Skuodas

Pump Station No.1 (Existing Pu Item	Contents	Remark
Year constructed	1973	
Type of structure	B. Circular/without housing	
Equipment 1) Screen Type	none	
Bar spacing Quantity		
2) Pump Type	horizontal shaft, centrifugal pump	
Capacity	$80 \text{ m}^3/\text{hour x 7.5 kW}$	
Quantity	l unit	
3) Others		
<i>vy</i> 0.000	floor drain pump	
Stand-by Generator	no	
Operation		
Disposal of screenings		
Method	none	
Frequency		
Amount		
Pump Operation		
Automatic on-off	automatic by water level in the pump well	
No. of unit operated	1 unit	
Flow measurement	none no record due to lack of flow meter	
Discharge amount/flow	circulating for inspection	
Operator Existing problems	Circulating for hispection	
existing proofenis	Equipment is old.	
	Leaks in walls at pipe penetration	
Improvement in the Project		
	This pump station will be abandoned upon	
	completion of a new pump station in the same	
	premise. Structure of the new pump station has	
	been completed. New pump units have been purchased.	

ŧ

Skuodas

Item	Contents	Remark
Year constructed	To be completed, but not scheduled	
Type of structure	B. Circular/without housing	
Equipment		
1) Screen		
Туре	caged screen	
Bar spacing	unknown	
Quantity	<u> </u>	
2) Pump		
Туре	submersible pump	
Capacity	58 m ³ /hour x H15 m x 9 kW	
Quantity	2 units	
3) Others		
Stand-by Generator		
Operation		
Disposal of screenings		
Method	not operated yet	
Frequency		
Amount		
Pump Operation		
Automatic on-off	automatic by water level in the pump well	
No. of unit operated	1 unit	
Flow measurement	none	·
Discharge amount/flow		
Operator	circulating for inspection	
Existing problems	not applicable	
Improvement in the Project	Pump units have been purchased and should be installed.	

Ć

Skuodas

Pump Station No.2 Item	Contonto	Remark
	Contents	KUHAK
Year constructed		••••••••••••••••••••••••••••••••••••••
Type of structure	A. Circular/with upper housing	
Equipment		
1) Screen		
Туре	manual bar screen	
Bar spacing	40 – 50 mm	
Quantity	l	
2) Pump		
Туре	horizontal shaft, centrifugal pump	
Capacity	60 m ³ /hour x 22 kW	
Quantity	2 units	
3) Others		
	hoist crane	
	floor drain pump	
	ventilation system	
Stand-by Generator	no	
Operation		
Disposal of screenings		
Method	container	
Frequency	every day	
Amount	little	
Pump Operation		
Automatic on-off	automatic by water level in the pump well	
No. of unit operated	1 unit	
Flow measurement	none	
Discharge amount/flow	no record due to lack of flow meter	
Operator	circulating for inspection	
Existing problems		
Daning problems	Large amount of rainwater flows in. To prevent	
	inundation, the inlet gate is throttled.	
	Equipment is old.	
	Leaks in walls at pipe penetration	
Improvement in the Project		
improvement in morrojett	Prevention of rainwater intrusion must be	
	carried out with proper investigation. For the	
	case of a large pumping amount, by-pass	
	discharge will be installed at the proposed STP	
	after the primary sedimentation tank.	
	Repair of leaks should be included in the scope	
	of this project.	

.

.

Skuodas

-

Pump Station No.3	Contents	Remark
Year constructed	1976	
Type of structure	A. Circular/with upper housing	
Equipment		
1) Screen		
Туре	manual	
Bar spacing	20 mm	
Quantity	1	
2) Pump		· · · · · · · · · · · · · · · · · · ·
Турс	horizontal shaft, centrifugal pump	
Capacity	110 m ³ /hour x 22 kW	
Quantity	2 units	
3) Others		
.,	hoist crane	
	floor drain pump	
	ventilation system	
Stand-by Generator	no	
Operation		
Disposal of screenings		
Method	by container	
Frequency	every day	
Amount	littlə	
Pump Operation		
Automatic on-off	automatic by water level in the pump well	
No. of unit operated	2 units (1 unit on at all time)	
Flow measurement	none	
Discharge amount/flow	no record due to lack of flow meter	
Operator	circulating for inspection	
Existing problems		
<i>.</i>	Equipment is very old.	
	Leaks in walls at pipe penetration	
Improvement in the Project		
	No need to replace the pump units immediately.	
	Repair of cracks and leaks should be included in	
	the project scope.	

Ø

.

0

2-4

Skuodas

Pump Station No.4 (Proposed at Item	Contents	Remark
Year constructed	To be completed, but not scheduled	
Type of structure	B. Circular/without housing	
Equipment		
1) Screen		
Туре	caged screen	
Bar spacing	unknown	
Quantity	1	
2) Pump		
Туре	submersible pump	
Capacity	140 m ³ /hour x 12 kW	
Quantity	3 units	
3) Others		
Stand-by Generator	no	
Operation		
Disposal of screenings		
Method	not operated yet	
Frequency		
Amount		
Pump Operation		
Automatic on-off	automatic by water level in the pump well	
No. of unit operated	2 units (1 unit on at all time)	
Flow measurement	none	
Discharge amount/flow	no record due to lack of flow meter	
Operator	circulating for inspection	
Existing problems	not applicable	
Improvement in the Project		
	Pump units have been purchased and should be	
	installed under this project.	
	Only two units may be installed because the	
	pump capacity is too big for the planned sewage amount.	

Ð

 ${}$

3. Comparison of Treatment Plant Alternatives

.

Item	Case-1 Oxidaion Ditch System with P.S.T.	Case-2 Outdation Ditab Strategy without D.S. (1)	Case-3	(1/ Remarks
. Design Criteria	Oxidation Editor System with P.S.T.	Oxidaion Ditch System without P.S.T.	Sequencing Batch Reactor (SBR) System	
1) Design Flow	Daily average $: Q_1 = 1,270 \text{ m}^3/\text{day}$ Daily maximum $: Q_2 = 1,600 \text{ m}^3/\text{day}$ Hourly maximum $: Q_3 = 3,200 \text{ m}^3/\text{day}$	Daily average: $Q_1 = 1,270 \text{ m}^3/\text{day}$ Daily maximum: $Q_2 = 1,600 \text{ m}^3/\text{day}$ Hourly maximum: $Q_3 = 3,200 \text{ m}^3/\text{day}$	Daily average : $Q_1 = 1,270 \text{ m}^3/\text{day}$ Daily maximum : $Q_2 = 1,600 \text{ m}^3/\text{day}$ Hourly maximum : $Q_3 = 3,200 \text{ m}^3/\text{day}$	
2) Design Water Quality	BOD ₇ 560 30 392 96.2 15 15 25 SS 500 40 300 90 30 30 45 COD 1,000 30 700 90 70 75 120 T-N 70 10 63 70 18.9 20 35	S.T.F.D.S.I.Q.R.R.E.Q.Ave.Max. (mg/l) (%) (mg/l) (mg/l) (mg/l) BODs49097.4131321.7BODr56097.4151525SS50095253045COD1,00092.57075120T-N7070212035T-P12<*87.5	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	· · · · · · · · · · · · · · · · · · ·
 Design Temperature 	7 degree C. at winter	7 degree C. at winter	7 degree C. at winter	
2. Flow Chart	bit GR GR GR GR GR GR GR GR GR GR	Chemical - +	chemical Bacharica Chemical Denical	

Appendix 3 Comparison of Treatment Plant Alternatives (Skuodas)

-

Item	Case-1	Case-2	Case-3	Remarks
	Oxidaion Ditch System with P.S.T.	Oxidaion Ditch System without P.S.T.	Sequencing Batch Reactor (SBR) System	Kenarks
. Sludge (Q _{dmax})				
rimary Sludge	399 kgDS/day, 20 m ³ /day, 98.0 %WT	701 kgDS/day, 121 m³/day, 99.4 %WT	939 kgDS/day, 156 m ³ /day, 99.4 %WT	
Excess Sludge	424 kgDS/day, 75 m ³ /day, 99.4 %WT	561 kgDS/day, 37 m ³ /day, 98.5 %WT	751 kgDS/day, 50 m ³ /day, 98.5 %WT	
hickened Sludge	658 kgDS/day, 26 m ³ /day, 97.5 %WT	533 kgDS/day, 3.6 m ³ /day, 85 %WT	713 kgDS/day, 4.8 m ³ /day, 85 %WT	
Dewatered Sludge	625 kgDS/day, 3.9 m ³ /day, 84 %WT	555 KgD5/uay, 5.0 m /uay, 65 76 W I	715 KgD3/day, 4.6 m /day, 65 /6W 2	
. Major Facility	1) Grit Chamber	1) Grit Chamber	1) Grit Chamber	
· · · · · · · · · · · · · · · · · · ·	Gravity Type	Same as Case-1	Same as Case-1	
	W 0.8 m x L 2.5 m x D 0.3 m x 1 unit			
	Water Surface Load : 1,800 m ³ /m ² day Average Velocity : 0.15 m/s			
	2) Flow Measurement	2) Flow Measurement	2) Flow Measurement	
	Parshall Flume Type	Same as Case-1	Same as Case-1	
	W = 0.31 m x 1 unit			
			3) Balancing Tank	
	3) Primary Sedimentation Tank Rectangular Tank		Rectangular Tank	
	W 5.0 m x L 5.0 m x D 3.5 m x 1 unit		W 9.0 m x L 11.0 m x D 4.5 m x 1 unit	
	Surface Load : $64 \text{ m}^3/\text{m}^2$ day		Retention Time : 6 hrs	
	Retention Time : 1.3 hrs			
	4) Reaction Tank	3) Reaction Tank	4) Reaction Tank	
	Oxidation Ditch	Oxidation Ditch	Sequencing Batch Reactor	
	W 4.5 m x L 132.8 m x D 2.5 m x 2 units	W 4.5 m x L 192.8 m x D 3.5 m x 2 units	W 12.0 m x L 30.0 m x D 5.5 m x 2 units	
	MLSS : 4,000 mg/l HRT : 43.2 hrs	MLSS : 4,000 mg/l	MLSS : 2,000 - 3,000 mg/l	
	BOD-SS Load : 0.05 kg BOD/kg SS	HRT : 62.4 hrs	BOD-SS Load : 0.13 - 0.2 kg BOD/kg SS	
	202 00 2010 . 0.05 kg 202/kg 00	BOD-SS Load : 0.05 kg BOD/kg SS	Cycle Number : 3 Cycle	
			Retention Time : 59.4 hrs	
	5) Aeration Equipment	4) Aeration Equipment	5) Aeration Equipment	Note)
	Blower : 14.5 m3/min x 15 kw x 3 (1) unit	Same as Case-1	Blower : 23 m3/min x 45 kw x 2 (1) unit	Considering the case of P.S.T.'s by-pas
	Diffuser : Meinbrane Disc Aerator Submersible Mixer : 2.3 kw x 4 units		Aerator : 38 kg O ₂ /hr x7.5 kw x 4 units	operation, oxygen requirement of Case
	Submetatole mixer . 2.3 KW X 4 Units			is also adopted to Case-1.
	6) Final Sedimentation Tank	5) Final Sedimentation Tank		
	Circular Tank with Center driven	Same as Case-1		
	Sludge Collector			
	Dia. 14.5 m x D 3.5 m x 2 units			
	Surface Load : 5 m ³ /m ² day Retention Time : 17.3 hrs			

•

Item	Case-1	Case-2	Case-3	Remarks	
1040 	Oxidaion Ditch System with P.S.T.	Oxidaion Ditch System without P.S.T.	Sequencing Batch Reactor (SBR) System	KCMAIKS	
	2) Shudaa Dumua				
	7) Sludge Pumps	6) Sludge Pumps	6) Sludge Pumps		
	Return Sludge Pumps : Max. Ratio 200 %	Return Sludge Pumps : Max. Ratio 200 %	Excess Sludge Pumps : 0.4 m ³ /min x 2.21		
	0.6 m³/min x 1.5 kw	0.6 m³/min x 1.5 kw	x 4 (2) units		
	x 4 units	x 4 units			
	Excess Sludge Pumps : 6.5 m3/hr x 2.2 ky	Excess Sludge Pumps : 6.5 m ³ Air x 2.2 kv			
	x 2 units	-			
	Primary Sludge Pumps : 0.3 m3/in x 1.5 k	x 2 units			
	x l unit				
	8) Sludge Thickener		a) Chates Thisteres		
	Rectangular Tank with Center driven	7) Sludge Thickencr	7) Sludge Thickener		
	Picket Fence Type Mixer	Rectangular Tank with Center driven	Rectangular Tank with Center driven		
	W 5.0 m x L 5.0 m x D 4.0 m x 1 unit	Picket Fence Type Mixer	Picket Fence Type Mixer		
		W 5.0 m x L 5.0 m x D 4.0 m x 1 umit	W 6.0 m x L 6.0 m x D 4.0 m x 1 unit		
	Dry Solid Surface Load : 40 kg DS/m ² day	Dry Solid Surface Load : 30 kg DS/in ² day	Dry Solid Surface Load : 30 kg DS/m ² day		
	Retention Time : 25 hrs	Retention Time: 19.8 hrs	Retention Time : 22 hrs		
	9) Sludge Storage Tank	8) Sludge Storage Tank	8) Sludge Storage Tank		
	Rectangular Tank	Rectangular Tank	Rectangular Tank		
	W 3.0 m x L 5.0 m x D 4.0 m x 1 unit	W 4.0 m x L 5.0 m x D 4.0 m x 1 unit	W 4.6 m x L 6.0 m x D 4.0 m x 1 unit		
	Retention Time : 2.3 days	Retention Time : 2.2 days	Retention Time : 2.2 days		
	10) Sludge Dewatering Machine	9) Sludge Dewatering Machine	9) Sludge Dewatering Machine		
	Centrifugal Dewatering Machine	Centrifugal Dewatering Machine	Centrifugal Dewatering Machine		
	5.0 m ³ /hr x 22.2 kw x 1 unit		$10.0 \text{ m}^3/\text{hr} \times 44.5 \text{ kw} \times 1 \text{ unit}$		
	Polymer : 1.3 % per DS	8.0 $m^3/hr \ge 27.5 kw \ge 1$ unit	, , , , , , , , , , , , , , , , , , , ,		
		Polymer : 1.5 % per DS	Polymer : 1.5 % per DS		
	11) Sludge Composting Yard	10) Sludge Composting Yard	10) Sludge Composting Yard		
	Stockpiling Yard	Stockpiling Yard	Stockpiling Yard		
	W 9.0 m x L 36.0 m x 2 lines	W 10.0 m x L 30.0 m x 2 lines	W 11.0 m x L 36.0 m x 2 lines		
	Storage Period : 6 months	Storage Period : 6 months	Storage Period : 6 months		
	10) 51-4-4 1	otorago i onou . o monuis			
	12) Sludge Lagoon	11) Sludge Lagoon	11) Sludge Lagoon		
	Open Cut	Open Cut	Open Cut		
	W (top) 26 m - (bottom) 20 m x	W (top) 26 m - (bottom) 20 m x	W (top) 38 m - (bottom) 32 m x		
	L (top) 26 m - (bottom) $20 \text{ m} \times D 1.5 \text{ m} \times 1 \text{ unit}$	L (top) 36 m - (bottom) 30 m x D 1.5 m x 1 unit			
	Storage Period : 1 month	Storage Period : 1 month	Storage Period : 1 month		
	13) Chemical Feeding Facility	12) Chemical Freding Facility	12) Chemical Feeding Facility		
	Alum-oxichloride Tank and Pumps	12) Chemical Feeding Facility Same as Case-1	Same as Case-1		
	Caustic Soda Tank and Pumps	Same as Case-1	Same as Case-1		
	Polymer Tank and Pumps				
	14) Transformer				
	100 KVA x1 unit				
		13) Transformer	13) Transformer		
		100 KVA x1 unit	200 KVA x1 unit		

(3	þ	1)
•				,

Item	Case-1 Oxidaion Ditch System with P.S.T.	Case-2 Oxidaion Ditch System without P.S.T.	Case-3 Sequencing Batch Reactor (SBR) System	Remarks	
	 15) Auxialiary Facilities Administration Building Single Story, W 12.0 m x L 18.0 m x 216 m² Sludge Building Single Story, W 9.0 m x L 11.0 m x 99 m² Sludge Pump Building Single Story, W 6.0 m x L 12.5 m x 75 m² 	14) Auxialiary Facilitics Same as Case-1	 14) Auxialiary Facilities Administration Building Single Story, W 12.0 m x L 18.0 m x 216 m² Sludge Building Single Story, W 9.0 m x L 11.0 m x 99 m² 		
5. Total Motor Power	90 kw	96 kw	166 kw		
5. Construction Cost	Civil/Arch. : 3,737,000 Mech./Elect. : 2,885,000 Total : 6,622,000	Mech/Elect. : 2,885,000 Mech/Elect. : 3,249,000			
7. O/M Cost					
1) Power Consumption	- Demand 177,000 kwH/year	- Demand 216,000 kwH/year	- Demand 255,000 kwH/year		
	- Electricity Charge 177,000 x 0.204 = 36,000 Lts/year	- Electricity Charge 216,000 x 0.204 = 44,000 Lts/year	- Electricity Charge 255,000 x 0.204 = 52,000 Lts/year	Unit price 0.204 Lts/kwH (Aug. 1998)	
2) Chemical Consumption	- Alum oxichloride : 38,600 kg/year 38,600 x 0.424 = 16,366 Lts/year	- Alum oxichloride : 50,800 kg/year 50,800 x 0.424 = 21,539 Lts/year	- Alum oxichloride : 18,400 kg/year 18,400 x 0.424 = 7,802 Lts/year	For annual average consumption Alum-oxichloride	
	Transportation 38.6 x 1/11 = 3.5 4 times 350 km x 4 x 1.3 = 1,820 Lts/year	Transportation $50.8 \ge 1/11 = 4.6 \dots$ $350 \ge x \le 1.3 =$ $2,275 \ge 2,275 \le 1.5/year$	Transportation 18.4 x 1/11 = 1.7 350 km x 2 x 1.3 = 910 Lts/year	0.424 Lts/kg Transportation 11 ton, 1.3 Lts/km (Aug. 1998)	
	- Polymer : 1,340 kg/year <u>1,340 x 25 = 33,500 Lts/year</u> Total 52,000 Lts/year	- Polymer : 1,370 kg/year <u>1,370 x 25 = 34,250 Lts/year</u> Total 58,000 Lts/year	- Polymer : 1,830 kg/year <u>1,830 x 25 = 45,750 Lts/year</u> Total 55,000 Lts/year	Polymer 25 Lts/kg including transportation (Aug. 1998)	
3) Fuel	- 100 Lts/wk x 52 = 5,000 Lts/year	- 100 Lts/wk x 52 = 5,000 Lts/year	- 100 Lts/wk x 52 = 5,000 Lts/year		
4) Consumable Parts and Repairing	2,885,000 x 0.015 = 43,000 Lts/year	2,690,000 x 0.015 = 41,000 Lts/year	3,249,000 x 0.015 = 49,000 Lts/year	1.5 % of M/E construction cost	
5) Total	136,000 Lts/year	148,000 Lts/year	161,000 Lts/year		

.

