# JAPAN INTERNATIONAL COOPERATION AGENCY MINISTRY OF ENVIRONMENT THE REPUBLIC OF LITHUANIA

# STUDY ON THE SEWERAGE SYSTEM IMPROVEMENT OF

# BIRZAI AND SKUODAS TOWN IN THE REPUBLIC OF LITHUANIA

# **FINAL REPORT**

# **VOLUME III**

SUPPORTING REPORT (BIRZAI)



NIPPON JOGESUIDO SEKKEI CO., LTD.

SSS JR 99-025

EXCHANGE RATE US\$ 1.0 = Litas 3.99 = Yen 117.71 (As of February 1999) 4

(\_\_\_\_\_

# JAPAN INTERNATIONAL COOPERATION AGENCY MINISTRY OF ENVIRONMENT THE REPUBLIC OF LITHUANIA

)

# STUDY ON THE SEWERAGE SYSTEM IMPROVEMENT OF BIRZAI AND SKUODAS TOWN IN THE REPUBLIC OF LITHUANIA

# **FINAL REPORT**

# **VOLUME III**

SUPPORTING REPORT (BIRZAI)

FEBRUARY 1999

NIPPON JOGESUIDO SEKKEI CO., LTD.



# SUPPORTING REPORT (BIRZAI)

)

j

)

# TABLE OF CONTENTS

| 1  | Water Sampling and Water Quality Analysis Results1-1                 |
|----|----------------------------------------------------------------------|
| 2  | Existing Pump Station Check List                                     |
| 3  | Comparison of Treatment Plant Alternatives                           |
| 4  | Capacity Calculation for Birzai Treatment Plant (Case 1)             |
| 5  | Capacity Calculation for Birzai Treatment Plant (Case 2)             |
| 6  | Capacity Calculation for Birzai Treatment Plant (Tertiary Treatment) |
| 7  | Topographic Survey Map                                               |
| 8  | Soil Investigation Result                                            |
|    | 8-1 Location Map                                                     |
|    | 8-2 Geological symbols and characteristics of soil                   |
|    | 8-3 Geological section (1/12 – 12/12)                                |
| 9  | Operation and Maintenance Check List                                 |
| 10 | Cost Estimates                                                       |
| 11 | Financial Analysis Calculation11-1                                   |
| 12 | Supporting Report for the Environmental Impact Assessment            |

1. Water Sampling and Water Quality Analysis Results

•

## Supporting Report (Birzai) Water Sampling and Water Quality Analysis

Table of Contents

- - 1.2 PRESENT SYSTEM OF FLOW MEASUREMENT
  - 1.3 PRESENT WATER QUALITY STANDARDS AND CRITERIA
  - 1.4 JICA SURVEY

)

)

)

# 2. WATER QUALITY SURVEY FOR THE PROJECT IN BIRZAI ......1-4

- 2.1 PRESENT CONDITIONS RELATED TO THE SURVEY IN BIRZAL
  - 2.1.1 River System and Lakes
  - 2.1.2 River Runoff Data
- 2.2 EXISTING WATER QUALITY RECORDS IN BIRZAI
- 2.3 WATER QUALITY SURVEY IN BIRZAI BY JICA STUDY TEAM
  - 2.3.1 Water Sampling and Laboratory Tests
  - 2.3.2 Results of Water Quality Analysis
- 2.4 EVALUATION OF WATER QUALITY FOR BIRZAI
- 3. RECOMMENDATION FOR IMPROVING WATER ENVIRONMENT .......1-17

E

#### 1 GENERAL

## ()

)

)

#### **1.1 PRESENT SYSTEM FOR WATER QUALITY SURVEY AND MANAGEMENT**

The present system for the water quality survey is summarized as follows:

(a) River

Regional offices of the MOB are in charge of water sampling and taboratory testing for their respective control areas (municipalities). Each regional office carries out the sampling and tests directly, or requests the local Water Company to perform the survey in its area. The results are regularly submitted to the Combined Research Center of MOE in Vilnius. The research center compiles all the data collected from the regional offices and inputs them in their computer data base system.

In regard to environmental management, the municipality of Birzai falls under jurisdiction of the Panevėžys Regional office of the MOE. The municipality of Skuodas falls under jurisdiction of the Klaipėda Regional office.

There are 47 rivers and 99 sampling stations in the country used for the water quality survey by the MOE. Sampling stations related to the proposed project are as follows:

- The Tatula River (Birzai): 3 locations (1.8 km, 17.5 km and 18.8km from the confluence with the Musa river)
- The Bartuva River (Skuodas): 2 locations (48 km and 55 km from the river mouth)

The sampling locations were selected at significant places including both up-anddownstream sides of discharge points of effluent. The location map for the water sampling stations by MOE is shown in Figure 1.1.

# (b) Lake/Reservoir/Pond

In Lithuania, there are 2,834 lakes over 0.5 ha in surface area. Among them, seven lakes were selected by the MOE for water quality surveys. The lakes in and around Birzai as well as Skuodas were not included.

In Birzai and Skuodas, water quality surveys in the lakes/reservoirs/ponds are carried out by the MOH but only for locations where people enjoy water recreation, mostly swimming. Testing is usually limited to bacteria. Sampling period is generally only the summer season. The Sirvenos Lake in Birzai and the Skuodas Lake in Skuodas are included in the locations sampled by the MOH.

#### (c) Groundwater

There are two organizations in charge of sampling and water quality surveys of groundwater. National groundwater monitoring is performed by the Geological Survey of Lithuania (MOE) and is financed from the national budget. Groundwater monitoring for waterworks is under the responsibility of the companies carrying out groundwater exploitation.

Ì

The national groundwater monitoring covers 42 monitoring stations including those in Birzai and Skuodas. In Karajimiskis village located west of the Birzai town, there are eight wells, which have been monitored since 1979. In Rusupiai village located east of the Skuodas town, there are two monitoring wells installed since 1962. The location map of these wells is shown in Figure 1.2.

#### (d) Sewage Treatment Plant

The Water Company is in charge of conducting water quality surveys at the STPs. In Birzai, the State Company "Agro Labo" carries out the water sampling and analyses. In Skuodas, "PALANGOS LABORATORIJA" carries out the sampling and analyses under direction of the Water Company in Palanga. The Water Companies in Birzai and Skuodas cooperate in the survey and receive the results. The location map of the sewage treatment plant is shown in Figure 1.3.

#### (e) Major Pollution Sources

There are several major pollution sources in Birzai as well as in Skuodas, such as factories, hospitals, restaurants and schools. Sampling and analyses at these locations are the same as those for the sewage treatment plants. The location map of major pollution sources (together with STP locations) is shown in Figure 1.3.

#### 1.2 PRESENT SYSTEM OF FLOW MEASUREMENT

The Meteohydrological Service (MOE) carries out river flow measurement. The Meteohydrological Service was formerly an independent organization during the Soviet period but now belongs to the MOE. There are 76 river flow measurement stations in the country. Many of them have comparatively long-term records (nearly 30 years or more). The location map of flow measurement stations in Lithuania is shown in Figure 1.4. Periods of flow measurement of the rivers in the project area are shown in Figure 1.5. The following rivers are included:

- (a) Apascia River
- (b) Agluona River
- (c) Tatula River
- (d) Bartuva River

#### 1.3 PRESENT WATER QUALITY STANDARDS AND CRITERIA

The Republic of Lithuania intends to become an official member country of the EU. It is therefore necessary for Lithuania to adjust to the EU water quality standards although the EU water registration methods are currently undergoing a fundamental reappraisal.

The order of MOE called "Waste Water Pollution Standards (LAND 10-96)" was approved in July 1997. The standards aim at setting water quality improvement goals and regulating pollution of inland and territorial waters by domestic and industrial waters. There are two categories of standards as follows:

- (a) Main standards for pollutants for wastewater discharged to surface waters
- (b) Pollution standards for wastewater discharged into municipal sewer collection system

The essential parts of "LAND 10-96" are presented in Table 1.1.

The water quality standards for other sectors (drinking water, river water, lake water, groundwater, water for fish, source for water supply, etc.) are not yet updated. In general, the previous USSR standards are comparable with the standards and recommendations of HELCOM, EU, WHO, World Bank and other European countries.

The draft of "Drinking Water Standards" has been finalized and will be approved soon. The major parts of the drinking water standards (final draft) are presented in Table 1.2. Present river water quality is generally evaluated according to currently applied maximum allowable concentrations that conform to requirements of the fishing sector (shown in Table 1.3) and also water quality classifications (shown in Table 1.4). The river water quality standards currently used are those used during the previous USSR period and are based on the requirements for fish that live in clean water (such as trout and salmon).

In addition to the Lithuanian standards, the Japanese standards are attached for reference evaluation (see Sections 2.4 and 3.4) as follows:

- (a) Water Quality Standards for Rivers and Lakes/Ponds in Japan (Table 1.5)
- (b) Effluent Standards For Sewerage Systems in Japan (Table 1.6)

#### 1.4 JICA SURVEY

The Study Team conducted water sampling and water quality analysis, including flow measurement, of raw sewage, major pollution sources (factories), alternative rivers which could receive final effluent, and groundwater. Sampling and laboratory tests were sub-contracted to a local firm (VIKTA Laboratory, through UAB Ekoprojektas) under supervision of the Study Team.

)

3

ු

## 2 WATER QUALITY SURVEY FOR THE PROJECT IN BIRZAI

## 2.1 PRESENT CONDITIONS RELATED TO THE SURVEY IN BIRZAL

#### 2.1.1 River System and Lakes

The river systems and lake in and around Birzai town are shown in Figure 2.1. The major rivers related to the study are listed, in order, from east to west as follows:

E

- (a) The Roveja River
- (b) The Apascia River
- (c) The Agluona River
- (d) The Juodupe River
- (e) The Tatula River
- (f) The Sirverios Lake

# 2.1.2 River Runoff Data

The Meteohydrological Service (MOE) carries out river flow measurements at the following rivers:

- (a) The Apascia River
- (b) The Agluona River
- (c) The Tatula River

The flow measurement stations in Birzai are shown in Figure 2.2. The monthly mean discharge records at the flow measurement stations (including that in the Bartuva River) are summarized in Table 2.1. The runoff is relatively large from February to April and small from July to October.

The mean discharges together with the river lengths and catchment areas at the representative locations of the following rivers are summarized in Table 2.2.

- (a) The Roveja River
- (b) The Obelaukias River
- (c) The Apascia River
- (d) The Agluona River
- (e) The Juodupe River
- (f) The Tatula River

Note: The Bartuva and Luoba Rivers in Skuodas are also included in the table for reference.

In the table, the annual mean discharges of the Roveja, Obelaukias, and Juodupe Rivers are estimated by using the annual specific discharge of a river with long-term measurement records.

#### 2.1.3 Water Use

્ર

)

)

There are three kinds of water bodies; river, groundwater, and lake. Water bodies are used mainly for the following activities/purposes, at present.

#### (A) River water

(a) Water supply for irrigation/agricultural use

There are no intakes, as far as known from our field reconnaissance. If there is any, water intake from the river would be necessary only during the dry period in the spring and summer. The agricultural irrigation method used in Lithuania is mostly rainfed farming. The use of river water for agriculture is limited.

(b) Drainage

Rain water drains into the rivers or lake/ponds in Birzai, through drainage ditches and from the ground surface.

# (c) Recreation

Leisure fishing is popular in Lithuania. In Birzai, some locations along the rivers are used for fishing, but are limited in number. Boating and swimming has been seen but not is common along the river.

The river is not used for commercial fisheries, transportation, sand-mining or as a source of drinking water, at present.

#### (B) Groundwater

(a) Water supply for domestic and industrial use

The water supply source is primarily from groundwater. The public water supply and factories take water from deep wells. Individual houses without public water supply service take water either from deep or shallow wells.

(b) Water supply for irrigation use No definite information was obtained on agricultural use of groundwater, but a portion of the well water may be used for farming or landscaping.

(C) Lakes

(a) Water Supply

Water from the lake is not used as a water supply for domestic use. Some factories may use the water for industrial use.

(b) Drainage

Some rainwater drains into the Sirvenos Lake directly through ditches and the ground surface. The Apascia and Agluona Rivers drain into the lake.

(c) Recreation

Leisure fishing, boating and swimming are popular in summer.

# 2.2 EXISTING WATER QUALITY RECORDS IN BIRZAI

The existing water quality records are classified as follows:

- (a) River water
- (b) Lake/Reservoir/Pond water
- (c) Groundwater
- (d) STP wastewater
- (e) Pollution sources

(1) Existing Water Quality Records for River Water

The annual records (1994-1997) for river water quality obtained from the MOE are presented in the tables listed as follows:

(a) The Tatula River (1.8 km from the confluence to the Musa River);

Tables 2.3 - 2.6

- (b) The Tatula River (17.5 km from the confluence to the Musa River); Tables 2.7 – 2.10
- (c) The Tatula River (18.8 km from the confluence to the Musa River); Tables 2.11 – 2.14

Summaries of river water quality records (1994-1997) at the respective stations are presented in the following tables:

- (a) The Tatula River (1.8 km from the confluence to the Musa River); Table 2. 15
- (b) The Tatula River (17.5 km from the confluence to the Musa River); Tables 2.16
- (c) The Tatula River (18.8 km from the confluence to the Musa River); Tables 2.17

(2) Existing Water Quality Records for Lake/Reservoir/Pond

There are records of bacteria present for the Sirvenos Lake from the Human Health Center of MOH in Birzai as shown in Table 2.18.

# (3) Existing Water Quality Records for Groundwater

The summarized records, in the annual report (1996) prepared by the Geological Survey of Lithuania (MOE), are presented in Table 2.19 as a representative of the existing water quality records for groundwater.

Beside the above, the survey results for the Birzai area in 1994 showed the following conditions:

| Item                                                   | Urban area | Surrounding area |
|--------------------------------------------------------|------------|------------------|
| Total No. of well surveyed                             | 13 wells   | 6 wells          |
| Exceeding the standard of NO2- N (45mg/l)              | 9 wells    | 2 wells          |
| Exceeding the standard of NO <sub>3</sub> -N (3.3mg/l) | 1 well     | 0                |
| Exceeding the standard of NH <sub>4</sub> -N (2.0mg/l) | 2 wells    | 1 well           |

(4) Existing Water Quality Records for the STP Wastewater

The water quality monitoring records for the STP are presented in Table 2.20.

(5) Existing Water Quality Records for Pollution sources

The water quality monitoring records at various pollution sources (taken by the Water Company) are summarized as shown in Table 2. 21.

# 2.3 WATER QUALITY SURVEY IN BIRZAI BY THE JICA STUDY TEAM

# 2.3.1 Water Sampling and Laboratory Tests

Water sampling points in Birzai are shown in Figure 2.3. Items for water quality testing were selected in consideration of the study and the conditions at the pollution sources as follows:

(a) Raw Sewage (at STP and factories)

For all samples

Water temperature, pH, Suspended Solids, BOD (Total), BOD (Soluble), COD, Total-

N, PO<sub>4</sub>-P, Total-P, and Influent flow measurement (at STP)

For samples an selected days

NH4-N, NO2-N, NO3-N, Cl', ABS, DO, Oil, Total coliforms, and Alkalinity (as CaCO3)

(b) River/Lake Water

Water temperature, Color, Odor, pH, Transparency, Electric Conductivity, Suspended Solids, BOD, COD, Total-N, PO<sub>4</sub>-P, Total-P, Flow Measurement, NH<sub>4</sub>-N, NO<sub>2</sub>-N, NO<sub>3</sub>-N, CI, ABS, DO, Oil, and Total coliforms

(c) Ground Water Quality

Water temperature, Color, Odor, p11, Transparency, Electric Conductivity, Suspended Solids, BOD, COD, Total-N, PO<sub>4</sub>-P, Total-P, Flow Measurement, NH<sub>4</sub>-N, NO<sub>2</sub>-N, NO<sub>3</sub>-N, CF, ABS, DO, Oil, Total coliform group

ŧ

i.

The sampling locations and frequency were selected as follows:

(a) Raw Sewage (at STP and factories)

1) Point of inflow at the Treatment Plant

4 days (2 days/month x 2 months)

13 samples/day (every 2 hours for 24 hours)

Total = 52 samples

2) Point of discharge at the dairy products factory

4 days (2 days/month x 2 months)

5 samples/day (every 2 hours from 8:00 to 16:00 hours)

Total = 20 samples

3) Point of discharge at the brewery

4 days (2 days/month x 2 months)

5 samples/day (every 2 hours from 8:00 to 16:00 hours)

Total = 20 samples

#### (b) River/Lake Water

Sampling was carried out in the following rivers and locations:

- 1) The Roveja River; at approximately 2 km upstream of the dairy factory
- The Apascia River; at a bridge approximately 0.5km upstream of Sirvenos Lake
- The Agluona River ; at a bridge approximately 1km upstream of Sirvenos Lake
- 4) The Tatula River, at approximately 0.5 km upstream from the confluence with the Juodupe River.
- 5) The Tatula River; at approximately 0.5km downstream from the confluence with the Juodupe River
- 6) The Juodupe River; at approximately 0.1 km upstream of the discharge point from the existing STP.
- 7) The Juodupe River, at approximately 0.1km downstream of the discharge point from the existing STP

The sampling and frequency were selected as follows:

2 days/month (one each for dry and rainy weather) x 2 months

I sample/day

Total = 4 samples/point

Note: For the Juodupe River, only one sample per month at the two locations.

(c) Ground Water Quality

)

()

8

Sampling was carried out from the following wells:

- 1) North side of Sirvenos Lake
- 2) In the town area
- 3) Southside of the town
- 4) At approximately 2 km southwest of town.
- 5) At approximately 5 km west of town

The sampling and frequency were selected as follows::

3 days/month

1 sample/day

Total = 3 samples/point

The following tables show summaries of the survey, which are explained above.

(a) Quantity of Water Quality Survey (Table 2.22)

(b) Summary of Water Sampling Date (Table 2.23)

# 2.3.2 Results of Water Quality Analysis

The survey results obtained are presented in the following tables:

- (a) S.T.P Influent (Tables 2.24 to 2.27)
- (b) Dairy Factory Effluent (Tables 2.28 to 2.31)
- (c) Brewery Effluent (Tables 2.32 to 2.35)
- (d) Rivers (Tables 2.36 to 2.42)
- (e) Groundwater (Tables 2.43 to 2.47)
- (f) Lake (Tables 2.48 and 2.49)

A summary of the records was prepared as follows:

- (a) S.T.P Influent (Table 2.50)
- (b) Dairy Factory Effluent(Table 2.51)
- (c) Brewery Effluent(Table 2.52)
- (d) Rivers(Table 2.53)
- (e) Groundwater (Table 2.54)
- (f) Lake (Table 2.55)

In addition to above, results of the water quality tests for the supernatant of raw sewage, which were taken and settled in 1 litter cylinder by the Study Team staff at the STP, are shown in Table 2.56. The test was carried out additionally for preliminary design of the STP.

#### 2.4 EVALUATION OF WATER QUALITY FOR BIRZAU

An evaluation was made against the water quality standards as explained in Section 1.3. Essential and representative parameters, for which standards are available, were selected for evaluation. In addition, mean values are used for comparison with the standards. The maximum and minimum values are not always reliable to use in evaluations, mainly due to an occasional inaccuracy in sampling and testing.

The evaluation is to be carried out in the following manner:

- (a) Comparison of the existing records with the standards,
- (b) Comparison of the JICA survey results with the standards(and/or the existing records), and

- (c) General evaluation based on the comparison.
- (1) Birzai Sewage Treatment Plant

The evaluation was made using the "Waste Water Pollution Standards (LAND 10-96)" as discussed in Section 1.3.

(a) Comparison of the existing records with the standards

|                  | -                |                   | Unit: mg/l            |
|------------------|------------------|-------------------|-----------------------|
| Item             | Inflow<br>(Mean) | Outflow<br>(Mean) | Standard<br>(Outflow) |
| BOD <sub>7</sub> | 509.8            | 194.0             | 15                    |
| SS               | 239.8            | 61.7              | 30                    |
| T-N              | 43.9             | 32.4              | 20                    |
| T-P              | 5.0              | 3.9               | 15                    |

Summary of the existing records (STP, Birzai)

Note: The values in italic and bold exceed the standard.

(b) Comparison of the JICA survey results with the existing records

Summary of JICA survey records (STP, Birzai)

|       | Unit: m       | g/l |
|-------|---------------|-----|
| Items | Inflow (Mean) |     |
| BOD 7 | 255.6         |     |
| SS    | 216.5         |     |
| T-N   | 29.5          |     |
| T-P   | 6.1           |     |

Note: The JICA survey was carried out at the STP only of the influent.

#### (c) General Evaluation

As seen in the tables above, it is apparent that the existing STP can not reduce the pollutants to the required standards. The concentrations of all major parameters shown are higher than the standards; approximately 1.5 times for T-P, approximately 2 times for SS and T-N, and approximately 13 times for BOD7.

Although the JICA survey does not include testing the effluent from the STP, the test results of inflow are almost at the same level as those monitored by the MOE. Only the mean concentration of BOD, is nearly a half that monitored by the MOE. The test results vary remarkably depending on the conditions at the time of sampling. Accordingly, it would be reasonable that the results of the MOE's monitoring with relatively long-term records are used for the basic parameters in design of the STP.

# (2) Factories

Ì

)

The evaluation was to be made using the "Waste Water Pollution Standards (LAND 10-96)" as discussed in Section 1.3.

(a) Comparison of the existing records with the standards

# Summary of Existing records (Effluent to the sewerage system from Factorics, Birzai)

Unit: mg/l

| Item             | Brewery | Canned | Diary | Standard    | Standard |
|------------------|---------|--------|-------|-------------|----------|
|                  |         | Food   |       | (Lithuania) | (Japan)  |
| BOD <sub>1</sub> | 715     | 231    | 702   | -           | 600      |
| SS               | 251     | 83     | 163   | -           | 600      |

(b) Comparison of the JICA survey results with the standards

### Summary of JICA survey records (Effluent to the sewerage system from Factories, Birzai)

unit: mg/l

|                  | Brewery | Diary | Standard,<br>(Lithuania) | Standarð<br>(Japan) |
|------------------|---------|-------|--------------------------|---------------------|
| BOD <sub>7</sub> | 2,918   | 989   | -                        | 600                 |
| COD              | 8,712   | 2380  | -                        | -                   |
| COD/BOD          | 2.98    | 2.40  | < 2.5                    | -                   |
| pH               | 5.9     | 8.5   | 6.5 - 9.0                | 5.0 - 9.0           |
| SS               | 821     | 394   | *                        | 600                 |

#### (c) General Evaluation

As the data from the Water Company is limited in number and the concentrations are less than those of the JICA surveys. The evaluation was made on the basis of the results of the JICA survey.

The Lithuanian standards are only available for the ratio of COD/BOD and pH. Effluent from the brewery exceeds the limit of the standards for both the COD/BOD ratio and pH. Effluent from the dairy factory is within the limit based on evaluation of the mean concentration.

The effluent concentration from the dairy factory is comparatively less than that from the brewery. It is however noted that effluent flow is remarkably high from the dairy factory. The annual effluent volume is approximately 100,000 m<sup>3</sup> from the dairy factory compared to approximately 27,000 m<sup>3</sup> from the brewery. Therefore, the total volume of pollutants is higher from the dairy factory.

# (3) River

The evaluation was made using the "River Water Quality Standards" currently applied and the "River Water Classification" as presented in Section 1.3.

(a) Comparison of the existing records with the standards

## Summary of Existing records (River, Birzai)

unit: mg/l

.

(

| Item                             | Tatula | Tatula               | Tatula                   | Standard |
|----------------------------------|--------|----------------------|--------------------------|----------|
|                                  | 1.8 km | 17.5 km              | 18.8 km                  |          |
| DO                               | 7.3    | 5.7                  | 22.4                     | >6       |
| BOD,                             | 2.53   | 17.20                | 4.70                     | 2.3      |
| NH4-N                            | 3.02   | 6.92                 | 0.83                     | 0.39     |
| NO <sub>2</sub> -N               | 0.19   | 17.03                | 0.02                     | 0.02     |
| T-N                              | 3.46   | 8.29                 | 4.17                     | 2.0      |
| PO <sub>4</sub> -P               | 1.40   | 2.79                 | 0.19                     | 0.08     |
| T-P                              | 0.34   | 1.09                 | 0.20                     | 0.2      |
| River Water Index<br>(BOD range) | Clean  | Very<br>contaminated | Slightly<br>Contaminated | -        |

Note: Values in italic and bold exceed the standard,

## (b) Comparison of the JICA survey results with the standards

#### Summary of JICA survey records (River, Birzai)

|                    |        |         |         |        |          |         | U        | Init: mg/l |
|--------------------|--------|---------|---------|--------|----------|---------|----------|------------|
| Item               | Rousia | Anosoio | Agluona | Tatula | Tatula   | Juodupe | Juodupe  | Stan-      |
| нен                | Roveja | Apascia | Agiuona | Up.    | Down,    | Up.     | Down     | dards      |
| DO                 | 6.38   | 6.9     | 4.93    | 6.93   | 5.62     | 7.39    | 1.08     | > 6        |
| BOD <sub>1</sub>   | 1.84   | 3.15    | 2.21    | 2.07   | 4.22     | 0.62    | 8.50     | 2.3        |
| NH <sub>4</sub> -N | 2.05   | 0.58    | 0.46    | 0.33   | 0.95     | 0.16    | 26       | 0.39       |
| NO <sub>2</sub> -N | 0.008  | 0.022   | 0.05    | 0.015  | 0.83     | 0.01    | 0.01     | 0.02       |
| T-N                | 3.8    | 2.55    | 3.78    | 6.13   | 5.44     | 9.4     | 36.2     | 2.0        |
| PO <sub>4</sub> -P | 0.02   | 0.03    | 0.02    | 0.03   | 0.22     | 0.05    | 0.29     | 0.08       |
| T-P                | 0.076  | 0.09    | 0.098   | 0.115  | 0.31     | 0.06    | 2.4      | 0.2        |
| River              | Very   | Clean   | Very    | Very   | Slightly | Very    | Medium   | -          |
| Water              | clean  |         | clean   | clean  | Conta-   | clean   | contami  |            |
| Index              |        |         |         |        | minated  | 1       | nated    |            |
| (BOD)              |        |         | ł       |        |          |         | <u> </u> |            |

Note: Values in italic and bold exceed the standard.

la Tatula

(c) General Evaluation

The existing records of the MOE for the Tatula River only show the following:

- The stretch upstream (18.8 km) of the confluence with the Juodupe River is slightly polluted and the values of BOD, NH<sub>4</sub>-N, T-N, PO<sub>4</sub>-P and T-P exceed the allowable standards. The pollution possibly comes from the towns and villages located upstream.
- 2) The downstream stretch (17.5 km) after the confluence with the Juodupe River is very polluted and all parameters exceed the limits. The change in water quality caused by contamination is very clear.
- 3) In the further downstream stretch (1.8 km), near the confluence to the Musa River, the river is still polluted and the values of BOD, NH<sub>4</sub>-N, NO<sub>2</sub>-N, T-N, PO<sub>4</sub>-P and T-P still exceed the limits. The contamination level, however, is remarkably improved due to the natural dilution especially from additional flow from the tributaries along the way and is classified as a "clean" river..

The JICA survey results show the following:

- 1) The Roveja River is not polluted while only the T-N exceeds the allowable limits.
- 2) The Apascia and Agluona Rivers are classified as clean rivers, however the values of BOD, NH<sub>4</sub>-N, NO<sub>2</sub>-N and T-N exceed the limit in the Apascia River and the values of DO, NH<sub>4</sub>-N, NO<sub>2</sub>-N and T-N exceed the limits in the Agluona River.
- 3) In the Tatula River, the downstream stretch of the confluence with the Juodupe River is polluted and all the parameters exceed the limits. The upstream stretch is still clean and only the parameter of T-N exceeds the limit.
- 4) In the Juodupe River, the change of contamination is more apparent. The downstream stretch from the discharge point of effluent is polluted and all the parameters, except NO<sub>2</sub>-N, exceed the standards. It is probable that the actual NO<sub>2</sub>-N is also over the limit as the sampling in the Juodupe River was carried out only once. In the upstream stretch, only T-N exceeds the limit.

## (4) Groundwater

)

)

The evaluation was made on the basis of the draft standards for drinking water presented in Section 1.3. Groundwater is the source of drinking water. Only iron removal is provided for water supply.

(a) Comparison of the existing records with the standards

# Summary of Existing records (Groundwater, Birzai)

Unit: mg/l

ł

| T4                | Damas of the Acad magnitude | Standard  |      |               |  |
|-------------------|-----------------------------|-----------|------|---------------|--|
| Item              | Range of the test results   | Excellent | Good | Satis-factory |  |
| NH <sub>4</sub> + | 0 2.985                     | 0.5       | 1.0  | 2.0           |  |
| Cľ                | 4.97 30.17                  | 25        | 100  | 250           |  |
| SO42.             | 51 1,283.85                 | 150       | 250  | 450           |  |
| NO <sub>3</sub>   | 0 15.983                    |           | 50   |               |  |
| NO <sub>2</sub>   | 0 1.36                      |           | 0.1  |               |  |

Note: Values with italic and bold exceed the (Satisfactory level) standard

(b) Comparison of the JICA survey results with the standards

|                   |       |       |       |       |       |                |          | Unit: m           |
|-------------------|-------|-------|-------|-------|-------|----------------|----------|-------------------|
|                   | GW1   | GW2   | GW3   | GW4   | GW5   |                | Standard |                   |
|                   |       |       |       |       |       | Exce-<br>llent | Good     | Satis-<br>factory |
| NH <sub>4</sub> + | 0.41  | 1.14  | 0.47  | 0.16  | 0.17  | 0.5            | 1.0      | 2.0               |
| Cl-               | 39.8  | 13.62 | 29.76 | 34.23 | 71.93 | 25             | 100      | 250               |
| pН                | 7.99  | 7.95  | 8.01  | 7.74  | 7.92  | 7.0-8.2        | 6.5-9.0  | 6.0-9.0           |
| NO <sub>3</sub> . | 0.53  | 0.15  | 0.93  | 1.09  | 17.1  |                | 50       | •                 |
| NO5               | 0.001 | 0.003 | 0.001 | 0.011 | 0.013 | 1              | 0.1      |                   |

# Summary of JICA survey records (Groundwater, Birzai)

#### (c) General Evaluation

Groundwater is used for drinking water and has three allowable limit classes.

According to the records from the Geological Survey (MOE), some cases show the values of  $NH_4^+$ ,  $NO_2^-$  and  $SO_4^{2^-}$  exceeding the specified limits. There are three cases for  $NH_4^+$ , two cases for  $NO_2^-$  and 10 cases for  $SO4^{2^-}$  among the 16 cases in total.

In the JICA survey, all the test results are within the limit of allowable standards.

In case of  $NH_4$ +, four locations are classified as excellent while one location is satisfactory. In case of CI, one location is excellent; and four locations are good. For pH, all the locations are within the excellent level.

Water quality of the groundwater varies remarkably during the year as well as by location. Long-term records by the Geological Survey has indicated that the groundwater in the area is not always safe for drinking.

(5) Lake

An evaluation was made on the basis of the standards currently applied for river water (shown in Section 1.3), as no separate standards are set for lake water.

(a) Comparison of the existing records with the standards

As seen from Table 2.18, it is difficult to show the mean results.

The results are shown as follows:

Summary of Existing records (the Sirvenos Lake, Birzai)

Unit: Coli-index number

| Year            | Monitoring<br>Frequency | Maximum (Coliform) |                    | Maximum (Coliform) |   | Frequency e<br>exceeding<br>(10,1 | g the limit |
|-----------------|-------------------------|--------------------|--------------------|--------------------|---|-----------------------------------|-------------|
|                 |                         | Central<br>Beach   | Near<br>Youth Park |                    |   |                                   |             |
| 1993            | 14                      | 13,000             | 260,000            | 2                  | 3 |                                   |             |
| 1994            | 11                      | 20,000             | 324,000            | 1                  | 2 |                                   |             |
| 1995            | 10                      | > 2400             | > 2400             | -                  | - |                                   |             |
| 1996            | 11                      | > 2400             | 2,400              | -                  | - |                                   |             |
| 1997            | 9                       | > 2400             | 1,600              | -                  | - |                                   |             |
| 1998 (Mid. Aug) | 9                       | > 2400             | > 2400             | -                  | - |                                   |             |

Note: Frequency exceeding the limit is not clear since 1995 as the maximum records show only > 2400.

