Table 9-A-10
 Criteria for Improvement of Energy Efficiency for each Entity

 B: Partly Adopted, further study is necessary.

<u>د الم</u>

			C: Recommendable, accompanied by small investment.	
	•		D: Recommedable, accompanied by rather large investment.	Intel
Categories		Main Theme	Methods	TAUKEI
Architectural Structure	Structure			
	Ruildinge			
		Thermal Insulation	1. Revamping Walls by Thermal Insulation	
			2. Revaming Roofs and Floors	ပ
			3. Introduction of Thermal Insulation of Glass Windows	
		Shalter from the Sun	4 Installation of Paner Screens and Sliding Shutters	
· ·			5 Installation of Blinds and Curtains	ပ
	:		6. Installation of Louvers. Eaves and Penthouses	
		•	7. Revamping Glass Windows (Thermic Rays Absorption, Adjusting Films)	۵
			8 Installation of Sprinklers and Water Storage on the Roofs	D
	•	Drevention from Draft	0 Revaming Front Doors (Automatic Door, Double Door, Rotating Doors)	8
			10. Introduction of Weather Strips and Airtight of Windows (None-Open)	
	•		11. Repair of Slits and Revamping of Weather Strips on the Walls	£
		l iabtino	12. Installation of Reflecting Louvers and Eaves	
:		9	13. Conversion to Light Coloring of Interior Finishing	
		Ventilation	14. Revamping of Sashes (None-Open) to make Open Windows	
		Passive Salar Function	15. Installation of Adjacent Greenhouses	
	-		16. Revamping around Windows to gather Heat	
Revamping & Expansion of Facilities	Expansion of	Facilities		
	Air-conditioning	ning		
		Waste Heat Recovery	17. Overall Air Heat Exchanger (Exhaust Air/Intake Air)	
				ပ
			20. Introduction of Waste Heat Recovery from Cooling Water of Chillers	ບ
			21. Reutilization of Return Air from Air-conditioning	B
		· · ·		-
		Heat Source	23. Conversion to Regenerative Type	ပ
			24. Revamping Regenerative System	
			25. Alternation of Energy Source, Heat Source and Heat Sink	Q
• •			26. Alternation of Type of Chillers	ပ
-			27. Utilization of Electricity during Night	۵
			28. Adoption of Solar Type Air-conditioning	
:			29. Improvement of Operation-control System of Heat Source	ပ
		·		

9-A-19

Categories	ATTATT TATATA		
	Heat Conveying	30. Conversion to Variable Air Volume (VAV) System	ပ
-		31. Conversion to Variable Water Volume (VWV) System	с —
	-		
		Reinforcem	C
		34. Reducing Static Pressure of Fans by Revamping of Ducts	0
		35. Alternation of Efficient Fans and Pumps	С —
		36. Increasing Temperature Difference and Decreasing Flow Rate	
	Space-conditioning	37. Reviewing of Zoning Condition and Increasing Number of Zoning Share	
		38. Alternation of Space-conditioning System	
		39. Introduction of Air Cooling during Intermediate Season (Spring / Autum)	
		40. Introduction of Control System for Suction Air	C
		41. Improvement of Air Distribution in the room	8
		42. Conversion to Efficient Speed Control System (Air Quantity)	c
		43. Improvement of Control System and Expansion of Control Zone	c
	Prevention of Draft	44. Prevention of Draft by Adjustment of Room Pressure	1
Hot Wat	Hot Water Supply		
- -	Hot Water Supply	45. Improvement of Hot Water Supply System	C
		46. Reinforcement of Thermal Insulation Hot Water Supply System	
-		47. Improvement of Water Supply, Drainage and Sanitation System	
Lighting System	System		
)	Optimum Lighting	48. Addition of Control for Illumination Intensity	с
	Restriction of Zone	49. Division of Wiring Circuit of Lighting System	
· ·		50. Introduction of Automatic on-off System by Timer-switch	С
Revamping & Expansion of Facilities	n of Facilities		
Lighting System	System		
	Restriction of Zone	51 Setting of Individual Switches for Each Lighting Appliance	
	Efficient Lighting	52. Introduction of Sectional Lighting	
· · ·		53. Alternation of Efficient Lump	B
-		54. Revamping or Alternation of Lighting Appliance	B
Electricity	X		
	Power Factor Control	55. Introduction of Power Factor Control System	c
	Demand Control	56. Adoption of Demand Control System	
		57. Reduction of Contracted Capacity	
Lin			
	Operation & Control	57.5 Adoption of Inverter Control	с

8

Operation & Management, Living Style and Otters Operation Africation of Arrival and Africation Africation Africation Africation for constituting Station Africation (Africation of Station africation Africation Africation Africation Africation (Africation Africation Africation Africation Africation Africation Africation Africation (Africation Africation Africation Africation Africation Africation Africation (Africation Africation Africation Africation of Station Africation (Sciention Africation Africation (Sciention Africation (Sciention Africation (Sciention Africation Africation (Sciention Africation (Sciention Africation (Sciention Africation (Sciention Africation Africation (Sciention Africon (Sciention Africation (Sciention Africation (Scient
preration Statistican of Suction Air Yohume during Air-conditioning Suction Air Control 53. Adductment of Suction Air Yohume during Start-up of Air-conditioning 60. Adductment of Suction Air Yohume during Maternal Control Cost Cold Cold Cold Cold Cold Cold Cold Cold
Air Control 38. m Air-conditioning 60. ature & Humidity 66. ion of Loss by 68. & Parallel 66. ion of Loss by 68. ature & Humidity 65. ion of Loss by 68. 67. 73. ditioning 73. Control of Lighting 79. control of Lighting 79. ter Supply 81.
m Air-conditioning 60. ature & Humidity 66. ion of Loss by 68. & Parallel 61. 67. ion of Operation of 71. ditioning 73. control of Lighting 73. ditioning 79. control of Lighting 79. ter Supply 81.
m Air-conditioning 61. m Air-conditioning 63. ature & Humidity 65. ion of Loss by 68. & Parallel 66. 67. 67. 17. 17. 17. 17. 17. 17. 17. 17. 17. 1
m Air-conditioning 62. ature & Humidity 66. ion of Loss by 68. & Parallel 66. 60. for 67. for for 77. ion Management of 75. aditioning 75. control of Lighting 79. ter Supply 81. ter Supply 81.
ature & Humidity ion of Loss by & Parallel on ditioning ion Management of aditioning Control of Lighting ter Supply
ature & Humidity ion of Loss by & Parallel on ditioning on Management of aditioning control of Lighting control of Lighting ter Supply
ature & Humidity ion of Loss by & Parallel & Parallel ion of Operation of ditioning on Management of ditioning control of Lighting ter Supply
ion of Loss by & Parallel on ditioning on Management of aditioning control of Lighting ter Supply
ion of Loss by & Parallel ion of Operation of aditioning on Management of aditioning control of Lighting fter Supply
ion of Loss by & Parallel ion of Operation of aditioning ion Management of aditioning Control of Lighting ter Supply
& Parallel on dition of Operation of aditioning on Management of aditioning Control of Lighting ter Supply
ion of Operation of aditioning on Management of aditioning Control of Lighting iter Supply
tion of Operation of aditioning ion Management of aditioning Control of Lighting iter Supply
tion of Operation of aditioning on Management of aditioning Control of Lighting ter Supply
tion of Operation of aditioning aditioning control of Lighting ter Supply
aditioning 72. Lessen of 73. Restrictio 74. Introduct 74. Introduct 75. Adjustme 76. Adjustme 77. Adjustme 77. Adjustme 77. Adjustme 79. Reduction 80. Lessoning 81. Abolition 82. Reduction 84. Cut-off of 65. Method
72. Lessen of 73. Restrictio 74. Introduct 74. Introduct 76. Adjustme 76. Adjustme 77. Adjustme 77. Adjustme 76. Adjustme 77. Adjustme 77. Adjustme 78. Control & 79. Reduction 80. Lessoning 81. Abolition 83. Lowering 84. Cut-off of 65. Meter Supply
73. Restrictio 74. Introduct 74. Introduct 76. Adjustme 76. Adjustme 77. Adjustme 78. Control & 79. Reduction 70. Lessoning 80. Lessoning 81. Abolition 83. Lowering 84. Cut-off of 66. Metricion
74. Introduct ion Management of 75. Adjustme aditioning 76. Adjustme 77. Adjustme 77. Adjustme 77. Adjustme 77. Adjustme 78. Control & 78. Control & 79. Reduction 8 79. Lessoning 80. Lessoning iter Supply 81. Abolition 83. Lowering 84. Cut-off of
on Management of 75. Adjustme aditioning 75. Adjustme 77. Adjustme 78. Control & 78. Control & 80. Lessoning ter Supply 81. Abolition 83. Lowering 84. Cut-off of
aditioning 76. Adjustme 77. Adjustme 78. Control & 79. Reduction 80. Lessoning 81. Abolition 83. Lowering 84. Cut-off of of meriod
Control of Lighting 79. Reduction 77. Adjustme 78. Control & 79. Reduction 80. Lessoning 81. Abolition 83. Lowering 84. Cut-off of
Control of Lighting 79. Reduction 80. Lessoning 81. Abolition 83. Lowering 84. Cut-off of
Control of Lighting 79. Reduction 80. Lessoning 81. Abolition 82. Reduction 83. Lowering 84. Cut-off of
ter Supply 80. Lessoning 82. Reduction 83. Lowering 84. Cut-off of
iter Supply 80. Lessoning 81. Abolition 82. Reduction 83. Lowering 84. Cut-off of
81. Abolition 82. Reduction 83. Lowering 84. Cut-off of
82. Reduction 83. Lowering 84. Cut-off of
83. Lowering 84. Cut-off of
84. Cut-off of
Power System 103. 1011060-001 UDETALION OF LIEVAUUS & ESCATATUS

	Main Theme	Methods	Hotel
_٩	Maintenance Management		
Ň	Maintenance	87 Insnection & Renair of Air-leakage in the Ducts	ပ
		88 Cleaning of Coils & Filters of Air-conditioner	U
		89. Cleaning of Condensers & Evaporators of Chillers	ပ
		Of Inspection & Renair of Automatic Control Instruments	ပ
		01 Renair & Exchange of Low Efficient Equipment	U
		92. Reinforcement of Monitoring System by Increasing Measuring Equipment	ပ
• .		93. Cleaning of Lighting Appliances and Exchange of Aged Lump	U
		94. Increasing Lighting Efficiency by Cleaning Inner Surface of Rooms	ပ
	iving Style	95 Putting out Lights & Thinned-out Lighting in Corridors & Halls	с П
}		96. Conduct On-off Operation of Lighting Switches	ပ —
			U
		98. Certain Execution of Open-close Management of Blinds	U —
	· · ·	99. Certain Execution of Close Management of Front & Stairs Doors	ပ –
		100. Frequent Open-close Management of Windows	
		101. Publication and Requesting of Energy Conservation for Residents	C -

9-A-22

6

Chapter 10 Shopping Complex

This shopping complex was founded in 1995, and consists of a 5 storey building with a total floor area of 191,752m², making it one of the largest and most modern shopping complexes in Malaysia. Energy consumption is mostly concentrated on electricity, and the study team conducted an intensive audit on electricity consumption.

10-1 Characteristics of Shopping Complex

10-1-1 Operation Mode of Shopping Complex Survey

Consumption of energy such as electricity, gas and chilling water was measured every morning using a computer system. The computer control system consisted of 3 major items: control (including scheduling), monitoring and measurement.

10-1-2 Maintenance Mode of Shopping Complex Survey

Normal equipment maintenance is periodically consigned to the companies who supply the equipment. Staff of the complex are responsible for daily maintenance work.

