in	161	-0.1	0. 15
	Quarts	22.5	10	ise	171	-5 t	0 71
3_	Quarte	21.5	1	is a	. 174	-0.5	0 88
14	Quacts	12.5		iss	171	-0.4	0, 71
_11	Quarte	10.0	. 19	p-s	182	-0.1	0. 1è
12	Quarta.	1,5	13	26	187	-0.1	0.13
13	Quarts	5.0	7	. 20	174	-	-
16	0:2112	5. 0	10	90	188	-	
15	Quarta	27. 5	19	ice	163	-0.5	& B3
16	Qcarts	12.5	12	fer	174	-0.4	0 71
17	lesets.	20.0	10	iss	159	-0.5	0.88
18	Quarts	1.5	12	20	193	-0 2	0 35
13	Quitt	5 0	13	20	179	-	
20	Quarts.	11.5	1	þσ	157	-0.3	0.53
	I	[
	i	,	1				0.56

egilege for i freegular po ipolymorph square tritrianglytuitubu wg:wedge

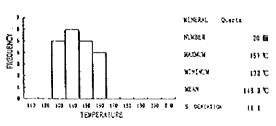


Homogenization Temperature and the Historia

So. F-T

[Kineral	Site	Faluec	₹ 97∎	Teape-	Velsies	NaCl
Na.			ratio		tatues		
		(m u)	<u>0)</u>		(C)	('0')	<u> </u>
L	Calcile	15.0	10		189	-13.6	17.63
1	Calcile	7. 5		39	171	-10.0	17. 79
	Calcite	33.5	_111	<u> </u>	153	-12.2	18.15
	Calcile	22.5	30	pq	161	-13.1	15.93
\$	Calchie	<u> </u>	10		165		
	Calcite	\$. E	10	00	163		-
1_1_	Catchie	27. 5	1	irr	152	-15.9	19. 37
8	Calcite	17.5		ler	161	-15.7	19.21
. 9	Calcite	13.5	. 10	pa	161	-12.6	15.53
10	Calcite	10.0		_ pq	172	-13.4	17. 26
11	Calcite	7. 5	10	po	176	- 11	2.4
113_	Calcile	30.0	10	ler	158	-10.9	-16.97
	Calefte	35, 0	1	- Ite	£49	-10.0	13.94
	Calcate	32.5	10	irr	155	-11.1	15.51
15	Cufcite	13.5	11	84	183	-10. B	14, 27
16	Catcite	10.0		pe	111	-16.3	19.68
11	Calcite	5.0	10	ро	165	-	-
-11	Catelte	17.5	12	trr	160	-13.8	11.61
15_	Calcite	23.5	1	Jur	181	-31.4	15. 37
20	Calcite	5.0	10	33	162	-	-
L	L		1	L	L		
			I				16.84
L				L			

est ess drw: irregular po tpolymorph squaquere tritriangletuteubu agreedge

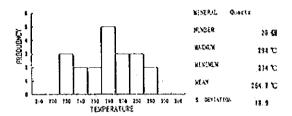


Rusogenization Temperature and the Historia

Sample No. 7-8

	Miceral	\$i:e	Yoluse	Form		Vetting	NaCt
ÃO.		,_ ,	palia.		ratece		
		(m.p.)	(1)		(c)	(£)	1) (1)
-1-	Galiff	45.0	. 15	ltt	154	. Đ, G	0.00
	Quarte	5.0	1	pe	141		
3	Quarta	12.5	10	110	133	0.0	0.00
_ 4 _	Quarta	11.6	1	96	151	0.0	0.30
	Quarts	18	1	pė	117		-
	Cuartz	. 9		00	137		-
1	Gnates	11. \$. 5	irr	137	0.0	0.00
. 8	Quarte.	5.0	7	ро	157		-
. 9	Quarte	10.0	1 1	[re	Išl	0.0	0.00
15	Quarla.	5.0	10	53	157		_
ш	Quarte	5.4	1	20	139		
12	Giarts	(15	3	eg	1+2	-	
13	Quartx	1.5	7	04	163	-6 . 1	0.15
14	Quarte	1.5	1	0:2	152	0.0	0.00
_15	Quarte	5.0	7	- 00	166	-	
16	Quarta	5. 0	ş	50	135		
17	Courts	12.5	12	itt	153	0.0	5 00
18	Quarts	5. 0	10	.00_	157	l	-
15	gharts	7.5	1	ler	153	0.0	0.00
20	Quartz	5.0	5	P 0	144		
	<u> </u>	 	ļ		 		U.02
	<u> </u>	<u> </u>	<u> </u>				0.02

egolegg immo immegular po opolymorph squame itritriangletuctobs weswedge

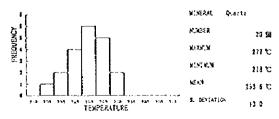


Mnanganization Temperature and the Historica

Sample			
85.	;_	F-10	

	Mineral	Size	Yotuse	Form	Tempe-	Velling	2361
X5.			ratio		i exture		
		(m µ)	(0)		_00_	(0)	Ft (t)
1	Quaria.	11.5	10	irr	116	-11	5.14
1	Quarta.	5.0	_11_	00	263	-1.9	3. 23
	Cour12	12.5	15	pa	264		-
	Quarts	25. 0	15		293	-1.1	12.57
5	Quarts	10.0	20	111	314	- 7.9	11.58
	231809	1.6		. pa	281	-2.1	3. 55
7	Quartz.	5 0		po	243	-1.9	3.13
	Contin	5.1	10	pa	135		
9	Quarte	5.0	10	eg	234	-	_
10	Quaite	5 0	12	eg	258	-	_ 1
i i	Bissup.	5.0	12	eg	166	-	_
52	Quarts	17.5	17	ice	285	-t.B	3.06
13	Quarte.	10.8	15	LU.	288	-1.5	2 57
34	2 I sau P	5.0	12	+8	272		
15	Quarta	5.0	10	25	264		_
16	Quart;	17.5	17	1rr	255	-2.5	4. 90
11	Quarts	10.0	15	ρo	277	-8 2	£t. 91
18	Quarts	5 0	12	po	243		
19	Quarts	5.0	15	Þo	272		
20	Quarts	5. D	13	00	255	_	-
[I		
	-				Γ		6.18
			1		Γ	1	