## (b) Comparison of the JICA survey results with the standards

#### Summary of JICA survey records (the Sirvenos Lake, Birzai)

|                                |        |         |                       | Unit: mg/                   |
|--------------------------------|--------|---------|-----------------------|-----------------------------|
| Item                           | At LW1 | At LW2  | Standard<br>Lithuania | Standard<br>Japan (Class A) |
| DO                             | 6.61   | 5.02    | > 6.0                 | 7.5                         |
| BOD <sub>7</sub>               | 3.72   | 3.41    | 2.3                   | -                           |
| NH <sub>4</sub> -N             | 0.47   | 0.47    | 0.39                  | -                           |
| NO2-N                          | 0.04   | 0.03    | 0.02                  | -                           |
| T-N                            | 1.51   | 2.1     | 2.0                   | 0.2                         |
| PO <sub>4</sub> -P             | 0.05   | 0.01    | 0.08                  | -                           |
| T-P                            | 0.12   | 0.07    | 0.2                   | 0.01                        |
| Total coliform<br>(MPN./100ml) | 70,000 | 430,400 | -                     | 1,000                       |

Note: Values in italic and bold exceed the Lithuanian standard.

#### (c) General Evaluation

The records from the MOH are as follows:

- 1) Coliform index varies depending upon the time the sampling is conducted.
- 2) The lake water is generally within the allowable level in regard to the coliform parameter although high index values occur occasionally.

The results of the JICA survey show the following matters:

1) At the location of LW1, the values of BOD, NH<sub>4</sub>-N, NO<sub>2</sub>-N and Total-coliform exceed the allowable limit.

- 2) At the location of LW2, the values of DO, BOD, NH<sub>1</sub>-N, NO<sub>2</sub>-N, T-N and Totalcoliform exceed the limit of the standards.
- 3) Although the levels are not yet high (except for total coliform), the lake has signs of pollution.
- Note: The results of total coliform seems too high. It is not clear whether the results happened due to the sampling method or the test analysis. It would be reasonable that the records from the MOH with long-term sampling are more reliable for the evaluation of total coliform.

9

# 3 RECOMMENDATION FOR IMPROVING WATER ENVIRONMENT

Water quality in the rivers receiving effluent from the existing treatment plant will be improved after completion of the new sewage treatment plants. The concentration of the effluent from the new treatment plant will be better than the allowable limits required in the "Waste Water Pollution Standards (LAND 10-96)". Some suggestions and recommendations, which are not described in the main report, are presented herein to ascertain the improvement as follows: (1) Reduction of Pollutants at the Pollution Sources

The types of pollution sources in the future will be basically the same as the present sources, although some changes will occur because of human and economic activities. The potential pollution sources are generally categorized as follows:

#### (a) Residential houses

The BOD level of sewage from residences is high when people use many kinds of high BOD consumables such as cooking oils, fat meats, and washing detergent. Although the population may not increase in the town, the concentration of pollutants in the effluent from individual house may sometime increase according to the improvement of living standards.

(b) Factories

)

)

The concentrations of BOD, COD, total solids, SS, dissolved solids, P, and N are generally high in the wastewater from factories. Toxic substances are occasionally discharged.

(c) Commercial/public facilities

Commercial wastes from offices, stores/shops, hospitals, hotels, markets, etc occasionally cause high concentration of water pollutants. In addition, toxic substances are occasionally included in the discharge from hospitals, clinics, petrol stations and a research center, if not properly controlled.

#### (d) Live-stock farm waste

The concentrations of BOD, COD, SS, P and N from pigs, cows, horses, chickens, etc. are generally high, although the number of live stock breeding farms are not high in, and around, the project areas.

(e) Agriculture activities

Farms generally use many kinds of agricultural chemicals such as fertilizers, weed killer and pesticides (Herbieides, insecticides, etc.), which generally contain toxic chemicals. Although it is understood that the use of these chemicals has decreased over the years due to strict regulation and control of their use.

- (f) Others
  - Forest (decaying debris from the forest/trees contain many substances such as P, K, Ca, Mg, Na, Cl, and N)

- Atmospheric fallout and rain (Fallout contains various kinds of substances such as acid chemicals, pesticides, heavy metals and radioactive substances.)

**(** 

- Construction waste
- Landfills and trash dumps
- Liquid waste ponds
- Road surface dust (from traffic)

Among the above, attention should be paid primarily to the discharges from industry (factories) and commercial/public facilities. The following is suggested:

- (a) Regular monitoring of water quality from potential pollution sources.
- (b) An inventory survey of pollution sources
- (c) Guidance for pollution sources to reduce the contaminants
- (d) Assisting in construction of pre-treatment facilities for the major industries
- (e) Promptly determining penalties and collecting fines when discharges exceed the allowable standards.

As seen from the test results, the wastewater concentrations discharged from the factories to the sewerage system exceed the standards. The high biological concentration of these discharges coming into the STP is one of the major problems.

(2) Treatment at Pollutant Sources without connecting to the Sewage System

There are some areas, in which industries, other facilities and houses will remain without a connection to the sewerage system after the completion of the project. It would be a significant cost to connect them to the network or take counter-measures to correct these situations. Water quality improvement should be considered on the same level for the whole town area. A comprehensive study will be required to identify and remedy these conditions. For example, the existing sludge/liquid waste ponds located outside of Birzai town should be eliminated as early as possible.

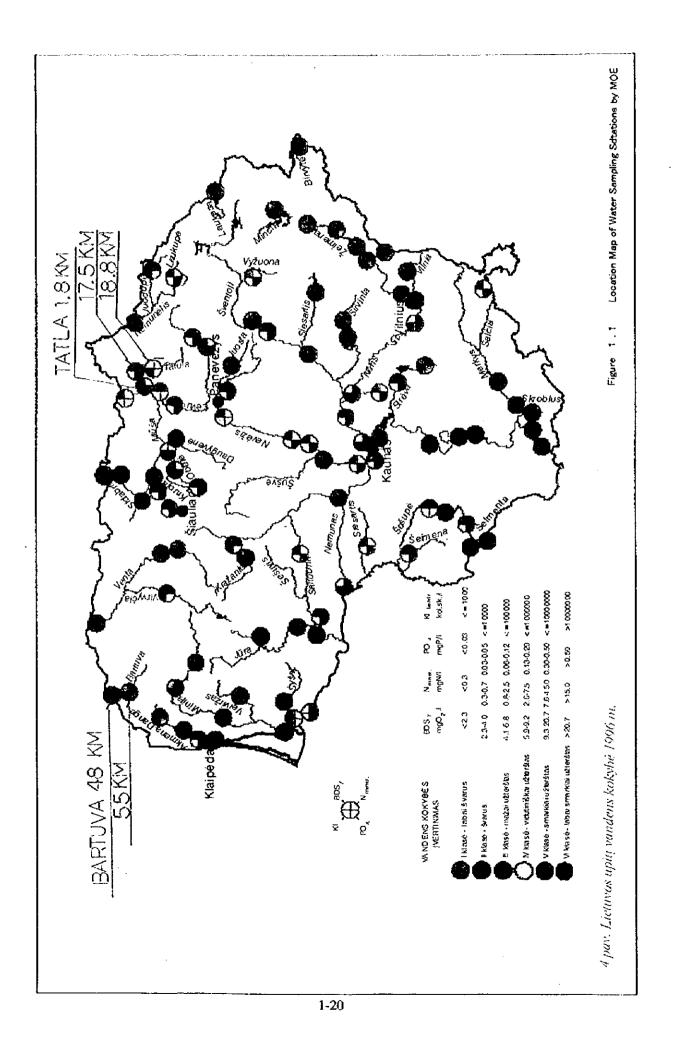
(3) Monitoring of Water Quality

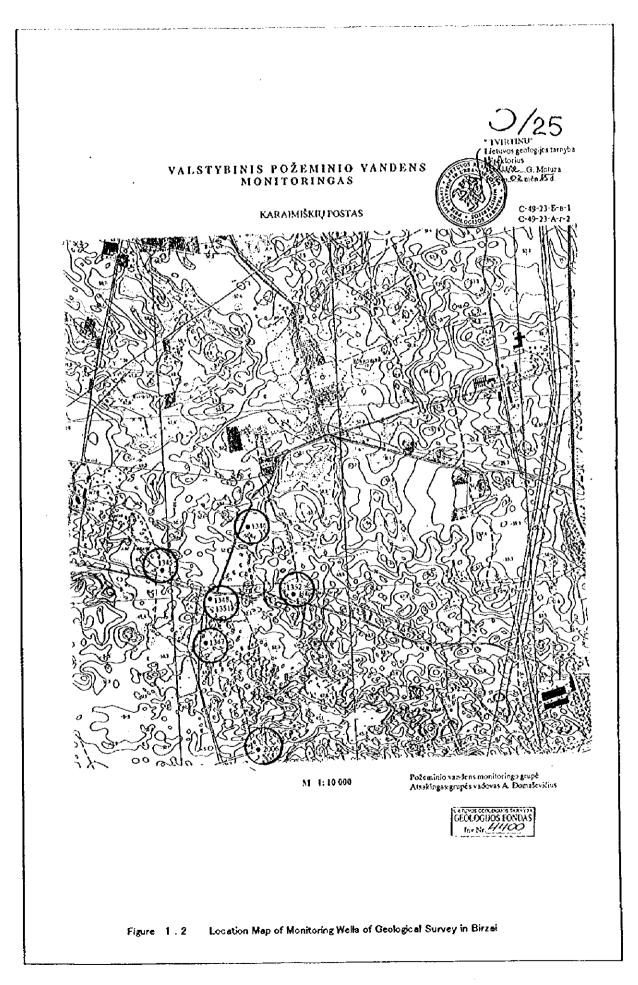
To assure the positive effects of the project, it is essential to continue regular monitoring of water quality, as follows:

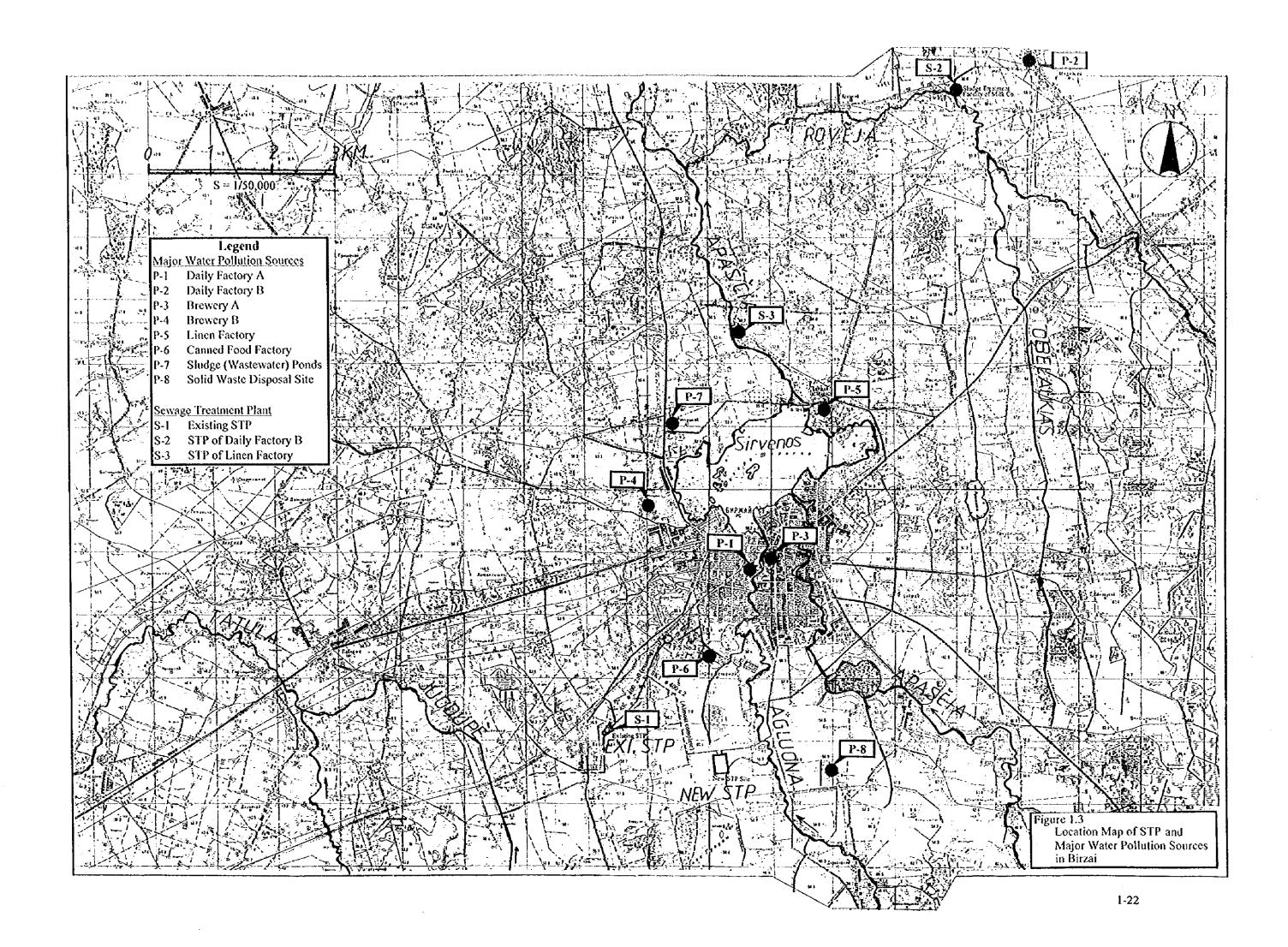
- (a) Daily monitoring <u>At STP</u> (See the main report.)
- (b) Periodical/Monthly monitoring <u>At STP</u> (See the main report.)

<u>At Major Pollution Sources</u> (Outflow to the sewerage system or the surface water) Item: (More parameters in addition to the currently tested ones, depending on the characteristics of the sources)

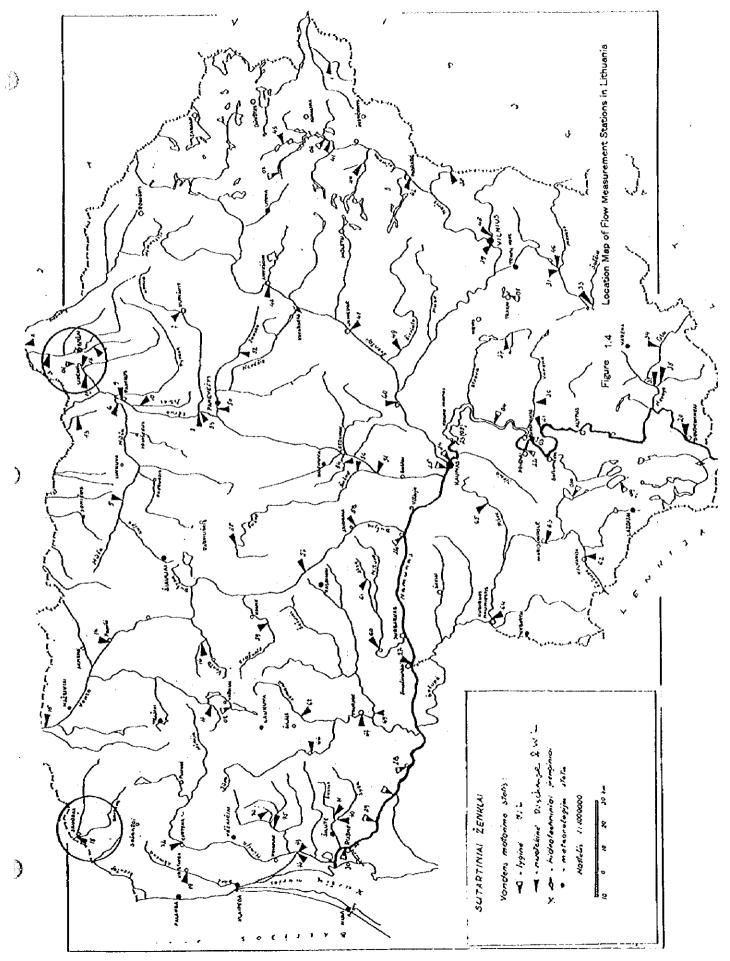
<u>At Rivers</u> (At up-and-downstream locations from the effluent discharge points in the Juodupe River for Birzai as well as in the Bartuva River for Skuodas) Item: (The same items currently used by the MOE, but additional parameters be required and a review is suggested)


Note: Monitoring at the Tatula River should be continued by the MOE. The locations for the Bartuva River can be adjusted to those used in the MOE monitoring.


# (4) Monitoring of Fishes in the Rivers


)

)


It is recommended that the number and variety of fish in the rivers receiving effluent from the sewage treatment plants be monitored. For example, clear evidence of improvement is certain if the number of crayfish increases after the new STP starts operation.







.



1-23

|         |                                              |         |      |      | 1    | Fig   | Figure 1.5 | 1.5  |       | Ĩ4       | No.  | Me       | Flow Measurement Leriou | enc                            |        |      | Į        |               |      |     |     |                                                                                                                                  |     |      |      |      |      |      |      |     |      |
|---------|----------------------------------------------|---------|------|------|------|-------|------------|------|-------|----------|------|----------|-------------------------|--------------------------------|--------|------|----------|---------------|------|-----|-----|----------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|------|------|------|-----|------|
|         | I acation of                                 |         |      |      |      |       |            |      |       |          |      |          | Flow                    | Flow Measurement Period (Year) | asur   | emer | at Pe    | poin          | ざと   | ច្ន |     |                                                                                                                                  |     |      |      |      | [    |      |      |     |      |
| River   | Casine Station 19681969197019711972197319741 | 1968196 | 5919 | 7019 | 7119 | 72/19 | 73/19      | 7419 | 75119 | 7619     | 7715 | 1824     | 21676                   | <u>380h</u>                    | 1186   | 9821 | 9831     | <u>8</u><br>1 | 9851 | 986 | 987 | 975 1976 11977 11978 11979 11980 11981 11982 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11995 11995 11995 11997 | 989 | 1990 | 1661 | 1992 | 1993 | 1994 | 2661 | 361 | 1997 |
|         | 0-0-0                                        |         | ╢──  | ┨    |      | ╂──   |            |      |       | <b> </b> |      |          |                         |                                | <br>   |      | <br>     |               |      |     |     |                                                                                                                                  |     |      |      |      |      |      |      |     |      |
| Apascia | Apascia Nausedziai                           |         |      |      |      |       |            |      | -     |          |      |          |                         |                                | $\neg$ | †    |          |               | -†   |     |     |                                                                                                                                  |     | T    |      |      |      |      |      |     |      |
| -       |                                              |         |      |      |      |       |            |      | _     |          |      |          |                         |                                | ┨      |      |          |               |      |     |     |                                                                                                                                  | T   | _[   |      |      |      |      |      |     |      |
| Aguona  | Aguona Duvonakiai                            |         |      |      |      |       |            |      |       |          |      | <i></i>  |                         |                                |        |      |          |               |      | -1  | -1  |                                                                                                                                  | Ì   |      |      |      |      |      |      |     |      |
|         |                                              |         | ┢─   | ┝    | ┢─   |       |            |      |       | -        |      |          | <br>                    |                                |        |      |          |               |      |     | ÷   |                                                                                                                                  |     |      |      |      |      |      |      |     |      |
| Tatula  | Tatula Trecionys                             |         | ┢    | ╉─   |      |       | ┨─         | ╟    | ╉─    | ╢        | ┢    |          | <b>[</b>                |                                |        | ┢┈   | <b> </b> |               |      |     |     |                                                                                                                                  |     |      | -    |      |      |      |      |     |      |
|         |                                              |         | +    |      |      |       | ╂╌╴        | +    |       | ┼╌       |      | <u> </u> | <b> </b>                | <u> </u>                       |        | ┢    |          |               |      |     |     |                                                                                                                                  |     |      |      |      |      |      |      |     |      |
| Bartuva | Bartuva Skuodas                              |         | ╋    | ╂─   |      |       | ┢          | ┢    | ┢──   | ┠──      |      |          |                         |                                |        |      |          |               |      |     |     |                                                                                                                                  |     |      |      |      |      |      |      |     |      |
|         | -                                            |         | {    | 1    |      |       |            |      |       | ł        |      |          |                         |                                |        |      |          |               |      |     |     |                                                                                                                                  |     |      |      |      |      |      |      |     |      |

# Fioure 1.5 Flow Measurement Period

1-24

## Table 1.1 (1/4) Effluent Stendards in Lithuania

ş

|                                        | Permissible rate |         |
|----------------------------------------|------------------|---------|
| Pollutants Item                        | Mean             | Maximum |
|                                        | mg/l             | mg/l    |
| BOD7                                   |                  |         |
| < 5m³/d                                | 30               | 50      |
| 5m <sup>3</sup> /d < and < 5,000people | 25               | 40      |
| 5,000 - 10,000 people                  | 20               | 30      |
| 10,000 people <                        | 15               | 25      |
| COD                                    |                  |         |
| < 10,000 people                        | 100              | 150     |
| 10,000 people <                        | 75               | 120     |
| Total P                                |                  |         |
| 10,000 people <                        | 1.5              | 2.5     |
| Total N                                |                  |         |
| 10,000 – 100,000 people                | 20               | 35      |
| 100,000 people <                       | 15               | 25      |
| SS .                                   |                  |         |
| < 100,000 people                       | 30               | 45      |
| 100,000 people <                       | 25               | 35      |

( Discharged into surface water reservoir )

)

1-25

## Table 1.1 (2/4) Effluent Stendards in Lithuania

| Pollutants Item           | Permissible rate | Remarks                               |
|---------------------------|------------------|---------------------------------------|
| Pollutants item           | mg/l             |                                       |
| Biogenic Item             |                  | · · · · · · · · · · · · · · · · · · · |
| Nitrites-N                | 1                | Average                               |
| Ammonium~N                | 5                | Average                               |
| Ion-organic item          |                  |                                       |
| Cd                        | 0.04             | Maximum                               |
| Gr                        | 0.5              | Maximum                               |
| Cr (6+)                   | 0.1              | Maximum                               |
| Cu                        | 0.1              | Maximum                               |
| Hg                        | 0.002            | Maximum                               |
| Ni                        | 0.2              | Maximum                               |
| Ръ                        | 0.1              | Maximum                               |
| Μα                        | 1                | Maximum                               |
| (Tin)                     | 1                | Maximum                               |
| V (Vanadium)              | 2                | Maximum                               |
| Zn                        | 0.3              | Maximum                               |
| AI                        | 0.5              | Maximum                               |
| Cyanides                  | 0.1              | Maximum                               |
| Active Chlorine           | 0.6              | Maximum                               |
| Chlorides                 | 500              | Maximum                               |
| Fluorides                 | 8                | Maximum                               |
| Sulphides                 | 0.5              | Maximum                               |
| Sulphates                 | 300              | Maximum                               |
| As (Arsenic)              | 0.05             | Maximum                               |
| Organic item (Detergents) |                  |                                       |
| Anionic                   | 1.5              | Maximum                               |
| Non-ionic                 | 2                | Maximum                               |
| Oil products              | 1                | Maximum                               |
| Phenols                   | 0.2              | Maximum                               |
| Fats                      | 1                | Maximum                               |

## (Discharged into surface water reservoir 2/2)

| ( Discharged into Sewera  | Permissible rate | Remarks |
|---------------------------|------------------|---------|
| Pollutants Item           | mg/l             |         |
| General item              |                  |         |
| COD/BOD7                  | < 2.5            |         |
| PH                        | 6.5 - 9          |         |
| Non-organic item          |                  |         |
| Cd                        | 0.1              | Maximum |
| Cr                        | 1                | Maximum |
| Cr (6+)                   | 0.2              | Maximum |
| Cu                        | 1                | Maximum |
| Hg                        | 0.01             | Maximum |
| : Ni                      | 0.5              | Maximum |
| РЬ                        | 0.6              | Maximum |
| Mn                        | 10               | Maximum |
| (Tin)                     | 2                | Maximum |
| V (Vanadium)              |                  |         |
| Zn                        | 1                | Maximum |
| Al                        |                  |         |
| Cyanides                  | 0.5              | Maximum |
| Active Chlorine           | 0.6              | Maximum |
| Chlorides                 |                  |         |
| Fluorides                 | 10               | Maximum |
| Sulphides                 | 2                | Maximum |
| Sulphates                 |                  |         |
| As (Arsenic)              | 0.1              | Maximum |
| Organic item (Detergents) |                  |         |
| Anionic                   | 10               | Maximum |
| Non-ionic                 | 15               | Maximum |
| Oil products              | 5                | Maximum |
| Phenols                   | 3                | Maximum |
| Fats                      |                  |         |

# Table 1.1(3/4) Effluent Standard in Lithuania ( Discharged into Sewerage System 1/1 )

)

| Effluent Standards in Lithuania |
|---------------------------------|
| (4/4)                           |
|                                 |
| Table                           |