10-2 Outline of Shopping Complex

- 1. Name of the Shopping Complex:
- 2. Address:

Telephone:

Facsimile :

3. President:

4. Engineering and energy manager:

- 5. Type of shopping complex:
- 6. Organization chart:
- Number of employees (management staff of facilities):

Bandra Utama Shopping Center 1 Lebuh Bandar Utama 47800 Petaling Jaya Selangor Darul Ehsan Malaysia 03-7166033 03-7166490 Bandar Utama GM S/B Date Dr Teo Soo Ching Mr. Chow Yew Meng Private

Shown in Figure 10-1 110

8.	Number of management staff	(including energy-related staff)	
----	----------------------------	----------------------------------	--

Organization chart of the shopping complex:	Shown in Figure 10-2
Organization chart of Building Service	Shown in Figure 10-3
Department:	

9. Total area of the shopping complex, building, and others Area of site, sqm: Building area, sqm:

Total floor area, sqm: Name of floors:

Lower ground, ground, 1st, 2nd, 3rd, roof, upper roof (7 floors)

191,751.53

374,883.66 36,941.59

10. Layout of buildings, equipment, facilities and major services: Site of shopping complex: Number of facilities on each floor: Individual area of Shopping Complex Service: Trends in annual sales (service) amounts of the shopping complex: 11. Year of establishment:

12. Position in commercial sub-sector:

Shown in Figure 10-4
Shown in Table 10-1
Shown in Table 10-2
RM 550 Million

Augu	ıst, 15, 19	95			
The	largest	shopping	complex	in	
Mala	ysia				

٢

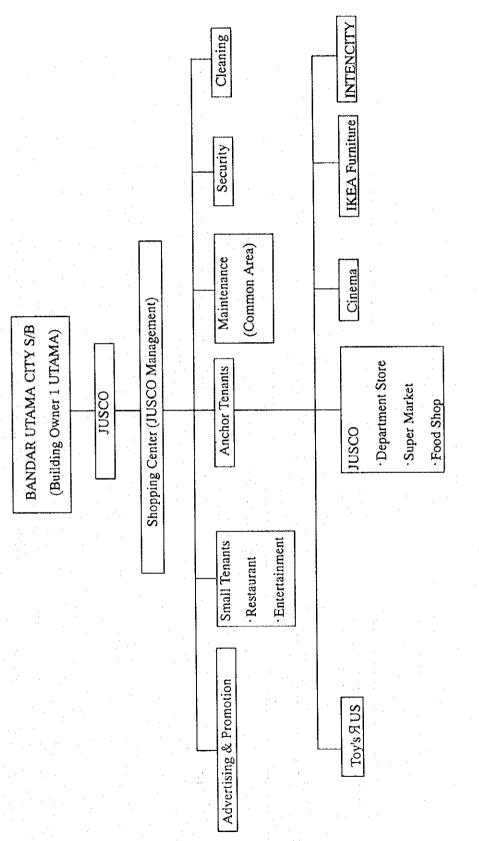
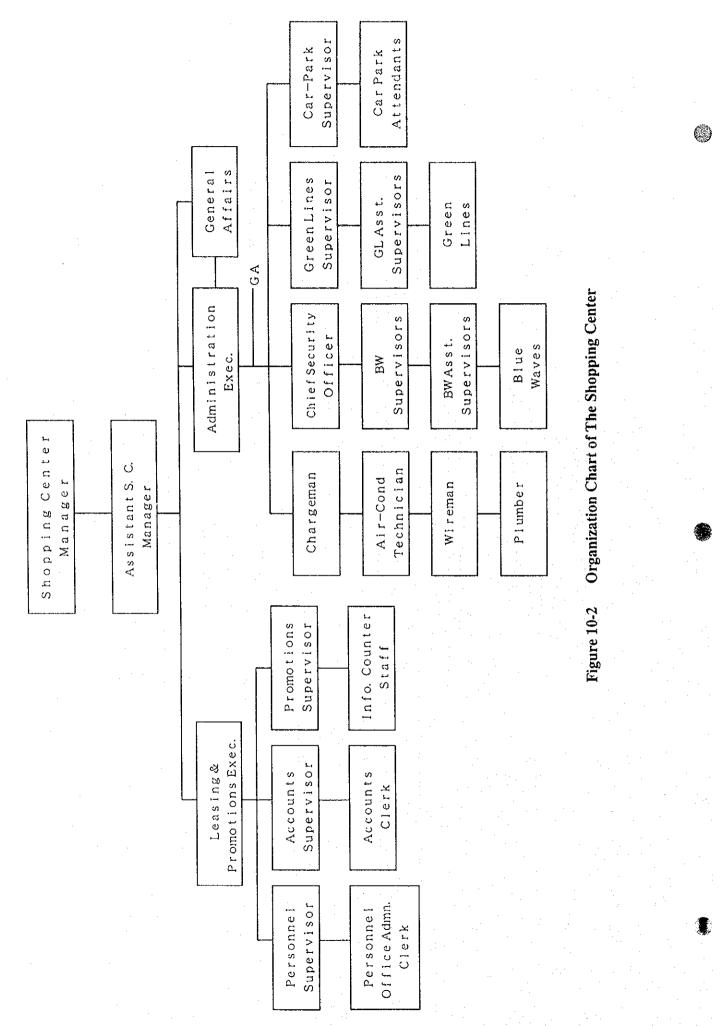



Figure 10-1 Organization Chart of Bandar Utama City S/B

10-3

10.00

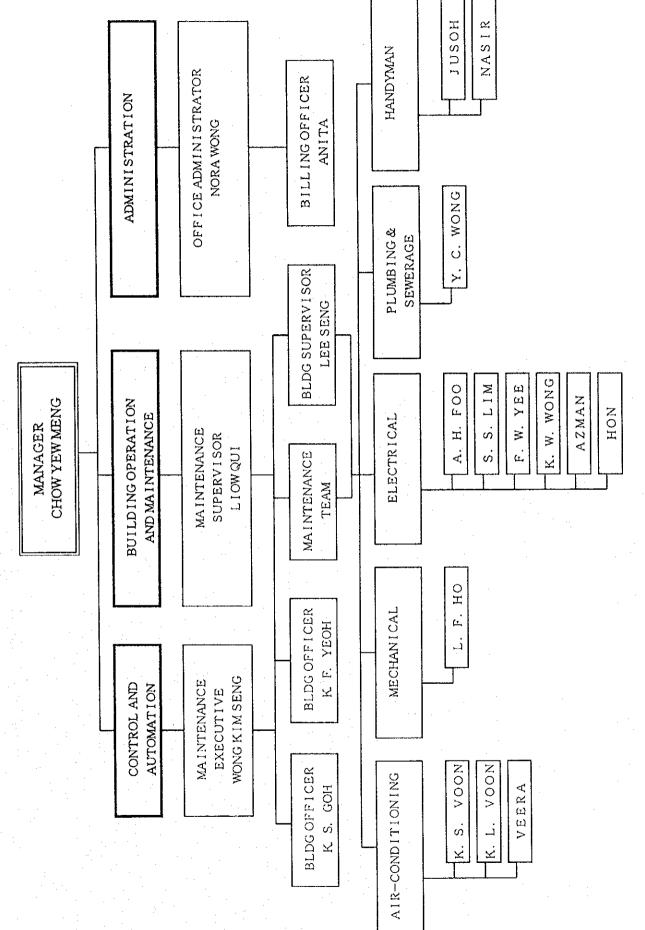
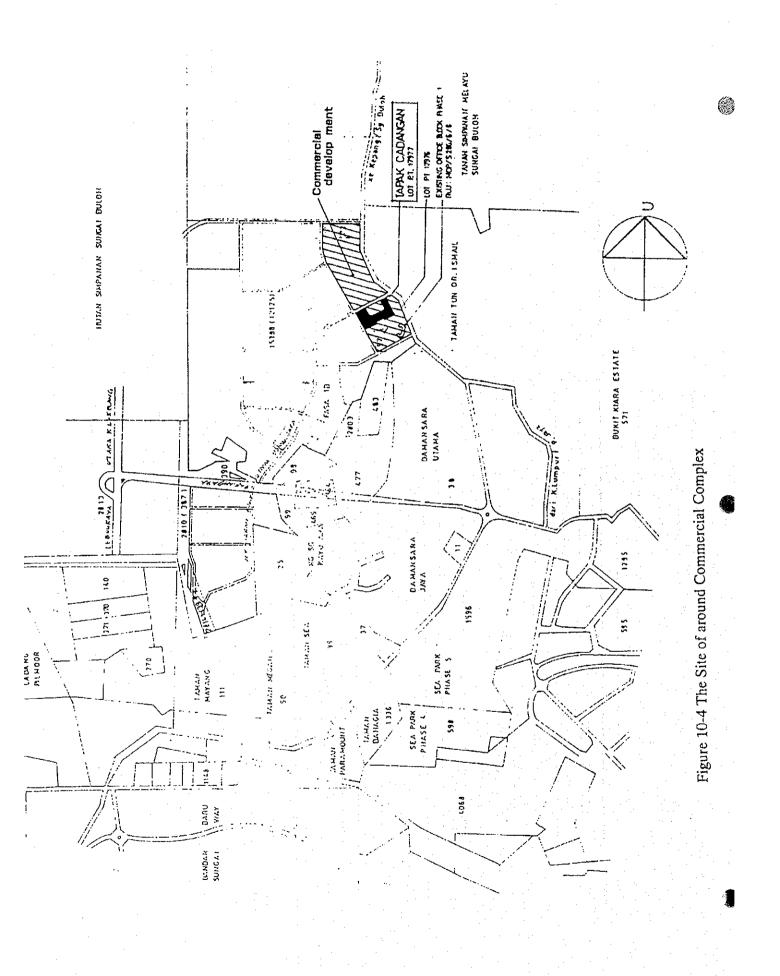



Figure 10-3 Organization Chart of Building Services Department 1997

10-6

)-6

		No.1~16 span	No.17~33 span
Upper Roof	Tank	1	······································
	Water storage tank Engr's detail	2	2
	BILLIK LIF MOTER ROOM	1	2
Roof	Water storage tank to Engr's detail	1	
3rd	BILIK LIF MOTOR ROOM	2	2
	AHU for 2F1, CINEPLEX1	2	
	Switch RM	1	
	BILIK AHU (2F)		2
2nd	BILIK AHU	1	2 (1F)
	Secondary chilled water PLANT ROOM	1	
	Transformer room	1	
•	Switch room	1	
1_1			
1st	BILIK AHU	3	
	BILIK AHU (1F) BILIK AHU (GF)	1 2	1
· · · ·	BILIK AHU (GF&1F)	2	
	AHU (GF2,1F3)	, i i	5
	AHU (PENYEWA, UTAMA)		1
	BILIK SEMBAHYANG P'PUAN	1	* .
	BILIK SEMBAHYANG LELAKI	1	
Ground	BILIK AHU	1	
Ground	AHU	3	
	TNB 33KV SWITCHING STATION	5	· 1
Lower	BILIK AHU	4	. 1
· · · · ·	Chiller, Ice storage	a set	· · ·
	SPRINKLER TANK		2
	Electrical receiving and distributing	· · · ·	a set
	MAINS WATER TANK		1
	Switch Room		1

Table 10-1 Number of Facilities and Equipment of Each Floor

Table 10-2 Individual Area of Commercial Complex Services (Sq.m)

843.44 843.44 Upper Roof Roof 1,498.56 23,573.16 3rd 2,918.17 21,274.93 2,398.89 26,591.99 4,331.97 1,084.83 178.35 1,902.81 25,773.78 5,522.11 12,753.71 2nd 3,586.88 30,294.07 1,950.43 1,523.02 399.30 10,697.14 4,363.01 7,774.29 lst 4,585.73 1,354.00 4,593.90 751.84 4,786.25 3,095.86 15,413.33 34,580.91 Ground 4,225.27 38,989.80 Lower Ground 50,094.18 4,050.62 2,828.49 Department Store Marks r Spencer **IKEA** Furniture Common Area Fitness Centre Car Parking Supermarket Tenant Shop Toy's R us Amusement Restaurant Fast-food Cinema Gallery Total

374,883.66	36,941.59	191,751.53
Site Area	Building Area	Total Floor Area

Ć

10-3 Service

1. Plan for increasing service capacity:

An open space is available for future expansion of buildings and parking. A vacant space in the building is available for the addition of facilities and quipment to meet the future increase of utility requirements.

