Chapter 6 Discussions and Recommendations

6-1 Formation, Development of Scamounts and Occurrence of Cobalt-Rich Crusts

(1) Formation and development of scamounts

Occurrence of cobalt-rich crusts was confirmed in all MS10~MS13 areas. The collected crusts were thick with an average of 33.1~46.4mm, and the maximum exceeded 100mm in all areas.

The reason for the occurrence of thick crusts in this survey area is closely related to the process of formation of the seamounts of the area.

Basalt collected from the survey area was all clarified to belong to oceanic island basalt from the results of chemical analysis. The rocks were strongly altered and K-Ar age determination was not possible, but from identification of the fossils of MS10-MS12 areas, it was established that the seamounts of this survey area were formed before Paleogene, subsided and the summits were at deep seafloor by Eocene (38.5-45.5Ma). This result is harmonious with the results of rock age determination and fossil identification carried out on MS01-MS09 areas in 1997. It was shown that the seamount group near Anewetak Atoll, Ratak Chain, and Ralik Chain were formed at that time. The fact that these seamounts were submerged in old times is considered to be the prime reason for the growth of thick crusts.

Regarding the seamount in MS13 area, it was not possible to carry out rock age determination and fossil identification, and information on the formation process of the seamount could not be acquired. But many crusts and crust fragments over 100mm thick were collected, and it is highly possible that this seamount was submerged before Paleogene as in the cases of MS10~MS12 areas.

Generally thick crusts are developed on seamounts formed before Paleogene, and crusts and cobble crusts exceeding 50mm in thickness were collected from the seamounts in MS01~MS13 areas during the 1997 survey.

(2) Occurrence of cobalt-rich crusts

MS10-MS12 seamounts surveyed this year all have crusts and cobble crusts exceeding 100mm in thickness from the summit periphery to the upper slope. Particularly in MS12 area, it was confirmed that over 100mm crusts occur even on middle slope. In the waters of the Marshall Islands, thick crusts have been collected from the summit peripheries of other guyots.

In the four areas surveyed this year, rocks are exposed widely from the summit periphery to the upper slope with the exception of MS13 area, and the environment is favorable for crust growth. In parts of the summit periphery and the upper slope where unconsolidated sediments cover at present, the sediment cover is thin in many places, it is possible that the summit periphery was exposed for a long period of time.

Regarding the substrates of the crusts, basalt is strongly altered and limestone is phosphatized. The seamounts in three areas with the exception of MS13, the bathymetric contour are, although somewhat irregular, generally smooth and large scale collapse or caving have not taken place and the base has been stable. This again is a factor for the stable growth of the crusts. Also these three seamounts have not been affected by volcanism after middle Paleogene.

Regarding the seamount in MS13 area, the summit is covered by thin unconsolidated sediments, but it is also considered to have been submerged before Paleogene, and it is possible that thick crusts could occur under the unconsolidated sediments.

6 - 2 Future Work

The three seamounts in MS10-MS12 are dome-shaped guyots formed in Paleogene, and are similar to the seamounts of MS01-MS09 surveyed in 1996, in the trends regarding the occurrence and the metal grade of the cobalt-rich crusts On the other hand, the thickness of the crusts, average and the maximum, are higher in the seamounts surveyed this year, while the grade of the five major elements tend to be higher in the seamounts surveyed previously. However, the number of samples is insufficient for such comparisons, and thus it is deemed necessary to acquire further data in this marine area.

There are many unexplored seamounts which are considered to have been formed before Paleogene in the waters of the Republic of the Marshall Islands, and it will be necessary to survey the occurrence of cobalt-rich crusts in order to assess the general area and to determine the priority of detailed investigation.

Chapter 7 Summary

This is the fourth year of the third phase of the five-year SOPAC Program. This year, following the results of the survey in the exclusive economic zone of the Republic of the Marshall Islands in 1996, and that of the Federated States of Micronesia in 1997, topographic surveys and sampling for manganese crust deposits were carried out in the marine areas of both countries which were not studied in the previous surveys.

The duration of the survey cruise was 49 days, of which that in the waters of the Republic of the Marshall Islands was 27 days. This paper reports the results obtained in the EEZ of the Marshall Islands.

There are many occanic islands, atolls and seamounts in the survey area. The survey was carried out in the western marine area of the Marshall Islands centered around the Anewetak Atoll and is located to the west of the 1996 survey area.

The survey was composed mainly of MBES topographic survey for preparing detailed topographic maps of the seamounts, and of sampling by chain bag dredge (CB), arm dredge (AD), and large corer (LC). Also seafloor observation by FDC, study of depositional conditions of unconsolidated sediments by SBP, and microtopography survey by SSS. Important samples were studied in laboratories on land by various methods including; ore assay and thin section microscopy. These together with the results of onboard analysis provided the basis for integrated analysis of the resource.

The combined summary of the survey results in 1996 and 1998 are in Table 7-1-1(1),(2).

(Topographic survey)

The survey area consisted of the exclusive economic zones of the Marshall Islands and of Micronesia. It was divided into the eastern sea area centered around the oceanic plateau with Anewetak Atoll, and the western sea area in the vicinity of Yap Province of Micronesia. Five seamounts were selected for cobalt-rich crust survey in the eastern sea, and two in the western sea. Of these seven seamounts, four in the eastern sea are located in the EEZ of the Marshall Islands. These seamounts were selected after considering the water depth, size, and the survey itinerary.

The areal extent of the topographic survey differ by the size of the individual seamount, but it was generally 25 X 30 miles, which was an area sufficient for understanding the shape of the seamount and the topographic characteristics. For all seamounts, the survey provided detailed topography and formed the basis for sampling and other subsequent studies.

Table 7-1-1(1) Summary of Survey in Marshall Island Waters

1					-		-		• .						
ļurium	Area	MS01	MS02	MS03	MS04	MIS05	WS06	MS07	MS08	60SW	MS10	MSIT	MS12	MS13	
فيستنبط		14° 23′ N	14, 02, N	14° 00° N	14°21'N	11° 20′ N	13° 05' N	12° 39′ N	13°53′N	16° 30' N	12°22' N	10° 55' N	8°47′N	8° 15' N	
- 	Location.	161° 02' E	163° 11' E	164°02'E	165° 50' E	171° 05' E	169° 26' E	169°29'E	167° 31' E	167° 10' E	158° 38' E	161° 27' E	163° 12' E	160° 40' E	
<u></u>	Duration of survey	6 clays	6 deys	5days	7 days	6days	7 deys	1 days	9 days	5days	6 days	6days	7 days	Tolays	
<u> </u>	Topographic survey										599.1 nm	587.8nm	572,7nm	845.0nm	
<u> </u>	SSS survey. Number of track line						-		-		1	-	-	1	
I	Total length of track line				10.0nm		5.4nm		11.8nm		5.1nm	6.9nm	7.3nm	5.4nm	
<u></u>	Sampling														
. .	AD Number of	7	12	9	F	6	6	ç			12	φ	15	12	
4	CB Number of											4			
<u></u>	LC Number of	7	9	9	+	4	+		+	s	ę	ĸ	m	m	
115	Amount of crust samples (incl. Cobble crusts)	303.84kg	89.86kg	33.08kg	722.19kg	361.69kg	130.44kg	6.20kg	781.294g	121.83kg	1334	25kg	527kg	609kg	
.	Amount of nodules	. 2.34kg	0.82kg	0.02kg	41.91kg	90.57kg	147.00kg	58.10kg	91.59kg	92.77kg	0.2kg	0.2kg	4kg	24kg	
-	& other meterial ¹³	67.73kg	41.42hg	72.41kg	249.15kg	149.88kg	18.59kg	4.02kg	20.17kg	76.69kg	131kg	41kg	202kg	191kg	
<u>L:</u>	-FDC observation Number of track line	-	-	-	2	2	2		~	-	-	-	2	2	
<u> </u>	Total length of track line	5.3nm	3.4nm	5.3nm	14.2nm	8.1nm	11.9nm	:	12.8nm	5.Snm	2.5nm	3.2nm	4.6nm	3.9nm	
Ļ	Number of photographs	310	52.1	340	756	55	593	-	689	435	150	- 142	172	192	
L	Video tapes	3 reels	2 reels	3 reels	7reels	4reels	6reels		Greels	¢ reels	2reels	2roeis	Greels	4reels	
Ŀ	 Surveyed water depth zone 												-		
ł	Topographic - SBP survey	1.040~5.400m	1.040~5.400m 1.330~5.600m	1,740~5,200m	980~5,200m	950~4,800m	1,580~5,700m	1,750~5,000m	1,350~4,300m	1.350~4.300m 1.140~5.400m 1.292~5.100m 1.495~4.300m 1.037~5.100m 1.387~5.100m	1,292~5,100m	1,495~4,300m	1.037~5,100m	1.387~5.100m	
J	Sampling	1,242~4,267m	1,242~4,267m 1.527~3,219	2198~3,056m	1,039~3,140	950~4,620m	1,532~3,370m		1,444~3,675m	2.169~2.546m 1.444~3.675m 1.170~4.265m 1.391~5.494m 1.690~4.353m 1.082~4.545m 1.801~4.068m	1,391~5,494m	1,690~4,353m	1,082~4,545m	1,801~4,069m	
<u></u>	Р О	1,203~3,183m	1,203~3,183m 1,489~1,573m 2006~3,995m 1,055~3,120m	2006~3,995m	1,055~3,120m		1.269~3,206m 1,720~3,328m		1.488~3,376m	1.488~3.376m 1.173~2.712m 1.396~2.816m 1.611~2.919m 1.066~2.564m 1.458~3.287m	1,396~2,816m	1.611~2.919m	1,066~2,564m	1,458~3,287m	
1															
*	#1. Center of seemount summits														

*1: Center of seamount summits.

*2: 1998 survey is excluded because it was hydrothermal survey.

*3: Include coatings and stains.

Table 7-1-1(2) Summary of Survey in Marshall Island Waters

	Ares	LOSW	M S02	WS03	M504	DOS M	200M	/ASM	220	RACH		ICW		2771
Type		Guyot	Guyot	Guyot	Guyot	Pointed seamount	Cuyot	Pointed seamount	Guyot	Guyot	Guyot	Guyot	Guyot	Rugged zuyot
Scale (km)		70×60	60×50	>80×>70	60×60	50×50	40×50	50×50	130×>100	70×70	22×20	28×45	40×30	25×50
	Weter denth distribution (m)	1 040~5 000m	1.330~5.500m	1.740m~	980~4 500m	950~4,800m	1.580~5.200m	1,750~4,900m	1.350~5,000m	1,140~5,000m	1,292~5,600m	1,495~4,100m	1.037~4,900m	1,387~5,000m
		100000 - 0101		580×370	20 X 16km	2.4 X 1.7km	18 X 12 km		55 × 35km	20 × 12km	16×13km	37 × 25km	26×21km	50 × 25km
		1114-7 - 70			100 (17) Da	A4 704 74W		10 /10 /0	70 /01	35" 197" 17"	91" /3R" /0"	11 /15 /8	21 /18 /15	7. 11. 10
Slope incli-	Slope inclination upper/middle/lower	26 /22 /10	20 /19 /9	10 /9	8/ 11/ /1	01/ 12/ 12	11/ 81/ 67	1.	1 /0		e/ 01/ 17	o/ ri / ti		
Summit-u	Summit-upper slope area (km ²)	536	260	3.024	103	23	234	23.5	2,521	712	902	8/9	79+	016.1
Summit area (km ²)	ue (km²)	544	356	2.247	252	1.3	149	0.52	1 074	145	134	670	235	1 32
Share of the State	(Lm ²)	2 733	2.573	1.957	2,884	1,921	1,850	2,368	4,692	4,035	455	1,232.	929	1,437
		Receit bucalt	Becalt basalt	Baselt, sendstone.	Başak, tasat	Busat, becalt	Baselt, beselt	Busslt, basalt	Basalt, basalt	Baselt, beselt.	Baselt, foreminiferal	Basalt	Baselt, foraminiferal Baselt, foraminiferal	Besalt, foremin
Summit	- - - - -	pyroclastics, basalt breccie	breccia, basalt pyroclastics. sandstone	limestone	pyrociestics, basalt. breccie	pyroclastics, limestone, sandstone	breccia, beselt pyrockstics, mudstone.	pyroclastics	braccia, basalt pyroclastics, phosphate rock, tuff	breccia, baselt pyroclastics	calcaraous congiomanata		calcareous calcareous congiomerato, reefal congiomerate, tuff limestone	ancarrous conglomerata,
							phosphate rock							
5 5 5 6 6 6 7 8 0 8 7		Basait, beseit pyroclastics, basait breccia, limestone, mudstone	Basalt, basalt breccia, basalt pyroclastics, sandstone firmestone	Basalt, sandstone, limestone	Baselt besaft breccia, baselt pyroclastics, sendstone, imostone	BasaR, besait pyroclastics, limestone, phosphate rock, sandstone	Baselt besett breccia, besett pyroclastics, mudstone, innertone,	Baselt, baselt pyroclastica, phosphata rock	Baselt, baselt breccia, baselt pyrociestics, phosphare rock, sendstone, listocrose	Basaft, besalt breccia, besaft pyroclastics, tuff, phosphete rock, limestone, mudstone	Baseit, foreminiferel calcareous congiomerete, tuff braccie	Basalt forarrinferal limestone	Basalt, for aminiferal Basalt, for aminiferal calcureous conglomenta, reefal congomente, tuff limestome, tuff	Besalt, foramini calcareous congformenate, t
		Crust: nodules	Crusts, colbie	Crusts mainly on	Crusts on summit	Cruste on summit	Crusts on summit	Crusts nodules on	Crusts on summit	Crusts on summit	Crusts and cobble			
Mode & occurrence	currence	muinty on summit periphery	crusts mainly on summit periphery	summit periphery	periphery to middle slope	cobble cruste and nodules on slope		upper alope and pinnacle siope	periphery and near pinnecles	Nodules on both summit and slope	crusts from summit periphery to slope			crusts near pirmacies on summ
Substrate		Phosphate rocks	Breccia	Unterown	Baselt pyroclestics		Unknown	Unknown	Baselt	Lapili tuff	Beselt, limestone, tuff braccia	Baselt, ümestone	Beselt, limestone, tuff	Beselt, limestone
Thick	Thickness variation with water depth 😤										-			
Summit	*	24	23	38	80				02	77	3	2	8	22
	Upper slope	Ş	- 27	11	1	23	30	12	2	27	56	2	15	14
	Middle slope	25	- 11 -	•	51	5			•	18	a :	52	\$,
hid Low	Lower alope	26			53	5				-	₽			
	Average thickness (mm) **	33	. 24	30	19 1	17	19	e n	5	22	4	4	33	\$ 1
Max. t	Max. thickness (mm) "?	06	105	75	9	92	80	26	06	65	115	97	9	160
Numbr	Number of sampling site "	11 -	16	. 1	13	a	10	3	18	12	13	7	16	12
(S) °O	(3)	0.66	0.74	0.67	0.84	1,00	0.83	D.84	0.74	0.70	0.69	C 69	0.67	0.50
8	8	0.64	0.58	0.56	0.52	0,70	0.57	0.63	0.55	0.68	0.47	0.48	0.57	0.39
3 99	. 3	0.13	0,10	0.13	0.08	0.11	0.09	0.12	0.10	0.14	0.05	0.05	0.05	0.04
NP (2)	(8)	22.70	23.06	22.22	23.45	26.29	24,16	24.96	22,95	23.28	21.08	21.73	23,85	20.75
Fe (X)		14.35	14.71	14.00	14,84	13.21	14.79	14.35	14.56	13,40	14.42	14,91	14.40	16.87
Numb	Number of stinoles asseved **	18	20	10	23	18	17	~	. 29	20	14.	8	15	F
		Outoraps are distributed at	Outcrops are distributed widely	On the summit, . outcrops are	Outcrops are observed at the	Outerops occur widely from the	On the summit, outcrops are	Outcrops are distributed long the	On the summit, outcrops are	Outcrops are distributed widely	On the summit, outcrops occur on	On the summit, outcrops are	On the summit, wide Outprops occur exposures occur on near the summit	Outerops occur near the summit
		summit periphery	from the summit	distributed on the	summit periphery. rectionizations wide	upper to middle since	distributed at the nerichery and near	NE-SW tranding	observed at the cerichery: they	from the summit periohery to the	the shoulder at the periohery. On the	observed at the bencherv and pear	the western side and the southern	punacies.
			2	terrace and the	occurrence in the		pinnecies. On the		occur particularly	upper slope. Also	slope, they occur	pinnecles. On the	periphery. On the	
	Mode of bedrock (crust) exposure			southwestern	northern periphery.		slope, they are		widely in a belt at	rocks are exposed	widely on the upper	slope, they occur	slope. outcrops	_
		upper part as well as along the ridges of the middle nert	western high of the summit	perpress, Iney are observed on the under nert of	I hay occur on parce of the ridges of the slope		the ridges.		On the slope, they are widely	on the run of the small depression at the southern part of			from the upper to middle part.	
				northern and					distributed on the	the summit				
		Average thickness is high, and exposure ratio high	Average thickness is rather high, and exposure ratio high.	Average thickness is rather high, but, exposure ratio is	Exposure ratio is high, and water depth shallow.	Exposure ratio is high, and water depth low, Average	Exposure are limited, and the average thickness is	Average thickness is rather low, but. exposure ratio is	Thick crusts are limited to the summit and	. ž 3	Co.Ni grade are high. Thick crust distributing on from	Co.Ni grade are high and crust thickness is very thick.	Co.Ni grade are high Co.Ni grade are a and crust thickness liftle low but thick is very thick.	Co.Ni grade are a little low but thic crust distributing.
				low. Pt content is somewhat high.	188 T	thickness is rether low, and the sizes	low.	high. Seemount is small and the water	exposure ratio low. but the seamount is		marginal part to middle part of slope.		•	:
-					samples over 100mm thick have	are small, thus the ore reserve is low.			large and thus the amount of crusts is	high, and the water depth relatively		-		,
					Date of the					shallow.				