| Immunication     A-4     Pesticides:     B.     Met       1     Azinphosetil     1     Aldrine     2     0       2     Azinphosetil     1     Aldrine     2     0       3     Phenitrotion     3     Endosulphane     3     4       4     Malation     4     Endosulphane     4     4       5     Paration     5     Dichlorphos     2     4       7     Paration     4     Endosulphane     4     4       1     Alation     4     Endosulphane     4     4       5     Paration     5     Dieldrine     3     4       7     Parationetil     3     Andosulphane     4       1     Tin tetrabutil     A-6     Other organic materials       1     Tin tetrabutil     3     Benzene     1       1     Tin tetrabutil     3     Benzene     1       2     Arazylontroluole)     5     Initrobenzene     1       3     Triputul tin compounds     5     Isoberretoluole)     1       3     Triputul     5     Initrobenzene     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                | e N |                        | QN | ltem                          | No.        | ltem                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------|-----|------------------------|----|-------------------------------|------------|----------------------------|
| Organia materials (substances)         Analytic (substances)         B.         Commounds thereof         B.         Commounds thereof           Organia materials (substances)         An2         Organia materials (substances)         An2         Organia prices         B.         Commounds thereof           Organia biolen compounds         An2         Organia prices         1         And the compounds         An4         Ferency and the compounds           I         Carloun tetrachlorido         1         Arian And the compounds         An4         Pentilipation         1         Hencury and the compounds           I         Control         2         Dishorphas         2         Dishorphas         2         Dishorphas         2         Earticlas         1         Hencury and the compounds         Hencury and t | 0Z     | Weth I                         |     |                        |    |                               |            | Metals and the non-organic |
| Organic halogen compounds:         A-2         Organic phosphor compounds:         A-4         Restury and<br>the compounds:         Mercury and<br>the compounds:           1         Carbon tetrachlorido         1         Azimphosetti         1         Addrine         1         thereof           2         Chloroform         2         Dichlorohosetti         1         Addrine         2         thereof           3         Dichlorohosetti         3         Plentiforio         3         Endosuphare         2         thereof           3         Dichlorohosetti         4         Endosuphare         2         thereof         2           4         Actoroficion         3         Plentiforion         3         thereof         2           5         Paration         4         Endosuphare         5         thereof         2           6         Hoasehlorobonsol         6         Paration         4         Acryton         4         Acryton           7         Cy-HCH)         7         Paration         5         Dictoroficion         2         4         Acryton           6         Hoasehlorobonsol         6         Paration         4         Acryton         5         Compands         5 <td>4</td> <td>Orvanic materials (substances)</td> <td></td> <td></td> <td></td> <td></td> <td>mi</td> <td>compounds thereof</td>                                                                                                                    | 4      | Orvanic materials (substances) |     |                        |    |                               | mi         | compounds thereof          |
| Organic halogen compounds:         A-2         Organic phosphor compounds         A-4         Pesticides:         1         the compounds           1         Carbon vetrachlorida         1         Acino hosphor compounds         1         Acino hosphor compounds         1         thereof         1         Cadmium and         1         Cadmium and         1         thereof         2         Cadmium and         1         Acino hosphor compounds         1         Acino hosphor         2         Chloroform         2         2         2         Chloroform         2         2         Chloroform         2         2         Chloroform         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                   |        |                                |     |                        |    |                               |            | Mercury and                |
| Organic halogen compounds:         A-2         Organic phosphor compounds         A-4         Pesticides:         1         Interest           1         Carbon tetrachlorida         1         Acimphosetali         1         Acimphosetali         1         Cadmium and<br>the compounds           2         Chloroform         2         Dieldrine         2         Dieldrine         2         Externedit         1         the compounds           2         Chloroform         2         Dieldrine         3         Endersteil         2         Externedit         2           3         2         Dieldrine         3         Endosubhane         5         Dieldrine         3         Externedit           4         Hexachlorothane         5         Peretionic         5         Dieldrine         4         Arternedit           7         Focombounds:         7         Acresterion         5         Dieldrine         4         Arternedit           8         Hexachlorothane         5         Peretion         4         Arternedit         5         Dieldrine         4         Arternedit           7         Hoxachlorothane         7         Arternedit         7         Arternedit         5         Diendi ppi                                                                                                                                                                                                                                          |        |                                |     |                        |    |                               |            | the compounds              |
| Laboration derivation     1     Autorhosetil     1     Addrine     2     Codmium and<br>the compounds       2     Chloroform     2     DioHorphos     2     DioHorphose     2     the compounds       3     1.2-Obromethane     3     Phenitrotion     3     Endosubhane     3     the compounds       3     1.2-Obromethane     3     Phenitrotion     3     Endosubhane     3     the compounds       4     2     2     2     2     2     3     the compounds       5     2     2     2     2     2     3     thereof       6     Hexachloranities)     4     Adiation     4     Aretime     4     Aretime       7     4     Malation     7     Areaction     3     Endosubhane     3     thereof       7     4     Hexachloranities)     4     Aredinine     3     thereof       8     Isoforme     7     Areaction     3     Endosubhane     4     Areaction       8     Isoformethane     8     Perationethyle     7     Areaction     2     Areaction       9     Perationethyle     7     Areactionethyle     3     Endosubhane     4     Areaction                                                                                                                                                                                                                                                                                                                                                                                                                                | A-1    | Organio halogen compounds:     | A-2 |                        |    | vesticides:                   | -          | thereof                    |
| Carbon tetrachloride         1         Addrine         1         Addrine         2         the comounds<br>there of<br>the compounds           Chloroform         2         Dichloroptes         2         Dichloroptes         2         the comounds           1.2-Dibromethame         3         Phenitrotion         3         Endosubhame         2         the comounds           1.2-Dibromethame         3         Phenitrotion         3         Endosubhame         4         the comounds           2.42.5-2.63,4         4         Malation         3         Endosubhame         4         thereof           2.42.5-2.63,4         4         Malation         3         Endosubhame         4         Areadon the compounds           2.42.5-2.63,4         4         Malation         4         Endosubhame         4         Areadon the compounds           1.2-Dichlorarbinol         5         Parationetiol         5         Die and p.cDDDD         4         Argenic           1.2-Dichlorarbinol         7         Parationetiol         5         Die and p.cDDD         4         Argenic           1.2-Dichlorarbinol         7         Parationetiol         5         Die and p.cDDD         5         Die and p.cDDD         5                                                                                                                                                                                                                               | -      |                                | 2   |                        | -  |                               |            | Cadmium and                |
| Carbon terrachloride     1     Aldrine     2     thereof       Chloroform     2     Dieldrine     3     Lead and the compounds       Chloroform     2     Dieldrine     3     Endouthe     1     Lead and the compounds       Di-Domonethane     3     Pentitrotion     3     Endouthe     3     thereof       Di-Domonethane     3     Pentitrotion     3     Endouthe     3     thereof       Di-Domonethane     3     Pentitrotion     3     Endouthe     4     Areeof       Di-Domonethane     5     Paration     4     Areeof     3     thereof       1.12-Dichlorethane     5     Paration     4     Areeof     3     thereof       Ideinorabilitie     5     Paration     1     Aref     Other organic materials     4     Areeof       Isofut     7     Parationethyl     1     Aref     Other organic materials     5     5       Permente     4     Arsenic     3     Arref     2.2.5.2.6.9     1     2.2.5.2.6.9       Isofut     7     Parationethyl     3     Endomotes     2     Arsenic       Isofut     8     7     Parationethyl     1     Arovyloritione     2     2.5.2.6.9   <                                                                                                                                                                                                                                                                                                                                                                                        |        |                                |     |                        |    |                               |            | the compounds              |
| under of commentant         2         Dichlorobos         2         Dichlorobos         2         Dichlorobos         2         Dichlorobos         3         Endosulphane         3         Lead and the commonds           1.2-Dibromethane         3         Phenitrotion         3         Endosulphane         3         Iteration         3         Iteration         3         Iteration         3         Iteration         3         Iteration         3         Iteration         4         Anterior         4         4         4                                                                                                                                                                                                                | F-     | Carbon tatrachlorida           |     | Azinphosetil           | -  | Aldrine                       | 2          | thereof                    |
| Chloroform     2     Dichlorphos     3     comoounds       12-Dibromethane     3     Phenitrotion     3     Connounds       12-Dibromatiline (A3-     3     Endosubhane     3     thereoff       2452-263.4-     4     Malation     4     Endrine     4     Arsenti       2452-263.4-     5     Paration     4     Endrine     4     Arsenti       12-Dictionentiane)     5     Paration     4     Arsenti     4     Arsenti       12-Dictionentiane     5     DE and p.pDDD)     4     Arsention       12-Dictionentiane     6     Parationetian     5     DE and p.pDDD)       Hexachiorbensol     6     Parationetian     5     DE and p.pDDD)       Hexachiorbensol     6     Parationetian     2     Arsentian       Isofrine     7     Areacionmethyl     Areacion     4     Arsentian       Polichlorraniline     3     Tributuit     2.5-7.26-     2.5-7.26-       Xiol     3     Tributuit     6     Simazine       Xiol     3     Triphenytin     6     Simazine       Xiol     3     Triphenytin     6     Simazine       Non     6     Simazine     7     Trifiluralis                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                |     |                        | ┝  |                               |            | Lead and the               |
| Chloroform         2         Diellorine         3         Diellorine         3         Iterroof           12-Dibromethane         3         Phenitrotion         3         Endosubhane         3         Iterroof           2/2-Dibromethane         3         Phenitrotion         3         Endosubhane         3         Areenic           2/2-Dischonethane         5         Paration         4         Endosubhane         4         Areenic           12-Dischonethane         5         Paration         4         Endosubhane         4         Areenic           12-Dischonethane         5         Parationetiti         4         Endosubhane         4         Areenic           12-Dischonethane         5         Parationetiti         Area         Compounds (sp. '-         4         Areanic           12-Dischonethane         5         Perationetiti         Area         Compounds (sp. '-         4         Areanic           12-Dischonethane         7         Parationetiti         Area         Compounds (sp. '-         2         Areanic           13-odirine         Area         Orten         Area         Areanic         2         Areanic           1         Farationetityu         Are         Orten<                                                                                                                                                                                                                                              |        |                                | _   |                        |    |                               |            | compounds                  |
| Topolity     3     Endoruphane     4     Arsenic       12-Dibromethane     3     Phenitrotion     3     Endoruphane     4     Arsenic       24-r-25-2.63.34-     4     Malation     4     Endrine     2     4       24-r-25-2.63.34-     4     Malation     4     Endrine     4     Arsenic       24-r-25-2.63.34-     5     Paration     4     Endrine     5     DDT and       12-Dichlorethane     5     DEf and p.p.'-DDD)     5     DEf and p.p.'-DDD)       Hexachlorbersol     6     Parationetil     1     Argonitrile       Hexachlorbersol     7     Parationetil     1     Argonitrile       Isolin     3     Benzeme     1     2     Argonitrile       Polichlorrethane     2     Argonitrile     2     2       Polichlorrethane     3     Benzeme     1     2       Polichlorrethylene     2     Tributil tin compounds:     2     2       Polichlorrethylene     3     Tributile     2     3       Arazine     5     Senzeme     1     1       Polichlorrethylene     3     Tributilitie     2       Arazine     5     Senzeme     2     2       Arazine                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                | ~   |                        | 2  | Dieldrine                     | 3          | thereof                    |
| Dicthoraniline (A3-     A Malation     4 Endrine       2.4:2.5-2.6:3.4-     4 Malation     4 Endrine       ichloraniline)     5 DDT and     DDT and       1.2-Dichlorethane     5 Paration     5 DDE and pp'-DDD)       Hazachlorbensol     6 Parationetil     5 DDE and pp'-DDD)       Hexachlorbensol     6 Other organic materials     -       Hexachlorbensol     7 Parationethyl     1 A=O Other organic materials       Polofine     A-3 Organic tin compounds:     2 Atrazine       Polofines     1 Tin tetrabutil     1 A=Offormethole(a)       Polichlorterpeniles     1 Tin tetrabutil     2 Atrazine       Olichlorterpeniles     1 Tin tetrabutil     3 Benzene       2.4.5-Trichloranilin     3 Tribhenvliti     5 Isobenzene       Oxiola     7 Tributilite     1       Dickines     7 Tributilite     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10     |                                | က   |                        | 3  | Endosulphane                  | 4          | Arsenic                    |
| 2.42.5-2.6/3.4     4     Malation     4     Endrine       idichlorraniline)     5     DDT and     DDT and       1.2-Dichlorethane     5     Paration     5     DDE and pp '-DDD)       Hexachlorethane     5     Paration     5     DDE and pp '-DDD)       Hexachlorethane     6     Paration     7     Parationetial       Hexachlorethane     5     DDE and pp '-DDD)       Hexachlorethone     7     Parationetial     1       Area     Organic     1     Areachlorethone       Area     Organic     3     Bertzerie       Pertachlorethone     1     Tintroberrzene (1,2-       1     Tintroberrzene (1,2-     2.5-: 2.6-       1     Tintroberrzene (1,2-     2.5-: 2.6-       1     Tintroberrzene (1,2-     2.5-: 2.6-       Xylol     7     Trithrealine       Xylol     7     Trithrealine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                |     |                        |    |                               |            |                            |
| dichloraniline)     4     Malation     4     Endrine       12-Dichlorethane     5     Paration     5     DDT and       Hexachlorothensol     6     Parationethl     5     DDE and p.pDDD)       Hexachlorothensol     6     Parationethl     7     DDE and p.pDDD)       Hexachlorothensol     7     7     A-r6     Other organic materials       e (x - HOH)     7     7     A-r6     Other organic materials       Pentachlorothenol     A-3     Organic tin sompounds:     2     Atrazine       Pentachlorothylene     1     Tin tetrabutil     3     Benzen       Yolo     3     Tribuene     2.5-7.26-       Xolo     3     Tribuene     2.5-7.26-       Xolo     3     Tribuene     1       Xolo     3     Tribuene     1       Xolo     3     Tribuene     1       Xolo     3     Tribuene     1       Volo     3     Tribuene     1       Xolo     3     Tribuene     1       Xolo     3     Tribuene     1       Volo     3     Tribuene     1       Xolo     3     Tribuene     1       Xolo     3     Tribuene    <                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 2.4-:-2.5-2.6:3.4-             |     |                        |    |                               |            |                            |
| 12-Dichlorethane     5     Paration     5     DDT and<br>compounds (p.p <sup>-1</sup> )       Hexachlorbensol     6     Parationnetil     5     DDE and pi-10DD)       Hexachlorbensol     6     Parationnetil     3     DDT and<br>compounds (p.p <sup>-1</sup> )       e( $\gamma$ -HCH)     7     Parationnethyl     A-6     Other organic materials       e( $\gamma$ -HCH)     7     Parationnethyl     A-6     Other organic materials       e( $\gamma$ -HCH)     3     Creanic tin compounds:     2     Arazine       Polichlorterpeniles     1     Tin tetrabutil     3     Benzene       Polichlorterphenol     2     Tributil tin compounds     5     Isobenzene       Xylol     7     Trifutraline     7     Trifutraline       Dioxines     7     7     Trifutraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4      | dichloraniline)                | 4   |                        | 4  | Endrine                       |            |                            |
| 12-Dichlorethane     5     Paration     5     DE and pp     -000)       Hexachlorrehnsol     6     Parationetil     5     DE and pp     -000)       Hexachlorrehnsol     6     Parationetil     A-6     Other organic materials       e ( Y -HCH)     7     Parationmethyl     A-6     Other organic materials       isodrine     A-3     Organic tin compounds:     2     Arrazine       Pentachlorehenol     A-3     Organic tin compounds:     2     Arrazine       Polichlorterpeniles     1     Tin tetrabutil     3     Encreten       Yold     3     Tributi tin compounds     5     isobenzene (1,2-       Xylol     3     Triphenyl tin compounds     5     isobenzene (1,2-       Xylol     7     Trifutiraline     7     1       Dioxines     7     Trifutiraline     7     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                |     |                        |    | DDT and                       |            |                            |
| 1.2-Dichlorethane     5     Paration     5     DDE and PP -0UU)       Hexachlorbernsol     6     Parationetil     1     Acr 0 Other organic materials       Hexachlorbhernal     7     7     Parationetil     1     Acrylonitrile       e ( $\chi$ -HCH)     7     7     Parationmethyl     A-6     Other organic materials       e ( $\chi$ -HCH)     3     7     Tin tetrabutil     3     2     Arazine       Polichlorterpeniles     1     Tin tetrabutil     3     2.5-7.2.6       Yolol     Xylol     5     Isoberzene (1.2-       Xylol     7     Tribuchilen     5     Sebenzen       Dioxines     8     6     Simazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                |     |                        |    | compounds (p.p <sup>.</sup> – |            |                            |
| Hexachlorbensol     6     Parationetil     1       Hexachlorciklohexan     7     Parationmethyl     A-6       e (Y-HCH)     7     Parationmethyl     A-6       e (Y-HCH)     7     Parationmethyl     A-6       lsofne     A-3     Organic tin compounds:     2     Atrazine       Polichlorterpeniles     1     Tin tetrabutil     3     Benzene       Polichlorterpeniles     1     Tin tetrabutil     3     Benzene       Tetrachlorethylene     2     Tributil tin compounds     5     Sintrooluole)       X/sol     3     Tributil tin compounds     5     Simazine       X/sol     3     Tributil tin compounds     7     Trifuraline       Dioxines     7     Trifuraline     7     Trifuraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ເມ<br> |                                | S   |                        | ŝ  | DDE and p.p' - DDD)           |            |                            |
| Hexachlorciklohexan     7     Parationmethyl     A=6     Other organic materials       e (Y-HCH)     7     Parationmethyl     A=6     Other organic materials       isodrine     A=3     Organic tin compounds:     2     Atrazine       Pentachlorphenol     A=3     Organic tin compounds:     2     Atrazine       Pentachlorphenol     A=3     Organic tin compounds:     3     Benzene       Polichlorterpeniles     1     Tin tetrabutil     3     Benzene       Polichlorterpeniles     2     Tributil tin compounds     4     ainitrotoluole)       Z4.6-Trichloranilin     3     Triphenyl tin compounds     5     sinasine       XINN     Nonv(phenolethoxilist     7     Trifluraline     7     Trifluraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9      |                                | 9   | <u><u> </u></u>        |    |                               | <b>F</b> - |                            |
| e ( y - HCH)     7     Parationmethyl     A=6     Other organic materials       isodrine     1     Acrylonitrile     1     Acrylonitrile       Pentachlorrehenol     A-3     Organic tin compounds:     2     Atrazine       Polichlorterpeniles     1     Tin tetrabutil     3     Atrazine       Polichlorterpeniles     2     Tributil tin compounds     4     dinitrobenzene (12-       Xylol     3     Triphenyl tin compounds     5     Isobenzen       Xylol     3     Triphenyl tin compounds     5     Isobenzen       Dioxines     1     Trifuraline     7     Trifuraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | Hexachiorciklohexan            |     |                        |    | -                             |            |                            |
| isodrine     1     Acrylonitrile       Pentachlorphenol     A-3     Organic tin compounds:     2     Atrazine       Polichlorterpeniles     1     Tin tetrabutil     3     Benzene       Polichlorterpeniles     1     Tin tetrabutil     3     Benzene       Z4.6-Trichlorantilin     2     Tributil tin compounds     4     dinitroblence       Zylol     3     Triphenyl tin compounds     5     softmazine       Dioxines     4     dinitroblocle)     7     Trifluraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~      |                                | -   | Parationmethyl         |    | )ther organic materials       |            |                            |
| Pentachlorphenol     A-3     Organic tin compounds:     2     Atrazine       Polichlorterpeniles     1     Tin tetrabutil     3     Benzene       Polichlorethylene     2     Tributil tin compounds     4     dinftrobenzene (1,2-       24.6-Trichloranilin     3     Triphenyl tin compounds     4     dinftrotoluole)       Xylol     Xylol     5.5-: 2,6-     5       Nonylphenolethoxilat     6     Simazine       Dioxines     7     Trifluraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8      |                                |     |                        | -  | Acrylonitrile                 |            |                            |
| Polichlorterpeniles     1     Tin tetrabutil     3     Benzene       Fetrachlorethylene     2     Tributil tin compounds     4     0initrobenzene (1,2-<br>: 2,5-; 2,6-<br>: 2,5-; 2,6-       2,4,6-Trichloranilin     3     Triphenyl tin compounds     5     Isobenzen       Xylol     5     Isobenzene     7     Trifiuraline       Dioxines     7     Trifiuraline     7     Trifiuraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | စ      |                                | A-3 | Organic tin compounds: | ~  | Atrazine                      |            |                            |
| Tetrachlorethylene     2     Tributil tin compounds     4     Dinitrobenzene (1,2-<br>1:2,5-:2,6-<br>2,4,6-Trichloranilin       2,4,6-Trichloranilin     3     Triphenyl tin compounds     5     Isobenzen       Xylol     5     Isobenzen     7     Trifluraline       Nonylphenolethoxilat     7     Trifluraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2      |                                | 1   | Tin tetrabutil         | 3  | Benzene                       |            |                            |
| Tetrachlorethylene     2     Tributil tin compounds     4     dinitrotoluole)       2,4.6-Trichloranilin     3     Triphenyl tin compounds     5     Isobenzen       Xylol     6     Simazine     7     Trifluraline       Dioxines     7     Trifluraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |     |                        |    | Dinitrobenzene (1,2-          |            |                            |
| Tetrachlorethylene     2     Tributil tin compounds     4     dinitrotoluole)       24.6-Trichloranilin     3     Triphenyl tin compounds     5     Isobenzen       Xylol     6     Simazine       Nonylphenolethoxilat     7     Trifluraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                |     |                        |    | : 2.5-: 2,6-                  |            |                            |
| 2.4.6-Trichloranilin     3     Triphenyl tin compounds     5     Isobenzen       Xylol     6     Simazine       Nonylphenolethoxilat     7     Trifiuraline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Tetrachlorethylene             | 2   | -                      | 4  | dinitrotoluole)               | F          |                            |
| Xylol<br>Nonylphenolethoxilat<br>Dioxines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12     | 2,4,6-Trichloranilin           | . 3 |                        | ഹ  | lsobenzen                     |            |                            |
| Nonviphenolethoxilat<br>Dioxines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13     |                                |     | - <b>1</b>             | G  | Simazine                      | <b>—</b> т |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14     |                                | ·1  |                        | 7  | Trifluraline                  |            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15     |                                |     |                        |    |                               |            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J      |                                |     |                        |    |                               |            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                |     |                        |    |                               |            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                |     |                        |    |                               |            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                |     |                        |    |                               |            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                |     |                        |    |                               |            |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                |     |                        |    |                               |            | C                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                |     |                        |    |                               |            | )                          |

Table 1.2 (1/3)

Drinking Water Standards (Draft) in Lithuania

LST : 1997

Table 3. Toxic analytes in potable water, their allowable values and requirements of analysis methods

\_\_\_\_

| Analytes                                 | Allowable value | Unit of      | 24          | kequurence of substances we wanted the substances when the substances we wanted the substances w | /sis methods                                 |
|------------------------------------------|-----------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                          | or marine       |              | Accuracy, % | Precision, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Determination limits of<br>analyte values, % |
| 1 Arcenie As                             | 10              | ne∕1         | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 7 Cvanide CN <sup>-</sup> (a)            | 50              | (/an         | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| a Chrome Cr                              | 50              | Van          | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 4 Fluorine F                             | 1.5             | m <u>e/1</u> | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 5. Mercury. Ho                           | 1               | 1/211        | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 6. Cadmium, Cd                           | 5               | 1/211        | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 7. Nickel. Ni                            | 20              | 1/201        | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 8. Nitrate, NO <sub>3</sub> .            | 50 (b.c)        | ng∕l         | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 9. Nitrite. NO-                          | 0.1 (b,c)       | ng∕1         | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 10. Lead. Pb                             | 25 (c)          | 1/311        | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 11. Copper, Cu                           | 2000 (c)        | l/an         | 10          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 12. Polycyclic aromatic hydrocarbons (d) | 0.2             | l∕ठो1        | 25          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                           |
| Benzo-a-pyrenc                           | 0.01            | l∕gi√        | 25          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                           |
| 13. 1.2-dichloroethane, C,H,Cl,          | 3               | 1/311        | 25          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 14. Tetrachloroethene. C,Cla             | 40              | Vari         | 25          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |
| 15 Trichloroethene, CHCh                 | 70              | /जन          | 25          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                           |

)

•

(5/3) 1.2 Table

•

Drinking Water Standards (Draft) in Lithuania

|                                                                                                                                                                                                                                                      | Allowable value                                                               |                                     | •                     |                             |                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|-----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                      |                                                                               |                                     | Accuracy, %           | Precision, %                | Determination limits of<br>analyte values, %                                                                                          |
| 16 Ration R                                                                                                                                                                                                                                          | 300                                                                           | [/an                                | 10                    | 10                          | 10                                                                                                                                    |
| 17 Selenium Se                                                                                                                                                                                                                                       | 10                                                                            | l/an                                | 10                    | 10                          | 10                                                                                                                                    |
| 13. Stihin Sh                                                                                                                                                                                                                                        | m                                                                             | Van                                 | 10                    | 10                          | 10                                                                                                                                    |
| 19. Benzene, CaHk                                                                                                                                                                                                                                    | 1                                                                             | 1/grí                               | 25                    | 25                          | 10                                                                                                                                    |
| 20. Enichlorohvdrin. C.H.OCl (c)                                                                                                                                                                                                                     | 0.5                                                                           | 1/3/1                               |                       |                             |                                                                                                                                       |
| 21. Pesticides (f)                                                                                                                                                                                                                                   | 0.1                                                                           | ∕ön                                 | 25                    | 25                          | 25                                                                                                                                    |
| 22. Vinvl chloride. C,H <sub>2</sub> Cl (g)                                                                                                                                                                                                          | 0.5                                                                           | I/ðil                               | 25                    | 25                          | 10                                                                                                                                    |
| NOTES:<br>a - this method should be used to determine total amount of cyanides;<br>b - allowable values of analytes may be changed, i.e.: increased up to 0.5 mg/l for nitrite provided that [nitrate]/50 + [nitrite]/3 ≤ 1 (unit of analyte value : | ic total amount of cyanic<br>hanged, i.e.: increased u                        | les;<br>ip to 0.5 mg/l for          | nitrite provided that | [mitrate]/50 + [mitrite     | √3 ≤ 1 (unit of analyte value                                                                                                         |
| mg/l);<br>c - for packaged drinking water intended for baby food                                                                                                                                                                                     | for haby food allowable                                                       | analyte values are                  | reduced, i.e.: for ni | trate down to 10 ${ m mgA}$ | allowable analyte values are reduced, i.e.: for nitrate down to 10 mg/l. for nitrite down to 0.02 mg/l.                               |
| for lead down to 10 µg/l, for copper down to 100 µg/l;<br>d - allowable value of analyte is the total value of benzo-a-pyrene, fluoranthene, benzo-k-fluoranthene, benzo-ghi-perylene, indene-                                                       | t to 100 µg/1;<br>value of benzo-a-pyrene                                     | e, fluoranthene, b                  | enzo-b-fluoranthene,  | , benzo-k-fluoranthen       | e, benzo-ghi-perylene, indene                                                                                                         |
| 1,2,3-cd-pyrene. Concentration of benzo-a-pyrene should not exceed 0.01 µg/l;<br>e - analyte should be tested only in materials in which it may be present. It n                                                                                     | n-pyrene should not exce<br>nials in which it may be<br>te resins is 1 mo/ker | ced 0.01 µg/t;<br>present. It may 1 | be tested also in a ] | polymeric material ac       | d not exceed 0.01 µg/l;<br>it may be present. It may be tested also in a polymeric material according to its allowable value.<br>w/w: |
| f - allowable value of analyte is applied to each individual pesticide;                                                                                                                                                                              | cach individual posticide                                                     |                                     | •                     |                             | E                                                                                                                                     |

(

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyte                                                                                                                                                                      | ater, their all                                                | owable valı                                                | ues and test req                                                                      | Table 5. Indicator analytes in potable water, their allowable values and test requirements (a. b) |                |                 |                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|-----------------|-------------------------------------|
| Excellent         Good         Satisfactory         Accuracy, $%_{6}$ ViH, (c)         0.5         1.0         2.0         mg/l         10           carbon, C <sub>0</sub> (d)         1.5         4.0         5.0         mg/l         10           carbon, C <sub>0</sub> (d)         1.5         4.0         5.0         mg/l         10           carbon, C <sub>0</sub> (d)         1.5         3.0         Turbidity according to         10           citivity         0.58         0.87         1.74         formazine, mg/l         10           citivity         0.58         0.87         1.74         formazine, mg/l         10           dvalue         0.1         0.2         1.0         2500 $\mu$ Saturation %         10           dvalue         0.1         0.2         0.1         0.2         5.0 $mg/l$ 10           Mn         0.05         0.1         0.2         0.1         0.2 $mg/l$ 10           Mn         0.05         0.1         0.2 $0.5.0$ $mg/l$ 10           Mn         0.05         0.1         0.2         0.2 $0.5.0$ $mg/l$ 25           id value                |                                                                                                                                                                              | Value of                                                       | analyte allo                                               | wable for                                                                             | Unit of measure                                                                                   | Requi          | rements of tes  | ting methods                        |
| UH, (c) $0.5$ $1.0$ $2.0$ mg/l $10$ carbon, $C_0(d)$ $1.5$ $4.0$ $5.0$ $mg/l$ $10$ carbon, $C_0(d)$ $1.5$ $4.0$ $5.0$ $mg/l$ $10$ $25$ $100$ $250$ $mg/l$ $10$ $10$ $1.0$ $1.5$ $3.0$ $1$ urbidity according to $10$ $0.58$ $0.87$ $1.74$ formazine, mg/l $10$ $0.58$ $0.87$ $1.74$ formazine, mg/l $10$ $0.58$ $0.87$ $1.74$ formazine, mg/l $10$ $0.1$ $0.2$ $1.0$ $mg/l$ $10$ $0.0$ $d$ value $0.1$ $0.2$ $1.0$ $mg/l$ $10^{\circ}$ $d$ value $0.05$ $0.1$ $0.2$ $0.2$ $0.2$ $0.2$ $d$ value $0.05$ $0.1$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $0.2$ $d$ value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>_</b>                                                                                                                                                                     | Excellent                                                      | Good                                                       | Satisfactory                                                                          |                                                                                                   | Accuracy,<br>% | Precision,<br>% | Test limits of<br>analyte values, % |
| Matrix         1.5         4.0         5.0         mg/l         10         10           carbon, $C_0(d)$ 25         100         250         mg/l         10         10           25         100         250         mg/l         10         10         10           carbon, $C_0(d)$ 1.6         1.5         3.0         Turbidity according to         10           0.58         0.87         1.74         formazine, mg/l         10         10           civity         0.1         0.2         1.0         mg/l         10         10           gen, $O_1$ 2.0         1.0         1.0         mg/l         10         10           d value         0.1         0.2         1.0         mg/l         10         10           dvalue         Acceptable to users and has no         mg/l         10         10         10           Mn         0.05         0.1         0.2         0.2         0.2         10         25           Mn         0.05         5.0         5.0         0.7, mg/l         25         25         25           old value         150         250         40         10         10 | Ammonium NH. (c)                                                                                                                                                             | 0.5                                                            | 10                                                         | 2.0                                                                                   | mg/l                                                                                              | 10             | 10              |                                     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rasic Arganic carbon Cold                                                                                                                                                    | 1.5                                                            | 4.0                                                        | 5.0                                                                                   | - 1/2m                                                                                            | 10             | 10              | 10                                  |
| 1.0         1.5         3.0         Turbidity according to         10           civity $0.58$ $0.87$ $1.74$ formazine, mg/l $10$ civity $0.58$ $0.87$ $1.74$ formazine, mg/l $10$ civity $1000$ $2000$ $2500$ $\mu S cm^{-1}$ at $20^{\circ}C$ $10$ gen, $O_2$ $2.0$ $  Saturation %_6$ $10$ d value $Acceptable to users and has no         mg/l 10 10 Mn 0.05 0.1 0.2 0.7 10 Mn 0.05 0.1 0.2 0.7 10 Mn 0.05 0.1 0.2 0.7 10           oxidation (c)         2.0 5.0 6.5 0.7 25 Malue Acceptable to users and has no         0.7 0.7 25 25 Malue 10 0.02 0.01 0.2 0.7 25 Malue 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chloride OF                                                                                                                                                                  | 25                                                             | 100                                                        | 250                                                                                   | mg/l                                                                                              | 10             | 10              | 10                                  |
| ctivity         1000         2000         2500 $\mu S  cm^4$ at 20°C         10           gen, O <sub>2</sub> 0.1         0.2         1.0 $mg/l$ 10           gen, O <sub>2</sub> $\geq 50$ -         -         Saturation %         10           d value $\lambda cceptable to users and has no         mg/l         10         10           Mn         0.05         0.1         0.2         mg/l         10           Mn         0.05         0.1         0.2         mg/l         10           Mn         0.05         0.1         0.2         mg/l         10           old value         2.0         5.0         6.5         O_2, mg/l         25           old value         Acceptable to users and has no         mg/l         25         0.7, mg/l         25           id value         15         30         40         mg/l Pt-Co (\lambda = 436ml)         20         10  $                                                                                                                                                                                                                       | Turbidity                                                                                                                                                                    | 1.0<br>0.5%                                                    | 1.5<br>0.87                                                | 3.0                                                                                   | Turbidity according to<br>formazine, mg/l                                                         | 10             | 10              | 10                                  |
| matrix         mg/l         10 $0.1$ $0.2$ $1.0$ $mg/l$ $10$ $gen$ , $O_2$ $\geq 50$ $  Saturation \%$ $10$ $d$ value         Acceptable to users and has no $mg/l$ $10$ $10$ $Mn$ $0.05$ $0.1$ $0.2$ $mg/l$ $10$ $Mn$ $0.05$ $0.1$ $0.2$ $mg/l$ $10$ $Mn$ $0.05$ $0.1$ $0.2$ $mg/l$ $25$ $Mn$ $0.05$ , $mg/l$ $2.0$ $5.0$ $6.5$ $0.5$ , $mg/l$ $25$ $Mn$ $0.05$ , $mg/l$ $10$ $25$ $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ , $0.5$ $10$ $10$ $Mn$ $150$ $250$ $40$ $mg/l$ $10$ $10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Electric conductivity                                                                                                                                                        | 1000                                                           | 2000                                                       | 2500                                                                                  | uS cm <sup>-1</sup> at 20°C                                                                       | 10             | 10              | 10                                  |
| gen, $O_2$ $\geq 50$ Saturation %10d valueAcceptable to users and has no<br>unnatural changes $\operatorname{Saturation %}$ 10 $Mn$ 0.050.10.2 $\operatorname{mg/I}$ 1010 $Mn$ 0.050.10.2 $\operatorname{mg/I}$ 2510e oxidation (e)2.05.06.5 $\operatorname{O_2, mg/I}$ 25old valueAcceptable to users and has no<br>unnatural changes40 $\operatorname{mg/I}$ 70153040 $\operatorname{mg/I}$ 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Basic iron Ra                                                                                                                                                                | 10                                                             | 0.2                                                        | 1.0                                                                                   | m9/I                                                                                              | 10             | 10              | 10                                  |
| Acceptable to users and has no<br>unnatural changesMag/I10Acceptable0.050.10.20.2 $mg/I$ 10105.05.06.5 $O_2, mg/I$ 25102.05.06.5 $O_2, mg/I$ 25153040 $mg/I$ 10150250450 $mg/I$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dissolved oxygen, O2                                                                                                                                                         | 2 50                                                           |                                                            |                                                                                       | Saturation %                                                                                      | 10             | 10              | 10                                  |
| xidation (c)         0.05         0.1         0.2         mg/l         10           xidation (c)         2.0         5.0         6.5         O <sub>2</sub> mg/l         25           value         Acceptable to users and has no<br>unmatural changes         0.0         40         mg/l Pt-Co (\lambda = 436mm))         20           15         30         40         mg/l Pt-Co (\lambda = 436mm))         20         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Smell threshold value                                                                                                                                                        | Acceptabl                                                      | e to users :<br>atural char                                | ind has no                                                                            |                                                                                                   |                |                 |                                     |
| xidation (c)         2.0         5.0         6.5         O <sub>2</sub> , mg/l         25           value         Acceptable to users and has no<br>unmatural changes         40         mg/l         20         20           15         30         40         mg/l         10         10           150         250         450         mg/l         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Manganese Mn                                                                                                                                                                 | 1                                                              | 0.1                                                        |                                                                                       | m <u>e/l</u>                                                                                      | 10             | 10              | 10                                  |
| Acceptable to users and has no<br>unnatural changesMg/ Pt-Co (\lambda = 436mm)153040mg/ Pt-Co (\lambda = 436mm)150250450mg/ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. Permanganate oxidation (c)                                                                                                                                                | 2.0                                                            | 5.0                                                        | 6.5                                                                                   | O <sub>2</sub> , mg/l                                                                             | 25             | 25              | 10                                  |
| 2. SO. <sup>2</sup> . 15 30 40 mg/l Pt-Co (\(\alpha=436m)) 20 20 250 450 mg/l 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. Taste threshold value                                                                                                                                                     | Acceptabl                                                      | e to users :<br>atural char                                | nd has no                                                                             |                                                                                                   |                |                 |                                     |
| 2. SO <sup>2</sup> 150 250 450 mg/l 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Color                                                                                                                                                                      |                                                                | 30                                                         |                                                                                       | m2/1 Pt-Co (2=436nm)                                                                              | 20             | 10              | s                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 Sulfate SO <sup>2</sup>                                                                                                                                                    | 150                                                            | 250                                                        | 450                                                                                   | mg/l                                                                                              | 10             | 10              | 10                                  |
| 14 Hvdroven ion concentration pH (1) 7.0-8.2 6.5-9.0 6.0-9.0 pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 Hvdroven ion concentration pH (f)                                                                                                                                          | 7.0-8.2                                                        | 6.5-9.0                                                    | 6.0-9.0                                                                               | μd                                                                                                |                |                 |                                     |
| d industry inclusive of frozen water should be in confi<br>y with requirements of the excellent quality class;<br>non-ionized (NH <sub>4</sub> <sup>+</sup> ) forms;<br>ermined if amount of supplied water is lower than 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OTES: a - drinking water used in food in<br>- bottled drinking water should comply w<br>- conception of "ammonium" covers non<br>- value of this analyte shall not be determ | ndustry inclu<br>with requirem<br>-ionized (NF<br>uned if amou | sive of from<br>ents of the<br>(3) and ioni<br>int of supp | cen water shoul<br>excellent quali<br>zed (NH4 <sup>+</sup> ) for<br>lied water is lo | ld be in conformity with exer<br>ty class;<br>ms;<br>wer than 10 000 m³/24 hour                   | ellent or good | quality class r | squirements;                        |

)

1-31

### Table 1.3 River Water Quality Standards In Lithuania

| Matter                                          | MAC                     |
|-------------------------------------------------|-------------------------|
| 1                                               | 2                       |
| Dissolved oxygen                                | ≥ 6 mg/l                |
| BOC, (Biochemical oxygen consumption in 7 days) | 2.3 mgO <sub>2</sub> /1 |
| Ammonia nitrogen                                | 0.39 mgN/1              |
| Nitrites                                        | 0.02 mgN/1              |
| Basic nitrogen                                  | 2 mg/l                  |
| Phosphates                                      | 0.08 mgP/i              |
| Basic phosphorus                                | 0.2 mg/l                |
| Calcium                                         | 180 mg/l                |
| Magnum                                          | 40 mg/l                 |
| Sodium                                          | 120 mg/1                |
| Potassium                                       | 50 mg/l                 |
| Sulphates                                       | 100 mg/l                |
| Chlorides                                       | 300 mg/l                |
| Iron                                            | 0.1 mg/1                |
| Соррег                                          | 1+background value µg/l |
| Zinc                                            | 10 µg/1                 |
| Lead                                            | 100 µg/1                |
| Manganese                                       | 0.01 mg/l               |
| Chrome                                          | 5 µg/1                  |
| Cadmium                                         | 5 µg/l                  |
| Nickel                                          | 10 µg/l                 |
| Oil products                                    | 0.05 mg/t               |
| Anionic detergents                              | 0.1 mg/l                |
| Phenois                                         | 0.001 mg/l              |

### Maximum allowable concentrations (MAC) of matter in river water

Tablo 1.4 River Water Classification In Lithuania

River water classification according to general contamination indexes

| Ouality grade         | <b>1</b> | II      | III          | N            | · 7          | Ч            |
|-----------------------|----------|---------|--------------|--------------|--------------|--------------|
| Characteristics       | Very     | Clean   | Slightly     | Medium       | Very         | Super        |
|                       | cican    |         | contaminated | contaminated | contaminated | contaminated |
| Indexes:              | <2.3     | 2.3-4.0 | 4.1-5.8      | 5.9-9.2      | 9.3-20.7     | >20.7        |
| BOC, mgO <sub>A</sub> |          |         |              |              |              |              |
| Mineral               | <0.3     |         |              |              | ~ ~~~~       | >15.0        |
| nitrogen, mgN/l       |          |         |              |              |              |              |
| Phosphates,           | <0.03    |         |              |              |              | >0.50        |
| mgPA                  |          |         |              |              |              |              |
| CI, coli/l            | ≤1000    | ≤10000  | ≤100000      | ≤1000000     | ≤10000000    | >10000000    |