2. Service activities

Annual service hours, days and weeks:

Shopping center, karaoke, amusement, and arcade: Cinema:

Working hours of employees

Operation staff (2 shifts):

Others:

3.

Operation and management of the shopping complex

Opens throughout the year except during the New Year holiday period. Daily service hours are as follows. From 10:00 to 22:00 From 11:00 to 24:00

From 8:00 to 15:00 From 15:00 to 24:00 From 9:00 to 17:30

	Permanent Staff		signment rt timer)	Night duty
Management	21 (Utility), 25 (Jusco)			
Security management	32 (Jusco)		· ·	8 (Jusco)
Cleaning	20 (Jusco)		6	
Management of facili	ties:	Working	by mainter	nance manual
		computer s	system	

10-4 Energy Consumption and Trends

- 1. Trends in annual energy consumption by energy type

 Annual utilities consumption:
 Shown in Table 10-3
- 2. \

Variations in energy consumption by energy type Monthly variations in utilities consumption: Shown in the Table 10-4

10-5 Major Energy-consuming Facilities

Air conditioners, cooling storage, cooling fans, ventilation, air fans and lighting are the major equipment, which consume a large volume of energy.

List of energy related equipment

Shown in Table 10-5

1. Air conditioning system: Conditioning type:

Central air conditioning system with two cooling air supply ducts VAV (valuable air volume) by computer control is adopted for air conditioning. é

Air conditioning system:

Shown in Figure 10-5

|z 10-11

3

ŝ

4

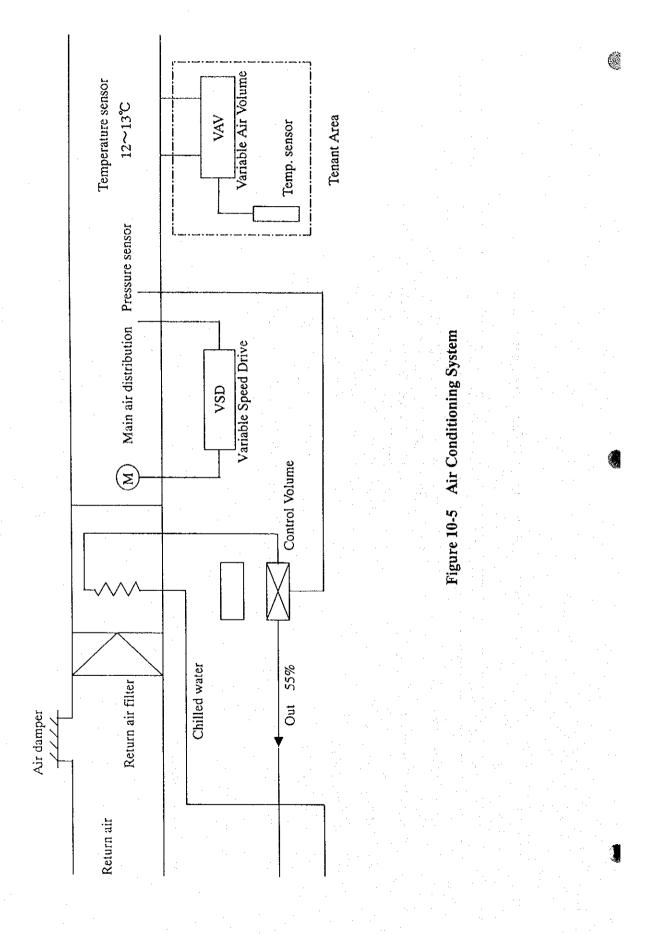
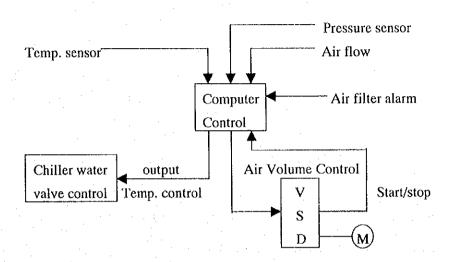

No Name o	Name of Equipment	Quantity	Main Specification	Remarks
1 Transformers		0 0 0	33kV/11kV 15MVA 11kV/3.3kV 5MVA	Chiller Plant Chiller Plant Chiller Plant
		2000		Shopping Complex Shopping Complex Phase II
2 Condenser		4	3×15kVar, 9×50kVar	· · ·
3 Chiller		5 6	1,100Rt 550Rt	Future Plan
4 AHU				
5 Ice Storage Tank		Ś	9[m]×12[m]×4[m] 5,000Rt・h×5=25,000Rt・h	Glycol (Set point 28%)
6 Emergency Generator (Emergency only)	ō	4	415V 750kVA Diesel engine	Make use of Shopping Center Lighting Fires Money check counter
		·		

Table 10-5List of Energy Related Equipment (1/2)


10-12

.

Primary Chiller water pump 5 Pump: 160ft 3,168USGPM 132kW Secondary Chiller water pump 5 Motor: 132kW 1,476pm 415V 229A Secondary Chiller water pump 5 Motor: 132kW 1,476pm 415V 228A Ice pump 4 Motor: 138ft 3,770USGPM 132kW Secondary Chiller water pump 5 Motor: 138ft 3,770USGPM 132kW Ice pump 4 Motor: 138ft 1,475pm 415V 75A Chiller fun motor 5 Motor: 75HP 1,475pm 415V 76A Kopping center fan 5 Motor: 75HP 1,475pm 420V 89A Heat-exchange 5 Motor: 75HP 1,483rpm 420V 89A	No Name of Equipment	Quantity	Ma	Main Specification		Remarks
5Motor:132kW1476pm15V229ASecondary Chiller water pump5Pump:132kW136WSecondary Chiller water pump5Pump:138Kh13770USGPM130kWIce pump5Motor:132kW1476pm15V229ACondensing pump5Motor:132kW1476pm15V76AShopping center fan5Motor:75HP1,483pm420V89AHeat-exchange5Motor:75HP1,483pm420V89A	Primary Chiller water numn	2	1	3,168USGPM 133	2kW	CHWP
Secondary Chiller water pump 5 Pumpi 142tt 350000050PM 130kW Ice pump 4 Motor: 200HP 1,480rpm 415V 229A Condensing pump 5 Motor: 132kW 1,476rpm 415V 153A Condensing pump 5 Motor: 132kW 1,476rpm 415V 153A Condensing pump 5 Motor: 132kW 1,476rpm 415V 153A Chiller fun motor 5 Motor: 75HP 1,480rpm 415V 76A Shopping center fan 5 Motor: 75HP 1,433rpm 420V 89A Heat-exchange 5 Motor: 75HP 1,433rpm 420V 89A		S	132kW	1,476rpm 415V	229A	
Ice pump 4 Pump: 138fn 3770USGPM 132kW Condensing pump 5 Motor: 132kW 1476rpm 415V 153A Chiller fun motor 5 Motor: 45kW 1,475rpm 415V 75A Shopping center fan 5 Motor: 75HP 1,475rpm 415V 76A Heal-exchange 5 Motor: 75HP 1,433rpm 420V 89A	Secondary Chiller water pump	v, vi		3,960USGPM 150 1,480rpm 415V	JKW 225A	SCHWF
Condensing pump 5 Motor: 90kW 1,480pm 415V 75A Chiller fun motor 5 Motor: 45kW 1,473rpm 415V 76A Shopping center fan 5 Motor: 75HP 1,483rpm 420V 89A Cooling tower 6 4 20V 89A Heat-exchange 5 1,483rpm 420V 89A	Ice pump	4 4	138ft 132kW	3,770USGPM 13, 1 476mm 415V	<u>אר</u>	
Chiller fun motor 5 Motor: 45KW 1,475rpm 415V 76A Shopping center fan 5 Motor: 75HP 1,483rpm 420V 89A Cooling tower 6 1,483rpm 420V 89A Hcat-exchange 5 1,483rpm 420V 89A		- V)	•	1,480rpm		
Shopping center fan 5 Motor: 75HP 1,483rpm 420V 89A Cooling tower 6 Heat-exchange 5		ŝ		1,475rpm		
Cooling tower 6 Heat-exchange 5	1.1	2		1,483rpm		· · · · · · · · · · · · · · · · · · ·
Cooling tower 5 5						
	13 Cooling tower	9				
	+	Ś		· ·		3 machines use to ice working
		•				
	• .			· ·		
						·

Computer control system of chiller:

2. Thermal insulation condition of buildings

Method of thermal insulation:

Most of the equipment that generates heat is located in the south and west sides of the building.

The cinema and shopping center rooves are covered with rock wool of 2-inch thickness. However no measures are taken on flat concrete areas.

Solar shades are not provided. Swing doors are used to make sashes airtight.

Ventilation Regulative standards:

3.

By ASHRAE CODE

The car park and toilets have individual ventilation systems. For basement ventilation, one air control unit is operated under regular conditions and two units are operated under emergency conditions.

- Chiller Control system: Zoning for air conditioning:
- 5. Energy conveying system:

6.

A two-zone system is applied for the suitable zoning of air conditioning.

Air ducts are covered with 2-inch thick glass fiber. 2-inch thick polyurethane with a steel cover is applied for insulation of chilled water pipes.

Lighting system Fluorescent lights in use: Metal halide lamps in use:

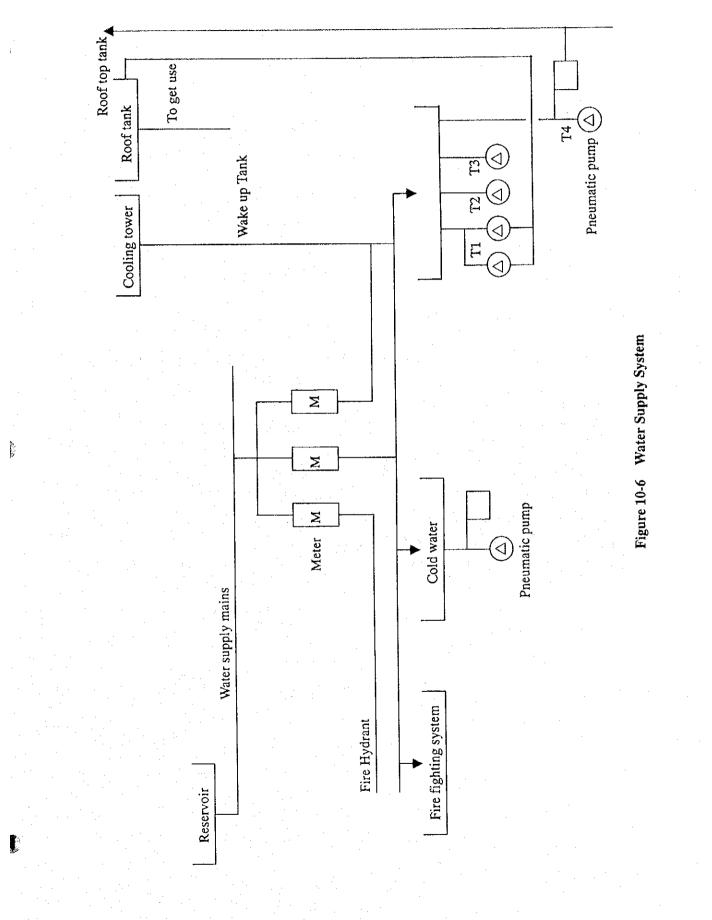
9W, 18W, 25W and 36W and 70W 70W, 100W, 150W and 175W

Specification, electricity consumption and efficiency of appliance:

Specification:

Electric lamp:

Type of appliance:


32W PHILIPS TLD 36N/75 made in Malaysia 70W PHOENIX MH70/EL JAPAN Q120 E-27 base Electronic ballast ($36W \times 2$ type, 240V, 50/60 Hz, 0.35, PF 0.95 18/20×2, 18W type 240V, 0.41A, PF 0.49)

7. Water condition:

City water is exclusively utilized for facilities. The quality of city water is regulated by WHO standards. Septic tanks are not used, so discharge flows directly into city drainage and it is not reused.