0

4. Capacity Calculation for Skuodas Treatment Plant (Case 1)

Appendix 4 Capacity Calculation for Skoudas Sewage Treatment Plant (Case 1) Case 1 : Oxidation Ditch System with Primary Sedimentation Tank

1. Design Criteria

9

1.1 Design Sewage Flow

 $Q_{dave} = Q_1 = 1,270 \text{ m}^3/\text{day}$ $Q_{dnux} = Q_2 = 1,600 \text{ m}^3/\text{day}$ $Q_{huux} = Q_3 = 3,200 \text{ m}^3/\text{day}$

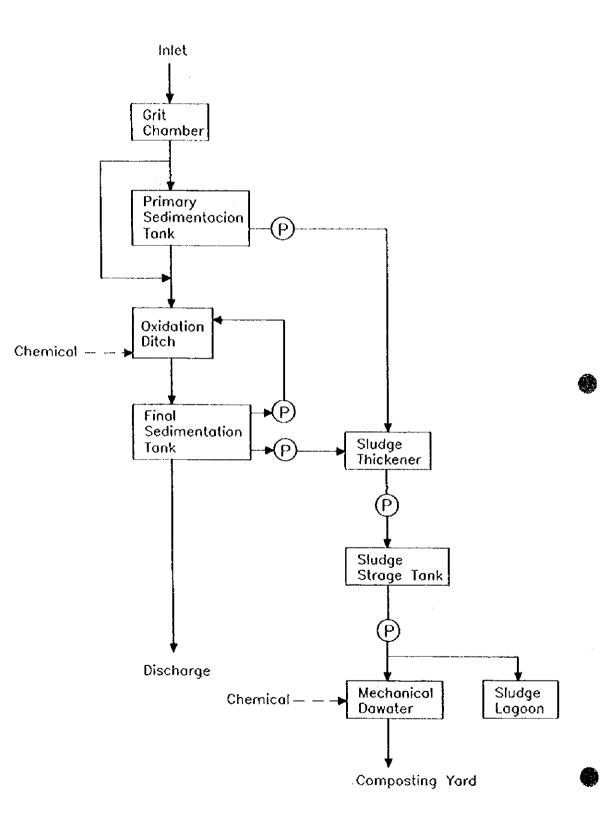
1.2 Design Sewage Quality

Influent		P.S	.Т.	S.T.F.		Discharge Standard	
	Quality	R.R.	E.Q.	R.R.	E.Q.	Average	Maximum
Item 🔪	(mg/l)	(%)	(mg/l)	(%)	(mg/l)	(mg/l)	(mg/l)
BOD ₅	490	30	343	96.2	13	13	21.7
BOD ₇	560	30	392	96.2	15	15	25
SS	500	40	300	90	30	30	45
COD _{C1}	1,000	30	700	90	70	75	120
T-N	70	10	63	70	18.9	20	35
T-P	12	10	10.8	*86.2	1.5	1.5	2.5

P.S.T. : Primary Sedimentation Tank

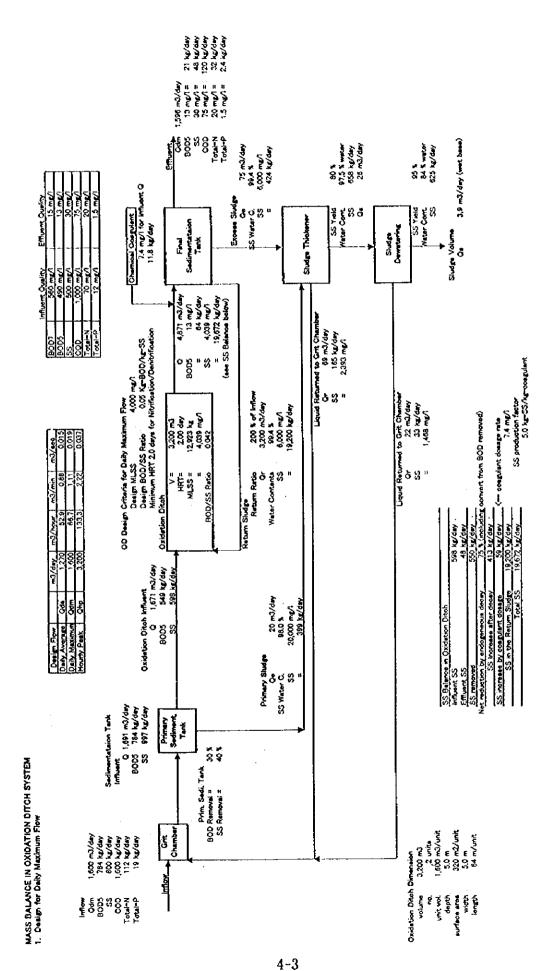
R.R.: Removal Rate

E.Q. : Effluent Quality


S.T.F. : Secondary Treatment Facility

* : with coagulant treatment

1.3 Design Seage Temperature


In winter : 7 degree C.

2. Flow Chart

۲

4-2

Mass Balance

00 Od

• •

Skuodaa OD maas belanooyda

Ć

4. Facility Capacity Calculation 4.1 Grit Chamber

Remarks

4.2 Primary Sedimentation Tank

þ

4.2 Primary Scomenta	Sysmbol	Calculation	Remarks
Design flow	Q ₂	$1,600 \text{ m}^3/\text{day} = 66.7 \text{ m}^3/\text{ht} = 1.1 \text{ m}^3/\text{min}$	
(Daily maximum)			
Турс		Radial Flow Rectangular Sedimentation Tank	
Surface load	S _L	70 m ³ /m ² .day	
Required surface area	A ₁	$Q_2 \ge 1/S_1 = 22.9 \text{ m}^2$	
Effective depth	R	3.5 m	
Overflow load		250 m ³ /m/day	
Reqired weir length	1	1,600 x $1/250 = 6.4$ m	
Deménsions		W 5.0 m x L 5.0 m x 3.5 mH x 1 unit	
(Surface area)	A ₂	$5.0 \ge 5.0 = 25.0 \text{ m}^2$	
(Capacity)	V ₂	$25 \times 3.5 = 87.5 \text{ m}^3$	
(Weir length)	l ₂	5.0 x 4 = 20.0 m	
Check			
Surface load	1	$1,600 \times 1/25 = 64 \text{ m}^3/\text{m}^2.\text{day} < 70 \dots \text{ OK}$	
Retention time	T ₂	$87.5 \times 1/1,600 \times 24 = 1.3 \text{ hrs}$	
Overflow load	1	$1,600 \ge 1/20 = 80 \text{ m}^3/\text{m.day} < 250 \dots \text{ OK}$	
			<u> </u>

4.3 Oxidation Ditch
4,3.1 Oxidation Ditch

4.3.1 Oxidation Ditch Item	Sysmbol	Catculation	Remarks
			(C)riai KS
Design flow (Daily max.)	Q2	1,600 m ³ /day	
(Daily max.)			
Туре		Circulation Flow Channel Type	
Design sewage quality	S _C	BOD ₅ : 343 mg/l	
	S _{SS}	SS : 392 mg/l	
	S _N	T-N : 63 mg/l	
MLSS	Сл	4,000 mg/l	
BOD-SS load	B _S	0.05 kg BOD/kg SS	
Return sludge density	Cr	6,000 mg/l	
Hydraulicretention time (HRT)	HRT	t.8 day = 43.2 hrs	
Reqired capacity	v	$V = HRT \ge Q_2 = 2,880 \text{ m}^3$	
Dimension			
Channel widtl	h B	4.5 m	
Lengt	h L	132.8 m	
Effective dept	h H	2.5 m	
No. of channe	al N	2 units	
Effective capacity	V ₂	3.0 % of capcity loss bt hunch shall be considered $V_2 = B \times L \times H \times N \times 0.97 = 2,898 \text{ m}^3$	
Check			
Acration tim	e T ₁	$V_2 \ge 24/Q_2 = 43.5$ hrs	

Examination on Retention Time of Oxidation Ditch

Retention time will be calculated by the following three alternatives and largest value will be adopted.

A: Calculation by BOD-SS loading

Ì

- B: Calculation by Required nitrification/denitrification zone capacity
- C: Catculation by Required SRT

Inflow sewage flow per channel = $Q_2 = 800 \text{ m}^3/\text{day}$

		B. Nitrification/d	enitrification zone	
	A. BOD-SS loading	Summer	Winter	C. Required SRT
O.D. capacity (m ³)	1,372	694	1,324	1,305
Retention time (day)	1.72	0.87	1.66	1.63

Thus, Hydraulic Retention Time (HRT) of Oxidation Dicth will be 1.8 days.

A. Calculation by BOD-SS load

 $V = (Q_2 \times BOD_{in} \times 10^{-3})/(BOD-SS \text{ load } \times MLSS \times 10^{-3})$

BOD-SS load : 0.05 kg BOD/kg SS day MLSS : 4,000 mg/l

B. Calculation by required nitrification/denitrification zone capacity, when sewage temperature is 18 degree C. in summer and 7 degree C. in winter.

Nitrification ratio : 90 % in summer, 70 % in winter Denitrification ratio : 80 % in summer, 80 % in winter Nitrification velocity : $K_N = 0.159 \exp(0.0908T)$ (g-N/g MLSS day) Denitrification velocity : $K_{DN} = 0.324 \exp(0.0634T)$ (g-N/g MLSS day)

C. Calculation by required SRT

Required SRT = $20.65 \exp(-0.0639T) = 13.2 \text{ days}$

T : Sewage temperature in winter (7 degree C.)

Required Oxidation Ditch volume was calculated based on above SRT.

C

ŧ

ł

4.3.2 Coagulation Facility

Item	Sysmbol	Calculation	Remarks
Dosing amount			
Design flow	Q	Q ₁ = 1,270 m ³ /day, Q ₂ = 1,600 m ³ /day	
Inflow T-P	$\mathbf{C}_{\mathbf{i}\mathbf{P}\cdot\mathbf{i}\mathbf{n}}$	10.8 mg/l	
Inflow ST-P	C _{SIP-in}	8.6 mg/l	
Coagulant		Alum-Oxichloride (Al ₂ O ₃ content : 10%)	
Dosing concentration	C _{AL}	$C_{STP-in}/P \ge m \ge AL$ = 7.4 mg/l	
Atomic value of Phosphorous		31	
Dosing mole ratio	m	1.0	
Atomic value of Aluminium		27	
Dosing amount (Max)	R _{AL}	$C_{AL} \times (O \times 3 + AL \times 2)/(AL \times 2 \times C_{AL} \times 10^{-2}) \times Q \times 10^{-3}$	
Atomic value of Oxygen	l	16	
Al ₂ O ₃ content	CALL	10%	
At Daily Maximum	R _{AL}	= 224 kg/day	
At Daily Average	R _{AL}	= 178 kg/day	
Anticipated consumption		Assuming that annual average inlet T-P is 10 mg/l. Posphorous removal at secondary treatment facility (30 %) shall also be considered.	
Target T-F	C _{TP-in}	$10 \times (1 - 0.1) \times (1 - 0.3) = 6.3 \text{ mg/k}$	
Target ST-I	C _{STP-in}	5.0 mg/l	
Dosing concentration		4.4 mg/l	
Dosing amoun (Daily average		105.6 kg/day = 38,544 kg/year	
			

4.3.3 Acration Equipment

•

4.3.3 Actation Equipm	Sysmbol	Calculation	Remarks
Design sewage flow	Q ₂	1,600 m³/day	
(Daily maximum)			
Туре		Submersible Propeller Mixer and Diffuser Type	
Oxygen Supply	SOR	Oxygen supply is supposed to be 2.1 kg O ₂ /kg BOD per unit inflow BOD. Further, aeration equipment shall be able to supply the	
		required oxygen even in case of P.S.T.'s by-pass operation.	
		= 1,600 m ³ /day x 490 mg/l x 10^{-3} x 2.1 = 1,646 kg O ₂ /day	
Air supply	Qa	= SOR/(E x h x 10 ⁻³ x 24)	
		E : Oxygen dissolution efficiency	
		(18 g O ₂ /m ³ air.water depth)	
		h : Deffuser depth = 2.2 m	
		$= 1,646/(18 \times 2.2 \times 10^{-3} \times 24)$	
		$= 1,732 \text{ m}^3/\text{hr}$	
		$= 28.9 \text{ m}^3/\text{min}$	
Aeration blower			
Туре	2	Roots Blower	
Specification		Dia. 150 mm x 14.5 m³/min x 3,200 mmAq x 15 kw	
Quantity		3 sets (1 set as stand-by)	
Diffuser			
Турс		Membrane Disk Acrator	
Unit air flow	,	7 m ³ /hr. 1 set	
Quantity	,	32 units/set x 4 sets/channel x 2 channel = 256 units	
Submersible mixer			
Туро		Submersible Propeller Mixer	
Power reqiremen	Lp	N x V x 10 ⁻³ = 2.9 kw/channel	

Item	Sysmbol	Calculation	Remarks
Unit power reqirement	N	2.0 w/m ³	
plat astro-	τ	2,898 m ³ /channel x 1/2 channel = 1,449 m ³ /channel	
Ditch volume	V	2,090 in /channel x 1/2 channel 3,449 m /channel	
Specification and		Dia.1.6 m x 2.3 kw x 2 sets/channel x 2 channel	
quantity	1		
		1	
L			

¢

4.4 Final Sedimentation Tank

ltem	i Tank Sysmbol	Calculation	Remarks
Design flow	Q2	$1,600 \text{ m}^3/\text{day} = 66.7 \text{ m}^3/\text{hr} = 1.1 \text{ m}^3/\text{min}$	
(Daily maximum)			
Туре		Radial Flow Circular Sedimentation Tank with Center driven Sludge Collector	
Surface load	S _L	5 m ³ /m ² .đay	
Required surface area	A	$Q_2 \ge 1/S_1 = 320 \text{ m}^2$	
Effective depth	н	3.5 m	
Overflow load	OL	Less than 25 m³/m day	
Weir length	l ₁	$Q_2/O_1 = 64 m$	
Demensions		Dia. 14.5 m x 3.5 mH x 2 units	
(Surface area)	A ₂	$\pi / 4 \ge 14.5^2 = 165 \text{ m}^2$	
(Capacity)	V ₂	$165 \text{ x} 3.5 = 577.5 \text{ m}^3$	
(Weir length)	l l ₂	$\pi x (14.5 - 1.0) = 42.4 m$	
Check			
Surface load	A	$1,600 \ge 1/(165 \ge 2) = 4.8 \text{ m}^{3/}\text{m}^2.\text{day} < 5.0 \dots \text{ OK}$	
Retention time	T ₂	577.5 x 2 x 1/66.7 = 17.3 hrs	
Overflow load	1	$1,600 \ge 1/(42.4 \ge 2) = 18.9 \text{ m}^3/\text{m}^2.\text{day} < 25 \dots \text{ OK}$	
Examination on Surface load			
Initial sedimentation verocity		$4.9 \times 10^6 \times T^{0.95} \times X_A^{-1.35} \times [SVI]^{-0.77}$ = 9.0 m/hr	
Sewage temperature	т	7 degree C.	
MLSS	S X _A	4,000 mg/l	
sv	1	150	

Item	Sysmbol	Calculation	Remarks
Surface load		$v_0/R = 4.5 \dots 5.0 \text{ m}^3/\text{m}^2 \text{ day}$	
Fluctuation ratio	R	2	

Ţ,

4.5 Sludge Thickener

4.5 Sludge Thickener	Sysmbol	Calculation	Remarks
Design sludge volume	q ₂	P.S.T. sludge : 20 m3/day, 399 kg/day	
(Daily maximum)		Excess sludge : 75 m ³ /day, 424 kg/day	
		Total 95 m ³ /day, 823 kg/day	
Туре	l l	Radial Flow Rectangular Sedimentation Tank with	
		Picket Fonce Mixer	
Solid load		40 kg DS/m ² .day	
Softu itau		to kg Dofin Any	
Required		$823 \text{ x } 1/40 = 20.6 \text{ m}^2$	
surface area			
Effective depth		4.0 m	
Demensions		W 5.0 m x L 5.0 m x 4.0 mH x 1 unit	
(Surface area)	A ₂	$5.0 \ge 5.0 = 25.0 \text{ m}^2$	
(Surface area)		5.0 x 5.0 - 25.0 m	
(Capacity)	V ₂	$25 \times 4.0 = 100 \text{ m}^3$	
Check			
Solid load	1	$823 \times 1/25 = 33 \text{ kg DS/m}^2$.day	
	_		
Thickening time	T	$100 \ge 1/95 \ge 24 = 25 \text{ hrs}$	
	1		

4.6 Sludge Storage Tank

4.6 Studge Storage Tar Item	Sysmbol	Calculation	Remarks
Design sludge volume	q ₂	Gravity thickened studge : 26 m³/day, 658 kg DS/day	
(Daily maximum)			
Туре		Rectangular Tank	
•)[**			
Storage days	T ₁	More than 2 day's studge volume	
<u> </u>	V	$26 \text{ x } 2 = 52 \text{ m}^3$	
Storage capacity	V ₁	$20 \times 2 = 52 \text{ m}$	
Demensions		3.0 m x 5.0m x 4.0 mH (effective depth)	
(Effective capacity)	V ₂	$3.0 \text{ x } 5.0 \text{ x } 4.0 = 60 \text{ m}^3$	
Check			
Storage days	T ₂	$60 \ge 1/26 = 2.3 \text{ days}$	
	1		
		-	
	1		
			4
1			

a.

4.7 Studge Dewater

1

)

4.7 Sludge Dewater			
Item	Sysmbol	Calculation	Remarks
Design studge volume	q ₂	Gravity thickened sludge : 26 m³/day, 658 kg DS/day	
(Daily maximum)		(Mixed sludge)	
Турс		Centrifugal Dewater Machine	
Operation time		6 days in week, 6 hrs/day	
Capacity requirement		26 m³/day x 7/6 x 1/6 = 5.0 m³/hr	
Specifications		5.0 m ³ /hr x 18.5 kw/7.5 kw x 1 unit	
Polymer dosing ratio		Less than 1.3 % per DS	
Polymer consumption (Daily average)		Assuming that annual average inlet SS is 350 mg/l and average dosing ratio is 1.0 % ;	
		658 x 350/500 x 1,270/1,600 x 1.0 x 10 ⁻² = 3.66 kg/day = 1,336 kg/year	
	2		

ť

4.8 Composting Yard

ltem S	Sysmbol	Calculation	Remarks
Design studge volume	q1	Target dewatered sludge volume is based on	
Daily average)		daily average sewage flow.	
Dewatered cake			
Solid weight	D ₁	625 kg DS/dayx 0.8 = 500 kg DS/day	
Water content	wt ₁	84 % (water content of dewatered cake : 97.5 %)	
Cake weight	Vi	500 x 100/(100 - 84) x 10 ⁻³ = 3.1 wt/day	
Bulk density	Cı	1.0 t/m ³	
Apparent volume	V_1 '	3.1 wt /dayx 1/1.0 = 3.1 m^3 /day	
Organic content		80%	
Organic digestion ratio		60%	
Digested organic		500 x 0.8 x 0.6 = 240 kg DS/day	
Compost products			
Solid weight	D2	500 - 240 = 260 kg/day = 0.26 t/day	
Water content	wt ₂	35%	
Product weight	V ₂	$0.26 \ge 100/(100 - 35) = 0.4 \le 100$	
Bulk density	C ₂	0.4 wt/m ³	
Apparent volume	V21	$0.4 \ge 1/0.4 = 1.0 \text{ m}^3/\text{day}$	
Composting yard			
Storage days	Т	180 days	
Deposit height	h	0.6 m	
Required area	A	$(3.1 + 1.0) \times 1/2 \times 180 \times 1/0.6 = \text{more than } 615 \text{ m}^2$	
Dimensions	5	9.0 m x 36.0 mL x 2 lines	
(Area)		$9.0 \times 36.0 \times 2 = 648 \text{ m}^2$	

4.9 Sludge Lagoon

Item	Sysmbol		Remarks
Design sewage flow (Thickened sludge)	Qd.ave	26 x 1,270/1,600 = 20.6 m ³ /day	
Retention time	Т	30 days	
Required volume	v	20.6 x 30 = 618 m ³	
Depth	D	1.5 m	
Surface area	A	$618 \times 1/1.5 = 412 \text{ m}^2$	
Dimension		W 20 m x 20 mL x 1.5 mH	

()

 \bigcirc

4.10 Transformer Capacity

4.10 Transformer Capa	ncity		
	Sysmbol		Remarks
Transformer capacity	TC	EC x (B x A)/(E x PF) = 84.3 KVA 100 KVA	
Electrical capacity	EC	90.2 kw	
Demand factor	В	0.65	
Allowance	А	1.1	
General Efficiency	Е	0.85	
General power factor	PF	0.9	
	5		
			1

5. Mec	5. Mechanical Equipment List				
No.	Equipment Name	Specification	Motor Output (kw)	Quantity	Remarks
1-M	Mechanical Screen	Mechanical Bar Screen 800 W × 1,000 H Bar spacing : 5 mm	0.4		For main channel 1 with screening cage
M-2	Bypass Screen	Bar Screen 800 W x 600 H Bar spacing : 20 mm	1	1	For bypass channel
M-3	Sand Pump	Submersible Sand Pump Dia. 80 mm x 0.3 m ³ /min x 10 mH	3.7		
A-4	Raw Sludge Pump	Nonclog Centrifugal Sludge Pump Dia. 80 mm x 0.3 m ³ /nin x 5 mH	1.5	1	
M-5	Submersible Mixer	Submersible Propeller Mixer Dia.1.6 m x two blades Lifter Type	2.3	4	
M-6	Diffuser	Membrane Rubbrer Diffuser 7 m ³ air/hr set 32 sets/1 unit x 8 units	1	256	Oxygen supply efficiency 256 18 g O ₂ /m ³ -air-m water depth
M-7	Aeration Blower	Roots Blower Dia. 150 mm x 14.5 m ³ /min x 3,200 mmAq	15	2 + 1	2 + 1 Inverter control
M-8	Coagulant Tank	FRP Cyrindrical Tank 5.0 m ³ with Mixer	0.1	-1	
6-W	Coagulant Feed Pump	Diaphram Pump 0.1 Umin x 20 m	0.2	7	2 Manual control
M-10	M-10 Caustic Soda Tank	FRP Cyrindrical Tank 4.0 m ³ with Mixer	0.1	Ι	
I I-M	M-11 Caustic Soda Feed Pump	Diaphram Pump 0.1 l/min. x 20 m	0.2	6	2 Manual controi