44: For 1996 survey areas (MSO) ~ 09), the values inficiate Tone and a start of the water-depth contour of the base. For 1998 survey areas (MSIO ~ 13), the values indicate the Tone taxis" of the 3.000m water-depth contour 45: For 1996 survey areas (MSO) ~ 08), the average of the survey areas (MSIO ~ 13), the average value of the average values indicate the Tone taxis" of the 3.000m water-depth contour 46: Semeline stees where courts, cobble coursts, and oddies water of asseved samples (MSIO ~ 13), the average value of the average of all collected samples (MSIO ~ 13).

All four seamounts are guyots, and three have dome-type summit, one with undulating rugged summit.

The water depth of the shallowest seamount summits ranges from 1,037m to 1,495m, the relative height from the base ranges from 2,700m to 4,300m and the seamount of the MS10 area is the smallest with seamount area of 22 X 20km and summit area of 134km^2 ; and the largest seamount is MS11 occupying an area of 28 X 45km. The largest summit area is that of MS13 with 1,122km².

(MBES acoustic reflection intensity)

The seamounts in the three areas MS10~12 are guyots with dome-shaped summits. The summit of these seamounts are all covered by unconsolidated sediments and thus pale color tone indicating low acoustic reflection intensity extends over the entire summit. At pinnacles and peripheral parts of the summit, however, dark tones appear. Also in these seamounts, dark parts of the images are distributed from the summit periphery to the upper slope. Particularly the seamount in the MS12 area has a relatively wide occurrence of exposed rocks even in the middle slope.

The seamount in area MS13 which is a guyot but with rugged summit, generally show pale color on the summit, but dark colored parts are conspicuous corresponding to the many pinnacles in the central part.

The bedrock exposures of seamounts are often covered by cobalt-rich crust, and thus the dark parts corresponding to exposed bedrocks indicate the possibility of cobalt-rich crust distribution. In the present survey area, cobalt-rich crust samples were collected from the dark-colored parts of all areas.

(SBP survey)

The three seamounts in MS10, MS11, MS12 areas, all tend to have thicker unconsolidated sediments toward the central part of the summit, particularly the central part of the summit of the seamount in MS12 area is covered by more than 120m of unconsolidated sediments. In these seamounts, the MBES acoustic reflection intensity indication of rock exposures from summit periphery to the upper slope is also confirmed by SBP survey. The MBES acoustic reflection intensity shows the existence of exposed rocks to the middle slope in the seamount in the MS12 area, but SBP survey indicates that the unconsolidated sediments are generally thin in areas where bedrocks are not exposed.

The summit and slope of the seamount in MS13 area are covered by thick unconsolidated sediments, but exposure of acoustic basement was observed in the central part of the summit corresponding to pinnacles and many other protrusions.

(SSS survey)

SSS survey was carried out on the terraces which occur in the summit peripheries of the seamounts with dome-shaped summit in areas MS10~MS13. The results showed the occurrence of pebbles on the terraces regardless of the existence of unconsolidated sediments. Many cobble crusts were recovered from the terrace of the seamount in MS10, and similar cobble crusts have been sampled from the summit peripheries of other seamounts. Thus the pebbles confirmed by SSS survey are most probably cobble crusts.

In the MS13 area seamount, SSS survey was carried out in the depressions between the pinnacles in the summit center. It was confirmed that the distribution of the unconsolidated sediments is local not only in the protrusions but also in the depression, and that exposures occur widely.

(Sampling)

Sampling by dredges and a large corer was carried out at 61 sites in four areas, MS10 to MS13. Cobalt-rich crusts were recovered from 51 sampling points, of which crusts or cobble crusts were collected from 48 points, and nodules were recovered from three points by large corer. Ores from 48 samples from 43 sites were assayed. One sample was analysed by EPMA. Also representative samples of rocks and bottom sediments and those which were considered to be necessary for assessing the occurrence of cobalt-rich crusts were studied microscopically, chemically analysed, and fossils identified.

(Geology)

The rocks collected from the four areas, MS10~MS13, were basalt, limestones, tuffaceous rocks, hyaloclastite, and pumice.

In all seamounts, basalt and limestone occur from the summit to the slope.

The lithology of the basalt differs somewhat by the seamount, but majority are aphyric or those with minute phenocrysts. Basalt is strongly weathered in all seamounts, and fresh samples were not obtained.

Conglomerate samples with foraminiferal limestone matrix containing foraminiferal limestone and basalt pebbles were recovered from the summit to the slope of each seamount. In MS11 seamount, however, occurrence of limestone is not confirmed on the summit. From MS12 seamount, reefal limestone samples indicating the formation of coral reef were collected from the summit. And from MS11 seamount, although reefal limestone samples were not recovered, fragments of reef-building corals were confirmed in the tuff

samples collected from the upper slope.

Occurrence of tuff and tuff breccia are confirmed in all seamounts, but their distribution is heterogeneous, and wide occurrence such as seen in basalt and limestone is not observed. Hyaloclastite samples were collected near the pinnacles in summit center of MS13 seamount, and some from the upper slope of MS12 seamount.

Pumice samples were collected from various localities of the survey area.

(Seafloor observation)

Seafloor was observed by FDC along six track lines in four areas. In all seamounts, crust occurrence was confirmed in exposed zones over wide areas from the summit peripheries to the upper slopes. Sedimentary cover was observed in many localities at summit periphery of MS11 area and at upper slope terrace of MS13 area, but cobble crusts and nodules were distributed on the sediments.

In MS10 area, angular fragments believed to be talus were observed at the steep part of the slope. But in this seamount, cobble crusts were seen to be mixed with angular fragments. Angular fragment cover was also observed in seamount slope of the MS12 area, but the exposed parts were confirmed to be covered by crusts.

(Thickness of cobalt-rich crusts)

Thick crusts occur on each seamount. The average thickness of the samples recovered from each seamount ranges from 33.1mm to 46.4mm, and the maximum thickness of the samples of each seamount exceeds 100mm. Particularly in the MS10~MS12 areas, crusts with average thicker than 20mm occur from the summit peripheries to the slopes. The crusts in MS10 and MS11 areas tend to be somewhat thinner on the slopes than on the summit periphery, but those on MS12 seamount have similar thickness, and thick crusts have been recovered from both zones.

In MS13 area, the occurrence of thick crusts are limited to parts of northwestern periphery of the summit, but crusts and cobble crusts thicker than 100mm occur near the pinnacles in the central part of the summit.

(Chemical analysis of cobalt-rich crusts)

Forty-eight cobalt-rich crust samples were selected from those collected at 43 sites in four areas of

MS10~13. They were chemically analyzed.. Total number of analysis including those with layer analysis was 106 samples. The average grade of the major elements are; CoO 0.6%, NiO 0.48%, Cu 0.05%, Mn 22.85%, Fe 13.4%. The variation of Co, Ni, Cu grades of the MS10~MS12 areas are small, but those of MS13 area are low. Compared with those of MS01~MS09 areas surveyed in 1996, the contents of four major elements and Pt, excluding Fe, are somewhat lower in MS10~MS13 areas and areal difference is observed.

EPMA analysis was carried out for one sample from MS10 area. It was observed that Co and Ni contents increases outward from the inner layer. This tendency was observed in the crusts from MS01~MS09 areas. In one of the samples analyzed, texture with metallic luster was observed. This texture differs from common sea water-origin manganese nodules and cobalt-rich crusts.

(Conditions of cobalt-rich crust occurrence)

As a result of sampling, the occurrence of thick crusts and cobble crusts with average exceeding 30mm and maximum of over 100mm was confirmed in all four areas.

The crusts are exposed widely on the upper slope of the seamount in MS10 area. But the thick crusts are concentrated to near the periphery. In MS11 area, crust exposure is restricted to the summit periphery and parts of the slope and the exposure ratio is low, but the size of the seamount is large and the exposed area is large. In MS12 seamount, more than 20mm thick crusts are widely distributed from the summit periphery to the middle slope. In MS13 seamount, the exposure ratio is generally low, and thick crusts are limited to the vicinity of the pinnacles which occur sporadically on the summit.

Assessment of each area on the basis of the crust occurrence would be; MS11 and MS12 areas are most promising followed by MS10 area. But the difference among the three areas is small. MS13 area is low in reserved and metal grade compared to MS10-MS12 seamounts.

(Discussions)

The seamounts surveyed this year in MS10~MS13 areas were formed before Paleogene and thick crusts were confirmed in all four areas. The three seamounts in MS10~MS12 areas are guyots with dome-shaped summit and there are many similarities in cobalt-rich crust occurrence including geology and metal content. Also regarding the seamounts in MS01~MS09 areas which were surveyed in 1996, thick cobalt-rich crusts were collected from the guyots formed before Paleogene. In the waters of the Republic of the Marshall Islands, there are many unexplored pre-Paleogene seamounts, and occurrence of thick cobalt-rich crusts on these seamounts is highly possible. Future investigation is most desirable. Compared to the seamounts surveyed in

1996, those of the present survey tend to have thicker crusts but somewhat lower metal grade. Presently available data are insufficient to consider if this tendency can be generalized in this area, and further acquisition of data is necessary and important.

The area surveyed during 1996 and the present project comprises approximately the northwestern half of the EEZ of the Republic of Marshall Islands, and the distribution of seamounts and the conditions of cobaltrich crust occurrence in the area are as follows.

The results of sampling and seafloor observation show that crusts thicker than 10cm occur at $1,000 \sim 3,500$ m water depth. Cobalt-rich crusts take the forms of; crusts, cobble crusts, and nodules. Their thickness varies by areas, topography, and substrates. The average thickness of the crusts by seamounts tends to be thicker to the west and the metal grade higher to the east. This tendency, however, is observed but is not clear- cut.

In assessing the potential of each area by the occurrence of the crusts; the seamounts in the western part of the area surveyed this year are most promising, followed by the seamounts continuing to the northern part of the Ralik Chain. This is due to the thick crusts in the western side and the high grade in the eastern side.

In the water where the suvey had been carried out, the relation between the thickness and grade of cobalt-rich crust and the age of seamounts is recognized, thus it is suggested the possibirity to understand the conditions of cobalt-rich crust occurrence in the whole of the EEZ of the Republic of Marshall Islands, on codition that further acquisition of data.

[REFERENCES]

Bonani G., Hofmann H.J., Morenzoni E., Nessi M., Suter M., and Wolfli W, 1984, ¹⁰Be dating of the inner structure of Mn-encrustations applying the Zurich Tandem Accelerator, Nuclear Instruments and Methods in Physics Research B5, 359-364

Brevart O., B. Dupre and C.J. Allegre, 1981, Metallogenesis at spreading centers; lead isotope systematics for sulfides, manganese-rich crusts, basalts and sediments from Cyamax and Alvin areas (East Pacific Rise). Econ. Geol. Bull. Soc. Econ. Geologists., 76, 5, p. 1205-1210.

De Carlo E.R. and C.M. Fraley, 1992, Chemistry and mineralogy of ferromanganese deposits from the equatorial Pacific Ocean., Geology and offshore mineral resources of the central Pacific basin, p. 225-245.

Hart S., 1984, A large scale anomaly in the Southern Hemisphere mantle. Nature 309, 753-757.

Haynes B.W. and M.J. Magyar, 1987, Analysis and metallurgy of manganese nodules and crusts., Marine Minerals, p. 235-246.

Hein J.R., M.S. Schulz, and L.M. Gein, 1992, Central Pacific cobalt-rich ferromanganese crusts: Historical perspective and regional variability., Geology and offshore mineral resources of the central Pacific basin, p. 261-283.

Hein J.R., W.C. Schwab and A.S. Davis, 1988, Cobalt-and Platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall islands., Marine Geology, v.78, p. 255-283.

Hein J.R. et al., 1990, Geological, Geochemical, Geophysical, and Oceanographic Data and Interpretations of Seamounts and Co-rich Ferromanganese Crusts from the Marshall Islands, KORDIUSGS R.V. Farnella Cruise F10-89-CP.

Janney P.E. and P.R. Castillo, 1996, Basalts from the central Pacific basin: Evidence for the origin of Cretaceous igneous complexes in the Jurassic western Pacific., vol.101, no. B2, p. 2875-2893.

JICA-MMAJ, 1997, Report on the cooperative study project on the deepsea mineral resources in selected offshore areas of the SOPAC region sea area of the Republic of the Marshall Islands, P.180

Lincoln J., M.S. Prigle and I.P. Silva, 1993, Early and late Cretaceous volcanism and reef-building in the Marshall Island. in The Mesozoic Pacific; Geology, Tectonics, and Volcanism., Geophysical Monograph 77.

Mangini A., P. Halbach, D. Puteanus, and M. Segl, 1987, Chemistry and growth history of central Pacific Mn-crusts and their economic importance., Marine Minerals, p. 205-220.

Mullen E.D., 1983, $MnO/TiO_2/P_2O_5$:a minor element discriminant for basalt rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett., 62, 53-62.

Sharma P. and B.L.K. Somauajulu, 1982, 10Be dating of large manganese nodules from world oceans., Earth ahronology, Earth Planet. sci. Let., v.36, p. 359-362.

KORDI-USGS (Hein J.R. et al.), 1992, Geology, Geophysics, Geochemistry, and Deep-Sea Mineral Deposits, Federated States of Micronesia: R.V.Farnella Cruise F11-90-CP, USGS Open File Report 92-218.

Usui A., 1995, Studies of marine manganese deposits: Review and perspectives., Chishitsu News, no. 493, p. 30-41. (Japanese)

Verma S.P., 1992, Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematics of Mid-ocean ridge basalt. Geochem. Jour., 36, 159-178.

Woodhead J.O. and C.W. Devey, 1993, Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Left., 116, 81-99.

Zindler A. and S. Hart, 1986, Chemical geodynamics. Ann. REv. Earth Planet. Sci., 14, 493-571.

