Table 2.13	River Water Quality Records, Tatula River (18.8 km from the mouth)
	(Above Birzai, at the left bank)
	(Year: 1996)

r								r	·····		r			[]			
Item	Unit	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept	Oxt.	Nov.	Dee.	Frequ ency	Mini.	Max.	Mean
Velocity	m's	0.1	0.1		0.25	0.33	0.22	0.18	0.08	0.06	0.07	0.1	0.12	11	0.06	0.33	0.14
Discharge	cu m's	0.16	0,10		0.51	1.40	0.50	0.31	0.22	0.16	0.17	0.25	0.40	11	0.10	1.40	0.38
Temperature	°C	15.0	4.0		6.0	15.0	19.0	17.0	19.0	14.0	6.0	5.2	4.0	11	4.0	19.0	11.2
OJour		Scent	Weak		Scent less	Scent less	Scent less	Scent] css	Scent less	Scent less	Scent less	Scent Icss	Scent less				
Transparancy	çm	1css 20	. 9	20	20	20	20	20	20	20	20	20	20	- 11	9	20	19
		Yello			Yellow	Yellow	Yello	Yellow	Yello	Yellow	Yellow	Yellow	Yello				
Colour		wish	Grey		ish	ish	wish	ish	wish	ish	ish	ish	wish				
Suspeded solid	mg1	14.0	5.0		17.0	14.0	15.0	: 4.0	5.0	5.0	9.0	2.0	7.0	H	2.0	17.0	8.8
PII		8.00	7.40		7.50	8.00	8.00	8.10	7.80	7.80	8.20	8.10	7.70	11	7.40	8.20	7.87
<u> </u>	mg/l	7.3	1.2		6.7	7.3	9.3	8.1	3.6	4.1	9.7	6.3	8.1	<u>11</u> 11	12	9.7 100.9	6.5
0,	%	72.7	9.1	·	53.7	72.7	10.9	84.2	39.0	39.9	77.8	495.0	61.6		9.1	100.9	60.1
BODj	mgOz/1 mgOz/1		47.0		13.0	2.0	3.2	1.4	2.4	1.8	1.4	1.4	1.4	- 11	1.4	47.0	7,0
BOD,		<u>2.0</u> 50	47.0		40	50	3.2	46	- 2.4	65	88		1.4		18		51
COD, Cr	mgO ₂ 1	19.0	16.0		16.0	19.0	13.0	17.0	13.0	15.0	10.0	12.0	15.0	11	10.0	19.0	15.0
COD, Mn	mgOz/I	0.93	8.75		0.95	93.00	0.40	0.83	0.67	0.20	0.60	0.40	0.30	11	0.20	8.75	1.36
NIL-N NO1-N	mgN/I mgN/I	0.93	0.170		0.95	0.010	0.40	0.012	0.001	0.001	0.000	0.012	0.014	- ii		0.170	0.030
NO ₂ -N NO ₃ -N	mgN/1	3.00	5.20		1.70	3.00	0.40	2.30	0.15	0.30	0.20	0.70	1.80	i i	0.15	5.20	1.70
Inorganie N	mgN/1 mgN/1	3.940	14.120	<u> </u>	2.714	3.941	0.840	3.142		0.501	0.800			11	0.501	14.120	3.094
N total	mg1	4.1	15.0			4.1			0.9		0.9			5	0.9	15.0	5.0
PO ₄ -P	mgP/1	0.080	1.470		0.520	0.080	0.110	0.600	0.030	0.020	0.040	0.040	0.090	11	0.020	1.470	0.280
P total	mg1	0.090	2.000			0.090			0.060		0.050			5	0.900	2.000	0.458
Ca	mg1	106.0	120.0			106.0			140.0		115.0	ļ		5	106.0	140.0	117,4
Mg	mg/l	15.0	29.0			15.0		·	12.0		18.0			5	12.0	29.0	17.8
Na	mgil					7.7			6.9 5.8		16.2 15.9			3	6.9 3.8	16.2 15.9	10.2 8.5
<u> </u>	ണു1 നു1	2.0	4.5	·		2.0			2.0		1.0			5	1.0	4.5	2.3
HCO ₁	mg/i	256	302			256			229		250	<u> </u>		5	229	302	258
SO4	mg/l	73	55		<u>}</u>	73		1	32		12	<u> </u>		5	32	12	70
<u> </u>	mg/l	31.0	51.0		23.0	31.0	26.0	32.0	19.0	51.0	63.0	51.0	31.0	11	19.0	63.0	37.1
Mineralization	mg1			1	1	492.5			444.7		598.1			3	444.7	598.1	511.7
Total hardness	mgekv/l	6.5	8.4			6.5			8.0	1	7.3	L		5	6.5	8.4	7.3
Fe	mgʻl	0.30	0.18	L		0.30	 		0.10	ļ	0.10			5	0.10	0.30	0.19
Mn	നളി		L	· · ·		 			┣	- -				<u> </u>			
Cu Za	micro gl micro gl		<u> </u>								+	l		<u></u> +−-			
Cr	micro g/l	 		<u> </u>	}		 					 		 		•	
Ni	micro g.1			1	1								<u> </u>	1			1
Pb	miero g/l				1	1											
Cđ	miero g'l					L	Ľ		L	L		ļ		I	 		_
Detergent	നളി				_	 			ļ			 	ļ		 		
Oil prod.	mg1		┞──	<u> </u>			 	┣	<u> </u>			ł	ł	+			╉┷──
alfa HCH beta HCH	miero gl miero gl		 	<u> </u>		┨────	t	+ • •	<u> </u>					t	 		
gama HCH	micro g1	 	<u> </u>	1		†					 	t	t	1	t	 	1
DDE	micro g1		† · · · · ·	1		t	1							1			1
DDT	micro g1													[
PCHB	micro g1					 	 	<u> </u>		 	1.1000	ļ	L	 	1.00-	0000	1.000
Ki total	col1			 -	┢	6000	 	 	80000 80000		<1000 <1000			$\frac{3}{3}$	1000		29000
KI fresh E	col1 col/ml		┣		+	<1000 10	 		190000		<1000	 	<u> </u>	$\frac{3}{3}$			4633
HP	col mi col mi	1		+	 	80			2660	t	90	_	†	1 3	80		
HM	col'ml	t —	<u> </u>	+	1	†	<u> </u>	†	1	†	1	1	1	1		<u> </u>	1
3,4-dichlor benzaine	mg/l	1															
penta chlor fenol	mg1			_							L		I	_	L	ļ	
2-chlor fenol	តាខូ1					ļ	ļ	ļ	<u> </u>		ļ	ļ	ļ	L		ļ	
2,4-dichlor fenol	mg1	ļ	 	. 	 	<u> </u>	<u> </u>	_					 	 		ļ	
2,4,6 trichlor fenel	mg1			┨			I		· ·		<u> </u>	╆	╂───	┨	<u> </u>		+
2,3-dimetil fenol	mg]		 	╂──	+		╂		╂	1		ł					<u> </u>
3,4-dimetil fenol 4-chlor 3-metil fenol	mg/l mg/l	t	 	+	+	+	 		ţ	<u> </u>	1	t	1	1	t	<u> </u>	1
4-stass 2-flictu tellor		†	<u> </u>	1	+	1	1	<u> </u>	1	1	1	1	1		1	_	1
1	L											*		<i></i>	· · · · · ·		

9

)

.

.

Table 2.14	River Water Quality Records, Tatula River (18.8 km from the mouth)
	(Above Birrai, at the left bank)
	(Year: 1997)

Iten Velocity Discharge Temperature Odour Transparancy Colour Suspeded solid PHI	Unit m's com's C cm	Jan. 0.09 0.17 4.0	Feb. 0.18 0.29	Mar. 0.48	Apr. 0.65	May 0.48	June 0.35	July	Aug.	Sept.	Oct. 0.12	Nov. 0.3	Dev. 0.35	Frequ ency 9	Mini. 0.09	Max. 0.65	Mean
Discharge Temperature Odour Transparancy Colour Suspeded solid	Cum's C	0.17 4.0	0.29	- No	0.65	0.48	0.35				0.12	0.3	0.15	_	0.00	0.63	0.22
Discharge Temperature Odour Transparancy Colour Suspeded solid	Cum's C	0.17 4.0	0.29	1.00					1			¥	· · · · ·		0.05		0.33
Temperature Odour Transparancy Colour Suspeded solid	'C ,.	4.0		1.85	3,00	1 85	1 24	0.68	0.22	0.24	0 1 9	0.82	1.15	12	0.17	3.00	0.958
Odour Iransparancy Colour Suspeded solid			4.0	6.0	5.0	5.0	16.0	22.0	19.0	18.0	17.0	4.0	5.0	12	4	22.0	10.4
Transparancy Colour Suspeded solid		Scent	Scent	Scent	Scent	Scent		Scenti	Scent	Scent	Scent	Scent	Scent				
Colour Suspeded solid		less	less	less	less	less	less	ess	less	less	less	less	less				
Colour Suspeded solid		15	20	20	20	20	19	20	14	18	20	19	19	12	14	20	18
Suspeded solid		Brow	Yello	Yello		Yellow	Yello	Yello	Yello	Yello	Yellow	Yello	Yello				
		n	wish	wish	wish	ish	wish	wish	wish	wish	ish -	wish	wish			:	1
	mg1	81.0	30	5.0	6.0	5.0	7.0	3.0	17.0	11.0	40	5.0	6.0	12	3	81.0	13,1
		7.8	1.3	77	7.8	8.1	7.3	7.8	8.2	8.0	8.0	8.0	7.6	12	73	8.2	7.8
	mg/l	8.3	8.4	10.4	9.0	9.0	7.3	7.3	6.9	6.9	5.9	8.9	7.9	12	5.9	10.4	8.0
	%	63.2	63.9	83.4	70.3	70.3	74.3	84.1	74.9	73,4	61.3	67.7	61.7	12	61.3	84.1	70.7
		03.2	0.7	03.4	10.5			07.1									
	mgO ₂ /1			10	22		1.0	10			1.2	1.5	1.4	12	1.2	7.2	2.4
and the second s	mgO ₂ /1	7.2	2.4	-1.5	2.2	2.1	1.8	1.8	5.0	1.4				12		7.2	2.4
COD, Cr	mgO ₂ A	32.0	18.0	10.0	13.0	31.0	31.0	22.0	36.0	27.0	29.0	21.0	26.0	1	1.2		
COD, Mn	mgO ₂ /1	26.0	8.0	10.0	11.0	17.0	16.0	22.0	22.0	10.0	-10.0	11.0	14.0	12	8	- 26.0	14.7
NL-N	mgN/1	0.900	1.000	0.650	0.300	0.570	0.620	0.500	0.350	0,700	0.600	0.120	0.270	12	0.12	1.000	0.540
NO, N	mgN1	0.048	0.014	0.012	0.030	0.019	0.064	0.055	0.000	0.000	0.000	0.016	0.022	12	0	0.064	0.023
NO,-N	mgN1	1.40	2.70	5.50	5.60	4.60	2.20	1.85	0.30	0.30	0.30	8.50	6.60	12	0.3	8.50	3.32
Inorganie N	mgN/1	2 3 18	3.714	6.162	5.930		2.884	2 405	0.650	1.000	0.900	8.636	6.892	12	0.65	8.636	3.892
N total	mg/l		3.90	6.80	6.50	5.30	4.00	2.60	0.70	1.20	1 30	11.00	7.70	11	0.7	11.00	4.60
PO,-P	mgP.1	0.250	0.290	0.010	0.050	0.030	0.050	0.070	0.060	0.080	0.040	0.050	0.025	11			0.280
Pictal Pictal	mg1	7.270	0.300		0.050		0.060		0.070	0.090	0,050	0.060	0.030	11	0.03		0.030
Ca	mg/l		268.0	f	P.***	122.0		1.000	132.0		140.0		1	4			165.5
The set of the second s	mg l	<u> </u>	24.0			39.0		<u>-</u>	37.0	<u> </u>	49.0	1		4		49.0	372
Mg Na	mg i mg i		16.7	· · · ·		7.1	╄	+	14.0	<u>†</u>	14.0			4		16.7	12.9
			5.4		╂	3.7	 	╆	6.3	+	7.6	†	 	4		the second s	51
<u>К</u> Si	ng]		6.0		+	2.0	+		4.0	╂───	5.0	1	<u></u> †−−−−	4	•	6.0	42
	nig/l			<u>↓</u> · ·		211			250		259	t—	1	4		259	211
HCO,	mg 1		244	┨		•		·			120						115
SO4	mgl		160	L	I	100	1	+ 21 0	80	1-10.0		1 260	1-300				
લ	mg-l	61.0	34.0	34.0	34.0	\$5.0	34.0	61.0	27.0	30.0		36.0	30.0			61.0	38.8 613.9
Mineralization	mg/l		752.1	ļ	_	537.8	 		546.3		619.6					-	
Total hardness	mgekvil		15.0	ļ	<u> </u>	9,3	<u> </u>		9.7	 	11.0			4			11.2
Fc	mg 1	 	0.10	_	<u> </u>	0.20	I	_	0.10		0.20			4	0.1	0.20	0.15
Ma	ng/l	L	<u> </u>		·		 	!			· ·				╉──┅	·	╂───
Cu	micro g		ļ	_		ļ	<u> </u>	_		┫───	_	_	<u> </u>		_		┢───
Zn	micro g1		<u> </u>	<u> </u>	4	ļ	ļ	· · · ·		·	· · ·	. 	·		4		_
Cr	micro g l					_	I	·		_	i				· ·		∔
Ni	micro g l				+		_	+	<u> </u>	₊		↓			+		┨───
Pb	microgi						 	.	I			1	<u> </u>		_		_
Cd	micro g/l	1	 	_	<u> </u>		<u>ļ </u>		1	 	_	-	_	1		1	
Detergent	mg/l	1	0.04	<u> </u>		<u> </u>	1	_	_	!	_	┨──		<u></u>	0.04	0.04	0.0
Oil prod.	mg/l	1	<u> </u>	<u> </u>	- 	 	┫	<u> </u>		-	1	┨───	┫	-	{		┣
əlfa HCH	micro g l			1			 		↓	+		<u> </u>		<u> </u>	· {	-	┟
beta HCH	micro g/l		<u> </u>		<u> </u>	·	1		_	Į	- 		∔	╉───	_		
gama HCH	micro gl		<u> </u>	_	_	 	<u> </u>	<u> </u>	<u>+</u>	-i	4	╂───	.	- 	-	 	+
DDE	micro g'			1	4	.l	ļ			1		+	· · · · · ·	_	-	<u> </u>	-
DDT	micro gl			J	1	- 	1	<u> </u>		-l		- 	· • · · ·	_		1	∔
PCHB	micro gi	1		1	<u> </u>		<u> </u>	1		<u>. .</u>	+	<u></u>	<u> </u>	_	<u> </u>		
KI total	col1	<u> </u>		_		<1000	-	_	2E+0	_	3000			_	3 100) 2E+0	1/100
KI fresh	co11	_	4	_ _	- 	<1000	·		1E+0		3000	-				0 IE+0	
E	col'ml		_	1	_	<1			11			1	4			<u>i 11(</u>	
HP	col'mi	_		- -		170			1930		798					0 1930(
E HM	col/m				_	1	7		750	아	28	<u>v</u>	_	- 	3 1	7 7500	259
3,4-dichlor benzaine	mg/l		_	<u> </u>	<u> </u>								-	+	+		-
penta chlor fenol	mg1						_	_						· •	4	_	_
2-chlor fenol	mg/1					1											1
2,4-dichlor fenol	mg1	Ι															
2,4,6 trichlor fenol	mgʻl									_					_		
2,3-dimetil fenol	mgʻl	-			1												
3,4-dimetil fenol	mg-1		Τ														
4-chlor 3-metil fenol	mg1																
		T	1					1									

é

	n		Mirdr		T		Maxie	າງພາກ			Me			1			
Item	Unit	1994	1995	1996	1997	1994	1995	1996	1997	1594	1995	1996	1997	Na of	Mini	Max	Mean
					0.12	0 65	081	0.44	0.8	0.33	0.36	0.19	035	Year 4	0.07	0.81	0.318
Velocity Discharge	m/s cum/s	0.09	0.08	0.07	0.38		10.600	2 850	65	2 515	2 522	0.749	2111	4	-021	10.6	1974
Temperature	°C		4	40	40	25	22	19.0	22.0	10.9	10.1	95	106	4	20	220	10.275
Odour																	
Transparancy	em	19	8	17	16	20	20	20	20	19	18	19	19	4		20	18 750
Celour							20.0	26.0	28.0		127	105	9.9	3	3.0	30.0	11.033
Suspeded solid PH	<u></u>		4.0	3.0 7.30	40	14	30.0 8.20	8 20	82	7.3	7.90	7.76	7.9		4.0	140	7.708
	mg1	8 2	3.8	3.4	63	8.9	10.1	102	9.2	8.45	6.0	69	1.7	- 4	3.4	102	7.263
O,	%	3.7	335	327	57.0	9.8	81.1	100.9	83.0	7.5	52.4	61.8	69.1	4	3.7	100.9	47.700
BOD	ngO ₂ A	41.7	1.5			103.2	32			68.4	23			2	15	103 2	35 350
BOD,	mgO ₂ /1	12		1.5	12	3.B		14.0	5.3	23		33	20	3	12	14.0	2 533
COD Cr	mgO ₂ /I		- 14	16.0	11.0		82	95.0	38.0		44	41.0	23.0	3	11	95	36.000
COD, Mn	mgO ₂ /1		5.0	5.0	80		20.0	160	21.0		11.0	10.4	12.7	3	5.0	21.0	11.367
NH-N	mgN/I	4 200	0.10	0.23	0.4	12 000	11.00	4.10	12	8.400	1.86	· 124	0.6	4	0.1	12	3.020
NO ₂ N	mgN/l	0.06	0.018	0.010	0.000	2 10	0 2 2 0	0.200	0.065	0.70		0.055	0.018	4	0.000	2 100	0 193
NO ₃ -N	mgN/I	0.02	0.60	0.60	0.3	0.12	7.20	2 90	8.9	0.056	2 00	1.49	3 22	4	0.02	8.9	1 692
Inorganic N	mgNA	0.200	0.882	0.84)	0.700		12 900	6.114	9.316	2 870	3977	2.789	3.837 4.8	4	0.200	12 900	3 368 3 465
N total	mg/1	0.74	12	<u>u</u>	10	5.87	42	4,0	12.0 0.280	<u>3.66</u> 4.9	2.7 0 268	0 339	4.8	4	0.74	83	1.398
PO ₆ -P	mgP/1	1.8	0.040	0.030	0.015	83	0.640	1.160	0.200	0.225	0.415	0 598	0.097	4	0.06	1 16	0.341
P total Ca	നു1 നു1	0.09	92.0	140.0	120.0	0.8	457.0	400.0	312.0	0.308	216.3	2462	178.0	4	0.09	457.00	160 202
Ng	mg/1		23.0	15.0	29.0		38.0	24.0	84.0		323	19.5	48.5	3	15.0	840	33.433
Na	ng/l	40.0	10.0	5.5	92	44.0	35.0	104.8	19.4	41.6	23 2	41.7	13.9	4	55	104.8	30.100
K	നളി	14.0	33	4.1	39	14.0	12.0	11.1	9.2	14.0	7.8	6.5	65	4	33	14	8,700
Si	ng/1	32	3.5	1.0	20	4.1	6.5	4.0	7.0	3.6	55	23	4.5	4	1.0 211	7.0	3.975 262.667
HOOS	_mg1		262	241	211		317	286	272 180		289	259 106	240 149	3	70.0	180.0	128,000
SO4 Cl	mg/l	725	108	70 21.0	100 30.0	25	53.0	190.0	61.0	725	35.6	60.6	41.0	4	30	725	215.800
Mineralization	mgʻl mgʻl	320	527	555.1	583.6	71.0	965.0	848.9	870.8	45.3	733.2	741.6	6766	4	320	965.0	549.175
Total hardness	mgekv/1	7.4	6.9	82	9.3	15	27.0	22.0	17.0	10.6	123	128	11.4	4	6.9	27.0	11.775
Fe	ությ	0.10	0.37	0.10	0.10	0 20	0.97	0.30	020	0.15	0.57	0.16	0.17	4	0.1	097	0 263
Mn	mel	0.03	0.058	0.02	0.029	0.030	0.174	0.15	0.035	0.030	0.123	0.06	0.032	4	0.02	0.174	0.062
Cu	micro g/l	4.96	3.10 3.29	1.42 6.85	0.93	10.03	3.80	2 53 12 30	1.07 5.65	7.49	3.41	1.86	1.00	4	0.93	11.72	3.440
<u>Zn</u>	micro g/l micro g/l	2.02	0.45	0.63	027	8.04	5.93	10.66	033	5.03	3.89	6.52	0.30	4	0.27	10.66	3 935
Ni Ni	micro g1	0.71	1.56	1.21	0 21	1.99	263	1 69	0.41	1.35	2.04	1.44	0.31	4	021	2 63	1 285
Pb	micro g/1	0.40	0.40	0.70	0.40	2 30	0.70	1.90	0.42	1.35	0.53	1.45	0.41	. 4	0.4	23	0.938
Cd	micro g1	0.03	0.02	0.05	0.05	0.42	0.07	0.20	0.08	0 22	0.04	0.14	0.06	4	0.02	0.42	0.115
Detergent	mg1		· · ·			L	I			 		ļ				0.00	0.090
Oil prod.	mg/l	0.000	0.000	0.000	0.07	0.000	0.000	0.000	0.09	0.000	0.000	0.000	0.08	4	0.07	0.09	0.080
alfa HCH	micro g1 micro g3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	4	0.000	0.000	0.000
gama HCH	micro g/l	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	4	0.000	0.000	0 000
DDE	microg/1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	4	0.00	0.00	0.000
DDT	microg/1	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000		0.00	0.00	0.000
PCHB	micro g1			0.000	0.000		1	0.000		110.00	15.0	0.000	0.000		0.00	0.00	0.000 ########
Ki total	col/1		1E+06 10000		•	100000			4E+05			30333					#######################################
KI fresh E	col/i col/ml	1000		1000		1000	1 10000	10				4	20		1.000	60	
HP	col'mi	-	31000			96000	31000	14000	40350	96000	31000	12200	18510	5 4	1900		#\$######
HM	colimi	600	9400	10			9400	970			9400	330			<u> </u>		:665.000
3,4-dichlor beazaine	mg/l	ļ	ļ		0.000		 	ļ	0.000		╉───	 	0.000		0		0,000
penta chior fenol	mg/l	<u> </u>	 		0.000				0.000			<u> </u>	0.000		0		0.000
2-chlor feuel 2,4-dichlor feuel	നളി നളി	┨		<u> </u>	0.000		╂───	<u> </u>	0.000			<u>+</u>	0.000		t		0.000
2,4-dichior fenol	 	 		┢───	0.000		<u>†</u>	1	0 000		1	t	0.000		i õ		0.000
2,3-dimetil fenol	 	 	1	1	<u> </u>	1	†	[1				1			
3,4-dimetil fenol	mg/l			L	0.000				0.000		T		0.000		0	0.000	0.000
4-chlor 3-metal fenol	mg/l								1	_	1.	Į	_	_	<u> </u>	 	
1	1	ł	1	1	<u> </u>	1	<u>I</u>	L	<u> </u>	1	1	L		1	<u> </u>	.	L