Water supply system:

Shown in Figure 10-6

Specification of elevators and escalators 8.

Elevator:

Number of stop floors:

Passenger, 1600 kg weights, 24 persons, 60 m/min. speed

Nos. P1, P2, P3, P4, P5 and 6 Stops P6

Nos. G1, G2 and G3	3 Stops
Nos. G4 and G5	4 Stops
Nos. Lift	4 Stops
1200 Туре	48 Units

Escalator:

Electrical power receiving facilities 9.

Type and voltage of electrical power receiving:

Operating conditions

Transformers (oil):

Demand factor of transformers:

Power factor:

Problems of harmonics:

Location of adjustment for factor:

Imbalance among phases is indicated by computer system Regulation for fluctuation of supplying voltage and frequency:

Low voltage distributor:

Receiving type is double-line. voltage is 33kV.

Receiving

33/11 kV and 11kV/433 V

25 % About 0.90

Not available

Low voltage side

410 V +5%, -5% 240 V +5%, -10% 50 Hz +1%, -1%

Installed on each floor.

í.

10-6 Present Situation of Energy Management and Energy Efficiency Promotion

 Establishment of target for energy efficiency: Demand control by computer system:

à

2. Systematic activities for energy management in the organization:

3. Energy management utilizing data and records:

In the event of increased electric demand, some chiller machines stop working.

Special activities are not under taken currently.

For energy management, monitoring items are water (tank level), chiller, and ice storage and pump operation. Control items are chiller, light, ventilator, demand, space conditioning and lift. Measurement items are voltage, amperage, temperature, humidity, flow meter and pressure.

Mainly by on-the-job training

4. Education, and training of employees for energy management:

5. Maintenance management of buildings and facilities:

Item and frequency of equipment maintenance

Cooling tower cleaning: Pump:

Electric inspection:

Lift and escalator (HITACHI):

6. Planned equipment for energy efficiency promotion:

Daily data check by permanent staff of electric meters, energy meters and chiller meters, and monthly data check of energy consumption by each tenant.

Monthly Semiannually Monthly Monthly

The installation of co-generation has been planned. However, a solar generator has not been planned so far.

10-7 Method of Energy Audit

In order to conduct an energy audit of this shopping complex, the taking of measurements was the first essential step and developing an energy balance the second. The results of the energy audit, including evaluation, analysis and recommendations for improved energy efficiency, are described in this chapter. a

Major energy audit items for the shopping complex were as follows:

- 1. Electrical power receiving and distribution
- 2. Air-conditioning system
 - (1) Mechanical performance
 - (2) Air conditions
 - (3) Electricity consumption
- 3. Lighting system
- 4. General energy consumption

10-7-1 Schedule of Energy Audit

The schedule for the energy audit for the shopping complex was from June 16 to 26 1998. This included preparation for the measurements and preliminary discussion of measurement results.

The outline is as follows:

(1) Preparatory Stage

13 June (Sat.):	Transportation of measuring equipment.
16 June (Tue.):	Explanation, discussion and confirmation of the audit plan; preparation and
	confirmation of measurement

(2) Energy Audit	Adjustment of measuring equipment
17 June (Wed.):	
	Confirmation of measurement points
· · · · · · · · · · · · · · · · · · ·	Installation and adjustment of measuring equipment for electricity receiving
18 June (Thu.):	Measurement of electricity consumption in transformers and distributors
	Measurement around chillers and cooling towers
19 June (Fri.):	Measurement of electricity consumption at distributors
	Measurement of air conditions
	Measurement around chillers and ice storage system
20 & 21 June (Sat	. & Sun.): Analysis of the results
22 June (Mon.):	Measurement of electricity consumption around chillers
	Measurement around chillers and ice storage system
	Measurement of air conditions
23 June (Tue.):	Measurement of electrical current in sub-distribution room
	Measurement of air conditions and illumination intensity
	Measurement around chillers and ice storage system
24 June (Wed.):	Measurement of electricity consumption in distributors
	Measurement of air conditions (CO2 content, illumination intensity, air
	flow and temperature)
	Measurement of air and heat leakage at open doors
	Measurement around cooling towers.
25 June (Thu.):	General field survey of major energy consuming facilities
	Measurement of air conditions
	Removal of equipment for electricity consumption
	Input of trend data and equipment list
	Data analysis and evaluation
	Reconfirmation of equipment specification
	Preparation of report.
(3) Discussion of	Preliminary Results and Transportation of the Measuring Equipment
26 June (Fri.):	Preliminary evaluation of the results and recommendations for improvement
	in energy efficiency; repackaging of measuring equipment.
27 June (Sat.):	Transportation of measuring equipment to the next audit location.

Table 10-6 shows a detailed schedule of measurement.

¥ر.√≉

Measuring Itoma	Working Day								
Measuring Items	1	2	3	4	5	6	7	8	9
0. Preparation & Discussion of the Plan	x			:					
1. Electrical Power Receiving and Distribution									
(1) HV Receivers (Voltage, Ampere & Power Factor)		x	x	x	x	x	x	x	
(2) HV Distributors (Voltage, Ampere & Power Factor)		x	X	X	X	x	X	x	
(3) LV Distributors (Voltage & Ampere)			Х	х	х	x	x	x	
2. Air-conditioning System									
2.1 Mechanical Performance			14						
(1) Chillers (Chilled Water: Inlet/Outlet Temp.&				x	x	x	х		
Flow rate)		.	· · ·	· ·			1	<u> </u>	
(2) Cooling Tower (Cooling Water: Inlet/Outlet Temp. & Flow rate)			x				x		· ·.
(3) Air Handling Units		- 11 -						x	
1) Suction Air (Temperature, & Flow Rate)			· .			÷			
2) Delivery Air (Temperature)				ĺ					
(4) Blowers and Fans					· .			x	
1) Suction or Delivery Air (Flow Rate)		•		1					
2-2 Space Condition				5 -					
(1) Area to be conditioned	· ·	4		x	x	x	x		
1) Spaces (Temp., Humid., Air Flow & CO/CO ₂)								· ·	
(2) Rooms to be conditioned	·			x					
1) Rooms (Temp., Humid. & Direction of Air Flow)		· · .							
2-3 Electricity Consumption									
(1) Chillers, AHU, Blowers (Volt., Ampere &			x	x	x	x	x	x	
Power Factor)			1					·	
3. Lighting System									
(1) Main Part of Buildings Each Space & Room (Lux)			·	[•] .		x	x	x	

Table 10-6 (1) Detailed Schedule for Measurement (Shopping Complex)

Ċ

Measuring Items	Working Day								
Measuring rems	1	2	3	4	5	6	7	8	9
4. General Energy Consumption		x	x	x	x	x	x	x	
(1) Electricity		ļ							
(2) Chilled water		:		 					
5. Field Investigation]	x	x	x	x	x	x	x	
(1) Preparation of Equipment List									
(2) Investigation of Drawings									
(3) Observation of Operating Condition									
6. Summarization & Reporting								x	
7. Review and Discussion				- 1					x

No.

Table 10-6 (2) Detailed Schedule for Measurement (Shopping Complex)

10-7-2 Outline of Measuring Items, Points and Measuring Equipment

To calculate and evaluate the current condition of energy consumption and to develop an energy balance, measurements described below for the main energy audit items were conducted according to the schedulc.

Ć

(1) Electrical Power Receiving and Distribution

- 1. HV receivers: Trend data of voltage, current, kW and power factor
- 2. HV distributors: Trend data of voltage, current, kW and power factor
- 3. LV distributors: voltage and current

(2) Air-conditioning System

- 1. Chillers and ice storage system: Inlet/outlet water temperature, water flow rate (primary and secondary), voltage, current, kW and power factor
- 2. Cooling towers: Inlet/outlet water temperature, water flow rate
- 3. Air Handling Units(AHUs): voltage and current, flow rate and temperature of air, inlet/outlet temperature of chilled water
- 4. Air-conditioned area: temperature, humidity and CO₂ content
- 5. Air-conditioned rooms: temperature, humidity and CO₂ content
- 6. Outdoor conditions: temperature, humidity and CO₂ content

(3) Lighting System

1. Common space: Illumination intensity

(4) General Energy Consumption

- 1. Electricity consumption
- 2. Chilled water consumption

(5) Field Investigation

- 1. Review of equipment list
- 2. Investigation of drawings
- 3. Observation of operating conditions of equipment and facilities

Details of measured items, points and equipment are shown in Tables 10-7.

Table 10-7 (1) Outlines of Measurement for Energy Audit (Shopping Complex)

Major Items of Energy Audit &	Measurement	Available Equipmen	t of Measure	ement	- <u>r</u>
Subject Items and Points	or Estimate	Required Equipment	Entíty	JICA	Local Labo
1. Electrical power receiving & distr-					
ibution					
(1) HV Receivers (Sub-station)				· · · · · · · · · · · ·	
① Voltage	M	Clamp on power hitester, control panel	x	x	
2 Ampere	м	ditto	x	x	
③ Power factor	м	ditto	x	x	
(2) HV Distributors (Main circuit)					
① Voltage	м	Clamp on power hitester, control panel	x	×	
② Ampere	м	ditto	x	x	1
3 Power factor	M	ditto	x	x	
(3) LV Distributors (Control unit)					
① Voltage	м	Clip-on AC powermeter, control panel	x	x	
② Атреге	м	ditto	x	x	
2. Air-conditioning system					
2-1. Mechanical performance					
(1) Chillers					
() Water temperature (inlet/outlet)	M	Bar & Surface thermometer, T.G.	x .	x	
2 Water flow rate	M	Ultra-sonic flow meter	_	x	
(2) Cooling towers					· · · · · · · · · · · · · · · · · · ·
① Water temperature (inlet/outlet)	м	Bar & Surface thermometer, T.G.	x	× x //	
② Flow rate of water	м	Ultra-sonic flow meter		x	
(3) Air handling units (AHU)					
1) Suction air					
① Temperature	м	Surface thermometer, Anermometer		x	
② Flow rate	М	Hot wire anemometer		x	
2) Delivery air					
① Temperature	м	Surface thermometer, Anemometer		x	

Table 10-7 (2) Outlines of Measurement for Energy Audit (Shopping Complex)

Major Items of Energy Audit &	Measurement	Available Equipment	of Measure	ment	
Subject Items and Points	or Estimate	Required Equipment	Entity	JICA	Local Labo.
(4) Blowers & fans				· · · ·	
① Flow rate	M	Hot wire anemometer		x	· · ·
② Temperature	M	Surface thermometer, Anemometer		x	
③ Electricity consumption	м	Clip-on AC powermeter		x	
2-2. Space condition					
(1) Area to be conditioned					
1) Spaces					
① Temperature	м	Temphumid. recorder		x	
② Humidity	M	ditto		x	1
③ Air flow	м	Hot wire anemometer		x	
④ CO/CO ₂ contents	м	CO. CO ₂ content meter		x	
2) Rooms					
① Temperature	м	Temp humid. meter		x	
② Humidity	<u>M</u>	ditto		x	
③ Direction of air flow	м	Observation			
2-3. Electricity consumption				1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
(1) Chillers, AHU, blowers					
(1) Voltage	M	Clamp on power hitester, control panel	x	x	
2 Ampere	M	ditto	x	x	
③ Power factor	м	ditto	x	x	
3. Lighting system					
(1) Main part of the building					
① Illumination intensity	M .	Lux meter		x	na 1929 - Na 1929 - N
5. General energy consumption					
(1) Electricity	м	Clamp on power hitester	x	x	
(2) Chilled water	Trend data	Operation records & data	x		
6. Field investigation					
(1) Observation	Observation		. :		
(2) Investigation of existing data	Review	Existing drawings and data	x		

C

3

10-8 Measurement Results

The measurement results are as follows.

10-8-1 Electricity

ACT -

(1) Single Line Diagram (Figure 10-7 and 10-8)

There are two incoming lines from TNB. The measuring points are shown by numbers (1) to (9) in Figure 10-7. Figure 10-8 shows the detailed load allocation of each branch.