[Appendix]

Table 1(1),(2) Summary of sampling results

Table 2(1)~(4) Rock samples (MS10~MS13 Area)

Table 3(1)~(5) Description of microscopic observation for rock thin section

Table 4 Results of FDC survey in MS Area

Table 5(1)~(3) Results of chemical analysis of cobalt-rich crust

 Table 6
 Sea-water sound velocity for MBES

 Table 7
 Weather and sea-state data

		Sar	Sampling site	site	MBES	стр-вт	CTD-BR			Amount of	EC FC	Crust thickness (mm)	ickness n)		Type of rocks - rock fragments
Ż	Sample No.	1. atitudo		Longitude	Depth(m)	Depth(m) Depth(m)	Depth(m)	Topographic division	Crust type	samples(kg)	length (cm)	Max Min	Ŷ	substrates, nuclei.	bottom sediments (LC)
-	98SMS10LC01	12°26.012'	z	22.036	1	5,516	5,509	Lower western slope	Nodule	0.13	352	17 7	10		Brown cley (photo:nodule)
2	98SMS10AD02	12° 19.806'	Ż	158° 34.551' E	E 1.577	1.589	1	estern slope	Crust, crust fragment	.0.03	ı	28 18	8 22		
3	98SMS10AD03		z	34,329		1.770		stern slope	Crust	1.63	ŧ	60 10	15	Basaht.	Baselt, tuff.
*	98SMS10AD04	12°23.965′	z	39.901	E 2, 062	2:023	1.812	orthern slope	Crust	7.28	'	18 -	2	uff breccia, basalt, limestone.	Tuff breccia, basalt, limestone. Tuff breccia, basalt, limestone.
	98SMS10AD05	12°23.535	z	39.957		1,445			Crust	0.29	,		<u>*</u>	Basalt	Foraminiferal limestone, basalt.
io	90CV01SWS86	12° 16.920'	z	36.949		2.094			Crust fragment	0.37	'	-+	-+		Pumice.
1	98SMS10AD07	12°17.008′	z	37.101	E 1.701	1,728			Crust fragment.	1.22	1	_	2		
80	_		Z	40.212		1.415		Σ	Cobble crust, crust.	95.99	'	_	5	congiomerate.	
đ	98SMS10AD09	12°17.006′	z			2,081			Cobble crust.	19.67	ı	130 42			Basalt, pumice.
01	_	12° 19.694	z	33.673		2.005			Crust fragment.	0.65	1	-+			
=		10.310′	z	40.556	Ŀ	2.435			Crust fragment.	0.04	'	10	+		Pumice.
12	_	18.763'	z	158° 42.207' E	2, 103	2.097		Middle eastern slope	Crust fragment	1.37	,	46	35		
<u>₽</u> :	888MS10LC13	12° 19.800′	z	158° 41.046' E	E 1, 433	1,412		Eastern summit periphery	Crust fragment attached.	0.03	0				Not collected (photo:foraminiferal sand)
-	98SMS10LC14		z	34.772'	E 1, 488	1,468	1,458	Western summit periphery		000	78				Foraminiferal sand (photo:foraminiferal sand)
15	98SMS10AD15	12°21.240′	z	158° 34.334' E	E 1 426	1,409	1.384	Western summit periphery	Crust fragment.	4.59	ı	50 IO	0 25		Pumice.
16	98SMS11LC01	10° 53.958′	2	161° 04.991' E	53	1	1	Lower western slope			226			Calcareous clay (partly foraminiferal sand)	Calcareous cley (partly foreminiferal sand)
11	BESMS11CB02	10 47.989	z	161° 22.820' E	2, 057	2.034	1,928	Western summit periphery	Cobble crust, crust fragment.	17.88		110 7	48.	Besalt	
18	96SMS11CB03	10°47.581′	۲ Z	161° 22.248' E	2.387	2,381	2,036	stern slope	Crust fragment.	0.26		20 2	2		
8 7	98SMS11CB04	10° 47.567'	z	161°29.945'E	E 1 869	1,841	1,664	Eastern summit periphery	Not collected.						Pumice.
20	98SMS11CB05	10°56.283′	z	161° 22.076' E	E 1 844	1,818		Western summit periphery	Crust fragment	0.00		1	1	-	
21		10°54.178′	z	161° 20.373' E	E 2.373	2.374	2,109	Eastern summit periphery	Crust.	2.48		35 5	10	Limestone, basaft.	Limestone, basalt, pumice.
22	_	10° 59.753′	z	101° 21.744' E	E 2.089	2.077		Western summit periphery	Crust fragment	2.21		50 20	30		Basalt
23	80CIVI ISWS86	10° 48.399′	z	161° 31.955' E	E 1.991	1,952	1762	Eastern summit periphery	Crust fragment, crust	2.64		90 5	20	Besalt	Basatt
24	60CIVI ISMS86	10° -53.415'	z	161° 36170' E	E 2.614	2,515	2,447	Eastern summit periphery	Crust, crust fragment.	10.33		140 20		100 Basalt limestone.	Basalt
25	98SMS11AD10	11	z	161°26.400'E	2.673	2,667	2.468	Middle northern slope	Crust fragment, nodule	0.26		20 2	γ	Phosphorite.	
26		10°57.253′	z		E 1.690	1.670		Eastern summit periphery		0.00	٥				Not collected (photo:crust)
27	98SMS11LC12	10°54.480′	z ·	161°32.865′E	E 1.867	1.846		Eastern summit penphery		0.00	0				Not collected (photo:sand, crust)
28	98SMS11AD13	10° 44.755′	z	161° 25.156' E	E 2.042	1.921	1.928	Southern summit periphery	Crust fragment	0.01					

Appendix Table 1 (2) Summary of Sampling Results

	Sampling site	ig site	MBES	CTD-BT CTD-BR	CTD-BR	1	-	Amount of	} e	5	(mm)	Time of arthetestae accelat	Type of rocks rock fragments bottom
Semple, No.	Latitude	Longitude	Depth(m)	Depth(m) Depth(m) Depth(m)	Depth(m)	Topographic division	Grust type	seidhes	(cm)	Max.	Nin A	Av. Av.	sediments (LC)
		1000		4 630	1631	Cost of sectars clone	Notite	0.57	335	22	-	10 Phosphorite, basait.	Pale brown clay.
	48.000 N	103 30.030 E	- 1 ·	1524	T.	T	Crust crust fraemant.	41.52		Ş	6	23 Conglomerate.	limestone, basalt, pumice.
_	z ;	· .		1555	Τ.		Crust	4.37		55	5		Conglomerate, beselt, pumice.
_	N //874	k		1974	T	Т	Crust	3.42		L¥	6	10 Baselt tuff breccie.	Beselt, tuff brøccie.
-	8 42,210 N	14,000	062	1 719	Т	T	Crust	5.64	ĺ	85	-	9 Limestone.	Pumice, basalt
BUDY ISHSE	42.310 N	08.547		1 689	T	Upper western slope	Crust fragment.	60.0		10	-	8	Limestone, beseit, pumice.
992WS12AD00	N (207.14	, 77 6 LU		1 448	T		Cobble crust	194.80		140	-	44 Tuff breccia	
	2 Z	04 980		2.060	1		Crust, crust fragment.	17.88		96 96	5	34 Limestone.	Pumice.
10104010	13.100 N	05 804	· ·	1.796	Т		Crust fragment, nodule.	0.85	· · ·	22	1	 Basaht, tuff, limestone. 	Pumice.
SOCHOLONO	40 KM2 N	05.828	- 1	1.499	1	1	Crust.	1.02		62	1		Pumice.
98SMS12AD11	51.453' N	CB.759'		1,342	1		Crust, crust fragment, cobble crust.	8.64		09	2	39 Hyaloclastite.	Pumice.
BECKC19AD19	8° 52 A36' N	183° 11 879' F	2.114	1.983	2,039	Middle northern slope	Crust, crust fragment	1.20		21	0	10 Basalt	Basalt, pumice.
DASMS12AD12	52 049 N	11.715		1.716			Crust	26.95	-	ន	-	20 Limestone, beseit.	Basalt, pumice,
ADCMC101.014	45 035' N	12 484	1	1.130	1,121	Summit			1		_		Foraminiferal sand.
98SMS12LC15	43.616 N			1,372	1,360	Eastern summit benibhery			•	•			limestone, basait, pumice.
	0° 30 507 N	182° AT 020' E	2 310	2 268	2 054	them stope	Crust, cobble crust, crust	67.70		80	<u>8</u>	31 Basait, conglomerate,	Basalt, congiomerate.
	100.00		2 1				fragment			-		limestone.	
98SMS12AD17	8° 42.911' N	183° 10.270' E	1, 325	1,273	1.279	Southern summit periphery	Cobbie crust, nodule.	118.18		96 96	0	32 Baselt, conglomerate.	
QREMS12AD1R	R° 44.327' N	163° 11.670' E	1, 189	1,157	1.097	Summit	Crust, nodule.	1.62		27	-	14 Tuff, limestone.	Tuff.
DECMETTI COL	18.070' N	25.125		4,029	4,021	restern slope	Nodule.	0.24	215	15	9	10 Besalt tuff.	Calcareous clay (potosand, nodule)
- t-	19.567 ^N	35.808		1,912	1.799	Western summit	Crust, nodule.	0.26		22	_		Basalt, tuff, limestone.
_	18.503 N	31.694	2, 524	2,527	2,200	Western summit	Crust, cobble crust, nodule.	220.99	-	ş	_	10 Baselt, phosphorite.	Basalt, pumice.
	15.237' N	30.240		2,901	2,333	Upper western slope				-	-		Basalt, tuff breccia, limestone, pumice.
-	11.657' N	160° 33.630' E	1	1	ï	Western summit	Crust, nodule.	145.58		ē	-	28 Basalt, calcareous	Calcareous conglomerate, baselt,
98SMS13AD06	09.509 N	160°31.878'E	2, 334	2,289	2,082	Western summit	Crust, cobble crust, nodule,	46.96		ŝ	-		Basalt
	06.486 N	160° 29.286' E	2 513	2.469	2,120	Southwest summit	Crust, cobble crust, nodule.	161.92				68 Calcareous congiomerate,	Pumice.
-	03.827' N	31.617'		2,054	1,927	Southwest summit	Crust, cobble crust.	11.20				30 Basalt	Pumice.
	11.470' N	34.599'		1.837	1,816	Central summit	Crust, cobble crust, nodule.	37.85		99 90	5		Foraminiferal sand.
98SMS13AD10	z	160° 36.793' E	2, 359	2,333	2.211	Eastern summit	Crust fragment, nodule.	1.73		8	-	14 Basalt, phosphorite.	Basait, pumice.
98SMS13LC11	8° 12.821' N	160° 36,989' E	2: 029	2.005		Eastern summit			•				
985MS13LC12	8° 11.959' N	1.60° 33.343' E	2, 079	2.082	2.077	Western summit			•			_	
98SMS13AD13	24.140' N			2.464			Orust	5.29		25	2		Basalt, pumice.
شبية	8°27.022'N	160° 39.972' E	2, 813	2.746	2.785		Crust	0.70 -		5	_	2 Baselt	Pumce.
۰.		1 ,00, 2, 0,4,					Callet	0.07		e.	-	1 1 matters	

.

Appendix Table 2 (1) Rock Samples from MS10 Area

Substrate	Subangular cobbles of aphyric basalt	Angular cobbies of aphyric porous basalt.	Angular oobbies of phyric porous basait.	Caloareous conglomerate Pebbles; subangular~subrounded aphyric basalt. Matrix phosphatized.	Caloareous congiomerate Pebbles: subrounded aphyric baselt.	Caloareous conglomerate Pebbles: subrounded phyric and aphyric basalt.	Subrounded oobbles of phyric vitreous beselt	Caloarsous conglomerate Pebbles: subangular phyric vitreous basalt. Matrix phosphatized.	Phyrio (acioular plagicolase) vitreous.	Aphyne - porous.	Caloarreous congiomerate Contain flat pebbles of phyrio vitreous basalt.	Phyria - porous.	Phyrio-vitraous:	Phyrio: porous	Phyric vitreous	Pumiceous	a i Matrix: basaktio tuff. contain angular~subangular pobbles of aphyrio-phyric basakt.	a Matrix: basaitio tuff, contain angular~subangular pebbles of aphyric 'phyric basait:	Aphyrio, vitreous:	Aphyric, vitreous	a Basatio.	2 types, white and brownish gray:	(Minute acicular plagioclase crystals are distributed	e Matrix: baseftio tuff, contain angular pobbles of aphyrio vitreous baseft.	Weathered, fragile.	e Pink compect, hard.
Sul	Basalt	Besalt	Basalt	Caloareous	Caloareous	Caloareous	Baselt	Caloarsous	Basalt	Beselt	Caloarrous	Besalt	Basalt	Besalt	Basalt	Tuff 🤉	Tuff breccia	Tuff brecoil	Baselt	Basalt	Tuff brecom	Limestone	Basalt	Tuff broosin	Limestone	Phosphorite
off bottom	1'391	1,391	1,391	1391	1 391	1,391	1,391	1.391	1,403	1,403	1,403	1,660	1,660	1,660	1,660	1,660	1,812	1,812	1,812	1,812	1,812	1,812		1,812	1,812	· ·
Water depth (m) On bottom Off bottom	1,415	1,415	1,415	1.415	1,415	1,415	1,415	1,415	1,445	1,445	1,445	1,770	1.770	1,770	1,770	1.770	2,023	2,023	2.023	2,023	2,023	2,023	2.023	2,023	2,023	5,516
Sample number	98 AD 08 Substrate rook of Cobbie crust	AD 08 Substrate rook of Cobble crust	AD 08 Substrate rook of Cobble orust	AD 08 Substrate rook of Cobble orust	AD 08 Substrate rook of crust	AD 08 Substrate rock of Cobble crust	AD 08 Substrate rock of Cobble crust	AD 08 Substrate rook of Cobble orust	AD 05 Substrate mok of orust	AD 05 Rook	AD: 05 Rock	AD-03 Substrate rock of orust	AD 03 Substrate rook of onust	AD 03 Rook	AD 03 Rook	AD 03 Rock	AD 04 Substrate rock of orust	AD 04 Substrate rock of onist	AD 04 Substrate rook of onust	AD 04 Substrate rook of crust	AD 04 Substrate rock of orust	AD 04 Substrate rook of crust	AD 04 Rook	AD 04 Rook	AD 04 Rook	LC 01 Substrate rock of Nodule

Appendix Table 2 (2) Rock Samples from MS11 Area

 Sample 	1.4	Water depth (m)	pth (m)	Substant a	Decomments
number		On bottom Off bottom	Off bottom		
96 AD 08	98 AD 08 Substrate rock of Cobble crust	1,937	1.747	Basalt	Fine grained. Aphyric.
AD 08	AD 08 Rook	1,937	1,747	Basalt	Vitreous, Aphyrio.
CB.02	CB.02 Substrate rock of Cobble crust	2,019	1,912	Basalt	Fine grained. Phyrio.
CB 02	CB 02 Substrate rock of Cobble crust	2.019	1,912	Limestone	Hard by phosphatization.
CB 02	CB 02 Substrate rook of Cobble crust	2,019	1,912	Basait	Fine grained, phyrio. Acicular plagiciclase crystals notable.
AD 07.	AD 07 Rook	2,062	1,941	Basait	Porous, aphyrio.
CB.06	CB.06 Substrate rook of Cobble orust	2,359	2,094	Limestone	Pelitic, soft, contain micronodules.
CB 06	CB 06 Substrate rook of Cobble crust	2,359	2,094	Basah	Fine grained, compact, rare occurrence of acicular plagioclase crystals.
CB 06	CB 06 Substrate rook of Cobble crust	2,359	2,094	Basalt	Fine grained, compact, rare occurrence of acicular plagioclase crystals.
CB 06	CB 06 Substrate rook of Cobble crust	2,359	2,094	Basalt	Fine grained, compact, phyrio.
CB 06 Rock	Rock	2,359	2,094	Basah	Fine gramed, compact, phyric.
CB 06 Rock	Rock	2,359	2,094	Limestone	Palitic, soft, contain micronodules.
AD 09	AD 09 Substrate rook of Cobble crust	2,500	2,462	Basalt	Fine grained, compact, rare occurrence of acicular plagiociase crystals.
AD:09	AD.09 Substrate rock of Cobble crust	2,500	2,462	Limestone	Pelitic, soft, contain basalt fragments.
AD 09 Rock	Rock	2,500	2,462	Basatt	Fine grained, phyric.
AD 10	AD 10 Substrate rook of Nodule	2,652	2,453	Phosphorite	Hard, contain micronodules.