Table 2.15 Summary of River Water Quality Records, Tatula River (18km from the month) (Annual maximum, minimum, and mean records)

	ſ		Mirai	1.179			Max	เหนาเ			Ma	30					
Itera	Urát	1994	1995	1996	1997	1994	1995	1996	1997	1994	1995	1996	1997	No. of	Mini.	Max	Mean
Velocity	m's	0.07	0.08	0.06	0.10	0.55	0.72	0.4	0.68	0 27	0.30	0.17	0.35	Year 4	0.06	0.72	0 275
Discharge	cum's	0 270	0 260	0.15	0 260	3 860	7.000	2	4.300	1.705	1.838	0.565	1 390	4	0.15	7	1 3 75
Temperature	С	20	4.0	40	4.0	25.0	23.0	19.0	220	10.6	10.2	10.8	113	4	20	25.0	10.725
Odvur																	
Transparancy	<u>cm</u>	9	8.0	9	11	19	20.0	19	20	16	17.0	16	16	4	8	20	16 250
Colour Suspeded solid	angl		60	5.0	4.0		24.0	35.0	15.0		11.0	14.8	8.3	3	4.0	35.0	11.367
PH		3.0	7.10	72	7.10	14.0	8 20	8.0	8.10	9.0	7.74	7.6	7.67	4	3.0	14.0	8.003
0,	n:g1	8.1	0.5	1.0	21	8.7	10.3	86	7.4	8.4	4.9	3.9	5.5	4	0.5	10.3	5 670
0,	*	: 1.9	5 20	7.6	22 8	113	87.00	933	818	5.8	41 20	36.9	50.0	4	1.9	93.3	33.475
BOD,	m _s O ₂ A	16.1	1.0			100.2	14.0			51.4	6.0			2	1	100.2	28.700
BOD ₂	mgO_11	1.4		5.6	1.7	29.0		47	33.0	6.7		19	8.7	2	1.4	47.0	17 200
COD, Cr	N _{Q2} m		36	26	17		103	164	46		63	87	31	3	17	164	60.333
COD, Ma	m ₆ O,1	·	110	120	9.0		25.0	22.0	30 0		15.0	17.0	16.4	3	9.0	30.0	16.133
NH _c N	mgN1	5.0	0.50	1.80	0.00	16.0	12.20	16.50	14.00	11.8	395	7.19	4 76	4	05	16.5	6 925
NO ₁ -N	mgNI	1 20	0.025	8100	0.000	12 00	0 200	0290	0.420		63.000	0.108	0.120	4	0.000	12 000	17.032
NO ₅ -N	BIGNE	0.020	0.00	0 25	0.00 4 2 7 0	0.100	6 20 13 245	5.20 16.784	8 50 14 006	0.059	2 30	1.54	3 27 8.157	- 4 - 4	0 200	8.5 16.784	1.792
Increanic N N total	ngN1 ng1	3270	- 4.0	7.0	4 2 /0	10 290	9.5	170	11.000	6.117	6.0	121	8.157	- 4	3 27	16.784	6.493 8.294
<u>POcP</u>	mgP-1	26	0.060	0.140	0.070	13.0	2 200	2 600	3.800	83	0.785	1 195	0 891	4	0.07	13	2 793
P total	mg1	0120	0.060	0 230	0.100	4 200	2 820	2 700	2 000	1 061	1.111	1.472	0.735	- 4	0.06	4 2	1 095
Ca	ang/l	0.150	100.0	120.0	144.0	4 500	232.0	168.0	188.0	1.169	153.3	139.0	159.5	4	0.2		113 242
Mg	mgʻl		25.0	17.0	17.0		36.0	29.0	89.0		320	21.0	45.5	3	17.0	89.0	32 833
Na	mgʻi		27.0	9.2	10.0	41.0	39.0 12.0	545	41.0	20.0	31 2 10.8	25.2	26.9	3	92	54.5	27.767
<u> </u>	mg/l	37.0	95 65	<u>50</u> 20	4,1 20	41.0	10.0	20.5 4.5	120	39.0 13.3	7.3	11.2	7.8	4	4.1	41	17.200 7.350
	നുദീ സംീ	1.3	295	262	226	28	314	314	317	-2.0	304	288	270		13		216 000
\$04	സംഗി സംഗി		31	. 35	100		69	113	140		44	68	125	: 3	31.0	140.0	79.000
	ாழ் எழி	480	16.0	26.0	41.0	480	660	284.0	89.0	430	36.0	84.8	\$5.0	12	16	480	54.650
Mineralization	ாதி	25.0	532.0	5420	634.1	63.0	739.1	818.0	725.7	410	618.9	635.8	6859	4	25.0	818.0	495.900
Total hardness	mgckv1	72	4.7	7.6	9.0	13.0	14.0	9.8	15.0	10.0	9.0	8.7	11.8	4	4.7	15.0	9.875
Fe	mg1	0.00	0.36	0.18	0 20	0.20	0.75	0.6	0.50	0.10	0.51	0.34	0.30	4	0	0.75	0 313
Ma	mg1	 	.		 -		 				 						
Cu Zn	micro g/l micro g/l		<u> </u> ∖-		}					 	<u> </u>					~	[
Ct	micro gl		<u> </u>				L							<u>}</u>		ŧ	
Ni	micro g/l	1									•	[
15	micro g1		L				I										
Cđ	micro g-1			ļ			 			 			 		į	ļ	l
Detergent	ag1			<u>}</u>	+		┨────			<u> </u>							
Oil prod alfa HCH	mg1 microg1	1			1		t			 	t		├ ┈──		·	<u>├</u>	
beta HCH	micro g1			1			1	[1						
gama HCH	microg1			ļ	ļ	L		ļ			Į						
DDE	aniero BJ	ļ		 		 	 	 	ļ. <u>.</u>	 		┼──	I	 	┣──		 _
DDT PCHB	micro g/l micro g/l	 		+	} '		 			- <u>-</u> -	╂╾┄╌				 		
KI total	col/	60000	1E+06	70000	50000	600000	1E+06	500000		60000	16+06	223333	4E+05	4	50000	1E+06	560000
NI fresh	cold	10000				10000						210000			6000		
Е	cotini	K									_				2	150	33.25
HP	col'ml	1400.		1400								19666				130700	
HMI	col'ml	300	1500	6) 3(300	1500	4200	9520	300	1500	1753	3426	4	30	9520	1744.75
3,4-Jichler benzaine penta chlor fenel	ாஜ1 ⊓g/1	╂	+			+	+	 	+	 		 		ŧ	 		
2-chlor fenol	mg/l	┨───	+	1	1	1	1	1	1		1	t	1	i	1	<u>†</u>	
2,4-dichlor fenol	mg/l	1	1		1			1				1		1	1	<u>†</u>	t
2,4,6 trichlor fenol	mg/1		1	L	1					_		[1	1		
2.3 dimetil fenol	ing 1	ļ	ļ	l	_	 	·	 	 	 	 	<u> </u>	1	 	<u> </u>	L	ļ
3,4-dimetil fenol	mgʻl	·		<u>+</u>		4	4	 			-	 	 			ł	↓
4-chlor 3-metil fenol	<u></u>				1	t	+	+	<u>+</u>	1	+	 		1	·[<u> </u>
L	L	1	-	1		<u> </u>		+	·			1	<u> </u>	Ĺ	<u>.</u>	L	<u> </u>

Table 2.16 Summary of River Water Quality Records, Tatula River (175km from the mouth) (Arread maximum, minimum, and mean records)

	ſ		Minin	in tint	I		Max	inum	7		Mc		1				
Item	Unit	1994	1995	1996	1997	1991	1995	1996	1997	1994	1995	1996	1997	No. of Year	Mini.	Max.	Mean
Velocity	51'5	0.06	0.05	0.06	0.09	0.5	0.55	0.33	0.65	0.23	0.26	0.11	0.33	4	0.06	0.65	0.24
Discharge	cu.m's	0.2	0.18	0.025	0.17	2.63	4.80	1.40	3.00	1.14	1.20	0.38	0.95	4	0.095	4.8	0.919
Temperature	'C	5	4.0	4	4	25	23.0	19.0	22.0	11.7	10.1	11.2	10.4	4	4.0	23.0	10.85
Odeer																	
Transparancy	cm	9	9	9	14	20	20	20	20	19	18	19	18	4	9	20	18.5
Colour																	
Suspeded solid	mg1	4.0	2.0	2	3	28.0	25.0	17.0	81.0	8.4	10.2	8.8	13.1	4	2.0	81.0	10.125
PH		7.90	7,40	7.4	7.3	8.80	8.10	8.20	8.2	8.35	7.81	7.87	7.8	4	7.3	8.8	7.9575
0,	mg1	40.9	3.7	1.2	5.9	102.0	12.1	9.1	10.4	69.0	6.3	6.5	8.0	4	1.2	102.0	22.45
0,	%	4.3	28.2	9.1	61.3	11.5	102.2	100.9	84.1	7.5	55.1	60.1	70.7	4	4.3	102.2	48.35
BOD	ingO ₂ /1	11	1.0			4.0	2.9			1.9	1.7						1.8
BOD ₁	mgO ₂ A			1.4	1.2			47.0	7.2	L		7	2.4	2	1.2	47.0	
COD, Cr	mgO ₂ /1		23	18	1.2		86	91	1.2		49	51	2.4	3	1	- 94	34.1333
COD, Ma	mgO ₂ 1	7,7	8.0	10	8	15.0	17.0	19.0	26.0	11.4	13.1	- 15	14.7	4	1.1	26.0	13.55
NH-N	mgN1	0.10	0	0.2	0.12	4.00	1.6	8.75	1.000	0.98	0.45	1.36	0.540	4	0	8.75	0.8325
NO ₂ -N	mgN1	0.010	0.000	0	0	0.040	0.055	0.170	0.064	0.016	0.018	0.03	0.023	4	0.000	0.170	0.02175
NO _J -N	mgNI	0.10	0.00	0.15	0.3	6.00	6.00	5.20	8.50	2.54	2.02	1.7	3.32	4	0	8.5	2.395
Inorgaruo N	ngNI	0.213	0.167	0.501	0.65	7.740	6.575	14.120	8.636	4.120	2.505	3.09	3.892	4	0.167	14.120	3.40275
N total	mg 1	0.6	0.8	0.9	0.7	8.5	4.5	15.0	11.00	4.4	2.7	5	4.60	4	0.6	15	4.175
PO ₄ -P	mgP.1	0.030	0.020	0.02	0.02	0.330	0.250	1.470	1.470	0.114	0.070	0.28	1.280	4	0.02	1.47	0.186
P total	mg 1	0.050	0.060	0.9	0.03	0.360	0.260	2.000	0.300	0.149	0.134	0.46	0.080	4	0.03	2	0.20525
(s	ng1		88.0	106	122		160.0	140.0	268.0		126.6		165.5	3	88.0	268.0	136.5
Mg	mg 1		25.0	12	24		34.0	29.0	49.0		29.3	17.8	37.2	3	12.0	49.0	28.1
Na	നുി	26.0	11.0	6.9	7.1	30.0	18.0	16.2	16.7	27.6	14.7	10.2	12.9	4	6.9	30.0	16.35
K	mg 1	7.0	4.5	3.8	3.7		9.2	15.9	7.6	8.0	6.4	8.5	5.7	4	3.7	<u>15.9</u> 6.2	7.15
Si	mg1	1.6	3.0	1	2	1.6	6.2	4.5	6.0	1.6	4.6	2.3	4.2		1.0		
HCO3	mg1		207	229			274	302	259		217	258	241		211	302	248.667
SO4	mg1	260	21	32	63		57	12	160		33	70	115	4	21.0	260.0	119.5
Cl	mg1	25	13.0	- 19	27	- 52	71.0	63.0	61.0	32.5		37.1	38.8	4 3	13	63	35.1 534.933
Mineralization	ngl		459.0	141.7	538		486.7	598.1	752.1	10.4	479.2	512 7.3	6 <u>13 9</u> 11 2		411.7	752.1	9,025
Total hardness	mgekv1	6.0	2.8	6.5	<u>9.3</u> 0.1	13.0 0.20	10,0 0,66	8.4 0.30	15.0	10.4	0.39	019	0.15		0.1	0.66	0.2075
Fe	mgʻi	0.00	0.28	0.1	0.1	0.20	0.00	0.50	0.20	0.10	0.39	0.15	<u>[0.15</u>				V.2013
Min	l	<u> </u>											<u></u> }				
<u> </u>	micro g1 micro g1																
<u> </u>	microg1				<u> </u>												
<u>N</u>	micro g1									†					t		
Pb	micro g1							1		1			t				
Cd	nicro gl			f		1				†	1				1	[
Detergent	mg1	t	1	1	0.04	1			0.04	1	<u> </u>		0.04	1	0.04	0.04	0.04
Oil prod.	ng1	1													l		
alfa HCH	micro g1													_		ļ	
teta HCH	micro g1		L	1		L	1	ļ	ļ	ļ	1	 		·	<u> </u>	L	l
gama HCH	sucro gl			ļ	ļ		ļ	ļ		Į	_	<u> </u>	 		{		l
DDE	micro gl	 	ļ	 	_	1	ļ	Į	 	- 		{	 	ł		ł	{
DDT	teicro ga	 		₋-	 		 	 	 		<u> </u>	1		·	+		
PCHB	micro g l	1000	400000		1000	1000	400000	00000	200000	1 ann	inne	bonn	1200	4	1000	10000	127500
KI total		4000							100000		10000						20199.8
KI fresh	col I col ml	3000		600		3000		11100		· · · · ·		4633					1917,75
E H2P	col mi	40									11000		960		40		5110.75
HM	col'ml	1	1200		1 17		1200		7500	-	1200		2595				
3.4-diction benzaine	rigi	1	† ⁻	1	†	1	1	1	1	1	1	1	1	1		1	1
penta chlor fenol	mg1	t		1	1	1	<u>†</u>	<u> </u>	1	1	1	1	F	1		1	1
2-chier feriol	mg/1	1	1	<u>†</u>	1	1	t	†	1	1	1	1		1	F	<u> </u>	
2,4-dichlor fenol	mg1	1	1	†	1	1	Î	1	1	T.						L	l
2,4,6 trichlor fanol	mg1	1	1	†	1		<u> </u>						<u> </u>				1
2,3-dimetil fenol	mg1	1					[I		L	_
3,4-dimetil fenol	mg1								ļ		_	1	I		<u> </u>	Ļ	
4-chlor 3-metil fenol	mg,1	L			_	1	I		ļ	_	. 	 	 	- 	4	ļ	
		1	1	1	1	1		I		1	1	1	1		I	1	1

Table 2.17 Summary of River Water Quality Records, Tatula River (18.8km from the mouth) (Annual maximum, minimum, and mean records)

ł

Table 2.18 Water Quality Records in the Sirvenos Lake (Birzai)

		Data source : F	iuman meaiur	i Center in Birz	
	Coliforn	n Index		Colifor	m Index
	an a	Near the			Near the
Date	Central Beach	Youth Park	Date	Central Beach	Youth Park
1993.5.13	13,000	(1,000	1996.5.20	70	2,400
5.18	(1,000	(1,000	6.03	1600	1,000
5.24	68,000	7,000	6.15	1000	
5.31	(1,000	< 1,000	6.20	80	the second se
6.15	(1,000	(1,000	7.01	>2,400	
6.21	(1,000	20,000	7.15	< 1,000	
6.28	(1,000	103,000	7.29	350	
7.07	2,000	(1,000	8.13	>2,400	
7,19	(1,000	< 1,000	8.20	40	
7.26	(10,000	(1,000	8.27	(1,000	
8.11	(1,000	2,000	9.02	350	
8.18	1,000	1,000	1997.6.02	350	
9.02	(1,000	(1,000	5.15	350	
9.15	1,000	260,000	6.22	>2,400	
1994.5.18	1,000	1,000	7,08	400	
5.25	(1,000	(1,000	7.15	350	
6.07	(1,000	(1,000	7.28	>2,400	
6.20	1,000	(1,000		2,400	
6.28	(1,000	(1,000		1600	
7.11	20,000	< 1,000		240	
7.18	6,000		1998.6.01	280	
7.25	5 (1,000			1600	
8.03	3 < 1.000			>2,400	
8.09) (1,000		7.01	540	
8.10	3 (1,000			350	
1995.6.01	140		7 20		
6.12			7.28		
6.19				and the second se	
6.2	and the second se			540	0 140
7.10					
7.1					
7.2					
8.10			and the second sec		_
8.1					
8.2	7 (1,00	0 < 1,000	기		<u> </u>

Data source : Human Health Center in Birzai (MOH)

Note: No eutro-pathologic micro-flora was seen for the whole observation period.

Coli-index less than 10,000 is allowed by MOH.