>500

250-500

125-250

50-125

25-50

 $\mathfrak{G}$ 

DOBRIŠ+3,

)

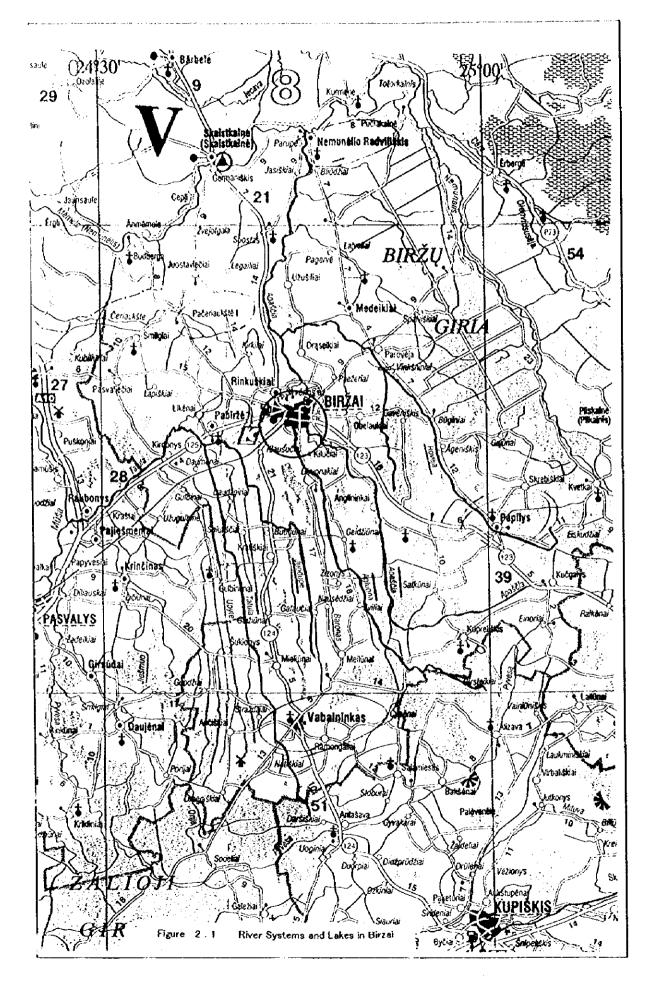
| Town of Medar               |           |                                      |                                               | River water                               | vator                                                                                   |              |                     |                                      |                                                    |                                                                            |                                                                         |
|-----------------------------|-----------|--------------------------------------|-----------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|--------------|---------------------|--------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| ADD OT TO GOV               | Į         |                                      |                                               | -                                         | Ľ                                                                                       | c            | u.                  | ₹                                    | 4                                                  | 9                                                                          | ບ                                                                       |
| (ype/Class (for Water use)  |           | AA                                   |                                               | 0                                         | 114 1040 for                                                                            | Not used for | Not used for        |                                      |                                                    | Advanced                                                                   | Not used for                                                            |
| Description for Type/class  |           | Simple treatment<br>for water supply | Ordinary treatment<br>for water supply        | Advanced<br>treatment for<br>water supply | Not used for<br>water supply, but<br>for industrial water<br>with ordinary<br>freatment | 53_1         | ¥ <u>ē</u>          | Simple treatment<br>for water supply | Ordinary/advanced<br>treatment for<br>water supply | treatment for<br>water supply,but<br>for industrial water<br>with ordinary | water supply, but<br>for industrial water<br>with advanced<br>treatment |
| Test Item Water Temperature | Ŷ.        |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| Color                       | N.N.      |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| Odor                        | × z       |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| На                          | N.N.      | 0.5≦PH≦8.5                           | 6.5≦PH≤8.5                                    | 6.5≤PH≤8.5                                | 6.5 SPH 58.5                                                                            | 6.05PH58.5   | 6.0 A PHA8.5        | 6.5 SPH 58.5                         | 6.55PHS8.5                                         | 6.517PH 13.5                                                               | 8.0 SPH 58.5                                                            |
| Transparancy                | N.A.      |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| EC                          | umhos/cm  |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| SS                          | mg/l      | ≦25mg                                | ≦25mg                                         | ≦25mg                                     | ≦50mg                                                                                   | 5100mg       | No floats are seen. | N TER                                | Smg                                                | K15mg                                                                      | No floats are seen                                                      |
| 800                         | mg/1      | S 1 mg                               | ≤2mg                                          | ≦3mg                                      | Smr                                                                                     | Sang         | 10mg                | i∆tmg                                | \$2mg                                              | \$3mg                                                                      | \$5mg                                                                   |
| Soluble BOD                 | mg/l      |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| cop                         | me/l      |                                      |                                               |                                           |                                                                                         |              |                     | A tent                               | \$1mg                                              | ≤1mg                                                                       | St mg                                                                   |
| TN                          | me/       |                                      |                                               |                                           |                                                                                         |              |                     | A0.1mg                               | 502mg                                              | <u>≤0,4/0,6mg+</u>                                                         | A T T T T T T T T T T T T T T T T T T T                                 |
| TP                          | me/l      |                                      |                                               |                                           |                                                                                         |              |                     | ≤0.005mg*                            | 50.01 mg*                                          | 50.03/0.05mg+                                                              | NO.1mge                                                                 |
| P04                         | me/l      |                                      |                                               |                                           |                                                                                         |              |                     | -                                    |                                                    |                                                                            |                                                                         |
|                             | C. 2/2    |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| NH4-N                       | vum/a     |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| N-2ON                       | me        |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| NO <sub>3</sub> -N          | mg/1      |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| ţ                           | mg/1      |                                      |                                               |                                           |                                                                                         | -            |                     |                                      |                                                    |                                                                            |                                                                         |
| ABS                         | mg/l      |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    | -                                                                          |                                                                         |
| Q                           | mg/1      | 7.5mg≦                               | 7.5mr.S                                       | 5mgS                                      | 5mgA                                                                                    | 2mg/S        | 2mgA                | 7.5mg≤                               | 7.5mgS                                             | SmgA                                                                       | 2mg≦                                                                    |
| Öl                          | mg/l      |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |
| Total coliform              | MPN/100ml |                                      | 50MPN/100ml \$1,000MPN/100ml \$5,000MPN/100ml | S5.000MPN/100ml                           |                                                                                         |              |                     | SSOMPN/100ml                         | 1,000MPN/100m                                      |                                                                            | 1                                                                       |
| Alkalininvas CaCO-)         |           |                                      |                                               |                                           |                                                                                         |              |                     |                                      |                                                    |                                                                            |                                                                         |

Table 1.5 Water Quality Standard, Japanese Standard for River and Lake/Pond

\*: Approximate rigures, tuerimoon of 1700% for 1% of 1% Note: The detailed conditions are omitted in this table.

ę

Ę


Ć

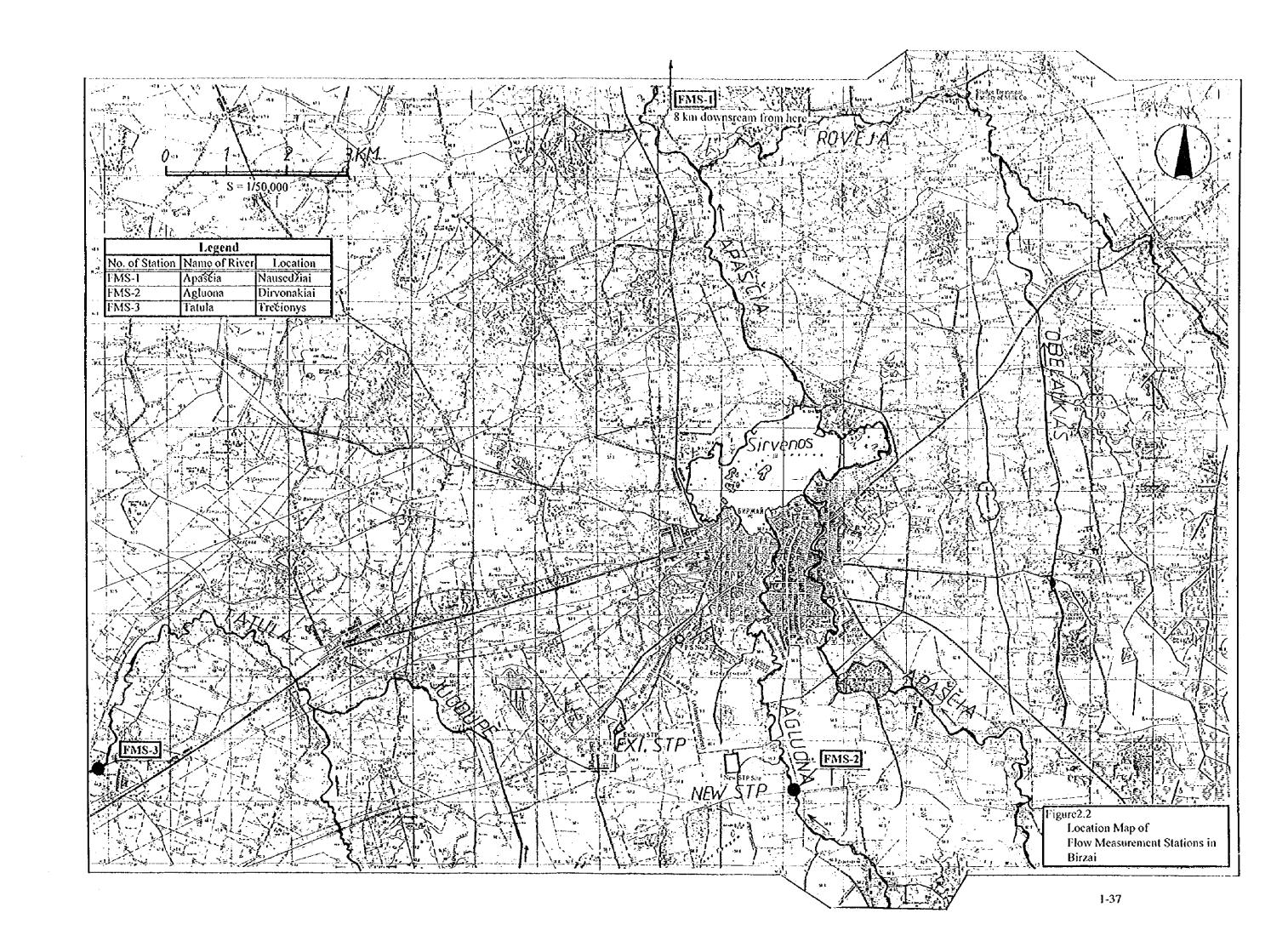
|                              |                   |                                                        | 112   | Common<br>limit | For<br>manufactur                     |
|------------------------------|-------------------|--------------------------------------------------------|-------|-----------------|---------------------------------------|
| T                            | <b>i</b>          | tems                                                   | Unit  | limit           | manuractur                            |
|                              |                   | Cadmium                                                | mg/l  | 0.1             |                                       |
|                              |                   | Cyanogen                                               | mg/l  | 1               |                                       |
|                              | ance              | Organophosphorous                                      | mg/I  | 1               |                                       |
| S                            | bst               | РЬ                                                     | mg/l  | 1               |                                       |
| Central government standards | Harmful Substance | Hexavalent chromium                                    | mg/l  | 0.5             |                                       |
| t st                         | arm               | Arsenic (As)                                           | mg/I  | 0.5             |                                       |
| nen                          | Т                 | Total mercury                                          | mg∕l  | 0.005           |                                       |
| erni                         |                   | Alkyl mercury                                          | mg/l  | 0               |                                       |
| ಸಂಚ                          |                   | РСВ                                                    | mg/l  | 0.003           |                                       |
| tral                         |                   | Total chromium                                         | mg/l  | _2              |                                       |
| e i                          |                   | Cu                                                     | mg/ł  | 3               |                                       |
|                              |                   | Zn                                                     | mg/l  | 5               |                                       |
|                              |                   | Phenols                                                | mg/i  | 5               |                                       |
|                              |                   | Fe                                                     | mg/l  | 10              |                                       |
|                              |                   | Mn                                                     | mg/l  | 10              |                                       |
|                              | tts               | Fluorine (F)                                           | mg/l  | 15              | · · · · · · · · · · · · · · · · · · · |
|                              | Intar             | BOD                                                    | mg/l  | 600             | 300                                   |
| ards                         | ä                 | SS                                                     | mg/l  | 600             | 300                                   |
| nt stand                     | Other pollutants  | Normal-hexane<br>extracts (Mineral oils)               | mg∕∔_ | 5               |                                       |
| Local government standards   |                   | Normal-hexane<br>extracts (Fauna-flora<br>fats & oils) | mg∕l  | 30              | )                                     |
| at gr                        | 1                 | PH                                                     |       | 5.0 - 9.0       | 5.7 - 8.7                             |
| 00                           |                   | Temperature                                            | °C    | 45              | <u>40</u>                             |
| ·                            |                   | lodine (I) consumption                                 | mg/I  | 220             |                                       |

## Table 1.6 Effluent Standards to Sewege System (Japanese Srandards)

0

Note: The detailed classification and conditions are omitted in this table.




٩

િં

C

.

.



Ş

Table 2.1 Summary of Runoff Records (Apascia, Agluona, Tatula and Bartuva Rivers)

annal Service Mate Mater Data Col

| Name of | Name of Measurement   |         |        |       |       |       |       | Month | lth   |       |       |       |       |       | Mean                       | May.               | ž    |
|---------|-----------------------|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------------|--------------------|------|
| Rivers  | Rivers Period (Years) |         | Jan.   | Feb.  | March | April | May   | June  | July  | Aug.  | Sep.  | Oct.  | Nov.  | Dec.  |                            |                    |      |
|         |                       | Mean    | 2.58   | 11.97 | 10.23 | 14.87 | 4.91  | 2.24  | 0.70  | 0.27  | 0.22  | 0.47  | 0.86  | 1.25  |                            |                    |      |
| Apascia |                       | 2 Max.  | 17.00  | 36.40 | 31.80 | 65.30 | 11.50 | 5.91  | 1.44  | 0.69  | 0.45  | 0.80  | 1.72  | 2.20  | 4.21                       | 65.3               | 0.10 |
| ¢       |                       | Min.    | 0.63   | 0.58  | 0.48  | 0.46  | 1.76  | 1.03  | 0.31  | 0.10  | 0.10  | 0.18  | 0.37  | 0.73  |                            |                    |      |
|         |                       | Mean    | 0.521  | 0.421 | 1.107 | 1.307 | 0.314 | 0.171 | 0.067 | 0.059 | 0.128 | 0.276 | 0.370 | 0.519 | <del></del>                |                    |      |
| Agluona |                       | 30 Max. | 6.38   | 4,44  | 17.10 | 15.70 | 3.62  | 4.00  | 1.03  | 2.17  | 2.79  | 5.24  | 2.75  | 6.83  | 0.439                      | 15.70              | NA   |
| ļ       |                       | Min.    | 0.003  | 0.006 | 0.014 | 0.037 | 0.021 | 0.013 | 0.005 | N.A.  | N.A.  | N.A.  | 0.003 | 0.006 |                            |                    |      |
|         |                       | Mean    | 1.96   | 2.38  | 6.35  | 8.52  | 2.53  | 1.19  | 0.82  | 0.65  | 0.96  | 1.81  | 2.31  | 2.94  |                            | - ~ -              |      |
| Tatula  | 25                    | 25 Max. | 29.1   | 19.6  | 49.4  | 67.2  | 18.6  | 15.8  | 5.03  | 9.73  | 15.4  | 24.3  | 17.8  | 38.2  | 2.70                       | 67.2               | 0.11 |
|         |                       | Min.    | - 0,14 | 0.14  | 0.11  | 0.34  | 0.57  | 0.41  | 0.35  | 0.30  | 0.27  | 0.23  | 0.20  | 0.15  |                            |                    |      |
|         |                       | Mean    | 10.66  | 8.22  | 12.99 | 13.58 | 3.02  | 1.68  | 1.66  | 2.93  | 4.67  | 8.41  | 14.85 | 13.73 |                            | تىف "ىمى <u>مە</u> |      |
| Bartuva |                       | 29 Max. | 86.6   | 81.2  | 122.0 | 153.0 | 25.4  | 45.5  | 89.7  | 95.2  | 89.3  | 83.0  | 144.0 | 120.0 | 8.03                       | 153.0              | 0.20 |
|         |                       | Min.    | 0.21   | 0.33  | 0.32  | 1.09  | 0.67  | 0.47  | 0.26  | 0.20  | 0.24  | 0.46  | 0.60  | 0.79  |                            | ~                  |      |
|         |                       |         |        |       |       |       |       |       |       |       |       |       |       |       | Unit : m <sup>3</sup> /sec | 'sec               |      |

3

)

| Ľ     |             | Trail Trail    | The state of the s | Catch        | Catchment Area (km <sup>2</sup> ) | (km²)            | Annual M   | (can Disch  | Annual Mean Discharge (m <sup>3</sup> /s) | Annual Specific                                            | Remarks         |
|-------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|------------------|------------|-------------|-------------------------------------------|------------------------------------------------------------|-----------------|
| 11    | Name of     | 11 otal Length | 1 oral Lengtry 1 oral Calculuture [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                   |                  |            |             |                                           |                                                            |                 |
| ωL    |             | (Jcm)          | Area (km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F.M.S.       | D.P.E*                            | W.S.P.*          | F.M.S.     | D.P.E**     | W.S.P.**                                  | Discharge (m <sup>2</sup> /s/km <sup>2</sup> )             |                 |
|       | Rateis      | 1 38 1         | 8.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                   | 173.4            |            | •           | 1.2                                       | 0.007***                                                   |                 |
|       | Obelantriae | 50             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 4.4                               | •                |            | 0.03        | 1                                         | 0.007***                                                   |                 |
|       | _           | 00             | 768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 785.0        | 697.7                             | 681.9            | 4.21       | 3.67        | 3.68                                      | 0.0054                                                     |                 |
| iszti |             | 21.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63.0         | 77.6                              | 82.2             | 0.439      | 0.54        | 0.58                                      | 0.0070                                                     |                 |
| B     | ·           | 11 6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 54.4                              | 54.4             |            | 0.38        | 0.38                                      | 0.007***                                                   |                 |
|       | Tatula      | 64.7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 404.0        |                                   | 372.7 371.4(U)   | 2.70       | 1           | 2.50 2.49(U)                              | 0.0067                                                     |                 |
|       | r diuta     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   | 612.5 <b>D</b> ) |            |             | 8.02(D)                                   |                                                            |                 |
| SE    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 613        | 0.513                             | 257.3(M)         | \$ 03      | 8,03        | 3.37(M)<br>3.36(U)                        | 0.0131                                                     |                 |
| pon   | Bartuva     | C.1UL          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A-71A        |                                   | 22.2.2           |            |             |                                           |                                                            | 4.64m3/s at the |
| 4S    | Luova       | 52.2           | 353.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t            | 1                                 | :                | ·<br>      |             | 1                                         | 0.00131****                                                | confluence      |
|       |             | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |                  |            |             |                                           |                                                            |                 |
| j     | Note)       |                | F.M.S. : Flow Measurement Station (by MOE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | it Station ( | by MOE)                           | -                | C.A. and ] | Discharge : | at FMS: Fi                                | C.A. and Discharge at FMS: From Meteo-hydrological Service | service         |

Table 2. 2 Length, Catchment Area and Mean Discharge of Rivers in Birzai and Skoudas

D.P.E. : Discharge Point of Effluent (Proposed/Alternative \*

W.S.P. : Water Sampling Point (by JICA Study Team)

(D): Downstream point(M): Middle-stream point(U): Upstream point

: Roughly measured on a map of 1/50,000

: Calculated based on the assumed specific discharge(S.D.). ¥

\*\*\* : The same S.D. of the Agluona River (Assumed) \*\*\*\* : The same S.D. of the Bartuva River (Assumed)

0

1-39

#### Table 2.3 River Water Quality Records, Tatela River (1.8km from the mouth) (Birzai) (Year: 1994)

|                       | T                      | T                                            | 7        |                | T            |          |          | <b></b>    |            |             | ( <b>-</b> ] | ··- ·       | 1                 | Frequ    | T                                       | T              | 1           |
|-----------------------|------------------------|----------------------------------------------|----------|----------------|--------------|----------|----------|------------|------------|-------------|--------------|-------------|-------------------|----------|-----------------------------------------|----------------|-------------|
| ltem                  | Unit                   | Jan.                                         | Feb.     | Mar,           | Apr.         | May      | June     | Joly       | Aug.       | Sept.       | Qet.         | Nov.        | Dee.              | ency     | Mini                                    | Max.           | Mean        |
| Velocity              | nv's                   | 0.64                                         | 0.58     | 0.28           | 0.65         | 0.42     | 0.16     | 0.13       | 0.09       | 0.12        | 0.12         | 0.21        | 0.6               | 12       | 0.02                                    | 0.65           | 0.33]       |
| Discharge             | cum's                  | 5.01                                         | 3,93     | 2.43           | 5.64         | 2.81     | 1.02     | 0.79       | 0.41       | 0.57        | 0.51         | 1.2         | 5.86              | 12       | 0.41                                    | 5.86           | 2.515       |
| Temperature           | 'C                     | 6                                            | 2        | 6              | 8            | 10       | 17       | 18         | 25         | 18          | 11           | 5           | 5                 | 12       | 2                                       | 25             | 10.9        |
| Odour                 |                        | Scent                                        | Scent    | Scent          | Scent        | Scent    | Scent    | Scent      | Scent      | Scent       | Seent        | Scent       | Sceat             |          |                                         |                |             |
|                       |                        | less                                         | less     | less           | less         | less     | less     | less       | less       | less        | lesa<br>20   | 1css<br>20  | <u>less</u><br>20 | 12       | 19                                      |                | 19          |
| Transparancy          | cm                     | 20                                           | 20       | 19             | 20           | 20       | 20       | 20         | 20         | 20          |              | Z0<br>Yello | Yello             |          |                                         | 20             |             |
| Colour                |                        | Yello                                        | Yello    | Yello          |              | Yellowis |          |            |            | Yellow      | Yello        |             | vish              |          |                                         |                | 1           |
|                       |                        | wish                                         | wish     | wish           | wish         | <u>h</u> | wish     | wish       | wish       | ish         | wish         | wish        | WISD              | <b></b>  | • • • • • • • • • • • • • • • • • • • • |                |             |
| Suspeded solid        | mgʻl                   | . 8                                          | : 8      | 4              | . 6          | 14       |          | 2          | 10         | 5           | 5            | 8           | 6                 | 12       | 4                                       | 14             | 7.3         |
| PH<br>0               |                        | 8.2                                          | 8.3      | 8.5            | 8.8          | 8.7      | 89       | · · ·      | 8.4        | 8.2         | 8.4          | 8.2         | 8.4               | 12       | 8.2                                     | 8.9            | 8.45        |
|                       |                        | 6.4                                          | 7.9      | 5.2            | 9.8          | 9.6      | 97       | 9.7        | 3.7        | 6.4         | 7.5          | 7.6         | 7.4               | 12       | 3.7                                     | 9.8            | 7.5         |
| <u>01</u>             |                        | 51.4                                         | 57       | 41.7           | 82.8         | 85.1     | 101      | 103        | 45.2       | 68.1        | 68.2         | 59.4        | 57.9              | 12       | 41.7                                    | 103.2          | 63.4        |
| BODs                  | mgO <sub>2</sub> A     |                                              | 1.2      | 3.8            | 1.4          | 3.4      | 15       | 2          | 3.1        | 19          | 2.7          | 1.7         | 2.2               | 12       | 1.2                                     | 3.8            | 2.3         |
| BOD <sub>1</sub>      | mgO <sub>2</sub> /1    | 2.7                                          | 1.2      | 3.8            | 1.4          | .4       |          |            |            | 1.7         | - 2.1        | 1/          |                   |          |                                         |                |             |
| COD, Cr               | mgOy1                  |                                              |          |                |              |          | <b></b>  |            |            | · · · · · · | ┣            |             |                   |          |                                         |                |             |
| COD, Ma               | mgO <sub>2</sub> A     |                                              |          |                |              |          |          | <u> </u>   |            |             |              |             |                   |          |                                         |                |             |
| NH4-N                 | mgN4                   | 12.000                                       | 12.000   | - · · ·        | 11.000       |          |          | 7.700      |            |             | 4.200        |             |                   | 12       | 4.200                                   | 12.000         | 8,400       |
| NO2-N                 | mgNA                   | 0.8                                          | 0.06     | 0.2            | 0.25         | 0.62     |          |            | 0.52       | 0.4         |              | 0.95        | 0.6               | 11       | 0.06                                    | 2.10           | 0.70        |
| NO3-N                 | mgN/I                  | 0.05                                         | 0.04     |                | 0.03         | 0.05     | 0.09     |            | 0.02       | 0.07        | 0.07         | 0.12        | 0.05              | 12       | 0.02                                    | 0.12           | 0.056       |
| Inorganie N           | mgN/1                  | 4.400                                        | 3.600    |                | 4.800        |          |          | 2.600      |            |             | 0.900        |             |                   |          | 0.200                                   | 5.600          | 2.870       |
| N tetal               | mg/l                   | 5.25                                         |          | 5.87           | 5.08         |          | 2.29     | 1          | 0.71       | 2.47        |              | 3.27        |                   | 11       | 0.74                                    | 5.87           | 3.66        |
| PO <sub>4</sub> -P    | mgP.1                  | 6                                            | 8.3      | 8.2            | 7            | 4.3      |          | 3.2        |            | 3.2         |              |             |                   |          | 1.8                                     | 8.3            | 4.9         |
| P total               | mg/l                   | 0.15                                         | 0.08     |                | 0.06         |          |          |            | 0.36       |             |              | 0.3         | 0.13              | 12       | 0.06                                    | 0.4            | 0.225       |
| Ca                    | mg/l                   | 0.2                                          | 0.1      | 0.18           | 0.09         | 0.14     | 0.36     | 0.31       | 0.42       | 0.8         | 0.52         | 0.42        | 0.16              | 12       | 0.09                                    | 0.8            | 0.308       |
| Mg                    | mg1                    |                                              |          | <b>L</b>       |              |          |          |            |            | <u> </u>    | 100          | I           |                   | ļ,       |                                         |                |             |
| Na                    | mg/l                   |                                              |          | <u> </u>       |              | 41.0     |          | 44.0       |            |             | 40.0         | <b> </b>    | ļ                 | 3        | 40.0                                    | 44.0<br>14.0   | 41.6        |
| <u> </u>              | mg/l                   |                                              | Į        | <u> </u>       | <b></b> _    | 14.0     | <b>_</b> | 14.0       | <u> </u>   |             | 14.0         |             | <b>_</b>          | 2        | 14.0                                    | 4.1            | 14.0<br>3.6 |
| Si                    | mg/l                   | · · ·                                        |          |                | <b> </b>     | <u> </u> | <b> </b> | 3.2        |            | <b> </b>    | 4.1          |             |                   | ·        | 3.2                                     | 4.1            | 3.0         |
| HCO,                  | mg/l                   | <u> </u>                                     |          | <b>_</b>       |              |          | <u> </u> |            |            | <b></b> .   |              |             | <b></b>           |          | <b> </b>                                |                |             |
| SO4                   | mg/l                   |                                              |          | L              |              |          |          |            |            |             | ļ            |             | <b> </b>          | ļ        | L                                       |                |             |
| <u> </u>              | mg/l                   | <u> </u>                                     | ļ        | · .            |              | 725      | <b>.</b> |            |            |             |              |             | 1                 | 1        |                                         |                | 725         |
| Mineralization        | mg/l                   | 52.0                                         | 49.0     | 71.0           | 38.0         | 38.0     | 41.0     |            | 53.0       | 51.0        | 38.0         | 40.0        | 32.0              | 12       |                                         | 71.0           | 45.3        |
| Total hardness        | mgelev/1               |                                              | <u></u>  | <b>I</b>       | <b>I</b>     | 15.0     |          | 9.5        | ∔          | Į           | 7.4          | -           |                   | 3        |                                         | 15<br>0.20     | 10.6        |
| Fe                    | mg/l                   | <b> </b>                                     |          | <u>}</u>       |              |          | 0.10     |            |            | ╂───        | 0.20         | <u></u>     | Į                 | 2        | 0.10                                    |                | 0.030       |
| Mn                    | mg/l                   | ļ                                            | 0.030    |                |              |          |          |            |            | <b>.</b>    | 4.96         |             |                   | 2        |                                         |                | 7.49        |
| Cu                    | micro g/l              | ·                                            | 10.03    |                | ┣───         |          |          |            | ╂          |             | 5.12         |             | ╂                 |          |                                         |                | 8,42        |
| Zn                    | micro g/l              |                                              | 8.04     | _              | <u>↓</u> .   |          | +-       | 1          | +-         |             | 2.02         |             |                   | 2        |                                         |                | 5.03        |
| Cr<br>Ni              | micro g/l<br>micro g/l |                                              | 0.71     |                | <b></b>      |          | +        |            |            | +           | 1.95         |             |                   |          | 0.71                                    |                | 1.35        |
| Pb                    | micro g/l              | <u>                                     </u> | 0.40     |                |              |          |          | 4          |            | t           | 2.30         | -           |                   | 2        |                                         | 2.30           | 1.35        |
| Cd                    | micro g1               |                                              | 0.03     |                | ╉╼╍╌╌        |          |          |            | 1          | -           | 0.42         |             |                   | 2        |                                         | 0.42           | 0.22        |
| Detergent             | mg/l                   |                                              | 1        |                |              |          | 1        |            |            | 1           |              | 1           | 1                 |          |                                         |                | 1           |
| Oil prod.             | mg/l                   |                                              | 1        | 1              | 1            | 1        |          | 1          | 1          | 1           |              |             |                   | -        |                                         |                |             |
| alfa HCH              | micro g/l              | 1                                            |          | 1              | 1            | 0.000    | 1        | 1          | 1          |             | 0.000        |             |                   | 2        |                                         |                | 0.000       |
| beta HCH              | micro g1               | 1                                            | 1        | Ī              | 1            | 0.000    |          |            |            |             | 0.000        |             |                   | 2        |                                         |                | 0.000       |
| gama HCH              | micro g/1              |                                              | T        |                |              | 0.000    |          |            |            |             | 0.000        |             |                   | 7        |                                         |                | 0.000       |
| DDE                   | micro g/l              |                                              |          |                |              | 0.000    | _        | I          |            |             | 0.000        |             | 1                 | 2        |                                         |                | 0.000       |
| DDT                   | micro g1               |                                              |          |                |              | 0.000    |          |            |            |             | 0.000        | 1           |                   | 12       | 0.000                                   | 0.000          | 0.000       |
| PCHB                  | micro g/l              |                                              |          |                |              |          |          |            | 1          | <b>_</b>    | 1            | 1           | 1                 | <b>I</b> | <u> </u>                                |                | h           |
| Ki totat              | col/i                  |                                              |          | 1              | 1            | 100000   | _        | $\vdash$   | <b></b>    | _           | 1            | 1           | <u> </u>          |          |                                         | 100000         |             |
| Kl fresh              | col/l                  | <b>_</b>                                     | 1        | 1              | <b></b>      | <10000   | <u> </u> | .          | <u> </u>   | - <b> -</b> | 1            | <b>_</b>    | <b>_</b>          |          |                                         |                |             |
| E                     | col/ml                 | <b>_</b>                                     | <u> </u> | ·              | <b> </b>     | <u> </u> | <u> </u> | 1          |            | <b> </b>    |              | <u> </u>    | ╂                 |          |                                         |                |             |
| HP                    | col/ml                 | <u> </u>                                     | $\vdash$ | <b> </b>       | <b> </b>     | 96000    | _        |            |            |             |              |             |                   |          | 96000                                   |                |             |
| HM                    | col'm1                 | <b> </b>                                     | <b>_</b> | <b> </b>       | <del> </del> | 60       | <u>4</u> | - <b> </b> |            | <b> </b>    |              | -           |                   | 1.1      | 600                                     | 600            | 600         |
| 3,4-dichlor benzaine  | mg/l                   | 1                                            | <b>_</b> | <b>_</b>       | <b>_</b>     | 1        | <b></b>  | +          |            | 4           | <u> </u>     | ·           | <u>↓</u>          | <b> </b> | +                                       |                | ┣──         |
| penta chlor fenol     | mg/1                   |                                              | .        | 1              | <b> </b>     | 4        |          |            |            | ·}          | <b></b>      | +           |                   |          | +                                       | - <del> </del> |             |
| 2-chlor fenol         | mg/l                   |                                              | <u> </u> |                | <u> </u>     |          |          |            |            |             |              |             | ·   · · ·         |          |                                         |                | <b> </b>    |
| 2,4-dichlor fenol     | mg/l                   | <b></b>                                      |          |                | <b></b> -    | +        | +        |            |            |             |              | +           |                   | +        | 1                                       | +              | <u> </u>    |
| 2.4,6 trichlot fenol  | mg/l                   |                                              | +        | - <del> </del> |              | +        |          | +          | +          | +           | -            | +           |                   | +        | 1                                       | +              | <b>}</b>    |
| 2,3-dimetil fenol     | mg/1                   | 1-                                           | +        | +-             | +            | +        |          |            | ╉──        |             | +            | +           | +                 |          |                                         | +              | +           |
| 3,4-dimetil fenol     | l'am                   |                                              |          | +              | ·+           |          |          |            | - <u>-</u> | +           | +            | +           | +                 | +        | 1                                       | +              | <b>+</b>    |
| 4-chlor 3-metil fenol | mg/l_                  | 1                                            |          | +              | +            |          | +        |            | +          |             |              | +           | +                 | +        | 1                                       | 1              | 1           |
| 1                     | 1                      | 1                                            | 1        | 1              | 1            | 1        | 1        | 1          |            | i           | 1            |             |                   | 1        | محديد مك                                |                | L           |