em: egg irr: irregular po : polyworph sq:square tr:trianglicu:tubu ag:wedge

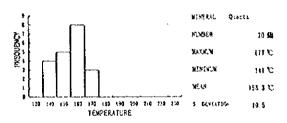


Homogenization Tomograture and the Historia

Sample No. F-12

	Mineral.	Size	Yolene .	face	Tempe-	Velting	YaCl
Nο	1	-	ratio		* fature		
		(mµ)	(0)		(0)	<u>(C)</u>	T; (t)
1_	Quartz	37. 5	1. 17	la	267	0.0	0.60
2	Quarts	12.5	30	111	254	-8.1	0. 8
3	Quarts	5. 0	11	20	265		-
4	Quarts	5.0	1	po	252	-	-
5	Quartz.	7. 5	5	00	240		
8	Quacts	22. 5	12	ler	251	4. 0	0.00
1	Coarts	12.5	10	ler	265	0. 0	0.00
8	Quartz	30.5	15	ice	259	0.0	0.00
9	Singe	1 T. 5	10	irr	232	-3.1	0.13
10	Quarta	5.0	5	pa	249	-	-
11	Quarte.	5. 0	5	рe	260	-	~
12	Quarta	5. 0	3	p-o	237	_	-
13	Quarts	12.5	12	∎g.	273	0.0	0.80
14	41 sup	5.0	1 1	90	249	-	-
15	Quertz.	5.0	5	ро	228	_	
16	Gnatet	27.5	i S	Ite	277	0.0	0.00
17	Quarts	20.0	12	\$16	241	-8, 1	81 0
15	Quartt	17.5	10	fra	255	-0. 1	0.35
19	Quartt	\$. D	12	Ç9	261		
20	Quarts	5.0	S	04	252		
						[]	
			1				0 09

eg: egg frr: frregular po :polymorph sq:square tr.trfanglitu:tubu = ag: wedge

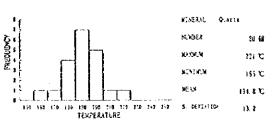


Hoanganfration Temperature and the Historian

Seaple No. ____Fill

	V:occa1	Site	Yolke	Form	lense-	Vetting	NaCl
No.	1		ratio	i	reture	[enp	
		(m µ)	(10)		(0)	_(Z)	11 (3)
L.	<u>. कुप्तर ६ ह</u>	15.0	10	99	156	-0.9	1. 57
1	Quaria	15.0	1	pa	162	-1.0	1.74
1	Quirta	15.0			155	-0.6	1.05
1	geatte	7. 5	10	00	1113	-1.1	1.91
5	Quarta	5.0		11	166	J	
	Quarta	5.0		11	151	L	
1_	Quarta	33.5	10	10	342	-1.6	3. [4
	Quarta.	16.0		<u>lir</u>	152	-1. 4	2 (1
	Diartz.	10.0	11_	lir	L_191	-t.\$	2.51
10	Distes.	5.0	5	po	153	l -	.
- ti	Quarti	\$.0	3		152	<u> </u>	
33	Quarte	17.5		<u>tu</u>	168	-0.9	1. 57
11	Querta	15.0	1_1	110	160	-1.0	L tu
13	Quette.	\$.0	11	00	168	l _ -	
15	Quarte	\$.0	5				
. 16	Quarte	12.5	10	- 00	117	-0.9	1.57
11	Quarta	10.0	10	Do _	123	-1.1	2.07
- (1	Quarta	\$.0	1_1_	pe	163_		
_ 19_	Quarts	5.0	1s	pa	152		
20	Querta	5.0]	pe	1111	<u> </u>	
L			1		I	L	L
			L				1.90
							L:

est ese for a foreselar no inclimarch solucies tritrianglituitubu egimedg



Homogenization Temperature and the History

No. F-11

<u></u>	Mineral	Size	Voluee	₹0:∎	Teape-	Neiting	MaCt
Y _J			falio		taluce		
L		(m <u>u</u>)	(3)		(3)	(C)	U (U)
<u> </u>	graete	15.0	10	11	195	-10.3	11.25
[<u>;</u>	Quarte	17.5	10	ро	1 193	-10.8	. 11.77
[]	Quarty	10.6	10	ро	1 195	-9.3	13.15
(Quarte	5.0	7	00	165	l	
5	Quarte	5.0	\$. po	113	-	
1	Quartz	5. 0	7	Po_	162	-	
1	Quarte	1.5	10	po .	205	-10.1	15.54
B	Quarta	17. \$	12	00	271	-8.8	12 62
9.	Quarta	12.5	10	33_	1 212	-10 t	14.64
.10	Quarts	13 6	10	20	202	-8.8	12.62
tt	giagop	5.0	7	90	182		-
Ιŧ	Quarte	5.0	10	00_	189		
13	Quartx	(1.5	11	ge	205	-8.8	12. 51
14	Quartx	10.0	10	pο	193	-8.4	F2. 15
15	Quarta.	10.0	10	60	192	-8 5	17. 23
\$ 6	Quarts	21.5	_13	po	204	-10.8	14, 77
)7	Coarte.	20. 0	10	ice	182	-10 Z	14, 15
16	Quarta	20.0	10	po	194	-10.4	į 4 36
13	Quarte	12.5	11	00	191	-9.3	13.15
29	Quarte	5.0	20	20	193	<u> </u>	
				L	l	[
[I						17 50
	I		1	L		L	-

eg: egg fre: imtegulat po :polyworph sq:square tritriangletu:tubu wg:wedge

(1/5)

Tab.II-2-6 LISTA DEL RESULTADO DEL ANALISIS DEL MUESTRA REGIONAL (Tepaleatenec, Ahui jullo, Edo. Michoacan)