Table 2.18 Water Quality Records of Ground Water in Birzai (Geo. Survey)

ł

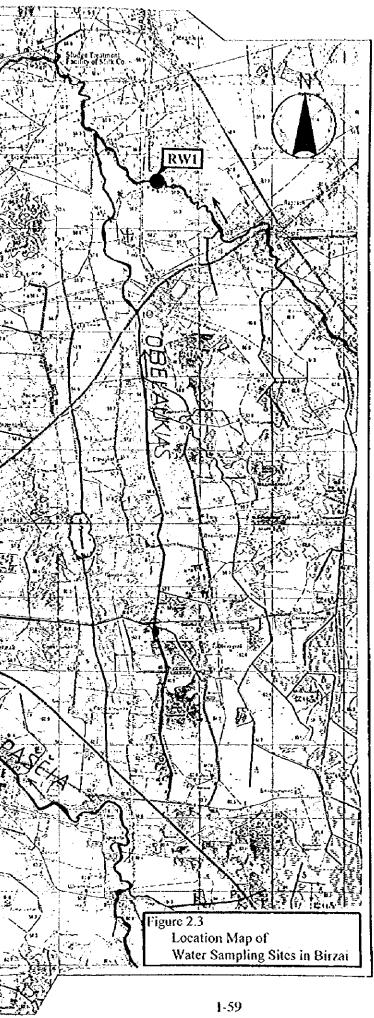
ø

0 E			Méginio paémino data	Hq	* * * *	Perman- ganatiné oksida- cija			14	Pagrindiniai cheminiai komponentai, mgA Main chemical components, mgA	indiniai cheminiai komponentai, i Main chemical components, mg/l	ii kompone xnponents,	ntai, m#/ mp/	F	ŀ		Bendra mineralizacija, gA ir vandens chemine sudėtis, 76 ekv/1 TDS, pAlitre and
~ =	Well's number	Geolo- gical index	Date of sapling	<u></u>	Total hardness mg-cq/l	Total oxygen denvand mgO/A	ö	so.	нсо,	NO.	NO,	, Z	ĸ	۲ U	: 8	, F	worer chemical composition. % cq/!
╉	┢	 	-	ĥ	0	1	8	6	10	11	12	13	7	4	2		97 1
 																	
karıjuniskis	1345	1157	SU/IO	7.25	27.17	9	22.36	- F 20T	531.5	161.0	1111	1ct	L.S	170	+7.5+	1	
	1345	цĶ	00/02	7.02	20.67	9:1	24.65	617.49	408.7	Э	0.487	2	2.18	097	PT'S	0.267	
(BIREAL)	1346	iii N	50/140	7.62		0.8	10.29	51	256.2	1.36	601-2	2.04	1.3	22	13.42	1.364	0.29 <u>HCD/26</u> Ca76 Me22
	0151	ۍ کټر	00/08	2.15	60.0	1.6	11.30	63.69	323.3	0.059	15.983	2.9	1.68	120	45.8	0.166	
	1348	5	30/70	0.04	13.76	Э	14.55	831	74.3	0.03	0.089	371	6.78	376	э	2.985	129 <u>XQAI</u> Ca97
	3421	ъśс	20/03	2.0%	97.52	4.96	9.23	85.140	359.9	э	0530	11.62	0.0	201	31.74	2.07	1.64 <u>20,76 1X 06.23</u> Ca87
_ _	1348	ווילו	31/10	2.09.7	21.02	1.6	14.2	1253.85	230.7	э	0250	11.85	3.77	ត្ត	53.16	2.39	2.03 <u>HCO34</u> Ca84
	1340	Dykp-ss	\$0/90	7.19	20.28	3.68	9.58	700.72	378.2	970.0	14.451	9.57	99.9	334	43.92	0.71	1.29 <u>50,69 HCO</u> 39 Cn80
1	0 <u>4</u> .1	Nurlay()	31/10	7.25	20.77	707	10.50	61.117	384.3	0.046	14:451	5,88	1.6	374	29.62	0.675	1.32 <u>SQA9 1X VA30</u> CA88
1_	1350		00/08	86.7	151	2.4	19.33	27.84	280.7	0.003	16.054	10	3.66	<u>0</u> .	9.05	0.235	0.28 <u>EKCASI</u> <u>Me58 Ca29</u>
	1350	73	31/10	7.06	5.59	0.96	22.72	11.53	8262	э	1967	9.73	7.75	\$	10.02	0.177	0.28 <u>ECOASE</u> Me53 Ca37
	161	ווירו	06/08	10.0	27.96	2.08	267	1088.4	329.4	0.016	1,8.1	11.13	41.4	3	91.1	0.006	1.51 <u>50,80</u> Ca85
1	1351	- 11/(1	31/10	4	05.42	1.12	c7.71	1177.04	305	910.0	1.829	<u>85.01</u>	3.77	526	40.26	61.0	1.43 <u>20,81</u> Ca87
	1352	IKI	SU/M	7.11	11.79	0.64	23.43	360	207.4	0.02	э	3.05	1.8	200	31.8	0.746	0.71 <u>5064 1505 90</u> Cast
Karajuniškis	1352	ž	00/08	2.19	٥. <u>२</u>	1 77	30.17	66.766	265.4	5	1.67	5.47	2.05	420	20.02	э	1.61 <u>20,72</u> Ca83
	1352	ואלו	00/10	61.7	£.07	5.4	30.17	20.724	268.4	0.040	0.221	14.5	2.03	077	50.U2	Э	2.05 20.29

1-56

ľ	 	¥.]	"]	ŀ	Ī	- 	-	1	9.0	0.85	6.0	1	٦	0.9	- 	η	0.8	0.7	07	1	0.0	°.	0 8.	္ဘဲ	<u> </u>	Ţ	8.0	្អ	0.6	
	õ	: Ett								<u> </u>		7					8.	1.2	0.8	1		1.3			-		1.1			
		Let.			_							0			~~~	2	-							~		_			5 0 . 7	
		Eff.	14	181	289	325	363	230	287	211	191	172	172	197	188	- 207	287	211	172	153	131	172	172	153	- 115	177	204	: 363	- 115	5
	Ü	lnf.	115	253	325	287	402	153	249	325	191	211	172	191	263	478	249	210	191	230	172	191	134	134	134	195	227	478	-115	Unit : mg/l
Sirzai)	-P	EĤ.	2.1	3.6	6.0	64	5.6	4.4	1.4	4.0	3.8	2.8	2.4	2.8	5.6	4.5	0.6	3.8	2.4	5.0	5.0	2.9	2.6	3.6	1.2	3.4	3.9	9.0	1.2	
lant (J	Total-P	laf.	6.0	5.5	4.2	6.0	7.9	4.9	5.6	6.0	9.2	4.0	5.8	2.4	5.2	0.6	12.0	I.8	4.8	1.8	6.0	3.0	1.6	4.4	2.4	4.4	5.0	9.2	6.0	
meat F		EĤ.	1		3.5	0.5	4.5	0.5	1.5:	0.5	0.5	0.5	0.5	0.5	2.0	3.5	ł	1	0.5	0.5	1.5	0.5	1	2.0	0.5	1.0	1.3	4.5	· 0.5	
e Trcat	őz	lnf.	1	•	4.0	0.5	10.5	1.7	2.0	2.0	0.5	1.3	2.0	6.0	5.0	1.0	•	0.5	0.5	0.5	3.0	1.0	1.0	1.0	2.0	2.5	2.3	10.5	0.5	
Sewagi		EĤ.	-	1	•	•	•	1	•	•		\$	•	1	t	,	•	1	1	1	•	1	l	i	1	•	1	•	₹	
xisting	N02	Inf.	-		3	8		0.2	0.2	•	0.3	0.2		0.4	1		•	3.0	T	04	1	ł	0 6	£	0.3	L L	0.6	3.0	0.2	
t the E		Eff:	24.8	7.6	26.0	31.0	31.0	34.0	12.4	15.0	28.6	11.0	12.0	30.0	17.0	12.0	32.0	14.0	14.0	22.0	10.0	6.0	16.0	21.0	18.0	13.0	1.61	32.0	7.6	
Data a	NH.	Inf.	11.0	29.6	31.0	28.6	48.0	12.6	33.0	65.0	38.0	13.2	20.0	12.0	32.0	15.0	55.0	5.0	22.0	16.0	26.0	16.0	10.0	22.0	11.0	22.0	24.8	65.0	5.0	
Quality Data at the Existing Sewage Trcatment Plant (Birzai)	Z	EH.	34.4	13.4	42:5	54.8	58.2	44.8	18.9	33.1	33.2	35.1	25.5	38.9	25.5	42.5	66.5 -	21:8	22.0	24.6	28.0	8.0	26.0	29.0	26.0	24.0	32.4	66.5	13.4	
Water C	Total-			50.4	49.2	51.5		14.5	44.5	76.6	42.3	47,8	┢	4—	_	_	 	14.1	╉┯	· ·	<u> </u>	21.0	ļ	49.0	24.0	- ÷	43.9	91.8		
		Eff:	10	212	_	L				36	1					1						26		38	49	<u> </u>	61.7	236		
Table 2.20	55		69	114	392	398	513	69	271	445	214	125	209	55	298	188	1_037	78	401	121	144	161	79	43	82	248	239.8	1.037	43	Auality
Ч		Eff. 1	1921	360	285	186	348	120	177	72	160	126	188	061	174	186	1.	. i	162	162	110	102	123	186	130	150	194.0 23	630 1		= Influct Quality
	BOD,	Inf. E	x	245	490	350	3.360	310	312	580	293	96	410	190	220	1 200	1.020	150	870	480	336	210	81	320	155	330		3.360	81	Inf. =]
	L							1_					1_				1_	_									ŝ	┢┈	-	
		Date	10-Jul-96	8-A110-96	11-Sen-96	9-Oct-96	22-Nov-96	16-Dec-96	21-Jan-97	19-Feb-97	12-Mar-97	25-Anr-97	13-Mav-97	12-Jun-97	16-Jul-97	13-A110-97	22-Sen-97	21-Ort-07	25-Nov-97	22-Dec-97	27-Jan-98	12-Feb-98	12-Mar-98	9-Apr-98	5-Mav-98	86-lul-6	Mean	Maximum	Minimum	Note)

Eff. = Effluent Quality Source : Birzai Water Company


5
)irza
<u>ش</u>
ш _
. <u>E</u>
ŝ
Source
Ĩ,
õ
S
Ę
. <u>e</u> .
5
olluti
ď.
at
63
5
亐.
ŝ
/ Results
$\overline{}$
Ð
2
7
~
₽
닅
3
O
7
ž
Š
Water G
$\overline{\sim}$
2.2
2
<u>•</u>
able
Ĩ

(Data Source : Birzai Vandeneys)

Location	Year	Water supply	Water supply Sewer drainage	BOD7 (mg/l)	(mg/l)	S.S. (mg/l)	mg/l)
		(m ³ /s)	(m ³ /s)	Mean	Max.	Mean	Max.
Brewery Factory (Birzu alus)	1997	28,400	28,400	985.0	3480.0	298.0	623.00
Canfood Factory	1997	997 (from well)	29,000	475.0	0.036	212.0	603.00
Dairy factory	1997	997 (from well)	002'66	702.0	1170.0	163.0	784.00

)

0-1									- KU	VEJA
	S = 1/50,000					hogens (1)				
	Legend	Samula No.					1			
, Item	Sampling Points	Sample No. RS1				22011	4.57	OT THE	and the second	
Raw Sewage	Infet Channel of STP							M.		
Industrial Wastewater		RS2 RS3	5					19		
Davala Divar Weter	Beer Factory	RW1	34			12-34			11 20 11 Epr	
Roveja River Water	At a point selected	RW1 RW2								
ripascia terrer water	At a point selected (Bridge)					6	Jui Sta	See Star		
Agluona River Water	At a point selected (Bridge)	RW3 RW4			大学校	3-1-1				The state
Tatula River Water	Upstream of STP Discharge	RW4 RW5				3 H	2-4U 	المتنب ال	Xe	GW1
· · · · · · · · · · · · · · · · · · ·	Downstream of STP Discharge	RW5 RW6	1	水兵	در	ار او	14472 (1		1	
Juodupe River	Upstream of STP Discharge				1		5:3	1 Cin	Phos	
	Downstream of STP Discharge	RW7					اكمتزاكل		Ferrar .	
Groundwater	North side of lake	GW1			logie				LW2	
	Town area	GW2		3.3			5			BW2
	South side of town	GW3			A CARACTER AND A		$\sum_{i=1}^{n}$	THE SHERAR T	No.	KWZ
8	Southwest side of town	GW4					Aler A	<u>38.44</u>		Qn XX
»	West side of town	GW5		1 - Fret	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			RS2	RS3	
TLake Water	South side of town	LWI	50 2			TH			C	
	North side of the Lake	LW2		7.50					RW3	11 1 X
		11	an Print		1 state		GW2			in t
	GW3		The w	The second	in the second	行為受	111	. Think		
HIP K	A A A A A A A A A A A A A A A A A A A			THE R	1-1-10	w4	K SA			
THE REAL		CHERK E	NY			XI A		Sec.		U A
175	RWS	14	巨円		and the	VST	10012		1.1	B
North L		I YS	8	孫齖		入之前	E13. /	r HE	D.	
	RW4	学会义				RSI		₩%?		byennanne
			EN.	RWAN		EXI. ST	P	با چېرمېر	Signal Signal	
19 TON				2			I and			
	"注意"。新闻师常	1-1-21	N: 19	RW7				New SIP Sie	IP.	事人
	A start and a start of the star						NEN		3	- 14
and Tan		A		FI		IN FOR		- 11 - 11 ·	N.	
		AT IV			· · · · · · · · · · · · · · · · · · ·			0		

.

			lacomin	g Raw Se	wara			River /I	a ke wa	ter	r	Ground water	Total
		Birzai	Birz	ai	Skuk			Birzai		C	Skuodas		
		Influent		Brewery	610	ient New Town	River	River (Add.)	Lake		River		
		of STP	Factory	ractory	Town	Town	5			2	3	5	22
», of Loca		<u> </u>		4		4	• ····	-		2	4	3	-
	of sampling	4	4	4 5*	13+	13+	· · · · · · · · · · · · · · · · · · ·			1	1	1	
ampling N		13+	<u>5</u> *		131	13				1	<u>+</u>	1	
	Water Temperature	13	5 0		0		+		· •	i	 1	1	
equency		0	0	0	0	0		+	· · · · · · ·	1	1	i	
ime**	Odor	0 13	5	5	13	13	1			1			
	PH	0	0		0	0		<u> </u>	1	i	1	1	
	Transparancy	0	0		0	0			1	1	1		
	EC	13	5	5	13	13			1	1	i	i	
	SS	13	5		13	13			1	1	1	1	-
	BOD	13	<u> </u>		13				0	0	i i	· · · · · · ·	
	Soluble BOD	13	5		13			· · · · · · · · · · · · · · · · · · ·	1	ĩ	i i	1 ľ	
	COD	13	5						1	1		1	
	TN	13	5						1		l i	1	
	TP				13				1	1	i	<u>i</u>	
	PO4	<u>13</u> 13			_				1	1	·		
	Discharge			the second second					1	1	1		-
	NH ₄ -N	0 or 4					_	· • • • • • • • • • • • • • • • • • • •	1	1			-
	NO ₂ -N	0 or 4							<u> </u>	-1		1	-
	NO ₃ -N	0 or 4						· · · · ·	' 	1			
		0 or 4	0 or 4					1	1	- <u>-</u>			
	ABS	0 or 4						1	1		1	i i	
	DO	0 or 4		_				1	' 	1		1 1	-
	01	0 or 4						1	1	1		· · · · · · · · · · · · · · · · · · ·	
	Total coliform	<u>0 or 4</u>				1			<u>.</u>	- <u>-</u>			
	Alkalinity(as CaCO3)	0 or 4					· · · · · · · · · · · · · · · · · · ·		2	4			2
otal	Water Temperature	52		-	*	-	$\frac{2}{0}$ 2		2	4			
requency							$\frac{1}{2}$		2	4		and the second se	
fTest	Odor								2	4			
	PH	52						0	2	-4			
	Transparancy			$\frac{1}{2}$	_			0	2	- 4		descent a terrare	
	EC							0	2	4			
	SS	52		the second se	· · · · · · · · · · · · · · · · · · ·			0	2				
	BOD	52						0	0			0 0	
	Soluble BOD	5						0		_	1		
	COD	5					2 2	0	2	7		2 1	
	TN	5						0	2	2			
	TP	5:						0	2				
	PO4	5						10	2				
	Discharge	5			_			20	2	_		2 1	
	NH ₄ -N					₄]		0				2 1	
	NO ₂ -N		-		÷.	4		20	2			2 1	
	NO ₃ -N					4		20	2		4 1		
	CI-					4				_		2 1	
	ABS					4		201	2			2 1	
	DO					4		20	2			2 1	
	Oit	-			_	4		20	2			2 1	
	Total coliform	1	4	4	4	4]	4	20	-0			0 1	

Table 2.22 Summary of Quantity of Water Quality Tests (Actual)

*: The maximum number of sampling frequency. (No sampling in case of no flow.)

** : The maximum number of testing frequency. (the same as the sampling frequency.)

The sampling date/time is selected for the items with "0 or 4".

Note: Water quality tests for the supernatant in two STP ponds (Birzai, Skuodas) are not included in the list.

)

)

)

	Table 2. 23 Water Sampling Date (Birzai)	23 Water	- Samplir	ig Date	(Birzai)		
	Samoline Points	Sample No.		Sampling Date (1998)	ate (1998)		Remarks
training Wastawatar Bast Factory	Barr Factory	B-RS1	20,July	28 Aug		13 AUG	5 samples/dayx4days
	Dairy Factory	B-RS2	20,July	28 Aug	6 Aug	13 Aug	5 samples/dayx4days
Raw Sawaga	Inlet Channel of STP	B-RS3	28/29 July 6/7 Aug	6/7 Aug	13/14Aug	20/21Aug	13 samples/dayx4days
Water	At a point selected	B-RW1	20 July	28 AUG	6 Aug	13Aug	1 sample/dayx4days
1.		B-RW2	20 July	28 Aug	6 Aug	13 Aug	1 sampie/dayx4days
Arluona River Water At a point	At a point selected (Bridge)	B-RW3	20 July	28 Aug	6 Aug	13 Aug	1 sample/dayx4days
Tatula River Water	Upstream of STP Discharge	B-RW4	20 July	28 Aug	6 Aug	13 Aug	t samples/dayx4days
	Downstream of STP Discharge	B-RW5	20 July	28 Aug	6 Aug	13 Aug	1 sample/dayx4days
Lundune Biver weter Uhstrem of STP	Unstrem of STP	B-RW-6	13 Aug				1 sample
	Dawnstream of STP	B-RW 7	13 Aug				1 sample
Groundwater	North side of lake	B-GW1	21 July	28 Aug	6 Aug	\backslash	1 sample/dayx3days
		B-GW2	21 July	28 Aug	6 Aug		1 sample/dayx3days
	South side of town	B-GW3	21 July	28 Aug	6 Aug		1 sample/dayx3days
		B-GW4	21 July	28 Aug	6 Aug	\mathbb{N}	1 sample/dayx3days
	•	B-GW5	21 July	28 Aug	6 Aug		1 sample/dayx3days
I also Water		B-LW1	28 July	20 Aug			1 sample/dayx2days
		B-LW2	28 July	20 Aug			1 sample/days

aling Data (Rimai) ů ł W at ç ¢ .