Appendix Table 2 (3) Rock Samples from MS12 Area

AD 11 8 10 11 10 10	Rock type	On bottom Off bot		Substrate	
			CIT BOLTOM		
	Crust	1,142	1,082	Tuff	Soft, Mn steins.
AD 17 8 AD 17 8 AD 17 8 AD 17 8 AD 17 8	Substrate rock of Nodule	1,142	1,082	Limestone	Hard by phosphatization.
AD 17 AD 17 AD 17 AD 17 AD 17 AD 17	Substrate rock of Cobble orust	1.258	1264	Calcareous Conglomerate	Contain angular basait pebbles. Biogenic fragments.
AD 17 AD 17 AD 17 AD 17	Substrate rock of Cobble orust	1,258	1264	Basalt	porous, subrounded cobbles. From nuclei together with two rocks below.
AD 17 (Substrate rock of Cobble orust	1.258	1264	Calcareous Conglomerate	Contain rounded basalt pebbles. Hard by phosphatization.
	Substrate rock of Cobble orust	1,258	1,264	Tuff	Greenish gray. Atteration significant.
	Substrate rock of Cobble orust	1,258	1,264	Tuff	Fine gramed homogeneous.
	Substrate rock of Nodule	1,258	1,264	Basalt	Phyne, porous
	Substrate rook of crust	1,327	1,245	Hyaloclastite	Matrix vitreous, baseit pebbies, generally attered to brown.
	Substrate rock of Cobbie crust	1.327	T	Basalt	Aphyne: poroue.
	Substrate rook of Cobbie onist	1 433	Γ.	Linestone	Fine gramed, compact, hard. Homogeneous, not phosphatized.
_	Cutato and took of Cable anist	1 433	T	Basat	Fine grained, aphyric. Form agglomeratic host together with the rook below.
	CLEAR HE TOUL OF TOTAL OF TOTAL	1 122	Т	Hueloolestite	Matrix vitreous, besalt and pumice pebbles.
			205	Reset.	Anivria: porouta
	HOCK				Diving an event of marals abundant
	Substrate rook of crust	1.484	1.423	Dasart ()	r 1970, porous, resubertor renormer accorded have the second s
AD 02 [\$	Substrate rock of orust	950,1	115.	_	content autoritati autoritati autoromico entre prima defini enti calcita 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
AD 02	Substrate rook of arust	1.539	1,371	-	Contain subanguar's saprounded basar, pepores, intervenencies or mine aver version
AD 02 [5	Substrate rook of arust	1.539	1.371	Calcarsous Conglomerate	Contain subrounded basaft pebbles. Hard by phosphartzaulon.
AD 02 1	Rook	1,539	175,1	Calcarsoux Conglomerate	Contain angular basait pebbles.
	Substrate rock of arust	1,540	1,358	Basait	Phyric, vitroous, strongly weathered.
	Rook	1.540	1,358	Basat	Phyric, vitreous, strongly weathered, partly argilized
	Book	1.540	T	Calcarsous Conflomerate	Contain angular basait pebbles.
	Dack	1 674	1472		phosphatized, hard.
	De-L	1 674	01.7		
	C.L. Modk	101 1	314	anis Consiomerate	Fine strained. Derthy vesicular, contain subrounded~rounded basett pebbles.
		1 701	914		Ardvina condition
	Substrate rock of grust	10.1	Т	0	
	Substrate rook of crust	10/1		Dasan	r lite grauped, approve and a source hard by phosphatization.
SO OV	Substrate rook of crust	1./04	470'		
AD 05 F	Rook	1./04	1,024		Amyre, porous.
3 60 OV	Substrate rook of Nodule	1,781	1,409	Basatt	Apriyric, porous
60 GV	Substrate rook of Nodule	1.781	1,409	Basalt	Fine grained, compact, aphyric.
	Substrate rock of Nodule	1.781	1,409	Hyaloclastita	
60 OV	Substrate rook of Nodule	1,781	1,409	Limestone	Abundant biological fragments.
	Substrate rock of crust.	1,959	1,842	Tuff brecoia	Matrix pumiceous, contain porous angular basait pebbles and tme-grained subrounded basait
		1 050	CV B L	Racet	Anhvria, norrus, caloite fills vestoles.
	DUDGU BIG FOOR OF OTAST	1 050	240		Arbyrin pornus frasia by westhering.
AU UA	KOCK	1.050	240,1		Domise come nhancements chearvad, discolored by weathering.
AU 04	Kock	808'1	240	Dasart	r unterst source prostructured and and and and and and and and and an
	Rook	RCR.	Т	ons congiomerate	
AD 12 5	Substrate rock of crust	1.968	2.024	Basalt	Anyrio porous
AD 08	Substrate rock of orust	2,045	1,877	Limestone	<u>Abundant biological fragments, small basatt fragments mixed.</u>
	Substrate rock of crust	2,253	2,039	Basalt	Phyrio, vitreous, many cracks filled by caloite.
	Substrate rock of Cobble orust	2,253	2,039	Basalt	Phyrio, porous, olivine observed.
	Substrate rook of Cobble crust	2,253	2,039	Calcareous conglomerate	Contain angular basalt pebbles, rock fragments, crust fragments. Matrix phosphatized.
AD 16 Rock		2,253	2,039	Calcareous conglomerate	Contain angular basait pebbles, rock fragments, crust fragments. Matrix phosphatized.
0 01	Substrate rock of Nodule	4.528			Hard
	Substrate rock of Nodula	4.528		Basalt	Small fragments.

Appendix Table 2 (4) Rock Samples from MS13 Area

.

	Book ture	Water de	<u>Water depth (m)</u>	Substrate	Description
number		On bottom	δ		
98 AD 09 [98 AD 09 Substrate rook of crust	1,822	1,801	Limestone	Pelitic, fragile, contain micronodules, some what phosphatized.
AD 09	AD 09 Substrate rook of Cobble crust	1,822	1.801	Basalt	Fine grained, porous, acicular plagioclase crystals, vesicles filled by opail
AD 09	AD 09 Substrate rock of Nodule	1,822	1,801	Basalt	Fine grained, porous, acioular plagioclase crystals.
AD 09	AD 09 Substrate rock of Nodule	1,822	1,801	Phosphorite	White, hard.
AD 09 Rook	Rock	1,822	1,801	Limestone	Pelitic, fragile, contain micronodules, some what phosphatized.
AD 02	AD 02 [Substrate rock of crust	1.897	1.784	Basalt	Fine grained, compact, acicular plagioclase notable.
AD 02	AD 02 Substrate rock of Nodule	1,897	1,784	Besalt	Aphyric, fine grained, hard.
AD 02 Rock	Rock	1,897	1.784	Tuff	Fine grained.
AD 02 Rook	Rook	1,897	1,784	Limestone	Pelitic, fragile.
AD 05	AD 05 Substrate rock of crust	2,033	1,885	Caloareous conglomerate	Matrix pelitic, soft. Pebbies basalt, phosphorite, nodules.
AD 05	AD 05 Substrate rock of orust	2,033	1,885	Caloareous conglomerate	Matrix pelitic, soft. Pebbles basalt, subangular limestone.
AD 05	AD 05 Substrate rock of crust	2,033	1,885	Caloareous conglomerate	Contain angular basalt pebbles. Matrix phosphatized, hard.
AD 05 3	Substrate rock of crust	2,033	1,885	Basalt	Fine grained, compact. Phynic but phenocrysts not clear.
AD 05.	Substrate rock of Nodule	2,033	1,885	Basalt	Fine grained, compact. Phynic but phenocrysts not clear.
AD 05 3	Substrate rock of Nodule	2,033	1,885	Phosphorite	
AD 05 1	Rock	2,033	1,885	conglomerate	Matrix pelitic, soft. Basaft granulos,
AD 05 Rook	Rock	2.033	1,885	Basak	Fine grained, comparct Phyric but phenocrysts not clear.
AD 08	AD 08 Substrate rock of Cobble crust	2.039	1.912	Basalt	Fine grained, hard, aphyrio.
AD 06	AD 06 Substrate rock of orust	2.274	2.067	Basak	Phyric, porous, phenocrysts not clear.
AD 06	Substrate rock of Nodule	2.274	2:067	Besalt	Phyric, porous, phenocrysts not clear.
AD 06 Rook	Rock	2.274	2.067	Basak	Phyric, porous, phenoorysts not clear.
AD 10	Substrate rock of Nodule	2,318	2,196	Basalt	Fine grained, aphyric.
AD 10	Substrate rock of Nodule	2,318	2,196	Phosphorite	White, hard, contain micronodules.
AD 13	Substrate rock of orust	2,449	2,424	Basek	Fine grained, aphyric, vesicles partly filled with oalcite.
AD 13	Substrate rook of orust	2,449	2,424	Limestone	White, pelitic, fragile.
AD 13 Rock	Rock	2,449	2,424	Basalt	Fine grained, porous, aphyric.
AD 07	AD 07 Substrate rock of Cobble crust	2,454	2,105	Calcareous conglomerate	Contain weathered besalt granules. Matrix phosphatized.
AD 07	AD 07 Substrate rock of Cobble crust	2.454	2.105	Basalt	Cracks developed and filled by phosphate minerals.
AD 07	AD 07 Substrate rock of Cobble crust	2,454	2.105	Phosphorite	White, hard.
AD 07	AD 07 Substrate rock of Nodule	2,454	2,105	Basalt	
AD 07	Substrate rock of Nodule	2.454	2,105	Phosphorite	
4D 03	Substrate rock of crust	2,512	2,185	Basaht	Fine grained, aphynic, porcus.
* VD 03	Substrate rock of orust	2,512	2,185	Basett	Fine grained, porous, rarely acicular plagioclase.
AD 03	Substrate rock of Cobble crust	2,512	2,185	Basatt	Fine grained, porous, rarely acicular plagioclase.
4D 03	Substrate rock of Nodule	2,512	2,185	Basalt	Fine grained, aphyric, porous.
AD 14	AD 14 Substrate rock of crust	2.731	2.770	Basalt	Fine grained, hard, aphyric.
AD 14 Rock	Rock	2;731	2.770	Basatt	Fine grained, hard, aphyric.
AD 14 Rock	Rook	2,731	2,770	Limestone	Pelitic fragile. Pipe trace fossils on surface.
AD 04	Rock	2,886	2,318	Basalt	Fine grained, compact, acicular plagioclase notable.
AD 04	Rock	2,886	2,318	Tuff breccia	Fine grained, compact. Argilized by weathering.
AD 04	Rock	2.886	2,318	Limestone	Pelitio fregile, contain micronodules.
AD 15	AD 15 Substrate rock of crust	3,120	2,910	Limestone	Politic, but coarse-grained material mixed. Brown by weathering.
LC 01	LC 01 Substrate rock of Nodule	4,017		Basalt	Aphyric, porous.
10 0 -	Cubatrate wet of Nodula	4017		17±±±	Fine trained command

Appendix Table 3(1) Description of microscopic observation for rock thin section

Sample: SMS10/	AD03T01			
Rock: Vitreous	basalt			
Description(unal white clay miner		ed, fragile. Acicul	er plegioclas	e. White veinlets developed throughout. Crushed milky
Description (mic	roscopic) :			
	nyric, porous. Both phen /gdaloidal texture.	locryst and matrix	plagioclase	have weak flow structure. Smectite fills vesicles, show
Phenocryst min	erals description:			: · ·
Mineral	Shape	Grain diameter	Content	Description
Plagioclase	Prismatic	2.4 × 0.4mm	10~20%	Weakly altered, prismatic, twins observed.
Matrix descriptio	on:Cryptocrystalline~vit	reous.		<u>4</u>
Mineral	Shap e	Grain diameter	Content	Description
Volcanic glass.	Irregular.		50~60%	Weakly devitrizied, generally vitreous.
Alteration: Inter	mediate alteration. Volc	anic glass partly a	Itered (weak	alteration) to clay minerals such as smectite.
Altered mineral	description:			
Mineral	Shape	Grain diameter	Content	Description
Smectite	Irregular.	0.01mm	Minor	Minor amount in volcanic glass. Partly veins.
	Splintery~Bounded	~0.1mm	10~20%	Splintery~bundled aggregate, fill vesicles.
	İrregular, Granular veins	~ 0.03mm	Minor	Minor amount in volcanic glass. Partly veins.

	DOFTO	<u> </u>		
Sample: SMS10A		·		
Rock: Altered ba			<u></u>	
Description(unaid	ed eyes): Reddish brov	vn, autobrecciated	. White clay	ey (or quartz?) veinlets in network.
Description (micr	oscopic):			
Rock texture: Ph	yric, texture. Plagiocla	se phenocrysts wi	th flow struc	ture.
Phenocryst mine	rais description:	18 1. S. 18 1.		
Mineral	Shape	Grain diameter	Content	Description
Plagioclase	Prismatic Subhedral	0.3 × 1.8mm	20~25%	Relatively fresh
Olivine	Sort prismatic Subhedral	0.3×0.7mm	10%	Pseudomorph
Clinopyroxene		0.3×0.6mm	10%	Pseudomorph
Matrix descriptior	n: Volcanic glass partly	devitrified, altere	d to smectit	e. Silica minerals partly observed in matrix.
Mineral	Shape	Grain diameter	Content	Description
Smectite	Splintery	~0.1mm	60~70%	
Silica minerals	Spherulitic~Vein	~0.02mm	~5%	In matrix
Alteration: Strong	g alteration. Vitreous п	natrix partly devitr	ified, altered	to smectite, weakly silicified.
Altered mineral d	escription:			
Mineral	Shape	Grain diameter	Content	Description
Smectite	Splintery	0.01mm	60~70%	Same as matrix.
Silica minerals	Spherulitic~vein	~0.02mm	5%	Same as matrix.

Appendix Table 3(2) Description of microscopic observation for rock thin section

Rock: olivinee b	asalt.			
	led eyes): Brown, white texture developed.	e veinlets develope	ed. Prismatio	euhedral crystal fragments on sample surface. Black
Description (micr	roscopic) :			· · · · · · · · · · · · · · · · · · ·
<u> </u>	herulitic, micro-phyric	texture developed	l	· · · · · · · · · · · · · · · · · · ·
Phenocryst mine	rais description:		· · · ·	
Mineral	Shape	Grain diameter	Content	Description
Plagioclase	Prismatic subhedral	0.3×0.4mm	~5%	Altered to quartz, smectite.
Matrix descriptio	n:Clinopyroxene, opaqu	e minerals, vitreou	us matrix.	
Mineral	Shape	Grain diameter	Content	Description
Olinopyroxene	Irregular. Prismtic	0.08~0.02mm	~60%	
Opaque mineral	Anhedral. Granular.	~0.05mm	~10%	Scattered in matrix
Volcanic glass	Irregular	~0.03mm	Minor	Weakly devitrified, smectite formed.
Alteration: Altera	tion intermediate. Sme	ctitzed (vitreous r	natrix), iddin	gsitized (replacing olivinee). Smectite veins developed
Altered mineral o	lescription:			······································
Mineral	Shape	Grain diameter	Content	Description
Smectite	Pseudomorph replacement. Feathery.	~0.02mm	~5%	Volcanic glass, plagioclase replacement.
	Pseudomorph	~0.02mm	~ 5%	Olvine replacement.

Sample: SMS11A	D06T01			· · · · · · · · · · · · · · · · · · ·
Rock: Porphyritic	spherulitic olivinee ba	ısalt.		
Description(unaid	ed eyes): Brown, com	pact clayey. Cons	ist of white	prismatic plagioclase phenocrysts.
Description (micro	oscopic) :			
	yric, vitreous matrix. Pl amygdaloidal texture.	henocryst • matrix	plagioclase	show weak flow structure. Smectite and calcite fill voids
Phenocryst mine	als description:			
Mineral	Shape	Grain diameter	Content	Description
Plagioclase	Euhedral~Subhedral	0.9 × 1.3mm	~10%	Pseudomorph by alteration (smectitization)
Olivine	Euhedral~Subhedral	0.9 × 1.3mm	~10%	Some fresh olivinee, but mostly pseudomorph (smeatit iddingsite).
Matrix descriptior	: Vitreous matrix cons	isting of plagiocla	se and opaq	ue minerals.
Mineral	Shape	Grain diameter	Content	Description
Volcanic glass	Irregular		20~30%	
Opaque minerals		0.05~0.1mm	5~10%	Scattered in matrix.
Alteration: Altera Altered mineral d		sts mostly altered	to clay min	erals such as smectite.
Mineral Mineral	Shape	Grain diameter	Content	Description
Smectite	Pseudomorph, splintery,Ggranular	~1mm	~10%	Pseudomorph replacement with plagioclase and olivine Fill voids.
Calcit c	Splintery, pseudomorph, Granular	~1mm	~1%	Fill voids.
Iddingsite		~0.02mm	Minor	Pseudomorph replacement with olivinee.