Area RE	GIONAL	Tepalca	tepec, A	hui jul le	o, Edo. B	dichoaca	in)			
SAMPLE	Au	Ag	As	Cu	Fe	Hg	Рb	Sb	Zn	BaS01
[i	ppb	_ppm	ppm	%	%	ppb	%	_ppm_	%	%calc.
CI-001	<5	82. 2	94	<0.01	2. 52	1670	0, 02	5.2	<0.01	71, 37
CI-002	<5	45. 2	230	0, 14	2.87	5570	0.08	22	33. 2	
CI-003	<5	82. 2	1755	0.02	13.60	12740	2.37	28	11, 50	
CI-004	<5	97	889	0.01	28.9	2660	1. 27	20	2, 38	
CI-005	<5	581	245	0.39	2,77	62900	0.04	560	0, 20	
CI-006	₹70	>3500	2040	3.31	1.01	100000	0, 01	>1000	0. 32	not/ss
CI-007	<5	336	101	0.02	0.77	34900	37. 1	94	0.03	
CI-008	<5	20.8	372	0, 01	42, 9	24200	0.68	44	0.02	0.20
CI-009	<5	1.0	14	<0.01	2.01	650	0.03	3. 2	<0, 01	63, 61
CI-010	₹5	1,4	17	⟨0, 01	0, 84	310	0.09		<0.01	75.62
CI-011	10	63.4	124	₹0. 01	0.46	3180	0.01	22	0.02	77.88

	MACOLAU	Acouter	ops/					~ .	
SAMPLE	Λu j	Ag	As	Cuj	Fe	llg	. Pb	Sb	Zn
	ppb	ppm	ppm	_ppm'	%	ppb	%	_ppm	ppm
CB-001	<5	0. 2	2	4	0.40	<10	6	0, 6	7
CB-002	<5	⟨0. 2	<1	3	0.20	50	6	0.8	1
CB-003	<5	0. 2	l	9	0.45	10	6	4. 2	3
CB-004		⟨0. 2	<1	3	0. 20	20	6	0.4	11
CB-005	₹5	⟨0. 2	<1	3	0.35	<10	10	0.6	13
CB-006	⟨ 5	⟨0, 2	<1	1	0.30	30	8	0. 2	20
Area IN	OF UNO	outeror)						

SAMPLE	Au	Ag	As	Cu	Fe	Hg	Pb	Sb	Zn	₩
	ppb	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm
DJ-001	⟨5	21, 2	159	62	1. 7	17500	1205	31	9010	5
DJ-002	30	24.4	2660	32	1.8	760	1630	200	865	
DJ-003	400	1.4	216	2540	10	510	15	2.8	77	55
DJ-004	27290	5	253	1955	>20.0	440	20	2.8	31	<2
DJ-005	2730	2.6	574	5540	>20.0	520	26	44	101	<2
DJ-006	2040	0.6	281	1495	16. 5	300	15	6	41	70

u	IU	I — 1	L. M	MI	19
71	1.71	<u>. – 1</u>	L. AL	1.31	

SAMPLE	Au	Ag	As	Cu	Fe	llg	Pb	Sb	Zn
٠.	ppb	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm
DI-001	65	5	5	65	1.60	10	85	1	121
DI-002	<5	3	3	198	2.80	<10	82	⟨0, 2	437
DI-003	⟨5	1	1	6	3.50	<10	16	<0.2	98
DI-001	<5	4	4	32	3.40	10	8	<0.2	73
DI-005	5	1	<1	28	6. 20	10	14	(0. 2	127
DI-006	<5	⟨0.2	<1	25	3.40	<10	13	0.4	102
DI-007	<5	0.2	〈1	86	5.70	<10	20	<0.2	147
DI-008	<5	1.2	(1	1275	8.30	<10	13	0. 2	135
DI-009	75	2.4	<1	228	2.55	<10	40	0. 2	46
DI-010	135	0.4	< 1	501	5.05	40	11	0.2	84
DI-011	145	1.0	. 11	896	10.00	30	12	⟨0, 2	157
DI-012	<5	0.8	<1	1730	5. 15	<10	8	⟨0. 2	124
DI-013	<5	2. 2	1	3600	4. 25	<10	12	8, 6	97

V	1	u	T	3
.71	ŀ	.53		•

SAMPLE	Au	Ag	As	Cu	Fe	Hg	Pb	Sb	Zn
	ppb	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm
DD-001	15	0.6	123	16	1. 35	380	85	22	211
DD-002	10	0.8	109	15	1.05	120	130	8. 2	202
DD-003	15	1.6	328	28	3. 50	190	134	20	396
DD-004		<0.2	39	9	0.60	10	11	1.8	12
DD-005	< 5	0. 2	39	10	0. 55	230	68	7.0	95
DD-006	<5	0.4	88	12	1. 20	380	31	9. 2	166
DD-007	<5	0. 2	15	9	0.45	30	11	2. 2	40
DD-008	₹5	<0. 2	7	7	0.30	<10	6	1. 0	7
DD-009	<5	0. 2	21	8	0.30	160	25	2. 4	33
DD-010	5	0.6	26	9	0.60	400	28	3.8	95
DD-011	√5	0.6	19	6	0.45	180	38	4. 2	42
DD-012	- 5	0.8	25	5	0.80	210	21	3. 6	86
DD-013	<5	0.6	9	1	3. 10	50	20	4.6	86
DD-014	10	0.8	34	11	1	450	13	5. 8	214
DD-015	5	0.8	45	134	3. 2	600	5	38	79
DD-016	150	2. 2	167	14	2. 2	110	59	14	300
DD-017	170	5.6	1485	320	5. 55	9480	1385	46	255000
DD-018	25	0. 2	59	20	5	250	24	8.6	1155
DD-019	165	30.6	3860	1400	14. 2	260	1825	830	3730
DD~020	365	55. 6	7780	5200	8.5	280	418	450	11000
DD-021	350	11.2	6120	70	6. 2	60	1650	910	881
DD-022	185	9.8	1325	160	13. 8	490	734	64	30600

(3/5)