| Item Unit<br>Velocity m/s<br>Dischage cum/<br>Terreperature C<br>Odour -<br>Transparancy cm<br>Celour -<br>Suspeded solid mg/<br>PH -<br>O <sub>4</sub> mg/<br>BOD, mgO,<br>BOD, mgO,<br>BOD, mgO,<br>COD, Ct mgO,<br>COD, Ct mgO,<br>COD, Mn mgO,<br>NH <sub>4</sub> -N mgN<br>NO <sub>2</sub> -N mgN                                                                                                                                                          | 4<br>Scent<br>less<br>2(<br>Yello<br>wish<br>50<br>7.70<br>7.5<br>57.1          | Scent<br>less<br>¥ellowi<br>sh<br>30.0                             | Mar<br>0.66<br>5.480<br>6<br>Scent<br>less<br>20<br>Yello<br>wish<br>5.0 | Apr.<br>062<br>3.790<br>8<br>Scent<br>less<br>20<br>Yello<br>wish | May<br>0 36<br>2 020<br>6<br>Scent<br>Iess<br>20<br>Yello | 15<br>Scent<br>Icss          | July<br>0.13<br>0.640<br>18<br>Scentl | Aug<br>0.10<br>0.420<br>22 | Sept.<br>0.08<br>0.390 | Oct<br>0.30<br>1.050<br>12 |          | Dec.<br>0.19<br>0.680 | rreq<br>uene<br>12<br>12 | Mini<br>0.08<br>0.390 | Max.<br>0.81<br>10.500 | Mean<br>0.36<br>2.522 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|------------------------------|---------------------------------------|----------------------------|------------------------|----------------------------|----------|-----------------------|--------------------------|-----------------------|------------------------|-----------------------|
| Discharge         cum/           Teraperature         *C           Odour         -           Transparancy         cm           Colour         -           Suspedd solid         mgA           FH         -           O <sub>4</sub> ngA           BOD <sub>3</sub> mgO <sub>2</sub> BOD <sub>3</sub> mgO <sub>2</sub> COD, Cr         mgO <sub>2</sub> COD, Mn         mgO <sub>2</sub> NH <sub>4</sub> -N         mgN           NO <sub>3</sub> -N         mgN | 3 390<br>4<br>Scent<br>less<br>20<br>Yello<br>wish<br>60<br>7.70<br>7.5<br>57.1 | 10.600<br>4<br>Scent<br>less<br>8<br>Yellowi<br>sh<br>30.0<br>7.90 | 5.480<br>6<br>Scent<br>less<br>20<br>Yello<br>wish                       | 3.790<br>8<br>Scent<br>less<br>20<br>Yello                        | 2.020<br>6<br>Scent<br>Icss<br>20                         | 1.140<br>15<br>Scent<br>Icss | 0.640<br>18                           | 0.420                      | 0.390                  | 1.050                      | 0.600    |                       | 12                       | 0.390                 | 10.600                 |                       |
| Temperature     C       Odour                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>Scent<br>less<br>2(<br>Yello<br>wish<br>50<br>7.70<br>7.5<br>57.1          | 4<br>Scent<br>less<br>8<br>Yellowi<br>sh<br>30.0<br>7.90           | 6<br>Scent<br>less<br>20<br>Yello<br>wish                                | 8<br>Scent<br>less<br>20<br>Yello                                 | 6<br>Scent<br>Iess<br>20                                  | 15<br>Scent<br>Icss          | 18                                    |                            |                        |                            |          | 0.680                 |                          |                       |                        | 2 5 2 2               |
| Odour         Chi           Transparancy         Cm           Colour         Suspeded solid         mg2           PH         -         -           Oq         %3         -           BODq         mg0q         %4           BODq         mg0q         -           COD, Cr         mg0q         -           COD, Cr         mg0q         -           NHN         mgNi         -           NO <sub>3</sub> -N         mgNi         -                              | Scent<br>less<br>2(<br>Yello<br>wish<br>60<br>7.70<br>7.5<br>57.1               | Scent<br>less<br>¥ellowi<br>sh<br>30.0<br>7.90                     | Scent<br>less<br>20<br>Yello<br>wish                                     | Scent<br>less<br>20<br>Yello                                      | lcss<br>20                                                | Scent<br>less                |                                       | 22                         | 12                     | 1.5                        |          |                       |                          |                       |                        |                       |
| Transparancy     Cm       Colour        Suspeded solid     mg/l       PH        O <sub>2</sub> %       BOD <sub>3</sub> mgO <sub>2</sub> BOD <sub>3</sub> mgO <sub>2</sub> COD <sub>4</sub> Cr       MO <sub>2</sub> NmgO <sub>2</sub> NH <sub>4</sub> -N     mgO <sub>2</sub> NH <sub>4</sub> -N     mgN       NO <sub>5</sub> -N     mgN                                                                                                                      | less<br>2(<br>Yello<br>wish<br>50<br>7.70<br>7.5<br>57.1                        | less<br>8<br>Yellowi<br>sh<br>30.0<br>7.90                         | less<br>20<br>Yello<br>wish                                              | less<br>20<br>Yello                                               | lcss<br>20                                                | less                         | Scenti                                |                            |                        |                            | 6        | 4                     | 12                       | 4                     | 22                     | 10.1                  |
| Transparancy     Cm       Colour        Suspeded solid     mg/l       PH        O <sub>2</sub> %       BOD <sub>3</sub> mgO <sub>2</sub> BOD <sub>3</sub> mgO <sub>2</sub> COD <sub>4</sub> Cr       MO <sub>2</sub> NmgO <sub>2</sub> NH <sub>4</sub> -N     mgO <sub>2</sub> NH <sub>4</sub> -N     mgN       NO <sub>5</sub> -N     mgN                                                                                                                      | 20<br>Yello<br>wish<br>60<br>1.70<br>7.5<br>57.1                                | 8<br>Yellowi<br>sh<br>30.0<br>7.90                                 | 20<br>Yello<br>wish                                                      | 20<br>Yello                                                       | 20                                                        |                              |                                       | Scent                      | Scent                  | Scent                      | Scent    | Scent                 |                          |                       |                        |                       |
| Celour       Suspeded solid     mg/l       PH     -       O1     mg/l       O2     %       BOD3     mgO2       BOD4     mgO2       COD, Cr     mgO2       COD, Cr     mgO2       NH4-N     mgN2       NO3-N     mgN2                                                                                                                                                                                                                                            | Yello<br>wish<br>60<br>7.70<br>7.5<br>57.1                                      | Yellowi<br>sh<br>30.0<br>7.90                                      | Yello<br>wish                                                            | Yello                                                             |                                                           |                              | ess                                   | less                       | less                   | lcss                       | less     | less                  |                          |                       |                        |                       |
| Suspeded solid myl<br>PH<br>O <sub>2</sub> myl<br>O <sub>3</sub> %<br>BOD <sub>3</sub> mgO <sub>2</sub><br>DOD <sub>7</sub> mgO <sub>2</sub><br>COD, Cr mgO <sub>2</sub><br>COD, Cr mgO <sub>2</sub><br>COD, Mn mgO <sub>2</sub><br>NH <sub>4</sub> -N mgN<br>NO <sub>3</sub> -N mgN                                                                                                                                                                            | wish<br>60<br>7.70<br>7.5<br>57.1                                               | sh<br>30.0<br>7.90                                                 | wish                                                                     |                                                                   | VAILA                                                     | 20                           | 20                                    | 19                         | 18                     | 20                         | 18       | 20                    | 12                       | 8                     | 20                     | 18                    |
| Suspeded solid myl<br>PH<br>O <sub>2</sub> myl<br>O <sub>3</sub> %<br>BOD <sub>3</sub> mgO <sub>2</sub><br>DOD <sub>7</sub> mgO <sub>2</sub><br>COD, Cr mgO <sub>2</sub><br>COD, Cr mgO <sub>2</sub><br>COD, Mn mgO <sub>2</sub><br>NH <sub>4</sub> -N mgN<br>NO <sub>3</sub> -N mgN                                                                                                                                                                            | 50<br>1.70<br>7.5<br>57.1                                                       | 30.0<br>7.90                                                       |                                                                          | wish                                                              | 1 200                                                     | Yellow                       | Yello                                 | Yello                      | Yellowi                | Yellow                     | Yellow   | Yello                 |                          |                       |                        | , 1                   |
| HI            O <sub>2</sub> mg1           O <sub>2</sub> %           BOD <sub>3</sub> mgO <sub>2</sub> BOD <sub>7</sub> mgO <sub>2</sub> COD, Cr         mgO <sub>2</sub> COD, Mn         mgO <sub>3</sub> NH <sub>4</sub> -N         mgN           NO <sub>2</sub> -N         mgN                                                                                                                                                                             | 7.70<br>7.5<br>57.1                                                             | 7.90                                                               | 5.0                                                                      |                                                                   | wish                                                      | ish                          | wish                                  | niso                       | sh                     | ish                        | ish      | wish                  |                          |                       |                        | L                     |
| O <sub>2</sub> mg1           O <sub>2</sub> %           BOD <sub>3</sub> mgO <sub>2</sub> BOD <sub>4</sub> mgO <sub>2</sub> COD, Cr         mgO <sub>2</sub> COD, Cr         mgO <sub>2</sub> NH <sub>4</sub> -N         mgN           NO <sub>3</sub> -N         mgN           NO <sub>3</sub> -N         mgN                                                                                                                                                  | 7.5                                                                             |                                                                    |                                                                          | 24.0                                                              | 7.0                                                       | 6.0                          | - 6.0                                 | 4.0                        | 24.0                   | 13.0                       | 19.0     | 9.0                   | 12                       | 4.0                   | 30.0                   | 12.7                  |
| O2     %       BOD3     mgO2       BOD3     mgO2       COD, Cr     mgO2       COD, Cr     mgO2       COD, Mn     mgO2       NH4-N     mgN2       NO3-N     mgN2       NO3-N     mgN2                                                                                                                                                                                                                                                                            | 57.1                                                                            | 1 0.9                                                              | 8 20                                                                     | 8.10                                                              | 8.20                                                      | 8.00                         | 8.10                                  | 7.80                       | 8.00                   | 7.50                       | 7.70     | 7.60                  | 12                       | 7.50                  | 8 20                   | 7.90                  |
| BOD, mgO,<br>BOD, mgO,<br>COD, Cr mgO,<br>COD, Mn mgO,<br>NH,-N mgN<br>NO,-N mgN<br>NO,-N mgN                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                                                                    | 10.1                                                                     | 8.4                                                               | 5.8                                                       | 4.8                          | 38                                    | 4.7                        | - 39                   | 41                         | 5.6      | 4.4                   | 12                       | 3.8                   | - 10.1                 | 6.0                   |
| BOD, mgO,<br>COD, Cr mgO,<br>COD, Mn mgO,<br>NH,-N mgN<br>NO,-N mgN<br>NO,-N mgN                                                                                                                                                                                                                                                                                                                                                                                | 1 20                                                                            | 746                                                                | 81.1                                                                     | 70.9                                                              | 46.5                                                      | 47.9                         | 40.4                                  | 542                        | 40.6                   | 38.1                       | 44.9     | 33.5                  | 12                       | 33.5                  | 81.1                   | 52.4                  |
| COD, Cr         mgO,           COD, Mn         mgO,           NH, N         mgN,           NO <sub>3</sub> N         mgN,           NO <sub>3</sub> N         mgN,                                                                                                                                                                                                                                                                                              |                                                                                 | 3.0                                                                | - 26                                                                     | 1.5                                                               | 2.7                                                       | 1.5                          | 1.7                                   | 2.6                        | 2.2                    | 3.1                        | . 3.2    | 2.1                   | 12                       | 1.5                   | 32                     | 23                    |
| COD, Mn         mgOg           NH4-N         mgN/           NO4-N         mgN/           NO5-N         mgN/                                                                                                                                                                                                                                                                                                                                                     | 1                                                                               |                                                                    | 1                                                                        |                                                                   | 1                                                         |                              |                                       |                            |                        | · · .                      |          |                       |                          |                       |                        |                       |
| NH4-N mgN<br>NO3-N mgN<br>NO3-N mgN                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 3                                                                             | 82                                                                 | . 28                                                                     | 34                                                                | 48                                                        | 47                           | - 61                                  | 14                         | 31                     | 57                         | - 44     | 53                    | 12                       | 14                    | 82                     | 41                    |
| NH4-N mgN<br>NO3-N mgN<br>NO3-N mgN                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 100                                                                           | 20.0                                                               | 12.0                                                                     | 12.0                                                              | : 16.0                                                    | 11.0                         | 14.0                                  | 10.0                       | 5.0                    | 8.0                        | 10.0     | 5.0                   | 12                       | 5.0                   | 20.0                   | 11.0                  |
| <u>NO<sub>2</sub>-N</u> mgN<br>NO <sub>3</sub> -N mgN                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | 0.95                                                               | 0.75                                                                     | 0.10                                                              | 2.00                                                      | 0.40                         | 0.40                                  |                            | 11.00                  | 0.40                       | 1.80     | 1 25                  | n                        | 0.10                  | 11.00                  | 1.86                  |
| NO3-N mgN                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                    | 0.018                                                                    | 0.025                                                             | 0.033                                                     | 0.190                        | 0.220                                 | 0.032                      | 0.050                  | 0.045                      | 0.025    | 0.030                 | 12                       | 0.018                 | 0 220                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                    | 0.60                                                                     | 4.40                                                              | 0.90                                                      | 1.50                         | 1.50                                  | 0.85                       | 1.85                   | 1.30                       | 1.35     | 1 95                  | 12                       | 0.60                  | 7 20                   | 2.00                  |
| Inorganic N mgN                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                    | 1 368                                                                    | 4 525                                                             | 2 933                                                     | 2020                         | 2 1 2 0                               | 0.882                      | 12 900                 | 1.745                      | 3.175    | 3 230                 | 12                       | 0.882                 | 12 900                 | 3977                  |
| N total mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ť                                                                               | 4 2                                                                | <u> </u>                                                                 |                                                                   | 37                                                        |                              |                                       | 12                         |                        | 1.9                        |          | · · · · ·             | 4                        | 12                    | 42                     | 2.7                   |
| PO <sub>4</sub> -P mgP/                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.146                                                                           |                                                                    | 0.040                                                                    | 0.040                                                             | 0 160                                                     | 0.150                        | 0 260                                 | 0.260                      | 0 380                  | 0.640                      | 0.600    | 0.360                 | 12                       | 0.040                 | 0.640                  | 0 268                 |
| P total mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.140                                                                           | 0210                                                               | 0.070                                                                    | V.V-47                                                            | 0180                                                      | 0.1.20                       | 0100                                  | 0.300                      | V 300                  | 0.960                      | 0.640    |                       | 6                        | 0.180                 | 0.960                  | 0.445                 |
| Ca mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                    |                                                                          |                                                                   | 920                                                       |                              |                                       | 100.0                      |                        | 457.0                      | 0.012    | 0.503                 | 3                        | 92.0                  | 457.0                  | 2163                  |
| Mg mgi                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |                                                                    |                                                                          |                                                                   | 36.0                                                      |                              |                                       | 23.0                       | · ·                    | 38.0                       |          | I4                    | 3                        | 23.0                  | 38.0                   | : 323                 |
| Na regi                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 | 35.0                                                               |                                                                          |                                                                   | 29.0                                                      |                              |                                       | 10.0                       |                        | 19.0                       |          |                       | 4                        | 10.0                  | 350                    | 23.2                  |
| K mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | 120                                                                | t                                                                        |                                                                   | 8.0                                                       |                              |                                       | 3.3                        |                        | 82                         |          |                       | 4                        | 3.3                   | 120                    | 7.8                   |
| Si mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | 65                                                                 | 1                                                                        |                                                                   | 5.0                                                       |                              |                                       | 6.0                        |                        | 3.5                        |          |                       | 4                        | 3.5                   | 6.5                    | 5.5                   |
| HCO, mg                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 | 1                                                                  | 1                                                                        |                                                                   | 317                                                       |                              |                                       | 262                        |                        | 289                        |          |                       | 3                        | 262                   | 317                    | 289                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                    |                                                                          | ł                                                                 | 154                                                       |                              |                                       | 127                        |                        | 108                        |          |                       | - 3                      | 108                   | 154                    |                       |
| SO <sub>4</sub> mg/<br>Cl mg/                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 | 21.0                                                               | 35.0                                                                     | 35.0                                                              | 26.0                                                      | 35.0                         | 33.0                                  | 47.0                       | 53.0                   | 45.0                       | 40.0     | 38.0                  | 12                       | 21.0                  | 53.0                   | 129<br>36.6           |
| Mineralization mg/                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | 21.0                                                               | .35.0                                                                    | . 33.0                                                            | 6620                                                      |                              | .37.0                                 | 5727                       |                        | 965.0                      | 40.0     | 20.0                  | - 3                      | 572.7                 | 965.0                  | 733 2                 |
| Total hardness mgck                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 | 7.0                                                                | <u> </u>                                                                 | <u> </u>                                                          | 8.6                                                       |                              |                                       | 6.9                        |                        | 27.0                       | · · ·    | ┢──┘                  | 4                        | 6.9                   | 27.0                   | 123                   |
| Fe mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | 0.97                                                               |                                                                          |                                                                   | 0.37                                                      | ┨                            |                                       | 0.42                       |                        | 0.52                       | <u> </u> |                       | 4                        | 0 37                  | 0.97                   | 0.57                  |
| Ma ng                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | 0.058                                                              | _                                                                        | <b>{</b>                                                          | 0174                                                      |                              |                                       | 0.154                      | <b> </b>               | 0 109                      |          |                       | 4                        | 0.058                 | 0.174                  | 0.123                 |
| Cu micro                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | 3.80                                                               |                                                                          |                                                                   | 3.22                                                      |                              |                                       | 3 10                       | ╂───                   | 3 54                       |          |                       | 4                        | 3.10                  | 3.80                   | 3.41                  |
| Zn micro                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | 7.93                                                               |                                                                          |                                                                   | 3 29                                                      |                              |                                       | 9.64                       | <u> </u>               | 4 39                       |          |                       | 4                        | 3 29                  | 9 6 4                  | 631                   |
| Cr micro                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the second second                                                               | 5 93                                                               | 1                                                                        |                                                                   | 0.45                                                      |                              | <u> </u>                              | 4.92                       | <b> </b>               | 4 26                       | <b> </b> |                       | 4                        | 0.45                  | 5.93                   | 3.89                  |
| Ni micro                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | 184                                                                | 1                                                                        | 1                                                                 | 156                                                       | <u> </u>                     | · · · · · ·                           | 2 63                       | <u> </u>               | 215                        | <u> </u> |                       | 4                        | 1.56                  | 2 63                   | 2 04                  |
| Pb micro                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | 0.40                                                               |                                                                          |                                                                   | 0.60                                                      | f                            | 1                                     | 0.70                       |                        | 0.45                       |          |                       | 4                        | 0.40                  | 0.70                   | 0.53                  |
| Cd micro                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | 0.02                                                               |                                                                          |                                                                   | 0.03                                                      | f                            |                                       | 0.05                       |                        | 0.07                       |          |                       | 4                        | 0.02                  | 0.07                   | 0.04                  |
| Detergent mg                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                                    |                                                                          |                                                                   |                                                           |                              | <u>I</u>                              |                            | Γ                      | 1                          | l        | [                     |                          |                       |                        |                       |
| Oil prod mg                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                                                    |                                                                          | L.                                                                |                                                           |                              |                                       |                            |                        |                            |          |                       |                          |                       |                        |                       |
| alfa HCH micro                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                    |                                                                          |                                                                   | 0.000                                                     |                              |                                       |                            |                        | 0.000                      |          |                       | 2                        | 0.000                 | 0.000                  | 0.000                 |
| beta HCH micro                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                    |                                                                          | 1                                                                 | 0.000                                                     | 1.                           | i                                     |                            |                        | 0.000                      | 1        |                       | 2                        | 0.000                 | 0.000                  | 0.000                 |
| gama HCH micro                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                    | 1                                                                        |                                                                   | 0.000                                                     | į                            |                                       |                            |                        | 0.000                      | 1        | ļ                     | 2                        | 0.000                 | 0.000                  | 0.000                 |
| DDE micro                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                    | 1                                                                        | 1                                                                 | 0.000                                                     | ļ                            | <b> </b>                              | <u> </u>                   | <u> </u>               | 0.000                      | Į        | <u> </u>              | 2                        | 0.000                 | 0.000                  | 0.000                 |
| DDI micro                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                    | <b></b>                                                                  | <u> </u>                                                          | 0.000                                                     | <b> </b>                     | ļ                                     | <b> </b>                   | <b> </b>               | 0.000                      | Į        | Ļ                     | . 2                      | 0.000                 | 0.000                  | 0.000                 |
| PCHB micro                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                                                                               | +                                                                  | 1                                                                        | <u> </u>                                                          | <b>I</b>                                                  |                              | <b> </b>                              |                            | <b>I</b>               | <b> </b>                   | L        | <u> </u>              | <b> </b>                 | []                    |                        |                       |
| KI total col                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | . <b> </b>                                                         | <b>_</b>                                                                 | <u> </u>                                                          | ļ                                                         | <b> </b>                     | I                                     | 1000000                    | ·                      | · ·                        | <b></b>  | <b> </b>              | <u> </u>                 |                       | 1000000                |                       |
| KI fresh col                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                                    | ·   · · ·                                                                | <b> </b>                                                          | <u>}</u>                                                  | <b> </b>                     | <b>_</b>                              | <10000                     | <b> </b>               | ļ                          | <b> </b> | <b> </b>              | 1                        | 10000                 | 10000                  | 10000                 |
| E col'i                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                    | 1                                                                        | 1                                                                 | +                                                         | <b> </b>                     | <b> </b>                              | <1                         | <b></b>                | <u> </u>                   | Į        | <b> </b>              | 1                        | 1                     | <u> </u>               |                       |
| IIP col/i                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                                    |                                                                          |                                                                   |                                                           | ┢                            | <b></b>                               | 31000                      |                        | <b> </b>                   | <b> </b> | ┣                     | 1                        | 31000                 |                        |                       |
| HM col'i                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                    | - <u></u>                                                                | 4                                                                 | 1                                                         | <u> </u>                     |                                       | 9400                       | <u>'</u>               | <u> </u>                   | <b> </b> | <b>{</b>              | 1                        | 9400                  | 9400                   | 940                   |
| 3,4-dichlor benzaine mg                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                    | +                                                                        | <b></b>                                                           | · <b>{</b>                                                | ┨                            | <u> </u>                              | ┨_───                      | <u>{</u>               | <b> </b>                   | <b> </b> |                       | ╋──                      | <b> </b>              | <b> </b>               | <b> </b>              |
| penta chlor fenol mg                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                    |                                                                          |                                                                   | <b>+</b>                                                  | +                            |                                       | I                          | <b> </b>               |                            | ┣        | ┢                     | <b> </b>                 | <b> </b>              | ┣───                   | <u>}</u>              |
| 2-chler fenol mg                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                    | <u> </u>                                                                 | +                                                                 | 1                                                         | <u> </u>                     | 1                                     |                            | <b> </b>               | ┣──                        | ∔        | <b> </b>              | <b>I</b>                 | Į                     | <b> </b>               | <b></b>               |
| 2,4-dichlor fenol mg                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                    | +                                                                        |                                                                   | <b></b>                                                   |                              | <b></b>                               | <del> </del>               | <b></b>                | ļ                          | <b>!</b> |                       |                          | <u> </u>              | <b> </b>               | ∔                     |
| 2,4,6 trichlor fonot mg<br>2,3-dimetil fenot mg                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 | -ł                                                                 | +                                                                        |                                                                   |                                                           | +                            | ╂                                     | <u> </u>                   | ł                      | <b>!</b>                   | <b>!</b> | <b> </b>              | 1                        | <b>I</b>              | l                      |                       |
| A STOCKAST TANAL 1 10-2                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                    |                                                                          |                                                                   | +                                                         |                              | +                                     | ł                          | 1                      | <b>}</b>                   | <b></b>  | ──                    |                          | <b> </b>              | <b></b>                | ┢───                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                    | -                                                                        | +                                                                 | +                                                         |                              | +                                     | <b>+</b>                   | +                      | <b>+</b>                   | ╋──      |                       | 1                        | <b> </b>              | <b>+</b>               | <b></b>               |
| 3,4-dimetil fenol mg<br>4-chlor 3-metil fenol mg                                                                                                                                                                                                                                                                                                                                                                                                                | • •                                                                             | <b></b>                                                            |                                                                          |                                                                   | 1                                                         | · · ·                        | <b>_</b>                              | I                          | 1                      | 1                          | 1        | 1                     | 1                        | 1                     | 1 C                    | 1                     |

Table 2.4 River Water Quality Records, Tatula River (1.8km from the mouth) (Birzai) (Year: 1995)

¢

ł

Table 2.5 River Water Quality Records, Tatola River (1.8km from the mouth)

(Birzai) (Year: 1996)

| Item                                      | Unit               | Jan.          | Feb.                | Mar.             | AN           | May            | June         | July              | Aug           | Sept.          | Oct               | Nov.             | Dec.              | Frequ<br>ency | Mini         | Max    | Mear            |
|-------------------------------------------|--------------------|---------------|---------------------|------------------|--------------|----------------|--------------|-------------------|---------------|----------------|-------------------|------------------|-------------------|---------------|--------------|--------|-----------------|
| Velocity                                  | ຫນ່ຮ               | 0.11          | 0.13                | 0 21             | 03           | 0.41           | 0.3          | 0 28              | 0.1           | 0.07           | 0.1               | 0.14             | 0.16              | 12            | 0.07         | 0.44   | 0.1             |
| Discharge                                 | cu m/s             | 0.349         | 0.210               | 0 220            | 1.050        | 2 850          | 1.000        | 0.830             |               | 0.320          | 0.350             | 0.560            | 0.820             | 12            | 0 210        | 2 8 50 | 0.749           |
| Temperature                               | 'c                 | 4.0           | 4.0                 | 40               | 6.0          | 15.0           | 19.0         | 17.0              | 19.0          | 10.0           | 7.0               | 5.0              | 40                | 12            | 40           | 19.0   | 9.5             |
| Odour                                     |                    | Scent         | Scent               | Scent            | Sceni        | Scent          | Scent        | Scenti            |               | Scent          |                   | Scent            | Scent             |               |              |        |                 |
|                                           |                    | less          | less                | less             | less         | 1055           | less         | <u>ess</u>        | less          | less           | less              | less             | less              |               |              |        |                 |
| Transparancy                              | <u>(11)</u>        | 17            | 20                  | 19               | 19           | 20             | 20           | 20                | 19            | 20             | 20                | 20               | 20                | 12            | 17           | 20     |                 |
| Colour                                    | .•                 | Yello         | Yello               | Yello            | Yello        | Yello          | Yello        | Yellow            | Yello<br>wish | Yello          | Yello             | Yellow           | Yellow            |               |              |        |                 |
|                                           |                    | wish          | wish<br>140         | wish<br>3.0      | wish<br>19.0 | wish<br>15.0   | wish<br>26.0 | <u>ish</u><br>4.0 | 12.0          | wish<br>4.0    | <u>wish</u><br>70 | <u>ish</u><br>60 | <u>ish</u><br>8.0 | 12            | 3.0          | 26.0   | 10              |
| Suspeded solid<br>FH                      | աջյ                | 8.0<br>7.60   | 7.30                | 7.30             | 7.50         | 8.60           | 7.80         | 7.90              | 7.80          | 7.90           | 8.10              | 8 20             | 7.80              | 12            | 7.30         | 8 20   |                 |
| 02 IN                                     |                    | 5.7           | 1.50                | 43               | 7.4          | 7.9            | 9.3          | 8.0               | 3.4           | 5.1            | 10.2              | 6.7              | 83                | 11            | 3.4          | 102    | 6               |
| <u>0</u>                                  | 1<br>%             | 43.4          |                     | 32.7             | 59.3         | 78.7           | 100.9        | 83.2              | 35.9          | 452            | 84.0              | 523              | 632               | 11            | 327          | 100.9  | 61              |
| BOD,                                      | mgO <sub>1</sub> 1 | _             |                     |                  |              |                |              |                   |               |                | 1                 |                  |                   | [- <u></u> -  |              |        | 1               |
| BOD,                                      | ngO 1              | 3.6           | 33                  | 17               | 140          | 1.8            | 41           | 1.9               | 3.0           | 22             | 1.5               | 15               | 1.6               | 12            | 15           | 14.0   | 3               |
| COD, Cr                                   | ngO.1              | 76.0          | 24.0                | 16.0             | 66.0         | 48.0           | 28.0         | 26.0              | 95.0          | 24.0           | 53.0              | 18.0             | 180               | 12            | 160          | 95.0   |                 |
| COD, Mrs                                  | ngO.4              | 7.0           | 5.0                 | 7.0              | 16,0         | 15.0           | 10.0         | 15.0              | 140           | 9.0            | 9.0               | 11.0             | 7.0               | 12            | 5.0          | 160    |                 |
| NH-N                                      | mgN1               | 0.90          | 2 80                | 0.50             | 4.10         | 0.58           | 1.20         | 0.98              | 023           | 115            | 0.47              | 1.50             | 0.50              | 12            | 0.23         | 4.10   | 12              |
| NO <sub>2</sub> -N                        |                    | 0.060         | - manufacture -     | 0.013            |              | 0.044          | •            | 0.038             |               | 0.200          |                   | 0.014            | 0.014             | 12            | 0.010        | 0 200  |                 |
|                                           | mgN/I              |               | 1.50                | 0.80             | 1.95         | 290            | 0.60         | 2.40              | 0.60          | 0.70           |                   | 0.60             | 240               | 12            | 0.60         | 2.90   | 1.4             |
| NO3-N<br>Inorganic N                      | mgN/I<br>mgN/I     | 2 30<br>3 260 |                     | 1.313            |              |                |              |                   |               |                |                   |                  | 2914              |               | 0.840        | 6.114  |                 |
| N total                                   | re1                | 3 200         | 4.0                 |                  |              | 39             | 1 1.477      | 1                 | 11            | 1              | 1.8               |                  | 1                 | 4             | 11           | 4.0    | 2               |
| PO,-P                                     | mgP/1              | 0.640         | 0 680               | 0.070            | 0.520        | 0.080          | 0 200        | 0.080             | 0.160         | 0.440          | 1.080             | 0.030            | 0.090             | 12            | 0.030        | 1 080  | 0.33            |
| P total                                   | mg/l               | 0 800         | 0.720               |                  |              | 0 110          | 1            |                   | 0 200         |                | 1 160             |                  | 1                 | 5             | 0.110        | 1.160  | 0.59            |
| Ca                                        | mg/l               |               | 301.0               |                  |              | 142.0          | 1            |                   | 400.0         |                | 144.0             |                  |                   | 4             | 140.0        | 400.0  |                 |
| Mg                                        | eig/l              |               | 24.0                |                  | <b></b>      | 15.0           | t            | 1                 | 24.0          | 1              | 15.0              |                  |                   | 4             | 15.0         | 24.0   | 19              |
| Na                                        | mg/l               |               |                     |                  | 1            | 15.0           | 1            |                   | 55            |                | 104.8             |                  |                   | 3             | 5.5          | 101.8  | 41              |
| K                                         | mg/l               |               |                     |                  |              | 4.1            |              |                   | 4.4           |                | 111               |                  |                   | 3             | 4.1          | 11.1   | 6               |
| Si                                        | mg/1               |               | 4.0                 |                  |              | 22             | 1            | L                 | 20            | I              | 1.0               |                  |                   | 4             | 1.0          | 4.0    | 2               |
| HOO3                                      | mgil               |               | 286                 |                  |              | 262            | <u> </u>     |                   | 244           |                | 241               | L                |                   | 4             | 244          | 286    | 5 2             |
| SO,                                       | mg."               |               | 121                 | · ·              |              | 96             |              |                   | 70            |                | 140               |                  |                   | . 4           | 70           |        |                 |
| Ci                                        | mg/l               | 38.0          | 57.0                | 31.0             | 35.0         | 33.0           | 31.0         | 38.0              |               | 127.0          |                   | 63.0             | 210               | 12            | 21.0         | 190.0  |                 |
| Mineralization                            | mg/l               |               |                     |                  |              | 565.1          | <b></b>      |                   | 810.9         |                | 848.9             |                  |                   | 3             | 565.1        | 848.9  |                 |
| Total hardness                            | mgekv/i            |               | <u></u>             |                  |              | 82             | <b>!</b>     |                   | 22.0          | ļ              | 8.4               | <b>!</b>         |                   | 1             | 8.2          | 22.0   | _               |
| Fe                                        | mg/l               | ļ             | 0.17                |                  |              | 0.30           | <b>_</b>     |                   | 0.10          | <b>_</b>       | 0.10              |                  | <b> </b>          | 4             | 0.10         | 0.30   | -               |
| Ma                                        | mg/l               |               | 0.15                |                  | - · ·        | 0.02           | ł            |                   |               | ļ              | 0.02              |                  | <u> </u>          |               | 0.02         | 0.15   | 0.0             |
| <u>Cu</u>                                 | microgl            | <b>_</b>      | 1.42                | · · · · ·        |              | 253            | <b> </b>     |                   | <b> </b>      | <b> </b>       | 165               |                  | <u> -</u>         | 1             | 1.42         | 2 53   | $\frac{1}{100}$ |
| <u>2n</u>                                 | micro g1           | - <u>-</u>    | 12 30               | L                | ļ            | 11 24          | <b>{</b>     |                   |               | <b> </b> • • • | 0.63              | ł                | <u> </u>          | 3             | 6.85<br>0.68 | 12 30  |                 |
| <u></u>                                   | micro g1           |               | 8 24                |                  |              | 10.66          | <b> </b>     |                   | +             | ╆              | 1 21              | +                | <u> </u>          | 3             | 1 21         | 1 69   | 1               |
| <u>Ni</u>                                 | micro gl           | <u>i</u>      | <u>1.44</u><br>0.70 |                  |              | 1.80           |              |                   | +             | <del> </del>   | 1.90              | +                | ┣━━━              | 3             | 0.70         | 1.90   | _               |
|                                           | microg]<br>microg] |               | 0.05                | <u>} · · · ·</u> | ┟            | 0.17           |              | {                 | t             | t              | 0.20              |                  |                   | 3             | 0.05         | 0.20   |                 |
| Detergent                                 | mg/l               |               | 0.05                |                  | {            | 1              | ┨            |                   | 1             |                | 1                 |                  | <u> </u>          |               |              |        | <u>†</u>        |
| Oil prod.                                 | mg/l               |               | ·                   | (                |              | 1              |              |                   |               | 1              | +                 |                  | 1                 |               |              |        | 1-              |
| alfa HCH                                  | micro g/l          |               |                     |                  | 1            | 0.000          |              |                   |               | 1              | 0.000             |                  | -                 | 2             | 0 000        | 0.000  | 00              |
| bets HCH                                  | micro g1           | 1             |                     |                  |              | 0.000          | 1            |                   | 1             | 1              | 0.000             |                  | 1                 | 22            | 0.000        | 0.000  | 0.0             |
| gama HCH                                  | micro g1           |               |                     |                  |              | 0.000          |              |                   |               |                | 0.000             |                  |                   |               | 0 000        | 0.000  | 0.0             |
| DDE                                       | micro g1           | Ι             | I                   |                  |              | 0.000          |              |                   |               | 1              | 0.000             |                  |                   | 2             |              | 0.000  |                 |
| DDT                                       | micro g-1          |               |                     |                  | ļ            | 0.000          | I            | ļ                 | <u> </u>      | <b> </b>       | 0.000             | <u> </u>         | Į                 | 2             |              |        |                 |
| PCHB                                      | micro g/1          |               |                     | L                | <b> </b>     | 0.000          | <b> </b>     | <b> </b>          | <u> </u>      | <b> </b>       | 0.000             | 1                | Į                 | 2             | 0.000        |        |                 |
| KI total                                  | rol4               |               | <b> </b>            | <b> </b>         | <u> </u>     | 40000          |              | <b>_</b>          | 50000         |                | <1000             |                  | Į                 | 3             |              | 50000  |                 |
| KI feesh                                  | coll               |               | I                   | <b> </b>         | 1            | <1000          |              | 1                 | 30000         | 4              | <1000             | <u> </u>         | <b> </b>          | 3             |              | 3000   |                 |
| E                                         | col/m1             |               | <b> </b>            | <b> </b> -       | <b></b>      | 10             |              | <u> </u>          | <1            | <u> </u>       | <1                | <del>.</del>     | <b>ł</b>          | 3             |              |        |                 |
| HP                                        | col ml             | J             |                     | l                | <u> </u>     | 8600           |              |                   | 14000         |                | 14000             |                  | <u> </u>          | 3             |              | 1400   |                 |
| HM                                        | col/ml             |               | ┣                   |                  | <b> </b>     | 10             | " <b> </b>   |                   | <u>970</u>    |                | 10                |                  | {                 | 1-3           | 1-10         | 970    | <u> </u>        |
| 3.4-dichlor benzaine                      | ng/                | 1             | <b>}</b>            | <u> </u>         | +            | 1              | ł            | <u> </u>          | ╂             | -              |                   |                  | <b></b>           | +             | <u> </u>     | +      | ·- <u></u> ]    |
| penta chior fenol                         | mg 1               | —             | <b> </b>            |                  | ł            | 1              | · · ·        | ł                 |               | <b> </b>       | 1                 | +                |                   |               |              | +      |                 |
| 2-chlor fenol                             | mg/1               | <b> </b>      | <u></u> +           | <b> </b>         |              | +              |              | +                 | ┣             | 1              | ·                 | †                | <u> </u>          |               | ·            | +      |                 |
| 2,4-dichlor fenol<br>2,4,6 trichlor fenol | mg-1               | <b> </b>      | ł                   | <b> </b>         | +            | <del>{</del> - | +            |                   | +             | <u>+</u>       | 1                 |                  | t                 | +             | +            |        | · + · · · ·     |
| 2,4,0 trichlor tenot                      | mg-1<br>mg-1       | +             |                     | t                |              |                | t            | 1                 | <b>†</b>      | 1              | t                 | 1                | <u>+</u>          | 1             | <u>+</u>     | t      |                 |
| 2,3-cimetil fenol                         | 612 1<br>612 1     | 1             | +                   | +                | 1            | ╂───           | <u>+</u>     | 1                 | 1             | i -            | 1                 | 1                | 1                 | 1             | <u>t</u>     | 1      | -†—             |
| 4-chlor 3-metil fenol                     | mg/1               | 1             | 1                   | t —              | 1            | 1              | +            | 1                 | +             | 1              | 1                 | 1                | 1                 | 1             | †            | 1      | -+              |
|                                           |                    | +             | +                   | 1                | +            | 1              | 1            | 1                 | + •           | 1              | · † · · · ·       | 1                | 1                 | 1             | 1 -          | 1      | -+              |