Appendix Table 3(3) Description of microscopic observation for rock thin section

~		tor roci	K UITH	Section
Sample: SMS11A				
Description(unaid	c spherulitic olivinee b ed eyes): Greenish bro		ckish brown s	spherulitic texture observed. White incrustation on
surface. Description (micro	asconia) :			
		ootito filo voido v	dth onharuliti	c∼amygdaloidal texture.
Phenocryst miner		COULD HINS VOIDS W	nui spiiciulu	c anygoaloual texture,
	T T		0.1.1	Danaulation
Mineral	Shape	Grain diameter	Content	Description
Plagioclase	Prismatic subhedral	0.4 × 2.0mm	10~15%	Fresh
Olivine	Sort prismatic subhedral	0.6 × 1.0mm	~5%	Altered, pseudomorph (iddingsitized)
Matrix description	Vitreous, consisting o	f plagioclase, opac	que minerals.	
Mineral	Shape	Grain diameter	Content	Description
Plagioclase	Acicular, subhedral	0.01 × 0.2mm	15~20%	Relatively fresh
Opaque minerals	Microgranular	~ 10%	~5%	Scattered in matrix.
Volcanic glass	Irregular	~40%		
	<u> </u>		seudomorph	. Matrix devitrification weak.
Altered mineral d				and a second
Mineral	Shape	Grain diameter	Content	Description
Smectite		∼ 0.5mm	5~10%	Void filling, center hallow,
	Radial, spherulitic, splintery,		- 	
Iddingsite	Microgranular.	∼ 0.2mm	Rare	Pseudomorph of olivinee, alteration mineral.
Silica minerals		~0.01mm	Rare	Partly veins.
Sample: SMS12A	D04T03		·	
	ic spherulitic olivinee b	· · · · · · · · · · · · · · · · · · ·		
Description(unaid	led eyes): Reddish brow	wn, porous (vesicu	lation?), red	ish yellow brown incrustation on surface. Coarse-
	n) phenocrysts (plagio	clase) observed.		
Description (micr			L	with spherulitic~amygdaloidal texture. Phenocrysts
	show clear flow struc			with spherulitic ~ amygdaloidal texture. Phenocrysts
Phenocript miner	the second se		······	
Mineral	Shape	Grain diameter	Content	Description
Plagioclase	Subhedral, prismatic.	Max: 2.4 × 0.4mm	~20%	Megaphenocryst, twins, weak zonal structure.
olivine	Subhedral, sort prismatic.	Max: 1.0 × 0.6mm	~10%	Pseudomorph (smectite)
Clinopyroxene	Subhedral, sort prismatic.	Max: 0.8 × 0.6mm	~10%	Pseudomorph (smectite)
Matrix description Opaque minerals		nicular plagioclase	e developed.	Spherulitic∼porous structure developed in matrix.
Mineral	Shape	Grain diameter	Content	Description
Volcanic glass	Void filling		~10%	Weakly devitrified.
Plagioclase	Prismatic~acicular.	0.1 × 0.02mm	~40%	Clear flow structure.
	1 A state of the second sec	1	 C.N. 	Scattered in matrix.
Opaque minerals	Anhedral, microgranular.	0.005~0.1mm	~10%	
· · ·			1	1
	microgranular. rally weakly altered exc		1	1
Alteration: Gene	microgranular. rally weakly altered exc		1	1

Appendix Table 3(4) Description of microscopic observation for rock thin section

Sample: SMS12AD07T01

Rock: Basaltic pyroclastic rocks.

Description(unaided eyes): Coarse angular∼subangular pebbles. Pebbles maximum 8cm. Basaltic pebble with 2 types of alteration. Some pebbles with bleached surface by alteration. Quartz∙apatite veins developed. Matrix diverse; glassy∼sandy.

Description (microscopic) :

Rock texture: Clastic pebble texture.

Pebbles description: All phenocrysts altered, smectitized (pisolitic, solitic, spherulitic). Strongly weathered pebbles, matrix also smectitized. Volcanic glass partly remain in weakly weathered pebbles.

 Mineral
 Shape
 Grain diameter
 Content
 Description

 Volcanic glass
 Irregular
 ~5%
 Only in weak weathered pebbles.

 Matrix description:
 Vitreous~sandy matrix, aphyric. Smeetite, silica minerals, chlorite. Quartz and apatite veins developed (the

Mineral	Shape	Grain diameter	Content		Description	
Plagioclase	Subhedral, Prismatic.	0.01~0.05mm	~5%	Partly weathered.		
Volcanic glass	Irregular		~25%		· •	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

Alteration: Pebbles are altered with very strong devitrification, there are no phenocrysts. Pisolitic, oolitic~spherulitic smectite formed. Degree of alteration diverse by pebbles. In matrix smectite, silica minerals, chlorite alteration observed.

Mineral	Shape	Grain diameter	Content	Description
Smectite	(Pebble) pisolitic, spherulitic etc.	0.2~0.5mm	~20%	Pisolitic, spherulitic smectite covered by colloform smectite of similar nature.
	(Matrix) colloform	~ 0.1mm	~45%	Altered from volcanic glass.
Silica minerals	Fine granular	~0.05mm	Minor	Formed in matrix, partly amorphous, spherulitic~ amygdaloidal.
Chlorite	Vein	~0.1mm	Minor	Veins developed in matrix.

Sample: SMS12AD16T01

Rock: Basaltic pyroclastic rocks*globigerina carbonatie psammitic mudstone.

Description(unaided eyes): Consist of subangular pebbles of basaltic pyroclastic rocks. Pebble are diverse such as basaltic pebbles and globigerina carbonatic psammitic mudstone pebbles. Alteration degree diverse for basalt pebbles. Matrix glassy~ sandy.

Description (microscopic) :

Rock texture: Clastic pebble texture.

Pebble description: Basalt pebbles strongly altered, aphyric. Matrix mostly smectitized. Plagioclase remain in weakly altered pebble. Globigerina mudstone also contains microfossils such as radiolarian.

Mineral	Shape	Grain diameter	Content	Description
Plagioclase	Prismatic subhedral	~0.05mm	~5%	Only in matrix of weakly altered pebbles.
Calcite	Microfossil		~30%	In psammitic mudstone pebbles.
Matrix descriptio	n: Glassy~sandy. Alte	ration weaker tha	n basaltic pe	bbles. Volcanic glass remain.
Mineral	Shape	Grain diameter	Content	Description
Volcanic glass	Irregular	an an an tha an an tha an a	~30%	Partly altered to smectite and silica minerals.
Alteration: Altera	ation strong for pebbles	, smectite develo	ped. Alteratio	on weak for matrix, volcanic glass remain.
Altered mineral of	lescription:			
Mineral	Shape	Grain diameter	Content	Description
Smectite	Cryptocrystalline	~0.01mm	~30%	Observed in pebbles nd matrix.
Silica minerals.	Anhedral		~5%	Observed in matrix.

Appendix Table 3(5) Description of microscopic observation for rock thin section

Sample: SMS13AD	02T02			
tock: Hyaloclasti	te			an a
	ed eyes): Brown hyalo) observed locally.	clastite. Do not c	ontain pebbl	es. Coarse grained~pisolitic. Voids (milky white
Description (micro	oscopic) :	· .		
Rock texture: Clas	stic, network veins dev	eloped. Pockets	of calcite.	
Clasts description	: Consist of clay miner	als and opaque m	inerals,	
Mineral 👘	Shape share	Grain diameter	Content	Description
Olay minerals	Colloform	~0.05mm	20~30%	Formed as clast grains or cementing matter,
Opaque minerals.	Fine granular	~0.02mm	~20%	Developed as clast grains.
Matrix description	: Very minor amount o	f microfossil frag	nents (speci	es unknown) observed.
Mineral	Shape	Grain diameter	Content	Description
Calcite	Spheroidal	~0.1mm	Rare	Pocket-form aggregates, developed as secondary veinlets.
Volcanic glass	Irregular	ang ana sa sa	~20%	
Alteration: Alterat				als formed as cementing matter (colloform, void filling).
Altered mineral d	escription:		u la anti-	
Mineral	Shape	Grain diaméter	Content	Description
Smectite	colloform	0.01~0.05mm	~20%	Alteration product of calcite grains or cementing matter. Veinlets also developed.
a de la seconda de la second Seconda de la seconda de la				
Silica minerals.	Anhedral fine granular aggregate.	~0.01mm	~5%	Formed together with smectite. Veinlets also developed.
		an Alamana		
	Fine granule, anhedral.	~0,01mm	5~10%	Developed filling clastic grain interstices
		∼0.01mm	5~10%	Developed filling clastic grain interstices
Sample: SMS13A	anhedral.		5~10%	Developed filling clastic grain interstices
	anhedral.		5~10%	Developed filling clastic grain interstices
Rock: Aphyric p	enhedrel. D03T01 prous beselt. Altered b	nsalt.		Developed filling clastic grain interstices rance). Grayish white filling observed locally.
Rock: Aphyric po Description(unaio Description (micr	anhedral. D03T01 prous basalt. Altered b led eyes): Brown, comp oscopic) :	eselt. Dact, porous (bric	k-like appea	rance). Grayish white filling observed locally.
Rock: Aphyric p Description(uneic Description (micr Rock texture: Ap	anhedral. D03T01 prous basalt. Altered b led eyes): Brown, comp oscopic) : hyric porous. Matrix Pi	asalt. Dact, porous (bric hyric, texture. Pla	k-like appea gioclase sho	
Rock: Aphyric p Description(unaic Description (micr Rock texture: Ap filled by smectite	anhedral. D03T01 prous basalt. Altered bu led eyes): Brown, comp oscopic) : hyric porous. Matrix Pl showing spherulitic~	asalt. pact, porous (bric hyric, texture. Pla amygdaloidal stru	k-like appea gioclase sho	rance). Grayish white filling observed locally.
Rock: Aphyric po Description(uneic Description (micr Rock texture: Ap filled by smectite Phenocript miner	anhedral. D03T01 prous basalt. Altered bu led eyes): Brown, comp oscopic) : hyric porous. Matrix Pi showing spherulitic~ rals description: Basica	asalt. bact, porous (bric hyric, texture. Pla amygdaloidal stru- illy aphyric.	k-like appea gioclase sho pture.	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids
Rock: Aphyric p Description(unaic Description (micr Rock texture: Ap filled by smectite	anhedral. D03T01 prous basalt. Altered ba led eyes): Brown, comp oscopic) : hyric porous. Matrix Pl showing spherulitic~	asalt. pact, porous (bric hyric, texture. Pla amygdaloidal stru	k-like appea gioclase sho	rance). Grayish white filling observed locally.
Rock: Aphyric po Description(uneic Description (micr Rock texture: Ap filled by smectite Phenocript miner	anhedral. D03T01 prous basalt. Altered bu led eyes): Brown, comp oscopic) : hyric porous. Matrix PI showing spherulitic~ rals description: Basica	asalt. bact, porous (bric hyric, texture. Pla amygdaloidal stru- illy aphyric.	k-like appea gioclase sho pture.	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids
Rook: Aphyric po Description(uneic Description (micr Rock texture: Ap filled by smectite Phenocript miner Minerel	anhedral. D03T01 prous basalt. Altered ba led eyes): Brown, comp oscopic) : hyric porous. Matrix Pl showing spherulitic~ als description: Basica Shape	asalt. pact, porous (bric hyric, texture. Pla amygdaloidal stru- lly aphyric. Grain diameter	k-like appea gioclase sho oture. Content	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description
Rook: Aphyric pa Description(unaid Description (micr Rook texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Clinopyroxene	anhedral. D03T01 prous basalt. Altered bu led eyes): Brown, comp oscopic) : hyric.porous. Matrix PI showing spherulitic~ rals description: Basica Shape Subhedral, granular	asalt. Dact, porous (bric hyric, texture. Pla amygdaloidal stru- lly aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm	k-like appea gioclase sho oture. Content ~2% ~2%	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?)
Rook: Aphyric pa Description(unaid Description (micr Rook texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Clinopyroxene	anhedral. D03T01 prous basalt. Altered by led eyes): Brown, comp oscopic) : hyric.porous. Matrix Pl showing spherulitic~ rals description: Basica Shape Subhedral, granular Subhedral, granular	asalt. Dact, porous (bric hyric, texture. Pla amygdaloidal stru- lly aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm	k-like appea gioclase sho oture. Content ~2% ~2%	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?)
Rook: Aphyric px Description(unaic Description (micr Rock texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Clinopyroxene Matrix descriptio	anhedral. D03T01 prous basalt. Altered bu- led eyes): Brown, comp oscopic) : hyric.porous. Matrix PI showing spherulitic~ rals description: Basica Shape Subhedral, granular Subhedral, granular n: Generally vitreous~	asalt. Dact, porous (bric hyric, texture. Pla amygdaloidal stru- ily aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm	k-like appea gioclase sho oture. Content ~2% ~2%	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals.
Rock: Aphyric pa Description(unaic Description (micr Rock texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Clinopyroxene Matrix descriptio Mineral	anhedral. D03T01 prous basalt. Altered bu- led eyes): Brown, comp oscopic) : hyric porous. Matrix PI showing spherulitic~ rais description: Basica Shape Subhedral, granular Subhedral, granular n: Generally vitreous~ Shape	asalt. Dact, porous (bric hyric, texture. Pla amygdaloidal stru- illy aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm coryptocrystalline Grain diameter	k-like appea gioclase sho oture. Content ~2% ~2% Content	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals. Description
Rock: Aphyric po Description(unaid Description (micr Rock texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Olinopyroxene Matrix descriptio Mineral Plagioclase Silica minerals	anhedral. D03T01 prous basalt. Altered ba- led eyes): Brown, comp oscopic) : hyric porous. Matrix PI showing spherulitic~. rals description: Basica Shape Subhedral, granular Subhedral, granular n: Generally vitreous~ Shape Acicular~prismatic Oryptocrystalline	asalt. Dact, porous (bric hyric, texture. Pla amygdaloidal stru- illy aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm cryptocrystalline Grain diameter 0.02 × 0.4mm	k-like appea gioclase sho oture. Content ~2% ~2% Content ~40%	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals. Description Rapid growth (quenched product?)
Rock: Aphyric pa Description(unaic Description (micr Rock texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Clinopyroxene Matrix descriptio Mineral Plagioclase	anhedral. D03T01 prous basalt. Altered ba- led eyes): Brown, comp oscopic) : hyric porous. Matrix PI showing spherulitic~. rals description: Basica Shape Subhedral, granular Subhedral, granular n: Generally vitreous~ Shape Acicular~prismatic Oryptocrystalline	asalt. Dact, porous (bric hyric, texture. Pla amygdaloidal stru- illy aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm cryptocrystalline Grain diameter 0.02 × 0.4mm	k-like appea gioclase sho oture. Content ~2% ~2% Content ~40% ~10%	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals. Description Rapid growth (quenched product?)
Rock: Aphyric pa Description(unaic Description (micr Rock texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Olinopyroxene Matrix descriptio Mineral Plagioclase Silica minerals Opaque minerals Volcanic glass	anhedral. D03T01 prous basalt. Altered by led eyes): Brown, comp oscopic) : hyric porous. Matrix PI showing spherulitic~ rals description: Basica Shape Subhedral, granular Subhedral, granular n: Generally vitreous~ Shape Acicular~prismatic Cryptocrystalline Irregular	asalt. Dact, porous (bric amygdaloidal stru- illy aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm cryptocrystalline Grain diameter 0.02 × 0.4mm ~0.01mm	k-like appea gioclase sho oture. Content ~2% ~2% Content ~40% ~10% ~30%	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals. Description Rapid growth (quenched product?)
Rock: Aphyric po Description(unaid Description (mier Rock texture: Ap filled by smectite Phenooript miner Mineral Plagioclase Olinopyroxene Matrix descriptio Mineral Plagioclase Silica minerals Opaque minerals Volcanic glass Alteration: In phe alteration general	anhedral. D03T01 prous basalt. Altered bu- led eyes): Brown, composcopic): hyric porous. Matrix PI showing spherulitic~ rals description: Basical Subhedral, granular Subhedral, granular n: Generally vitreous~ Shape Acicular~prismatic Cryptocrystalline Irregular enocrysts, clinopyroxetally weak.	asalt. Dact, porous (bric amygdaloidal stru- illy aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm cryptocrystalline Grain diameter 0.02 × 0.4mm ~0.01mm	k-like appea gioclase sho oture. Content ~2% ~2% Content ~40% ~10% ~30%	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals. Description Rapid growth (quenched product?) Small amount in matrix.
Rock: Aphyric pa Description(unaic Description (micr Rock texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Olinopyroxene Matrix descriptio Mineral Plagioclase Silica minerals Opaque minerals Volcanic glass Alteration: In pho	anhedral. D03T01 prous basalt. Altered bu- led eyes): Brown, composcopic): hyric porous. Matrix PI showing spherulitic~ rals description: Basical Subhedral, granular Subhedral, granular n: Generally vitreous~ Shape Acicular~prismatic Cryptocrystalline Irregular enocrysts, clinopyroxetally weak.	asalt. Dact, porous (bric hyric, texture. Pla amygdaloidal stru- illy aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm 0.8 × 0.2mm cryptocrystalline Grain diameter 0.02 × 0.4mm ~0.01mm	k-like appea gioclase sho oture. Content ~2% ~2% Content ~40% ~10% ~10% ~30% rectite), alte	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals. Description Rapid growth (quenched product?) Small amount in matrix. ration significant. Matrix partly argillized (smectite), but
Rock: Aphyric pa Description(unaid Description (mier Rock texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Olinopyroxene Matrix descriptio Mineral Plagioclase Silica minerals Opaque minerals Volcanic glass Alteration: In phe alteration general	anhedral. D03T01 prous basalt. Altered bu- led eyes): Brown, composcopic): hyric porous. Matrix PI showing spherulitic~ rals description: Basical Subhedral, granular Subhedral, granular n: Generally vitreous~ Shape Acicular~prismatic Cryptocrystalline Irregular enocrysts, clinopyroxetally weak.	asalt. Dact, porous (bric amygdaloidal stru- illy aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm cryptocrystalline Grain diameter 0.02 × 0.4mm ~0.01mm	k-like appea gioclase sho oture. Content ~2% ~2% Content ~40% ~10% ~10% ~30% rectite), alte	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals. Description Rapid growth (quenched product?) Small amount in matrix. ration significant. Matrix partly argillized (smectite), but
Rook: Aphyric pa Description(unaid Description (micr Rook texture: Ap filled by smectite Phenocript miner Mineral Plagioclase Clinopyroxene Matrix descriptio Mineral Plagioclase Silica minerals Opaque minerals Volcanic glass Alteration: In phe alteration general	anhedral. D03T01 prous basalt. Altered by led eyes): Brown, comp oscopic) : hyric porous. Matrix Pl showing spherulitic~ rals description: Basica Shape Subhedral, granular Subhedral, granular n: Generally vitreous~ Shape Acicular~prismatic Cryptocrystalline Irregular enocrysts, clinopyroxet ally weak. description:	asalt. Dact, porous (bric hyric, texture. Pla amygdaloidal stru- illy aphyric. Grain diameter 0.1 × 0.2mm 0.8 × 0.2mm 0.8 × 0.2mm cryptocrystalline Grain diameter 0.02 × 0.4mm ~0.01mm	k-like appea gioclase sho oture. Content ~2% ~2% Content ~40% ~10% ~10% ~30% rectite), alte	rance). Grayish white filling observed locally. w weak flow structure. Vitreous~cryptocrystalline. Voids Description Very minor amount (fell out?) Pseudomorph, clay minerals. Description Rapid growth (quenched product?) Small amount in matrix. ration significant. Matrix partly argillized (smectite), but