MJMI-4	·								
SAMPLE	Au	Λg	As	Cu	Pe	Hg	5р	Sb	Zn
	ppb	ppm	ppm	ppm	. %	ppb	ppm	ppm	ppm
DE-001	₹5	1	111	16	1. 55	740	29	12	1040
DE-002	15	1.6	166	32	1.8	1330	146	22	1940
DE-003	40	4	502	34	3. 1	1390	1320	35	1320
DE-004	20	2	51	20	1.3	210	68	13.5	329
DE-005	<5	۷, 2	130	21	1	140	18	9. 2	322
DE-006	<5	<. 2	93	14	0.9	430	10	7. 2	206
DE-007	₹5	0.4	336	30	1. 9	80	24	5, 8	113
DE-008	80	15. 4	>10000	170	4.7	60	255	38	404
DE-009	25	4.6	3440	174	3.6	70	294	14	1175
DE-010	₹5	1, 8	526	100	3. 9	30	90	12	133
DE-011	20	3. 2	1645	166	5.65	30	183	19	339
DE-012	435	33. 6	>10000	760	18. 2	60	691	120	192
DE-013	680	83.8	>10000	164	16. 2	270	2750	310	1775
DE-014	145	43.2	>10000	200	6. 25	40	390	130	251
DE-015	870	45, 4	>10000	460	10. 5	330	15200	136	15000
DE-016	480	26. 2	>10000	68	7. 95	10	266	106	88
DE-017	20	2. 4	1120	118	3. 5	30	95	22	872
DE-018	<5	0.8	41	38	2.90	10	53	11.5	231
MJMI-5									
SAMPLE	Au	Ag	As :	Cu	Fe	llg	Pb	Sb	Zn
	ppb	ppm	ppm	ppn	%	ppb	ppm	ppm	ppm
DF-001	355	. 7	2330	180	7.6	80	52	38	23
DF-002	575	14, 8	1440	42	4.6	400	2630	30	5990
DF-003	700	190	2170	270	10. 1	690	29200	270	380
DF-004	1615	37. 2	>10000	120	9.6	40	381	100	177
DF-005	4760	274	1780	2200	14.8	330	32400	210	818
DF-006	125	19. 2	4960	80	2. 1	160	176	134	88
DF-007	1955	61.2	>10000	1935	17.4	710		>1000.	1975
DF-008	185	28		862	6. 7	3700	2840	44	53400
DF-009	30	1	165	26	<u>5. l</u>	110	190	15	653
DF-010	150	1,8		13	6.9	690	127	154	108
DF-011	95	4.2		20	12.4	30	597	18	298
DF-012	55	3.8		104	5. 9		2620	9.8	3720
DF-013	40	3. 4	209	39	5. 1	390	409	9.6	1930
DF-014	365	4		26	9. 1	70	211	11.5	419
DF-015	80	32.4		81	5		1045	40	142
DF-016	90	3. 2	263	29	4.4	40	182	9	198

И	M	I	•	6
---	---	---	---	---

MJMI-6							r		·	
SAMPLE	Au	Ag	As	Cu	Fe	llg	Рb	Sb	Zn	₩
:	ppb	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm
DG-001	5	0.6	41	5	0.30	10	69	2.6	63	
DG-002	15	44.4	967	31	5. 00	710	584	115	543	
DG-003	10	13. 4	339	16	4. 10	380	211	26	536	
DG-001	15	6, 8	217	14	2. 20	40	168	14.0	361	
DG-005	25	28. 2	562	25	1, 60	240	950	19.0	836	
DG-006	40	0, 6	87	3	1, 00	30	22	10.5	157	
DG-007	40	3.0	274	9	3, 60	220	77	9.8	399	
DG-008	15	⟨0. 2	17	11	1, 70	<10	9	1.0	37	
DG-009	20	0.4	22	19	1, 90	₹10	23	1.6	24	
DG-010	7 5	<0.2	27	17	1.60	10	4	1.4	23	
DG-011	15	0. 2	3	271	2.40	40	9	3.6	29	
					13.80	60	13	5, 6	150	<u>4</u> ⟨2
DG-012	130		228	3760						₹2
DG-013	330	25. 6	1535	20000	12.00	530	269	88	948	
DG-014	310	40, 2	568	17000	11.80	890	363	46	1140	<2
DG-015	615	20.0	817	7840	11. 20	270	526	53	711	2 <2
DG-016	1745	21.4	204	19200	10.00	130	19	4.8	146	
DG~017	385	19.8	429	9680	11.60	100	7	9.8	134	<u>1</u> 9
DG-018	100	8. 2	426	2520	8. 30	180	12	14.5	198	
DG-019	315	16.0	389	6010	9.00	350	84	16. 5	204	16
DG-020	30	3. 6	75	911	1.90	80	67	3.6	145	2
DG-021	50	1.4	685	976	13. 40	40	65	29	329	22
DG-022	90	5.8	133	3390	11.40	40	6	7. 2	72	<2
DG-023	160		34	5380	11.00	40	2	1.6	33	⟨2
DG-024	275	12.8	116	6630	12.60	60	20	6.8		<2
DG-025	80		24	1925	9. 20	10	7	1.2	70	<2
DG-026	30		154	566	7. 70	120	83	9. 2		17
DG-027	25		131	156	1. 90	140	487	32	476	7
DG-028	25		521	50	2. 15	820	529	35		7 8
DG-029			72	52	1.00	410	244	17.0		15
DG-030			131	83	1.30	780	122	14.0		15 7
DG-030	25		332	395	2.80	850	475	21	713	
								52	676	
DG-032	105		945	1290		2000	787			
DG-033				2670		10	11	0.2		
DG-034	50			3810		1920	387	69		
DG-035			891	896		640	310			26
DG-036						30	19			
DG-037				961				29		
DG-038				100			141	7, 6	+	
DG-039								2.6		
DG-040	15			476	14. 50	2760	893	140		-1
DG-041	90			1755		2890	1260	140	1545	
DG-042				8290		200	42	16. 5	337	
DG-043				1130	1	90	27	6.0		3
DG-014		1				600	207	100	·	
DG-045						40	39	3.4		8
DG-046						10	11	0. 2		
DG-047			20			50	10	0.8		
DG-018						540	14			
DG-049						180				
										