SC-1

Output Quantity - - 1 - - 1 - 0.75 2 0.75 2 2 0.75 2 2 0.75 2 2 be Sludge Pump 1.5 4 Hydrostal Typ 22 2 2 23 2 2 24 2 1 25 1 1 26 1 1 27 1 1 27 1 1 27 1 1 27 1 1 28 3.7 1 27 1 1 28.5 + 3.7 1 1 28.5 + 3.7 1 1 0.75 1 1 0.75 1 1				Motor			. هر هوزيوك
Bypass Gate Rising Spindle Type Gate - Final Sedimentation Tank Dia. 400 mm 0.75 Final Sedimentation Tank Center Drive Clarifier 0.75 Sludge Collector Dia. 14.5 m x 3.5 mH 0.75 Sludge Pump Dia. 80mm x 0.6 m ³ /min x 5 m 1.5 Return Sludge Pump Dia. 80mm x 0.6 m ³ /min x 5 m 2.2 Bate Varie Dia. 80mm x 0.5 m ³ /m x 10 m 2.2 Plant Water Pump Dia. 80mm x 0.5 m ³ /m x 10 m 2.2 Dia. 80mm x 0.5 m ³ /m x 10 m 2.2 1 + Sludge Pump Dia. 80mm x 0.5 m ³ /m x 10 m 2.2 Return Sludge Pump Dia. 80mm x 0.5 m ³ /m x 20 m 2.2 Sludge Tank Mixing Blower Dia. 65mm x 0.2 m ³ /m x 20 m 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /m x 20 m 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /m x 20 m 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /m x 20 m 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /m x 20 m 2.2 Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /m x 20 m 2.2 <t< td=""><td>ò</td><td>Equipment Name</td><td>Specification</td><td>Output (kw)</td><td>Quantity</td><td>Remarks</td><td>T</td></t<>	ò	Equipment Name	Specification	Output (kw)	Quantity	Remarks	T
Final Sedimentation Tank Center Drive Clarifier 0.75 Sludge Collector with Picket Fence 1.5 Sludge Collector with Picket Fence 1.5 Return Sludge Pump Dia. 14.5 m x 3.5 mH 1.5 Return Sludge Pump Dia. 80mm x 0.6 m ³ /min x 5 m 2.2 Batt Water Pump Dia. 80mm x 0.6 m ³ /min x 10 m 2.2 Plant Water Pump Dia. 80mm x 0.6 m ³ /m x 10 m 2.2 Plant Water Pump Dia. 65mm x 0.2 m ³ /m x 10 m 2.2 Sludge Thickening Mixer 0.2 1+ Sludge Thickening Mixer Dia. 1500 mm 2.2 Thickened Sludge Pump Progressive Cavity Pump 2.2 Sludge Feed Pump Progressive Cavity Pump 2.2 Sludge Feed Pump Progressive Cavity Pump 2.2 Sludge Feed Pump Dia. 50 mm x 7.5 m ³ /m x 20 m 0.75 Sludge Feed Pump Progressive Cavity Pump 2.2 Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /m x 20 m 0.75 Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /m x 20 m 0.75 Sludge Cake Conveyer So m ³ /m 2.2 Sludge Cake Conveyer 0.75 7 Sludge Cake Conveyer 0.75 7 Sludge Cake Conveyer 0.75 <td< td=""><td>2</td><td>Bypass Gate</td><td>Rising Spindle Type Gate Dia. 400 mm</td><td>1</td><td>1</td><td></td><td></td></td<>	2	Bypass Gate	Rising Spindle Type Gate Dia. 400 mm	1	1		
Sludge Collector Dia. 14.5 m x 3.5 mH Return Sludge Pump vith Picket Fence Return Sludge Pump Nonclog Centrifugal with Screw Type Sludge Pump Becess Sludge Pump Dia. 80mm x 0.6 m ³ min x 5 m Excess Sludge Pump Dia. 80mm x 0.6 m ³ min x 5 m Excess Sludge Pump Dia. 80mm x 6.5 m ³ /min x 10 m Plant Water Pump Dia. 80mm x 6.5 m ³ /min x 30 m Sludge Thickening Mixer Dia. 65mm x 0.2 m ³ /min x 30 m Sludge Thickening Mixer Dia. 65mm x 0.2 m ³ /min x 30 m Sludge Thickening Mixer Dia. 65mm x 0.2 m ³ /min x 30 m Sludge Thickening Mixer Dia. 65mm x 0.2 m ³ /min x 4,000 mm Aq Sludge Feed Pump Progressive Cavity Pump Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /m x 20 m Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /m x 20 m Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /m x 20 m Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /m x 20 m Sludge Cake Conveyer 0.75	3	Final Sedimentation Tank	Center Drive Clarifier	0.75	2		inte Candina
Return Sludge Pump 1.5 Bit Return Sludge Pump Dia. 80mm x 0.6 m ³ /min x 5 m 1.5 Excess Sludge Pump Dia. 80mm x 0.6 m ³ /min x 5 m 2.2 Excess Sludge Pump Progressive Cavity Pump 2.2 Plant Water Pump Dia. 80mm x 6.5 m ³ /hr x 10 m 2.2 Sludge Thickening Mixer Submersible Pump 2.2 Dia. 65mm x 0.2 m ³ /min x 30 m 2.2 Sludge Thickening Mixer 0.1 Dia. 65mm x 0.2 m ³ /min x 30 m 2.2 Sludge Thickening Mixer 0.2 Dia. 1,500 mm 2.2 Sludge Feed Pump Progressive Cavity Pump Sludge Storage Tank Mixing Blower Dia. 4,000 mm Aq Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /min x 4,000 mm Aq Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /min x 20 m Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /min x 20 m Sludge Cake Conveyer 0.75 Sludge Cake Conveyer 0.75 Sludge Cake Conveyer 0.75 Sludge Cake Conveyer 0.1		Sludge Collector	Dia. 14.5 m x 3.5 mH with Picket Fence				<u> </u>
Dia. 80mm x 0.6 m³/min x 5 m Excess Sludge Pump Progressive Cavity Pump Dia. 80mm x 6.5 m³/min x 10 m 2.2 Plant Water Pump Submersible Pump Dia. 80mm x 6.5 m³/min x 30 m 2.2 Sludge Thickening Mixer Submersible Pump Dia. 65mm x 0.2 m³/min x 30 m 2.2 Sludge Thickening Mixer 0.2 Dia. 65mm x 0.2 m³/min x 30 m 2.2 Sludge Thickening Mixer 0.2 Dia. 65mm x 0.2 m³/min x 30 m 2.2 Thickened Sludge Pump Progressive Cavity Pump Dia. 80 mm x 7.5 m³/hr x 20 m 0.75 Sludge Storage Tank Mixing Blower 0.75 Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m Sludge Cake Conveyer Dia. 80 mm x 7.5 m³/hr x 20 m Sludge Cake Conveyer 0.75 Sludge Cake Conveyer 0.75 Sludge Cake Conveyer 0.76 Polymer Tank FRP Cylindrical Tank Sludger Tank 5.0 m³/ht Mixer	4	Return Sludge Pump	Nonclog Centrifugal with Screw Type Sludge Pump	2.1	4	Hydrostal Type	
Excess Sludge Pump Progressive Cavity Pump 2.2 Excess Sludge Pump Dia. 80mm x 6.5 m ³ /hr x 10 m 2.2 Plant Water Pump Submersible Pump 2.2 Sludge Thickening Mixer Dia. 65mm x 0.2 m ³ /min x 30 m 2.2 Sludge Thickening Mixer Center Drive Picket Fence Type Mixer 0.2 Dia. 1,500 mm Dia. 450 mm 0.2 Sludge Thickened Sludge Pump Progressive Cavity Pump 2.2 Sludge Storage Tank Mixing Blower Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /min x 4,000 mm Aq 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /mr x 20 m 0.75 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /mr x 20 m 0.75 Sludge Cake Conveyer S.0 m ³ /mr 2.2 Sludge Cake Conveyer 0.10 m ³ /mr 2.2 Sludge Cake Conveyer 1.0 m ³ /mr 0.75 Polymer Tank FRP Cylindrical Tank 0.1	-		Dia. 80mm x 0.6 m ³ /min x 5 m				
Plant Water Pump Dia. 80mm x 6.5 m³/hr x 10 m Plant Water Pump Submersible Pump Plant Water Pump Submersible Pump Sludge Thickening Mixer Submersible Pump Sludge Thickening Mixer Center Drive Picket Fence Type Mixer 0.2 Dia. 65mm x 0.2 m³/min x 30 m 2.2 Thickened Sludge Pump Dia. 500 mm 0.2 Dia. 500 mm 7.5 m³/hr x 20 m 0.2 Sludge Storage Tank Mixing Blower 0.75 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m 0.75 Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m 0.75 Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m 0.75 Sludge Feed Pump Dia. 80 mm x 7.5 m³/hr x 20 m 0.75 Sludge Cake Conveyer S.0 m³/hr 2.2 Sludge Cake Conveyer 0.75 0.75 Sludge Cake Conveyer 0.0 m³/hr 0.75 Polymer Tank FRP Cylinderical Tank 0.1	2	Excess Sludge Pump	Progressive Cavity Pump	2.2	<u>6</u> 1		******
Plant Water Pump Submersible Pump 2.2 Plant Water Pump Dia. 65mm x 0.2 m ³ /min x 30 m 2.2 Sludge Thickening Mixer Center Drive Picket Fence Type Mixer 0.2 Thickened Sludge Pump Dia. 1,500 mm 2.2 1 + Thickened Sludge Pump Progressive Cavity Pump 2.2 1 + Sludge Storage Tank Mixing Blower Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 2.2 Sludge Storage Tank Mixing Blower Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 2.2 Sludge Feed Pump Progressive Cavity Pump 2.2 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /hr x 20 m 2.2 2.2 Sludge Cede Pump Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 2.2 Sludge Cede Pump Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 2.2 Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 7 Sludge Cake Conveyer Store Conveyer 0.75 7 Sludge Cake Conveyer Store Conveyer 0.75 7 Polymer Tank FRP Cylindrical Tank 0.1 7		· ·	Dia. 80mm x 6.5 m ³ /hr x 10 m				·····
Dia. 65mm x 0.2 m ³ /min x 30 m Sludge Thickening Mixer Dia. 65mm x 0.2 m ³ /min x 30 m Sludge Thickened Sludge Pump Center Drive Picket Fence Type Mixer 0.2 Thickened Sludge Pump Progressive Cavity Pump 2.2 Sludge Storage Tank Mixing Blower Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 Sludge Feed Pump Progressive Cavity Pump 2.2 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 Sludge Feed Pump Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /hr x 20 m 0.75 Sludge Cake Conveyer 0.1 0.75 Sludge Cake Conveyer 0.1 0.1 Polymer Tank FRP Cylindrical Tank 0.1	9	Plant Water Pump	Submersible Pump	2.2	1		
Sludge Thickening Mixer Center Drive Picket Fence Type Mixer 0.2 Thickened Sludge Pump Dia. 1,500 mm 2.2 1 + Thickened Sludge Pump Progressive Cavity Pump 2.2 1 + Sludge Storage Tank Mixing Blower Roots Blower 0.75 2.2 Sludge Feed Pump Dia. 50 mm x 0.2 m ³ /min x 4,000 mm Aq 2.2 2.2 Sludge Feed Pump Progressive Cavity Pump 2.2 2.2 Sludge Feed Pump Dia. 50 mm x 7.5 m ³ /min x 20 m 2.2 2.2 Sludge Feed Pump Dia. 50 mm x 7.5 m ³ /m x 20 m 2.2 2.2 Sludge Feed Pump Dia. 50 mm x 7.5 m ³ /m x 20 m 2.2 2.2 Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /m x 20 m 2.2 2.2 Sludge Cake Conveyer Dia. 80 mm x 7.5 m ³ /m x 20 m 1.8.5 + 3.7 2.2 Sludge Cake Conveyer Stow Conveyer 0.75 2.0 Polymer Tank FRP Cylindrical Tank 0.1 0.1			Dia. 65mm x 0.2 m ³ /min x 30 m				
Thickened Sludge Pump Dia. 1,500 mm Thickened Sludge Pump Progressive Cavity Pump Dia. 80 mm x 7.5 m³/hr x 20 m 2.2 Sludge Storage Tank Mixing Blower 0.75 Sludge Feed Pump Dia. 50 mm x 0.2 m³/hr x 20 m Sludge Feed Pump Dia. 50 mm x 7.5 m³/hr x 20 m Sludge Feed Pump Dia. 50 mm x 7.5 m³/hr x 20 m Sludge Feed Pump Dia. 50 mm x 7.5 m³/hr x 20 m Sludge Dewatering Unit Dia. 80 mm x 7.5 m³/hr x 20 m Sludge Cake Conveyer 0.75 Sludge Cake Conveyer 0.75 Polymer Tank FRP Cylindrical Tank So m³ with Mixer 0.1	E	Sludge Thickening Mixer	Center Drive Picket Fence Type Mixer	0.2	1		
Thickened Sludge PumpProgressive Cavity Pump2.2Thickened Sludge PumpDia. 80 mm x 7.5 m³/hr x 20 m2.2Sludge Storage Tank Mixing BlowerDia. 50 mm x 0.2 m³/mi x 4,000 mm Aq0.75Sludge Feed PumpProgressive Cavity Pump2.2Sludge Feed PumpDia. 80 mm x 7.5 m³/hr x 20 m2.2Sludge Dewatering UnitCenrifugal Type Dewater2.2Sludge Cake ConveyerS.0 m³/hr2.0Sludge Cake Conveyer0.751.0Sludge Cake Tank1.0 m³/hr0.1Polymer TankFRP Cylindrical Tank0.1			Dia. 1,500 mm				-
Dia. 80 mm x 7.5 m³/hr x 20 mSludge Storage Tank Mixing BlowerRoots BlowerBlowerDia. 50 mm x 0.2 m³/min x 4,000 mm AqDia. 50 mm x 7.5 m³/hr x 20 mSludge Feed PumpProgressive Cavity PumpDia. 80 mm x 7.5 m³/hr x 20 mDia. 80 mm x 7.5 m³/hr x 20 mSludge Dewatering UnitCenrifugal Type DewaterSludge Cake ConveyerSludge Cake ConveyerSudge Cake ConveyerNorderPolymer TankFRP Cylindrical TankS.0 m³ with Mixer	80	Thickened Sludge Pump	Progressive Cavity Pump	2.2			
Sludge Storage Tank Mixing BlowerRoots Blower0.75Dia. 50 mm x 0.2 m³/min x 4,000 mm Aq0.75Sludge Feed PumpProgressive Cavity PumpSludge Feed PumpDia. 80 mm x 7.5 m³/hr x 20 mSludge Dewatering UnitCenrifugal Type DewaterSludge Cake Conveyer5.0 m³/hrSludge Cake Conveyer0.75Polymer Tank1.0 m³/hrRP Cylindrical Tank0.1			Dia. 80 mm x 7.5 m ³ /hr x 20 m				T.
Dia. 50 mm x 0.2 m³/min x 4,000 mm AqDia. 50 mm x 0.2 m³/min x 4,000 mm AqSludge Feed PumpProgressive Cavity PumpDia. 80 mm x 7.5 m³/hr x 20 m2.2Sludge Dewatering UnitCenrifugal Type DewaterSludge Dewatering Unit5.0 m³/hrSludge Cake Conveyer0.75Sludge Cake Conveyer0.75Polymer TankFRP Cylindrical TankS.0 m³ with Mixer0.1	0	Sludge Storage Tank Mixing Blower	Roots Blower	0.75	-		the second be
Sludge Feed PumpProgressive Cavity Pump2.2Dia. 80 mm x 7.5 m³/hr x 20 m2.4Sludge Dewatering UnitCenrifugal Type DewaterSludge Dewatering Unit5.0 m³/hrSludge Cake ConveyerScrew ConveyerNudge Cake Conveyer0.75Polymer TankFRP Cylindrical TankS.0 m³ with Mixer0.1			Dia. 50 mm x 0.2 m ³ /min x 4,000 mm Aq			-	
Dia. 80 mm x 7.5 m ³ /hr x 20 m Sludge Dewatering Unit Cenrifugal Type Dewater 5.0 m ³ /hr Sludge Cake Conveyer Sorew Conveyer 1.0 m ³ /hr Polymer Tank 5.0 m ³ with Mixer	0	Sludge Feed Pump	Progressive Cavity Pump	2.2	1		
Sludge Dewatering Unit Centifugal Type Dewater 18.5 Sludge Cake Conveyer 5.0 m ³ /hr 18.5 Sludge Cake Conveyer Screw Conveyer 10.0 m ³ /hr Polymer Tank FRP Cylindrical Tank 5.0 m ³ with Mixer			Dia. 80 mm x 7.5 m ³ /hr x 20 m				
5.0 m ³ /hr Screw Conveyer 1.0 m ³ /hr FRP Cylindrical Tank 5.0 m ³ with Mixer		Sludge Dewatering Unit	Cenrifugal Type Dewater	18.5 + 3.7	1		
Screw Conveyer 1.0 m ³ /hr FRP Cylindrical Tank 5.0 m ³ with Mixer		•	5.0 m ³ /hr				T
1.0 m ³ /hr FRP Cylindrical Tank 5.0 m ³ with Mixer	2	1	Screw Conveyer	0.75	F -4		
FRP Cylindrical Tank 5.0 m ³ with Mixer			1.0 m ³ /br				the second s
5.0 m ³ with Mixer	2	Polymer Tank	FRP Cylindrical Tank	0.1	Ţ		
			5.0 m ³ with Mixer				

SC-1

4-20

()

No	Equipment Name	Specification	Output (kw)	Quantity	Remarks
M-24	M-24 Polymer Feed Pump	Progressive Cavity Pump Dia. 25 mm x 0.9 m ³ /hr x 20 mH	0.4	1	
M-25	M-25 Drain Pump	Submersible Non-clog Pump Dia. 80 mm x 0.3 m ³ /min x 10 mH	1.5	7	
M-26	M-26 Flow Measurement Equipment	Parshall Flume Type W = 0.31 m	,	7	
M-27	M-27 Septage Transfer Pump	Submersible Non-clog Pump Dia. 80 mm x 0.3 m ³ /min x 10 mH	1.5	F.	

SC-1

.