)

#### Table 2.6 River Water Quality Records, Tatula River (1.8km from the mouth) (Birzai) (Year: 1997)

|                                           |                      |              |                   |                                              | ··         |            |            |                |            |            |              |            |              |               |                |       |       |
|-------------------------------------------|----------------------|--------------|-------------------|----------------------------------------------|------------|------------|------------|----------------|------------|------------|--------------|------------|--------------|---------------|----------------|-------|-------|
| Itera                                     | Unit                 | Jan.         | Feb.              | Mar.                                         | Apr.       | May        | June       | July           | Aug.       | Sept.      | Oct.         | Nov.       | Dec.         | Frequ<br>ency | Mini.          | Max.  | Mean  |
| Velocity                                  | fa's                 | 0.12         | 0.31              | 0.61                                         | 0.8        | 0.61       | 0.45       | 0.3            | 0.13       |            | 0.12         | 0.45       | 0.45         | 11            | 0.12           | 0.8   | 0.39  |
| Discharge                                 | cu m's               | 0.38         | 0.63              | 4.13                                         | 6.5        | 3.65       | 2.76       | 1.52           | 0.48       | 0.55       | 0.41         | 1.81       | 2.52         | 12            | 0.38           | 6.5   | 2.111 |
| Temperature                               | <u> </u>             | 4.0          | 4.0               | 6.0                                          | 5.0        | 5.0        | 17.0       | 22.0           | 19.0       | 18.0       | 17.0         | 6.0        | 5.0          | 12            | 4.0            | 22.0  | 10.6  |
| Odour                                     |                      | Scent        | Scent             | Scent                                        | Scent      | Scent      | Scent      | Scentl.        | Scent      | Scent      | Scent        | Scent      | Scent        | •             |                |       |       |
| Transparancy                              |                      | less<br>20   | <u>less</u><br>20 | less<br>20                                   | less<br>20 | less<br>20 | 1¢53<br>20 | esis<br>20     | less<br>16 | less<br>19 | less<br>20   | 1055<br>20 | less<br>20   | 12            | 16             | 20    | 19    |
| I ransparancy                             | ¢m                   | Yello        | Yello             | Yello                                        | Yello      | Yello      | Yello      | Yello          | Yello      | Yello      | Yello        | Yello      | Yello        |               |                |       |       |
| Colour                                    |                      | wish         | wish              | wish                                         | wish       | wish       | wish       | wish           | wish       | wish       | wish         | wish       | wish         |               |                |       |       |
| Suspeded solid                            | mg/l                 | 7.0          | 5.0               | 4.0                                          | 6.0        | 5.0        | 27.0       | 7.0            | 28.0       | 11.0       | 6.0          | 5.0        | 8.0          | 12            | 4.0            | 28.0  | 9.9   |
| PH                                        |                      | 7.6          | 7.4               | 7.7                                          | 8.1        | 8.1        | 7.9        | 7.9            | 82         | 8.0        | 8.0          | 8.0        | 7.6          | 12            | 7.4            | 8.2   | 7.9   |
| 0,                                        | mg/l                 | 8.4          | 8.7               | 8.5                                          | 9.2        | 8.5        | 7.3        | 7.2            | 6.8        | 7.0        | 6.3          | 7.8        | 7.3          | 12            | 6.3            | 9.2   | 7.7   |
| 02                                        | %                    | 63.9         | 66.2              | 68.2                                         | 71.9       | 66.4       | 75.9       | 83.0           | 73.8       | 74.4       | 65.5         | 62.6       | 57.0         | 12            | 57.0           | 83.0  | 69.1  |
| BODy                                      | mgO <sub>2</sub> /1  | 1 1 1<br>    |                   | 1111                                         | 1. E       |            |            |                |            | . :        |              |            |              | :             |                |       |       |
| BOD,                                      | mgO <sub>2</sub> /l  | 2.0          | 2.6               | 1.2                                          | 1.4        | 2.0        | 2.4        | .1.9           | 5.3        | 1.3        | 1.6          | 1.6        | 1.2          | 12            | 1.2            | 5.3   | 2.0   |
| CÓD, Cr                                   | mgO <sub>2</sub> /1  | 15.0         | 11.0              | 16.0                                         | 16.0       | 38.0       | 21.0       | 25.0           | 38.0       | 32.0       | 28.0         | 18.0       | 19.0         | 12            | 11.0           | 38.0  | 23.0  |
| COD, Mn                                   | mgO <sub>2</sub> /1  | 11.0         | 11.0              | 10.0                                         | 10.0       | 16.0       | 13.0       | 17.0           | 21.0       | 13.0       | 12.0         | 8.0        | 11.0         | 12            | 8.0            | 21.0  | 12.7  |
| NH <sub>4</sub> -N                        | mgN1                 | 0.6          | 1.2               | 0.5                                          | 0.4        | 0.8        | 0.7        | 0.4            | 0.4        | 0.6        | 0.6          | 0.4        | 0,6          | 12            | 0.4            | 1.2   | 0.6   |
| NO <sub>2</sub> -N                        | mgN/1                | 0.044        | 0.008             |                                              | 0.016      | 0.016      |            |                | 0.000      | 0.000      | 0.000        | 0.016      | 0.020        | 12            | 0.000          | 0.065 | 0.01  |
| NO <sub>3</sub> -N                        | mgN/I                | 0.6          | 2.3               | 5.5                                          | : 5.5      | . 4.4      | 3.4        | 0.75           | 0.3        | 0.4        | 0.5          | 8.9        | 6.2          | 12            | 0.3            | 8.9   | 3.2   |
| Inorganie N                               | mgN/I                | 1.244        |                   | 5.968                                        | 5.916      | 5.216      |            | <u> </u>       | 0.700      |            | 1.120        | 9.316      | 6.770<br>7.5 | 12<br>11      | 0.700          | 9.316 | 3.83  |
| N total                                   | mg/l                 |              | 3.6               | 6.7                                          | 6.4        | 5.3        | 4.7        | 1.6            | 1.0        | 3.4        | 1.2          | 12.0       |              |               | 1.0            | 12.0  |       |
| PO4-P                                     | mgP/1                | 0.120        | 0.280             |                                              | 0.060      | 0.050      | 0.180      | 0.050<br>0.060 | 0.050      | 0.050      | 0.060        | 0.050      | 0.015        | 12            | 0.015<br>0.020 | 0.280 | 0.083 |
| P total<br>Ca                             | mg 1<br>mg 1         |              | 0.370<br>312.0    | 0.050                                        | 0.070      | 124.0      | 0.190      | 0.000          | 156.0      | 0.000      | 120.0        | 0.000      | 0.020        | 4             | 120.0          | 312.0 | 178.0 |
| Mg                                        | mg1                  |              | 84.0              | <u> </u>                                     |            | 38.0       |            |                | 29.0       |            | 43.0         | <b> </b>   |              | 4             | 29.0           | 84.0  | 48.5  |
| Na                                        | mg 1                 |              | 19.4              |                                              |            | 9.2        |            |                | 14.0       |            | 13.0         |            |              | 4             | 9.2            | 19.4  | 13.5  |
| K                                         | mg 1                 |              | 6.4               |                                              | <u> </u>   | 3.9        |            |                | 6.6        |            | 9.2          |            | <u> </u>     | 4             | 3.9            | 92    | 6.    |
| Si                                        | wg1                  |              | 7.0               | <b> </b>                                     |            | 2.0        |            | t              | 4.0        |            | 5.0          |            |              | 4             | 2.0            | 7.0   | 4.5   |
| HCO <sub>3</sub>                          | mg 1                 |              | 235               | · ·                                          |            | 211        |            |                | 244        |            | 272          |            |              | 4             | 211            | 272   | 24    |
| SO4                                       | mg l                 |              | 180               |                                              |            | 150        |            |                | 100        |            | 168          |            |              | 4             | 100            | 180   | 14    |
| Cl                                        | mg 1                 | 61.0         | 34.0              | 41.0                                         | \$5.0      | 55.0       | 34.0       | 34.0           | 34.0       | 36.0       | 36.0         | 30.0       | 42.0         | 12            | 30.0           | 61.0  | 41.0  |
| Mineralization                            | mg 1                 |              | 870.8             |                                              |            | 591.1      |            |                | 583.6      | I          | 661.2        | <u> </u>   | ļ            | 4             | 683.6          | 870.8 | 676.6 |
| Total hardness                            | mgekv l              |              | .17.0             | <b>ļ</b>                                     |            | 9.3        |            | ļ              | 10.0       |            | 9.5          | <b>i</b>   | <b> </b>     | 4             | 9.3            | 17.0  | 11.4  |
| Fe                                        | mg ]                 | <b> </b>     | 0.20              | <u> </u>                                     |            | 0.20       | ┞—         | <b> </b>       | 0.10       | _          | 0.20         |            | <u> </u>     | 4             | 0.10           | 0.20  | 0.1   |
| Mn<br>Cu                                  | mg l<br>micro g l    | <b> </b>     | 0.029             | i —                                          | <b> </b>   | 1.07       | <u>  </u>  |                | 0.035      |            | · · · · ·    |            |              | $\frac{2}{2}$ | 0.93           | 1.07  | 1.00  |
| Zn                                        | micro g1             |              | 3.94              | <u> </u>                                     | {          | 5.65       |            |                | <b></b> -  | <u> </u>   | <b>.</b>     |            |              | 2             | 3.94           | 5.65  | 4.79  |
| Cr                                        | micro g/l            |              | 0.33              | <u> </u>                                     |            | 0.27       |            |                | 1          |            | <del> </del> |            | <u> </u>     | 2             | 0.27           | 0.33  | 0.3   |
| Ni                                        | micro g/l            |              | 0.21              | <u>†                                    </u> | · ·        | 0.41       |            |                | t          |            | 1.           | 1          | 1            | 2             | 0.21           | 0.41  | 0.3   |
| Pb                                        | micro g/l            |              | 0.42              | <u> </u>                                     |            | 0.40       |            |                |            |            |              |            |              | 2             | 0.40           | 0.42  | 0.4   |
| Cð                                        | micro g/l            |              | 0.08              |                                              |            | 0.05       |            |                |            |            |              |            |              | 2             | 0.05           | 0.08  | 0.0   |
| Detergent                                 | mg 1                 |              |                   |                                              |            | •          |            |                |            |            | · · ·        |            |              |               |                |       |       |
| Oil prod.                                 | mg]                  | L            | 0.03              | ļ                                            | 1          | 0.07       | 1          | <u> </u>       | 0.09       | <b></b>    | 0.08         | <b> </b>   | <b> </b>     | 4             |                | 0.09  | 0.0   |
| alfa HCH                                  | micro g/l            | <b> </b>     | <u> </u>          | <u> </u>                                     | <u> </u>   | 0.000      | <u> </u>   |                | ──         | ╉────      | 0.000        |            | <u> </u>     | 2             | 0.000          | 0.000 | 0.00  |
| beta HCH                                  | micro g1<br>micro g1 | <b> </b>     |                   | ╂                                            | <b> </b>   | 0.000      |            |                | <u> </u>   | ╂──        | 0.000        | <u> </u>   | <u> </u>     |               |                | 0.000 |       |
| gama HCH<br>DDE                           | micro g/l            |              | ł                 |                                              | {          | 0.000      | -          | 1-             | ╂──        | +          | 0.000        |            | 1            |               |                | 0.000 |       |
| DDE                                       | micro g/             |              | +                 | <u>+</u>                                     | +          | 0.000      |            | 1              | 1          | +          | 0.000        | _          | 1            |               |                | 0.000 |       |
| PCHB                                      | micro g/l            |              | ╋╼┈               | t                                            | t          | 0.000      | _          | 1              | 1          | 1          | 0.000        |            | <u>† —</u>   |               | -              | 0.000 |       |
| KI total                                  | col/1                |              |                   |                                              |            | <1000      |            | 1              | 4E+03      | 5          | 30000        | 5          |              | 3             | 1000           | 4E+05 | 1E+(  |
| KI fresh                                  | co11                 |              |                   |                                              |            | <1001      |            |                | 80000      |            | 30000        | -          |              | _             | 3 1000         | 80000 | 370   |
| E.                                        | col'ml               |              |                   |                                              |            | 4          |            | <b>_</b>       | 60         |            | 1            |            | <b></b>      |               | 3 1            |       | 1     |
| <u></u>                                   | cel/ml               | · <b> </b>   | <b>_</b>          |                                              |            | 190        | _          | - <b> </b>     | 40350      | _          | 1330         |            | <u> </u>     |               |                | 40350 | _     |
| IM<br>14 diables berraine                 | col'ml               |              | -{                |                                              | ·{         | 0.000      |            |                | \$230      | 4          | 200          | 4          |              |               | 3 10           | 970   |       |
| 3,4-dichlor benzaine<br>penta chlor fenol | mg/l<br>mg/l         | <del> </del> |                   |                                              | <b> </b> ' | 0.000      |            | +              | +          | +          | ╉───         |            | +            |               |                | 0.000 |       |
| 2-chlor fenol                             | mg 1<br>mg 1         | +            | +                 | +                                            | +          | 0.000      |            | +              | +          | +          | <del> </del> | +          | +            | _             |                | 0.000 |       |
| 2,4-dichlor fenol                         | mg1                  | 1 -          | 1                 | 1                                            |            | 0.000      |            | +              | 1          | +          | 1            |            |              |               | 10.000         | _     |       |
| 2,4,6 trichlor fenol                      | mg1                  | 1            | 1                 |                                              | 1          | 0.000      | _          | +              | 1          | 1          | 1            | 1          | 1            |               |                | 0.000 |       |
|                                           | mg1                  | 1            | 1                 | 1                                            | 1          | 1          | 1          | 1              | 1          | 1          | 1            | 1          | 1            | 1             | 1              | 1     | 1     |
| 2,3-dimetil fenol                         | FUR/ J               |              |                   |                                              |            |            | -          |                | _          |            | +            |            |              | _             |                | +     | 10.00 |
|                                           | mg/l                 | -            |                   | 1                                            |            | 0.000      |            |                |            |            |              | 1          |              |               | 1 0.000        | 0.000 | 0.00  |
| 2,3-dimetil fenol                         |                      |              |                   |                                              |            | 0.000      |            | <u> </u>       | <u> </u>   | <u> </u>   | <u></u>      | 1          |              | _             | 10.000         | 0.000 | 0.00  |

¢

|                                           |                        |              |              |                                         |              |              |                                               |             | 1             |               | *****               | ·            | · * * * * * | e             | · · · · · · · · · · · · · · · · · · · |               | 1                 |
|-------------------------------------------|------------------------|--------------|--------------|-----------------------------------------|--------------|--------------|-----------------------------------------------|-------------|---------------|---------------|---------------------|--------------|-------------|---------------|---------------------------------------|---------------|-------------------|
| Item                                      | Unit                   | Jan.         | Feb.         | Mar.                                    | Apr.         | May          | June                                          | ЪŊ          | Aug.          | Sept          | Oct.                | Nov.         | Dee.        | Erequ<br>ency | Mini.                                 | Max           | Mean              |
| Velocity                                  | BV/8                   | 0 35         | 0.55         | 0.25                                    | 0.5          | 0 32         | 0.1                                           | 0.12        | 0.07          | 01            | 0.13                | 02           | 0.55        | 12            | 0.07                                  | 0.55          | 0 27              |
| Discharge                                 | cum's                  | 2 800        | 3.180        | 1.940                                   | 3.720        | 1950         | 0 670                                         | 0 550       | 0 270         | 0.380         | 0.350               | 0.800        | 3 860       | 12            | 0270                                  | 3 860         | 1.705<br>10.6     |
| Temperature                               | c                      | 6.0<br>Scent | 2.0          | 6.0<br>Scent                            | 8.0<br>Scent | Scent        | Scent                                         | Scent       | Scent         | Scent         | Scent               | Scent        | Scent       | '-            |                                       |               |                   |
| Odour                                     | .•                     | less         | Weak         | less                                    | less         | less         | tess                                          | less        | less.         | less          | less                | less         | less        |               |                                       |               |                   |
| Transparancy                              | cm                     | 20           | 20           | 12                                      | 20           | 17           | - 20                                          | 20          | 20            | 18            | 18                  | 17           | 18          | - 11          | 9                                     | 19            | 16                |
| Celour                                    |                        | Yello        | Yellə        | Colour                                  | Yetto        | Yellowi      | Yellow                                        | Yello       | Colourne      | Yellow        | Yellow              | Yello        | Yellow      |               |                                       |               |                   |
| Suspeded solid                            |                        | wish         | หารล         | ness                                    | wish         | sh           | ish                                           | wish        | <u>S5</u>     | ish           | ish                 | wish         | ish         |               |                                       |               |                   |
|                                           | _mg/1                  | 6.0          | 7.0          | 10.0                                    | 6.0          | 14.0         | 110                                           | 140         | 10.0          | 10.0          | 3.0                 | 5.0          | 12.0        | 12            | 3.0                                   | 14.0          | 9.0               |
| <u> </u>                                  | mg/i                   | 8.1          | 81           | 8.4                                     | 8.7          | 8.7          | 8.7                                           | 8.7         | 8.4           | 8.1           | 8.3                 | 8.1          | 83          | 12            | 8.1                                   | 8.7           | 8.4               |
| 0,                                        | %                      | 5.6          | 7.7          | 20                                      | 109          | 113          | 6.8                                           | 1.9         | 3.5           | 19            | 51                  | 7.0          | 7.0         | 12            | 1.9                                   | 11.3          | 5.8               |
| BOD,                                      | mgO/I                  | 44.9         | 55.6         | 16.1                                    | 921          | 100 2        | 70.7                                          | 19.3        | 428           | 19.8          | 451.4               | 54.7         | 54.7        | 12            | 16.1                                  | 100 2         | 51.4              |
| BOD,                                      | mgO <sub>2</sub> /1    | 3.6          | 1.4          | 29.0                                    | 19           | 6.5          | 4.0                                           | 48          | 14.4          | 4.6           | 4 2                 | 4.7          | 23          | 12            | 1.4                                   | 29.0          | 6.7               |
| 00D, Cr                                   | mgO <sub>2</sub> A     |              |              |                                         |              |              | ·,                                            |             |               |               |                     |              |             |               |                                       |               |                   |
| COD, Mn<br>NH-N                           | mgOA<br>mgNA           | 140          | 13.0         | 10.0                                    | 14.0         | 11.0         | 16.0                                          | 16.0        | 13.0          | 14.0          | 7.4                 | 9.0          | 5.0         | 12            | 5.0                                   | t6.0          | 11.8              |
| NO2-N                                     | mgN4                   | 2.10         | 1.20         | 12.00                                   | 1 25         | 2 20         | 3.00                                          | 1.30        | 10.00         | 11.00         | 8.70                | 4.90         | 1 20        | 12            | 1 20                                  | 12:00         | 4.90              |
| NO <sub>3</sub> -N                        | mgN/I                  | 0.040        | 0.080        | 0.040                                   | 0.050        | 0.075        | 0.020                                         | <b></b>     | 0.090         |               | 0 100               | 0.045        | 0.050       | 10            | 0.020                                 | 0.100         | 0.059             |
| Inorganic N                               | mgN/1                  | 3.80         | 6.80         |                                         | 5.40         | 2 50         | 0.03                                          | 0.70        | 0.20          | Ľ             | 0 25                | 1.90         | 4.80        | 10            | 0 20                                  | 6.80          | 2 66              |
| N total                                   | ng1                    | 5 94)        | 8.080        | 1.1.1                                   | 6.700        | 4.775        | 3270                                          |             | 10.290        |               | 9.050               | 6.845        | 6.050       | 9             | 3 270                                 | 10 290        | 6.771             |
| PO-P                                      | ngP1                   | 6.1          | 92           | 13.0                                    | 8.5          | 6.0<br>0.450 | <u>5.5</u><br>1 100                           | 26<br>1.100 | 13.0<br>1.700 | 12 0<br>4 200 | <u>9.2</u><br>1.400 | 8.0<br>0.540 | 65<br>0.130 | 12            | 26                                    | 13.0<br>4 200 | <u>83</u><br>1061 |
| P ketal<br>Ca                             | ng1<br>1               | 0.120        | 0.120        | 1.900                                   | 0 180        | 0.450        | 1 140                                         |             | 1.900         | 4 500         | 1 600               | 0630         | 0.150       | 12            | 0 150                                 | 4 500         | 1.169             |
| Mg                                        | സൂി                    |              |              |                                         |              |              |                                               |             |               |               |                     |              |             |               |                                       |               |                   |
| N3                                        | mg/l                   |              |              |                                         |              |              |                                               |             |               |               |                     |              |             |               |                                       |               |                   |
| K                                         | mg1                    |              | ļ            | ļ                                       | ļ            | 37.0         | ļ                                             | 41.0        |               | <b> </b>      | 39 <u>.0</u><br>140 |              | <b> </b>    | 3             | 37.0                                  | 41.0          | 39.0<br>13.3      |
| Si<br>HCO <sub>1</sub>                    | mg.1                   |              |              |                                         | <b> </b> -   | 11.0         | <u> </u>                                      | 15.0        |               |               | 13                  |              |             | 2             | 1.3                                   | 2.8           | 20                |
| SO4                                       | mg/l<br>mg/l           |              |              | ┨                                       | ┨───         | ╉╌───        |                                               | <u>+</u>    |               |               | <u>├</u>            |              | <u> </u>    |               |                                       |               |                   |
| ci                                        | mg/l                   |              | ┣            |                                         | <b>-</b>     | · · ·        |                                               | 480.0       |               |               | 1                   |              |             | 1             | 480                                   | 480           | 480               |
| Mineralization                            | mg/l                   | 34.0         | 41.0         | 43.0                                    | 35.0         | 33.0         | 38.0                                          |             | 53.0          | 63.0          |                     | 40.0         | 37.0        | 12            | 25.0                                  | 63.0          | 41.0              |
| Total hadness                             | mgekv/l                |              | <u>i</u>     |                                         | <b> </b>     | 13.0         | 0.00                                          | 10.0        | <b> </b>      | <b>!</b>      | 7.2                 | <u> </u>     |             | 3             | 7.2                                   | 13.0<br>0 20  | 10.0              |
| Fe<br>Mn                                  | mg/l<br>mg/l           | ┨───         | ╂───         |                                         | <u> </u>     | ╂            | 0.00                                          | ╂───        |               | <u> </u>      | 1 0 20              |              |             | <u> </u>      | - 0.00                                |               | 0.10              |
| Cu                                        | micro g/l              |              | ╞╌╼╸         | † – – – – – – – – – – – – – – – – – – – | 1            | 1            | 1                                             |             |               |               |                     |              |             |               |                                       |               |                   |
| Zn                                        | micro g1               |              |              |                                         |              |              |                                               |             | <u> </u>      |               | <b>_</b>            |              | ļ           | <b>I</b>      |                                       |               |                   |
| <u> </u>                                  | micro gʻi              | ·            | <b>↓</b>     |                                         |              | ┨───         |                                               |             |               |               |                     | ļ            |             | ╂──-          |                                       | i             |                   |
| Ni<br>10                                  | microg1<br>microg1     |              | ╂───         | <u> </u>                                |              |              |                                               | 1           |               | <u> </u>      | +                   | 1            |             |               |                                       |               |                   |
| Cd                                        | micro g1               |              | <u> </u>     | 1                                       | 1            | 1            |                                               | 1           |               |               |                     |              |             |               |                                       |               |                   |
| Detergent                                 | നളി                    |              |              |                                         |              |              | Į                                             | ļ           |               | <b> </b>      | <b> </b>            | ₋            | <u> </u>    | <b>!</b>      | <b> </b>                              | <b>į</b>      | <b>_</b>          |
| Oil prod<br>alfa HCH                      | mg/l<br>micro g/l      | ļ            |              |                                         | ┨───         | ╉━──         | <u> </u>                                      | ╉──         |               | ╆             | ╂──・                | +            | ╂───        | ╂             | l                                     |               | <b> </b>          |
| beta HCH                                  | microgi<br>microg/l    | <b> </b>     | <b>†</b>     | 1                                       | +            | +            | <u> </u>                                      |             |               | <u> </u>      | 1                   | 1            |             | 1             |                                       | L             |                   |
| gama HCH                                  | micro g/l              | 1            |              |                                         |              |              |                                               |             |               |               |                     |              |             |               |                                       | <u> </u>      |                   |
| DDE                                       | micro g/l              |              | <u> </u>     |                                         | <b>_</b>     | ↓            | ·                                             | <b> </b>    | <b> </b>      | <b> </b>      | <b></b>             | <b> </b>     |             | 1             | <u> </u>                              | <b>}</b>      | <b> </b>          |
| DDT<br>PCHB                               | micro g/l<br>micro g/l | <del> </del> |              | +                                       | 1 .          |              |                                               | +           | <u> </u>      | +             | 1                   | 1            | <b>†</b>    | +             | <u> </u>                              | <u> </u>      | t                 |
| Ki total                                  | col/l                  | t            | 1            | 1                                       | 1            | 60000        | <u>,                                     </u> | +           | 1             | t             | 1                   |              | 1           | 1             |                                       |               |                   |
| KI fresh                                  | col/l                  |              |              | <u> </u>                                |              | <10000       |                                               |             |               | I             |                     |              |             |               |                                       |               |                   |
| 8                                         | colimi                 | <b></b>      | <u> </u>     |                                         | <b></b>      | 10           |                                               | <u>   ·</u> | <b>}</b>      |               |                     |              | <u> </u>    | ┼╶┤           |                                       |               |                   |
| HP<br>HM                                  | col'ml<br>col'ml       | ┨───         | <del> </del> | <u> </u>                                | <u> </u>     | 14000        |                                               | +           | 4200          | )             | 1000                |              | <u> </u>    | ┼╌┤           | 330                                   |               |                   |
| 3.4-dichlor benzaine                      | mg/l                   | <u> </u>     | +            | †                                       | 1            | Ť            |                                               | <u>t</u>    |               |               |                     |              |             |               | 1                                     |               | [                 |
| penta chior fenol                         | mg-1                   |              |              |                                         |              | 1            |                                               |             |               | <b>_</b>      |                     |              |             |               | <u>-</u>                              |               | <b> </b>          |
| 2-chlor fenol                             | mg/l                   |              |              | ·   · · · ·                             |              | <b>.</b>     | ·                                             |             | <b>}</b>      |               |                     |              |             |               | <b> </b>                              | l             | ┠                 |
| 2,4-dichlor fenol<br>2,4,6 trichlor fenol | mg/l<br>mg/l           | ┨───         | <b>+</b>     | <u> </u>                                | ╂╌╸          | <b>+</b>     | ╂───                                          | +           | <u> </u>      | +             | +                   | 1            | <b> </b>    | 1             | 1                                     |               | <u> </u>          |
| 2,4,6 unchior fenol                       | <br>                   | 1            | 1-           | +                                       | <u> </u>     | 1            | 1                                             | 1           |               |               | 1                   |              |             |               |                                       | [             |                   |
| 3,4-dimetal fenol                         | mg/l                   | 1            |              |                                         | 1            |              |                                               |             |               |               |                     |              |             | <u> </u>      | <u> </u>                              |               | <b> </b>          |
| 4-chlor 3-metil fenol                     | mg/1                   | $\vdash$     | <u> </u>     | 1                                       | <b> </b>     |              |                                               |             | <b>}</b>      | <b> </b>      |                     | +            |             | +             | ╊                                     |               | <u> </u>          |
|                                           | L                      |              | 1            |                                         | 1            | 1            | 1                                             |             | 1             | . I           | 1                   | 1            | L           | J             | .L                                    | <u>i</u>      | 1                 |