DG-050										
DG-051									+	
DG-052		0.4	 	736						
DG-053				4						
DG-054	15	⟨0.2	1	31	7.60	130	10	0.2	27	21

DG-055	₹5	<0, 2	5	9	1. 10	700	10	0, 4	14	<2
DG-056	10	<0.2	12	41	7, 20	140	7	0.8	31	26
DG-057	25	⟨0, 2	2	166	6.40	310	6	0.4	36	17
DG-058	115	0.8	8	1370	5.80	240	6	0.6	. 39	9
DG-059	30	<0.2	<1	142	9, 80	90	6	0, 4	31	10
DG-060	10	⟨0, 2	2	130	1. 45	40	3	0. 2	23	4
DG-061	20	⟨0, 2	7	66	4, 30	<10	9	4.8	25	4
DG-062	35	1.4	341	293	7. 45	100	32	26	35	5
DG-063	20	0. 2	87	154	2, 50	20	13	12, 0	40	1
DG-064	25	1, 8	172	738	9. 95	60	38	54	66	3
DG-065	20	2.8	218	715	5.80	40	21	145	38	8
DG-066	40	2.4	295	805	10.00	60	17	55	36	1
DG-067	65	2. 2	248	1215	7.40	110	25	42	168	7
DG-068	15	2. 4	221	1075	7.60	50	41	36	52	6
DG-069	45	1.4	. 35	1110	>20.0	₹10	19	2.8	49	48
DG-070	55	1.6	403	1180	9.70	80	18	77	63	- 25
DG-071	25	1.6	174	693	5. 85	30	48	62	73	3
DG-072	35	0, 8	38	402	3.40	130	95	39	211	6
DG-073	<5	<0.2	6	27	0. 25	<10	5	0.8	8	3
MJMI-7										· .

<u>MJM1-7</u>									<u> </u>
SAMPLE	Au	Ag	As	Cu	Fe	llg	Рb	Sb	Zn
	ppb	ngq	ppm	ppm	%	ppb	ppm	ppm	ppm
DH-001	25	0.6	74	4	3. 20	220	90	8. 0	1300
DH-002	30]	0.6	431	6	3.00	3240	84	66	1000
DH-003	20	<0.2	268	2	2.40	1030	45	24	1000
DH-004	75	0.6	185	4	3. 40	4560	72	38	530
DH-005	20	1.0	58	4	3.00	330	56	6.2	580
DH-006	55	1. 2	456	10	2, 60	1560	136	46	430
DH-007	45	1.0	280	7	1.90	1030	77	20	260
DH-008	40	0.6	331	5	2.95	1060	114	28	595
DH-009	10	<0.2	13	4	3. 20	300	43	3. 0	670
DR-010	90	7.8	388	90	3.85	4530	1635	40	2850
DH-011	10	1.8	646	26	4.60	3320	559	115	1400
DH-012	70	2. 2	183	148	3.60	4360	1320	17. 5	980
DH-013	5	1.8	253	54	3. 20	1650	114	30	450
DH-014	10	1.4	257	58	2.70	1230	137	50	295
DH-015	5	1.2	362	32	4.50	1030	185	57	510
DH-016	10	0.8	129	20	4.00	570	65	6.4	220
DH-017	25	0.4	118	15	3.60	640	107	11.0	535
DH-018	15	1.2	29	38	1.80	1290	629	4.8	2000
DH-019	15	2.2	152	38	3. 20	2100	73	34	530
DH-020	25	3.4	245	34	2.45	1850	76	46	500
DII-021	65	5. 4	261	36	2. 20	640	156	100	750
DH-022	70	3.8		24	2. 90	1300	157	78	1500
DH-023	100	13.6		29	3. 50	960	283	150	1700
DH-024	280	8.6	137	14	2, 10	500	87	54	1500
DH-025	415	26.0	469	35	3.65	1270	334	230	1500
DII-026	35	4.0	+	14	2. 30		129	56	1400
DH-027	45	2.4	291	22	3. 95		150	32	1300
DH-028	175	9.6		16	7.00		373	64	1000
DH-029	190	40.6		146	2.50		816	64	1200
DH-030	120	10.4	331	43	2, 40	2160	684	84	1100
DH-031	150	38.0		54	2.35	5140	843	85	2500
DH-032	415	422	1050	100	4.70	9870	5300	290	3800

顕微鏡写真

(Photomicrograph)

付一43 代表的岩石薄片(Thin section)

(Sample locality)

MJMI-1 188.1m Pyroxene-homblende Andesite

MJMI-6 156.6m Garnet Skarn

MJMI-7 299.5m Biotite-hornblende Porphyry

(abbreviation)

Q: Quartz, Pl: Plagioclase, Bi: Biotite, Ho: Hornblende

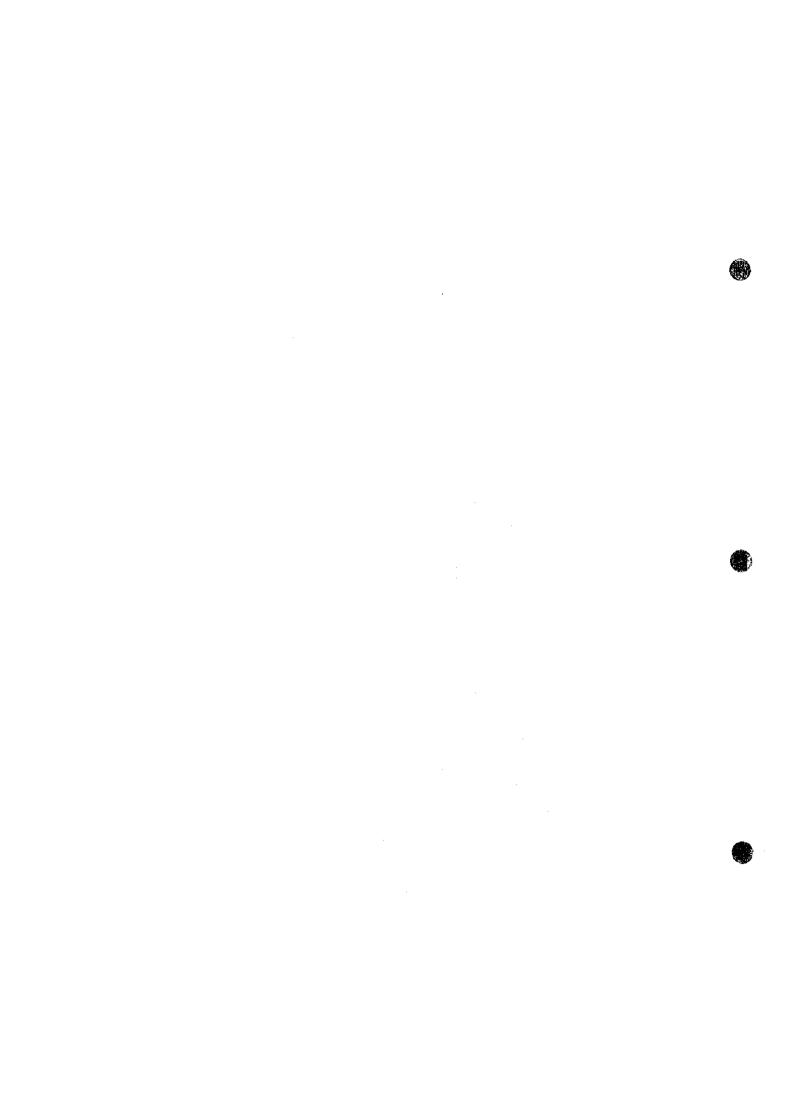
Ga: Garnet, Ss: Andradite-Grossularite solid solution