									,	Ň	sample	 	B-RS1-1	-				ſ
	0	Unit							Test/(Test/Observation		Results						
			- -	ŕ	6	₽	2	9	7	8	ი	2	ដ	12	13	Max.	, vu u	Mean
Samping / lest No.	LIEST NO.		- <u> </u>	24 20	77 28	N7 78	07 28	28	07 78 (5	07 29 (6	6	07 29	07 29			
					×	1.	1.	8	8	8	8	0	0	(00:30)	10:00			
en en			20.01	77. 71					4	÷.	Ł	1	E .	<pre>Cloudy cloudy</pre>	Apnol:			
Climate			C I OUDY	010	c loudy	<u>s</u> l•	1 4 117	X	4		+-		.	۲ <u>۲</u>	25.5	171	14-5	15.9
Test Item Water	Water Temperature	p	14.5	91	2	101	2		ì				,			Ţ	,	1
	color	N.A.	•	'	'	í	i	1	,	•			1	ŀ	 	+ , 		ľ
	odor	N.A.	-	1	1	'	•	•	-	•	•				0	0	7 65	7 94
	Hd	N.A.	1.8.11	7.81	7.62	7.76	7.84	7.73	7.64	8.64	1.11	(.8.)	CZ./	17.0	•	• •		
	Transparancy	N.A.	1	1	•	,		i	1	•	•	ī	1		•			Ī
	EC	umhos/cm		1	1	I	•	1	-	1	-	1	ī	1	-	1		376
	55	10	125	271	305	162	267	392	336	517	97	117	365	8/	29T	770	0/	0+*7
	Coo		07 R	2	5	281.4	420.7	163.7	350.7	293	39	45.2	148 7	68.1	81,9	420.7	:65	777
							1 020	.	43.6	31.5	17	21.5	12.5	17	19. S	260.2	11.5	83.6
	Saluate Sub	- /5ш	0.0/				736	464	384	576	144	224	400	160	<u> 192</u>	736	144	405
	LOU	-/hu			ſ	ſ	00		17 8	12 4	34.7	10.1	27.8	26.7	16.8	34.7	101	22.7
	z		1.42				07 .	*			- -	2	26	2	3.6	13.2	2.6	6.8
	τ₽	l/bu	5.8				7.51		0.0	r 0 r	2 4		2 2 2 7		Ĩ,	6.6	1.1	ст - 6 М
	P04	mg/1	3.2				^	Ŀ	0.7	• •			1 1		0.00	0.064		0.057
	Discharge	Cu.m/s	0.042	0.06	0.046	0.048	0.047	0.04	0.046	0.064	20.0		140-0		0100		1.2	
	NH*-N	L/pm												77		77	47	10
	NO2-N	[/ou											-	<u>.</u> .		0.0	5 i 0 i	
	NCN													3.5	-	<u>.5</u>	ц. у	5.5
		./.5					Ī							51		52	SIL	52
		1/04	.								╞╌			0.186		0.186	0.186	0.136
	A0.3	1/6					ſ				-			0		ō	0	0
	3	1 /Bu									-	╞		0.7		0.7	0.71	0.7
														37E 06		37E 06	37E 06	37E 06
		2							t	ŀ				425		425	425	425
:	AIKA DATA CALO	3 mg/1																

rable 2.24 Results of Water Quality Test.Raw Sewege (Biržai, Influent of STP <u>1</u> of 4 times sampling) Sample No. : B-RS1-1

Ì

	0
<u> </u>	,
δσ	۰.
₹Ĉ	
<u></u>	2
Results of water quality Test, Raw Sewege erp 2 of 4 times sampling)	
. v	F
5 0	
μĚ	1
<u>~~</u>	
	,
<u>'ल</u> प	•
٥ų	
5	, 1
vat.	ł.
~~~	
o	Ł
4	1
៍ភ្លំខ្ម	-
- 2 V	5
¥	-
C	>
ŧ	-
9	Į.
5	-
4	-
۲ ۱۰۰	ł
Ň	-
Table 2.25 Resultions of CTD	4
<u>,</u> ""	-
с р С	'n
1- C	^

or 4 clines sampting / sample No. : 8-RS1-2	rest/Observation Results	x i 9 10 11 12 13 i Max. 1 Min. Mean	06 08 07 08 07 08 07 08 07 08 07			CIOUDY CIOUDY CIOUDY CIOUCY CIOUDY	13 15 13 13 13 13 13 15 15 16 12 14·2	•				68 114 93 65 95 325 22	220 508.61 24.2	2	432 944 160	20.91	5.7 3 2.1 2.1 8.1 2.2	3.5 3 2.1 1.7 1.1 0.5 7.9 0.5 2.9	0.048 0.067 0.057 0.057 0.041 0.043 0.067 0.041 0.049	35.5 29 28.	0 0	0 0	83 45 60.6	1.28 0.35 0.87	õ	0.21	15E 07 94E 06 14E 07	625 475 545
(Birzai, Influent of SIP	unit			08 06 08 06	00:51 00:EI 00:TI 00:60	cloudy cloudy cloudy rainy cloudy	"G 15 15 15 15.5 26	-	 N.A. 8.44 8.45 8.1 8.48	N.A.	umhos/cm	mg/1 25 187 88 286	24.2 184 3	8.5 87.7 80.8	160 448 336	24.3 38.1 37.2 3	7.7 7.7	2 1 2 2 2 1 2	C 0 05 0 047 0 041 0.	19 1 35.5	c				120 L	20.4	mg/1 0.251 0.22	245
			Sampling /Test NO.	Date	Time	Climare	omiwater Temperature			ansparancy				the BOD													rolifonm	ć

C

Results of Water Quality Test, Raw Sewege STP 3 of 4 times samuline 1

sample No. : B-RS1-3

Table 2.26 Results of Water Qua (Biržai, Influent of STP 3 of 4

9

)

									**	samp le		D-ROA-4	+				Î
C	Unit							Test,	/obser	Test/observation	Results	и					
				ļ				L L	6	0	0 F		12	13	Max.	. n rw	Mean
samuling /Test No.		ч	2	2	4									16 30			
		08 20	08 20 08	20	08 20	08 20	08 20	08 20 0	08 20	17 20	77 20	77 00		+++			Ī
Date		00.00		G	0	17:00	19:00	19:00 21:00 23:00	23:00	00:10	03:00	02:00/07:00		00:00			
Time		22.00				_	Vunis			10udV	-Joudy -	cloudy cloudy Eloudy sunny		sunny			- 1
Climate		Sunny	ne kuuns			_	V.	14	5	13.51	13.5	E.	13	13	15.5	13	13.8
Test ItemWater Temperature	Ū,		4								ŀ	1	1	1	•	1	1
Color	N.A.	-	1	-	•		·			ľ	1	ľ	ſ	•	ł	1	1
Odor	N.A.	1	•	ī		• 				4	0 4	7 07	× 2	4	9 18	7.68	8.02
ΡH	N A	7.98	8.1	7.8	7.46	/./	29./	2.10	чL.		•					,	ľ
Transparancy	∀ z	•	Ì	ï	1	•	1	ľ	ľ			T	ŀ	<b>†</b> -	•		ľ
EC	umhos/cm	•	•	1	'	•	•				- C - F	Î	2	20	104		102
SS	l/bm	70.3	421	218	357	192	273	342	001	727	200 700		2 64	- 0 	447	43 51	280
BOD	ma/1	49.7	566	381	531	41S	495	389	9.4	0/7	C 2 7			0 · C •	2020	Y Y	07
CO IND & ROD	[/ Dw	4.6	168	248	301	283	323	155	37.2	106	771		4 7	÷ (	170	2.5	
2	- / UW-	74	973	755	1.088	717	768	740	420	680	636		244	362		4	000
	- / Run		28.7	7 96	54.3	28.9	30.4	28.2	36.4	39.8	35.2	29.4	20.6	24.1	54 2	1-21	2.42
N	- /bш		ł	. u		2	9		5.4	5.9	5.1		1.9	1.9	10.6	6.1	5.3
ΤP	1/6m	2	-	0		2.0	2.4		4	•	4.1	2.9	1 S		8.3	1.3	3.5
P04	-/6w				0	200 0	720 0	Ċ	۰ic	0 032	0.03	0	2	1	0.043	0.02	0.031
Discharge	Cu.m/s	0.025	0.0241	5)-5					>	•1			1			ŀ	
NF*-N	mg/1						T		Ì								
NO ₂ -N	mg/l						Ī										
NON	[/bu	;		•													
C1-	l/gm	:				• • , •				:					ľ	+-	
ABS	1/6m		-									-					
00	.[/6ʉ									Ī			Ţ	Ţ		Ť	
140	<b>ໄ</b> ∕ອີ‴					;				Ţ							
Total coliform	no./100m			:		:											
Alkalinity(as CaCO ₁		:															

Table 2.27 Results of water quality Test , Raw Sewege (Biržai, Influent of STP _____4 of 4 times sampling ) _____5AS1-4

Vinit         Test/bbservation Results           Unit         1         3         Max.         Min.         Max.           0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         0/2         <						÷.					
Ind         Test         1         2         3         4         5         3         4         5         4         5         4         5         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th></th> <th>G</th> <th>Unit</th> <th></th> <th></th> <th>Ť</th> <th>st/observatic</th> <th>in Results</th> <th></th> <th></th> <th></th>		G	Unit			Ť	st/observatic	in Results			
Ing /Test No.         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         0/7         21         21         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22 <th22< th="">         22         22</th22<>		-				-		- -	Max.	M,n.	Mean
Tten         Water Temberature         0         21         0.7         21         0.7         21         0.7         21         0.7         21         0.7         21         0.7         21         0.7         21         0.7         21         0.7         21         0.7         21         21         21         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23 <th23< th=""> <t< td=""><td></td><td>Test No.</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th23<>		Test No.		1							
Tree         08:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30         10:30 <th1< td=""><td></td><td></td><td></td><td>07 21</td><td>07 21</td><td>07 21</td><td>17 /0</td><td>77 /0</td><td></td><td></td><td></td></th1<>				07 21	07 21	07 21	17 /0	77 /0			
Tter         Mater Temberature         "0         Sumy         Sume         Sum				08:30	10:30	12:30	14:30	16:30			
Water Temberature         '0         27         25         29         24.5         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23 <td>A THE</td> <td></td> <td></td> <td>NUUN</td> <td>Auus</td> <td>sunyl</td> <td>sunny</td> <td>sunny</td> <td></td> <td></td> <td></td>	A THE			NUUN	Auus	sunyl	sunny	sunny			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CITMATE	NUTTOR TOBOORATIICS		27	25	29	24.5	22	29	177	2.42
N.A.         N.A. $10.26$ $2.72$ $7.73$ $8.73$ $20.26$ $7.75$ Earancy         N.A. $10.26$ $9.22$ $7.73$ $8.73$ $20.26$ $7.73$ Earancy         N.A. $10.26$ $9.22$ $7.73$ $8.73$ $20.25$ $7.73$ $9.3.3$ Earancy $mg/1$ $1.007$ $464.2$ $1.935$ $8.73$ $2.737$ $282.5$ $2.737$ $282.5$ $2.737$ $282.5$ $2.737$ $282.5$ $2.737$ $282.5$ $2.737$ $282.5$ $2.32.5$ $2.32.5$ $2.32.5$ $2.32.5$ $2.32.5$ $2.32.5$ $2.32.7$ $2.737$ $2.82.5$ $2.32.7$ $2.737$ $2.82.5$ $2.32.5$ $2.32.5$ $2.32.5$ $2.32.5$ $2.32.5$ $2.32.7$ $2.26.2$ $3.2.6$ $2.82.7$ $2.32.7$ $2.26.7$ $2.3.8$ $2.6.6$ $2.3.2$ $2.3.2$ $2.3.2$ $2.3.2$ $2.3.2$ $2.3.2$ $2.3.2$ $2.3.2$ $2.3.2$ $2.3.2$ $2.3.2$	1421 T 1421		N A			+	•	•	•	\$	•
N.A. $10.26$ $9.72$ $7.75$ $8.73$ $20.26$ $10.26$ $7.75$ Eparancy         N.A. $                                                                                   -$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td><td>1</td><td>i</td><td>1</td><td></td><td></td></t<>						•	1	i	1		
Arancy         N.A. $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$ $1.0.2$			N.N.		a 77	7 7 5	8.73	10.26	10.26	7.75	9.34
arrancy         N.A.         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th< td=""><td></td><td>Ha</td><td>N.A.</td><td>•</td><td></td><td></td><td></td><td>•</td><td>•</td><td>1</td><td>1</td></th<>		Ha	N.A.	•				•	•	1	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Transparancy	N.A.	■	1					1	
mg/l         1         404         186         448         91.3         5.1.33 $2.4.33$ $2.4.33$ $2.4.33$ $2.5.2$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.3$ $2.5.2$ $2.5.3$ $2.5.2$ $3.2.5$ $3.4.7$ $2.5.2$ $3.2.5$ $3.4.7$ $2.5.2$ $3.2.5$ $3.4.7$ $2.5.2$ $3.2.5$ $3.4.7$ $2.5.2$ $3.2.5$ $3.4.7$ $2.5.2$ $3.2.5$ $3.4.7$ $2.5.2$ $3.2.5$ $3.4.7$ $2.5.2$ $3.2.5$ $3.4.7$ $2.2.4$ $3.2.5$ $3.2.5$ $3.2.7$ $2.2.4$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$ $3.2.5$		EC .	umhos/cm	1	•	-	, , , , , , , , , , , , , , , , , , ,			10 00	< v2×
mg/l         1,007         464.2         1.935         2.737         2.737         2.62.5           mg/l         mg/l         795.7         375.7         1.482         1.68.9         1.998         1.68.9         2.66.9           mg/l $795.7$ 375.7         1.482         1.68.9         1.998         1.68.9         2.66.2           mg/l $7$ $7.84$ $34.7$ $33.6$ $2.24$ $32.5$ $34.7$ $2.68$ $7.680$ $7.680$ $2.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.68.9$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$ $1.38$	-			404	186	448	93.3	3,139	5.1.59	10.02 200	1.460
mg/1 $795.7$ $375.7$ $1.482$ $1.68.9$ $1.998$ $1.68.9$ $168.9$ $mg/1$ $795.7$ $375.7$ $1.482$ $1.482$ $1.980$ $750$ $2.080$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $880$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ $90$ <th< td=""><td></td><td>00</td><td>- /</td><td>1 007</td><td>464.7</td><td>1.935</td><td>282.5</td><td></td><td>2.737</td><td>282.5</td><td>C07.1</td></th<>		00	- /	1 007	464.7	1.935	282.5		2.737	282.5	C07.1
le Boo         mg/l $7.580$ $7.680$ $7.680$ $7.680$ $8.30$ mg/l $7.30$ $3.00$ $2.080$ $3.4.7$ $32.5$ $34.7$ $2.24$ mg/l $7.81$ $34.7$ $33.6$ $2.24$ $32.5$ $34.7$ $2.24$ mg/l $7.80$ $25.2$ $3.3$ $18.1$ $25.2$ $3.3$ mg/l $2.66$ $2.52$ $20.1$ $1.38$ $1.8.2$ $20.1$ $1.38$ mg/l $2.66$ $2.52$ $20.1$ $1.38$ $1.8.2$ $20.1$ $1.38$ mg/l $2.66$ $2.52$ $20.1$ $1.38$ $1.8.2$ $20.1$ $1.38$ mg/l $0.16$ $0.138$ $0.0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$			1/511	202 2	275.7	1 482	168.9	1.998	1,998	168.9	964.1
mg/l         3.200         2.080         4.480 $0.01$ $3.200$ $2.080$ $2.00$ $2.24$ $3.27$ $3.3$ $3.2$ $3.3$ $2.24$ $3.27$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.2$ $3.3$ $3.2$ $3.3$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$ $3.2$			۲Ďш	1.061			000	7 680	7 680	880	3,664
mg/l         7.84 $34.7$ $33.6$ $2.24$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $5.22$ $2.0.1$ $1.38$ $2.0.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.1$ $1.38$ $20.16$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ $0.26$ <		COD	[∕b̃uu ·	3,200	2,080	4,450	000	1000 · /	7 2 2	100 0	X1 66
mg/l         16         4.45         25.2         3.3         18.1 $27.4$ $2.52$ arge         mg/l         2.66         2.52         20.1         1.38         1.8.1 $20.1$ 1.38           arge         mg/l         2.66         2.52         20.1         1.38         1.8.1 $20.1$ 1.38           arg         mg/l         2.66         2.52         20.1         1.38         1.8         20.1         1.38           mg/l         mg/l         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		2	mo/î	7.84	34.7	33.6	2.24	27.75		17.7	A 4 4 4
mg/1 $2.66$ $2.52$ $20.1$ $1.38$ $1.38$ $1.38$ $1.38$ $mg/1$ $2.66$ $2.52$ $20.1$ $1.38$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $19.5$ $10.5$ $0.0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ <			mo/1	16	4.45	25.2	3.3	18.1	25.2	5.5	*, 67
Indecode $m_{g/1}$ $r_{con}$ $r_{c$			. /6	2 66	0 0	20.1	1.38	1.8	20-1	1.38	5.69
Arge         CU.m/s         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         19.5         10.5         10.7         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		bOd	- /Бш	200	2						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Discharge	CU.m/S						0.5		2.01
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Z- 12	/6m					C. 21			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N- ON	(/Om					5	5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N-UN						0	0	0	
mg/l     mg/l     0.16     0.16     0.16       mg/l     mg/l     0     0     0       mg/l     mg/l     0.9     0.9     0.9       al coliform     no./100ml     2.820     2.820     2.820			,					2.15	2.15	2.15	<u>&lt;1.5</u>
mg/l         mg/l         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td>- 76m</td> <td></td> <td></td> <td></td> <td></td> <td>0.16</td> <td>0.16</td> <td>91.0</td> <td>0.16</td>			- 76m					0.16	0.16	91.0	0.16
mg/l         mg/l         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 </td <td></td> <td>ABS</td> <td>/6ш</td> <td></td> <td></td> <td></td> <td></td> <td>C</td> <td>0</td> <td>0</td> <td>0</td>		ABS	/6ш					C	0	0	0
mg/l         mg/l         mg/l         s90,000		00	l/bw ··					C	, o C	16.0	6.0
		L l l	- [/bu ]							000 000	000 068
2,820 2,820			no./100ml					000,088	010 020	200.000	003 0
		Alteledity/ac Carn.	[/uu					7.820	7 220	1070.7	A70°7

Table 2.28 Results of water quality Test, Raw Sewege (Biržai, Dairy Factory, No. <u>1</u> of 4 times sampling ) sample No. : B-RS2-1

Ì

U	UNIT				Test/Observation Results	n Results			
			~		7	5	MaX.	Min.	Mean
Sampilug /iest No.		07 28	07 28	07 28	07 28	07 28			
		1	1 * *	13:30	15:30	17:30			
		rainy	rainy	rainy	rainy	rainyi			
LIMALS Test trem (Water Temberature	;;	28	25.5	18.5	17.5	121	25-5	171	77
	N.A.			1	t	Ţ	1	-	
oder	Z.A.	•		1	t			- L	~
Hd	N.A.	9.66	4.28	7.41	10.24	2	IU, 24	407.4	
Transparancy	N.A.	•	1	1	; ;	'	'    		
	umhos/cm	•	- -	1	1	<u>,</u>		1 v	2.70
55	[/Dm · ]	135.S	285	284	534	5-77	534	C: //	007
HOD -	1/0w	065	1,560	1362	928	194	928	1941	CT0
Soluble R00		- 581	1.213	396	317	127	1.213	1271	- 976
	, cm	8801	4.480	2.480	1.440	272	4.480	272	016.1
	1/08	36.7	39	17.9	17.8	6.72	39	6.72	23
		7.5	16.8	4.8	4.4	2.23	16.8	2.25	7.
	(/ <b>C</b>	5.2	14.3	2.95	1.58	1.28	14.3	1.28	5.46
PO4	5/W 11								
UISCHARGE					14		14	14	
NITR	- /bm				0		0	0	
NU2-1N					1.18		1.18	1.18	1.18
N-SON					44.7		44.7	44.7	44
	1 / 511				0.03		0.03	0.03	50.0
A8S	- /bu	·			6.23		6.23	6.23	6.23
00	mg/ i				77		c	0.3	0
	1/0m				000 002 21		17 300 000	17.300.000	17.300.000
Total coliform	100./100ml			-	2001-00C+ /T				000
Alkalinity(as caco)				•	065		060	750	

Table 2.29 Results of water quality Test, Raw Sewege (Biržai, Dairy Factory, No. 2006 4 times sampling) sample No. 8 -822-2

1-67

6

•

		n)	Lairzai, Ualiy F	I Y FALLOUY, NO		Sample No. :	8-RS2-3			
	 ס	unit			ž	rest/observation Results	tion Results			
Campleon /T.	oct No			2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	~	Max.	Min.	Mean
Sampling / 1535 10			08 06	08 06	08 06	08 06	08 06			
T1 B0			08:30	10:30	12:30	14:30	16:30			
î)imate			cloudy	cloudy	cloudy	cloudy	rainy			
Test Item	Water Temperature	ç	23	24	21	20	22	24	201	22
•		N.A.	1	1	1	1	,	1	1	•
	Odor	N.A.	1	1	-	1	1	ŀ		
	0	N.A.	7.63	7.92	7.56	9.56	7.56	9.56	7.55	8.05
	Transparancy	N.A.	1	1		1	1	ī	1	'
	EC	umhos/cm	1	I	•	9	•	1	•	
	SS	L/Dm	74.4	346.	121	217	275	346	74.41	206.7
	BOD	1/om	141	945	315	184	956	926	141	508.2
	Soluble BOD	[/ DW	1.97	464	154	2.28	\$25	464	11.62	248.2
	CDD	ma / 1	480	1.600	720	480	1,280	1,600	480	
	TN.	1/D#	13.4	321	10.8	12.2	18.9	32	10.8	Ч
	TP	L/pm	1.5	6.4	16.1	6 I	2.96	6.4	1.51	
	P04	mg/7	1.1	2.3	0.7	0.36	0.46	2.3	0-46	0.98
	Discharge	Cu.m/5								
	NH, IN	1/Dm	5		5	3.5	6.5	6.5	3.5	5
	NON	[/bu	0		0	0.06	0	0.061	õ	0.015
	NO1-N	[/bw ·	0		ō	5.13	0	5.13	ö	-1
	C1-	l/om	6.38		6.38	12.76	6.38	12.76	6.38	
	ABS	[/bw	0.11		0.03	0.03	0	0.11	ō	0.04
	OQ	Lon .	5.47		5.47	6.08	3.5	6.08	3.5	
•=	to	mo/)	0.45		0.72	0.65	\$6.0	0.95	0.45	
	Total coliform	1001/-00	150.000.000		130,000,000	0	120,000,	150,000,000	õ	100.000.000
	1 m	l/bm			325	850	500	850	325	513

Table 2:30 Results of water quality Test, Raw Sewege (Biržai, Dairy Factory, No. <u>3</u> of 4 times sampling )

ł

1-68

mg/] mg/] mg/] mg/] mg/] mg/] mg/]

rable 2.31 (Biržai, Dairy Factory, No. 4 of 4 times sampling)

1-69

100         Test         1         2         3         4         5         Max.         Mit           tree         08:00         10:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00         21:00		CJ	Unit			Te	st/observati(	on Results			
Mile (1ext no.         07 21         07 21         07 21         07 21         07 21         07 21         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -					l l l		4	5	Max.	Min.	Mean
Ttem         Water         Femperature         U         22:00         14:100         15:00         -           Ttem         Water         N.A.         21         21:5         18:5         20         22           Ttem         Water         N.A.         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Samp 1 ng	est No.		T 21	2 J	- E		07 21	1		1
Tter         Marter         Temperature         "u"         sumy	Date			08:00	10:00	12:00	14:00	16:00	•	•	
Water Temperature         "0         23         18.5         21.5         18.5         20         23           Color         N.A.         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	11Me			SUDAY	Sunny	Sunny	sunny	suny	7	1	1.
Color         N.A.         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Tost Trom	WATER TEMDERATURE	0,	53	18.5	21.5	18.5	20	23	18.5	2.02
N.A.         N.A. $7.13$ $4.56$ $6.93$ $5.22$ $8.32$ $8.32$ Darancy         N.A. $7.13$ $4.56$ $6.93$ $5.22$ $8.32$ $8.32$ Darancy         umhos.An $224$ $1.154$ $2.29$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.39$ $1.587$ $2.32$ $0.00$ $2.31$ $2.32$ $0.00$ $2.31$ $2.32$ $0.00$ $2.32$ $0.00$ $2.32$ $0.00$ $2.32$ $0.00$ $2.32$ $0.00$ $2.32$ $0.00$ $2.32$ $0.00$ $0.00$ $0.00$ <t< td=""><td></td><td>Color</td><td>N. A.</td><td></td><td>1</td><td>1</td><td>T</td><td>•</td><td>1</td><td></td><td></td></t<>		Color	N. A.		1	1	T	•	1		
arancy         N.A. $7.13$ $4.56$ $6.93$ $5.22$ $8.32$ $8.32$ $8.32$ arancy         N.A. $                                                                                  -$		odor	N N	•	1	•	1	-			
arancy         N.A.         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		Hd	N A	7.13	4.56	6.93	5.22	8.32	8.32	4.20	64.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Transparancy	N.A.	•	1	ī	P	1	,	•	
mg/l         224         1,154         738         1,587         239         1,587         239         1,587         239         1,587         239         1,587         239         1,587         239         1,587         239         1,587         239         1,587         23         23         230         264.7         4,738         23         200         23         260         1,200         16,000         2,800         2,64.7         4,158         31,000         23         200         266.7         4,158         33,000         23         200         266.7         4,158         33,000         23         200         24.6         4,1         32         0         23         0         23         20         24.1         32         0         24.3         24.3         2         26         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.5         25.21         25.21         25.21 <th< td=""><td></td><td></td><td>umhos/cm</td><td></td><td>1</td><td>ī</td><td>2</td><td>1</td><td>1</td><td>Ī</td><td></td></th<>			umhos/cm		1	ī	2	1	1	Ī	
mg/l         591         4.738         1.348         3.280 $2.64.7$ $4.738$ 2           mg/l         32.000         15.000         11.200 $3.280$ $2.64.7$ $4.150$ $3.160^{-12}$ $4.150^{-12}$ $4.150^{-12}$ $4.150^{-12}$ $4.150^{-12}$ $2.4.150^{-12}$ $2.80^{-12}$ $3.200^{-12}$ $2.80^{-12}$ $3.200^{-12}$ $2.120^{-12}$ $3.20^{-12}$ $2.120^{-12}$ $3.2^{-12}$ $2.120^{-12}$ $3.2^{-12}$ $2.120^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ $3.2^{-12}$ <t< td=""><td></td><td>55</td><td>mg/]</td><td>224</td><td>1,154</td><td>738</td><td>1.587</td><td>239</td><td>1,587</td><td>577</td><td>188.4</td></t<>		55	mg/]	224	1,154	738	1.587	239	1,587	577	188.4
e         BOD $mg/1$ 410         4,150         848         2.693         1.77.8         4,150         1           mg/1         32,000         16,000         11,200         16,000         2,880         32,000         2           mg/1         5.6         31.4         24.6         43.7         17.8         43.7           mg/1         0.9         14.3         0.495         32.2         4.1         32           mg/1         0.9         14.3         0.495         3.2         4.1         32           mg/1         0.9         14.3         0.495         3.7         1.04         24.3           mg/1         0.9         14.3         0.495         3.7         1.04         24.3           mg/1         mg/1         0.495         3.7         1.04         24.3         0           mg/1         mg/1         0         1.04         24.3         0         0         0           mg/1         mg/1         0.495         3.7         1.04         24.3         0         0           mg/1         mg/1         0         0         0         0         0         0           mg/1 <td></td> <td>ROD</td> <td>mo/)</td> <td>165</td> <td>4,738</td> <td>1,348</td> <td>3.280</td> <td>264.7</td> <td>4.738</td> <td>264./</td> <td>4.044</td>		ROD	mo/)	165	4,738	1,348	3.280	264.7	4.738	264./	4.044
mg/l     32,000     16,000     2,880     32,000     2       mg/l     5.6     31.4 $24.6$ $43.7$ $17.8$ $43.7$ mg/l     6.1     5.6     31.4 $24.6$ $43.7$ $17.8$ $43.7$ mg/l     6.1     0.9     10.9     32 $4.1$ $32$ $0.32$ mg/l     6.1     0.9     14.3     0.495     9.7     1.04 $14.3$ mg/l     0.9     0     0     0     0     0       mg/l     mg/l     0.9     0.495     9.7     1.04 $14.3$ mg/l     mg/l     0.9     0     0     0       mg/l     mg/l     0.49     14.3     0.495     15.5     15.5       mg/l     mg/l     0     0     0     0     0       mg/l     mg/l     0     0     0     0     0       mg/l     mg/l     0     0     0     0     15.5       mg/l     mg/l     0     0     0     0     0       mg/l     mg/l     0     0     0     0     0       mg/l     mg/l     0     0     0     0     0 <tr< td=""><td></td><td>Solution RCD</td><td></td><td>410</td><td>4.150</td><td>848</td><td>2,693</td><td>177.8</td><td>4,150</td><td>177.8</td><td>1.050</td></tr<>		Solution RCD		410	4.150	848	2,693	177.8	4,150	177.8	1.050
mg/l         5.6         31.4 $24.6$ $43.7$ $17.8$ $43.7$ mg/l $4.1$ $20.9$ $10.9$ $32$ $4.1$ $32$ mg/l $mg/l$ $4.1$ $20.9$ $10.9$ $32$ $4.1$ $32$ mg/l $mg/l$ $0.9$ $14.3$ $0.495$ $9.7$ $1.04$ $14.3$ $0$ mg/l $0.9$ $14.3$ $0.495$ $9.7$ $1.04$ $14.3$ $0$ mg/l $0.9$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$			ma/1	32,000	16,000	11.200	16,000	2,880	32,000	2,880	15,616
mg/l     4.1     20.9     10.9     32     4.1     32       mg/l     0.9     0.95     9.7     1.04     14.3     0       mg/l     0.9     14.3     0.495     9.7     1.04     14.3     0       mg/l     mg/l     0.9     0     0     0     0     0       mg/l     mg/l     0.9     0.495     9.7     1.04     14.3       mg/l     mg/l     0.9     0.495     9.7     1.04     14.3       mg/l     mg/l     0.9     0     0     0     0       mg/l     mg/l     0.49     0.48     0.48     0.48       mg/l     mg/l     0     0.48     0.48     0.48       coliform     no./100ml     no./100ml     580.000     580.000       state     state     state     state     state		TN	L/Du	5.6	31.4	24.6	43.7	17.8	43.7	5.6	74.0
mg/l         0.9         14.3         0.495         9.7         1.04         24.3         0           rrge         cu.m/s         mg/l         0.9         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		TD		1.4	20.9	6-0L	32	1.4	32	L 4	14.4
Trge       CU.M/S       15.5       15.5       15.5 $mg/1$ $mg/1$ $0$ $0$ $0$ $0$ $0$ $mg/1$ $mg/1$ $mg/1$ $0$ $0$ $0$ $0$ $0$ $mg/1$ $mg/1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$		PO4		6.0	14.3	0.495	9.7	1.04	14.3	0.495	5.29
mg/l     mg/l     15.5     15.5       mg/l     mg/l     0     0       mg/l     mg/l     67.6     67.6       mg/l     mg/l     0.48     0.48       coliform     no./100ml     580.000     580.000	_	Discharoe	CU.m/S								1
mg/l     mg/l     0     0       mg/l     mg/l     67.6     67.6       mg/l     mg/l     0.48     0.48       coliform     no./100ml     580.000     580.000		N- 10	L/pm					15.5I	15.5	15.51	2.cT
mg/l     mg/l     mg/l     67.6     67.6     67.6       mg/l     mg/l     0.48     0.48     0.48       mg/l     mg/l     0.48     0.48     0.48       mg/l     mg/l     0.45     0.48     0.48       mg/l     mg/l     0.48     0.48     0.48       mg/l     mg/l     0.48     0.48     0.48       coliform     no./100ml     580.000     580		NO2-N	[/5m					0	0	2	
mg/l     mg/l     67.6     67.6     67.6       mg/l     0.48     0.48     0.48       mg/l     5.21     5.21     5.21       mg/l     0.45     0.45     0.45       coliform     no./100ml     580.000     580		NO1-N	L/Om					ō	0		
mg/l     mg/l     0.48     0.48       mg/l     mg/l     5.21     5.21       al coliform     no./100ml     580.000     580.000		c)-	mg/1					67.6	67.6	9.79	0. 10
al coliform no./100ml 580.000 580 540 540 540 540 540 540 540		ARS	mo/1					0.48	0.48	0.48	0.48
mg/l         mg/l         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         0.45         580.000         580.000         580.000         580         580.000         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         58		DO	L/DW					5.21	5.21	17.5	77-0
tal coliform no./100ml 580.000 580.000 580.000 540 540 540 540 540 540 540 540 540								0.45	0.45	0.45	0.45
540 540 540 540		12	no./100ml					580,000	580,000	580,0001	580.000
			C/0w					540	540	540	2405

Table 2.32 Results of water Quality Test, Raw Scwege (Biržai, Brewery Factory, No.1 of 4 times sampling )

ŧ

1-70

Sampling /Test No. Date Time Climate Test Item Water Temperature Color PH Transparancy SS A				Te	Test/Observation Results	on Results			
ate Ttem Water Temperature Color PH Transparancy EC SS				6	7	- 5	Max.	Min.	Mean
ate Item Water Temperature Color Odor PH Transparancy EC SS		1 77 32	A7 7X	07 28	07 28	07 281	1	1	
Mater Temperature Color Odor PH Transparancy EC SS		07 70	100.01	00-61	14:00	16:00	1		•
Water Temperature Color Odor PH Transparancy EC SS		00.00	22.01			rainvi	ł	ī	1
water Temperature Color Odor PH Transparancy EC SS		rainy.	1 a 1 1 y 1	1 4 1 1		100	100	96	18.2
Color Odor Transparancy EC SS		50	16			23			
parancy	N.A.	1	•			•			,
parancy	N.A.	1		ľ	1				6.33
	N.A.	4.3	7.74	4.52	4 65	4,96	7.14	4	5.0
	N.A.	\$	•	•	l		,	1	
	umhos/cm	,	1	••••	•	•	1		
	- (/Dw	1,834	387	1.174	1.183	852	1.834	387	1.080
-	- L/Um	6.795	873	4,363!	9.289	1.756	9,289	873	5.6.5
	U / )	5.300	641	3,3941	6/1.7	1,268	7.179	6421	3.557
	mo / )	10.240	3.840	8,320	13.840	3.520	13,840	3.5201	7.952
	mo/)	93	16.8	107.5	ITT	23.51	1111	16-81	70.3
	1 1/04	18	4.12	15.8	20.6	10.3	20.6	4.121	13.76
	ma / )	15.7	0.78	11.7	14.8	8.4	15.7	0.78	10.28
charge	Cu.m/s								
	(/ou			25.5			25.5	25.5	C. (2
	mg/1			2.5			2.5	14.7	<· 7
			-	1.23			1.23	1.231	1.23
	1/04			102			102	102	102
	ma/1		 	0.03			0.03	0.03	0.03
	mg/)			ō			0	0	
	mo/)			0.7			0.7	0.7	0.7
-	no./100m)		7	28,000.000			28,000,000	28,000,000	28,000,000
aco.)	ma/1			285			285	285	285

Table 2:33 Results of water quality Test, Raw Sewege (Biržai, Brewery Factory, No.2 of 4 times sampling )

1-71

1

	٤,	Unit				Test/Observation Results	tion Results			
			-	~		4	~	MaX.	Min.	Mean
Bu -	1431 901		08 06	08 06	08 06	08 06	08 06	1	•	1
Ud Le			08:00	10:00	12:00	14:00	16:00	•	1	1
- ille Clemate			cloudy	cloudy	cloudy	cloudy	rainy	1	1	1
TOST TEM	Water Temberature	0,	25	20.5	19.6I	17	23	25	1/1	77
	Color	N.A.	•	1	1	,	1	1	-	1
	odor	N.A.	F		-	-	1	•		
	Hd	N.A.	4.14	7.75	6.2	4.78	7.88	7.85	4.14	60.0
	Transparancy	N.A.		•	1	1	•	-	1	•
-	iec .	umhos/cm	•		8	-	1	-	3	1
	SS	mq/1	518	287	542	155	193	542	1551	955
	ROD	(/Dw	3.157	525	2,102	4,376	333	4.376	333(	2,099
	Soluble Rob	[/ow		319.5	1,751	3,545	127	3,545	127	1.455
		mg / ]	7.040	1.760	5.440	8,160	269	8,160	692	4.628
			39.2	11.2	33.6	104.2	9.61	104.2	11.2	41.6
	1	U uu	11.7	3.1	7.3	22.3	0.72	21.3	0.72	8.82
	PO4	./0w	11.5	0,3	1.85	13.7	0.4	13.7	0.3	5.6
	Discharge	Cu.m/S								
	2-12	L/pm	6.5		13.5	3.01	3	19.5L	6.5	5.11
	ND, IN	(/om	0		0	0	0	ō	õ	Ó
	N1-ON		0		0	o	6.0	6.0		0.225
		1/ DW	1.61		25.5	6.38	1.61	25.5	6.38	17.5
	APC -	1/0m	0.75		0.6	0.55	0.6	0.75	0.55	0.63
	QQ	mo/)	3.5		1.52	0.61	4.56	4.56	0.69	2.55
		1/0	0.015		0.015	0	510-0	0.024	0.015	0.017
	Total coliform	no./100ml	113.000.000		143.000.000	124,000,000	138,000,000	143.000.000	113.000.000	129.500.000
•	Alkalinitv(as CaCO.)	l/om			375	240	325	450	240	347.5
		- 15		Í						

table **2.34** Revery Factory,No.3 of 4 times sampling)

	τ.	Unit			ŕ	Test/Observation Results	on Results			
						4	5	Max.	Mîn.	Mean
601	/Test No.		- XU	08:3		08 13	08 13	1	1	+
Date			08:00	10:00	12:00	14:00	16:00		1	1
11me			cloudy	cloudy	cloudy	cloudy	cloudy			1
CITEMACE	Water Temperature	5 ₂	191	lõ	16	15.5	171	191	15.5	16./
		N.A.	•		1	ł	F	1		1
	odor	N.A.	•	1	1	1	1	1 US		0.00
	Ha	N.A.	4.58	36.3	6.56	4.68	7.85	<2./	4.70	4
	Transparancy	N.A.	3	f	•	1	1			
	J.J.	umhos/cm	1	•	1	1	1	1		
	22	, ma / j	1,293	069	1.037	1,752	572	1.752	2/2	500°T
	BOD	√0m	4, 589	1,547	2.171	S.474	788	5.474	<u>8</u> 8/	7.74
<u></u>	Soluble ROD	Lom	3,365	1,462	1,479	4,956	381	4.956	787	2.369
		L/DW	7,936	3,101	3,072	16.736	2.464	16.736	3,101	6.602
	24	L/Dm	34.7	29	33.6	40.3	23.4	40.3	23.4	27.75
	ΔL	1/Dm	11.5	5.6	6.9	22.4	3.6	22.4	3.6	10.6
	P04	1/0	8.4	3.92	4.76	17.2	1.02	27.2	1.02	7.06
	Discharge	Cu.m/s								
	NH4-N	1/54								
	NO ₂ -N	[/Gm -								
	NDN	mg/l								
	cl-	l∕jm								
	ABS	U/bm					_			
	DO	l/bm								
		l/6m					-			
	Total coliform	no./100ml			-					
	Alkalinity(as caco,)	l/bw							-	

۲

Table 2.35 Results of Water Quality Test, Raw Sewege (Biržai, Brewery Factory, No.4of 4 times sampling )

1-73

,