# River Water Quality Records, Tatula River (17.5 km from the mouth) (Relow Rirzid, at the left bank) (Year: 1994) Table 2.7

.

|                                        | <u></u>                |            | <b>F-1</b>   |              |               |          |          |                |              | 8          |              |          | <b>.</b>  | Frequ           | NG4          | Max          |          |
|----------------------------------------|------------------------|------------|--------------|--------------|---------------|----------|----------|----------------|--------------|------------|--------------|----------|-----------|-----------------|--------------|--------------|----------|
| Item                                   | Unit                   | Jan.       | Feb.         | Mar.         | Apr.          | Мау      | June     | July           | A-28         | Sept       | Oct.         | Nov.     | Dec.      | ency            | Mini.        |              | Mean     |
| Velocity                               | rav's<br>cum/s         | 0.65       | 7.000        | 0.6<br>3 850 | 0 54<br>3.960 | 0.3      | 0.2      | 0.12           | 0.08         | 0 08       | 0.14         | 0.13     | 0.15      | 12              | 0.08         | 0.72         | 0.30     |
| Discharge<br>Temperature               | °C                     | 2.400      | 4.0          | 60           | 80            | 1.350    | 140      | 19.0           | 23.0         | 17.0       | 120          | 60       | 4.0       | 12              | 4.0          | 230          | 10 2     |
| Odour                                  |                        | No         | No           | No           | No            | No       | No       | No             | No           | Weak       | No           | No       | No        |                 | ·····        |              |          |
| Transparancy                           | an                     | 19         | 8            | 20           | 20            | 20       | 20       | 18             | 18           | 13         | 17           | 14       | 19        | 12              | 80           | 20.0         | 17.0     |
|                                        |                        | Yello      | Yello        | Yello        | Yellow        | Yellow   | Yellow   | Yellow         | Yellow       | Gtey       | Yellow       | Yellow   | Yellou    |                 |              | -            |          |
| Colour                                 |                        | wish       | wish         | wish         | ish           | ish      | ish      | ish            | ish          |            | ish          | ish      | ish       |                 |              |              |          |
| Suspeded solid                         | mgl                    | 6.0        | 24.0         | 19.0         | 13.0          | 60       | 7.0      | 8.0            | 6.0          | 18.0       | 6.0          | 9.0      | 10.0      | : 12            | 60           | 24.0         | 11.0     |
| <u> </u>                               |                        | 1.70       | 7.80         | 8.00         | 8.00          | 8 20     | 7.80     | 7.90           | 1.70         | 7.70       | 7.10         | 7.50     | 750<br>43 | <u>12</u><br>12 | 7.10         | 8 20<br>10.3 | 7,74     |
| <u> </u>                               | - mg/1<br>%            | 6.0        | 89<br>67.80  | 9.9<br>79.50 | 10.3          | 41.70    | 25 30    | 29.30          | 1.6<br>18.80 | 5 20       | 28.80        | 32.90    | 32.70     | 12              | 5.20         | 87.00        | 41 20    |
| DOD,                                   | ngO <sub>2</sub> A     | 45.70      | 3.0          | 19:50        | 16            | 3.4      | 7.7      | 35             | 6.4          | 14.0       | 12.0         | 11.0     | 52        | 12              | 10           | 14.0         | 60       |
| BOD,                                   | ingO <sub>2</sub> /1   | 40         |              |              |               |          |          |                |              |            |              |          |           |                 |              |              |          |
| COD, Ci                                | ngO <sub>2</sub> 1     | 42         | 70           | - 46         | 42            | 53       | 59       | 63             | 36           | 63         | 103          | 98       | 82        | - 12            | 35           | 103          | 63       |
| COD, Ma                                | mgO <sub>2</sub> /1    | 110        | 14.0         | 13.0         | 130           | 180      | 17.0     | 160            | 16.0         | 250        | 15.0         | 120      | 11.0      | 12              | 11.0         | 25.0         | 150      |
| NHL-N                                  | mgN1                   | 2.50       | 0.90         | 0.50         | 1.00          | 3 50     | 2 80     | 4.60           | 7.10         | 12 20      | 3.70         | 5.30     | 3.30      | 12              | 0.50         | 12 20        | 3.95     |
| NO <sub>2</sub> -N                     | mgN/1                  | 0 200      | 0.050        | 0.037        | 0.035         | 0.060    | 0.120    | 0.050          | 0.037        | 0.045      | 0.025        | 0.040    | 0.060     | 12              | 0.025        | 0 200        | 63.000   |
| NO <sub>2</sub> -N                     | mgN.1                  | 4.40       | 2 80         | 5.90         | 6.20          | 1.60     | 1.35     | 0.60           | 1.15         | 1.00       | 0.00         | 0.85     | 1.75      | 12              | 0.00         | 6.20         | 2 30     |
| Inorganic N                            | rogN/1                 | 7.100      | 3.750        | 6.437        | 7.235         | 5.160    | 4270     | 5 250          | 8 287        | 13 245     | 3.725        | 6.190    | 5.110     | 12              | 3.725        | 13.245       | 6313     |
| N total                                | mgʻl                   |            | 4.0          |              | 1             | 65       |          |                | 9.5          |            | 4.0          | . ·      |           | 4               | 4.0          | 9.5          | 6.0      |
| PO <sub>r</sub> P                      | mgPA                   | 0 250      | 0 210        | 0.070        | 0.120         | 0.060    | 0.700    | 0 830          | 1.400        | 2 200      | 1.800        | 1.040    | 0.740     | 12              | 0.060        | 2 200        | 0.785    |
| P total                                | mg/l                   |            | 0 270        |              |               | 0.060    |          |                | 1.600        |            | 2.820        | 1.120    | 0.800     | 6               | 0.060        | 2.820        | 1.111    |
| Ca                                     | l grit                 | ·          |              |              | · · · · ·     | 100.0    |          |                | 128.0        |            | 232.0        |          | <b>_</b>  | 3               | 100.0        | 2320         | 1533     |
| Mg                                     | mg/1                   |            |              | <b></b>      |               | 35.0     |          | · · · ·        | 35.0         |            | 25.0<br>30.0 | <b>-</b> | ┣         | 3               | 25.0<br>27.0 | 36.0<br>39.0 | 320      |
| <u>Na</u><br>K                         | mg/1                   |            | 39.0<br>11.0 | ╆            |               | 29.0     | ┨        |                | 27.0         | ·          | 120          |          |           | 4               | 95           | 120          | 10.8     |
| <u>Si</u>                              | സുി<br>സുി             |            | 65           |              |               | 6.5      | <u> </u> | 1              | 65           |            | 10.0         |          | <u> </u>  | 4               | 6.5          | 10.0         | 7.3      |
| HCO                                    | mg1                    | : :        | l – ÷ ÷      |              |               | 295      |          |                | 314          |            | 305          | ł        | <u> </u>  | 3               | 295          | 314          | 304      |
| SO4                                    | mg1                    |            |              | 1            | <u> </u>      | 31       |          | t              | 32           | <u> </u>   | 69           | 1        | f         | 3               | 31           | 69           | 41       |
| <u> </u>                               | mgʻl                   | 27.0       | 160          | 320          | 39.0          | 300      | 31.0     | 24.0           | 40.0         | 47.0       |              | 42.0     | 38.0      | 12              | 16.0         | 66.0         | 350      |
| Mineralization                         | rag/1                  |            | 1            |              |               | 5320     |          |                | 585.8        |            | 739.1        |          |           | 3               | 532.0        | 739.1        | 618.9    |
| Total hydress                          | mgelev 1               |            | 4.7          | I            |               | 8.0      | [        |                | 9.3          |            | 140          |          | <b>_</b>  | 4               | 4.7          | 14.0         | 9.0      |
| Fe                                     | നളി                    | ļ          | 0.75         | +            |               | 0.40     |          | <b>_</b>       | 0 36         | l          | 0.53         |          |           | 4               | 0 36         | 0.75         | 0.51     |
| <u></u>                                | mg/l                   |            | ┇            | <u> </u>     | <b>-</b>      | ╂        |          |                | ┨────        | ·          | - <b>{</b>   |          | <u> </u>  |                 |              |              |          |
| <u>Cu</u><br>Zn                        | micro g/t<br>micro g/t |            | <b>}</b>     |              |               | <u> </u> | +        | +              | ┨───         |            | +            | +        | +         |                 |              |              |          |
| <u> </u>                               | microg1                |            | ┢──          | +            |               | 1        |          | +-             | ł            | <u> </u>   | +            |          | +         | +               | ļ            |              |          |
|                                        | microgl                |            | 1            | 1            | <u>+</u>      |          |          | +-             |              | t          | 1            | <b>†</b> |           |                 | 1            |              |          |
| <b>Pb</b>                              | microg1                |            |              |              |               |          |          | 1              |              |            |              | · ·      |           |                 |              |              |          |
| Cd                                     | micro g1               |            |              | 1            |               |          | l        | <b>_</b>       |              |            |              |          | ļ         |                 | ·            |              |          |
| Detergent                              | mg l                   | L          | <b>_</b>     | ļ            | <u> </u>      | <u> </u> |          | <u> </u>       | <b></b>      | ļ          | <u> </u>     | 1        |           |                 | ļ            | <u></u>      |          |
| Oitprod                                | <u>1 mg1</u>           | <b> </b>   | <b></b>      | +            | <b> </b>      |          | <b>_</b> | <b> </b>       |              | <b> </b>   |              | +        | 4         |                 | ļ            |              | <u> </u> |
| <u>alfa HCH</u><br>beta HCH            | micro g1<br>micro g1   |            |              |              |               |          |          | - <del> </del> |              |            |              |          | ╂──       |                 | ┨            |              | <b> </b> |
| gyna HCH                               | micro ga               | _          | +            | ╉──          | +             | 1        | +        | 1              | <u> </u>     | 1          | 1            | +        | +         | +               | 1            | t            |          |
| DDE                                    | microgi                |            | 1            | -†           | 1             | 1        | 1        | 1              | 1 .          | <u> </u>   | 1            | 1        | 1         | 1               | t            | 1            | 1        |
| DDT                                    | micro gil              |            |              |              |               | 1        |          |                |              | <u> </u>   |              |          |           |                 |              |              | L        |
| PCHB                                   | micro g/               |            |              |              |               |          |          |                |              |            |              |          |           |                 | <u> </u>     |              | <u> </u> |
| Klustal                                | coll                   |            | 1.           |              |               | 1        | 1        |                | 18+0         |            |              |          | <b>_</b>  |                 |              | 1000000      |          |
| Kifresh                                | 0011                   |            | +            |              |               |          |          |                | <1000        | _          |              |          |           |                 |              |              |          |
| <u>— Е</u><br>НР                       | col'ml<br>col'ml       |            |              | +-           | +             |          |          | +              | 1430         |            | +            | +        | +         |                 |              | _            |          |
| HM HM                                  | col'nd                 | 1          | +            | +            | +             | +        |          | +              | 150          |            |              |          | 1         |                 |              | <u> </u>     |          |
| 3,4-dichlor benzaine                   | mgʻl                   | 1          | 1            |              |               |          |          | 1              | 1            |            |              |          | 1         |                 | 1            |              |          |
| penta chilor fenol                     | tre 1                  |            |              |              |               | 1        |          |                |              |            |              |          |           |                 |              |              |          |
| 2-chlor fenot                          | rrg/1                  |            |              |              |               |          |          |                |              |            |              |          |           |                 |              |              |          |
| 2,4-dichlor fenol                      | n_1                    | . <b>.</b> |              | -+           | - <b>-</b>    | +        |          |                | - <b> </b>   | <b></b>    |              |          | 1         |                 | <u> </u>     |              | <b>I</b> |
| 2,4,6 trichlor fenol                   | 1                      |            |              |              |               |          | +        |                |              | - <b> </b> |              |          |           |                 |              | ┨            | <u> </u> |
| 2,3-dimetil fenol<br>3,4-dimetil fenol | mg1<br>mg1             | +          |              |              |               |          |          | +              | +            | +          |              |          | •         |                 | +            | -}           |          |
| 3,4400000000000                        | 1 1.21                 | _ I        |              | -            | -+            |          |          | _ <b>_</b>     | _            |            |              | _        |           | -               | +            | +            |          |
| 4-chlor 3-metil fenol                  | നളി                    |            |              |              |               | 1        |          |                |              |            |              | 1        |           |                 |              | 1            |          |

#### Table 2.8 River Water Quality Records, Tabla River (17.5 km from the mouth) (Below Birzai, at the left bank) (Year: 1995)

| liem                          | Unit                                  | Jan.         | Feb.           | Mar.      | Apr.         | Мау               | June                                     | July              | Ang.     | Sept.      | Out.     | Nov.     | Dec.                | Frequ<br>ency     | Mini.    | Max.                                         | Mean                 |
|-------------------------------|---------------------------------------|--------------|----------------|-----------|--------------|-------------------|------------------------------------------|-------------------|----------|------------|----------|----------|---------------------|-------------------|----------|----------------------------------------------|----------------------|
| Velecity                      | m's                                   | 0.1          | 0.12           |           | 0.28         | 0.4               | 0.28                                     | 0.2               | 0.1      | 0.06       | 0.09     | 0.13     | 0.14                | 11                | 0.06     | 0.4                                          | 0.17                 |
| Discharge                     | cum's                                 | 0.27         | 0.15           |           | 0.7          | 2                 | 0.75                                     | 0.58              | 0.33     | 0.2        | 0.2      | 0.4      | 0.54                | 11                | 0.15     | 2                                            | 0.565                |
| Temperature                   | c                                     | 4.0          | 4.0            |           | 6.0          | 15.0              | 19.0                                     | 17.0              | 19.0     | 14.0       | 9.0      | 6.5      | 6.0                 | 11                | 4.0      | 19.0                                         | 10.8                 |
|                               |                                       | Scent        | Weak           |           | Weak         | Scent             | Scent                                    | Scent             | Scent    | Scent      | Scent    | Scent    | Scerat              |                   |          |                                              |                      |
| Odour                         |                                       | less         |                |           |              | less              | less                                     | less              | less     | less       | less     | less     | less                |                   |          |                                              |                      |
| Transparancy                  | cra                                   | 15           | 9              |           | 9            | 18                | 19                                       | 19                | 17       | 18         | 18       | 17       | 18                  | 11                | 9        | 19                                           | 16                   |
| Colour                        |                                       | Yello        | छन्            |           | grey         |                   |                                          |                   | grey     | A egow     | धुःत्प्  | Yello    | Yello               |                   |          |                                              |                      |
|                               | · · · · · · · · · · · · · · · · · · · | wish         | 5.0            |           | 31.0         | <u>sh</u><br>15.0 | nish                                     | <u>ish</u><br>6.0 | 35.0     | ish<br>5.0 | 17.0     | 11.0     | <u>wish</u><br>13.0 | - <u>n</u>        | 5.0      | 35.0                                         | 14.8                 |
| Suspeded solid<br>PH          | mg1                                   | 10.0         | 7.4            | ·· • • •  | 7.2          | 1.9               | 7.5                                      | 7.4               | 7.6      | 7.6        | 8.0      | 8.0      | 7.5                 | - 11              | 7.2      | 8.0                                          | 7.6                  |
|                               |                                       | 1.0          | 1.2            |           | 5.9          | 5.8               | 8.6                                      | 4.3               | 2.9      | 3.8        | 1.3      | 3.8      | 4.5                 | $\frac{1}{11}$    | 1.0      | 8.6                                          | 3.9                  |
|                               | - mg/1<br>%                           | 7.6          | 9.1            |           | 47.3         | 57.8              | 93.3                                     | 44.7              | 31.4     | 37.0       | 11.2     | 30.8     | 36.1                | - 11              | 7.6      | 93.3                                         | 36.9                 |
| BOD                           | mgO <sub>2</sub> A                    | 7.0          | 2.1            |           | 47.5         |                   |                                          |                   |          |            |          |          |                     |                   | - 1.0    | 73.5                                         |                      |
| BOD <sub>2</sub>              | mgO <sub>2</sub> 1                    | 13.0         | 47.0           |           | 45.0         | 6.3               | 13.0                                     | 16.0              | 38.0     | 5.6        | 11.0     | 6.2      | 8.5                 | 11                | 5.6      | 47                                           | 19                   |
|                               |                                       | 164          | 45             | ļ         | 96           |                   | 32                                       |                   | 116      |            | 126      |          | 26                  | - ii              | 26       | 161                                          | 87                   |
| COD, Cr                       | $m_2O_1$                              | 22.0         | 16.0           |           | 20,0         | 21.0              | 13.0                                     | 17.0              | 16.0     | 15.0       | 17.0     | 18.0     | 12.0                | - 11              | 12.0     | 22.0                                         | 17.0                 |
| COD, Mn                       | mgO <sub>2</sub> 1                    |              |                |           |              |                   | ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                   |          |            | 16.50    | 1.80     |                     |                   |          |                                              |                      |
| NIL-N                         | mgN1                                  | 5.20         | 8.75           |           | 9.50         | 2.26              | 3.50                                     | 7.70              | 7.40     | 11.60      |          |          | 5.50                |                   | 1.80     | 16.50                                        | 7.19                 |
| NO <sub>2</sub> -N            | mgN1                                  | 0.030        |                | ł         | 0.290        |                   | 0,140                                    | 0.200             | 0.060    |            | 0.034    |          | 0.035               |                   | 0.018    | 0.290                                        | 0.108                |
| NO <sub>2</sub> N             | mgN1                                  | 0.60         | 5.20<br>14.120 |           | 1.20         | 3.70              | 0.60                                     | 2.90              | 0.25     | 0.60       | 0.25     | 0.45     | 1.20                | <u>– 11</u><br>11 | 0.25     | 5.20<br>16.784                               | <u>1.54</u><br>8.841 |
| Inorganic N                   | mgNI                                  | 5.830        |                |           | 10.990       | 7.0               | 4.240                                    | 10.800            | 9.6      | 11.016     | 17.0     | 2.210    | 0.130               |                   | 7.0      | 17.0                                         | 12.1                 |
| N total<br>PO <sub>4</sub> -P | ng1<br>mgPJ                           | 0.860        | 15.0           | ł         | 1.600        | 0.160             | 0.320                                    | 0.900             | 1.200    | 1.900      |          | 0.140    | 2 000               |                   | 0.140    | 2.600                                        | 1.195                |
|                               |                                       |              | 2.000          |           | 1.000        | 0.100             | 0.320                                    | 10.300            | 1.550    | 1.70       | 2.700    |          | 2.000               |                   | 0.230    | 2.700                                        | 1.472                |
| Ca                            | mg1<br>mg1                            | 0.000        | 120.0          |           |              | 148.0             |                                          |                   | 168.0    |            | 120.0    |          |                     | Á                 | 120.0    | 168.0                                        | 139.0                |
| Mg                            | mg1                                   |              | 29.0           |           |              | 19.0              |                                          |                   | 17.0     |            | 19.0     |          |                     | 1                 | 17.0     | 29.0                                         | 21.0                 |
| Na                            | mg1                                   |              |                | 1         |              | 12.0              |                                          | 1                 | 9.2      | t          | 54.5     |          |                     | 3                 | 9.2      | 54.5                                         | 25.2                 |
| K                             | mgʻl                                  |              |                |           |              | 5.0               | · · · · ·                                |                   | 8.2      |            | 20.5     |          |                     | 3                 | 5.0      | 20.5                                         | 11.2                 |
| Si                            | mgʻl                                  |              | 4.5            |           |              | 2.0               |                                          |                   | 2.0      | L          | 4.0      |          |                     | 4                 | 2.0      | 4.5                                          | 3.1                  |
| HCO1                          | mg1                                   |              | 302            |           |              | 262               |                                          |                   | 275      |            | 314      |          |                     | . 4               | 262      | 314                                          | 288                  |
| SO4                           | mgl                                   |              | 55             |           |              | 70                |                                          | ł                 | . 35     |            | 113      | <u> </u> |                     | 4                 | 35       | 113                                          | 68                   |
| Cl .                          | mg 1                                  | 56.0         | 51.0           |           | 46.0         |                   | 33.0                                     | 44.0              | 38.0     | 284.0      |          | 127.0    | 51.0                | 11                |          | 284.0                                        | 84.8                 |
| Mineralization                | mg 1                                  |              |                | ·         |              | 542.0             |                                          | ļ                 | 550.4    | <u> </u>   | \$18.0   | <b>_</b> | <b> </b>            | ]]                |          | 818.0                                        | 635.8                |
| Total hardness                | mgekv1                                |              | 8.4            |           | <b>!</b>     | 9.0               | <u> </u>                                 | <b>↓</b>          | 9.8      | ļ          | 1.6      |          |                     | <u>L 4</u>        | 7.6      | 9.8                                          | 8.7                  |
| Fe                            | mg l                                  |              | 0.18           | <b>_</b>  | <b> </b>     | 0.30              | ļ                                        | Į                 | 0.30     |            | 0.60     | ł        |                     | <b>↓</b> ⁴        | 0.18     | 0.6                                          | 0.34                 |
| Mn                            | mg i                                  |              |                | <b> </b>  |              | ┢───              | <u> </u>                                 |                   |          |            |          |          |                     |                   | ŧ        |                                              |                      |
| <u>()</u>                     | micro g                               | į            |                |           |              | ╆                 | ł—                                       | ╉┅──              | I        | <b>{</b>   |          | <u>+</u> | $\vdash$            |                   | ł        |                                              |                      |
| Zn<br>Cr                      | micro g1                              |              |                |           |              |                   |                                          | ┟───              |          | <u> </u>   |          | t        |                     |                   | <u> </u> |                                              |                      |
| Ni                            | micro g1                              | <u> </u>     | ł              |           |              |                   |                                          | +                 |          |            |          | 1        |                     | t                 | 1        |                                              |                      |
| Pb                            | micro g1                              | <del> </del> |                | · · · · · | $\mathbf{t}$ |                   |                                          | 1                 |          |            |          | <b>†</b> | 1                   | <b> </b>          | 1        | 1                                            |                      |
| Cd                            | micro g l                             |              |                |           | t            | 1                 |                                          | 1                 |          |            | 1        |          | 1                   | 1                 | 1        |                                              |                      |
| Detergent                     | mgl                                   |              |                | 1         | 1            |                   | <b></b>                                  |                   |          |            |          |          |                     |                   |          |                                              |                      |
| OJ prod.                      | mg1                                   |              |                |           |              |                   |                                          |                   |          |            |          | L        | <b>.</b>            | L                 |          | <b>_</b>                                     |                      |
| alfa HCH                      | micro g1                              |              |                |           |              |                   | L                                        | L                 |          |            |          |          | ļ                   | <b>ļ</b>          | ļ        |                                              |                      |
| beu HCH                       | micro g1                              | ļ            |                |           |              | <b>_</b>          |                                          | <b> </b>          | ļ        | ₋          |          |          | <u> </u>            | <b>}</b>          | <u> </u> | 1                                            |                      |
| gama HCH                      | micro g1                              | <b> </b>     | <b> </b>       |           | ļ            | ļ                 |                                          |                   | Ì        |            |          |          | <b> </b>            |                   | <b> </b> |                                              |                      |
| DDE                           | micro g1                              |              |                |           | <b>-</b>     | <b></b>           |                                          |                   |          |            |          |          | ┣                   |                   | ╂        | ╂                                            | <b></b>              |
| DDT                           | micro g1                              |              |                |           | <u> </u>     | <u> </u>          | <b> </b>                                 |                   | {        |            |          |          |                     |                   |          |                                              | +                    |
| PCHB<br>KI total              | col1                                  |              |                |           |              | 70000             | <b> </b>                                 |                   | 100000   | ,          | 500000   |          | ╉┈╾╼╴               | 1                 | 70000    | 500000                                       | 223333               |
| KI fresh                      | col 1                                 | - · ·        | · · · ·        | ╋──       |              | 30000             |                                          | <b>†</b>          | 100000   |            | 500000   |          | ╏┈╾                 |                   | 30000    |                                              |                      |
| E                             | col'ml                                | ┨───         | <u>†</u>       |           |              | 10                |                                          | <u> </u>          | 10       |            | 30       |          | 1                   |                   |          |                                              |                      |
| · 102                         | col'ml                                | 1            | 1              | 1         | <u> </u>     | 14000             | , <b>1</b>                               | <u> </u>          | 17000    |            | 28000    | )        |                     | 3                 | 14000    | 28000                                        | 19665                |
| БМ                            | col'ml                                |              | 1              |           |              | 60                |                                          |                   | 4200     | )          | 1000     | 2        |                     | 3                 | 60       |                                              |                      |
| 3,4-dichlor benzaine          | mg.1                                  |              |                |           |              |                   |                                          |                   |          |            | <b>_</b> | ļ        |                     |                   |          | <u>                                     </u> | L                    |
| penta chlor fenol             | mg <b>1</b>                           |              |                |           |              | 1                 | ļ                                        | <b></b>           | <u> </u> | <b> </b>   | <u> </u> | 1        | <u> </u>            | 1                 | <b> </b> | <b> </b>                                     | <b> </b>             |
| 2-chlor fenol                 | mg1                                   |              |                |           | <b>_</b>     | <u> </u>          | <u> </u>                                 | <u> </u>          | <b> </b> | . <b> </b> | <b></b>  | <b> </b> | <b>.</b>            | . <b> </b>        | <b> </b> | <b> </b>                                     | <b> </b>             |
| 2,4-dichlor fenol             | mg 1                                  | <b> </b>     | <b> </b>       | <b>_</b>  | <u> </u>     | - <b> </b>        | <b> </b>                                 | <b>I</b>          | <b> </b> |            |          | <u> </u> | <b> </b>            | ·                 |          | <b></b>                                      | ╂                    |
| 2.4,6 trichlor fenol          | mg 1                                  | <b> </b>     | <b> </b>       |           | <b>}</b>     | <b></b>           | +                                        | <b></b>           | ╉        |            | <u> </u> | +        | ╋━━                 |                   | ╂        | ł                                            | <b> </b>             |
| 2,3-dimetil fenol             | mg1                                   | <b>↓</b>     |                | +         |              | +                 | ╂                                        |                   |          | <b></b>    | +        |          | <b> </b>            | +                 | ·        | ╄───                                         | <b> </b>             |
| 3,4-dimetil fenol             | mg1                                   | ╂            | · <b>{</b>     | +         | ╂            | -1                |                                          |                   |          | +          | +        | 1        |                     |                   | -+       | +                                            | <u> </u>             |
| 4-chlor 3-metil feaol         | mg l                                  | <b> </b>     |                | +         | +            | ╂───              | ┟──                                      |                   | <u> </u> | +          | 1        |          | 1                   | 1                 | 1        | <u> </u>                                     | 1                    |
|                               |                                       |              |                |           |              |                   |                                          |                   |          |            |          |          |                     |                   |          |                                              |                      |

#### Table 2.9 River Water Quality Records, Tatula River (17.53 in from the month) (Below Bizzai, at the left bank) (Year: 1996)

)

h

1-46

| Table 2.10 | River Water Quality Records, Tatula River (17.5 km from the mouth) |
|------------|--------------------------------------------------------------------|
|            | (Below Birzai, at the left back)                                   |
|            | (Year: 1997)                                                       |

()