(2) Electricity Consumption by Each Branch (Figure 10-9)

Figure 10-9 shows the consumption pattern of each branch at of 0 a.m. and 12 p.m. There is a considerable pattern difference between night and day.

(3) Incoming Electricity Data (No.1)

a) Frequency and voltage (Figure 10-10 and 10-11).

The stability of TNB supply influences these data. Compared to the electricity supply in Japan, the range of change is rather high in Malaysia.

b) Consumption (Figure 10-12)

This figure shows a big difference in electricity consumption between day and night.

Power Factor shows reasonable values.

c) Current Balance (Figure 10-13)

There is no serious imbalance among each current phase.

(4) Incoming Electricity Data (No.2)

a) Consumption (Figure 10-14)

The difference between night and day is considerable. Power factor is very low, from 0.4 to 0.6.

b) Current Balance (Figure 10-15)

No serious imbalance is observed.

(5) Ring Feeder

a) No.1A: Consumption (Figure 10-16), current balance (Figure 10-17)

No problem was observed.

b) No.2B: Consumption (Figure 10-18)

Power Factor of No. 2B was so low (0.4 to 0.6) that it influenced the efficiency of the

whole system.

c) No.2B: Current Balance (Figure 10-19)

No serious problem was observed.

(6) Chiller Plant Including Surrounding Facilities

Electricity consumption (Figure 10-20 and Figure 10-21): Equipment using electricity in the chiller system.

Ö

Power factor shows a low value caused by low operating rate.

(7) Chiller

a) Consumption (Figure 10-22 and Figure 10-23)

- The 0.5 power factor in the TX-1 train is quite low compared to the TX-2 train.
- b) Current Balance (Figure 10-24, Figure 10-25, Figure 10-26 and Figure 10-27)

There is no serious problem.

(8) Power Factor Comparison at the Incoming Supply of No.1 and No.2

(Figure 10-28 and Figure 10-29)

Because of the inefficient operation of the chiller plant (T1 and T3) and the chiller itself (TX-1), the power factor shows a low value.

10-8-2 Chiller System

(1) Operation Mode of Chiller and Pumps

(Figure 10-30, Figure 10-31 and Figure 10-32)

The chiller system is so complicated and advanced that the operating pattern changes quite drastically. These figures show a simplified pattern change. The dark colored equipment in Figure 10-31 and Figure 10-32 are the ones in operation.

(2) Temperature Pattern

(Table 10-8, Figure 10-33 and Figure 10-34) Table 7-3 shows the data recorded by the computer. Figures show the trend graph of temperature.

(3) Flow Rate Measurement

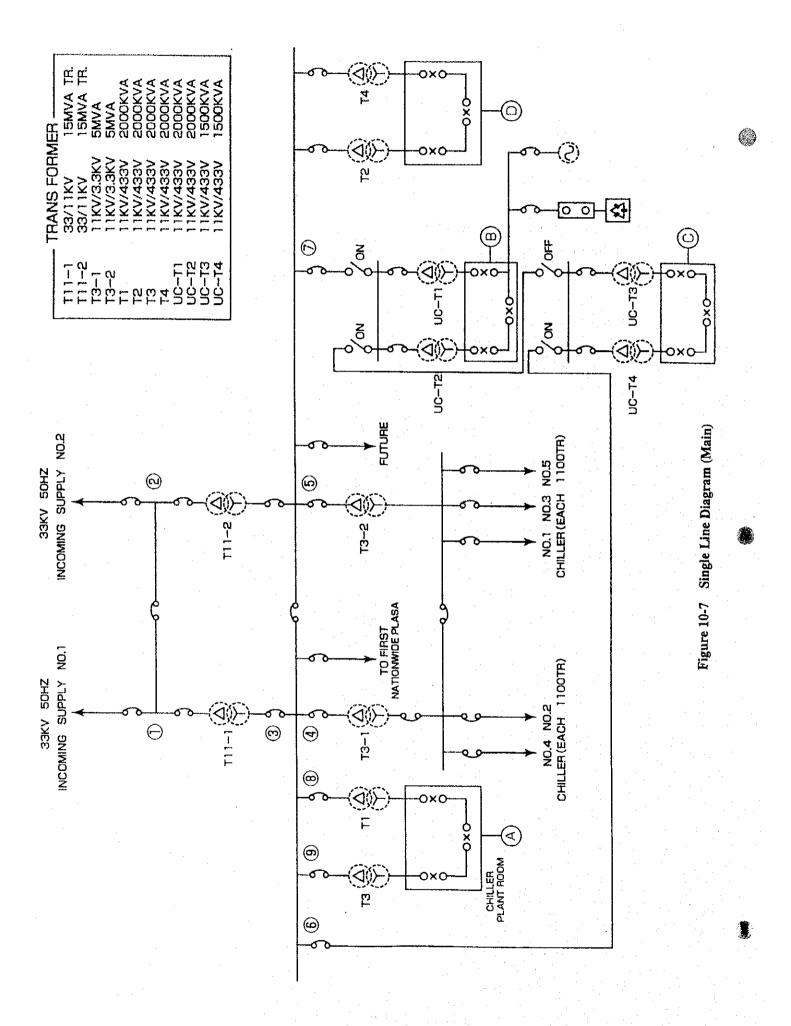
(Table 10-9 and Figure 10-35)

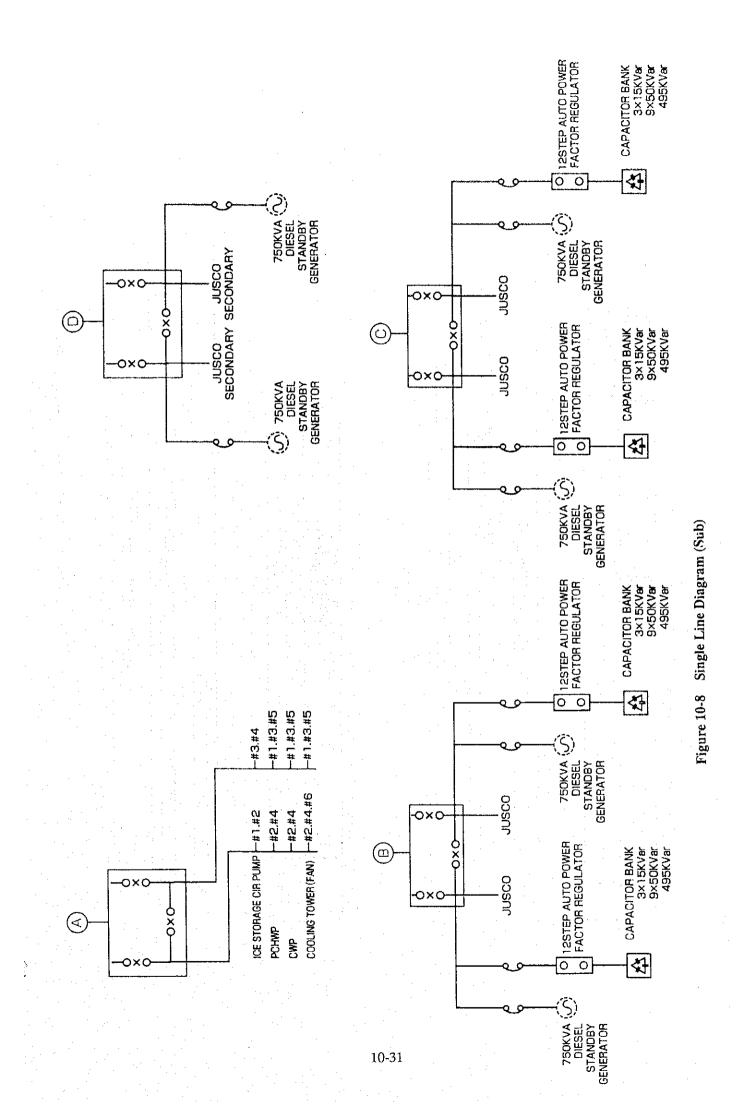
Table 10-9 shows the flow rate measured using an ultra-sonic flow meter.

Figure 10-35 shows the trend graph of the flow rate.

10-8-3 Air Conditions in Shopping Building

(1) Energy Loss from Building Entrance

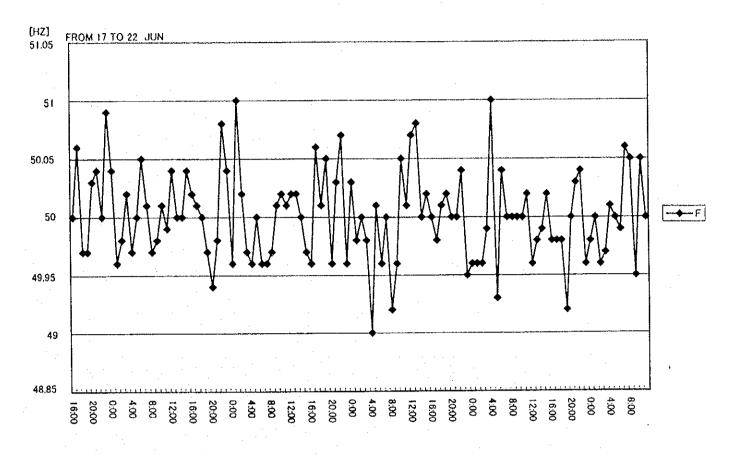

(Table 10-10 and Figure 10-36)

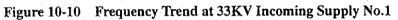

A large amount of heat was found to be escaping from the front and back entrances.

(2) Temperature and Lighting Intensity

(Figure 10-37 and Figure 10-38)

These figures show the differences in values.




7.0 [MVA] [MVA] Supply No.1 Incoming 0.7 3.95 6.05 Figure 10-9 Electricity Consumption Pattern 6.0 6.0 DRING FEEDER 28 EJNATIONWIDE PLAZA AV IK 5.0 5.0 RING FEEDER DT3-2 CHILLER NO.1.3.5 DRING FEEDER 1A DT2.T4 Supply No.2 Incoming 2B0.00 1.42 2.28 4.32 · APA SAPASA ASA SASA ASA SASA 4.0 10 · 通信: 1.04 元 8.6 元 ·24-21-0.20 - 43-43-4 1450-121-14-14 法法法公1.27世纪法 110 **D** 13 ないのからいでも、うちもうい 3.0 3.0 T3-1 CHILLER NO.2,4 RING FEEDER Electric Consumption Balance No.1 [MVA] Electric Consumption Balance No.2 [MVA] 1.46 「たい」とないまでのない 1.04 0.92۲I 3.05 Ê 2.0 2.0 CULLER NO.1,3,5 CHILLER NO.2,4 1.0 01 T3-2 0.73 0.00 T3-1 0.61 0.97 0.0 00 12:00 12:00 0:0 0:0 12:00 12:00 8 800