Appendix Table 4 Results of FDC survey in MS Area

1.1	
1	
÷	
÷	
÷.	
÷ ·	

IR	r –		.					~]		- 33 -				• • • • • • • • • • • • • • • • • • •	<u>.</u>	· · · · ·		· • · • • •					· · · · · · · ·		1
8mm V		∾.				2								2	-0.054			2				2			
No.of Photos		150			,	142				82				60				102				60			
Observation Length		2.5				3.2				2.2				2.4				2.2				1.7			
ObservationObservation No. of 8mm VTR Time Length Photos		2:50				2:56				1:40				2:18			-	2:20				2:01			n the deck
FDC PositionDepth General LocationLatitude(N)Longitude(E)		12°23.160 N 158°39.471 E	12°24.553 N 158°41			10°57.339	10° 57. 276 N 161° 34. 053 E			8°43.282 N	8° 42. 719 N 163° 11			8°43.583 N 163°15.502 E	8°43.620´N 163°17				8 09.310 N 160 36.782 E			8°27.502 N 160°37.472 E	8° 28.423 N 160° 38.932 E		IS:FDC into the sea, SP:Start point of observation, EP:End point of observation, and OD:FDC on the deck FDC position is calculated by GPS ship position.CTD depth of FDC and wire length.
Date&Time (UTC)	May 12 20:56	May 12 21:32	May 13 00:22	May 13 01:27	May 18 20:55	May 18 21:34	May 19 00:30	May 19 01:29	$\langle \mathcal{O} \rangle$	May 25 21:28	May 25 23:08	May 25 23.43	May 26 00:12	May 26 00:45	May 26 03:03	May 26 03:54	Jun 04 20:56		Jun 04 23:58	Jun 05 00:52	Jun 05 02:47	Jun 05 03:39	Jun 05 05:40	Jun 05 06:45	the sea, SP n is calcula
Item	IS	ß	EP	OD	IS	d.	ΕP	8	IS	₿ S	Ъ	CO	SI	ß	읍	DD -	SI	ß	Ъ	Ø	IS	су С	品	8) into sition
Area Track Line No. Item	M S 10 988MS10FDC01				M.S.11 98SMS11FDC01				M S 12 98SMS12FDC01				98SMS12FDC02				M S 13 98SMS13FDC01				98SMS13FDC02		· .		Legend IS:FDC Note FDC pos
Area	MS10				MS 11				MS 12								MS 13								

ł

Appendix Table 5(1) Results of chemical analysis of cobalt-rich crust

sample sampling code	type of	thickness (mm)	substrate	condition of	analysed	Co Ni Cu Ma Fe Pb	Ce Pr Nd Sa Eu
	1	aver max min		surface	Part	*	x x x x x y y y y y
MS10-eros							
Castlerini Carcinoi	adhla	10 17 7	crust, phospholite in	mooth/granule	bulk	0.332 0.405 0.229 18.12 16.70 0.07	0.06 1.13 0.033 0.040 5.96 3.58 1.87 0.33 0.126 129 824 35.9 156 34 8.77 31 5.8
+	fregment	28		botryoidal	bulk	0.651 0.023 24.64 14.36	079 0.061 0.056 2.81 0.58 2.45 0.27 0.238 162 757 36.5 151 31 8.01 31 5.7 36 7.8 25 3.95 24 4.19
1270	fragment	24		botryoidal	bulk	0.452 0.338 0.067 18.28 16.08 0.10	0.06 0.86 0.035 0.043 3.68 1.12 2.61 0.41 0.575 136 633 28.9 121 22 6.17 24 4.3 26 5.8 18 2.68 17 2.96
-	crust:	1 1 1	tuff	botryoidal	surface	0.669 0.398 0.002 2203 16.31 0.13	0.05 0.85 0.046 0.049 4.11 0.78 1.96 0.32 0.148 1.85 658 40.5 177 36 9.25 37 6.7 41 85 27 4.17 25 4.14
2023	crust	-	tuff .	granule	side	0.404 <0.001 21.89 16.77	270 024 0283 189 932 427 180 38 9.62 36 7.1 45 2.8 27 4.28 26 4.45
1445	fragment	18 24 7		botryoidal	bulk Bulk	0,882 0,494 0,002 22.23 13.48 0.15	006 0.51 0.045 0.047 1.330 0.33 1.97 0.24 1.207 170 945 37.4 157 31 7.63 26 5.4 32 7.0 21 3.27 19 3.30
	fregment	20 20 20		Tranule	bulk	1.111 0.459 <0.001 22.99 16.23 0.14	0.06 1.29 0.033 0.045 2.82 0.57 2.39 0.29 0.639 208 1211 45.3 191 40 10,00 34 7.2 44 8.3 27 4.26 27 4.29
	fragment			granule	bulk	0.777 0.449 0.051 21.10 14.20 0.13	0.06 1.02 0.034 0.046 1.60 0.35 1.89 0.23 2.040 180 1018 39.1 160 32 7.83 28 5.5 33 6.8 21 3.14 20 3.26
1415	cobble	-	besakt	botryoidal	bulk	0.561 0.419 0.018 20.00 14.45 0.11	0.06 0.76 0.050 0.045 2.26 0.64 4.01 1.13 0.362 155 701 33.7 142 29 7.50 28 5.4 32 6.8 21 3.28 20 3.42
1415	cobble		4	1	outer	0.546	0.06 0.79 0.060 0.053 3.01 0.44 2.09 0.35 0.281 157 758 36.3 151 31 7.94 30 5.7 34 7.5 23 355 22 3.80
1415	cobble	30 30 30	•	•	inner	0.405 0.433 0.030 20.07 19.86 0.13	0.08 1.03 0.044 0.054 4.40 1.44 2.40 0.56 0.605 180 749 39.5 165 24 8.78 32 6.1 37 7.8 23 3.55 23 3.91
	cobble.	50 55 45	 - -		innermost	19.55 11.42	048 0061 0.046 0.89 0.26 11.64 3.97 0.346 170 641 33.4 143 27 6.92 29 5.3 32 7.1 23 3.38 20 3.32
5 1415	cobole	40 60 20	besalt	botryoidal	bulk	0.444 0.463 0.034 17.61 10.83 0.11	0.52 0.044 0.035 1.04 0.31 11.06 3.72 0.608 172 736 32.8 138 27 6.92 26 51 33 7.6 23 3.58 22 3.32
	cobble	10 15 5	•	,	outer	1.065 0.562 0.003 23.93 15.42 0.18	058 0069 0063 1.94 0.43 2 = 0.57 0.221 196 721 43.9 190 40 9.89 37 7.3 43 83 28 4.22 25 4.22
	cobole	7 15 0	1	-	inner(1)	0.565 0.565 0.033 23.23 20.18 0.17	1 07 0.046 0.065 2.92 0.89 2.29 0.41 0.744 200 902 43.8 285 38 9.52 33 6.5 39 82 25 333 24 4.06
1415	cobble	6 15 0		E	inner(2)	0.500 0.820 0.064 25.41 11.91 0.17	0.62 0042 0.054 1.04 0.33 8.77 2.25 0.426 301 1035 52.1 234 45 11.70 51 8.6 57 13.0 41 6.19 37 5.90
1415	cobble	27 30 25	-	-	innermost	0.261 0.324 0.034 15.00 9.14 0.09	0.43 0.040 0.039 0.81 0.30 17.74 5.25 0.600 197 951 377 169 31 8.00 28 5.8 37 8.2 27 4.15 25 4.34
5 1415	cobble	2	conglamerate	botryoidal	Pulk	0.532 0.492 0.024 20.39 12.09 0.12	0.06 0.58 0.056 0.051 1.15 0.31 10.41 2.91 0.344 219 853 45.6 207 38 9.71 38 7.2 45 9.9 32 4.85 28 5.01
1415	cobble	<u>ت</u>	:		outer	22.37 14.81	0.81 0.058 0.055 1.79 0.42 2.15 0.34 0.201 171 844 41.6 1.81 36 9.55 32 6.2 38 3.0 23 3.73 23 3.73
1415	cobble	18 26 15		• •	inner(1.2)		0.05 0.42 0.026 0.042 0.38 0.30 13.43 0.61 0.691 355 339 392 172 33 8.43 37 6.3 41 9.9 32 4.81 29 4.83
	cobble	20 30 10	-		innermost	0.569 0.722 0.031 23.14 12.32 0.13	0.06 0.65 0.069 0.056 0.91 0.22 6.85 1.71 0.324 238 903 532 236 44 11.10 44 8.3 51 11.01 34 5.18 30 5.12
	coble	50 60 40	limestone	botryoidel	bulk	0.529 0.557 0.041 21 79 14.14 0.13	0.07 0.70 0.053 0.053 1.57 0.51 8.46 2.21 0.665 194 831 38.8 170 32 8.63 32 6.0 40 9.4 29 4.40 28 5.02
1415	coble	9 11 B			outer	07 16.36	0.08 0.36 0.069 0.059 2.55 0.65 2.32 0.43 0.602 167 902 386 174 33 8.60 31 6.2 38 8.4 26 4.09 25 4.43
98SMS10AD08CM31 1415 G2	coble	10 20 6	· .		inner(1)	0.537 0.024 22.69 18.90	0.09 1.112 0.042 0.052 3.21 0.96 2.34 0.58 0.624 151 854 33.9 148 28 7.30 25 5.2 31 6.7 22 3.45 21 3.66
	cobbie	17 20 15	-		inner(2)	23.24 12.64	0.09 0.67 0.060 0.048 1.04 0.44 7.16 1.68 0.536 194 770 43.1 192 34 9.02 37 6.7 41 94 30 4.52 27 4.53
98SMS10AD08CM33 1415 G4	coble	16 17 15	"		nner(3) iinnemosi 0.215	0.365 0.045 16.01	0.06 0.43 0.039 0.045 0.38 0.34 16.08 4.27 0.756 338 869 40.5 185 33 8.65 38 7.0 45 11.0 36 5.46 33 6.11
92SMS10AD09CM01 2081 A	cobble	115 115 115	Grust	smooth	bulk	20.86 15.87	0.07 0.74 0.054 0.056 1.84 0.43 5.00 1.17 0.323 220 926 532 230 45 11.70 42 8.0 48 9.5 30 4.34 27 4.50
985MS10AD09CM02 2081 A1	coble	18 18 8			outer	0.390 0.002 23.94 17.49	0.06 0.77 0.064 0.060 2.26 0.36 2.26 0.34 0.093 227 783
98SMS10AD09CMD3 2081 A2	cobble	11 11 11			inner(1)	0.377 0.026 21.59 22.51	
	cobble	35 35 35		"	inner(2,3)	0.463 0.054 23.70 18.33	0.06 0.89 0.060 0.050 1.56 0.33 2.19 0.25 0.331 318 356 64.3 2.64 3.4 3.4 13.50 5.2 6.8 49 3.5 27 4.04 2.5 3.5 4
985MS10AD09CM05 2081 A4	cobble	28 28 28	-	-	inner(4,5)	0.292 0.055 15.15 12.04	
96SMS1DAD09CMD6 2081 AS	cobble	23 23 23	,	1	innermost	0.054 20.68 13.15	0.06 0.68 0.063 0.057 1.24 0.30 10.18 2.86 0.360 230 1561 57.6 238 45 11.50 36 7.5 46 9.9 50 4.23 2.6 4.10
985MS10AD10CM02 2005 8	fregment	13 20 11		ranula	bulk	16.39	0.06 1.28 0.038 0.054 2.49 0.47 2.79 0.38 0.816 341 1390 48.0 210 43 10.60 42 1.0 44 8.0 221 4.20 25 4.03
985MS10AD12CM01 2097 A	fregment	45 40	-	botrycidal	bulk	0.710 0.515 0.048 21.96 14.27 0.11	0.06 0.82 0.044 0.046 2.66 0.60 2.17 0.32 0.475 152 670 354 159 33 8.24 31 6.0 38 7.8 24 3.75 24 4.10
98SMS1DAD12CM02 2097 A1	fragment	23 24 22	-		outer	0.901 0.569 0.065 23.66 14.85 0.12	0.06 0.85 0.057 0.046 2.83 0.62 2.16 0.27 0.377 153 662 37.8 167 33 8.58 34 6.3 39 8.6 27 4.22 26 4.53
985MS10AD12CM03 2097 A2	fragment	22 24 22		-	inner	0.730 0.619 0.079 23.50 18.14 0.13	007 126 0.044 0.052 2.33 0.73 2.47 0.31 1.054 200 901 455 209 42 10.80 40 77 48 9.8 30 4.83 30 4.91
985MS10AD15CM01 1409 A	fragment	40 50 -		botryoidal	bulk	0.630 0.444 0.030 19.68 12.77 0.11	0.06 0.72 0.041 0.044 1.09 0.29 6.92 1.77 0.855 170 787 36.5 170 32 7.92 31 6.0 38 8.5 28 4.18 25 4.55
985MS10A015CM02 1409 A1	fragment	8 10 7		botryoidel	outer	<0.001 23.82 15.42	0.06 0.92 0.059 0.055 1.75 0.39 2.39 0.36 0.326 1.72 866 415 190 33 9.72 35 72 42 8.8 27 4.28 25 4.28
98SMS10AD15CM03 1409 A2	fragment	9 12 7		botryoidai	inner(1)	0.559 0.026 23.22 16.91	0.08 1:10 0.045 0.058 1:75 0.43 2.39 0.28 0.691 189 550 42.4 184 36 9.09 33 53 53 76 23 3.45 21 3.38
98SMS10AD15CM04 1409 A3	fragment	17 19 14		botryoidal	inner(2)	0.464 0.638 0.055 23.17 12.79 0.13	0.08 0.64 0.059 0.052 0.98 0.32 6.99 1.56 0.440 207 982 43.1 202 40 10.30 37 7.8 50 110
98SMS10AD15CM05 1409 A4	fragment	18 26 11		botryoidal	inner(3).ünnermosi 0.219 0.277	0.219 0.277 0.041 13.55 10.48 0.09	9 0.05 0.38 0.036 0.041 0.19 0.24 1713 561 0.732 213 779 379 176 22 8.44 34 68 47 110 35 570 34 611 1 132