3

4-21

5. Capacity Calculation for Skuodas Treatment Plant (Case 2)

Appendix 5 Capacity Calculation for Skoudas Sewage Treatment Plant (Case 2) Case 2 : Oxidation Ditch System without Primary Sedimentation Tank

1. Design Criteria

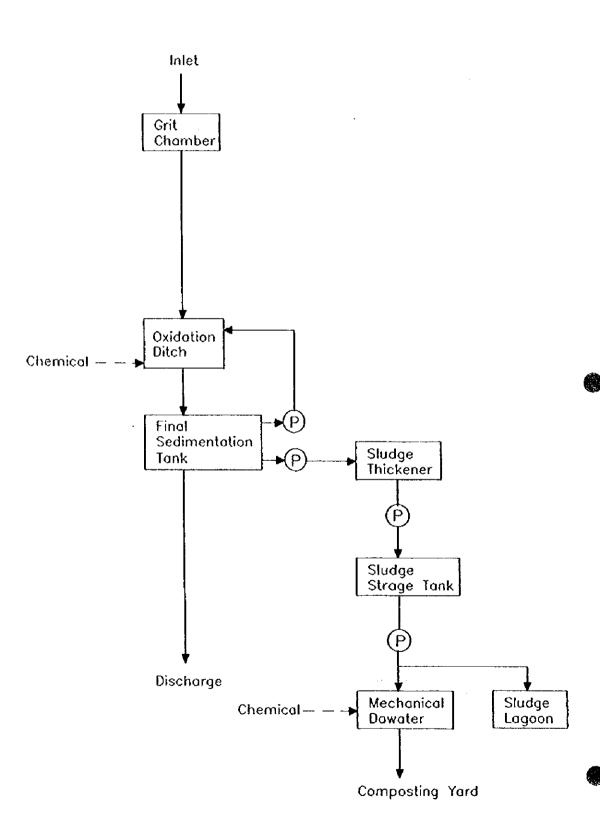
9

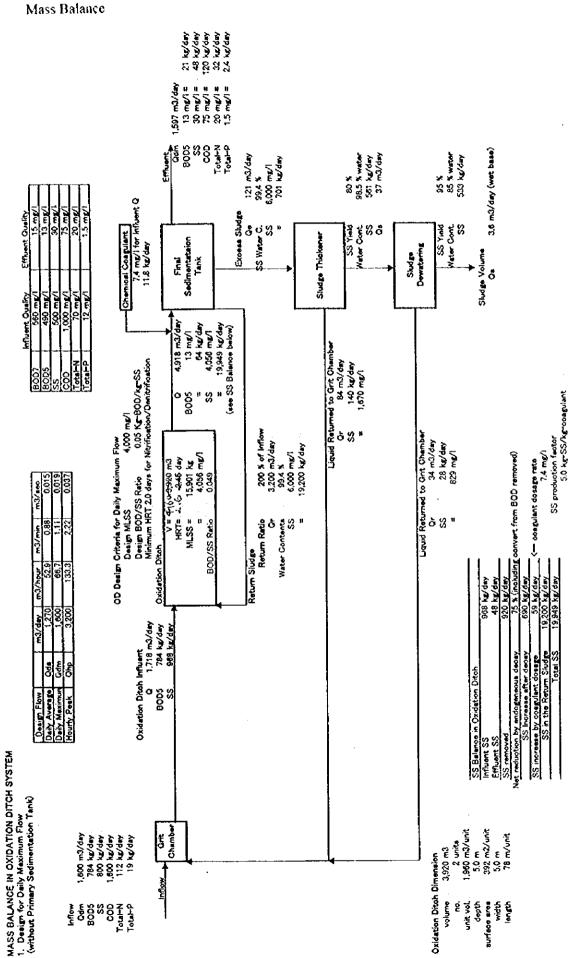
)

1.1 Design Sewage Flow

 $Q_{dave =} Q_1 = 1,270 \text{ m}^3/\text{day}$ $Q_{dmax =} Q_2 = 1,600 \text{ m}^3/\text{day}$ $Q_{hmax =} Q_3 = 3,200 \text{ m}^3/\text{day}$

1.2 Design Sewage Quality


	Influent	Secondary Tre	tment Facility	Discharge		
Item	Quality (mg/l)	Removable Rates (%)	Effluent Quality (mg/l)	Average (mg/l)	Maximum (mg/l)	Remarks
BOD ₅	490	97.4	13	13	21.7	
BOD,	560	97.4	15	15	25	
SS	500	95	25	30	45	
COD _{Ct}	1,000	92.5	75	75	120	
T-N	70	70	21	20	35	
T-P	12	*87.5	1.5	1.5	2.5	


* : with coagulant treatment

1.3 Design Seage Temperature In winter : 7 degree C.

2. Flow Chart

SC-2

SC-2

Skuodes OD mass balanoeutis

)

00 Qdm (2)

5

4. Facility Capacity Calculation 4.1 Grit Chamber

4.1 Grit Chamber Item	Sysmbol	Calculation	Remarks
Design flow	Q3	$3,200 \text{ m}^3/\text{day} = 133.3 \text{ m}^3/\text{hr} = 2.22 \text{ m}^3/\text{min} = 0.037 \text{ m}^3/\text{sec}$	Ι
(Hourly maximum)	-		
Турс		Sand pit type	
Surface load	S _L	1,800 m ³ /m ² .day	
Required surface area	A	$Q_3 \ge 1/S_L = 1.78 \text{ m}^2$	
Effective depth	h	0.3 m	
Demensions		w 0.8 m x L 2.5 m x Effective depth 0.3 m x 1 unit	
Check			
Surface area	А	$0.8 \times 2.5 = 2.0 \text{ m}^2 > 1.78 \text{m}^2 \dots \text{ OK}$	
Average velocity	V	0.037 x 1/(0.8 x 0.3) = 0.15 m/s <0.3 m/s OK	
Retention time	с Т	$0.8 \ge 2.5 \ge 0.3 \ge 1/0.037 = 16 \sec 1000$	
Gri		(Daity Average) Assuming that sand volume contained in sewage is 0.01 m ³ per 1,000m ³ of sewage ; 1,270 m ³ /day x 0.01/1,000 = 0.013 m ³ /day	
Screenings	5	(Daily average) Equivalent to grit	
	1		

4.2 Oxidation Ditch 4.2.1 Oxidation Ditch

Item	Sysmbol	Calculation	Remarks
Design flow	Q ₂	1,600 m ³ /đay	
(Daily max.)			
Турс		Circulation Flow Channel Type	
Design sewage quality	s _c	BOD ₅ : 490 mg/l	
	S _{SS}	SS : 500 mg/l	
	S _N	T-N : 70 mg/l	
MLSS	CA	4,000 mg/l	
BOD-SS load	B _S	0.05 kg BOD/kg SS	
Return studge density	Cr	6,000 mg/l	
Hydraulicretention time (HRT)	HRT	2.6 day = 62.4 hrs	
Reqired capacity	v	$V = HRT \times Q_2 = 4,160 \text{ m}^3$	
Dimension			
Channel width	В	4.5 m	-
Length	n L	192.8 m	
Effective depth	н	2.5 m	
No. of channe	I N	2 units	
Effective capacity	V ₂	3.0 % of capcity loss bt hunch shall be considered $V_2 = B \times L \times H \times N \times 0.97 = 4,208 \text{ m}^3$	
Check			
Acration tim	c T ₁	$V_2 \ge 24/Q_2 = 63.1$ hrs	

()

.

e

Examination on Retention Time of Oxidation Ditch

Retention time will be calculated by the following three alternatives and largest value will be adoptd.

- A: Calculation by BOD-SS loading
- B: Calculation by Required nitrification/denitrification zone capacity
- C: Calculation by Required SRT

Inflow sewage flow per channel = $Q_2 = 800 \text{ m}^3/\text{day}$

		B. Nitrification/d	enitrification zone	
	A. BOD-SS loading	Summer	Winter	C. Required SRT
O.D. capacity (m ³)	1,960	694	1,324	2,063
Retention time (day)	2.45	0.87	1.66	2.58

Thus, Hydraulic Retention Time (HRT) of Oxidation Ditch will be 2.6 days.

A. Calculation by BOD-SS load

 $V = (Q_2 \times BOD_{in} \times 10^{-3})/(BOD-SS \text{ load x MLSS x } 10^{-3})$

BOD-SS load : 0.05 kg BOD/kg SS day MLSS : 4,000 mg/l

B. Calculation by required nitrification/denitrification zone capacity, when sewage temperature is 18 degree C. in summer and 7 degree C. in winter.

Nitrification ratio : 90 % in summer, 70 % in winter Denitrification ratio : 80 % in summer, 80 % in winter Nitrification velocity : $K_N = 0.159 \exp(0.0908T)$ (g-N/g MLSS day) Denitrification velocity : $K_{DN} = 0.324 \exp(0.0634T)$ (g-N/g MLSS day)

C. Calculation by required SRT

Required SRT = $20.65 \exp(-0.0639T) = 13.2 \text{ days}$

T : Sewage temperature in winter (7 degree C.)

Required Oxidation Ditch volume was calculated based on above SRT.

5 - 6

4.2.2 Coagulation Facility

(

4.2.2 Coagulation Facil			
	Sysmbol	Calculation	Remarks
Dosing amount			
Design flow	Q	Q ₁ = 1,270 m³/day, Q ₂ = 1,600 m³/day	
Inflow T-P	C _{TP-in}	12.0 mg/l	
Inflow ST-P	C _{STP-in}	9.6 mg/l	
Coagulant		Alum-Oxichloride (Al ₂ O ₃ content : 10 %)	5
Dosing concentration	C _{AL}	$C_{\text{STP-in}}/P \ge m \ge AL$ = 8.4 mg/l	
Atomic value of Phosphorous		31	
Dosing mole ratio	m	1.0	
Atomic value of Aluminium		27	
Dosing amount (Max)	R _{AL}	$C_{AL} \times (O \times 3 + AL \times 2)/(AL \times 2 \times C_{ALL} \times 10^{-2}) \times Q \times 10^{-3}$	
Atomic value of Oxyger		16	
Al_2O_3 content	C _{ALL}	10%	
At Daily Maximun	n R _{AL}	= 254 kg/đay	
At Daily Average	R _{AL}	= 202 kg/day	
Anticipated consumption		Assuming that annual average inlet T-P is 10 mg/l. Posphorous removal at secondary treatment facility (30 %) shall also be considered.	
Target T-I	C _{TP-in}	$12 \times (1 - 0.3) = 8.4 \text{ mg/l}$	
Target ST-l	P C _{STP-ia}	6.7 mg/l	
Dosing concentratio	n C _{AL}	5.8 mg/l	
Dosing amour (Daily average		139.2 kg/day = 50,808 kg/ycar	

4.2.3 Aeration Equipment

Item	Sysmbol	Calculation	Remarks
Design sewage flow	Q ₂	1,600 m³/day	
(Daily maximum)			
Турс		Submersible Propeller Mixer and Diffuser Type	
Oxygen Supply	SOR	Oxygen supply is supposed to be 2.1 kg O ₂ /kg BOD per unit inflow BOD.	
		Further, aeration equipment shall be able to supply the	
		required oxygen even in case of P.S.T.'s by-pass operation.	
		$= 1,600 \text{ m}^3/\text{day x 490 mg/l x 10}^3 \text{ x 2.1}$	
		= 1,646 kg O2/day	
Air supply	Qa	= SOR/(E x h x 10 ⁻³ x 24)	
		E : Oxygen dissolution efficiency	
		(18 g O ₂ /m ³ air.water depth)	
		h : Deffuser depth = 2.2 m	
		$= 1,646/(18 \times 2.2 \times 10^{-3} \times 24)$	
		$= 1,732 \text{ m}^3/\text{hr}$	
		$= 28.9 \text{ m}^3/\text{min}$	
Aeration blower			
Тур	2	Roots Blower	
Specification	2	Dia. 150 mm x 14.5 m ³ /min x 3,200 mmAq x 15 kw	
Quantit	r.	3 sets (1 set as stand-by)	
Diffuser			
Тур	e	Membrane Disk Aerator	
Unit air flov	v	7 m ³ /hr. i set	
Quantit	у	32 units/set x 4 sets/channel x 2 channel = 256 units	
Submersible mixer			
Тур	e	Submersible Propeller Mixer	
Power reqirement	nt Lp	$N \times V \times 10^{-3}$	
1 Tower requestion	" ^{r-} ł	= 4.2 kw/channel	

٢

Item	Sysmbol		Remarks
Unit power regirement	N	2.0 w/m ³	
Ditch volume	v	4,208 m ³ /channel x 1/2 channel = 2,104 m ³ /channel	
Specification and quantity		Dia. 1.6 m x 2.3 kw x 2 sets/channel x 2 channel	
	l.		
			-
	1		
			<u> </u>

)

5-9

4.3 Final Sedimentation Tank

Item	Sysmbol	Calculation	Remarks
Design flow	Q2	$1,600 \text{ m}^3/\text{day} = 66.7 \text{ m}^3/\text{hr} = 1.1 \text{ m}^3/\text{min}$	
(Daily maximum)			
Турс		Radial Flow Circular Sedimentation Tank with Cnter driven Sludge Collector	
Surface load	S _L	5 m³/m².day	
Required surface area	A ₁	$Q_2 \ge 1/S_L = 320 \text{ m}^2$	
Effective depth	н	3.5 m	
Overflow load	OL	Less than 25 m ³ /m day	
Weir length	l,	$Q_2/O_L = 64 \text{ m}$	
Demensions		Dia. 14.5 m x 3.5 mH x 2 units	
(Surface area)	Λ ₂	$\pi /4 \ge 14.5^2 = 165 \text{ m}^2$	
(Capacity)	V ₂	$165 \text{ x } 3.5 = 577.5 \text{ m}^3$	
(Weir length)	12	$\pi x (14.5 - 1.0) \approx 42.4 m$	
Check			
Surface load	A	$1,600 \ge 1/(165 \ge 2) = 4.8 \text{ m}^{3/}\text{m}^2.\text{day} < 5.0 \dots \text{OK}$	
Retention time	с Т ₂	577.5 x 2 x 1/66.7 = 17.3 hrs	
Overflow load	1	$1,600 \ge 1/(42.4 \ge 2) = 18.9 \text{ m}^3/\text{m}^2.\text{day} < 25 \dots \text{OK}$	
Examination on Surface load			
Initial sedimentation verocity	· ·	$4.9 \times 10^{6} \times T^{0.95} \times X_{A}^{-1.35} \times [SVI]^{-0.77}$ = 9.0 m/hr	
Sewage temperature	e T	7 degree C.	
sv	I	150	
Surface load	d S	$v_0/R = 4.5 \dots 5.0 \text{ m}^3/\text{m}^2 \text{ day}$	
Fluctuation ratio	R	2	

4.4 Sludge Thickener

Ì

D

4.4 Sludge Thickener Item	Sysmbol	Calculation	Remarks
Design studge volume	q ₂	Excess shudge : 121 m ³ /day, 701 kg/day	
(Daily maximum)			
Туре		Radial Flow Rectangular Sedimentation Tank with Picket Fence Mixer	
Solid load		30 kg DS/m².day	
Required surface area		$701 \times 1/40 = 23.4 \text{ m}^2$	
Effective depth	i	4.0 m	
Demensions		W 5.0 m x L 5.0 m x 4.0 mH x 1 unit	
(Surface area)	A ₂	$5.0 \ge 5.0 = 25.0 \text{ m}^2$	
(Capacity)	V ₂	$25 \ge 4.0 = 100 \text{ m}^3$	
Check			
Solid load	1	701 x $1/25 = 28 \text{ kg DS/m}^2$.day	1
Thickening time	Т	$100 \ge 1/121 \ge 24 = 19.8$ hrs	
			ł
			1

4.5 Sludge Storage Tank

4.5 Shunge Storage Tar	Sysmbol	Calculation	Remarks
Design sludge volume (Daily maximum)	q2	Gravity thickened sludge : 37 m ³ /day, 561 kg DS/day	
Туре		Rectangular Tank	
Storage days	Tı	More than 2 day's sludge volume	
Storage capacity	Vı	$37 \text{ x } 2 = 74 \text{ m}^3$	
Demensions		4.0 m x 5.0m x 4.0 mH (effective depth)	
(Effective capacity)	V ₂	$4.0 \ge 5.0 \ge 4.0 = 80 \text{ m}^3$	
Check			
Storage days	T ₂	80 x 1/37 = 2.2 days	

4.6 Sludge Dewater

Item	Sysmbol		Remarks
Design sludge volume	q ₂	Gravity thickened sludge : 37 m ³ /day, 561 kg DS/day	
(Daily maximum)		(Excess sludge only)	
Гурс		Centrifugal Dewater Machine	
Operation time		6 days in week, 6 hrs/day	
Capacity requirement		$37 \text{ m}^3/\text{day x 7/6 x 1/6} = 7.2 \text{ m}^3/\text{hr}$	
Specifications		8.0 m ³ /hr x 22 kw/5.5 kw x 1 unit	
Polymer dosing ratio		Less than 1.5 % per DS	
Polymer consumption (Daily average)		Assuming that annual average inlet SS is 350 mg/l and average dosing ratio is 1.2 %;	
		$561 \times 350/500 \times 1,270/1,600 \times 1.2 \times 10^{-2}$ = 3.74 kg/day = 1,365 kg/year	
1			

4.7 Composting Yard

4.7 Composing Taru Item	Sysmbol	Calculation	Remarks
Design sludge volume	q ₁	Target dewatered sludge volume is based on	
(Daily average)		daily average sewage flow.	
Dewatered cake			
Solid weight	Di	533 kg DS/dayx 0.8 = 426 kg DS/day	
Water content	wt _i	85 % (water content of dewatered cake : 98.5 %)	
Cake weight	V ₁	426 x 100/(100 - 85) x $10^{-3} = 2.8$ wt/day	
Bulk density	C ₁	1.0 t/m ³	
Apparent volume	V_1^+	$2.8 \text{ wt /dayx 1/1.0} = 2.8 \text{ m}^3/\text{day}$	
Organic content		70%	
Organic digestion ratio		60%	
Digested organic	;	426 x 0.7 x 0.6 = 179 kg DS/day	
Compost products			
Solid weigh	D ₂	426 - 179 = 247 kg/day = 0.25 t/day	
Water conten	wt ₂	35%	•
Product weigh	V ₂	0.25 x 100/(100 - 35) = 0.38 wt/day	
Bulk density	C ₂	0.4 wt/m ³	
Apparent volum	e V ₂ '	$0.38 \ge 1/0.4 = 0.95 \text{ m}^3/\text{day}$	
Composting Yard			
Storage day	s T	180 days	
Deposit heigh	it h	0.6 m	
Required are	a A	$(2.8 + 0.95) \times 1/2 \times 180 \times 1/0.6 = more than 563 m2$	
Dimension	s	10.0 m x 30.0 mL x 2 lines	
(Area)	$10.0 \ge 30.0 \ge 2 = 600 \text{ m}^2$	

Ć

ł

4.8 Sludge Lagoon

4.8 Sludge Lagoon Item	Sysmbol	Calculation	Remarks
Design sewage flow	Qd.ave	37 x 1,270/1,600 = 29.4 m ³ /day	
Thickened sludge)			
Retention time	T	30 days	
Required volume	v	$29.4 \times 30 = 882 \text{ m}^3$	
Depth	D	1.5 m	
Surface area	А	$882 \times 1/1.5 = 588 \text{ m}^2$	
Dimension		W 20 m x 30 mL x 1.5 mH	

4.9 Transformer Capacity

4.9 Transformer Capac Item	Sysmbol	Calculation	Remarks
Transformer capacity	TC	EC x (B x A)/(E x PF) = 89.3 KVA 100 KVA	
Electrical capacity	EC	95.5 kw	
Demand factor	В	0.65	
Allowance	Α	1.1	
General Efficiency	Е	0.85	
General power factor	PF	0.9	
	ļ		
	ł		

e

5. Me	5. Mechanical Equipment List				
Z	Equipment Name	Specification	Motor Output	Quantity	Remarks
2			(kw)	,	
Г- Ч	Mechanical Screen	Mechanical Bar Screen			For main channel
		800 W x 1,000 H	0.4	F4	1 with screening cage
		Bar spacing : 5 mm			
M-2 M	Bypass Screen	Bar Screen			For bypass channel
	4	800 W x 600 H		p4	
		Bar spacing : 20 mm			
М-3	Sand Pump		3.7		
		Dia. 80 mm x 0.3 m ³ /min x 10 mH			
<u>Т</u> 4	Submersible Mixer	Submersible Propeller Mixer			
		Dia.1.6 m x two blades	2.3	4	
		Lifter Type			
М-5	Diffuser	Membrane Rubbrer Diffuser			Oxygen supply efficiency
		7 m ³ air/hr set	•	256	256 18 g O ₂ /m ³ -air-m water depth
		32 sets/1 unit x 8 units			
9-W	Aeration Blower	Roots Blower	15	2+1	2 + 1 Inverter control
		Dia. 150 mm x 14.5 $m^3/min \times 3,200 mmAq$			
И-7	Coagulant Tank	FRP Cyrindrical Tank	0.1		
		5.0 m ³ with Mixer			
M-8	Coagulant Feed Pump	Diaphram Pump	0.2	<u>61</u>	2 Manual control
6-W	Caustic Soda Tank	FRP Cyrindrical Tank	0.1		
		4.0 m ³ with Mixer			
M-10	M-10 Caustic Soda Feed Pump	Diaphram Pump	0.2	3	2 Manual control
		0.1 <i>U</i> min. x 20 m			
11-M	Bypass Gate	Rising Spindle Type Gate	•	p~4	
		Dia. 400 IIIII	_		

+ J ice C Machanical Eauli

3

Sc-2

bity Remarks	2 	4 Hydrostal 1 ypc	7	1	1	+ 1		1	rrd	1	1	1-1
or ut Quantity)	0.75	u c	7.7	2.2	0.2	2.2	0.75	3.7	5.5	0.75	0.1	0.4
Motor Output (kw)	0								22 + 5.5			
Specification	Center Drive Clarifier Dia. 14.5 m x 3.5 mH with Picket Fence	Nonclog Centrifugal with Screw Type Sludge Pump Dia. 80mm x 0.6 m ³ /min x 5 m	Progressive Cavity Pump Dia. 80mm x 6.5 m ³ /hr x 10 m	Submersible Pump Dia. 65mm x 0.2 m ³ /min x 30 m	Center Drive Picket Fence Type Mixer Dia. 1.500 mm	Progressive Cavity Pump Dia 80 mm x 7.5 m ³ /hr x 20 m	r Roots Blower Dia. 50 mm x 0.2 m ³ /min x 4,000 mm Aq	Progressive Cavity Pump Dia. 100 mm x 12 m ³ /hr x 20 m	Cenrifugal Type Dewater 8.0 m ³ /hr	Screw Conveyer 1.0 m ³ /hr	FRP Cylindrical Tank 5.0 m ³ with Mixer	Progressive Cavity Pump
Equipment Name	M-12 Final Sedimentation Tank Sludge Collector	M-13 Return Sludge Pump	Excess Sludge Pump	M-15 Plant Water Pump	M-16 Sludge Thickening Mixer	M-17 Thickened Sludge Pump	M-18 Sludge Storage Tank Mixing Blower Roots Blower Dia. 50 mm x	M-19 Sludge Feed Pump	M-20 Sludge Dewatering Unit	Sludge Cake Conveyer	M-22 Polymer Tank	M-23 Polymer Feed Pump
, No	M-12	M-13	M-14	M-15	M-16	M-17	M-18	M-19	M-20	M-21	M-22	M-23

SC-2

5-18

0

					ی په ۲۵ ۲۵
° Z	Equipment Name	Specification	(kw)	Zuanury	
M-24	M-24 Drain Pump	Nonclog Submersible Pump Dia. 80 mm x 0.3 m ³ /min x 10 mH	1.5	1	
M-25	M-25 Flow Measurement Equipment	Parshall Flume Type W = 0.31 m	1	1	

SC-2

.