~~~~	8
1	Table

Results of Water Quality Test, River Water (Biržai, Roveja River) Sample No. : B-RWl

	Mean					light brown(205)	no odor	8.22	02	0.877	6.55	1.84	Ī	52.9	3.8	0.076	0.02	14-0	2.05	0.008	0.765	12.94	0.02	6.38	0.14	25,000	
	.ULW	-					no odor:	20	80	0.453;	2.5	1.03	•	43.5	1.53	0*026	0	0. 297	0.4	0	0.63	10.9	0	5.21	0	18,000	
lts	Max.					lightbrown(231) li	no odor	8.41	30	1.214	10.5	2.63	•	72	6.73	960-0	0.03	0.628	4	0.014	1.13	14.7	0.056	6.99	0.55	38,000	8
rest/observation Results	4	08 13	17:00	rainy	16	light brown(168)]	no odor	8.4	90	1.214	2.5	1.08	•	43.5	2.24	0.056	0,03	0.297	0.5	0	0.65	14.7	0	6.78	0	38,000	1
Test/C	ŝ	08 06	15:20	rainy	18	ght brown(210)]	no odor In	8.41	30	1.128	4.8	1.22	1	56	4.7	0.06	0	0.305	3.3	0.014	0.63	14.0	STO O	66.9	0	18,000	-
	2	07 28	16:40	rainy	377.5	light brown(210)[ight brown(210)	r no odor no	8.07	30	0.714	8.4	2.63	1	40	6.73	0.09	0.03	0.628	4	0.01	0.65	12.12	0.056	6.54	ō	32,000	
		07 20	10:50	sunny	76		no odor no	30	30	0.453	3.01	2.43			1.53	0 0961	500 0		0.4	600.0		6.01	0.008	5.21	0.55		*
unit					0,	N.A.		N.A.	N.A.	umhos/cm	(/ 04	1/04	1/00	0.08	(/ Om	1/04	(/ 5 m	2/m-1)			1.04	1/04	1/04	U/OW	(/)m	ne./100m)	1∕бш
0	Set NO				Water Temperature	color	odor	Ha	Transparancy	F.C.		ROD	Solution BOD			42			NH -N	ND-LN	ND, -N		ARS	Q		Total coliform	Alkalinity(as cacos)
	Camuling /Tact NO	Sere Care	Time	Climate	Test Item															-							

.