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mixi         Max           0 10         0 68           0 250         4 300           40         22.0           11         20           40         15.0           7.10         8.10           21         7.4           22.8         81.8           17         33.0           0.60         14.00           0.000         0.420           0.000         8.50 | Mean<br>0.36<br>1.300<br>11.3<br>16<br>8.3<br>7.67<br>5.5<br>50.0<br>8.7<br>31<br>16.4<br>4.76<br>0.120 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250         4 300           40         220           11         20           40         150           710         810           21         7.4           228         818           17         330           17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.000         8.50              | 1 300<br>11 3<br>16<br>8 3<br>7 67<br>5 5<br>500<br>8.7<br>31<br>16.4<br>4.76                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40         220           11         20           40         150           710         810           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.000         8.50                                         | 113<br>16<br>83<br>767<br>555<br>500<br>8.7<br>31<br>16.4<br>4.76                                       |
| Temperature         C         To         Secret         Secret         Secret         Secret         Secret         Secret         Secret         Secret         Iess         Ies                                                                                                                                                                                                                                                                                                                                                              | 11 20<br>40 150<br>710 810<br>21 7.4<br>228 818<br>17 33.0<br>17 46<br>9.0 30.0<br>0.60 14.00<br>0.000 0.420<br>0.00 850                                                                                                                                                                                                                                  | 83<br>767<br>55<br>500<br>8.7<br>31<br>16.4<br>4.76                                                     |
| Odivar         -         Weak         less         less         less         less         less         less         less         less         Weak         Weak         Weak         less         less           Transparancy         ctn         17         19         18         20         19         16         18         11         13         15         16         18         12           Colour         -         Yellow         Yellow </td <td>40         150           710         8.10           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.000         8.50</td> <td>83<br/>767<br/>55<br/>500<br/>8.7<br/>31<br/>16.4<br/>4.76</td> | 40         150           710         8.10           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.000         8.50                                                                                         | 83<br>767<br>55<br>500<br>8.7<br>31<br>16.4<br>4.76                                                     |
| less         less <t< td=""><td>40         150           710         8.10           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.000         8.50</td><td>83<br/>767<br/>55<br/>500<br/>8.7<br/>31<br/>16.4<br/>4.76</td></t<>                  | 40         150           710         8.10           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.000         8.50                                                                                         | 83<br>767<br>55<br>500<br>8.7<br>31<br>16.4<br>4.76                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40         150           710         8.10           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.000         8.50                                                                                         | 83<br>767<br>55<br>500<br>8.7<br>31<br>16.4<br>4.76                                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 710         810           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.600         14.00           0.000         0.420           0.000         8.50                                                                                                                  | 767<br>55<br>500<br>8.7<br>31<br>16.4<br>4.76                                                           |
| sh         wish         ish         wish         sh         wish         h         ish         wish         h         ish                                                                                                                                                                                                                                                                                                                                                                                                                 | 710         810           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.600         14.00           0.000         0.420           0.000         8.50                                                                                                                  | 767<br>55<br>500<br>8.7<br>31<br>16.4<br>4.76                                                           |
| Bigeted solution         Ing.         100         730         710         800         800         740         770         810         780         780         790         750         12 $O_2$ mg1         58         61         6.7         7.4         70         6.8         7.1         31         21         31         53         66         12 $O_2$ %         44.1         45.4         551         609         54.7         692         81.8         336         22.8         33.6         43.6         54.3         12           BOD <sub>3</sub> mgO <sub>3</sub> /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 710         810           21         7.4           228         818           17         33.0           17         46           9.0         30.0           0.600         14.00           0.000         0.420           0.000         8.50                                                                                                                  | 767<br>55<br>500<br>8.7<br>31<br>16.4<br>4.76                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21         7.4           22.8         81.8           1.7         33.0           17         46           9.0         30.0           0.600         14.00           0.000         0.420           0.000         8.50                                                                                                                                         | 555<br>50.0<br>8.7<br>31<br>16.4<br>4.75                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 228 818<br>17 33.0<br>17 46<br>9.0 30.0<br>0.60 14.00<br>0.000 0.420<br>0.00 850                                                                                                                                                                                                                                                                          | 50.0<br>8.7<br>31<br>16.4<br>4.76                                                                       |
| O1         M201         M                                                                                                                                                                                                                                                                                                                                                                       | 1.7         33.0           17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.000         8.50                                                                                                                                                                                               | 8.7<br>31<br>16.4<br>4.76                                                                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.00         8.50                                                                                                                                                                                                                           | 31<br>16.4<br>4.76                                                                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17         46           9.0         30.0           0.60         14.00           0.000         0.420           0.00         8.50                                                                                                                                                                                                                           | 31<br>16.4<br>4.76                                                                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0         30.0           0.50         14.00           0.000         0.420           0.00         8.50                                                                                                                                                                                                                                                   | 16.4<br>4.76                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50         14.00           0.000         0.420           0.00         8.50                                                                                                                                                                                                                                                                              | 4.76                                                                                                    |
| COL, NII         II_0-17         ISO         ISO <thiso< th="">         ISO         <th< td=""><td>0.50         14.00           0.000         0.420           0.00         8.50</td><td></td></th<></thiso<>                                                                                                                                                                                                                                                                              | 0.50         14.00           0.000         0.420           0.00         8.50                                                                                                                                                                                                                                                                              |                                                                                                         |
| Nugxi         ngN1         1000         0320         0.040         0.340         0.044         0.180         0.420         0.000         0.000         0.050         0.045         12         0           NO <sub>2</sub> N         mgN1         0.000         0.320         0.040         0.340         0.044         0.180         0.420         0.000         0.000         0.050         0.045         12         0           NO <sub>2</sub> N         mgN1         0.000         1.90         6.43         6.20         4.60         2.40         1.85         0.20         0.30         0.30         8.50         6.60         12           Inorganic N         ngN1         14.006         6.20         9.110         7.140         5.444         4.430         4.270         11.200         11.550         6.100         10.750         7.666         12         4           Notel         mg1         6.8         10.0         7.6         5.5         4.7         4.4         11.5         12.0         7.6         13.0         8.2         11           No.4         mg1         3.800         0.670         0.100         1.200         0.450         2.000         1.450         1.440         1.20         0.170 </td <td>0.000 0.420<br/>0.00 8.50</td> <td></td>                                                                                                                                                                                                                                                                                                                                | 0.000 0.420<br>0.00 8.50                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 8.50                                                                                                                                                                                                                                                                                                                                                 | 0.140                                                                                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
| Ntotal         mg1         68         100         76         5.5         4.7         4.4         11.5         12.0         7.6         13.0         8.2         11           FO <sub>4</sub> P         mgP1         3800         0.670         0.100         1.200         0.070         0.200         0.420         1.440         1.120         0.170         0.110         1.2         0           P total         mg1         0.700         0.140         1.400         0.100         0.240         0.400         1.440         1.120         0.170         0.110         1.2         0           Ca         mg1         1.88.0         1.540         1.440         1.520         0.180         0.120         1.1         0         0.120         1.1         0         0.120         1.1         0         0.120         1.1         0         0.120         1.1         0         0.120         1.1         0         0.120         1.1         0         0.120         1.1         0         0.120         1.1         0         0         0.120         1.1         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>9.210 1 14.006</td><td>327</td></td<>                                                                                                                                                                                                                                                                                                                                                                   | 9.210 1 14.006                                                                                                                                                                                                                                                                                                                                            | 327                                                                                                     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           | 8 157                                                                                                   |
| FO <sub>a</sub> P         mgP1         3 800         0 670         0 100         1 200         0 070         0 200         0 430         1 440         1 120         0.170         0 110         12         0           P total         mg1         0.700         0.140         1.400         0.160         0.240         0.450         1.400         1.420         0.170         0.110         12         0           Ca         mg1         1.88.0         154.0         0.460         2000         1.500         1200         0.180         0.120         11         0           Ca         mg1         188.0         154.0         144.0         152.0         4         4           Mg         mg1         44.0         32.0         89.0         17.0         4           Na         mg1         16.6         10.0         41.0         40.0         4           K         mg1         5.5         4.1         9.7         12.0         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4 13                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
| P total         mg1         0.700         0.140         1.400         0.100         0.240         0.460         2000         1.560         1.200         0.180         0.120         11         0           Ca         mg1         188.0         154.0         144.0         152.0         4         4           Mg         mg1         44.0         32.0         89.0         17.0         4           Na         mg1         16.6         10.0         41.0         9.7         12.0         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.070 3.800                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |
| Ca         mg1         188.0         154.0         144.0         152.0         41           Mg         mg1         44.0         32.0         89.0         17.0         4           Na         mg1         16.6         10.0         41.0         40.0         4           K         mg1         5.5         4.1         9.7         12.0         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.100 2.000                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |
| Ng         mg1         440         320         890         170         4           Na         mg1         166         100         410         400         4           K         mg1         55         41         9.7         120         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 144.0 188.0                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |
| Na         mg1         16.6         10.0         41.0         40.0         4           K         mg1         5.5         4.1         9.7         12.0         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.0 89.0                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
| K mg1 5.5 4.1 9.7 120 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 410                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41 120                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
| Si mg1 8.0 20 5.0 8.0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 80                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |
| HCO3 mg/l 253 226 287 317 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 226 317                                                                                                                                                                                                                                                                                                                                                   | 270                                                                                                     |
| SO <sub>4</sub> mg1 140 140 100 120 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 140                                                                                                                                                                                                                                                                                                                                                   | 125                                                                                                     |
| Ci mg1 89.0 41.0 48.0 55.0 68.0 41.0 48.0 55.0 60.0 42.0 60.0 54.0 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41.0 89.0                                                                                                                                                                                                                                                                                                                                                 | 55.0                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 634.1 725.7                                                                                                                                                                                                                                                                                                                                               | 686.9                                                                                                   |
| Total hardness mgekvi 13.0 10.3 15.0 9.0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0 15.0                                                                                                                                                                                                                                                                                                                                                  | 11.8                                                                                                    |
| Fe mg1 020 020 030 050 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 020 050                                                                                                                                                                                                                                                                                                                                                   | 0.30                                                                                                    |
| Mn mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
| Cu micro g1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
| Zn microg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
| Cr mucro g1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                       |
| Ni microg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
| Cd micro g1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           | <b>-</b>                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
| Oil prod mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                       |
| Oil prod. mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                       |
| beta HCH micro pA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           | - <b>1</b>                                                                                              |
| gama HCH micro g/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                       |
| DDE micro g1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                       |
| DDT microgh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
| PCIB microgn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                       |
| Frids         Index gr           Kitutal         col1           50000         500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50000 70000                                                                                                                                                                                                                                                                                                                                               | 0 41666                                                                                                 |
| Ki fresh col 50000 300000 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |
| E col/ml 2 150 98 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 15                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |
| HP col/ml 5800 130700 119500 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5800 13070                                                                                                                                                                                                                                                                                                                                                | 0 8533                                                                                                  |
| HP 00124<br>HM col'ml 30 9520 730 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 952                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |
| 3,4 dichlor benzaine mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                       |
| s,4 alchior benzaule ngg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | []                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                       |
| 2-chlor fenol mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>t</u>                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |
| 2.4-dichlor fenel mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┢ ┨                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                       |
| 2,4,6 trichlor fenol mg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tt                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |
| 2.3-dimetil fenol mg3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tt                                                                                                                                                                                                                                                                                                                                                        | +                                                                                                       |
| 3,4 dimetil fenol mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |
| 4-chlor 3-metil fenol mg1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ╉──╉───                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |

| (Above Birzai, at the left bank) |
|----------------------------------|
| (Year: 1994)                     |
|                                  |

| Item                                      | Unit                   | Jan.        | Feb.           | Mar.        | Apr.      | May                                          | June       | July              | Aug.              | Sept.             | 0.1               | Nov.       | Dee.        | Frequ          | Mioi.    | Max.             | Mean        |
|-------------------------------------------|------------------------|-------------|----------------|-------------|-----------|----------------------------------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------|----------------|----------|------------------|-------------|
|                                           | m's                    | 0.35        |                | 0.25        | 0.45      | 0.3                                          | 01         | 0.1               | 0.06              | 0.1               | 0.15              | 0.18       | 0.5         | ency<br>11     | 0.06     | 0.5              | 0.23        |
| Velocity<br>Discharge                     | cu ny's                | 2.15        |                | 1.75        | 2.6       | 1.4                                          | 0.46       | 0.36              | 0.2               | 0.26              |                   | 0.54       | 2.63        | n              | 0.2      |                  | 1.14        |
| Temperature                               | °C                     | 6           |                | 6           | 8         | 10                                           | 17         | 19                | 25                | 17                | 11                | 5          | 5           | 11             | - 5      | 25               | 11.7        |
|                                           |                        | Scent       |                | Scent       | Scent     | Scent                                        | Scent      | Scent             | Scent             | Scent             | Scent             | Scent      | Scent       |                |          |                  |             |
| Odour                                     | ••                     | less        |                | less        | less      | less                                         | less       | less              | less              | less              | less              | less       | tess        | [              |          | ·                |             |
| Transparancy                              | cm                     | 20          |                | 20          | 20        | 20                                           | 20         | 20                | 20                | 20                | 20                | 20         | 20          | 10             | 9        | 20               | 19          |
| Colour                                    |                        | Green       |                | Green       | Green     |                                              |            |                   |                   | Green             |                   |            |             |                |          |                  |             |
|                                           |                        | ish         |                | ish         | ish       | <u>sh</u><br>10.0                            | ish<br>8,0 | <u>ish</u><br>9.0 | <u>ish</u><br>7.0 | <u>ish</u><br>4.0 | <u>ish</u><br>5.0 | ish<br>5.0 | ish<br>28.0 | 11             | 4.0      | 28.0             | 8.4         |
| Suspeded solid<br>PH                      | mg/l                   | 5.0<br>7.90 |                | 8.0<br>8.40 | 4.0       | 8.60                                         | 8.80       | 8.10              | 8.40              | 8.30              | 8.30              | 8.10       | 8.20        | - ii           | 7.90     | 8.80             | 8.35        |
|                                           |                        | 55.4        | <b></b>        | 40.9        | 95.4      | 102.0                                        | 88.4       | 79.3              | 52.6              | 68.7              | 52.7              | 64.9       | 59.4        | 11             | 40.9     | 102.0            | 69.0        |
| O <sub>1</sub><br>O <sub>2</sub>          |                        | 6.9         |                | 5.1         | 11.3      | 11.5                                         | 8.5        | 7.3               | 4.3               | 6.6               | 5.8               | 8.3        | 7.6         | ii ii          | 4.3      | 11.5             | 7.5         |
| BODs                                      | mgO <sub>2</sub> A     | 2.3         |                | 4.0         | 1.4       | 1.8                                          | 2.8        | 1.9               | 1.7               | 1.5               | 1.1               | 1.6        | 1.7         |                | 1.1      | 4.0              | 1.9         |
| BOD <sub>1</sub>                          | mgO <sub>2</sub> /1    |             | <u></u>        |             |           |                                              |            |                   |                   |                   |                   |            |             |                |          |                  |             |
| COD, Cr                                   | mgO <sub>2</sub> /1    |             |                |             |           |                                              |            |                   |                   |                   |                   |            | <b>†</b>    |                |          |                  |             |
| COD, Mn                                   | mgO <sub>2</sub> A     | 11.0        |                | 7.7         | 15.0      | 14.0                                         | 15.0       | 12.0              | 13.0              | 13.0              | 8.2               | 9.0        | 8.0         | $\frac{1}{11}$ | 7.7      | 15.0             | 11.4        |
| NH4-N                                     |                        | 3.30        |                | 0.40        | 0.35      | 0.38                                         | 0.10       | 4.00              | 0.30              | 0.10              |                   | 0.30       | 0.60        | 10             | 0.10     | 4.00             | 0.98        |
| NO <sub>2</sub> -N                        | mgN/I<br>mgN/I         | 0.040       |                | p.010       |           |                                              | _          | 0.010             | p.015             |                   | <u>†</u>          | 0.020      | 0.015       | 9              | p.010    |                  | 0.016       |
| NO <sub>3</sub> -N                        | mgN/1                  | 4.40        | <u> </u>       | 5.60        | 6.00      | 2.90                                         | 0.10       | · · · ·           | 0.25              | 0.55              | 0.20              | 3.00       | 4.70        | 1 n            | 0.10     | 6.00             | 2.54        |
| Inorganie N                               | mgN/l                  | 7.740       |                | 6.010       | 6.362     | 3.295                                        | 0.213      | 4,260             | 0.565             | † <u>****</u>     | 1 · · · ·         | B.320      | 5.315       | 9              | 0.213    |                  | 4.120       |
| N total                                   | mg/l                   | 8.2         |                | 70          | 8.5       | 4.3                                          | 16         | 4.5               | 1.5               | 1.9               | 0.6               | 3.8        | 65          |                | 0.6      | 85               | 44          |
| POrP                                      | mgP/1                  | 0.140       | <u> </u>       | b.130       | b.030     | 0.190                                        |            | 0.330             | 0.070             | p.066             | 0.060             | 0.060      | 0.065       | 10             | p.030    | p.330            | 0.114       |
| P total                                   | mg/l                   | 0.200       | f              |             |           | 0 2 1 0                                      |            | 0.360             | p.150             | p.100             | 0.110             | 0.050      | 0.080       | 10             | 0.050    | 0.360            | 0.149       |
| Ca                                        | mg/l                   |             |                |             |           |                                              |            |                   |                   |                   |                   |            |             |                |          |                  |             |
| Mg                                        | mg/l                   |             |                | ļ           | ļ         |                                              |            |                   |                   |                   |                   |            | <b>_</b>    |                | 1        | 1000             | 076         |
| Na                                        | mg/l                   |             | <b> </b>       |             |           | 26.0                                         |            | 30.0<br>9.0       |                   | ┣──               | 27.0<br>8.0       | ļ          |             | $\frac{3}{3}$  | 26.0     | 30.0             | 27.6<br>8.0 |
| K<br>Si                                   | mg/l<br>mg/l           | <u> </u>    |                |             |           | /.0                                          |            | 9.0               |                   | <u> </u>          | 1.6               | <b></b>    |             | $\frac{3}{2}$  | 1.6      | 1.6              | 1.6         |
| HCO <sub>1</sub>                          |                        |             |                |             | ╂──       |                                              |            |                   | <u> </u>          |                   | 1                 |            | +           | -              |          |                  |             |
| SO4                                       | ng/l<br>ng/l           |             |                | +           | <u> </u>  | <u>†                                    </u> |            | 260               | <b> </b>          | ţ —               |                   |            | +           | 1 1            | 260      | 260              | 260         |
|                                           | mg1                    | 52          | , <del> </del> | 30          | 25        | 25                                           | 30         |                   |                   | 25                | 28                | 27         | 31          | -              | 2        |                  |             |
| Mineralization                            | mg/l                   |             |                |             |           |                                              |            |                   |                   | 1                 | 1                 |            |             |                |          |                  |             |
| Total hardness                            | mgekv/l                |             |                | 1           |           | 13.0                                         |            | 12.2              |                   |                   | 6.0               |            |             | 3              | 6.0      | 13.0             | 10.4        |
| Fe                                        | mg/l                   |             |                | ┨           | <u> </u>  | Ļ                                            | 0.00       | <u> </u>          | <b>_</b>          |                   | 0.20              | ļ          |             | 2              | 0.00     | 0.20             | 0.10        |
| Mn                                        | mg/l                   |             | <u> </u>       |             |           | <u> </u>                                     |            |                   |                   |                   | <u> </u>          | ┨          |             |                |          | •                |             |
| Cu<br>Zn                                  | micro g/l<br>micro g/l |             |                | +           |           | · <del>}</del>                               |            |                   |                   | +                 | +                 |            |             | -              | ╂───     | +                |             |
| Cr                                        | micro g/l              | -           |                |             |           |                                              | ļ          |                   | <u> </u>          | +                 | +                 |            | +           |                | ╂──┉     |                  |             |
| Ni                                        | micro g/1              |             | -              | 1           | <u>†</u>  |                                              |            |                   | +                 | +                 | †                 | <u> </u>   | +           |                |          | 1                | · · ·       |
| Pb                                        | micro g/1              |             | 1              | -           |           |                                              |            |                   |                   |                   |                   |            |             |                |          |                  |             |
| Cd                                        | micro g/l              |             | 1              |             |           |                                              |            |                   | [                 |                   |                   |            |             | 1              | <b>_</b> | <b>_</b>         |             |
| Detergent                                 | mg/l                   | ·           | <u> </u>       |             |           | <u> </u>                                     |            | <b>_</b>          | <b>-</b>          | <b> </b>          | -                 | ╆          |             |                |          | <b> </b>         |             |
| Oil prod.                                 | mg/l                   | · · ·       |                |             |           |                                              | ļ          |                   | <u> </u>          | ╂───              |                   |            |             |                |          |                  |             |
| alfa HCH<br>beta HCH                      | micro g/l<br>micro g/l |             | +              |             | +         |                                              | <u> </u>   | +                 | <u> </u>          |                   |                   | +          |             |                | +        |                  | 1           |
| gama HCH                                  | micro g/l              |             |                |             | 1         | +                                            | †          | f                 | +                 | 1                 | 1                 | <b>†</b>   |             |                | 1        |                  | 1           |
| DDE                                       | micro g/l              |             | 1              |             |           |                                              |            |                   | 1                 |                   |                   |            |             |                |          |                  | 1           |
| DDT                                       | micro g/l              |             |                |             |           |                                              |            |                   |                   |                   |                   |            |             |                | <b>_</b> |                  | <b>_</b>    |
| РСНВ                                      | micro g/               | l           | 1              |             |           |                                              | <b>_</b>   |                   | ┨                 |                   |                   |            | –-          |                | 400      | 1 4000           | 4000        |
| KI total                                  | col/1<br>col/1         |             |                |             | _         | 4000                                         |            | ╂                 | ╂                 | +                 | +                 | +          |             | +              |          | 0 4000<br>0 1000 |             |
| KI fresh<br>E                             | col/i                  |             |                |             | <u> </u>  | <1000                                        | <u>'</u>   | +                 | +                 | +                 | +                 |            |             |                |          | 3000             |             |
| HP                                        | col'mi                 | +           | -1             | 1           | 1         | 40                                           | 1          | 1                 | 1                 | 1                 | 1                 | 1          | 1           |                | 4        |                  |             |
| HM                                        | col/ml                 |             | 1              | 1           | Ĺ         |                                              | 1          | -                 |                   |                   |                   |            |             | <b>—</b>       |          |                  |             |
| 3,4-dichlor benzaine                      | mg/l                   |             |                |             |           |                                              |            |                   |                   |                   |                   |            |             |                | <b>_</b> |                  |             |
| penta chlor fenol                         | mg/1                   |             |                |             |           | 1                                            | <b> </b>   | 1                 |                   |                   | ·   · · · ·       | +          | <b>.</b>    |                |          |                  | <b>_</b>    |
| 2-chlor fenol                             | mgʻl                   | 1           |                |             | <b>- </b> | <u> </u>                                     |            |                   | <u> </u>          |                   |                   |            |             | +              |          |                  | - <b> </b>  |
| 2,4-dichlor fenol                         | mg/l                   | +           |                | +           | +         | +                                            | 1          |                   | -                 | +                 |                   |            |             |                | 1-       | +                |             |
| 2,4,6 trichlor fenol<br>2,3-dimetil fenol | mg/l<br>mg/l           |             |                | -           |           | +                                            | +          | -{                | +                 | 1.1               | +                 |            | 1           |                | +        | 1                | 1           |
| 3,4-dimetil fenol                         | mg/l                   | 1           | +              |             | -1        | 1                                            | <u>†</u>   | -1                |                   |                   | 1                 |            | Ŀ           |                | 1        |                  |             |
| 4-chlor 3-metil fenol                     |                        |             |                |             |           |                                              |            |                   |                   |                   |                   |            |             |                |          |                  |             |
|                                           | T                      |             | T              |             | 1         | 1                                            | 1          | 1                 | 1                 |                   | 1                 |            |             | 1              | Į        | 1                | 1           |

.

9

1-48

| Table 2.12 | River Water Quality Records, Tatula River (18.8 km from the month) |
|------------|--------------------------------------------------------------------|
|            | (Above Birzai, at the left back)                                   |
|            | (Year: 1995)                                                       |

|                                            |                        | I             |               |               | T             |               | 1             | 7             |                                              |               |               |              | ·           | Freque   | r                                     |              | <b>1</b>      |
|--------------------------------------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------------------------------------|---------------|---------------|--------------|-------------|----------|---------------------------------------|--------------|---------------|
| Item                                       | Unit                   | Jan.          | Fcb.          | Mar.          | Apr.          | May           | June          | July          | Aug                                          | Sept.         | Q.t           | Nov.         | Dec         | ncy      | Mini                                  | Max          | Mean          |
| Velocity                                   | m's                    | 0 55          | 0.55          | 0 55          | 0.48          | 0 25          | 0.15          | 0.1           | 80.0                                         | 0.06          | 0.12          | 0.12         | 0.11        | 12       | 0.06                                  | 0 55         | 0.26          |
| Discharge                                  | 02 67/8                | 1.52          | 4.80          | 2 52          | 2 05          | 101           | 0.60          | 0 36          | 0 20                                         | 0.18          | 0.50          | 0.30         | 0.31        | 12       | 0.18                                  | 4.80         | 1 20          |
| Temperature                                | 'c                     | 4.0           | 40            | 60            | 8.0           | 60            | 14.0          | 18.0          | 23.0                                         | 17.0          | 120           | 6.0<br>Scent | 40<br>Scent | 12       | 4.0                                   | 23.0         | 10.1          |
| Odour                                      |                        | Scent<br>less | Scent<br>Jess | Scent<br>less | Scent<br>less | Scent<br>less | Scent<br>less | Secot<br>Jess | Scent<br>less                                | Scent<br>less | Scent<br>less | less         | less        |          |                                       |              |               |
| Transparany                                | cm                     | 20            | 9             | 20            | 20            | 20            | 20            | 20            | 20                                           | 19            | 20            | 1,743        | 20          | 12       | 9                                     | 20           | 18            |
|                                            |                        | Yellow        | Yello         | Yello         | Yello         | Yello         | Yello         | Yello         |                                              | Yellow        | Yellow        | Yello        | Yellow      |          |                                       |              |               |
| Colour                                     | .•                     | ish           | wish          | wish          | wish          | wish          | wish          | wish          | <u>h</u>                                     | ish           | ish           | wish         | ish         |          |                                       |              |               |
| Suspeded solid                             | നം 1                   | 40            | 18.0          | 18.0          | 6.0           | 5.0           | 5.0           | 55            | 20                                           | 20.0          | 5.0           | 25.0         | 9.0         | 12       | 20                                    | 25.0<br>8.10 | 102           |
| <u>HI</u>                                  |                        | 7.60          | 1.80          | 7.90          | 8 10<br>12 1  | 8.00<br>4.8   | 8.10<br>4.3   | 8.00          | 7.70                                         | 7.90          | 7.40          | 7.80<br>63   | 750         | 12       | 3.7                                   | 12.1         | 63            |
| <u></u>                                    | _ <u>mg1</u><br>%      | 7.4<br>56.4   | 9.9<br>75.4   | 81.9          | 102.2         | 385           | 43            | 47.9          | 55 2                                         | 38.5          | 45.6          | 50.6         | 28 2        | 12       | 28.2                                  | 102.2        | 55.1          |
| <u>Cı</u><br>BOD <sub>4</sub>              | ngO <sub>4</sub> 1     | 1.3           | 29            | 1.0           | 1.1           | 13            | 23            | 12            | 24                                           | 18            | 12            | 25           | 15          | 12       | 10                                    | 29           | 17            |
| 800,                                       | mgO <sub>2</sub> 4     |               | ́-            |               |               |               |               |               |                                              | ••            |               |              |             |          |                                       |              | ·····         |
| COD, Cr                                    | mgO <sub>2</sub> 1     | 41            | 53            | 30            | 40            | 47            | 57            | 59            | 23                                           | 61            | 64            | 85           | 32          | 12       | 23                                    | 85           | 49            |
| COD, Ma                                    | mgO <sub>2</sub> A     | 9.0           | 17.0          | 120           | 130           | 13.0          | 16.0          | 13.0          | 16.0                                         | 17.0          | 10.0          | 14.0         | 8.0         | 12       | 8.0                                   | 17.0         | 13.1          |
| NH-N                                       | mgNl                   | 0 35          | 1             | 0 25          | 0.55          | 1.6           | 0.3           | 0.15          | 0                                            | 0.5           | 0.15          | 0.55         | 0.1         | 12       | 0                                     | 1.5          | 0.45          |
| NO <sub>2</sub> -N                         | TOSN1                  | 0.030         | 0.055         | 0 017         | 0.025         | 0.020         | 0.010         | 0.017         | 0.000                                        | 0.025         | 0.000         | 0.000        | 0.020       | 12       | 0.000                                 | 0.055        | 0.018         |
| NO <sub>3</sub> -N                         | mgN/1                  | 5 20          | 2 80          | 5.30          | 6.00          | 1.00          | 0.60          | 0.00          | 0 25                                         | 0.00          | 0 20          | 1.30         | 1.50        | 12       | 0.00                                  | 6.00         | 2 02          |
| Inorganic N                                | mgN1                   | 5.580         | 3.855         | 5.567         | 6.575         |               | 1.110         | 0.167         | 0 250                                        | 0.525         | 0 350         | 1 850        | 1.620       | 12       | 0.167                                 | 6.575        | 2 505         |
| N lotal                                    | mg/1                   |               | 4.0           |               |               | 4.5           |               |               | 1.7                                          |               | 08            | <u> </u>     | L           | 4        | 0.8                                   | 45           | 27            |
| PO, P                                      | mgP/l                  | 0.050         | 0 250         | 0.020         | 0 030         | 0.600         | 0.080         | 0.062         | 0.070                                        | 0.040         | 0.060         | 0.060        | 0.065       | 12       | 0.020                                 | 0.250        | 0.070         |
| P total                                    | <u>mg/</u> ]           | ·             | 0 260         |               | <b> </b>      | 0.060         |               |               | 0.080                                        |               | 0 250         | 0.080        | 6.075       | 6        | 0.060                                 | 0.260        | 0.134         |
| Ca<br>Mg                                   | നപ്പി<br>സുറി          |               |               |               |               | 340           |               |               | 29.0                                         |               | 25.0          | ┨───         |             |          | 25.0                                  | 34.0         | 29.3          |
| Na                                         | 1.001                  |               | 180           | ***           |               | 180           |               |               | 11.0                                         |               | 12.0          | <b> </b> -   | 1           | 4        | 11.0                                  | 180          | 14.7          |
| K                                          | <u>г</u> у1            |               | 60            |               |               | 6.0           |               |               | 45                                           |               | 9.2           |              | <b>—</b> (  | 4        | 4.5                                   | 9.2          | 6.4           |
| Si                                         | mg1                    | 20            | 4.8           |               |               | 45            |               |               | 62                                           | I             | 3.0           |              |             | 4        | 3.0                                   | 62           | 4.6           |
| HCO,                                       | ாஜ1                    |               |               |               | L             | 274           |               |               | 262                                          | <b></b>       | 207           | ļ            |             | 3        | 207                                   | 274          | 247           |
| SO,                                        | m;1                    |               | ļ             |               |               | 21            |               | 1             | 22                                           |               | 57            |              |             | 3        | 21                                    | 57           | 33            |
| <u> </u>                                   | n_/                    | 40.0          | 13.0          | 27.0          | 27.0          | 28.0          | 28.0          | 19.0          | 481.9                                        | 71.0          | 16 0<br>456.7 | 26.0         | 68.0        | 12       | 13.0<br>469.0                         | 710          | 32.0<br>479.2 |
| Mineralization<br>Total hardness           | ing1                   | <b> </b>      | 2.8           | ┣             | <b> </b>      | 72            |               |               | 9.0                                          | <u> </u>      | 10.0          | <u> </u>     |             | 4        | 28                                    | 10.0         | 7.2           |
| Fe                                         | mgekvil<br>mg/l        | <b> </b>      | 0.60          | -             | ┨             | 0 32          |               |               | 0 33                                         | 1             | 6 28          |              |             | 4        | 0.28                                  | 0.65         | 0.39          |
| Mn                                         | me/1                   |               |               | ţ             |               | 1             | 1             | 1             |                                              |               |               |              |             |          |                                       |              |               |
| Cu                                         | microg1                |               |               |               |               |               |               |               | 1                                            |               |               | 1.           |             |          |                                       |              |               |
| Zn                                         | micro g/1              |               | 1             | ļ             |               |               |               |               |                                              | Ľ             |               |              |             | <b>_</b> | <b>_</b>                              |              | L             |
| <u>G</u>                                   | microg1                | ļ             |               | <u> </u>      |               |               | <u> </u>      | <u> </u>      | <b>_</b>                                     | <b> </b>      |               | <b> </b>     |             |          |                                       |              |               |
| Ni                                         | micro g l              |               | <b>{</b>      | ┨             | ┣             |               |               |               | ┨────                                        |               |               | +            | <u>+</u>    | 1        |                                       |              |               |
| <u>Fb</u><br>Cd                            | micro g 1<br>micro g 1 |               |               | <b> </b>      |               |               |               |               | +                                            | <u>+</u>      |               |              |             | <b></b>  |                                       | <u> </u>     | ·             |
| Delergent                                  | rog1                   |               |               | <u> </u>      | <u></u> ──    |               | <b>†</b>      | 1             |                                              | t             | -             | 1            |             |          | · · · · · · · · · · · · · · · · · · · | ~~~~         |               |
| Oilprod                                    | mgl                    |               | 1             |               |               |               |               | 1             | 1                                            |               |               |              |             |          |                                       |              |               |
| alfa HCH                                   | micro g/l              |               | 1             | <u> </u>      |               |               |               | <b>_</b>      | Į                                            |               | ļ             | <b>_</b>     | <b></b>     | 1        | ļ                                     |              | <u> </u>      |
| beta HCH                                   | micro g/1              |               |               | <b>_</b>      | <b> </b>      |               |               |               | <b></b>                                      |               | · <b> </b>    | ╂───         | <u> </u>    | ╉┈┉      | +                                     |              | <b> </b>      |
| gama HCH<br>DDE                            | micro g/1              | ╉───          | +             | +             |               |               | ╂             |               |                                              | <b></b>       | ╉━━           | ╂──          | ╂           |          | · · · · ·                             | ┨-┷          |               |
| DDE                                        | micro gl<br>micro gl   |               | 1-            | +             | +             | +             | 1             | 1             | 1                                            | 1             |               | +-           | 1           | 1 .      | 1                                     | 1            |               |
| PCHB                                       | micro g1               |               | 1             | 1             | 1             | 1             | 1             | 1             | <u>†                                    </u> |               |               | L            | 1           |          |                                       |              |               |
| Kitetal                                    | colA                   | 1             |               | 1             |               |               |               |               | 40000                                        | )             |               |              |             |          | 400000                                |              |               |
| Kl fresh                                   | co1/1                  | <b>_</b>      | 1             |               |               | <b>_</b>      |               |               | <10000                                       |               |               | +            |             | _        | 10000                                 | 10000        | 1000          |
| <u>E</u>                                   | col'm                  | - <b> </b>    | ╂             |               | ·             |               |               |               | 1100                                         | 1             |               | +            |             |          | 1 1100                                | ) 11000      | 1100          |
| HP<br>HM                                   | cel'mi<br>col'mi       | +             |               | · {           | +             |               | +             | +             | 120                                          |               |               | +            |             | _        | 1 1200                                |              |               |
| 3.4-dichlot benzaine                       | пе]                    |               | +             | +             |               | +             |               | +             | 1                                            |               |               | <u> </u>     |             | 1        | <u> </u>                              |              | †             |
| penta chlor fenol                          | n_1                    | 1             | 1             | +             | 1             | 1             | <u> </u>      |               |                                              |               |               |              | 1           | 1        | <u> </u>                              | 1            | 1             |
| 2-rhlor fenol                              | നുി                    |               |               |               |               |               |               |               |                                              |               |               |              |             |          |                                       |              | 1             |
| 2,4-dichlor fenol                          | trig/1                 |               |               |               |               |               | _ <b>_</b>    | . <b> </b>    |                                              |               | -             |              | 1           |          |                                       | l            | I             |
| 2,4,6 trichlor fenel                       | mg1                    |               |               |               |               |               | +             | ·             |                                              | <u> </u>      | +             |              |             |          | 4                                     |              | <del> </del>  |
| 2,3-dimetil fenot                          | <u>1</u>               | +             |               |               |               |               |               |               | -                                            |               |               |              |             |          | ·                                     | +            |               |
| 3,4-dimetil fenol<br>4-chlor 3-metil fenol | ng1                    |               |               | +             |               | +-            |               | +             |                                              |               |               | +            |             | -+       |                                       | +            | +             |
|                                            |                        |               |               |               |               |               |               | +             | +                                            | +             |               |              | +           | +        | 1                                     | 1            | 1             |
| L                                          | 1                      |               |               | -             |               |               | - down        | -             | 1                                            |               | _             |              |             | _        | <u> </u>                              |              | <u> </u>      |

Ø