6. Capacity Calculation for Skuodas Treatment Plant (Case 3)

Appendix 6 Capacity Calculation for Skoudas Sewage Treatment Plant (Case 3) Case 3 : Sequencing Batch Reactor System

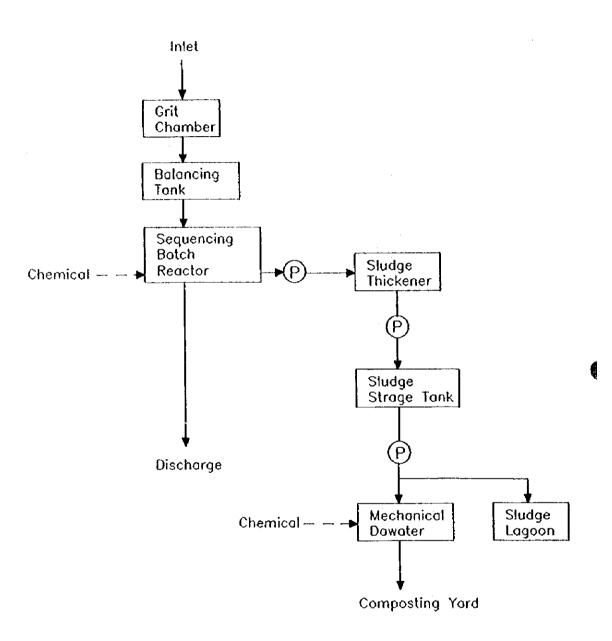
SC-3

1. Design Criteria

1.1 Design Sewage Flow

 $Q_{dave} = Q_1 = 1,270 \text{ m}^3/\text{day}$ $Q_{dnux} = Q_2 = 1,600 \text{ m}^3/\text{day}$ $Q_{hnux} = Q_3 = 3,200 \text{ m}^3/\text{day}$

1.2 Design Sewage Quality

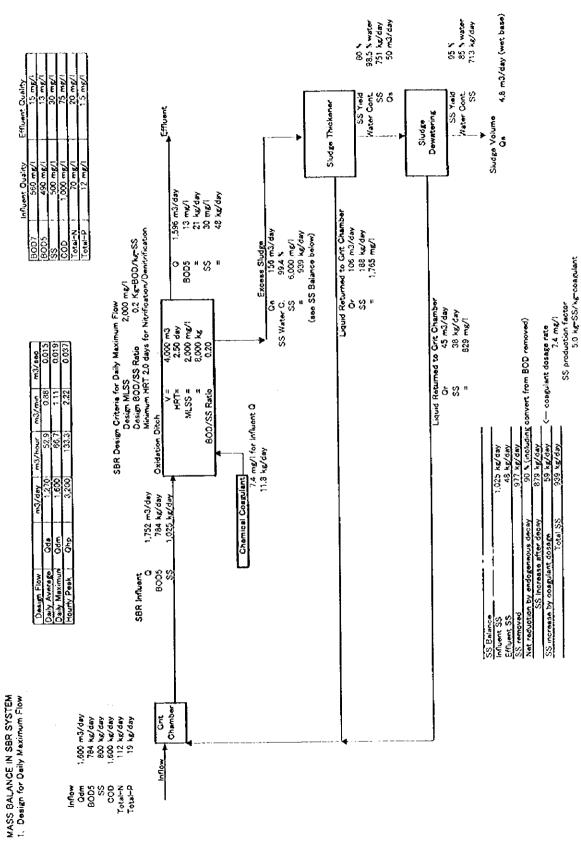

	Influent	Secondary Tro	tment Facility	Discharge	Standard	
Item	Quality (mg/l)	Removable Rates (%)	Effluent Quality (mg/l)	Average (mg/l)	Maximum (mg/l)	Remarks
BOD ₅	490	97.4	13	13	21.7	<u> </u>
BOD ₇	560	97.4	15	15	25	
SS	500	95	25	30	45	
COD _{C1}	1,000	92.5	75	75	120	
T-N	70	70	21	20	35	
T-P	12	*87.5	1.5	1.5	2.5	

* : with coagulant treatment

1.3 Design Seage Temperature In winter : 7 degree C.

)

2. Flow Chart


SC-3

é

Skuodas OD mass balance.xls

Ì

Mass Balance

SC-3

SBR

í

4. Facility Capacity Calculation 4.1 Grit Chamber

(Hourly maximum) Type Sand	Calculation $0 \text{ m}^3/\text{day} = 133.3 \text{ m}^3/\text{hr} = 2.22 \text{ m}^3/\text{min} = 0.037 \text{ m}^3/\text{sec}$ I pit type $0 \text{ m}^3/\text{m}^2.\text{day}$	Remarks
(Hourly maximum) Type Sand	l pit type	
Type Sand		
Surface load S _L 1,800	0 m³/m².day	
Required A Q ₃ x surface area	$1/S_{\rm L} = 1.78 {\rm m}^2$	
Effective depth h 0.3 r	n	
Demensions ^w 0.8	3 m x^{1} 2.5 m x Effective depth 0.3 m x 1 unit	
Check		
Surface area A 0.8 7	$x 2.5 = 2.0 \text{ m}^2 > 1.78 \text{m}^2 \dots \text{ OK}$	
Average velocity V 0.03	37 x 1/(0.8 x 0.3) = 0.15 m/s <0.3 m/s OK	
Retention time T 0.8	$x 2.5 \times 0.3 \times 1/0.037 = 16 \sec \theta$	
sew	ily Average) Assuming that sand volume contained in age is 0.01 m ³ per 1,000m ³ of sewage ; 70 m ³ /day x 0.01/1,000 = 0.013 m ³ /day	
	ily average) livalent to grit	
		1

4.2 Balancing Tank

Item	Sysmbol		Remark
Design flow	Q ₂	1,600 m ³ /day	
Daily maximum)			
in the second		Desute evilor Toule	
Гуре		Recutangular Tank	
Retention time	Т	6 hrs	
Required capacity	v	$Q_2 \times T \times 1/24 = 400 \text{ m}^3$	
Demensions		9.0 m x 11.0 m x 4.5 mH (effective depth)	
(Capacity)	V	9.0 x 11.0 x 4.5H = 446 m^3	
(Capacity)	v	5,0 X 11,0 X 4,511 - 440 m	
	1		
	1		
	1		

4.3 SBR Reaction Tank

4.3.1	Reaction Tank

4.3.1 Reaction Tank Item	Sysmbol	Calculation	Remarks
Design flow	Q ₂	1,600 m ³ /day	
(Daily max.)			
Туре		Sequencing Batch System Reaction Tank (Dual Tank)	
BOD-SS load	L _B	0.2 kg/kg day	
Tank capacity	v	$Q_2 \times S_{in} \times 10^{-3} / (T_A \times n/24 \times L_B \times M_S \times 10^{-3})$	
		$= 3,920 \text{ m}^3$	
Inflow BOD	S _{in}	490 mg/l	
Acration time	TA	4 hrs/1 cycle	
Number of cycle	n	3 cycle/day (1 cycle 8 hrs)	
MLSS	M _s	2,000 mg/l (BOD-SS load is 0.13 kg/kg day, when MLSS is 3,000 mg/l)	
Dimension		12.0 mW x 30.0 mL x 5.5 mH x 2 tanks	
(Capacity) V'	$12.0 \ge 30.0 \ge 5.5 \ge 2 = 3,960 \text{ m}^3$	
Retention time	Т	3,960 x 1/1,600 x 24 = 59.4 hrs	
Withdrawal ratio	1/m	24/(T x n) = 1/7.4 1/7	
Operation schedule		8 hrs/cyclc	
(Plan)		No.1 Tank 1 2 3 4 5 6 7 8	
		Inflow (4 hrs) Mixing (1 hr)	
		Acration (4 hrs)	
		Sedimantation (2 hrs)	
		Withdraw (1 hr)	
		NO.2 Tank	
		Inflow	
		Mixing	
		Acration	
		Sedimantation Withdraw	
		wanuaw	
	1		
1			
	<u> </u>		

Ø

E

4.3.2 Coagulation Facility

Item	Sysmbol	Calculation	Remarks
Dosing amount			
Design flow	Q	$Q_1 = 1,270 \text{ m}^3/\text{day}, Q_2 = 1,600 \text{ m}^3/\text{day}$	
Inflow T-P	C _{IP-in}	12.0 mg/l	
Inflow ST-P	C _{STP-in}	9.6 mg/l	
Coagulant		Atum-Oxichloride (At ₂ O ₃ content : 10 %)	
Dosing concentration	C _{AL}	$C_{STP-in}/P \ge m \ge AL$ = 8.4 mg/l	
Atomic value of Phosphorous		31	
Dosing mole ratio	m	1.0	
Atomic value of Aluminium		27	
Dosing amount (Max)	R _{AI,}	$C_{AL} \times (O \times 3 + AL \times 2)/(AL \times 2 \times C_{AL} \times 10^{-2}) \times Q \times 10^{-3}$	
Atomic value of Oxyger		16	
Al ₂ O ₃ content	CALL	10%	
At Daily Maximum	R _{AL}	= 254 kg/day	
At Daily Average	R _{AL}	= 202 kg/day	
Anticipated consumption		Assuming that annual average inlet T-P is 10 mg/l. Posphorous removal at secondary treatment facility (70 %) shall also be considered.	
Target T-I	C _{UP-in}	$10 \ge (1 - 0.7) = 3.0 \ \text{mg/l}$	
Target ST-I	C _{STP-in}	2.4 mg/l	
Dosing concentration	C _{AL}	2.1 mg/l	
Dosing amoun (Daily average		50.4 kg/day = 18,396 kg/ycar	

.

4.3.3 Acration Equipment

Item	Sysmbol	Calculation	Remarks
rype		Submersible Mechanical Aerator	
Oxygen Supply	SOR	Q x $(S_{in} - S_{out})$ x 10 ⁻³ x A = 1,596 kg O ₂ /day = 66.5 kg O ₂ /hr	
Sewage inflow	Q	$= Q_2 = 1,600 \text{ m}^3/\text{day}$	
Inflow BOD	S _{in}	490 mg/l	
Effluent BOD	S _{out}	15 mg/l	
Required oxygen per unit BOD removal		2.1 kg O ₂ /kg BOD	
Air supply	Qa	= SOR/($G_s \ge 10^{-2} \ge x \ge x = 0_w$) x (273 + T)/273 x 1/60 x A = 22.1 m ³ /min	
Oxygen transfer efficiency against clear water	_	20 % (Submergible Mechanical Aerator)	
Air density	Е	1.2923 kg air/N m ³	
Air temperature	Т	15 degree C.	
Surplus ratio	A	1.15	
Aeration blower			
Турс	2	Roots Blower	
Specification)	Dia. 200 mm x 23 m ³ /min x 6,000 mmAq x 55 kw	
Quantity	/	2 sets (1 set as stand-by)	
Aeration equipment			
Тур	e	Submersible Type Mechanical Aerator	
Specificatio	n	$38 \text{ kg O}_2/\text{hr} \times 11 \text{ kw} \times 4 \text{ sets}$	

4.4 Sludge Thickener

4.4 Sludge Thickener Item	Sysmbol	Calculation	Remarks
Design sludge volume		Excess sludge : 156 m³/day, 939 kg/day	1
(Daily maximum)			
Турс		Radial Flow Rectangular Sedimentation Tank with Picket Fence Mixer	
Solid load		30 kg DS/m².day	
Required surface area		939 x 1/30 = 31.3 m ²	
Effective depth		4.0 m	ł
Demensions		W 6.0 m x L 6.0 m x 4.0 mH x 1 unit	
(Surface area)	A ₂	$6.0 \ge 6.0 = 36.0 \text{ m}^2$	
(Capacity)	V ₂	$36 \times 4.0 = 144 \text{ m}^3$	
Check			
Solid load	1	$939 \ge 1/36 = 26.1 \text{ kg DS/m}^2.\text{day}$	
Thickening time	т	$144 \ge 1/156 \ge 24 = 22 \text{ hrs}$	ŗ

4.5 Sludge Storage Tank

Item	Sysmbol	Calculation	Remarks
Design studge volume (Daily maximum)	q ₂	Gravity thickened sludge : 50 m ³ /day, 751 kg DS/day	
Туре		Reetangular Tank	
Storage days	Т	More than 2 day's sludge volume	
Storage capacity	V ₁	$50 \ge 2 = 100 \text{ m}^3$	
Demensions		5.0 m x 5.5m x 4.0 mH (effective depth)	
(Effective capacity)	V ₂	$5.0 \ge 5.5 \ge 4.0 = 110 \text{ m}^3$	
Check			
Storage days	T ₂	$110 \ge 1/50 = 2.2 \text{ days}$	
	l		
	l l		

4.6 Sludge Dewater

Item	Sysmbol		Remark
Design studge volume	q ₂	Gravity thickened sludge : 50 m ³ /day, 751 kg DS/day	
(Daily maximum)		(Excess sludge only)	
Турс		Centrifugal Dewater Machine	
Operation time		6 days in week, 6 hrs/day	
Capacity requirement		50 m ³ /day x 7/6 x 1/6 = 9.7 m ³ /ht	
Specifications		10 m ³ /hr x 1 unit	
Polymer dosing ratio		Less than 1.5 % per DS	
Polymer consumption (Daily average)		Assuming that annual average inlet SS is 350 mg/l and average dosing ratio is 1.2 %;	
		751 x 350/500 x 1,270/1,600 x 1.2 x 10^{-2} = 5.01 kg/day = 1,829 kg/year	
-			

B

4.7 Composting Yard

4.7 Composting Yard			
an a	Sysmbol	Calculation	Remarks
Design sludge volume	\mathbf{q}_1	Target dewatered sludge volume is based on	
(Daily average)		daily average sewage flow.	
Dewatered cake			
Solid weight	Di	713 kg DS/dayx 0.8 = 570 kg DS/day	
Water content	wt	85%	
Cake weight	Vi	570 x 100/(100 - 85) x $10^{-3} = 3.8$ wt/day	
Bulk density	C ₁	1.0 t/m ³	
Apparent volume	\dot{V}_{1}^{\dagger}	3.8 wt/dayx 1/1.0 = 3.8 m ³ /day	
Organic content		80%	
Organic digestion ratio		60%	
Digested organic		570 x 0.8 x 0.6 = 274 kg DS/day	
Compost products			
Solid weight	D ₂	570 - 274 = 296 kg/day = 0.29 t/day	
Water content	wt ₂	35%	
Product weight	V ₂	$0.29 \times 100/(100 - 35) = 0.44 \text{ wt/day}$	
Bulk density	C ₂	0.4 wt/m ³	
Apparent volume	v ₂ '	$0.44 \ge 1/0.4 = 1.1 \text{ m}^3/\text{day}$	
Composting yard			
Storage day	s T	180 days	
Deposit heigh	at h	0.6 m	
Required are	a A	$(3.8 + 1.1) \times 1/2 \times 180 \times 1/0.6 = more than 735 m2$	
Dimension (Area		11.0 m x 36.0 mL x 2 lines 11.0 x 36.0 x 2 = 792 m^2	

ę

ŧ

Ć

4.8 Sludge Lagoon

Item	Sysmbol	Calculation	Remarks
Design sewage flow (Thickened sludge)		50 x 1,270/1,600 = 39.7 m ³ /day	
Retention time	Т	30 days	
Required volume	v	$39.7 \times 30 = 1,191 \text{ m}^3$	
Depth	D	1.5 m	
Surface area	A	$1,191 \ge 1/1.5 = 794 \text{ m}^2$	
Dimension		W 26 m x 32 mL x 1.5 mH	

(9

)

4.9 Transformer Capacity

4.9 Transformer Capac	aty		
Item	Sysmbol		Remarks
Transformer capacity	TC	EC x (B x A)/(E x PF) = 155 KVA 200 KVA	
Electrical capacity	EC	166.25 kw	
Demand factor	В	0.65	
Allowance	A	1.1	
General Efficiency	Е	0.85	
General power factor	PF	0.9	
L <u></u>	_ _	<u> </u>	

đ

e

S. Me	5. Mechanical Equipment List				
			Motor		
No.	Equipment Name	Specification	Output (kw)	Quantity	Remarks
I-M	Mechanical Screen	Mechanical Bar Screen			For main channel
		800 W x 1,000 H	0.4	1	l with screening cage
		Bar spacing : 5 mm			
M-2	Bypass Screen	Bar Screen		-	For bypass channel
		800 W × 600 H	•	-	he far
		Bar spacing : 20 mm			
M-3	Sand Pump	Submersible Sand Pump	3.7	I	
		Dia. 80 mm x 0.3 m ³ /min x 10 mH			
M 4	Mixing Pump	Submersible Pup with Ejector	5.5	5	
	·	Dia.80 mm			
M-5	Lift Pump	Submersible Non-clog Pump	5.5		
		Dia. 100 mm x 1.33 m ³ /min x 10 m			
9-9 W-6	Aerator	Submersible Mechanical Aerator	7.5	4	
		Lifter Type, 38 kg O ₂ /hr			
M-7	Acration Blower	Roots Blower	45	+	1 + 1 [inverter control
		Dia. 200 mm x 23 m ³ /min x 6,000 mmAq			
8-W	Outlet Equipment	Float-arm Type	0.75	6	** ******
		[4.0 mL			
6-W	Coagulant Tank	FRP Cyrindrical Tank	0.1	-	
		5.0 m ³ with Mixer			
01-M	Coagulant Feed Pump	Diaphram Pump	0.2	61	2 Manual control
		0.1 <i>l/</i> min x 20 m			
11-W	M-11 Caustic Soda Tank	FRP Cyrindrical Tank	0.1		279 E. L.
		4.0 m ³ with Mixer			
M-12	M-12 Caustic Soda Feed Pump	Diaphram Pump	0.2	(1)	2 Manual control
		0.1 Junin. X 20 m	_		

SC-3

5 Machanical Equinment I ist

°. X	Equipment Name	Specification	Output	Quantity	Remarks
			(22)		
M-13	Scum Removal Equipment	Trough Skimer FRP, 150W x 7,000L	0.2	5	
M-14	M-14 Motor Valve	Motorized Butterfly Valve Dia 200 mm	0.1	4	
M-15	M-15 Excess Sludge Pump	Submersible Non-clog Punp Dia. 80mm x 0.4 m ³ /min x 10 m	2.2	4	
M-16	M-16 Plant Water Pump	Submersible Pump Dia 65mm × 0.2 m ³ /min × 30 m	2.2	1	
M-17	M-17 Sludge Thickening Mixer	Center Drive Picket Fence Type Mixer Dia 1,500 mm	0.2	1	
M-18	M-18 Thickened Sludge Pump	Progressive Cavity Pump Dia. 80 mm x 7.5 m ³ /hr x 20 m	2.2	1 + 1	
M-19	M-19 Sludge Storage Tank Mixing Blower Roots Blower Dia. 50 mm x 0.2 m ³ /min x 4,00	Roots Blower Dia. 50 mm x 0.2 m ³ /min x 4,000 mm Aq	0.75	1	
M-20	M-20 Sludge Feed Pump	Progressive Cavity Pump Dia. 125 mm x 15 m ³ /br x 20 m	5.5		
M-21	M-21 Sludge Dewatering Unit	Cenrifugal Type Dewater 10 m ³ /hr	37 + 7.5	1	
M-22	M-22 Sludge Cake Conveyer	Serew Conveyer 1.0 m ³ /hr	0.75	-	
M-23	M-23 Polymer Tank	부르	0.2	-	
M-24	M-24 Polymer Feed Pump	Progressive Cavity Pump Dia. 32 mm x 1.8 m ³ /hr x 20 mH	0.75		
M-25	M-25 Drain Pump	Submersible Non-clog Pump Dia. 80 mm x 0.3 m ³ /min x 10 mH	1.5	-	