.

Table **2.37**

Results of Water Quality Test. River Water (Biržai,Apascia River) Sample No. : 8-RW2

			+-		2	3	4	Max.	Min. İ	Mean
611			-	02 20	07 28	08 06				
DATE				21:11			17:30			
01/2010				VUUNS		ľ	cloudy			
	Tomora Tomora	С 1		18			18	18.5	18	18.1
ובאר דרפווי		N		ve]]ow(262)	vellow(270)	yellowy(140)	yellow(199.5)	yellow(270)	ye]]owy(140)]	vellow(217.9
		A N		no odor	no odor	no odor	no odor	no odor	no odor	000 00
		A N		8.07	8°.04	8.32	8.37	8.37	8.04	~
	Transna rancv	N A		59	29 30	1 30	301	30	29	ň
		umhos / Cm	5	0.606	P?	1.271	1.322	1.322	0.502	0.92
		104		3.9	21.9	1.4	5.4.	11.9	1.4	5.65
	BOD			2.03			1. 54 ·	5.82	1.54	3.1
	Soluble Ron						*	-		
	COD.			88	26	j \$6	17.4	- 22	17.4	54.4
		, Cu		4.14	2.03	2.08	1.96	4.14	1.96	2.55
	1			11.0				0.11	0.06	0.0
_	Put			0.02		0	10.0	0.07	0.03	0.03
	Discharde	CU. M/S	<u>s</u>			0.835		2.352	0.835	1.614
	N+ N	LOT	-	12'0		0.56	0.4	0.71	0.4	0.58
	N0,-N) ou		0.027		0.021	0	0.027	0.015	0.022
	NoN			2.4		6'0	1.28	2.4	0.8	1.35
				10.8	10.8		14.7	15.3	10.8	12.9
	485			0.024		0.24		0.24	ĩõ	0.072
	DO) DH			5 78		8.32	8.32	5.78	6.9
	oi l			0.3			1.0	0.3	0.1	0.16
_	Total coliform	no./100m	l mo	220,000	230,000	1,000		230,000	200	112.800
	Alkalinitv(as CaCo.)	/Dm				1	•	1	3	

ę

ł

Table 2.38

Results of water Quality Test, River water (Biržai, Agluona River)

sample No. : B-RW3

1

- 10 1
11:30
Sunny
16.5
yellow(179) yellow(280)
no odor no
26.7
:
0.765
66 T .
11.0
0.02
ŀ
0.56
60.0
15.3
0.008
4 58
0.65
120.000

1-76

c	Unit			Test	Test/observation Results	lts		
				ć		Xew	м'n.	Mean
Samuling /Test NO.		r	2					
		07 20	07 29	08 06				
Date			12:30	17:40				
Time		• I C		cloudy	cloudy			
		C C	2 4 4			181	17[17
Test Item water Temperature		20 27 17 17 17 17 17 17 17 17 17 17 17 17 17			128 C 128 C	Vellow(262)	vellow(154) ve	(6.2 <u>61)wolle</u>
Color	N A	ye110w(262)1ye11		ACT MOI DA			no odori	opo ou
odor	N A	no odor no odor		HO 0001		\$ 37	1 8	8.2
Ha	N A	8.1	8.14	10.0		102	100	ΥΠ Ι
Transparancy	A N	29	2			203	301 4	1.405
FC	umhos/cm	1.198	1.274	1.003		~~~~	2 2 2	
20	/04	7.2	5.6	3.6		7.1		
		35 5	2.11	2.84	1.08	2.84	1.08	0.2
	- /bu				1	1	1	
Soluble 80D	I /6w		54	UX VX	797	80	29.7	63.
COD	- 10/ I	00	8	22 4		C 8	4.65	6.1
NL	/6m	5+54	0.13	co. 4				C
40	(ou	0.138	0.22	0.06		0-1-20	5	
	() 0m	0.024	0.064	100.01	0.03	0.64	100-0	
	2/10 11/2		2.03	1.94		2.48	1.94	5-1
DISCRAFGE		04 0	5,0	0.05		0.53	- SO-0	0.33
Z- TZ	/b u	0.21		0.073		0.023	10.0	510.0
NO2-N	1/6w	40.0		6 V ···		6.4	3.15(3.09
NO3-N	mg/l	5.05	4.4.9			17.0	14.7	15.
<u>-1-</u>	1/6m	15.3	7 91				C	
ABS	/bu	0	0	2				4 02
00	/bw	9° Te	6.54	6 99		10.8	0110	
	[/ow	0.45	0.05			0.45	5	
Total caliform	(m001)		80,000	3, 600	35,000	80,000	3.600	44.050
۰.					1	•	•	

Table 2.39 Results of water quality Test, River Water (Biržai, Tatula River, Upstream side of STP discharge) commle No i R-2044 \bigcirc

					sample No. :	B-RW5		
0	Unit			Test/	Test/Observation Results	sults		
Court Same /Tast No.		 	2	3	4	Max.	Min.	Mean
Sest Aut		07 20		08 06	08 13			
Uate		11:50	12:	18:00	16:			
r 11115 r] i mata		Vuus	cloudy	cloudy	cloudy			
Test Item Water Temperature	0,	16.5	1			- 17	16.5	10.9
Color	N.A.	yellow(189)	yellow(169.5]yellow	yeliow(154)	yellow(168) -	yellow(189)		(T.0/T)wo11
Odor	Z.A.	no odor no	no odor	no odor '	no odor	no odor	no odor	10 000
Hd	N.A.	89	8.01	4.8	8.25	8.4	8	8.1/
Transnancv	N A	30		30	30	30	301	301
	umhos/cm	0.987	1.725	1.696	1.628	1.725	0.987	1.509
22	- 1 / DW	4.8		6.7	11.4	1.91	4.8	10.5
ROD	ma / 1	2.95		6.95	1.08	6.95	1.08	4.22
Soluble BOD				1	1	ł	1	•
	ma/1	104	40	80	39.9	104	39.9	65.98
NL	L/Dm	4.85	5.58	6T.S	6.13	6.13	4.85	5.44
ΤP	ma/]	0.132		0.15		0.85	0.09	0.31
P04		0.07		0.12		0.62	0.07	0.22
Discharge	Cu.m/s			2.76		5.64	2.76	3.84
N, IN	l/Ju	0.74		e-1	0.5	1.55	0.5	0.95
N0-1N		0.04		II O		111.0	0.04	0.83
N0,-N	(/om	3.25	2.25	3.8	4.15	4.15	2.25	3.36
	1/om	16.6		27.1		21.11	16.6	12.7
ABS	L/om	SI0.0		0.015	0.024	0.024	0.015	0.017
DO	l/bw	9				6.93		5.62
	l/bm	0.5	0.1	0.05	0.55	0.55		0.31
Total coliform	I no./100ml	70,000	220,	25,000	65,000	220,000	25,000	95.000
Alkalinity(as CaCo ₃)	l/5w	•	•		•	ſ		

table 2.40 Results of water quality Test, River water (Biržai, Tatula River, Downstream side of STP discharge) sample No. : B-RWS

)

Table 2.41

Results of water Quality Test,River Water (Biržai,Juodupe Upstream of STP) Sample No. : B-RW6 Test/Observation Results

6.3	unit	• • • • • • • • • • • • • • • • • • • •	100 r/ 000 r 40 r 61 01 0000 r 60		
/Test NO			Max.	.urw	Mean
		8.13			
		100:11			
		v sunny			
Water Temperature	ç	21	12	12	
	N.A.	yellowish(66.5)	yellowish(66.5)	owish(66.5) yellowish(66.5)	yellowis
odor	N.A.	no odor	no odor	no odor	5
Н	N.A.	8.18	8.18	8.18	8.18
Transparancy	Ν.Α.	30.	30	30	
	umhos/cm	1.593	1.593	1.593	ч.
	(/om	3.3	3.3	3.3	
ROD		0.62	0.62	0.62	0.62
soluble Bob	L/Du		-		
COD	ma/ì	38.4	38.4	38.4	m
NT.	[/om	9.4	9.4	9.4	
TP	(/om	0.06	0.06		
204		0.05	0.05		
Discreases	Cu.m/s	0.003	0.003	0.003	0.003
	ma/)	0.16	0.16	0.16	0.16
20- 10X	L/Dm	0.01	10.0	10.0	0
NON	ma/1	7.25	7.25	7.25	7.
C -	L/Dm	29	29		2
ARS	l/ou	0	0	0	
	mc/j	7.39	7.39	7.39	7.39
		0	0.5	0	
Total coliform	1 no./100ml	009	600	600	600
- 1 - 2				•	*

1-79

C

ą

2.42	
Table	

Results of Water Quality Test,Riwer Water (Biržai,Juodupe Dawnstream of STP)

ZW7		Min. Mei
Sample No. : B-RW7	Test/Observation Results	Max.
	Test/	7
	Unit	

	0	Unit	Test/Ob	Test/Observation Results	1175	
Sampling /T	Test No.		-r	Max.	Min.	Mean
•			08 13			
Time			11:30			
Climate			Suny			
Test Item	Water Temperature	[]]	ST	15		15
		N.A.	yellowish(70)	yellowish(70)	Ye	lowish(70) yellowish(70)
	Odor	N.A.	no odor	no odor	ĉ	000
	НА	N.A.	7.98	7.98	7.98	7.
	Transparancy	N.A.	12	12		
	EC	umhos/cm	2.19	2.19		2.19
	SS	L/pm	16.8	16.8	16.	16.8
	BOD	mg/l	8.5	8.5	8.5	8.5
	Soluble 80D	L/pm	8	1		•
	COD	L/bm	89-68	89.6	89.68	89.6
	1N	1/gm	36.2	36.2	36	36.2
	ΤP	(/bw	2.4	2.4	2.4	2.4
	P04	L/pm	0.29	0.29		
	Discharge	Cu.m/s	0.21	0.21	0.21	0.21
	NH4-N	L/bm	26	26	. 26	
	NO ₂ #N	L/bm	0.01	0.01		0
	NO ₃ -N	L/pm	6.38	6.38	6.	6.
	¢]-	ma/)	32	32		
	ABS	l/pm	0.47	0.47		0
·	00	l∕gm	1.08	1.08	1.08	<i>r</i> 1
	Lio	l/pm	0.4	0.4	4.0	
	Total coliform	no./100ml	48.000	48,000	48,000	48.000
	Alkalinity(as caco ₃)	mg/l			1	-

)

Table 2.43

Results of Water Quality Test, Ground Water (Biržai, North Side of lake) Sample No. : B-GW1

	c.1	Unit			Test/observation Results	cion Results		
				2	m	Max.	kin.	Mean
on puridues			10 20		08 06			
Date					16.001			
-i me			14:00		22-27 			
- 1			sunny	rainy	c loudy	:		t t
			13		13	13		17.71
Test item	water lemperature	N A.	no rolor(42.5)no	color(27.5)	no color(21)	no_color(42.5)	no color(21)	no color(30.3)
	C010F	× N		odor		no odor	no odor	no odor
	0001		7 96	2. 93	8.1	8.1	7.93	7.99
	μd	N.A.			30	02	10.5	23.5
	Transparancy	N.A.	CUNT		202 -	1 626		1.208
	EC	umhos/cm	0.888		1070 T		ļ	5 27
	55	l/pm	3.7		5	1.24		
		mo/]	0.22	1.07	0.91	1.07	0.22	0.75
					5	1		-
	soluple sou		9 r	V	×	16	7	9.33
	COD	ng/ 1				<u>τη</u> τ	00 0	195 I
	1N	bm	66.0		01.1	2.0.2		
	40	ma/1	0.07	0.19	0.03	0.19	0.0	950.0
			0	11.0	0	0.11	0	0.037
						3	1	1
	U1SCNarge		0 12	78.0	0.32	0.78	0.13	0.41
	NH4 HN	- /5			ō	0.004	0	100.0
		- /Sm	0.85		0.43	0.85	0.3	0.53
-	N-20N	- 1/ em	8 67	7	20.4	49.8	20.4	39.8
	101-	L/ Thur			0	0	0	0
	ABS	- 1/Bm	ſ		0 46	1.74	0.46	0.94
-	DO	1/5ш				C		0
	l io	mg/.1						570
	Total coliform	no./100m]	400	H.	R	1005 T		
	r-		250	315	295	315	1042	C-067
		j.						

C

					Sample No. :	B-GW2		
	o	unit			Test/Observation Results	tion Results		
Samolino No.			г	. 2	3	Max.	.urm	Mean
Date			07 21	07 28	08 06			
Time				16:30	15:45			****
C i mato	-		Auuns	rainy	cloudy			in ca
Test Item	Water Temperature	0,	13		16	16	13	14.3
	Color	N.A.	no color(21)	no color(35)	no color(10.1)	no color(35)	color(35) no color(10.1)	no color(22)
	odor	N.A.	no odor	odor no odor	no odor	no odor	0u	1000 OU
	Hd	N.A.	7.74	7.83	8.29	8.29	7.74	7.95
	Transparancy	N A.	9.5	2	2	5.9		7.83
	EC	umhos/cm	2.73	4.17	1.13	4.17		2.68
	SS	U/bm	21.6	24.8	16	24.8	16	20.8
	BOD	l/bm	1.24		2.28	2.28		1.43
	Soluble BOD	L/bm		3	1	1		•
	COD	U/bu	56	8	32	56		32
	TN	t/bm	1.04	2.45	1.84	2.45		1.78
	ΤP	ma/J	0.08		0.04	0.08	0.04	0.06
	P04	l/pm	0	0.05	0	0.05	0	0.015
	Discharge	Cu.m/s	t	-		1		*
	NH4-N	L/pm	0.33	2	1.1	2	0.33	1.14
	NO ₂ -N	L/bm	0.006	0.003	0	0.006		0.003
	N-"ON	L/pm	0.7	0.3	0.5	0.7		0.5
	c]-	L/bm	11.5	13.4	15.95	15.95	2.11.5	13.62
	ABS	L/DW	0	0	0	0		
	8	L/bm	5.21	30.06	0.15	5.21	0.15	2.24
	lio	mq/1	0	0	0	0		
	Total coliform	lm00L/.on	5,900	800	2	5.900		2.
	Alkalinity(as caco3)	1/6m	235	265	260	265	235	253

Results of water Quality Test, Ground water (Biržai, Town area) Sample No. : B-GW2

Table 2.44

Ð

Table 2.45

Results of water Quality Test. Ground water (Biržai, South side of town) sample No. : B-GW3

	G	unit			Test/observ:	Test/observation Results		• (m4)
N DOLLOWO	2			2	m	Max	Min.	Mean
2			07 21	07 29	08 06			
14.86				1	17:30			-3 - 62
			Auuns	cloudy	cloudy			
10111111111111111111111111111111111111	Water Temperature	12	12	16	15.5	191	12	3.51
		N.A.	no color(10.5)	no color(17.2)	no color(24.5)	no color(24.5)	no color(10.5)	no color(27.4
	Daor	N.A.	no odor		no odor	no odor	no odor	no odor
	I	N.A.	7.93	7.86	8.24	.8.	7.86	8-01
	Transparancy	N. A.	30	30	30		30	30
	EC	umhos/cm	0.656	0.848	1.627	1	0.656	7-04
	SS	l∕jm	3.3	5° 2	0		0	5.73
	BOD	[/bw	0.7	0.76	0.46	0.76	. 0.46	0.64
<u> </u>	Soluble BOD.	l/pm			4		1	
		l/bm	24	4	2.6		2.6	2.01
	TN	l/bw	2.43	1.44	1.23	-	1.23	
·	đ	۲/۵щ	0.088	120.0	0.062	0.088	0.062	0.074
	P04	ща/ј	0	0.024	0	0.024	0	0.008
	Discharce	Cu.m/s	1	1	•	•	1	
	N- HZ	ng/)	0.48	0.4	0.53		0.4	0.47
	NON	ן/סש	0	0 004	0	0	0	100.0
	N+ ON	- (/ om	1.95	0.45	0.4	11.95	0.41	0.93
		1/0w	1.61	19.14	51.05	S	11.61	29.75
	ARC	ma/1	0	0	C	0	0	0
	DO	mg/l		0.61	1.22	1.22	0.61	0.93
		mo/]		0	o	0	0	0
	Total coliform	no./100m	540	50,000	2000	20,000	540	27,523
	IC.	[/bm	320	280	335	335	280	206