10-32

Č

È

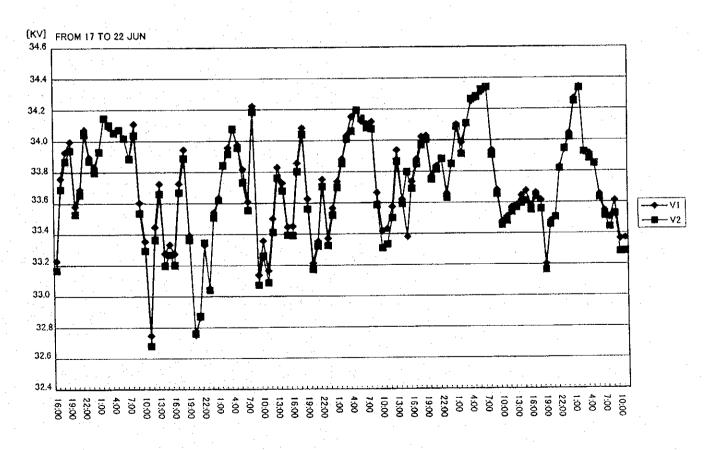
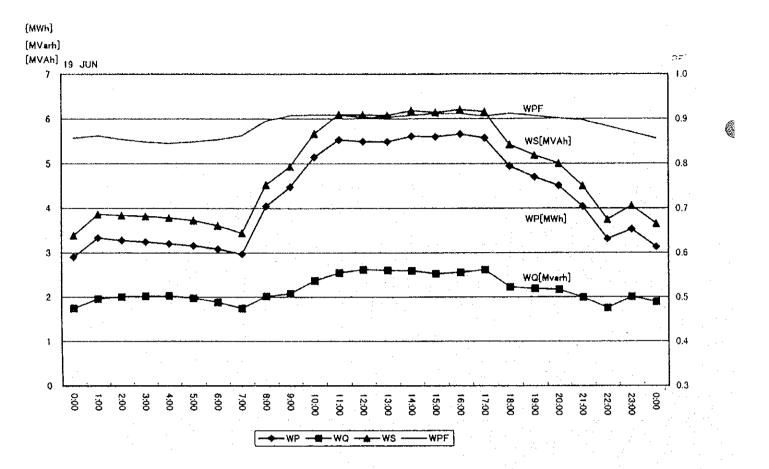
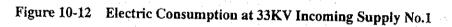
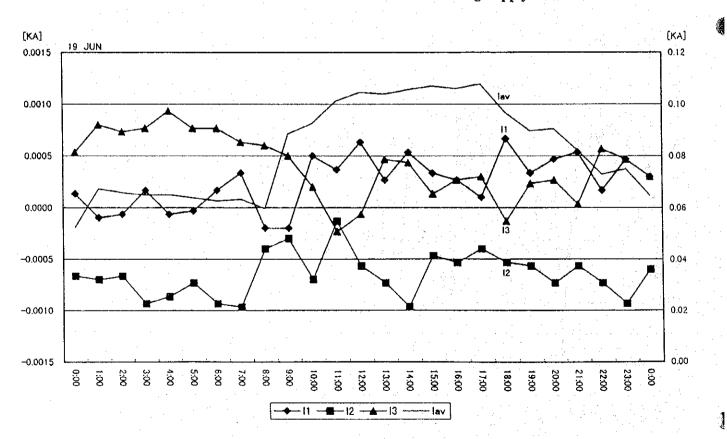
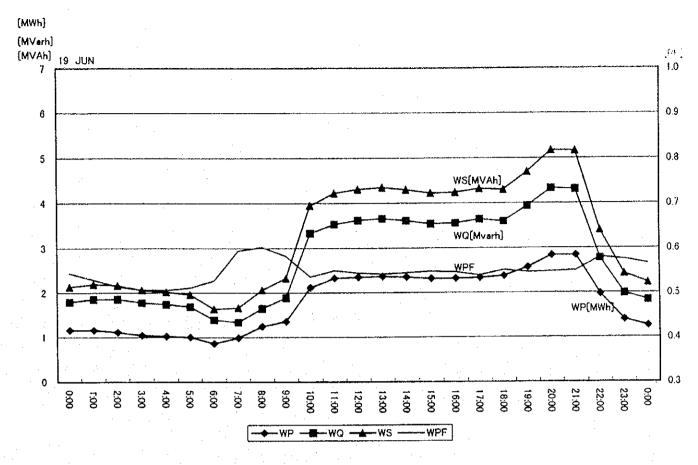
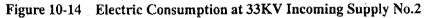
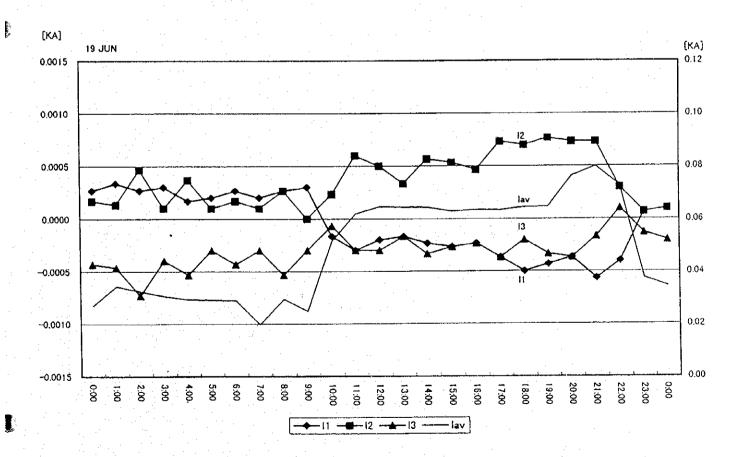
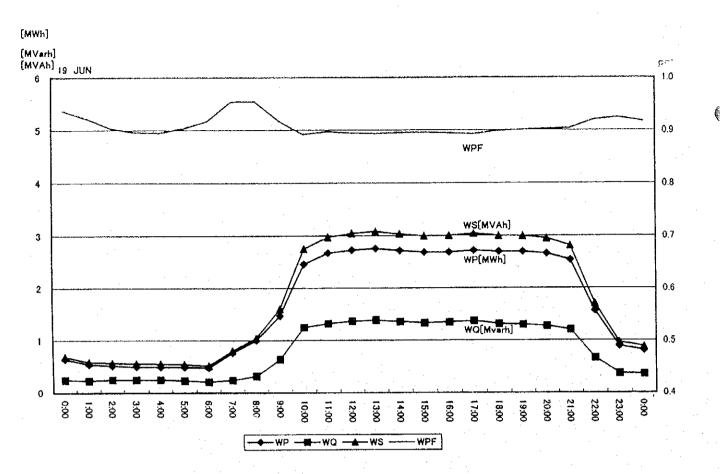
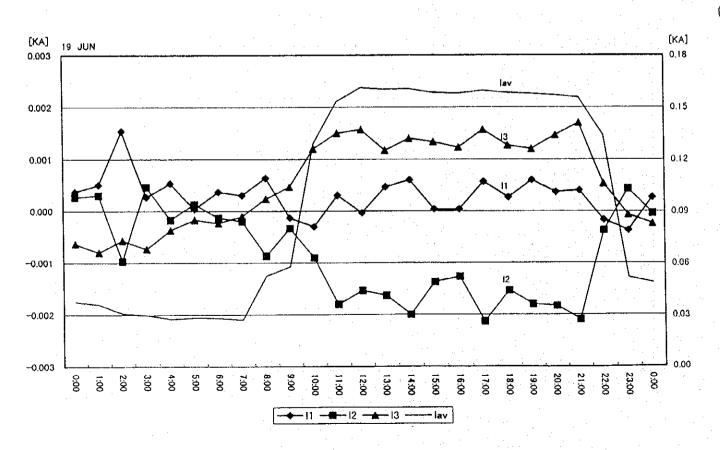
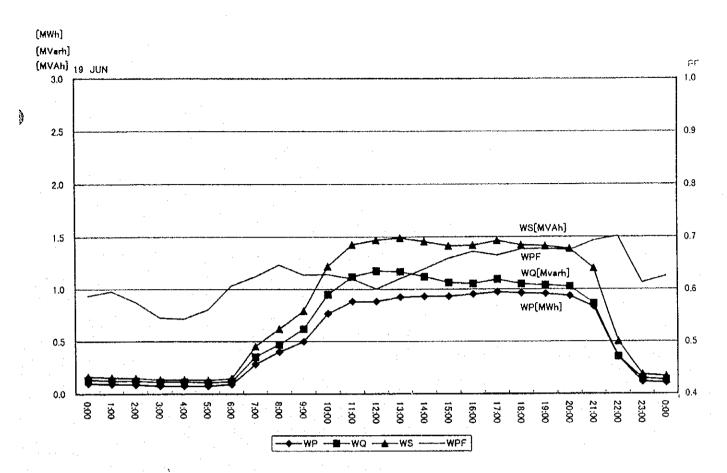




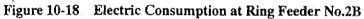
Figure 10-11 Electric Voltage at 33KV Incoming Supply No.1