SC-3

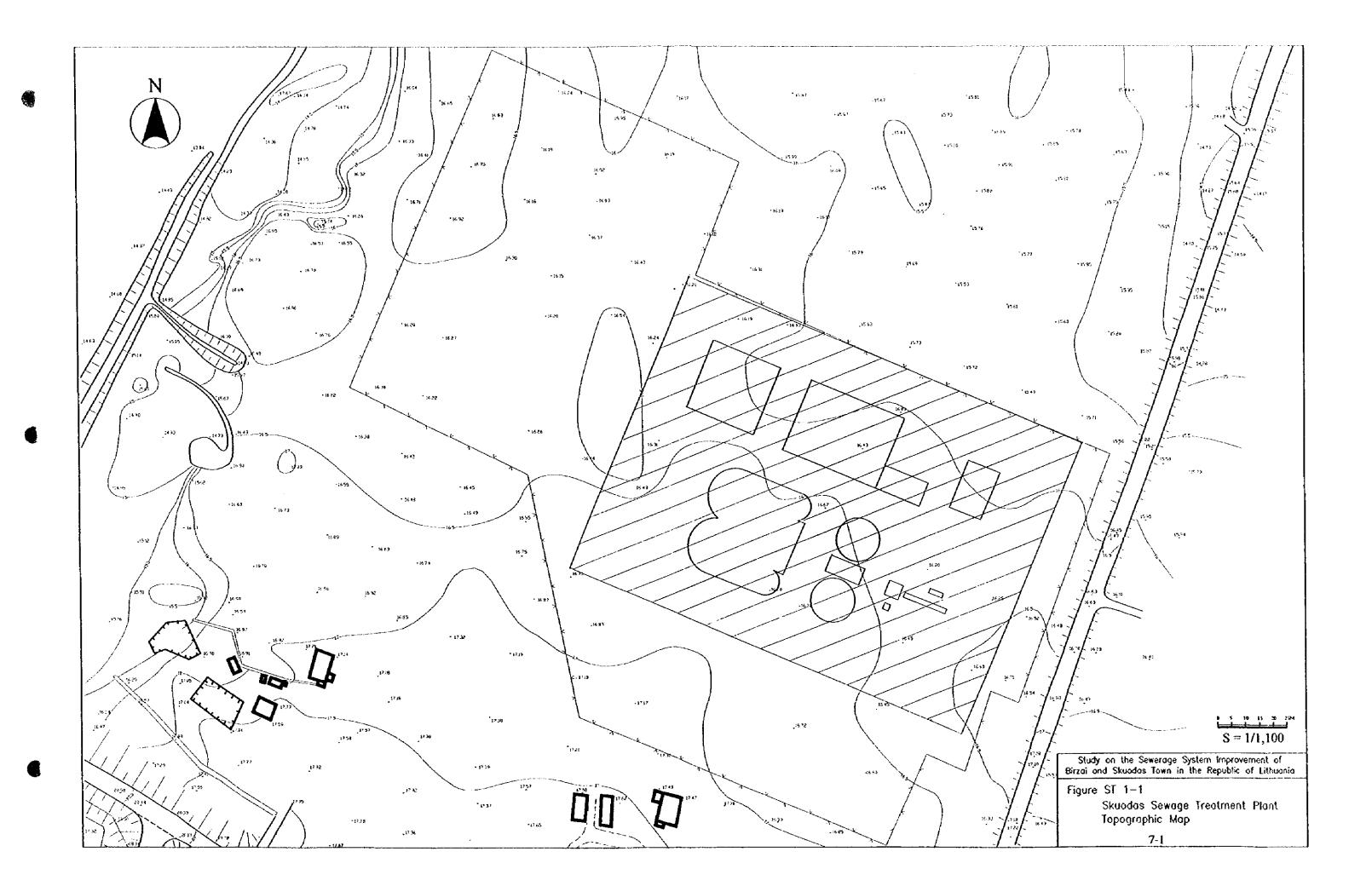
 \bigcirc

-	<u>.</u>		 	 	-	 	ni kalendari nega	 	unitaria di sente della del	Concernent and	al conferenciam.
Remarks											
Quantity		-									
Motor Output	(kw)	•									
Specification		Parshall Flume Type W = 0.31 m									
Equipment Name		M-26 Flow Measurement Equipment									
, N		M-26									

ł

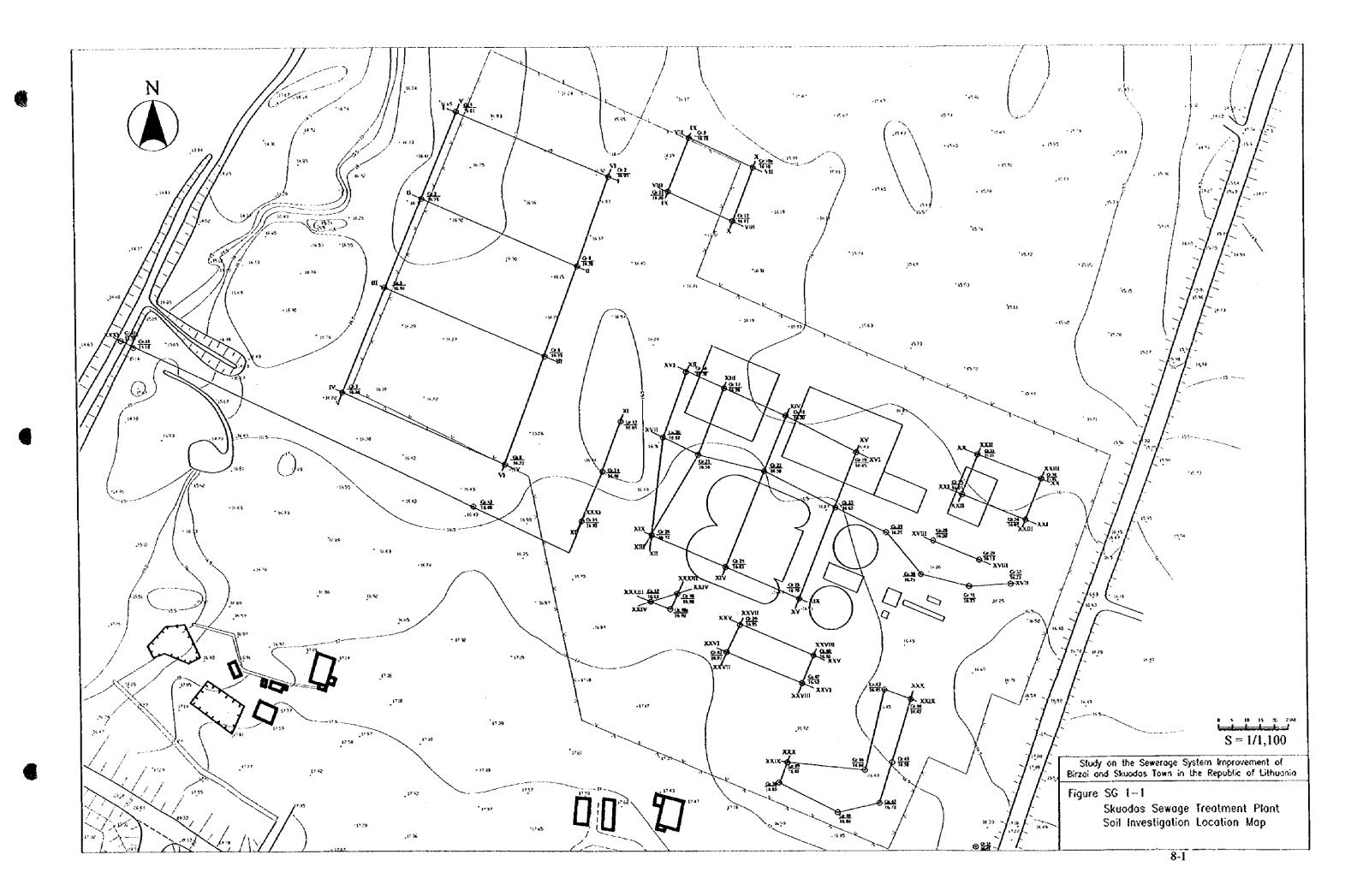
SC--3

)


7. Topographic Survey Map

x

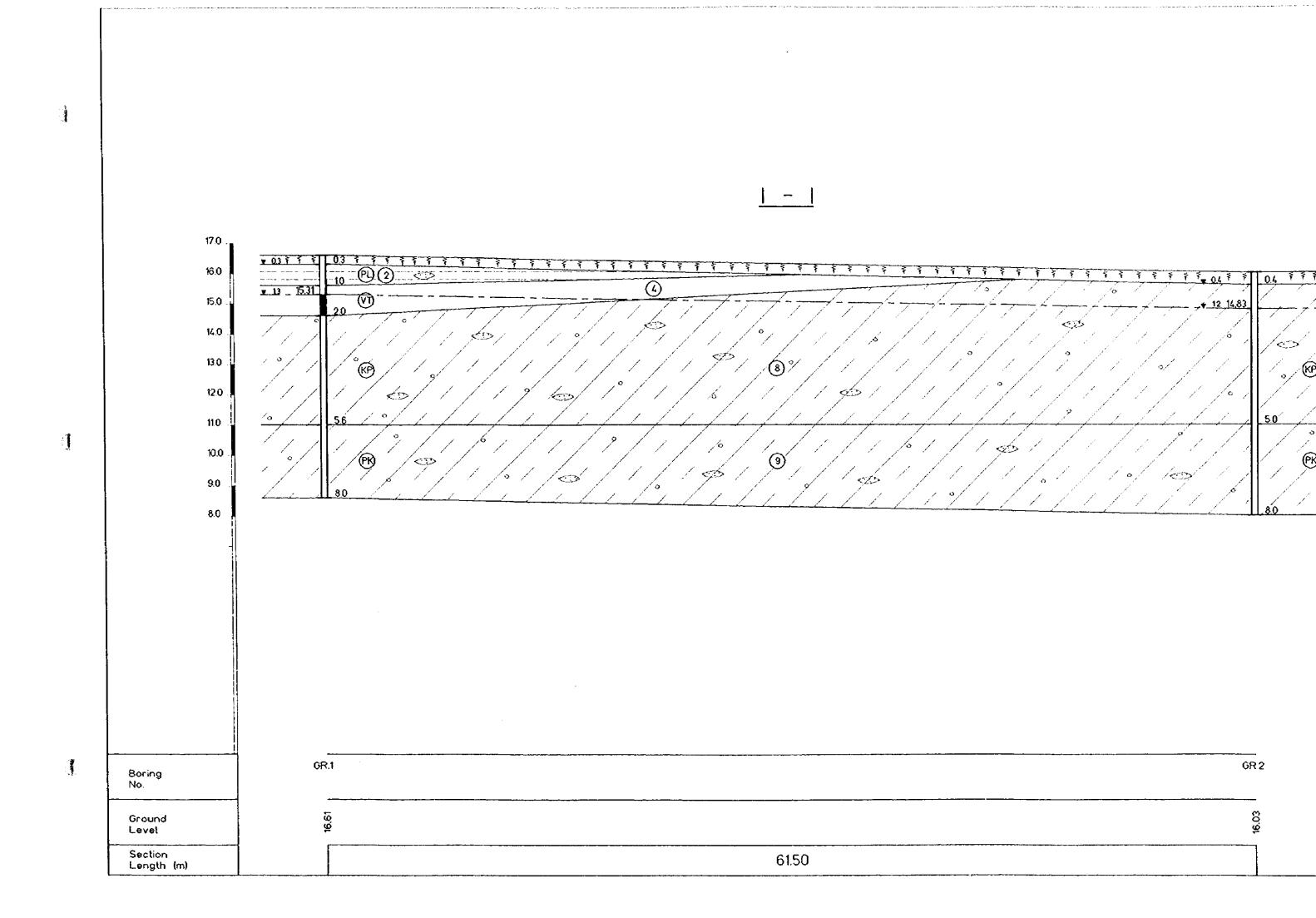
.

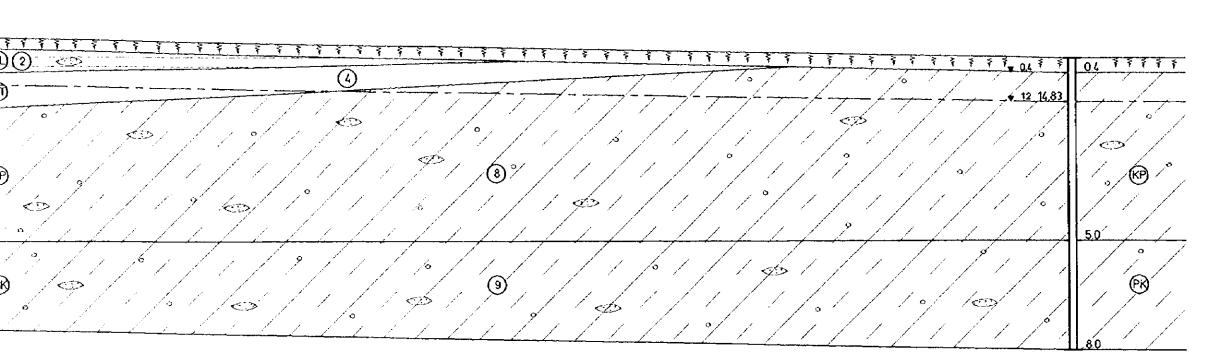

.

.

8. Soil Investigation Result

- ·

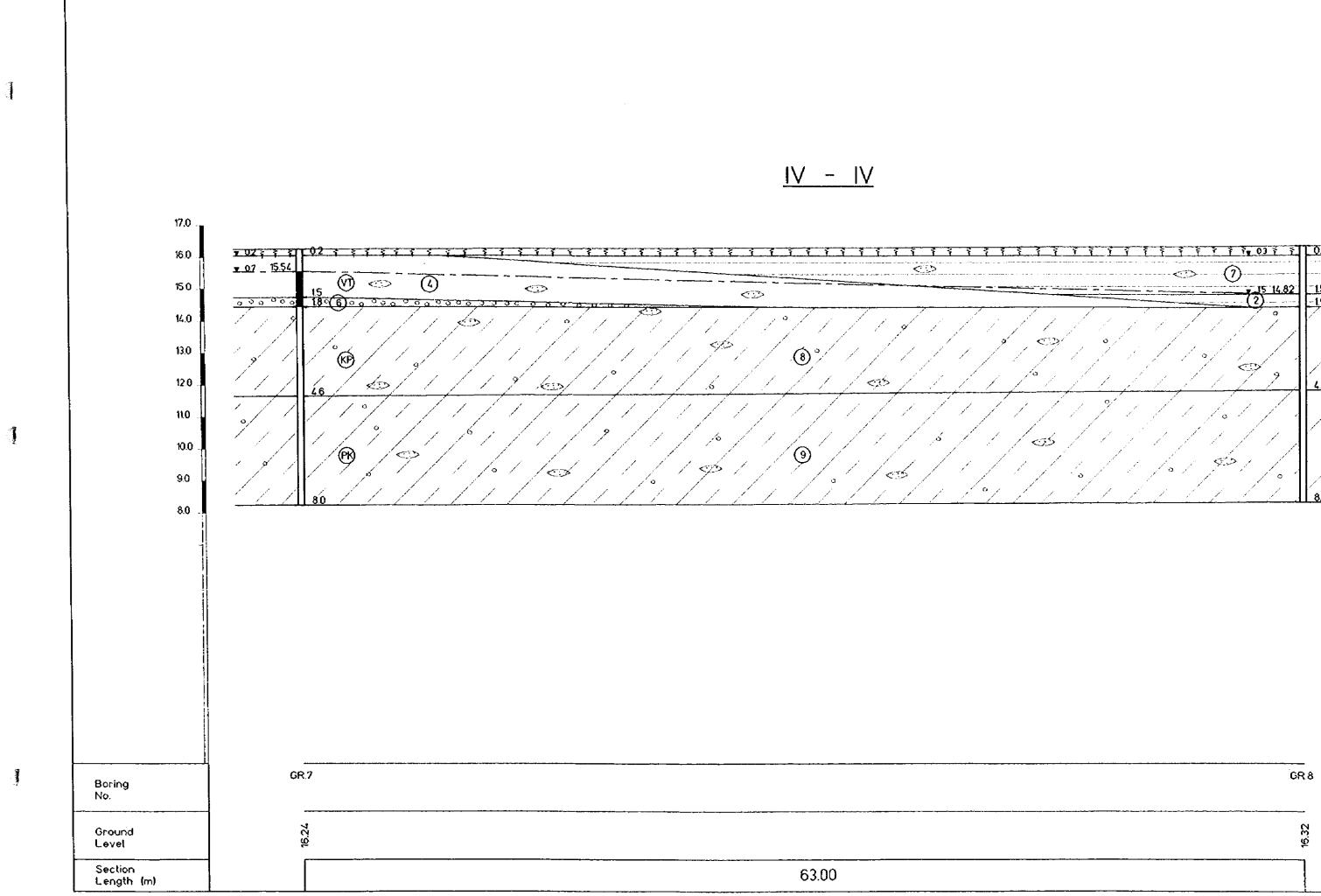



No.	Description of soil	Symbol	Unit Volume Weight (kg/cm)	}	Friction Angle (degree)	Def. Modulus (MPa)	Strength (kPa)	Soil Clasific. Number
1	Poured soil		1760	_	-	_	80	10b
2	Plastic sandy soil	®	2.050	15	26	10	180	10a
3	Fine sand, loose	9	1620	-	29	5	100	10a
4	Fine sand, medium density	(V)	1.660	2	32	24	300 (200)	10a
5	Loarny soil, solidly plastic	•	2.010	28	22	22	250	10Ь
6	Gravel	0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.900	1	40	40	500	10d
7	Clay, solidly plastic	e (C)	1.920	43	16	13	250	10v
8	Moraine loamy soil	°/ °, °, °, °, °, °, °, °, °, °, °, °, °,	2.240	39	24	23	300	10ž
9	Moraine loamy soil, solidly plastic	₹ ®	2.260	47	26	40	300	10ž
10	Moraine sandy soil, solid	A B C	2.250	21	30	45	300	10ž

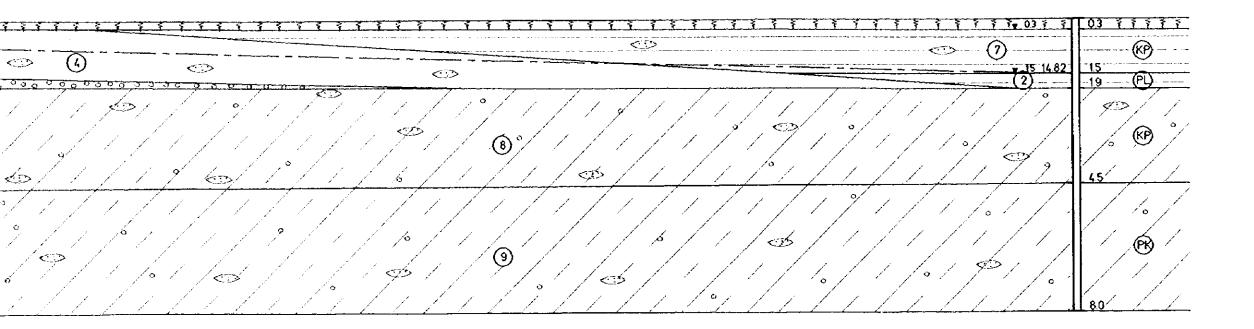
ļ

	a
Table SG 2-1 Skuodas Sewage Treatment Plant Geological Symbols and Characteristic of Soils	

.