۲

i crust
Ч
<u> </u>
4
ba
f cobalt-rich
of
S
analysis
Сa
Ë
chemi cal
of
ŝ
H
Results
5 (2)
ы С
Ð
Table
ndix T

	depth(m)	type of crust	thickness (mm) ever mex min		substrate cond	condition of surface	enalyzed Part	z * 8 *	¥ ۳ ع	£ =	⊥ ≠ ⊻ ≠	> * 9 *	₹ ¥ 10 ¥	۹.× ۲.	ן קריים קריים	ধ দুর ৩ দুর	ue Be	Er Q2 19	유 상 (11)	କ୍ଟ <u>ଅ</u> ଜୁଲୁ ଅଧି	tu Mar/Fe
965.4611CBCCCARD1 965.4611CBCCCARD6 965.4611CBCCCARD6					-	_			-		-		-					_			- - -
9654/511080204/06	2004 8	cabble	70 95	94 04	beask botr	botryoidal	Perit		2.67	9.0	80	0000		344 0.79	+		8	8	4 2 88	8	
965A6T1CBCCOADD	+	•	-+-	3	+		↑	0,780	82	33	8	8g	_	88	-+-	-+-	8	8	41 88		
Contraction and a second second	28. 28.	,	3 13	.0		-	↑	0539	219	5	8	8		80	_	+-	8	Ř.	8	<u> </u>	77
AND A LOCAL COMPANY	2034 ES	Ť	6 6	9		-	1	0607	23.41	012	8	9001	_ į _	8	-	-+	216 41	8	25 7	8	
985MS11CBC2CMI1	+		-+-	•		1	T	0730	88	5	681	83		8	-+		218 41	7	200 X	3	+-
985M611CBC2CM12	2034 BS	_	7 11-	5				0.463	2028	8	0.55	¥.		_		- -	166 31	8	5, 9	8	· †~
PERMISI SCREECOMIS	2004 85	-	4 S	9			inher(4)	_		80	0.41	Sog		514			8 8	8	8	F.	-+
986MG11CB02CM14	2034 87		18 27	9			inner(5)	0370 0437 0	0.062 20.46	1200 012 0	008 065 0(320		-+-	230 230	8	\$2 120	288	
906M611CB02CM66	2034 F	fragment	8	8	bot	botryoidal	Pulk -	0.905 0.553 0.	0.046 24.74	13.04- 0.11 -0	0.00 1.09 0.0	3140.0 4140.0			_	-	175 35	8	37 7.4	3.57	3.56
DEMETICEDECADT	2361	fragment	17 20	15	8	crenule	bulk	1.031 0.564 0.	0.062 22.29	13.63 0.12 0	0.07 0.99 0.0	D.054 0.050	1.95 0.47	0.21	_		<u>8</u>	8	38 7.5	3.75	
965M611CB06CM01	2374 A	crust	12 15	9 limeston	_	botryoidal	A N	0.632 0.369 0	0.026 20.56	17.47 0.11 0	0.05 0.89 0.0	1900 B000	5.14 1.13	277 0.28	0.174 155	73 436	198 39	9.74 38 7.4	44 8.9	* 36	
98614611CB07CH01	2017	fragment	8 8	8		botryoidal		H	0.073 20.12	13.58 0.11 0	0.07 0.74 0.0	0.005 0.003	1.53 0.46	6.61 1.20	0.660 199	1181 446	193 37		42 85	8 4 -1	
DESMET LCB08CM01	1952 B	frigment	60 90	35	bot	botryoid∎i	bulk	_	0.037 20.19	13.65 0.12 0	0.06 0.82 0.0	0.000 0.061	1.50 0.39	6.08 1.07	0.664 181	1036 40.4	175 33	843 31 59	30 8.8	28 433 27	4.54
PREMENICEDECINES			15 20					0549	0.001 2415	1214 016 0	007 100 01	0.050 0.056	266 057	246 029	0171 152	957 490	213 43	11 00 44 76	48 100	2 471 29	488
966MG11CB09CM00		•	18 20	15	· · · ·	: : . •	<u>`</u>	-	0015 2223	19.39 0.13 0	007 142 00	0.006 0.005	420 128	286 043	0497 164	1069 336	128	827 23 56	36 78	25 322 24	415
PREMETICEDBCX/0K	┝		- 10	<u>.</u>			÷		0.046 24.15	17.81 Q14 0	0.00 1.23 0(0.053 0.071-	207 053	246 027	0447 187	1159 465	197 40	931 30 61	8 77	23 378 23	32
965MS11CB06CM05	┟┉╧╸		1 15	<u> </u>				0.465		012	80	0079		8	0425 194	876 509	28 58	996 28 63	30 78	2 350 2	38
965MS11CB08CMD8	⊷	.'	12 15	<u> </u>				0.620	<u> </u>		0.70	800	120 034	241	0438 229	1160 48.7	225 41	10.40 45 80	52 120	39 566 24	55
985ME11CE08CME7		1		<u> </u>				0244		_	0.46	0.006 0.001	138 038	1676 541	0367 161	1002 35.0	151 29	721 25 50	31 67.	21 320 2	331
98SMS11CB09CM01		count	100 140	ę	besait botr	botryoidel			20.56	15.08 0.17 0	0.00 1 19 0.0	0.037 0.050	1.66 0.43	8.81 2.40	0807 304	1741 71.2	298 52	12.20 45 8.7	52 11.0	36 5.25 31	531
965MS11CB10CM01	2667 A	nodule	4.5 45	5.4	phosphorite T	Tanule	bulk	0.765 0625 0	0.056 23.28	16.48 0.12 0	0.08 1.03 0.054 0.057		3.08 0.80 2.74	0.45	621 1220	892 50.0	214 41	1020 43 71	44 89	28 4.21 26	446
MS12-arren				:							- - - - -				~			- H	Į.,		ľ
98546121,COTCHD1	4528 A	nodule	12 13	ŝ	phosphorite Sr	smooth	Auk A	0.399 0.374 0	0161 2123	17.82 0.09 0	0.06 1.09 0.030 0.055		5.10 1.52	219 0.24	0.24 0.125 195	1108 51.9	275 58		54 10.0	4.59	
966MG12AD00CMD4	1554 D	terro.	6 2	8	conformerate bob	botryoidal	Auk	0.602 0.547 40	0001 24.71	15.28 0.16 0	0.07 0.95 0.0	0.075 0.070	1.59 0.32	2.81 0.32	0.189 193		215 42	ş	¥	30 4.53	
966ME12AD000MO5	10 MSI		2	-			outer .	0540	CC 001 26 90	17,05 019 0	988 C	9005		_		_	8 8	Ş	\$	34 537	
965M512AD020405	1554 122		28		_		ine	850	2530	610	2	Б	_	19		÷	217 42	8	4	27	
966M612ADCCMD1	155	Chief	16 21	=	+	-	imemost	380	8 8	4		88 88		8	0315 243	-+-	197 40	6	8 8	æ	
96SMG12AD00CMD1	1355 B	timo	ន ន	27	6	botryoidel		1394	22.31	613	60	200	-+-				8	9	\$ 100	Ş	
985MS12ADOHCMD1	1974 A	COL	30	12	tuff breccia bot	botryoidal	bulk	0.469	23.70		80	680		_	0.395 297	<u>8</u>	196 35	8	41 89	8	
96SMS12AD05CMD1	A 9171	cobble	8	2	+	botryoidel	bulk	0.659 0.493 0	0.013 24.98	15.69 0.14 0	0.06 1.09 0.0	0.063 0.062	2.44 0.61	5.20 1.05	1.05 0.409 278	1043 42.3	1 <u>8</u> 8	9.17 36 6.5	41 89	26 424 25	8
965MS12AD07CMD1	1448 A		40	2	becelt. hyalociestite. Imesiona bob	botryoidal	bulk	0.667 0.627 0.	G.010 24.00	11.12 0.14 0	0.09 0.56 0.0	0.053 0.057	0.81 0.21	11.05 2.86	0345 249	1042 38.1	147 28	7.16 25 5.2	52 23 7.3	342	88
985MG12ADD7CMCC	1448 AT	.'	8 9	5			upperiover	1.545 0.727 C	0001 2880	1410 021	008 073 0	0.005 0.003	1.14 0.25	3.36 0.50	0210 242	762 365	10 35	866 34 65	5 41 32	26 447 27	84
985ME12AD07CMD3	1448 32	1	80 115	\$		1	uppertiment	0.403 0.603 0	0006 22.81	9.26. 014 (0.09 0.46 01	0.070 0.050	051 014	1212 368	0261 215	1212 309	137 25	<u>552</u> 21 48	8 29 55	21 320 19	s 1 327 -
985M512AD07CMD4	1448 A3		12 20	10	i		iowerce.rer	0.532 0.496 0	0.023 23.15	10.12 015	008 040 0	0.061 0.003	053 024	11 56 3 40	0442 266	1448 384	162 31	7.87 31 58	58 37 87	27 405 25	407
965ME12ADD/CMD5	1448 A4	'	12 28	10			iowentinner	1178 0.666 4	C0.001 28.32	1507 016 0	0.08 1.12 0	0300 3700	1.36 032	279 034	3392 260	1040 387	167 33	824 29 51	57 34 7.2	22 330 20	329
985MS12ADOBCMD9	2060 C	Const.	17 96	8	limestone gn	granule	bulk	0.509 0.367 0	0.038 21.60		0.07 0.91 0.065	0.050	1.51 0.45	9.54 2.60	0.526 365	1475 48.4	210 37	9.27 31 5.8	5.8 43 9.5	30 442 27	4.61
965ME12AD00CMD1	1796 A	crist	18 22	5	beselt bot	botryoidel	bulk	0.330 0.558 0.	0.047 24.58	0.4	0.05 0.92 0.0	0.087 0.067		4.23 1.05	0.413 2.47	508 24.8	113 21	5.56 20 42	27 6.2	8	3 3 2 4
985MS12AD10CMD1	1409 A	crust	4 5 82	8	hystoclestite both	botyoidel	P	-+-	0.050 25.61	13.86 0.14 0	0.07 0.95 0.0	-	1.32 0.35	6.03 1.14	0.918 286	1206 40.1	176 33	8.61 34 6.3	41 9.5	30 4 56 28	\$ 4 61
965ME12AD11CMD1	A 2461	crust	45 23	2	hystociastito both	botryoidal	bulk		27.31	11	60	0.053		2.07		z	169 31	8	8	¥	-+-
96SMS12AD12CMD1	1988 A	crust	20 21	17 be	beselt	granule	#Ird		27,01	0.15	5	0.052		0.38		1324	200 38	8	43 92	44	_
98SMS12AD13CM01	1716 A	crust	8	Ξ	conglomerate bot	botrycidei		0.525	24.97	0.15	=	1900	-	8		8	197 38	ñ	45 9.7	8; 4	
98SMS12AD16CM01	2269 A	CILBE	50 75	a S	basait bot	botryoidai		0.336	18.12	-	ē	0.055	-+-	<u> </u>		ន៍	169 31	8	37 84	8	
995MS12AD17CM15	1273 D	cobble	10 35	•	congiomerate bot	botryoidal	bulk	0.532 0.528 40	(0.001 23.42	13.38 0.14 0.06 0.77 0.057 0.066	0.06 9.77 0.0		1.26 0.30	8.51 1.83	0.248 258	1072 383	165 32	7.96 28 28	35 7.8	25 3.67 21	3.54

يڊ
crust
ich
lt-r
cobalt-rich
of
ysis
analysis of c
of chemical
of
ts
Results
5 (3)
Table
\ppendix