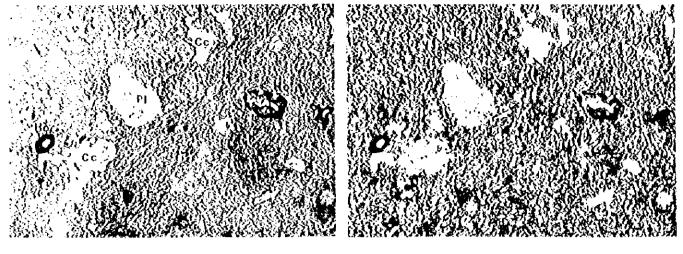
Left: Open nicol, Right: Cross nicol

付一44 鉱石研磨片(Polished section)

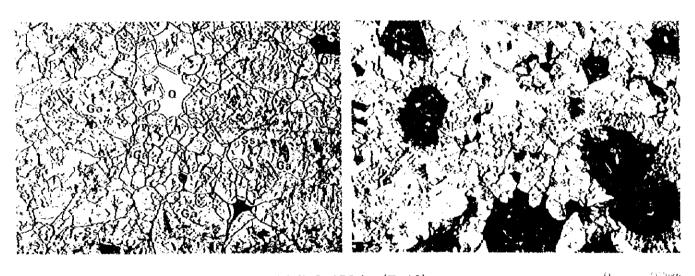
(Sample locality)

MJMI-3 246.9m , MJMI-4 121.5m

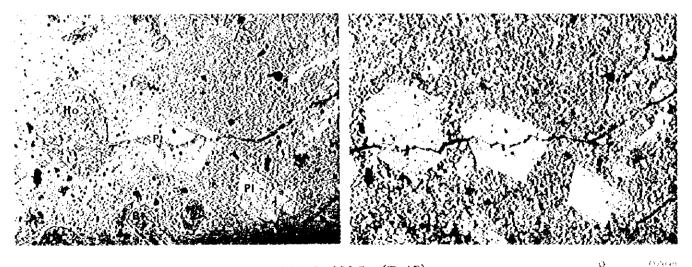

MJMI-5 159.1m , MJMI-6 156.6m

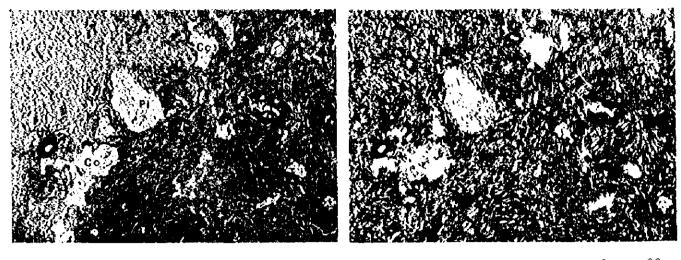

MJMI-7 298.2m , Outcrop of Skarn

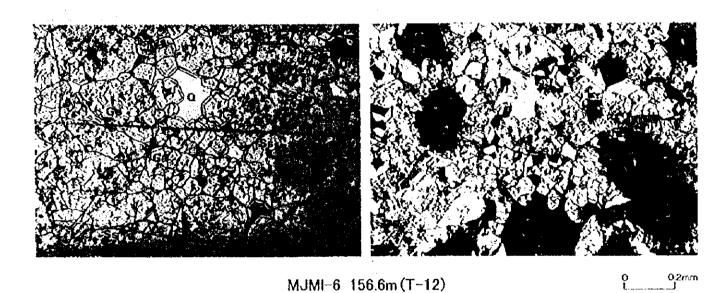
(abbreviation)