- |


Scale V : 1/100 H : 1/200

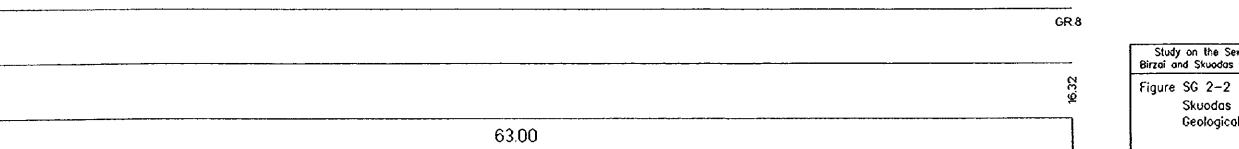
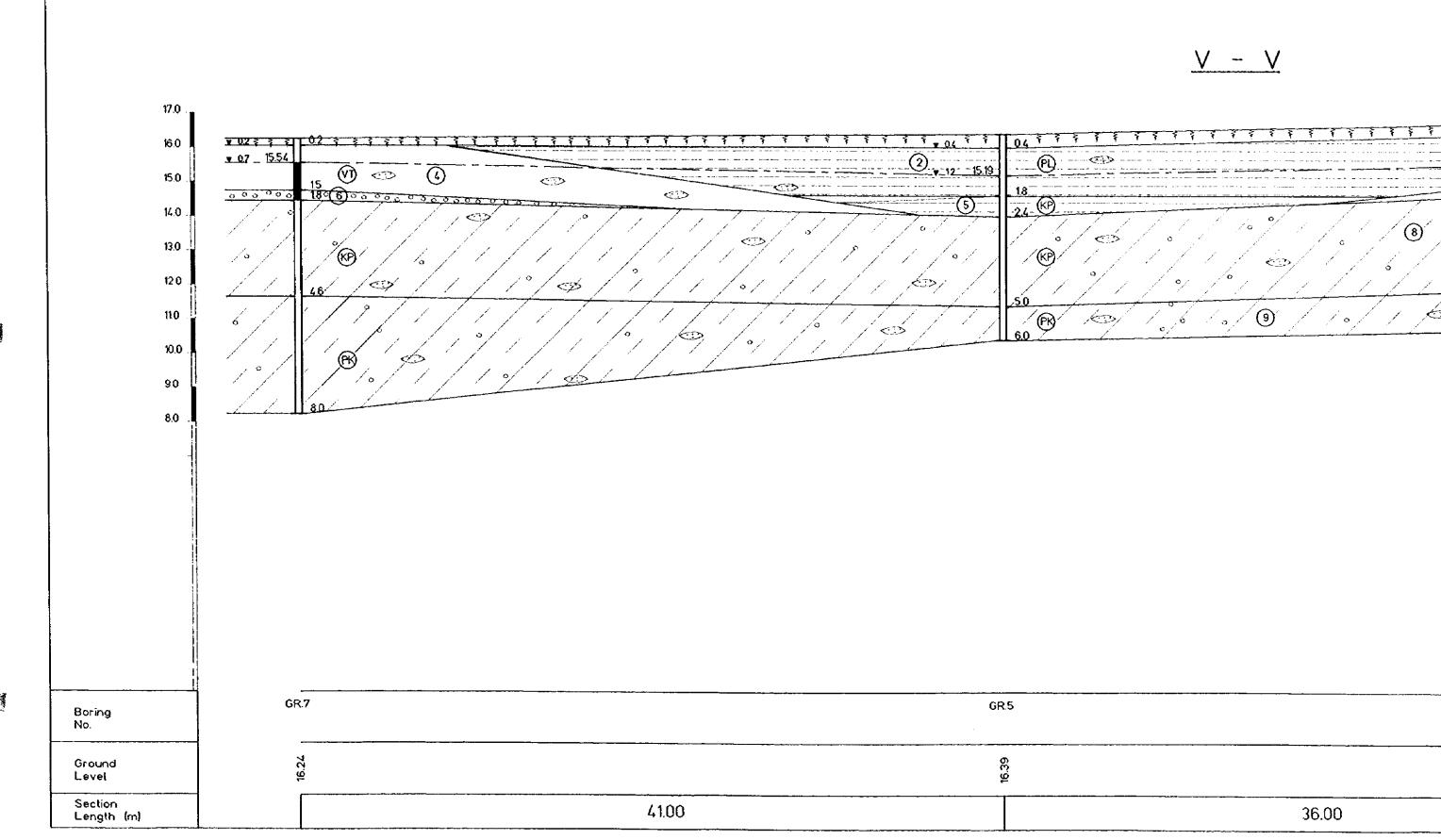
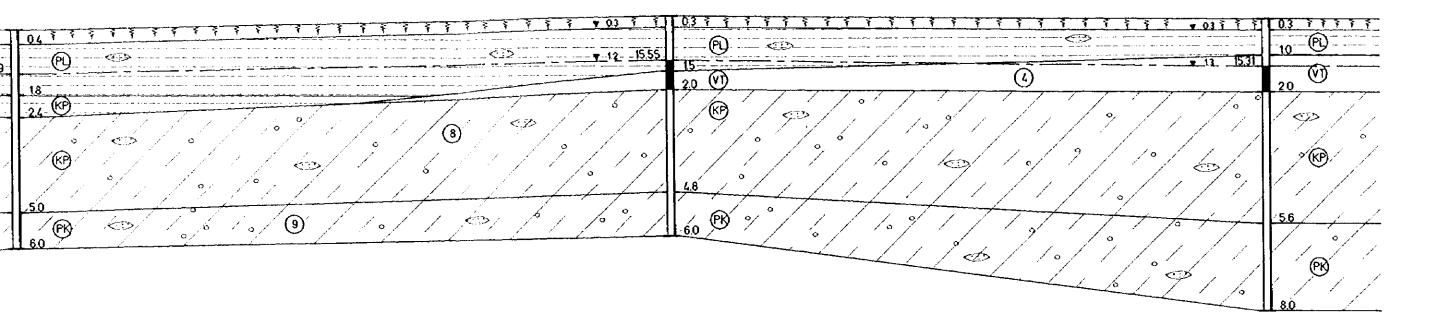

Study on the Sewerage System Improvement of Birzoi and Skuodas Town in the Republic of Lithuania

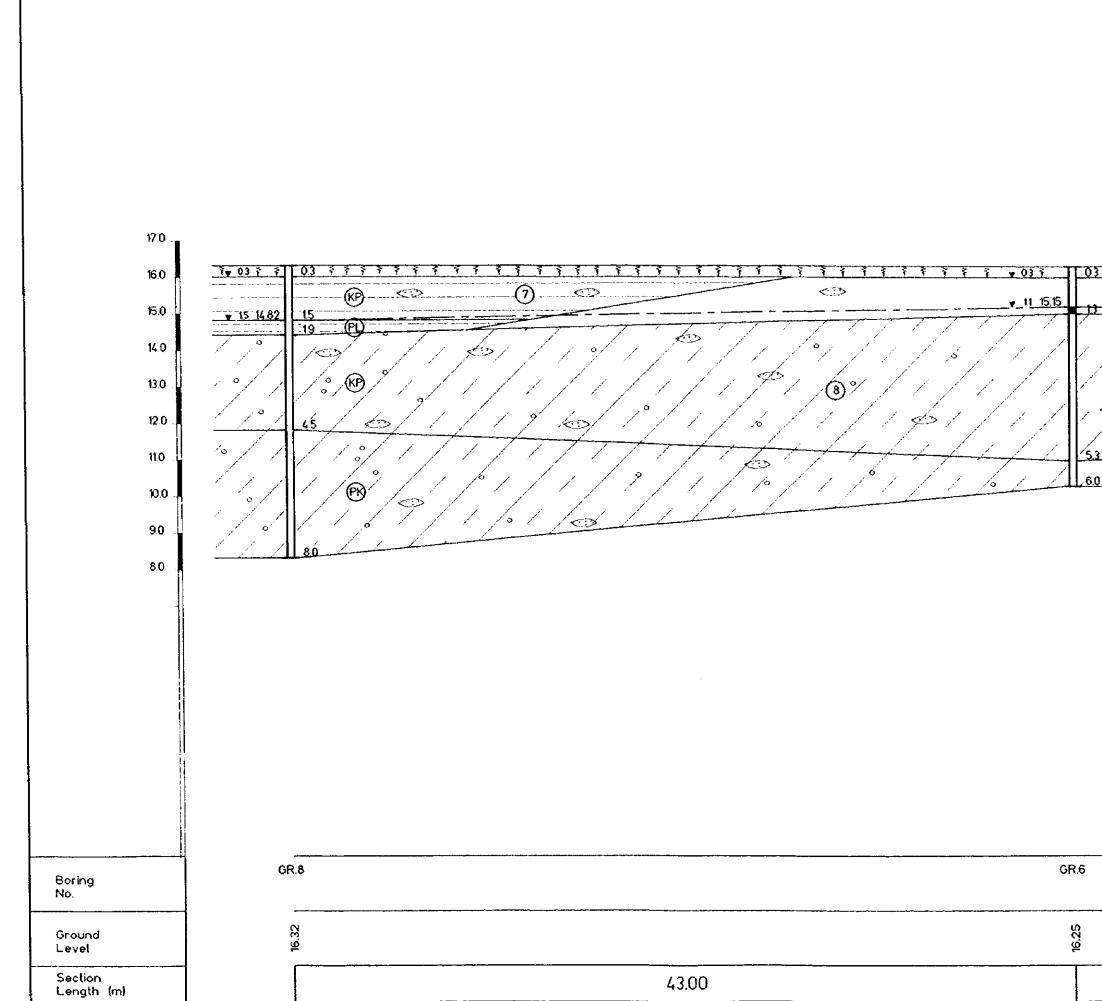
Figure SG 2-1 Skuodas Sewage Treatment Plant Geological Section (I-I)



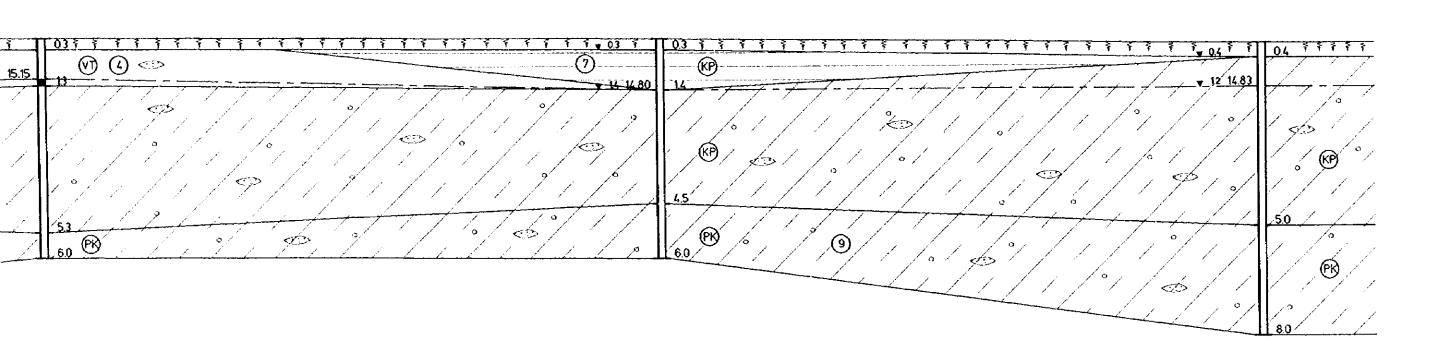

Scale V : 1/100 H:1/200

Study on the Sewerage System Improvement of Birzai and Skuodas Town in the Republic of Lithuania

Skuodas Sewage Treatment Plant Geological Section (IV–IV)

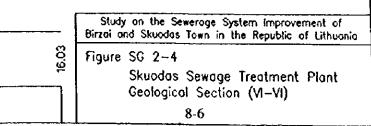

, and a

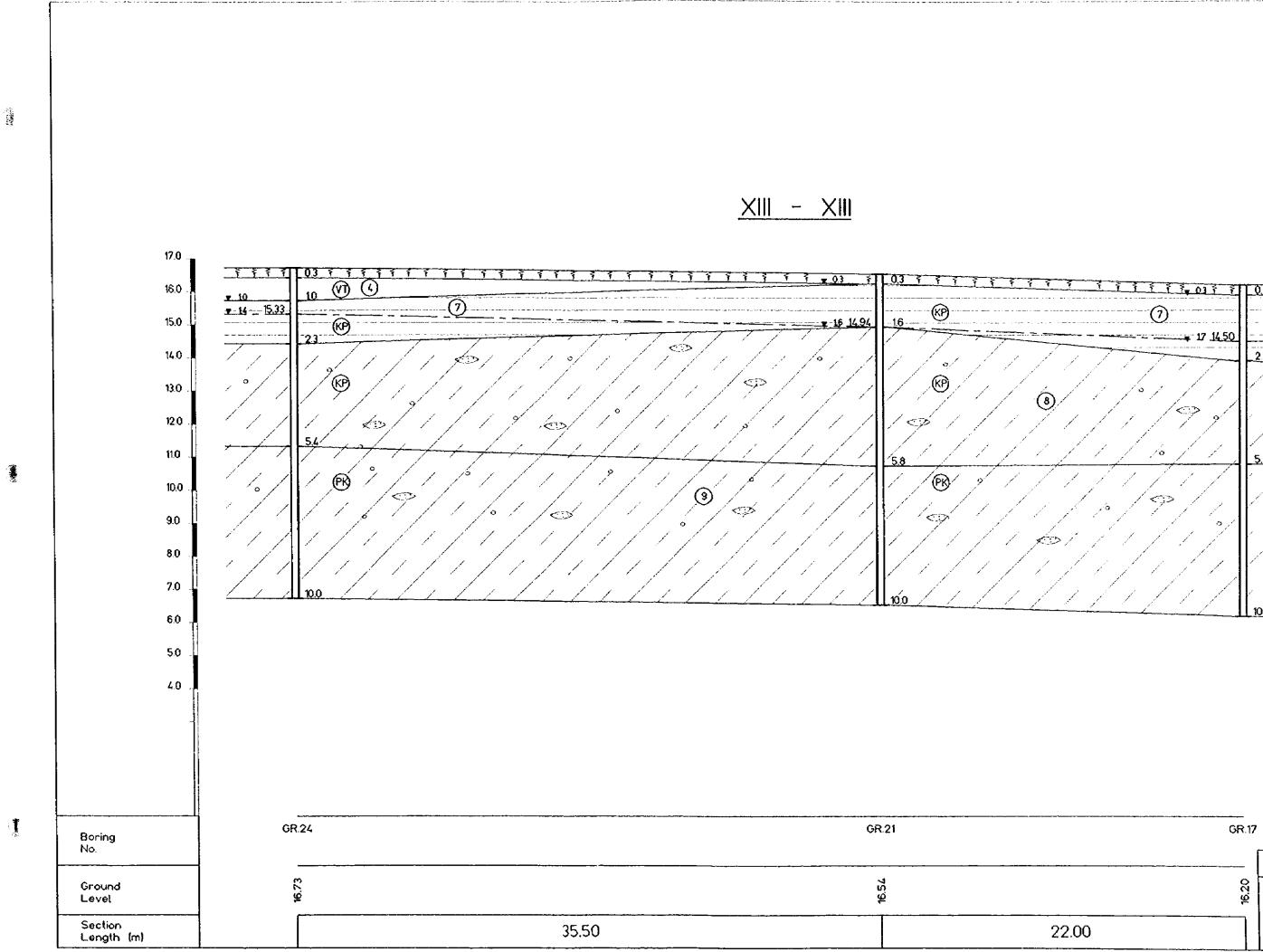
GR.5		GR 3		
16.39		16.75		
	36.00		32.50	

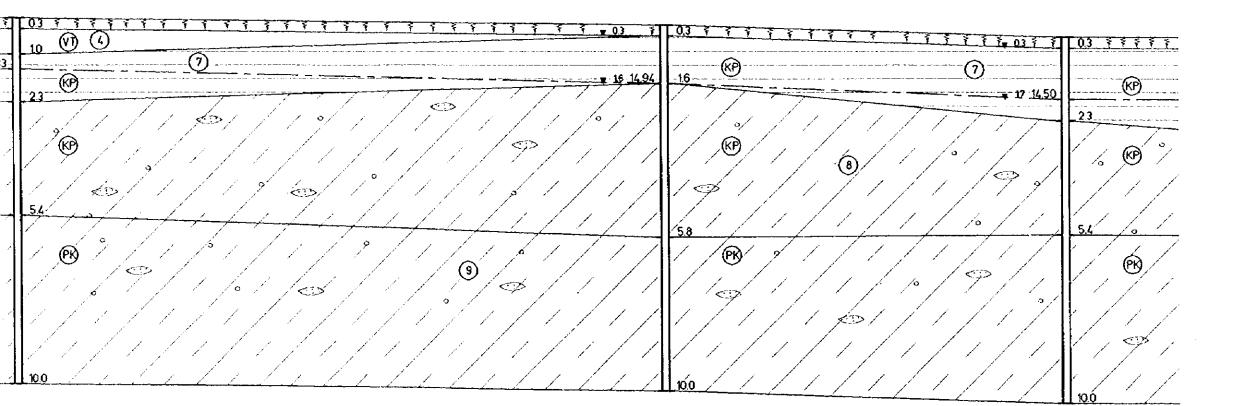

	Scale V : 1/100
GR.1	H : 1/200
	Study on the Sewerage System Improvement of Birzai and Skuodas Town in the Republic of Lithuania
 6.61	Figure SG 2-3 Skuodas Sewage Treatment Plant Geological Section (V-V)
	8-5