							1																									
algmax.	sampling code			thickness (mm)		substrate	condition of	analyzed	8 •	2	3 -	* ۲ ۲	đ -	న *	2 	> *	5 •	4	8 -	a 🛩	5 58 6 68	3 8 8	d §	28	JI ES	8 8 3 6	e §	ት አ	≝ 18 19 19	¢ §	з <mark>В</mark> Е	MrVFa
			24010	ž																												
MS13-tree	5.0	i i		ž.	5	4	botrnoidel	Alla	0.529	0.472 0.	0,065 17	17.51 17:	17.23 0.11	80.0	1 19 0.018	8 0.045	5.03	2.20	28	1,10	0.566 269	9 766	₽ Q	8	34 88	8	53	41 9.2	92 • 58	8	4.31	ä
965MS I JA DOCTARIZ	372	<u> </u>		<u> </u>		beselt	botryoidal			D.395 01		21 86 19	19.85 0.13	60	1 22 0.009	00 0.067	4 30	5	2 39	0.37	0.262 274	4 816	\$3 .5	161	37 9.42	8	5.8	43 9.2	<u>73</u>	8	*	1,10
OFFICE STADDSCALD	2003		1	8		ţ	botypoidel	hud	0.532		0.028 20	20.76 18	18.05 012	80	1.25 0.041	11 0.061	¥0.	8	291	048	0.348 296	6 80	44.6	8	38 9.31	8	6.9	44 92	30 4 44	8	445	1.15
OBSAKE 13 ACONCIMENT	2760	<u> </u>	[¥	2		botryoidal	bulk	0 471 D	0.418	0.025 24	24.87 17	17.47 Q13	800	0.94 0.074	74 0.073	3 191	03	318	264	0249 372	2 1154	52.6	88 X	51 12.80	8	88	211.0	34 4.89	82	\$	1.41
oct 5130 mortin		L		ş	101		1	outer	1990	0.512 C	(0.001 27	27 08 17	17.85 014	607	114 0069	0000	238	6	266	024	0264 322	2 817	525	æ	13	ୟ ନ	80	51 110	35 511	8	513	152
000 613 8 CONC.		64			'n			inner(1)	0600	0.434 .40	40 COI 24	24.99	2035 014	80	1.35 0.051	51 006	6 290	80	253	52	0150 37	370 897	61.5	Ř	52 1290	8	5	55 11.0	36 513	8	47	8
COLORISA DECUDA	+	ļ			2			inner(2)	0722	0526 0	0022	24.62 27	1731- 011	80	100 0073	202	2 2	032	247	024	0197 38	305 918	88	82	57 1410	10 21	63	56 110	8 48	38 V	3	ø
ORCAST RADIOS CHURCH	2260	₽¢			9			inner(3)	0.468	0738	0.066 27	27.82 15	15.28 C.12	8	0.76 0.065	0200 980	e P	031	2.71	220	0327 31	314 1581	585	8	46 1230	37	73	43 85	82 3.72 92	8	SS	8
Sector 13 and the	2286	¥5	,	ē	5	- 		inner(4)	0.418	0.505	0002 26	2632 19	19.14 C.15	g	8	0000 0000	8	639	316	042	0431 40	407 1997	58.7	8	46 1070	8 8	20	8 78	38 23	8	3.6	8
	.8		63		3		 	t .	0209	0256 D	D.C59 18	18.85 17	17.13 021	600	1.15 0057	870 0073	3 201	0.47	90	5.7	0246 52	534 1940	71.0	ş	51 1200	¥ 8	30	57 120	8 88 88	8	576	9
OBSACT30 DECIMENT	8	ļ;	cobble 14	8	3	frence i	botryoidal		0.334 0	0.321 0	0.072 16	16.67 14	14.94 0.10	001	0.95 0.028	28 0.054	4 80	1.49	806	2.06	0.455 332	1006	49.2	210	39 9.67	8	6.8	1.6	39 76	8 24	394	1.12
CONCURSION CONCURS	1-	· · ·		15				outer	0817-	0493	(0.00) 2	2421 18	1867 013	60	104 0.051	81 C.069	98 5 98	25	244	8	0146 37	89 80	505	ŝ	4	\$	82	52 1:0	36 531	8	515	130
OR ME IS A DOSCANTO		8	-		æ		1	inner(1)	2651	0423	0004 20	23.02 19	1913 0.12	100 100	149 0.035	302 0058	8 43	960	8	028	0165 319	8	8	217	801 8	8	22	47 100	31 459	5	432	8
995MS13AD08CMm1	2286 ·	. 8		20 is	25			inner(2)	0647	0401	0000	20 80 17	17.49 009	1 00	133 00	0.038 0.053	84	34	305	120	0.605 27	276 994	88	187	37 937	31 31	55	4 0 84	27 395	- 2 , -	8	8
SEEME13AD06CM12	2280	56	г	20 12	ß	:		inner(3)	0.445	0419 0	0130	22 80 20	2071 009	80	80	0006 0000	322	260	236	88	0649	666 062	47.6	336	51	1310 47	63	49 100	2 50	8	85	11
SECANS 13 ADOSCOUT 3	2280	8	6 	8	8		•	innemost	0.124	0.00	11 2000	11.41 12	12.06 0.11	8	0.69 0.021	21 0046	6 328	6	1727	3.56	0324 3	82.11 202	8	8	30 73	732 27	52	31 67	21 2.97	82	297	0.95
OBSING 13 ACOTOMOS	2469	·	cobble 7	5 06	÷	busalt	botryoidal	bulk	0.399	0.364 0	0.064 21	8	16.97 0.10	8	1.04 0.041	M1 0.078	8 31	0.78	8	0.87	0.417 330	1161	8	82	4 11.0	8	2	46 54	3 433	% ~	r F	30
OBSMELIAATION	NOX.	<u> </u>	ŀ.		10	beselt	botryoidal	bulk	0.435	0377 0	0.033 19	19.69 15	15.73 0.09	0.07	0.041	M1 0.062	3.00	0.79	6.16	1.56	0.376 295	22	8 3 8	8	37 9.16	8	4	40 84	27 3.88	8	80	1.25
DESNEY 3 ADODCA07	1887	<u> </u>		\$		limestone	botryoidel		0379 0.322		0.017 18	18.20 17	17.67 0.09	00	1.20 0.031	0.048	8 5.70	174	3.51	0.82	0.404 298	8 573	42.5	88 1	37 9.53	8	6.9	43 9.7	37 4.43	8	8,¥	1.03
965MS13ADD0CM13	1867	<u> </u>		, S		basalt	botryoidal	bulk	1484	0.481 0	0.062 22	22.51 13	13.32 0.10	60	0.92 0.002	8008	3 2 65	0.73	5.5 1	133	0.489 280	913	30.2	171	32 821	8	۶0	39 83	27 4.00	ž	425	1.69
985M613AD10CMD1	200	<pre>A</pre>	fragment 2	27 30			granule	bulk	0.516 0	0.277 <0	<0.001 20	20.96 18	18.28 0.12	0.01	1.32 0.036		0.056 4.14	88	210	0.27	0.161. 316	8	46.2	Ŕ	40 10.20	୍କ ୧	75	48 10.0	2 41	8	487	1.15
CREME 13 A D1 3 CMD1	2464	B	cobbie 2	20 25	18	limestone	granule	bulk	0.769 6	0.451 0	0.015 23	23 43 16	16.09 0.10	800	1.18 0.037	37 0.045	5 358	0 93	2.45	0.26	0.248 270	108 01	413	ð	36 9.10	8	\$7	41 86	8	4.15 24	24 4.11	9
				-																												

Ņ	IS10	Ň	IS11	j į N	/ S12	1	MS13
Lat.	12' 26. 012' N	Lat.	10' 54. 017' N	Lat.	8' 48. 006' N	Lat.	8* 18, 07' N
Long.	158° 22. 036' E	Long.	161' 04, 902' E	Long.	163° 30. 03' E	Long.	160' 25. 125' E
Water depth (m)	Sound velocity (m • s ⁻¹)	Water depth (m)	Sound velocity (m·s ⁻¹)	Water depth (m)	Sound velocity $(m \cdot s^{-1})$	Water depth (m)	Sound velocity (m·s ⁻¹)
10	1, 540. 9	10	1, 541. 8	10	1, 542. 4	10	1, 542. 4
20	1, 540. 8	20	1, 541. 9	20	1, 542. 5	20	1, 542, 4
35	1, 541. 0	35	1, 542. 3	35	1, 542. 8	35	1, 542. 9
50	1, 541. 2	50	1, 542. 5	50	1, 543. 0	50	1, 543, 5
70	1, 541. 3	70	1, 542. 8	70.	1, 543. 3	70	1, 543. 8
100	1, 539, 9	100	1, 542. 1	100	1, 542. 5	100	1, 541. 1
200	1, 515. 3	200	1, 510. 6	200	1, 498. 5	200	1, 503. 8
300	1, 497. 9	300	1, 494. 3	300	1, 494. 0	300	1, 493. 4
500	1, 486. 7	500	1, 487. 7	500	1, 488. 9	500	1, 491. 3
700	1, 485. 6	700	1, 486. 4	700	1, 486. 1	700	1, 487. 3
1, 000	1, 483. 9	1,000	1, 484. 6	1,000	1, 485. 1	1, 000	1, 484. 6
1, 500	1, 485. 8	1, 500	1, 486. 1	1, 500	1, 486. 6	1, 500	1, 486. 9
2, 000	1, 491. 5	2, 000	1, 491. 2	2, 000	1, 491. 6	2, 000	1, 491. 8
2, 500	1, 498. 5	2, 500	1, 498. 5	2, 500	1, 498. 5	2, 364	1, 498. 7
3, 000	1, 506. 3	3, 000	1, 506. 4	2, 750	1, 502. 4	2, 750	1, 506. 3
3, 500	1, 514. 5	3, 500	1, 514. 5	3, 500	1, 514. 4	3, 500	1, 514. 4
4,000	1, 523. 0	4, 000	1, 523. 0	4, 000	1, 522. 9	4, 000	1, 522. 4
4, 500	1, 531. 9	4, 267	1, 527. 6	4, 470	1, 531. 1	4, 470	1, 531. 1
5, 000	1, 540. 9	5, 000	1, 540. 9	5, 000	1, 540. 9	5, 000	1, 540. 9
5, 458	1, 549. 4	5, 458	1, 549. 4	5, 458	1, 549. 4	5, 458	1, 549. 4
Ave.	1, 509. 3	Ave.	1, 509. 3	Ave.	1, 509. 2	Ave.	1, 509. 9

Appendix Table 6 Sea-Water sound velocity for MBES

Appendix Table 7 Weather and sea-state data

Monthly frequency distriction of wind direction in 1998

W.D.	C A L M	N	N N E	N E	E N E	E	E S E	S E	S S S M	S	s s ¥	s W	≷ % ≷	w	≲ z ≲	× ×	Z Z ≷	Not Clear	Total
May	0	5	0	42	294	178	27	4	0	0	0	0	0	0	0	2	0	24	576
8	0.0	0. 9	0.0	7.3	51.0	30.9	4.7	0.7	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.3	0.0	4.2	100.0
June	0	2	6	45	265	181	44	22	6	1	1	1	1	0	0 [°]	0	1	24	600
×	0.0	0.3	1.0	7.5	44.2	30.2	7.3	3.7	1.0	0.2	.0.2	0.2	0.2	0.0	0.0	0.0	0.2	4.0	100.0
July	0	0	0	0	0	14	90	72	15	1	0	0	0	0	³ 0	·0	· 0 ·	0	192
%	0.0	0,0	0.0	0.0	0.0	7.3	46.9	37,5	7.8	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100,0

Monthly frequency distriction of wind velocity in 1998

																						4.1117	0007
w.∨.	C A L M	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20—	Total
May	٦	0	3	2	3	1	12	25	.83	133	127	98	49	29	8	2	0	0	0.	0	0	0.	576
%	0.2	0.0	0.5	0.3	0.5	0.2	2.1	4.3	14.4	23.1	22.0	17.0	8,5	5.0	.1.4	0.3	0.0	0.0	0.0	0.0	0.0	0.0	100.0
June	1	0	5	4	10	18	54	76	95	120	106	84	23	- 2	. 0	0	. 1 :	0	1	. O	0	0	600
8	0.2	0.0	0.8	0.7	1.7	3.0	9.0	12.7	15.8	20.0	17.7	14.0	3.8	0.3	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0,0	100.0
July	0	0	0	0	0	5	33	80	50	22	2	0	0:	. 0	0	0	0	0	0	¹ 0	0	0	192
×	0.0	0.0	0.0	0.0	0.0	2.6	17.2	41.7	26.0	11.5	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0

(WV·m/sec)

Monthly frequency distriction of weather in 1998

Weather	Fine	Cloudy	Rain	Not clear	Total	Light Rain
May	21	2	1		24	12
%	87.5	8.3	4.2	0.0	100.0	50.0
June	13	8	4		25	10
x	52.0	32.0	16.0	0.0	100.0	40,0
July	7	1	0		8	4
5	87.5	12.5	0.0	0.0	100.0	50.0

A.P.	-980	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019-	Not Clear	Total
May	0	0	0	0	0	0	0	·0	3	34	96	151	163	100	26	2	<u>,</u> 0	0	1	0	576
*	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.5	5.9	16.7	26.2	28.3	17.4	4.5	0.3	0.0	0.0	0.2	0.0	100.0
June	0	1	0	0	0	0	0	.0	28	138	203	163	53	12	2	0	0	0	0	0	600
*	0.0	0.2	0,0	0.0	0,0	0.0	0,0	0.0	4.7	23.0	33.8	27.2	8.8	2.0	0.3	0.0	0.0	0.0	0.0	0.0	100.0
July	0	0	0	0	0	0	0	0	0	0	0	0	0	16	49	65	43	17	1	1	192
*	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.3	25,5	33.9	22.4	8.9	0.5	0.5	100.0

Monthly frequency distriction of no.1 swell direction in 1998

			-		•													
S.D.	N	N N E	N E	E N E	E	E S E	S E	S S E	S	S S W	S W	¥ S ¥	w	W N W	N W	N N W	Not Clear	Total
May	0	0	8	147	144	20	8	0	0	0	0	0	0	.0	0	0.	249	576
%	0.0	0.0	1.4	25.5	25.0	3.5	1.4	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	43.2	100.0
June	0	0	27	181	119	4	1	0	1	1	0	0	0	0	- 0	0	266	600
*	0. 0	0.0	4.5	30.2	19.8	0.7	0.2	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	44.3	100.0
July	0	0	0	÷ 0	15	87	·10	0	0	0	·· 0	· 0	0	0	0	-0	80	192
*	0.0	0.0	0.0	0.0	7.8	45.3	5.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.7	100.0

Monthly frequency distriction of no.1 swell cycle in 1998

	-		e ipres					2.5	_			·		1.25		(W.)	/ :m/	/sec)
S.C.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Not Cisar	Total
May	0	0	0	0	0	13	113	148	40	11	2	0	0	0	0	0	249	576
*	0.0	0.0	0.0	0.0	0.0	2.3	19.6	25.7	6.9	1.9	0.3	0.0	0.0	0.0	0.0	0.0	43.2	100.0
June	0	Ó	0	0	1	29	151	147	.15	4	0	0	0	0	0	0	253	600
%	0.0	0.0	0.0	0.0	0.2	4.8	25.2	24.5	2.5	0.7	0.0	0.0	0.0	0.0	0.0	0.0	42.2	100.0
July	0	Ó	0	0	5	29	65	13	Ö	0	0	0	0	Ö	.0	0	80	192
*	0.0	0.0	0.0	<u>0.0</u>	2.6	15,1	33.9	6.8	0.0	0.0	0.0	0.0	0.0	Ó.O	0.0	0.0	41.7	100.0

Monthly frequency distriction of no.1 swell height in 1998

											· ((s. H	:m)
S.H.	0	1	2	3	4	5	6	7	8	9	10	Not Glear	Total
May	0	29	150	140	8	0	0	0	0	0	0	249	576
%	0.0	5.0	26.0	24.3	1.4	0.0	0.0	0.0	0.0	0.0	0.0	43.2	100.0
June	0	25	187	134	2	0	0	0	0	0	0	252	600
% .	0.0	4.2	31.2	22.3	0.3	0.0	0.0	0,0	0,0	0.0	0.0	42.0	100.0
July	0	31	80	1	0	0	0	0	0	0	0	80	192
. %	0.0	16.1	41.7	0,5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.7	100.0

Monthly frequency distriction of degree of cloudiness in 1998

D.C.	0	1	2	3	4	5	6	7	. 8	9	10	Not Clear	Total
May	0	.0	12	99	154	175	71	45	20	0	0	0	576
*	0.0	0.0	2.1	17.2	26.7	30.4	12.3	7,8	3.5	0.0	0.0	0.0	100.0
June	0	1	12	119	109	142	91	42	84	0	0	0	600
*	0,0	0.2	2.0	19.8	18,2	23.7	15.2	7.0	14.0	0.0	0.0	0.0	100.0
July	0	0	1	48	53	48	33	6	0	0	0	3	192
8	0.0	0.0	0.5	25.0	27.6	25.0	17.2	3.1	0.0	0.0	0.0	1.6	100.0

Monthly frequency distriction of no.2 swell direction in 1998

S.D.	N	N N E	N E	E N E	E	E S E	S E	S S E	S	S S W	s W	¥ \$ ¥	w	× × ×	N W	N N W	Not Clear	Total
May	0	0	6	11	10	3.	0	0	0	0	-0	0	.0	0	0	0	546	576
%	0.0	0.0	1.0	1.9	1.7	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	94.8	100.0
June	0	0	7	9	8	24	15	0	2	0	0	0	0	0	0	0	535	600
S S	0.0	0.0	1.2	1.5	1.3	4.0	2.5	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	89.2	100.0
July	0	0	0	2	:0	0	2	3	0	0	0	0	0	0	0	- 4	181	192
8	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	94.3	100.0

Monthly frequency distriction of no.2 swell cycle in 1998

1110/1															-	(W. \	/ :m/	/sec)
S.C.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Not Clear	Total
May	0	0	-0	0	1	· 11	6	12	0	0	0	0	0	0	. 0	0	546	576
*	0.0	0,0	0.0	0.0	0.2	1.9	1.0	2.1	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	94.8	100.0
June	0	0	2	2	4	32	11	14	.0	0	0	0	0	0	0	0	535	600
%	0.0	0.0	0.3	0.3	0.7	5.3	1.8	2.3	0.0	Ò.0	0.0	0.0	0.0	0.0	0.0	0,0	89.2	100.0
July	0	0	0	0	7	4	0	0	0	0	0	0	0	0	0	0	181	192
%	0.0	0.0	0.0	0.0	3.6	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	94.3	100.0

Monthly frequency distriction of no.2 swell height in 1998

											(S. H	:m)
S.H.	0	1	2	3	4	5	6	7	8	9	10	Not Clear	Total
May	0	1	29	0	0	0	0	0	0	0	0	546	576
8	0.0	0.2	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	94.8	100.0
June	0	49	16	0	0	0	0	0	0	0	0	535	600
8	0.0	8.2	2.7	0.0	0.0	0.0	0.0	0.0	Ó.Ó	0.0	0.0	89.2	100.0
July	0	8	3	0	0	0	0	0	0	0	0	1,81	192
%	0,0	4.2	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	94.3	100.0