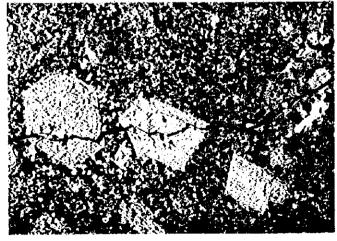

Sph: Sphalerite, Gn: Galena, Py: Pyrite, As-Py: Arsenopyrite

Cp: Chalcopyrite, Tet: Tetrahedrite, Ag: Ag-mineral, El: Electrum

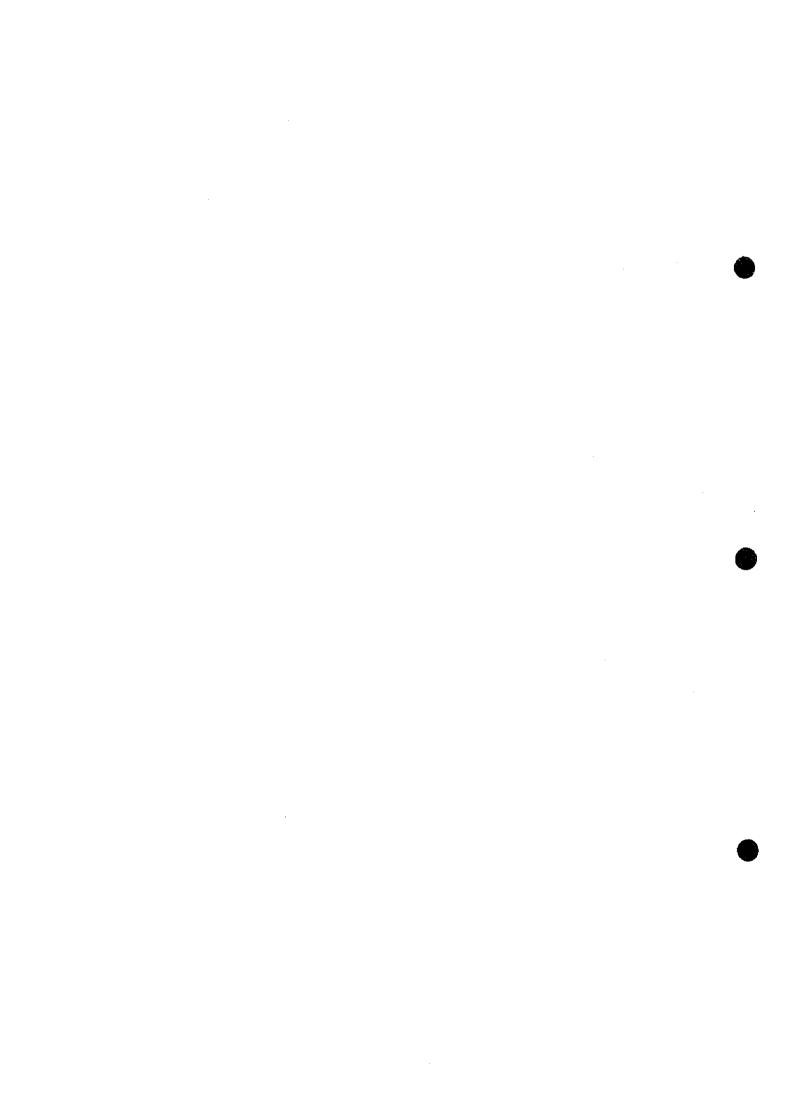


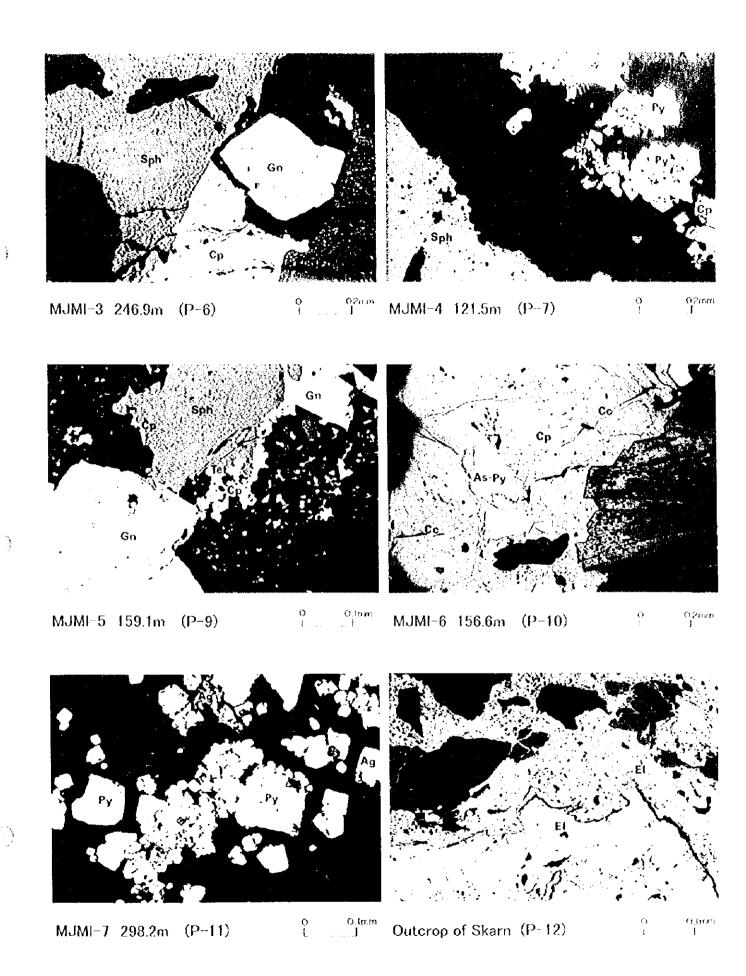

MJMI-1 188.1m (T-1)

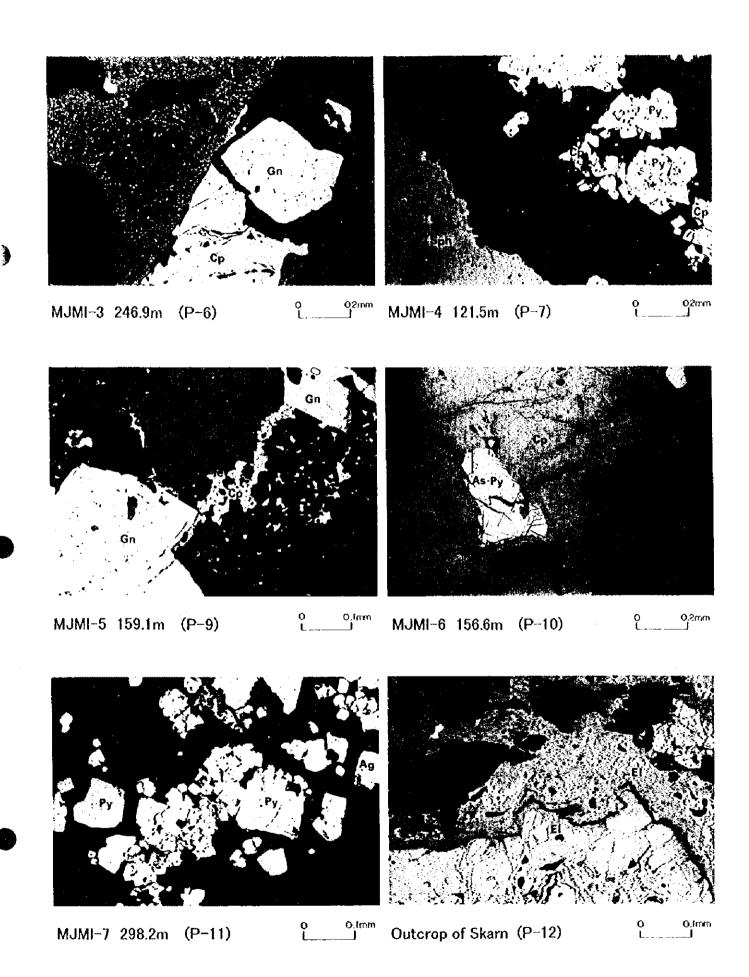

MJMI-6 156.6m (T-12)