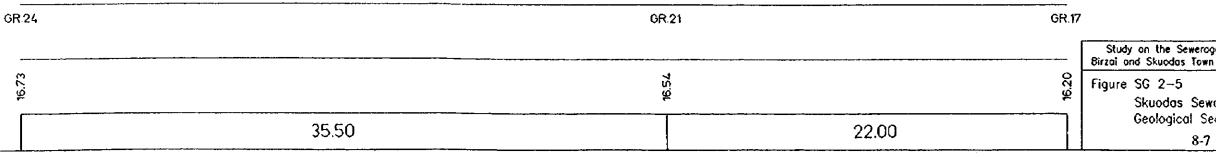
Scale V · 1/100

(

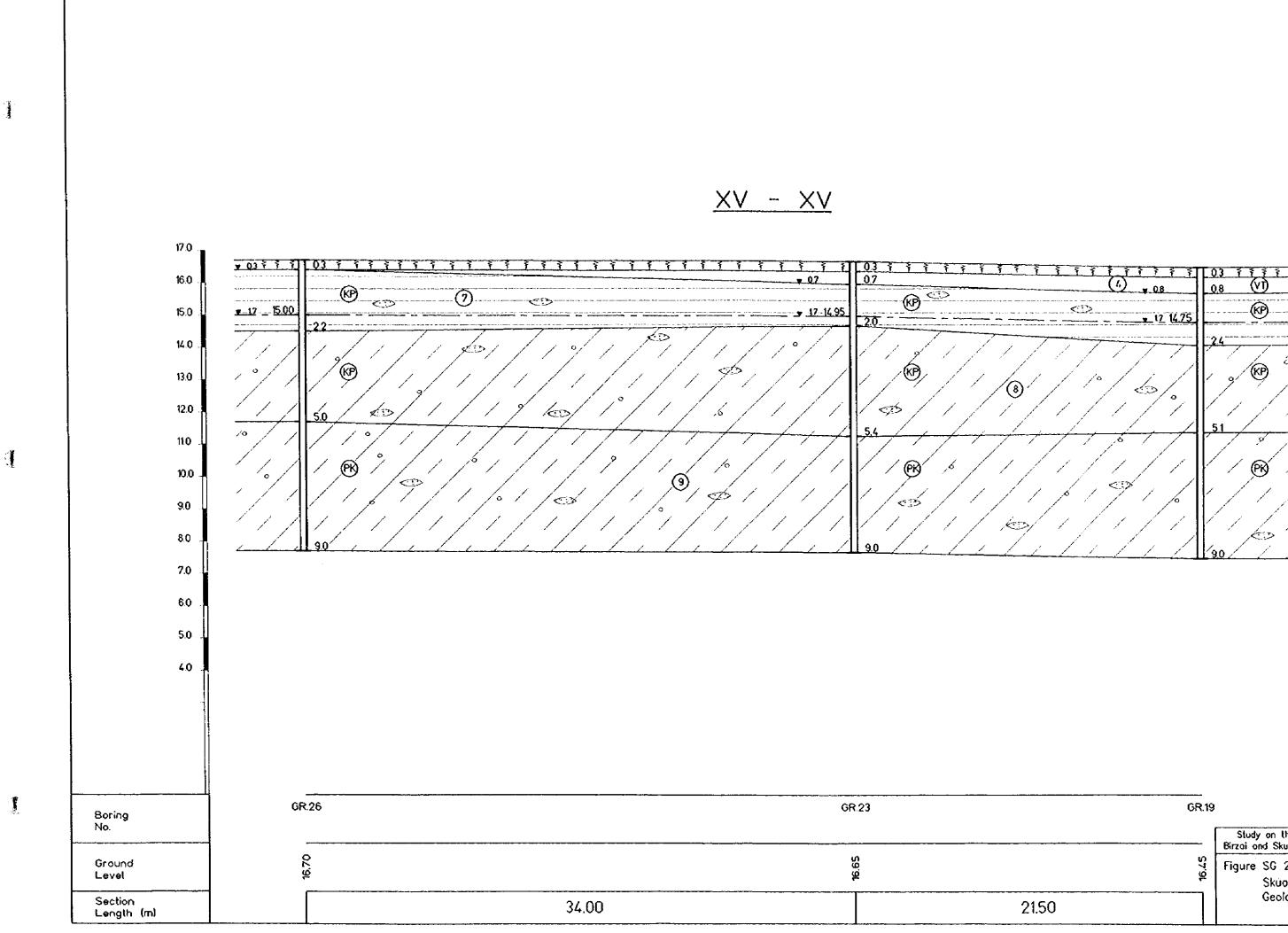

<u>VI - VI</u>

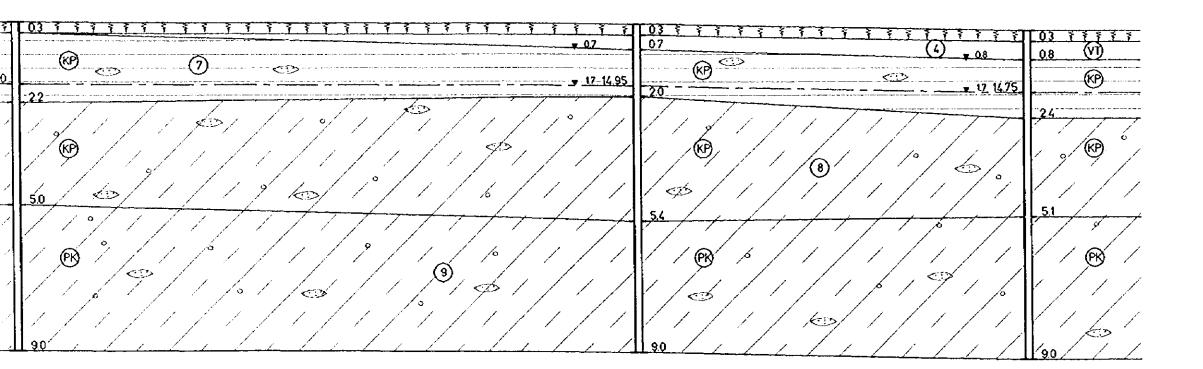

GR.	.6	GR.4		
් ද ද ද	Q Q	ର ପ୍		
	34.00		33.00	


<u>VI - VI</u>

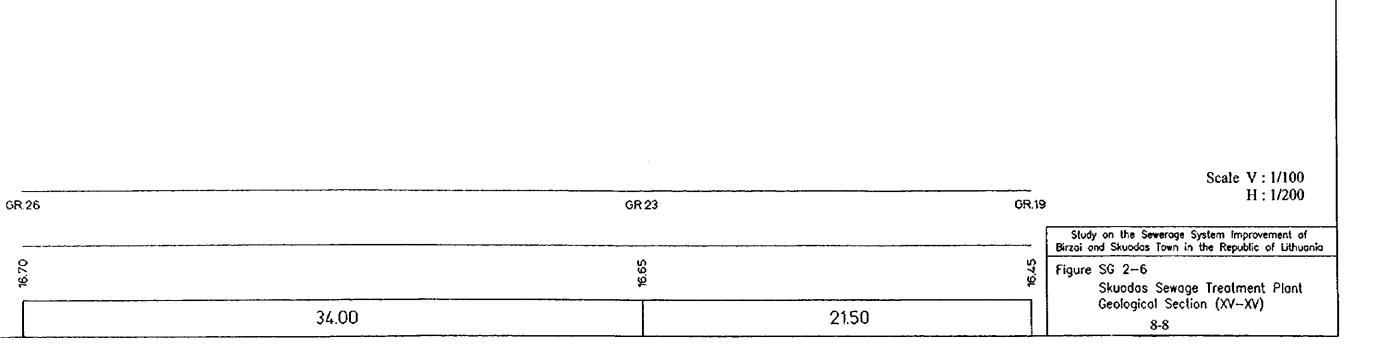

Scale V : 1/100 H : 1/200

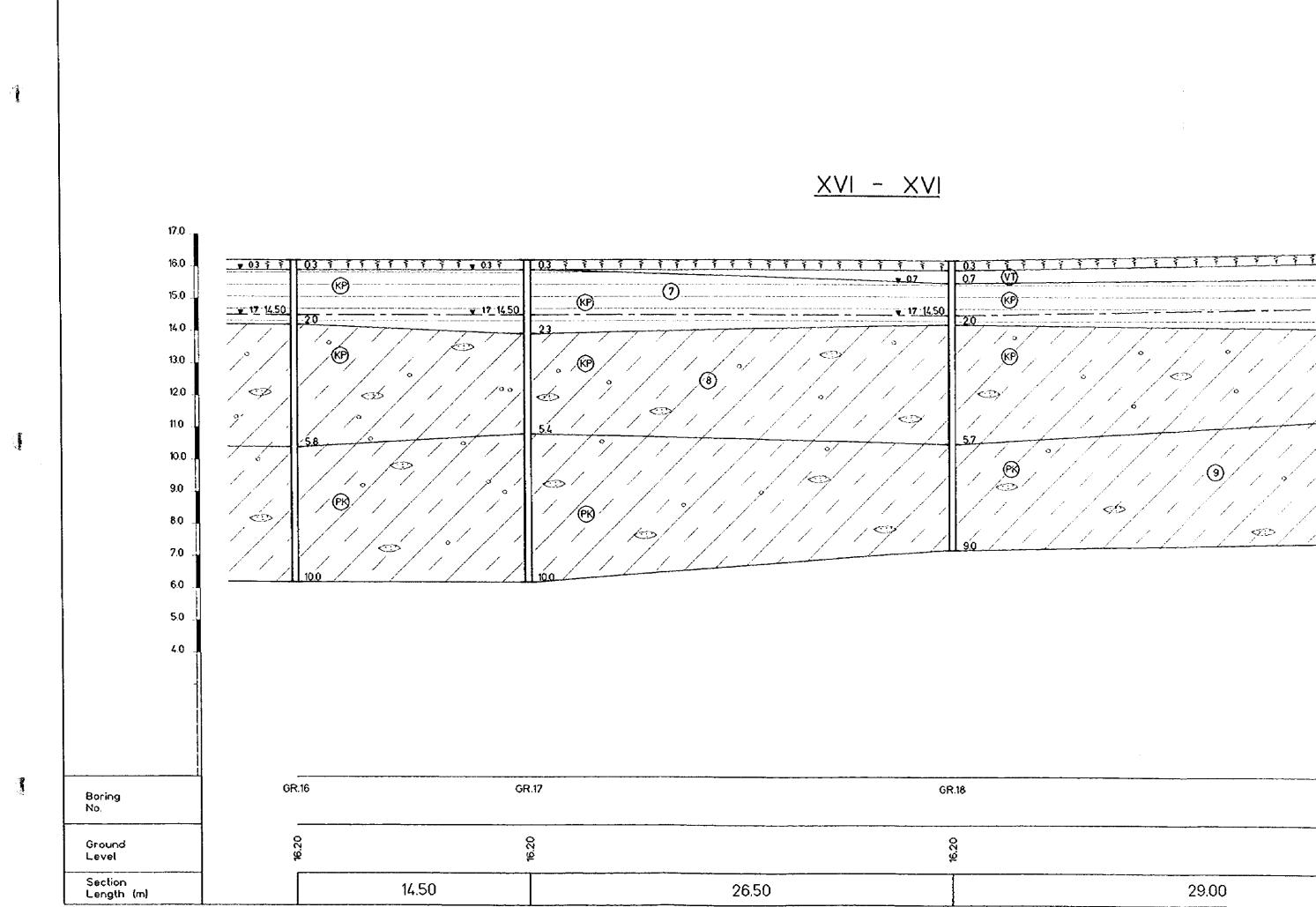
6R.2




<u> XIII - XIII</u>

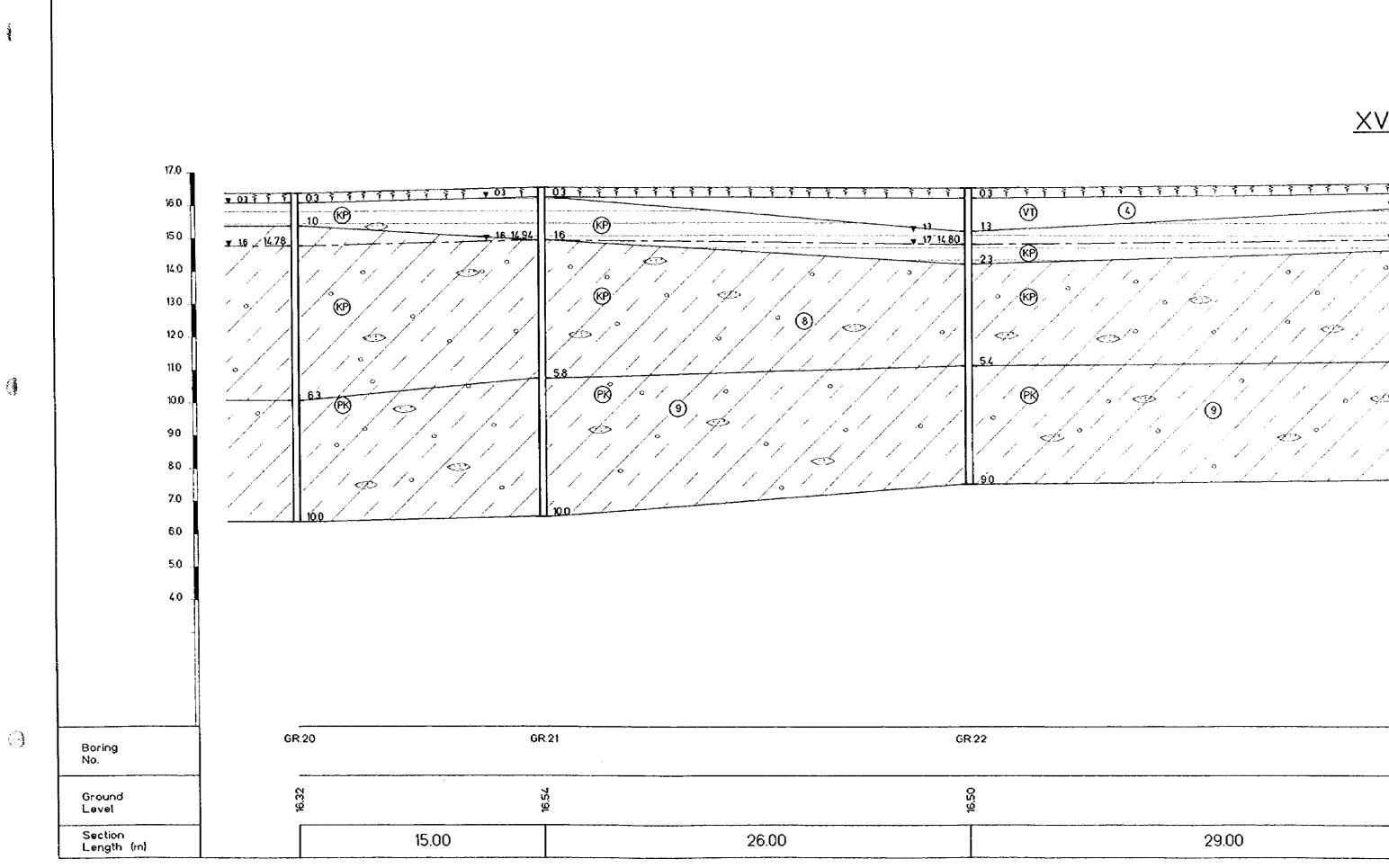
Scale V : 1/100 H: 1/200


Study on the Sewerage System Improvement of Birzai and Skuadas Tawn in the Republic of Lithuania


Skuodas Sewage Treatment Plant Geological Section (XIII-XIII)

<u>XV - XV</u>

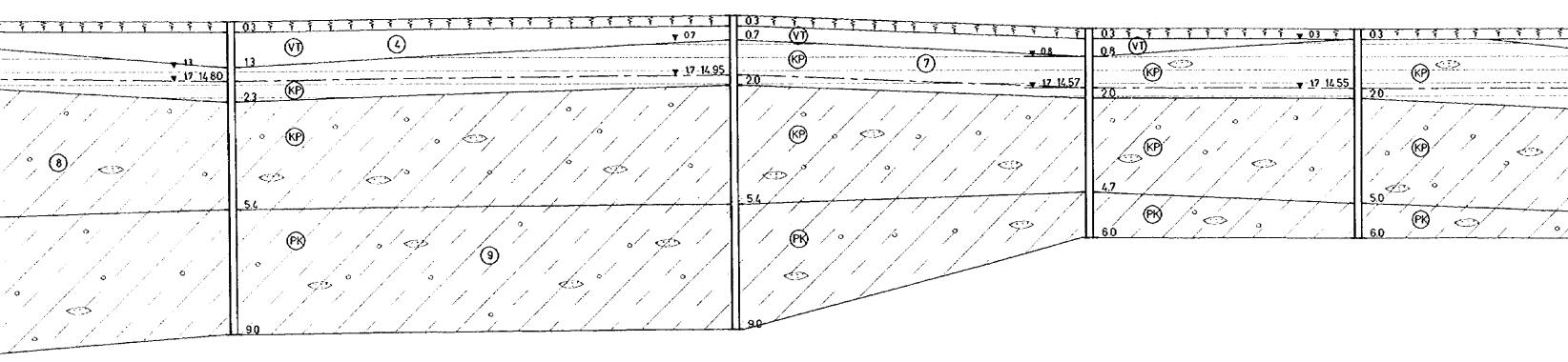




XVI - XVI

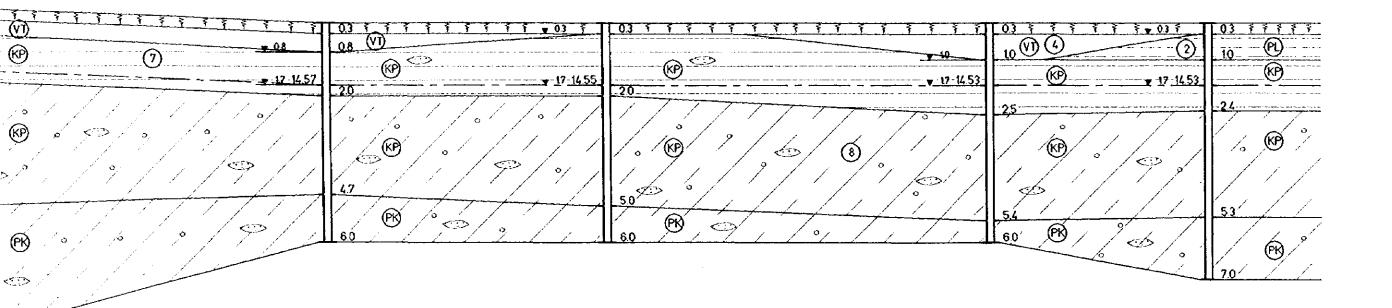
			0.3 7 7
<u>i i i u 03 i</u>		0.3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	0.8
	$\langle \hat{\gamma} \rangle$		
		(P) 12 14.75	
17 14.50		20	2.4
	23		77
		$(\mathbf{W}) $. 1
			/ %
/ / /00			11
	54	57	
			1//
		$\mathbb{N} \times \mathbb{O}$	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
/ / ^°			11
			ľ í ,
			.90 /
			
	100		

		GR.18		GR.19
		Q N		Si Birzo Si Figu
4.50	26.50	¥	29.00	

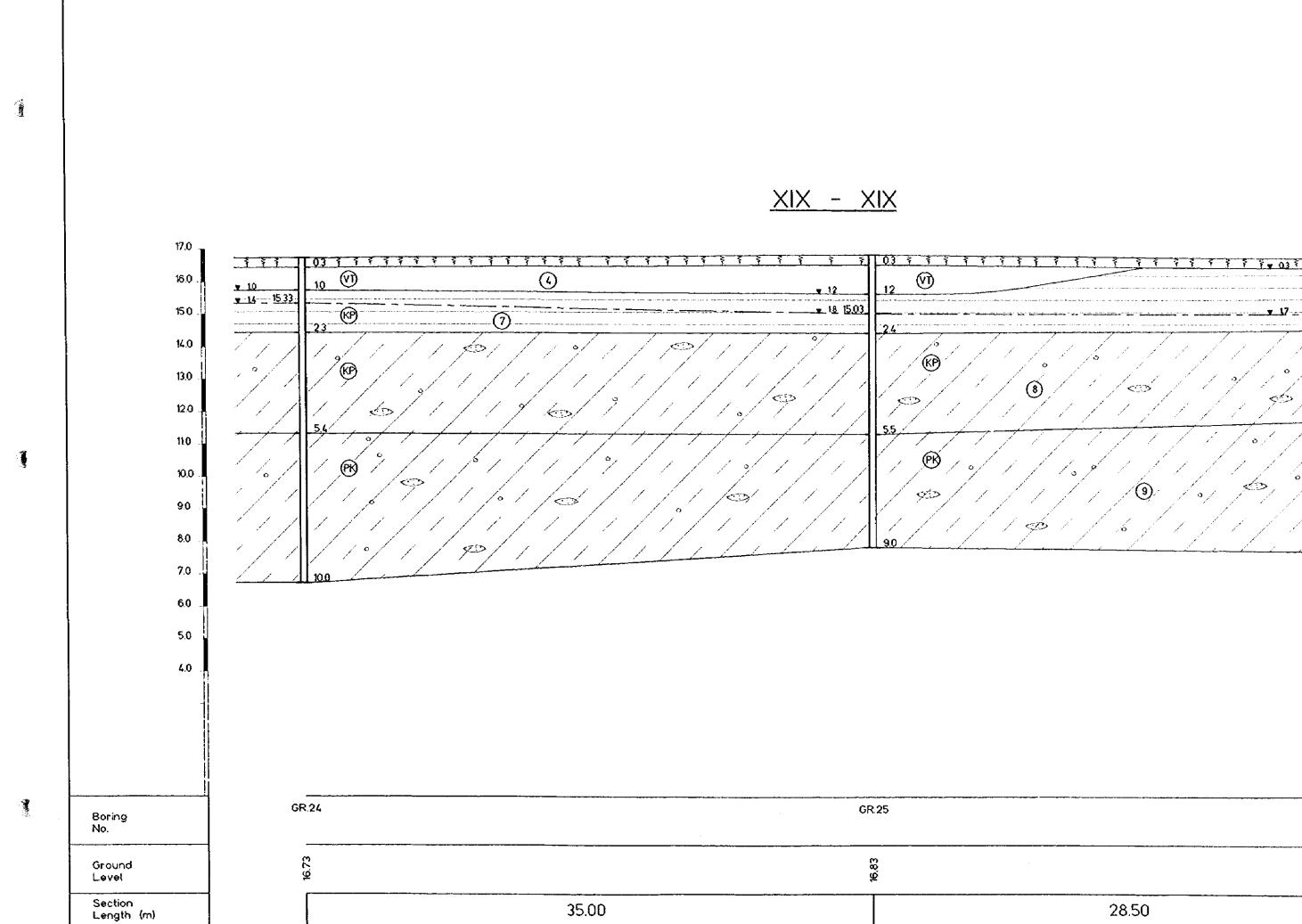


Ţ

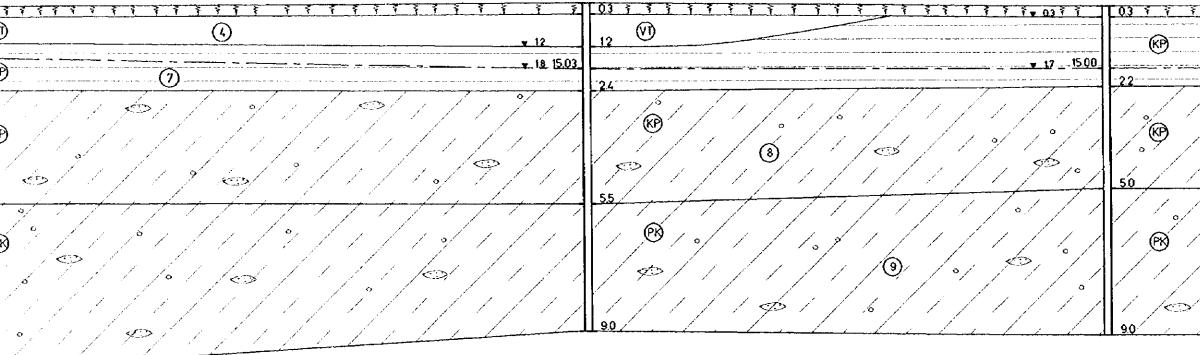
3



XVII - XVII



GR22		GR 23		GR.27	GR.30	
is SO		6.65 2		16.27	16.25 5	
26.00	29.00		20.50		15.50	21.0


Scale V : 1/			·····		
	GR.32	GR.31	GR 30		GR 27
H:1/2		GR.31	GR 30		GR:27
H : 1/2 Study on the Sewerage System Improve Birzai and Skuodas Town in the Republic o Figure SG 2-8	Sta Birzoi	GR.31			
H : 1/2 Study on the Sewerage System Improve Birzai and Skuodas Tawn in the Republic o	Stu Birzoi		16.25 25	15.50	GR:27

Scale	V	:	1/100
	Ħ	:	1/200

XIX - XIX

GR	25	GR 26	
			Study on th Birzai and Sku
		16.70	Figure SG 2 Skuo Geolo
35.00	28.50		Geolo

.

> Scale V : 1/100 H : 1/200

.

the Sewerage System Improvement of kuodas Town in the Republic of Lithuania

2-9

odas Sewage Treatment Plont logical Section (XIX-XIX)