1

(

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	Sample NO.	t 20-0		
Ing No. Ing No. Ing No. No. Ind. Mn. M	Ð		Unit			Test/observati-	on Results		
07 21 07 23 03 06 07 03 03 04 05 04 05 05 05 06 06 07 100 05 100 05 100 05 100 05 100 05 100 05 100 05 100 060 100 060 100 100 060 100 060 100 060 100 100 060 100				r f	2			. הרא	Mean
Attent 12:00 13:00 12:00 13:00 12:00 13:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:00 12:0 12:0 12:0 12:0 12:0 12:0 12:0 12:0 12:0 10:0	2				07 28	08 06			
Tete sumy rain/ color cloudy 12 20 20 10 12 20	11 80		:	12:00	18:00	17:00			
Imater Temperature "C 12 10 12 12 10	rue rìsmate			Sunny	rainy	cloudy			
Color N.A. no color(14.5) no color(17.5) no color(17.5) no color(17.5) no color(17.5) no color(14.5) no color(14.5)	E	rature	53	12	10	12	12	10	11.3
N.A. no odor no odor no odor no odor no odor no odor no odor 7.5 8.02 8.02 8.02 7.5 7.5 barancy N.A. 30 $1/5$ $2/5$ 8.02 8.02 8.02 8.02 7.5 barancy umbos/cm 3.3 $1/5$ $2/5$ $2/5$ 3.25 $2/5$ 3.53 3.54 3.53 3.53 3.53 3.54 3.56 3.54 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 <t< td=""><td></td><td></td><td>N.A.</td><td>10</td><td>color(17)</td><td>no color(14.5)</td><td>color(17)</td><td>color(14.5)</td><td>ိုင်</td></t<>			N.A.	10	color(17)	no color(14.5)	color(17)	color(14.5)	ိုင်
N.A. 7.71 7.5 8.02 <td>odor</td> <td></td> <td>N.A.</td> <td>no odor r</td> <td>odor</td> <td>odor</td> <td>0 2</td> <td>no odor</td> <td>no odor</td>	odor		N.A.	no odor r	odor	odor	0 2	no odor	no odor
Insparancy N.A. 30 17.5 27.5 30 Insparancy umhos/cm 3.53 4.15 27.5 30 mg/l 23.2 25.4 7.4 25.4 7.34 umhos/cm 3.53 4.15 4.28 4.28 4.28 mg/l 0.62 1.34 1.34 1.34 1.34 uble BOD mg/l 0.62 1.34 1.79 1.79 mg/l 0.102 0.102 0.102 0.014 0.102 0.102 charge cu.m/s $ -$	HA		N.A.	1.7.1	7.5	8.02		7.5	7.74
uble BOD umbos/cm 3.53 4.15 4.28 4	Transparancy	. :	N.A.	30	17.5	27.5			25
mg/l 23.2 25.4 7.4 25.4 25.4 uble BOD mg/l 1.34 1.07 1.34 $2.5.4$ 25.4			umhos / cm	3.53	4.15	4.28			3.99
uble BOD mg/l 0.62 1.34 1.07 1.34 uble BOD mg/l 1 16 -	200		/\2m	2.52	25.4	7.4			18.7
uble BOD mg/l - 1 <t< td=""><td>ROD</td><td></td><td></td><td>0,62</td><td>1.34</td><td>1.07</td><td></td><td>0.62</td><td>1.01</td></t<>	ROD			0,62	1.34	1.07		0.62	1.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Soluble BOD		ma/1		B	*		1	
mg/l 1.79 0.95 0.89 1.79 mg/l 0.102 0.15 0.034 0.15 0 mg/l 0.102 0.102 0.102 0.014 0.102 ng/l 0.014 0.102 0.012 0.012 0.15 0 ng/l 0.013 0.102 0 0 0 -	CDD		ma/1	16	4	4.1	16	4	S.03
mg/l 0.102 0.15 0.034 0.15 0 mg/l 0.014 0.102 0.01 0.102 0.102 mg/l 0.014 0.102 0.01 0.102 0.102 mg/l 0.013 0.016 0.015 0 0 mg/l 0.013 0.006 0.015 0 0 mg/l 35.1 26.8 40.8 40.8 40.8 mg/l 35.1 26.8 40.8 40.8 0 mg/l 35.1 26.8 40.8 2.63 1.5 mg/l 35.63 3.19 1.06 3.63 3.63 mg/l 6.800 280 1.06 0 0 0 mg/l 0.100ml 6.800 280 3.63 3.63 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	1 N		l/om	1.79	0.95				1.21
charge mg/l 0.014 0.102 0.01 0.102 - N mg/l 0.014 0.102 -	- H		l/om	0.102	0.15				0.095
charge cu.m/s - - - - -N $mg/1$ 0.48 0 0.48 0 -N $mg/1$ 0.48 0 0.48 0 -N $mg/1$ 0.13 0.015 0.015 0.015 -N $mg/1$ 1.23 0.55 1.5 1.5 -N $mg/1$ 35.1 26.8 40.8 40.8 $mg/1$ 3.63 3.19 1.06 3.63 $mg/1$ 0 0 0 0 $mg/1$ 3.63 3.19 1.06 3.63 $mg/1$ 0 0 0 0 0 $mg/1$ 5.63 3.19 1.06 3.63 $mg/1$ 0 0 0 0 0 $mg/1$ 0.57 3.10 3.63	P04		ma/1	0.014	0.102	10.0			0.042
-N $mg/1$ 0.48 0 0 0.48 $-N$ $mg/1$ 0.013 0.015 0.015 0.015 $-N$ $mg/1$ 1.23 0.006 0.015 0.015 0.015 $-N$ $mg/1$ 1.23 0.55 1.5 1.5 $mg/1$ 3.13 0.016 0.015 0.015 $mg/1$ 3.63 3.19 1.06 3.63 $mg/1$ 0 0 0 0 0 $mg/1$ 0.700 26.8 1.06 3.63 $mg/1$ 0.6300 0.6800 0.6800 $mg/1$ 0.700 0.000 0.000 $mg/1$ 0.710001 6.800 250 1.40 6.800 210 310 310 310 310	Discharge		CU.M/S						
N $mg/1$ 0.013 0.016 0.015 0.015 -N $mg/1$ 1.23 0.55 1.5 1.5 $mg/1$ 1.23 0.55 1.5 1.5 $mg/1$ 35.1 26.8 40.8 0 $mg/1$ 0 0 0 0 $mg/1$ 3.63 3.19 1.06 3.63 $mg/1$ 0 0 0 0 $mg/1$ 0 0 0 0 $mg/1$ 5.63 3.19 1.06 3.63 $mg/1$ 0 0 0 0 $mg/1$ 5.63 3.19 1.06 8.60 $mg/1$ 0 0 0 0 $mg/1$ 5.87 3.10 3.10 3.10			mo/1	0.48	0	0		0	0.16
-N mg/l 1.23 0.55 1.5 1.5 mg/l 35.1 26.8 40.8 40.8 mg/l 35.1 26.8 40.8 6.8 mg/l 35.1 26.8 40.8 6.8 mg/l 3.63 3.19 1.06 3.63 mg/l 0 0 0 0 mg/l 6.800 280 1.06 3.63 mg/l 0.700 0 0 0 310 310 310 310	ZI-GOZ		ma/1	0.013	0.006	0.015	0.015	`	110.0
mg/l 35.1 26.8 40.8 40.8 mg/l 0 0 0 0 mg/l 3.63 3.19 1.06 3.63 mg/l 0 0 0 0 mg/l 5.63 3.19 1.06 3.63 al coliform $no./100ml$ 6.800 280 140 6.800	NO NO		ma/l	1.23	0.55				1.09
mg/l mg/l 0 0 0 0 mg/l 3.63 3.19 1.06 3.63 mg/l 0 0 0 0 mg/l 5.63 3.19 1.06 3.63 mg/l 0 0 0 0 mg/l 6.800 280 140 6.800 5.77 310 310 310	<u>C1</u> -		ma/1	35.1	26.8				34.23
mg/l 3.63 3.19 1.06 3.63 mg/l 0 0 0 0 .al coliform no./100ml 6.800 280 140 6.800 .al coliform 787 310 310 310	ABS		ma/1	0	0	0		0	
mg/l mg/l 0 0 0 (a) (a) (b) (c) (c) (a) (c) (c) (c) (c) (c) (c) (c) (c) (c)	OQ		ma/1	3.63		1.06		1.06	2.69
coliform no./100ml 6.800 280 140 6.800 coliform no./100ml 587 310 310 310			ma/l	0	0	0		0	0
310 310 310 310 310 310 310	e	orm	no./100m]	6.800	280	140			2.407
	Alkalinity(as caco.)	ma/Ì	287	310	310	310		301.5

Results of water quality Test. Ground water (Biržai, Southwest side of town) Sample No. : B-GW4

Table 2.46

シン

)

Table 2.47

Results of water quality Test. Ground Water (Biržai, West side of town) Sample No. : B-GWS

		unit			Test/observation Results	rion Results		···~2 bata
				-	~	Max.	Min.	Mean
sampling No.				2 V7 28	08 06			
Date						-		
Time			IST:TT	104:01				1
			sunny	rainy	רבי			1.1
	Linton Tomorature	U,	13	11.5	13	13	11.5	(177
lest rtem	MALET I SUPEI ALUI S		no color(24.5)no	co]or(24.7)	no color(14.5)	no color(24.7)	no color(14.5) r	no color(21.2)
	C0101	A N		odor	no odor	no odori	no odor	no odori
			7.74	7.75	8.28	8.28	7.74	7.92
			30	30	30	30	. 30	30
	II disparately	hoc //m	1 579	1.831	1.8	1.831	1.579	1.737
				8.2		8.2	0	6.66
	SS	- /5m	24 0	102 1	1.22	1.79	0.78	1.27
	800	- /5u	0				1	1
	Soluble BOD	mg/1					0	26.7
	COD	1/5m	56	8	91		0 v 7	4.01
-	۸۲	[/bu	21.3	18.4	19.5	21.5		
-	7.0	ma/]	0.224	0.07	0.042	0.224		
	P04	[/om	10.0	0.05	10.0	0.05	0.01	0.02
	Discharde	Cu.m/s	1	•	E.	1	í	
	NHN	L/om	0	0.39	11.0	0.39	0	0.17
	NCN	L/om	0.015	10.0	0.015	0.015	0.01	0.013
	N0N	l/bm	21.3	τt .	19	21	FT.	17.1
	C]-	L/pm	74.7	68.9	77.2	77.	68.9	/1.95
	ARS	l/om	0	0	0	0	õ	50,
	DO.		5.69	3.8	5.47	5.69	3.8	4.79
			0	0	0	0		õ
	Tota coliform	lm001/.on	300	8,000	1.800	8, 8,		3,36/
		ma/1	325	STE	290	325	290	1012
_								

()

¢

				Sample No. : B	B-LW1		
		unit		Test	c/observation Resi	Jits	<u> </u>
7/ 00 2000	Tost No			2	Max.	Min.	Mean
~			07 28				
T'à me			16:20				
Climate			rainy	Sunny		-	4
Test Item	Water Temperature	0,	3.91			19.5	
	Color	N A	light brown(210)	light brown(146)	light brown(210)	light brown(146)	(2/T) UMOJE THEL
	odor	N.A.	no odor	odor no odor	0 U	no odor	100 00
	Æ	N.A.	8.06	8.37	8.	8.	8.22
	Transparancy	N.A.	30	30			02
	ĒĆ	umhos/cm	0.639	1.139	л.	0	0.889
	SS	[/bw	9.2	0.6	9.2		
	BOD	l/Dm	5.3	2.14	5.3	2.14	3.72
	Soluble 800		2		F		3
	COD	ma/1	5.6	7.2			9.4
	NL	 	1.83	1.18			
	-T-	L/ou	0.18	0.006	0.18	0.00	0.12
	P04	[/bu	0.1	0	1.0	0	0.05
	Discharge	Cu.m/s					
	NHAN	l/pm	0.56	0.37			
	NON	l/pm	0.03	0.04			
	NO ₂ -N	П/рт	0.65				0.64
	c)-	mo/)	1.21	19.8			
	ABS	L/DW	0.048	0.031	0.048	0	
	00	* (/bm	5.62				6.61
	lio	ma/]	0.2	1.0	0.2		0.15
	Total coliform	no./100ml	120,000	20,	120,000	20,000	70.000
	Alkalinity(as caco ₃)		•		1		1

Results of water Quality Test, Lake Water (Biržai, Lake ,South side)

Table 2.48

)

3

5

1-86

Table **2.49**

Results of water quality Test, Lake water (Biržai, Lake .North Side) Sample No. : B-LW2

	E.3	Unit					
	1 1 1		r	2	Max.	, Πέλ	Mean
bur	/1621 VO.		07 28	08 20			
Date			17:00	16:00			
i i me			rainy	Sunny			
Climate			19.61	6	19.5	61	. 61
Test Item	Water lemperature	N N	<u>–</u>	ight brown(189)	light brown(189)		ight brown(189)
		A N		- odor	no odor	no odor	1000-000
	1000	A 7	7 94	8.43	8.43		8.19
		V N	30	30	30		ñ
	I ranspar ancy	mpoc/cm	0.566		1.178	0.566	0.87
		(/ D#	12-1	0.8	1.11		9
		- / Fun	3.47	3.34	3.47	3.34	3.41
	800					Ĩ	
	Soluble BOU	т /бш	48	57	25	48	5
	COD	ш <u>и</u> / Г.	200	2.04	2.25	2.04	2
	Z	i /ɓɯ	000 0	0.06	0 OK		0.07
	ΥP	/bw	0.08		00.0		0.0
	PO4	mg/l	0.02	2	20.0		
	Discharne	Cu.m/s	-				
		Щ0/)	0.46	0.48	0.48		0.4/
	NON	1/0m	0.02	0.03	50.03		0.03
		(/) W	0.76	0.75	0.76	0.75	0.76
	- 50v	(/ JE	13.4	16	16		74.
		(6	0.015	0.031	160.0		0.023
	Abs	1 / Furt	91.5	6.84	6.84	9110	5.02
	00	1/511	VO	< 0	0.4	0.2	0.3
	011	/Dw		000	XED OOD		430.400
	Total coliform	no./100m1	860,000	000	200+200		
-	(Alkalinity(as caco.)		•	•	•		

¢.

ł

Table 2.50 Summary of Water Quality Test, STP Influent, Birzai

(Mean of 4 times sampling)

Sample No. : B-RS1

		Unit		1	Mean		
Sampling /Te	est No.		1	2	3	4	Mean
Date	<u></u>						
Time				·····			
Climate							···· • • • · · · • · · · · · · · · · ·
Test Item	Water Temperature	·c	15.9	14.3	15.5	13.8	14.875
	Color	N.A.	-	_	_	_	
	Odor	NA	-	_		-	
	PH	NA	7.94	8.28	8,26	8.02	8.125
	Transparancy	NA	-		_	-	
	EC	umhos/cm	-	_	-	-	
	SS	mg/l	246	154	265	201	216.5
	BOD	mg/1	199.0	219.6	324	280	255.65
	Soluble BOD	mg/l	83.6	105.8	137.6	140	116.75
	COD	mg/l	405.0	470	632	608	528.75
	TN	mg/l	22.7	35.2	28.4	31.6	29.475
	1P	mg/l	6.8	4.9	7.4	5.3	6.1
	P04	mg/l	3.1	2.9	4.8	3.5	3.575
	Discharge	Cu.m/s	0.052	0.049	0.055	0.03	0 04675
	NH ₄ -N	mg/l		28.1			28.1
	NO2-N	mg/l		0			
	NO ₃ -N	mg/t		0			(
	CI-	mg/l		60.6			60.6
	ABS	mg/l		0.87			0.8
	DO	mg/l		0.38			0.3
	Oil .	mg/l		0.46			0.4
	Total coliform	no./100ml		1.40E+08			140,000,000
	Alkalinity(as CaCO3)	mg/t		545			136.2

 \bigcirc

.)

Table 2.51 Summary of Water Quality Test, Dairy Factory, Birzai

(Mean of 4 times sampling)

Sample No. : B-RS2

		Unit			Mean		
Sampling /1	rest No.		1	2	3	4	Mean
Date							
Time							
Climate							
Test Item	Water Temperature	·c	25.5	21.3	22	21.6	22.6
	Color	N.A.		-			
	Odor	N.A.	-	-	-	_	
	PH	N.A.	9.34	7.52	8.05	9.1	8.5025
	Transparancy	NA.	-	-	-	-	
	EC	umhos/cm	-	-	-	-	
	SS	mg/l	854.1	263.2	206.7	252.5	394.125
	BOD	mg/i	1,285	813.5	508.2	1,350	989.175
	Soluble BOD	mg/l	954.1	526.7	248.2	716.3	613.82
	COD	mg/l	3,664	1,910	912	3037	2380.75
	TN	mg/l	22.18	23.6	17.46	29.9	23.28
	TP	mg/l	13.4	7.14	2.93	8.4	7.967
	P04	mg/l	5.69	5.46	0.98	4.84	4.242
	Discharge	Cu.m/s					(
	NH4-N	mg/I	19.5	14	5		38.9
l .	NO ₂ -N	mg/l	0	0	0.015		0.01
	NO ₃ -N	mg/l	0	1.18			2.4
	CI-	mg/i	2.15	44.7			54.8
1	ABS	mg/l	0.16	0.03			0.2
	DO	mg/l	0	6.23	<u>† </u>		11.3
	Oil	mg/l	0.9	0.3			1.8
	Total coliform	no./100m1	890,000		100,000,000		118,190,000
]	Alkalinity(as CaCO3		2,820	590			980.7

.

 \bigcirc

Table 2.52 Summary of Water Quality Test, Brewery Factory, Birzai

(Mean of 4 times sampling)

Sample No. : 8-RS3

		Unit			Mean		
Sampling /1	fest No.		1	2	3	4	Mean
Date			_	-			
Time				-			
Climate			<u>.</u>				
Test Item	Water Temperature	·c	20.3	18.2	21	16.7	19.05
	Color	N.A.		-			
	Odor	N.A.	-	-	-		
	PH	NA	6.43	5.23	6.09	5.93	5.92
	Transparancy	NA	-	-	_	-	
	EC	umhos/cm	-	_	-	-	
	SS	mg/i	788.4	1,086	339	1,069	820.6
	BOD	mg/l	2,044	4,615	2,099	2,914	2918
	Soluble BOD	mg/I	1.656	3,557	1,455	2,329	2249.25
	COD	mg/l	15,616	7,952	4,618	6,662	8712
	TN	mg/l	24.6	70.3	41.6	32.2	42.175
	TP	mg/l	14.4	13.76	8.82	10.6	11.895
	P04	mg/i	5.29	10.28	5.6	7.06	7.0575
1	Discharge	Cu.m/s					0
	NH ₄ -N	mg/l	15.5	25.5	11.9		52.9
	NO ₂ -N	mg/i	0	2.5	0		2.5
1	NO3-N	mg/l	0	1.23	0.225		1.455
	CI-	mg/l	67.6	102	17.5		187.1
	ABS	mg/t_	0.48	0.03	0.63		1.14
	DO	mg/l	5.21	0	2.55		7.76
	Oil	mg/l	0.45	0.7	0.017		1.167
	Total coliform	no./100ml	580,000	28,000,000	129,500,000		158,080,000
	Alkalinity(as CaCO3		540	285	347.5		293.125

9

.

Table 2.53 Summary of Water Quality Test, River , Birzai

.

(Five Rivers and Seven Locations)

Semple No. : B=RW

						River (Mean)				Mean(Reternce)
		1			Advan	Tatula Un	Terula Down	Jundress Up.	Juncture Down	
			Hoveja	Apascia	Agiu					
Semoline /Tost No.	est No.									
Date										
l ime Cimate								~		
Test Item	Water Temperature	Ģ	16,9	18.13	0	17.4	16.9	12	15	872
	Color	₹ Z	light brown(205)	yollow(217.9)	(19;)mailay	yellow(195.9)	yellow(170,1)	yellow(170.2)	rellow 70.3)	
	Odor	¥ Z	no odor	no odor	no odor	no ador	ne odor	no odor	no odor	
	F	∀ Z	8.22	8.2	0	8.22	8.17	5.13	7 98	4.11
	Transparancy	A N	30	30	15	02	30	30	21	17.50
	EC	umbos/om	0.677	0,925	1.399	1.405	1.509.	1.593	2.19	77.0
	SS	me/l	6.55	5.65	5.95	5.64	10.5	3.30	16.80	397
	BOD	/am	18	315	2.21	2.07	4 22	000	8.50	1.55
	Soluble BOD	me/l	1	-	1		1	1		
	cop	me/i	52.9	54.4	32.9		65.98	38,4	89.6	33.92
	IN	/sm	3.8	2.55	3.78	6.13	5 44	2.6	36.2	271
	TP	1/2 W	0.076	800	0.098	0.115	031	0.06	24	800
	PO4	1.000	60	83	000	000	0.22	0.05	62:0	000
			041	1.614	0,464	2.15	3.84	0.003	021	610
	NHN	me/1	205	0.58	0.46	0.33	56.0	0.16	26	0.57
	NO ₂ -N	/am	0.00	0.022	0.05	0.015	0.83	10.0	10.0	0.02
	NO ₃ -N	me/l	0.765	1.35	2.18	3.09	3.36	725	638	1 23
	CI-	mɛ/]	12.94	12.9	19.5	15.8	187	29	3	10.19
	ABS	mg/l	0.02	0.072	0.006	0	0.017	0	0.47	0.02
	00	me/1 .	6.38	6.9	4,93	6.93	5.62	7.39	1 08	419
	lio	me/l	0.14	0.16	0.31	0.32	0.3	0	0.4	
	Total coliform	no./100ml	25,000	112,800	160,150	44.650	95,000	88	48000	57,100,00
	Alkalinity(as CaCO3)		1	,	1	•				

Table 2.54 Summary of Water Quality Test, Groudwater , Birzai

)

þ

(Five Locations)

B-GW
ź
ampia
~

		Unit			Groundwater			Mean (Referece)
			GW1	GW2	GW3	GW4	GWS	
Sampling /Test No.	No.							
Date								
Time								
Climate								
Test Item	Water Temperature	÷	12.7	14.3	14.5	113	12.5	10.56
	Color	N.A.	no solor(30,3)	no celor(22)	no color(17.4	no color(15,3)	no color(21.2)	
	Odor	N.A.	no odor	no odor	no odor	no odor	ne odor	
	Hd	N.A.	7.99	7.95	8.01	7.74	7.92	6.34
	Transparancy	Ϋ́,Α΄	23.5	7.83	30	25	30	72.71
	EC	umhos/om	1.208	2.68	1.04	3.96	1:87.1	1 78
	SS	mg/i	5.47	20.8	3 73	18.7	6.66	374
	BOD	:/aw	0.13	1.43	0.64	1.01	1.27	076
	Soluble BOD	اللار سلار	1		•	•	•	
	cod	اللام سلار	9.33	32	10.2	8.03	267	1611
	NT.	ا بورا	66.1	1 78	17	1.21	19.7	122
	ТР	me⁄i	960.0	0.06	0.074	0.095	0.112	0.07
	PO4	mg/1	0.037	0.015	0.008	0.042	002	000
	Discharge	Cu.m/s		1	•	•	1	
	Z12HZ	/дш	0.41	114	0.47	0.16	0.17	0.44
	NO ₂ -N	me/1	0.001	0.003	0.001	0.011	0013	0000
	NO ₂ -N	mg/I	0.53	0.5	660	60	1,7.1	0.61
	5	i/am	8.65	13.62	29.76	34 23	71 93	23.48
	ABS	me/1	0	0	0	0	0	000
	00	me/i	0.94	2,14	0.93	2.69	99 A	1.34
	Oil	m@/I	0	0	0	0	¢	0:00
	Total coliform	no./100ml	570	2,234	17,513	2.407	3,367	4 544.80
	Alkalinity(as CaCO ₃)	/_w	296.5	253	205	301.5	310	

Table 2.55 Results of Water Quality Test, Lake (Sirvenos Lake, Two Locations)