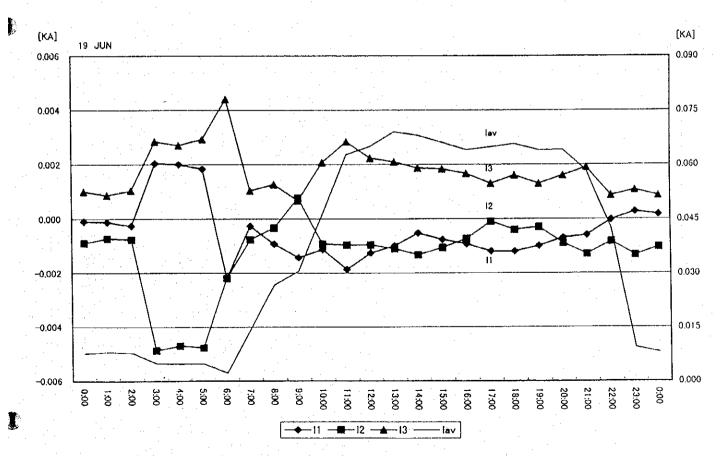





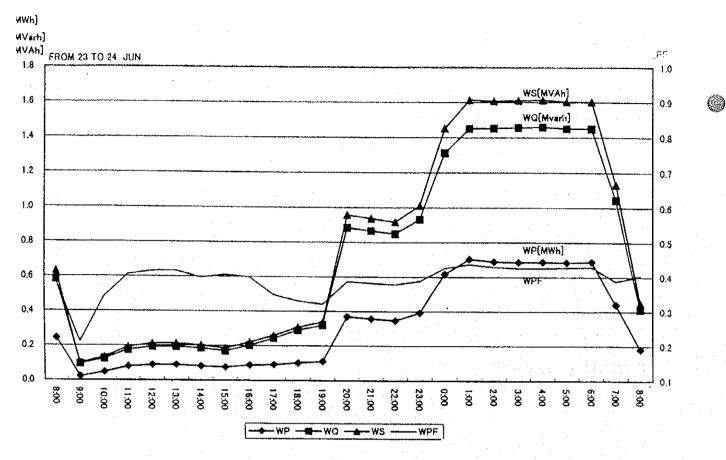

Figure 10-13 Electric Current Balance at 33KV Incoming Supply No.1

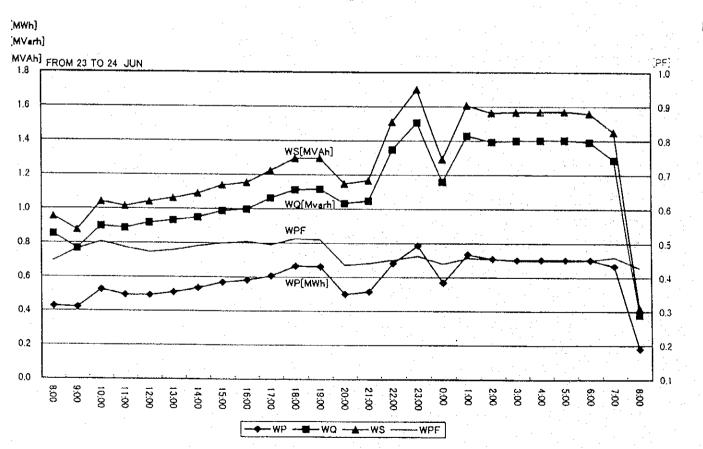


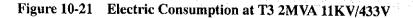


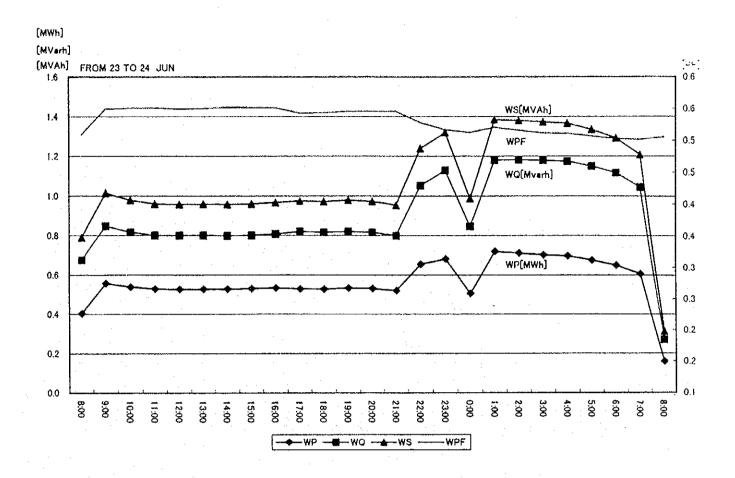












1

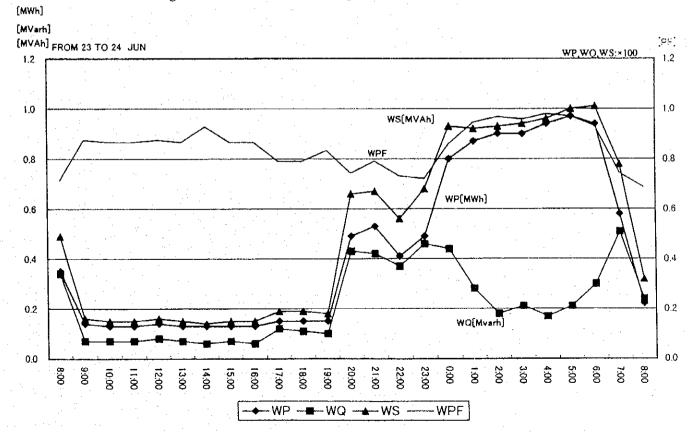
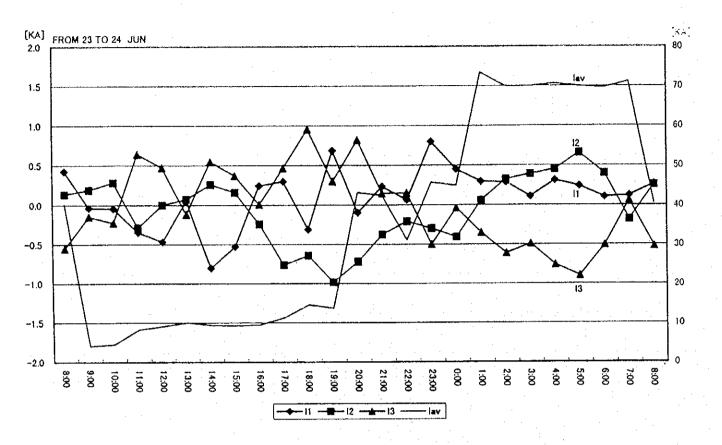
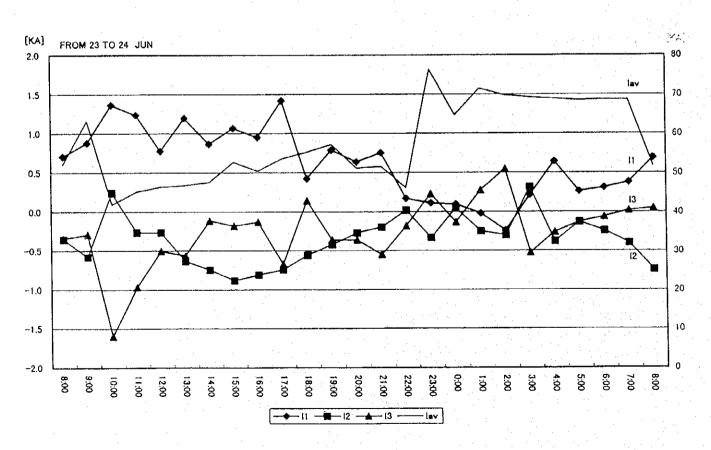
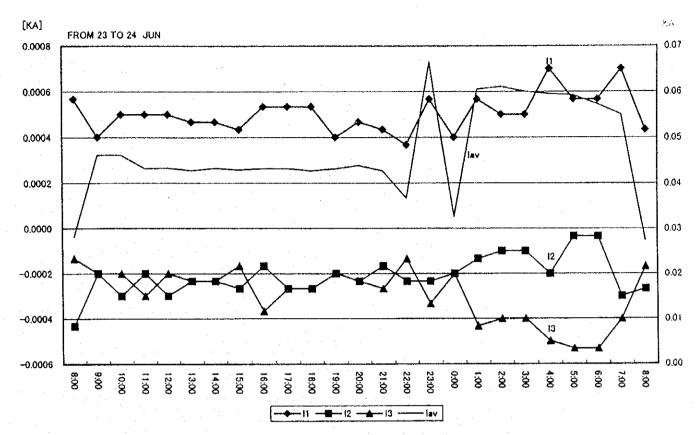
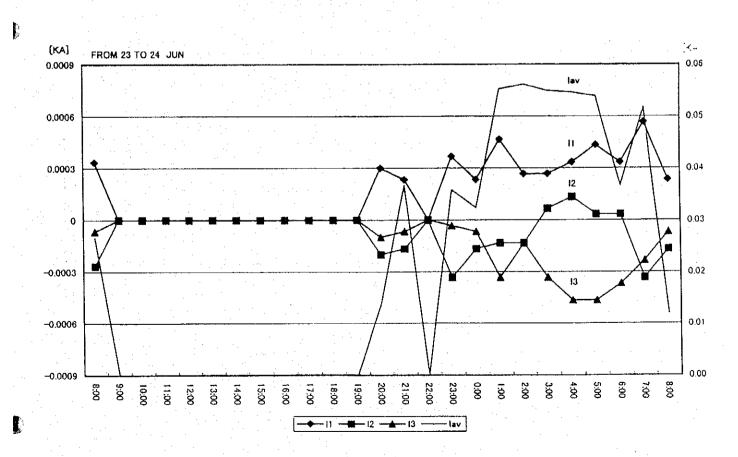
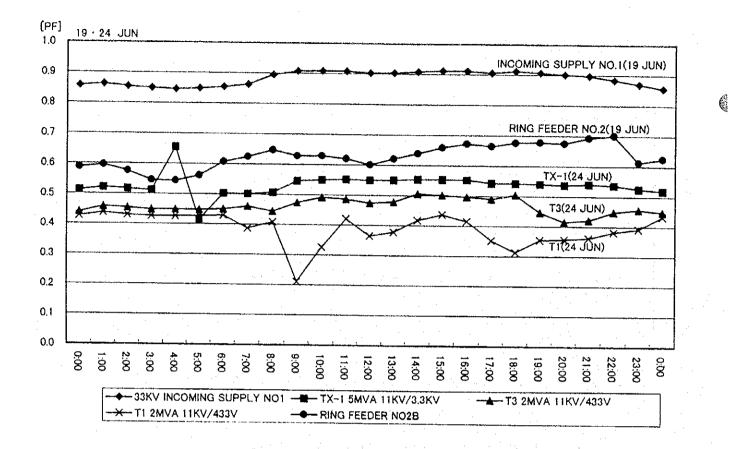




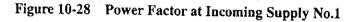
Figure 10-23 Electric Consumption at TX-2 5MVA 11KV/3.3KV



1






à

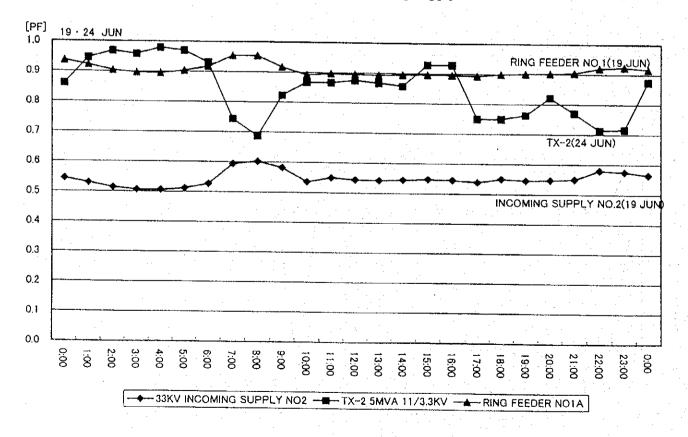
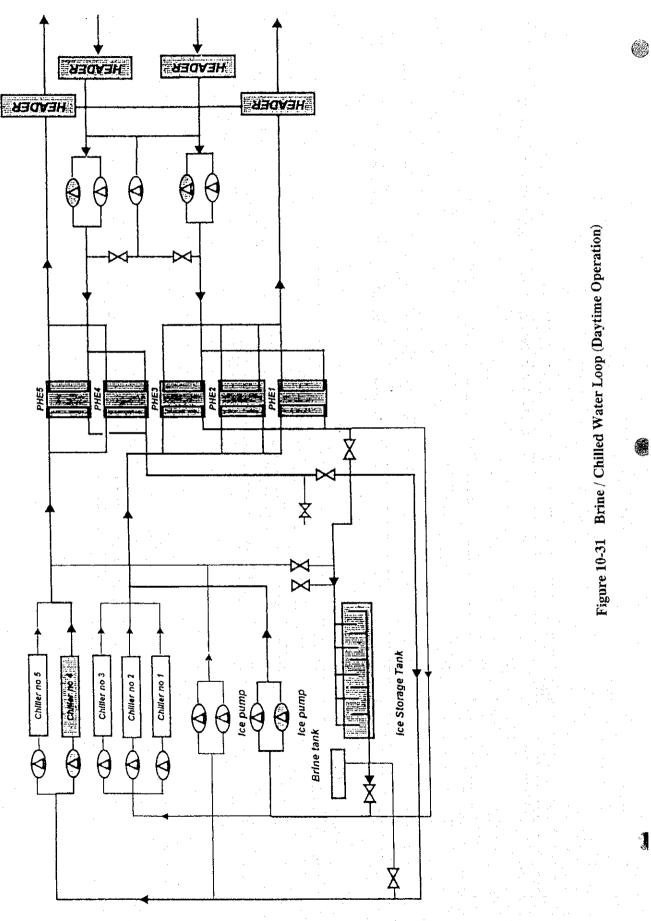



Figure 10-29 Power Factor at Incoming Supply No.2

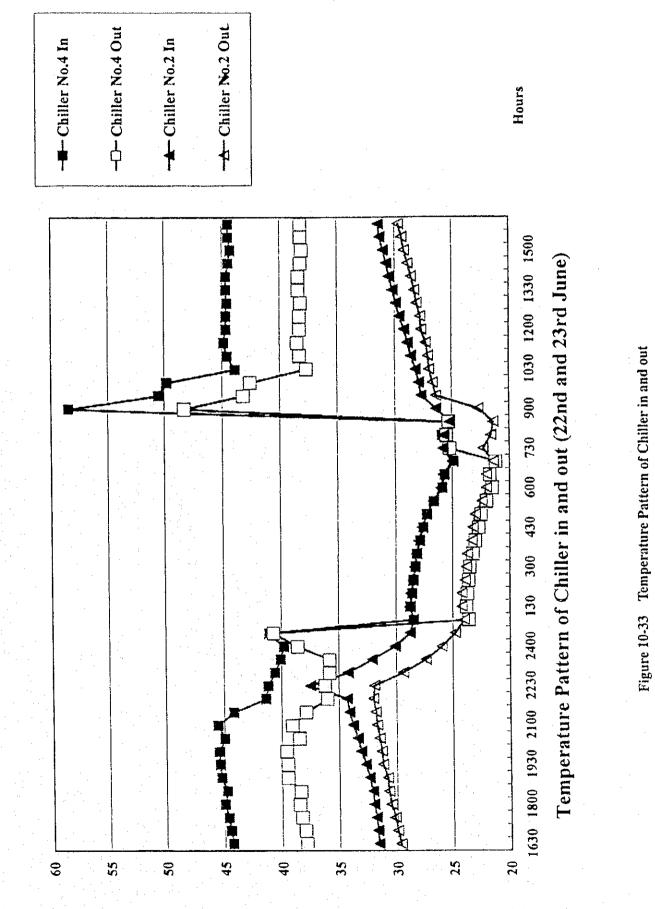
22 23 24 2232 2230 2230 2231 2200 2200 2222 2215 2254 2243 1153 2244 18 19 20 21 and the second se 1928 1909 1850 17 13 14 15 16 900 17 10 | 11 1005 1005 006 006 906 6 006 1005 849 800 800 90 r ø 4 ч Ċ1 5 114 114 -2 Z Ice Water Pump Ice Water Pump Ice Water Pump Chiller Chiller Chiller 19th June 21th June 20th June