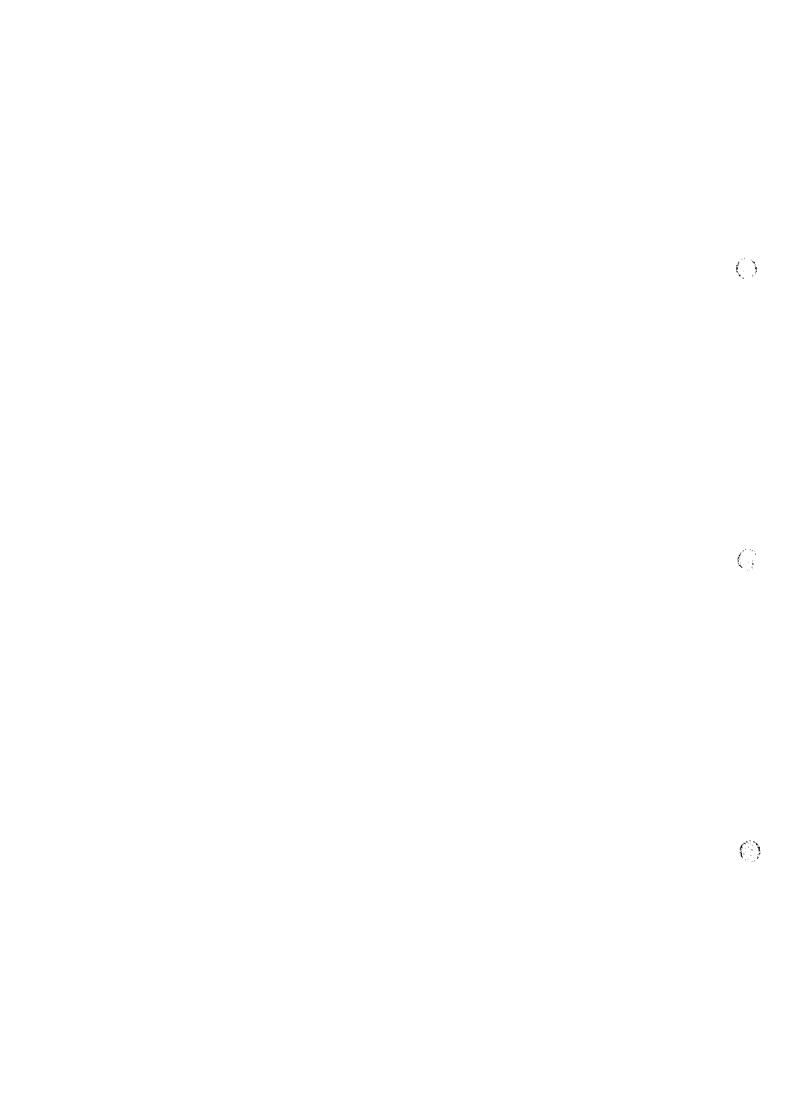


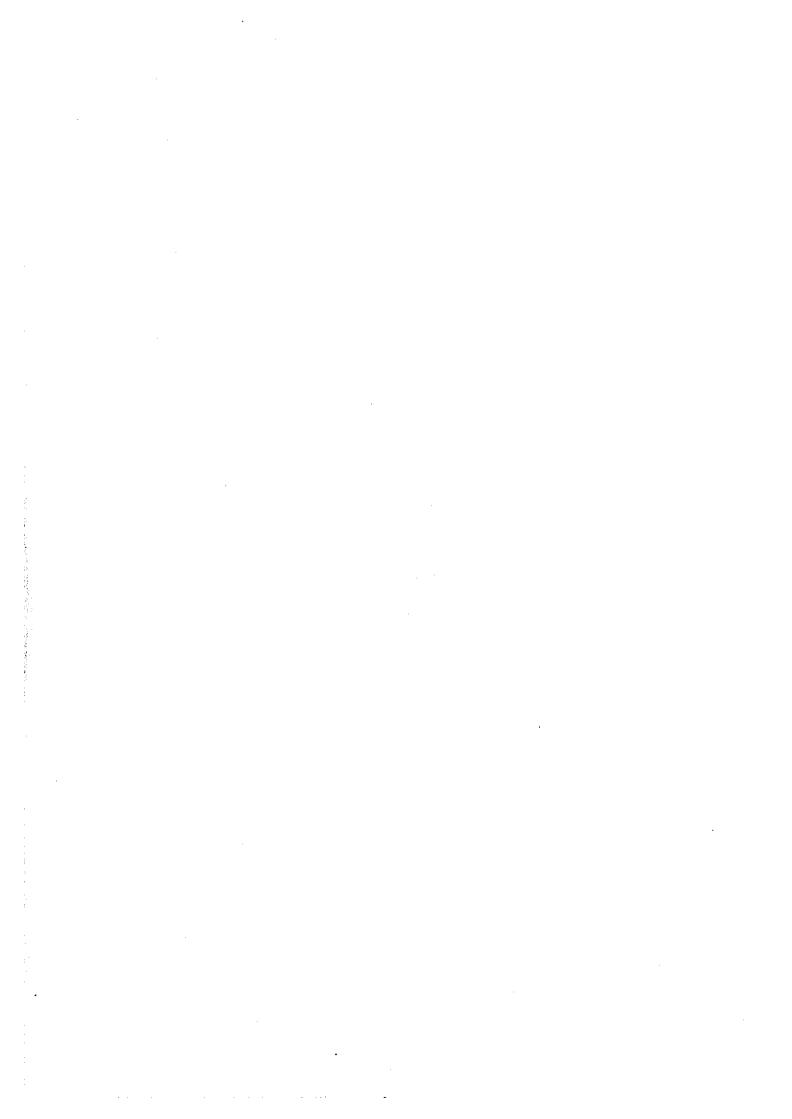
MJMI-7 299.5m (T-15)




MJMI-1 188.1m (T-1)






MJMI-7 299.5m (T-15)