		(Sitvenos Fai	ke, Two Locations)	No. 8	-LW
	an a	Unit	Sirvenos Lak	e (Mean)	
Sampling /Te	est No.	i i	B-LWI	B-LW2	Mean (Reference)
Date					
Time					
Climate					-
Test Item	Water Temperature	'C	19.8	19.3	19.55
	Color	NA	light brown(178)	light brown(189)	
	Odor	, NA	no odor	no odor	
	PH	N.A.	8.22	8.19	8.205
	Transparancy	N.A.	30	30	30
	EC	umhos/cm	0.889	0.872	0.8805
	SS	mg/l	4.9	6.5	5.7
	BOD	mg/i	3.72	3.41	3.565
	Soluble BOD	mg/l	-	-	
	COD	mg/l	6.4	53	29.7
	TN	mg/l	1.51	2.1	1.80
	TP	mg/l	0.12	0.07	0.09
	P04	mg/l	0.05	0.01	0.0
	Discharge	Cu.m/s			(
	NH4-N	mg/l	0.47	0.47	0.4
	NO2-N	mg/l	0.04	0.03	0.03
	NO ₃ -N	mg/l	0.64	0.76	0.
	CI-	mg/l	16	14.7	15.3
	ABS	mg/l	0.04	0.023	0.031
	00	mg/l	6.61	5.02	5.81
	Oil	mg/l	0.15	0.3	
	Total coliform	no /100ml	70,000	430,400	250,200
	Alkalinity(as CaCO3)	mg/l		-	

 \bigcirc

¢

Results of water Quality(Supernatant)	(Birzai, Influent of STP)
2.56	
Table	

	a	unit			Test/ob	rest/observation Results	sults		
samnling /fest No.	T NO		F-	2	3	4	Max.	мin.	Mean
Date			08:06	30:80 LL	30:80 LL	11 08:06			
- Time			60:60	13:00	17:00	21:00			
Ttem	Hd	N.A.	8.44	8.1	7.76	7.93	8.44	7.76	ĉ. 06
_	SS	L/bm	24.5	87.5	144	87.8	144	24.5	\$6
<u>1</u>	BOD	L/ DW	24.2	96.7	508	214	508	24.2	210.7
	soluble COD	L DW	96	109	326	148	326	96	170
	coD	L pm	160	336	800	432	800	160	432
	NT		24.3	37.2	42.6	32.2	42.6	24.3	34.1
<u>1</u> <u></u>	ΤP	L/am	1.2	4.7	8.1	4.1	8.1	1.2	4.5
	Alkalinity(as caco3)	L/6m	495	625	585	475	625	475	475
	Add AT(100mg/T)PH7								
<u> </u>	T-COD	L/ 6m	126	68	678	294	678	89	297
	soluble cob	L/pm	24.8	64.6	403.2	51.2	403	24.8	135.9
<u>1</u>	ТР	L/pm	0.04	0.06	0.06	0.04	0.06	0.04	0.05

Birzai

Pump Station No.1		
Item	Contents	Remark
Year constructed	March 1973	· ·· ··
Type of structure	A. Circular/with upper housing	in the Water Company's premise
Equipment 1) Screen Type	manual 30 mm	1
Bar spacing Quantity	1	
2) Pump Type Capacity Quantity	horizontal shaft, centrifugal pump 140 m³/hour x 11 kW 2 units (base for 3 units)	
3) Others]
	hoist crane floor drain pump ventilation system	
Stand-by Generator	no	
Operation		
Disposal of screenings Method Frequency	by container every day	
Amount		
Pump Operation Automatic on-off No. of unit operated Flow measurement	automatic by water level in the pump well 2 units (1 unit on at all time) none	
Discharge amount/flow	no record due to lack of flow meter	
Operator	circulating for inspection	
Existing problems	Equipment is very old. Leaks in walls at pipe penetration No monitoring link exists.	
Improvement in the Project	No need to replace the pump units immediately. Motor should be replaced with new one, preferably equipped with an inverter. Repair of cracks and leaks should be included in the project scope. Connection to the existing central monitoring system should be included in the project scope.	

Birzai

Pump Station No.2		
Item	Contents	Remark
Year constructed	March 1973	<u> </u>
Type of structure	A. Circular/with upper housing	
Equipment		
1) Screen		
Туре	manual	
Bar spacing	20 mm	
Quantity	1	
2) Pump		1 . 11 . 100 A
Туре	vertical shaft, centrifugal pump	installed in 1994
Capacity	200 m ³ /hour x H 32 m x 38 kW	
Quantity	3 units	
3) Others		
	emergency storage pond (12 hours volume)	
	hoist crane floor drain pump	
	ventilation system	
Start Law Comparison	no	
Stand-by Generator	110	
Operation	- ~ ~ ~	
Disposal of screenings Method	by container	
	every day	
Frequency Amount	little	
Pump Operation		·····
Automatic on-off	automatic by water level in the pump well	
No. of unit operated	2 units (1 unit on at all time)	
Flow measurement	none	
Discharge amount/flow	no record due to lack of flow meter	
Operator	Circulating for inspection	
Operator	Pump operation is monitored in the operation	
	room in the Water Company.	
Existing problems		
	Equipment is old.	
	Leaks in walls at pipe penetration	<u> </u>
Improvement in the Project		
	Repair of cracks and leaks should be included in	
	the project scope.	

()

Birzai

i Item	Contents	Remark
Year constructed	November 1989	
Type of structure	A. Circular/with upper housing	
Equipment		
1) Screen		
Туре	manual	
Bar spacing	40 mm	
Quantity	1	
2) Pump		
Туре	horizontal shaft, centrifugal pump	
Capacity	140 m ³ /hour x H10.5 m x 11 kW	
Quantity	2 units	
3) Others		
	hoist crane	
	floor drain pump	
	ventilation system	<u> </u>
Stand-by Generator	no	
Operation		
Disposal of screenings		
Method	by container	
Frequency	every day	
Amount	little	
Pump Operation		
Automatic on-off	automatic by water level in the pump well	
No. of unit operated	2 units (1 unit on at all time)	
Flow measurement	none	
Discharge amount/flow	no record due to lack of flow meter	
Operator	Circulating for inspection	
Existing problems		
	Equipment is very old.	
	Leaks in walls at pipe penetration	
	Ventilation is very old and not functioning.	
	No monitoring link exists.	
Improvement in the Project		
	Ventilation system should be replaced with new	
	one.	
	No need to replace the pump units immediately.	
	Motor should be replaced with new one,	
	preferably equipped with an inverter.	
	Repair of cracks and leaks should be included in	
	the project scope. Connection to the existing central monitoring	
	system should be included in the project scope.	

Birzai

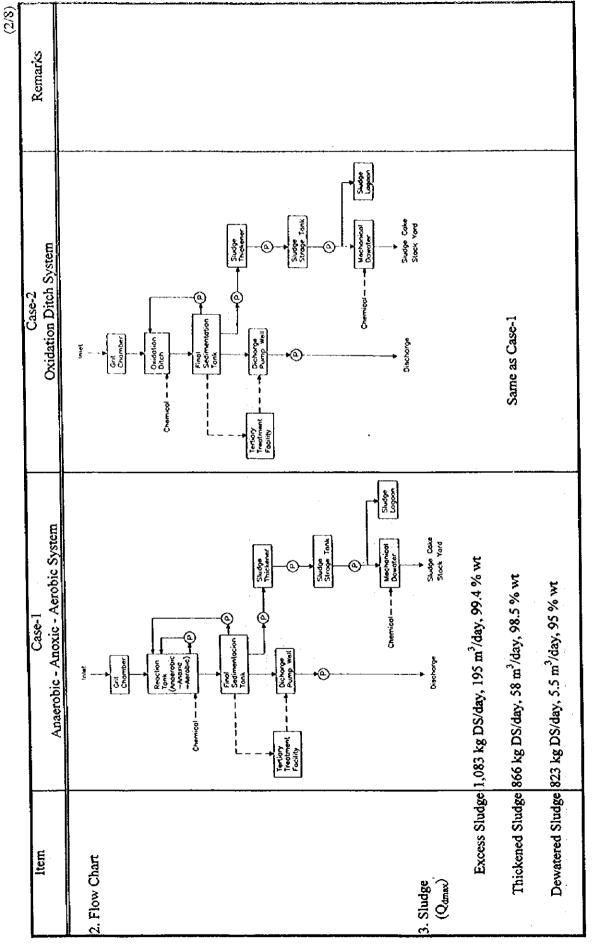
Pump Station No.4 Item	Contents	Remark
Year constructed	August 1976	
Type of structure	A. Circular/with upper housing	
Equipment		
1) Screen		
Туре	manuəl	
Bar spacing	15 mm	
Quantity	1	
2) Pump		
Турс	horizontal shaft, centrifugal pump	
Capacity	140 m ³ /hour x H10.5 m x 11 kW	
Quantity	2 units	
3) Others		
	emergency storage pond (12 hours volume)	
	hoist crane	
	floor drain pump	
	ventilation system	
Stand-by Generator		
Operation		
Disposal of screenings		
Method	by container	
Frequency	every day	
Amount	little	
Pump Operation		
Automatic on-off	automatic by water level in the pump well	
No. of unit operated	2 units (1 unit on at all time)	
Flow measurement	none	
Discharge amount/flow	no record due to lack of flow meter	
Operator	Circulating for inspection	
	Pump operation is monitored in the operation room in the Water Company.	
Public and Iams	Toom in the water Company.	
Existing problems	Equipment is very old.	
	Leaks in walls at pipe penetration	
	Ventilation is very old and not functioning.	
	No monitoring link exists.	
	Steel stairs are corroded and at a risk of	
	corruption.	
Improvement in the Project		
	No need to replace the pump units immediately.	
	Motor should be replaced with new one,	
	preferably equipped with an inverter.	
	Repair of cracks and leaks should be included in	
1	the project scope.	
	Steel stairs should be replaced with new one.	

()

3. Comparison of Treatment Plant Alternatives

-

)


. .

	h moer red									(1/8)
ltem -	Ar Ar	Case-1 Anaerobic - Anoxic - Aerobic System	Case-1 noxic - Aei	robic Syste	ä		Oxidat	Case-2 Oxidation Ditch System	Remarks	
1. Design Criteria										
1) Design Flow	Daily average Daily maximum Hourly maximum		: $Q_1 = 4,200 \text{ m}^3/\text{day}$: $Q_2 = 5,000 \text{ m}^3/\text{day}$: $Q_3 = 6,930 \text{ m}^3/\text{day}$	0 m ³ /day 0 m ³ /day 0 m ³ /day						الماني من المراجع بموتر من مي والمراجع المراجع المراجع المراجع المراجع الم راجع الم
2) Decion Sewage		Influent	STJ	i L	T.	T.T.F.	Discharge Standard	Standard		<u>,</u>
c) duality		Quality (mg/l)	R.R. (%)	Е.Q. (mg/l)	R.R. (%)	E.Q. (mg/l)	Average (mg/l)	Maximum (mg/l)		
	BOD,	260	95	13	75		4	8		است المتردين
	BODs	230	95	12	75	3	3.5	7		
	SS	260	66	26	65	6	30	45		
	cod	500	85	75	60	30	75	120		<u></u>
	Z-L	40	10/	12		8	8	14		
	₫-Ţ	10	*85	*1.5	35	+1.0	•1.0	1.5		alaataa 25aa
	Note)	S.T.F. R.R. E.Q. T.T.F.	S.T.F. : Secndary Treatment Facility R.R. : Removal Rate E.Q. : Effluent Quality T.T.F. : Tertiary Treatment Facility * : with Coagulant Treatment	Treatment Rate Juality reatment I Julant Trea	Facility acility tment					ૠ ૠ <i>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</i>
3) Design Temperature 7 degree C. at winter	7 degree C	, at winter								ing pyried with the
										alan kersela di selat bertari da di s

pendix 3 Comparison of Treatment Plant Alternatives (Birzai)

)

:)

(3/8)	Remarks	<u>yy yn a denn d yn yr yn y</u> ngal an de arden ardenau		naman ferhandun al Anala al Anala an Anala da an San Anan Anala San Anan Anan Anan Anan Anan Anan Anan	دهندان، العالم بي الله في الله المراجع و المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم
	R		. <u></u>	x 2 units SS/day	(1) units or units
	Case-2 Oxidation Ditch System	1) Grit Chamber Same as Case-1	2) Flow Measuremen Same as Case-1	 3) Reaction Tank Oxidation Ditch W 5.5 m x L 234.2 m x D 3.0 m x 2 units MLSS : 4,000 mg/l HRT : 36 hrs BOD-SS Load : 005 kg BOD/kg SS/day 	 4) Aeration Equipment Blower : 21 m³/min x 37 kw x 3 (1) units Diffuser : Membrane Disc Aerator Submersible Mixer : 2.4 kw x 8 units
	Case-1 Anaerobic - Anoxic - Aerobic System	 Grit Chamber Gravity Type W 1.0 m x L 4.0 m x D 0.4 m x 1 unit Water Surface Load : 1,800 m³/m² day Average Velocity : 0.2 m/sec 	2) Flow Measuremen Parshall Flume Type W = 0.457 m x 1 unit	 3) Reaction Tank Plug Flow Type Anaerobic - Anoxic - Aerobic System W 5.8 m x L 89.4 m x D 5.77 m x 3 units MLSS : 3,000 mg/l HRT : 37.4 hrs MLSS E 2000 rg/l HRT : 37.4 hrs BOD-SS Load : 0.05 kg BOD/kg SS/day Maximum Recycle Ratio : 150 % of Q₂ Recycle Pump : 1.8 m3/min x 3.7 kw x 3 (1) units 	 4) Acration Equipment Blower : 18 m³/min x 37 kw x 3 (1) units Diffuser : Membrane Disc Aerator Submersible Mixer : 1.1 kw x 3 units 2.4 kw x 9 units
	Item	4. Major Facility			

)

Remarks				
Case-2 Oxidation Ditch System	5) Final Sedimentation Tank Same as Case-1	 6) Sludge Pump Return Sludge Pump : Max. Ratio 200 % 1.8 m³/min x 3.7 kw x 4 units Excess Sludge Pump : 6.5 m³/hr x 2.2 kw x 2 units 	7) Sludge Thickener Same as Case-1	8) Sludge Storage Tank Same as Case-1
Case-I Anaerobic - Anoxic - Aerobic System	 5) Final Sedimentation Tank 5) Final Sedimentation Tank with Center driven Circular Tank with Center driven Sludge Collector Dia. 20 m x D 3.5 m x 2 units Dia. 20 m x D 3.5 m x 2 units 8 m³/m²/day Retention Time : 10.6 hrs 	 6) Sludge Pump Return Sludge Pump Max. Ratio 100 % 0.9 m³/min x 2.2 kw x 4 units Excess Sludge Pump 6.5 m³/hr x 2.2 kw 	 7) Sludge Thickener 7) Sludge Corlar Tank with Center driven Sludge Collector Dia. 7.0 m x D 4.0 m x 1 unit Dry Solid Surface Load : 30 kg DS/m² day Retention Time : 19 hrs 	 8) Sludge Storage Tank Rectangular Tank W 4.5 m x L 7.0 m x D 4.0 m x 1 unit Retention Time : 2.2 days
Item				-

(\$/\$)

Remarks			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Case-2 Ovidation Ditch System	9) Sludge Dewatering MachineSame as Case-1	10) Sludge Stock Yard Same as Case-1	11) Sludge Lagoon Same as Case-1	12) Chemical Feeding Facility Same as C:	13) Discharge Pump Submersible Nonclog Pump 4.8 m ³ /min x 22 kw x 2 (1) units
Case-1 According According Sources	 9) Sludge Dewatering Machine 9) Sludge Dewatering Machine 12 m³/hr x 44.5 kw x 1 unit 	10) Sludge Stock YardStockpiling YardW 12.0 m x L 24.0 m x 1 lineStorage Period : 1 month	 11) Sludge Lagoon Open cut W (top) 32 m - (bottom) 26 m × L (top) 44 m - (bottom) 38 m × D 1.5 m × l unit Storage Period : 1 month 	12) Chemical Feeding Facility Alum-oxic Caustic So Polymer T	13) Discharge Pump Centrifugal Pump 4.8 m ³ /min x 22 kw x 2 (1) units
ltem					

)

Remarks	na sina da sa			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ren				
Case-2 Oxidation Ditch System	14) Tertiary Treatment Facility Same as Case-1	15) Transformer 300 KVA x I unit	16) Auxiliary Facilities Administration Building Sludge Building Equipment Room Sludge Pump Room Discharge Pump Pit	Secondary Treatment 182 kw Discharge Pump 22 kw Tertiary Treatment 68 kw Total 272 kw
Case-1 Anaerobic - Anoxic - Aerobic System	 14) Tertiary Treatment Facility Biological Membrane Filter W 2.5m x L 3.5 m x 3 units Filtration Rate : 200 m/day 	15) Transformer 300 KVA x I unit	16) Auxiliary Facilities Administration Building Sludge Building Equipment Room	Secondary Treatment 193 kw Discharge Pump 22 kw Tertiary Treatment 68 kw Total 283 kw
ltem				5. Total Motor Power

.

(2/8)	Remarks			• •• •• •• •• ••	an an bank ar da tam iyo di gan d		yayada carda ing girindan d		Ħw (
	Ren								Unit price 0.204 Lts/kwH (Aug. 1998)
	ystem	rrge Pump	5,371,000 4,182,000 9,553,000 Lts		280,000 1,020,000 1,300,000 Lts	10,853,000 Lts		374,000 84,000 106,000 564,000 kwH/year	115,000 Lts/year
	Case-2 Oxidation Ditch System	- Seondary Treatment and Discharge Pump	Civil/Architect Mechanic/Electric Sub-Total	- Tertiary Treatment	Civil/Architect Mechanic/Electric Sub-Total	Total		- Demand Secondary Treatment Discharge Pump Tertiary Treatment	- Electricity Charge 564,000 x 0.204 =
•	-1 • Aerobic System		3,108,000 		280,000 c 1,020,000 1,300,000 Lts	8,958,000 Lts		nent 418,000 84,000 nt 106,000 kwH/ycar 608,000 kwH/ycar	= 124,000 Lts/year
	Case-1 Anaerobic - Anoxic - Aerobic System	- Scondary Treatment and Discharge Pump	Civil/Architect Mechanic/Electric Sub-Total	- Tertiary Treatment	Civil/Architect Mechanic/Electric Sub-Total	Total		- Demand Secondary Treatment Discharge Pump Tertiary Treatment	- Electricity Charge 608,000 x 0.204 =
	ltem	6. Construction Cost					7. Operation and Maintenance Cost	1) Power Consumption	

)

ltem	Case-1 Anaerobic - Anoxic - Aerobic System	oic System	Case-2 Oxidation Ditch System	vstem	Remarks
 Chemical Consumption 	- Alum Oxichloride : 17,400 kg/year 17,400 x 0,424 =	r 7,378 Lts/year	- Alum Oxichloride : 86,900 kg/year 86,900 x 0.424 =	ear 36,846 Lts/year	For annual average consumption
	Transportation 17,4 x 1/11 = 1.6 140 km x 2 x 1.3 =	2 times 364 Lts/year	Transportation 86.9 x 1/11 = 7.9 140 km x 8 x 1.3 =	8 tímes 1,456 Lts/year	Alum-Oxichloride 0.424 Lts/kg Transportation 11 ton, 1.3 Lts/km (Aug. 1998)
	- Polymer : 2,500 kg/year 2,500 x 25 = Total	62,500 Lts/year 71,000 Lts/year	- Polymer : 2,500 kg/year 2,500 x 25 = Total	62,500 Lts/year 101,000 Lts/year	Polymer 25 Lts/kg, including transportation
3) Fuel	- 100 Lts/wk x 52 =	5,000 Lts/year	- 100 Lts/wk x 52 =	5,000 Lts/year	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4) Consumable Parts and Repairing	- Secondary/Discharge Pump 4,550,000 x 0.015 =	68,250 Lts/year	 Secondary/Discharge Pump 4,182,000 x 0.015 = 	62.730 Lts/year	1.5 %/year of M/E construction cost
	- Tertiary Treatment <u>1.020,000 x 0.015 =</u> Total	15.300 Lts/year 84,000 Lts/year	- Tertiary Treatment <u>1.020.000 x 0.015 =</u> Total	15,300 Lts/year 78,000 Lts/year	
5) Total		284,000 Lts/year		299,000 Lts/year	

(8/8)

ŧ.

ł

(