100

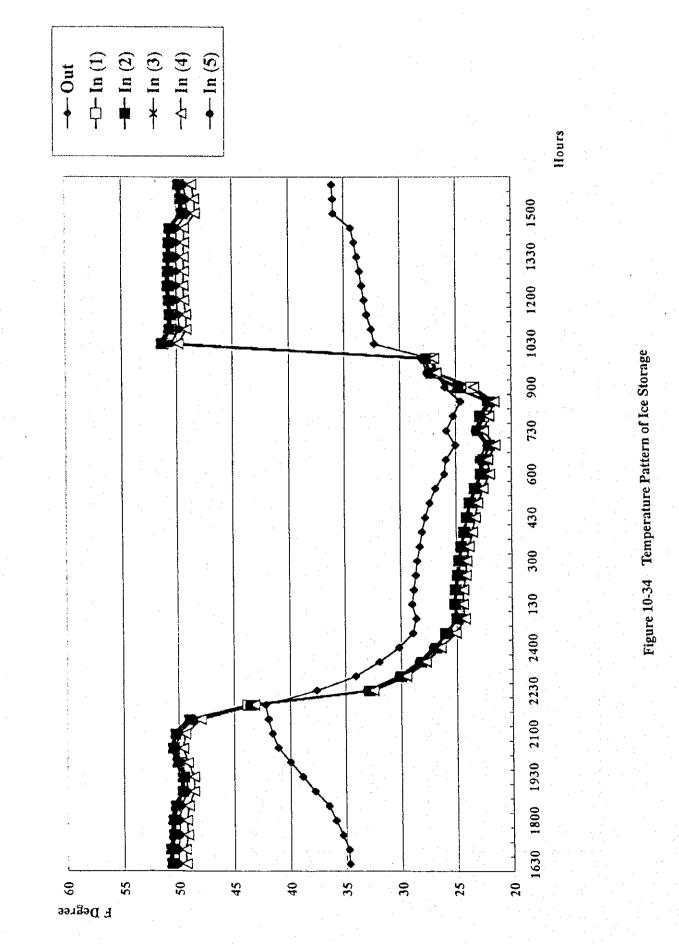
Figure 10-30 Operation Mode of Chillers and Pumps

10-44

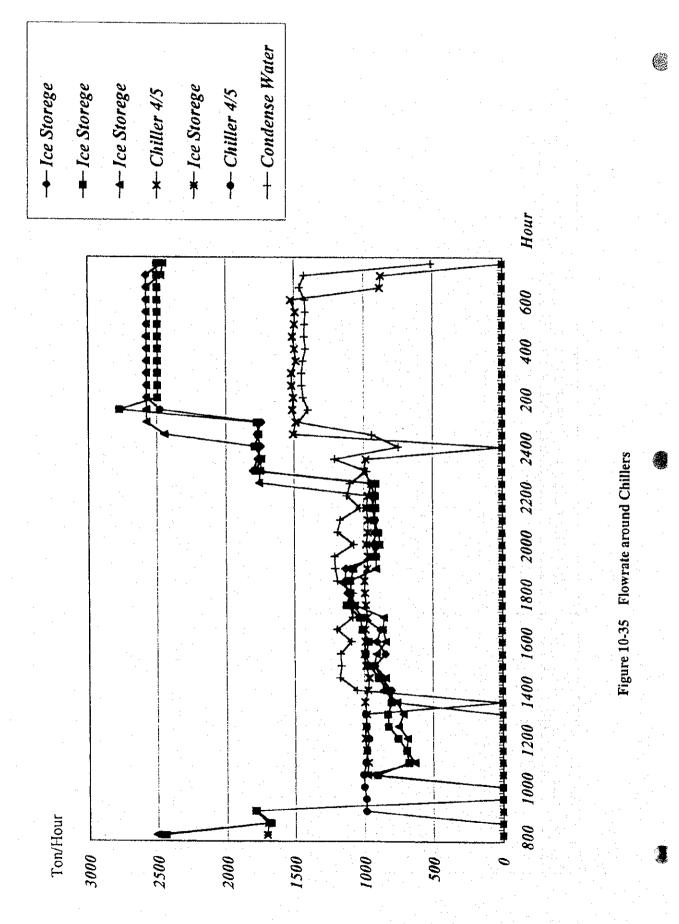

1


Table 10-8 Temperature Pattern of Chiller in and out

19 A.


)

		Out Out	50		0	0		0			5				<u></u>					0	0	0			0	5 0	20	5 6	50		¢¢	55	0 0	0) 0	0 0 1	-	0	0	0	0 0	0 0 0	0	0 0 0	0 0 1054		-	
-		5			0	0	0	0					2	ວ ດີ				0 0	0	0	0	0				00		50						0	5	0	0 0	0	0	0						0		5
	1.0.01 4/5	30) () ()		c	0	0	0	0			> <	5	0	5	0	0	0	0	0	0	0	0	¢	0	0 1	0	5	5 <	5 C	, c	0	0	0	0	¢	c	0	¢	Ô	0	5	0	c	0	0		5
		Out Main	44.55	44.25		44.19	44.06	44.21	44 67	28.14	10.11	41.18	45.12	40.67	42.62	42.07	11.57	41.15	46.64	\$0.14	53.06	55.28	57.01	58.51					77.40	``		67.92	64.72		60.2	53.46	55.23	44.92	44.67	44,31		14,42						
	PHE 4/5			45												A.		9 40.95					7 57.71						<pre>cf.c0 </pre>				(~		1 60.59	8 51.27	3 49.53	2 44.09	1 44.67						45.03			
time tailing 1		Main In		_		0 51.13	_			_		0 22.31	-	_	<u> </u>		0 44.16	0 43.59	0 47.08	0 50.53	0 53.42	0 55.32	0 57.07	0 58.78	0 60.09	<u> </u>			_	00.00 00.00 0	1000				0 64.81	0 56.98	0 56.93	0 50.2	0 51.21	0 51 14	0 50.98	0 51.24	0 50.89	0 51.35	0 51.24	0 50.79	0 00 00	2
			47.45 17.56	10 C P	46.67	46.32	45.35	62.25	ур Туур	91 YF	40. 72 22 23	46.92	44.83	43.3	46,06	45.76	44.92	44,18	46.82	50.13	53.5	56.13	58.02	59.52	60.88	62.2	63.4	64.55	65.63	00.00 23 52	00.10	60.45 60.35	70.25	67.48	63.78	59 64	61.36	48.29	47.73			47.36	47.24	47.18	46.92	17.06		
		u I	C1.2C	2.22	52.42	52.19	52	2			077	52.55	51.23		45.27	44.59	43.87	12.98	46.93	50.42			57.47		60.43			G.		C6.C0 0											-		-		~		-	
			80.05 3										1 48.68				13 28.53	17 27.24							38 24 57							07777 C17	r.		~									40				
Ł	Lank -	-	50.84 49.36 50.05 40.45							प				Ŧ	32.99 32.51	30.22 29.59		27.11 26.47		5					24.62 23.88	~			52		N .	C.12 P1.12																
Temperature	lce Storage Tank			00 8.00					Ŧ					43.48 43	32.83 32	30.05 30	28.26 28								24.59 24	24.33 24						7 70 77		4														
-	lce	l (1) al	n.	20.05										43.79 4		е 96									24.52 2		23.99	23.7	23.22		11.22	24.12	07 C7	1 00	21.61	26.92	77 18	12	505	15.05		89.05	50.02	3	02.02			
	 		<u> </u>		PC.CC 1								1 41.98			J 34 07				38												22.03	_			0 26.75				_	_	_	<u> </u>					
				_		_						_	0 2130	0 2200	0 2230	0 2300	0 2330									0 400								_			0001 1000					0241 0		OUCT O			7	
		0ut	E S	<u>ہ</u>	2 2		222		969	:	=	010	12	970	946	995	084	; =	2UR	191	400 51 d			210.5	487	499	514 .	409	493	525	886	878			000	000		900	000	100	102	400	1.00	2		-	>	<
- Flow	Chile		-		186	-	Čŕ	-	× :	<u></u>	4 971	5	7 981	T	2				-					· -				2			5	× i	7										<u>.</u>		2	2	-	
	('hiller 4/5	n Out	1	8	09 40.5	1014 00.01		9.19 CC.96		-	42.56 40.7	39.29 41.2	38.72 40.1			48.97 37.8			90 - 1.05					-9			•••		•••	2			_	7.05 17.06 2.75 35 35									-01-69-61-					
		Out 1	<u> </u>													_				•		_			_												_	_			_			_	_	য		
	Chiller 1/2/3										38.1 4	41.41 4									6 7 6 7 6 C												22.63	17.12	16.47			02.12	00.00		20.2	2	- ×		50.25	5	. 07.75	
	(Juiller No.1				37.2						5 38.6				4					•		7.70					. ^							202 2		. 1			1776 0			2.12	7.55.7	2 34.2	1.4. 5		5.00 4	
2		=		30 42.6		30.5		30.8 43.2		31.3 43.5	31.51 - 43.6										7	7.57				23.1 43.2			*		22 42.5		d.	71.0			_	V.16 1.07	0.11		27.5 41.5	27.7	27.8 41	28.1	28.3 41.	28.6 41.	28.9 41.	
Centeratur	Chiller No.2	In Out	ľ,		31.8 - 30		32.1 30	32.4 30	. •		2	-								Ξ.		7 2 2 2 7	•	7 r 7 r 7 r			27.7 2	÷.	2		25.8			25.7 2				• •									30.7	
Ļ		+	1.17					Ē	31.2	31.3	314							÷.,			<u></u>	74. 7	14.4	- 6-7	7			23.5	23.2	22.8	22.4	21.9	21.8	22	1.4	9	7 07	707	7.97	77	27.1	5.5	27.7	27.9	28.2	28.5	28.61	
	(Miller No.)			31.3	31.5	31.7	~					-	<u>.</u>			_							8.87		07			~		26.8		.25.6			Ň					27.5							20	
	ler Na,4	Out			~	5 . 38.5		- 1						5	00 F	.:	0.00	5			ล่	11					¢			9 21.5	7 21.7							÷		ŝ			2	ي ي	~	38.	5 38.2	
	s Chiller				. = =			32 45.3	2.3 45.4	Ś		2-7- 12-7- 12-7-								25.2 41.1				24.3 28.5		7.97 1.47		277 177	1 00		8	м	~					, i		27.1 44.6	Ś	27.8 14.7	+ 	-1	28.8 44.	29.2 44.7	20 50 44	
	(hiller Na			314.31	31.4 ~ 31	÷			32.7 32.			4.C		<u> </u>	•						÷					- 4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	÷.,	· •	4 10			. •							27.3 2		•••			•••		•••	,	`
		۲T	1		730			006			0000	2010	3		0077	0077	2300	2330	2400	30	100	0	200	230	000	100		2 0		009	630	•	730	800	830	900	930	000	020	100	130	200	230	300	330	100	110	5


F Degree

Ċ

				Flow (Ton/Hour	, · · ·		•	Tempe (F De	
Date	6/19	6/20	6/21	6/22	/	6/23	6/24	6/20	61007
Item	Ice Storage	Ice Storage	Ice Storage	Chiller 4/5	Icc Storage	Chiller 4/5	Condense	Cooling	Cooling
	int onlige	ice choruge	ine manage		lee bloluge	ennor #5	Water	tower in	tower out
800	0	2446	2507	0	1708	0	0	86.1	82,3
830	0	1678	1700	0	1700	0	0	83.7	82.3
900	0	1785	1786	0	1793	989	0	94.5	83.3
930	0	0	0	0	0	989	0	97.3	87.1
1000	0	0	- 0	0	0	1004	0	97.7	87
1030	0	909	980	983	0	1009	0	96.8	87.5
1100	0	678	633	973	0		0	96	86.9
1130	0		697	986	0	981	0	96.4	87.2
1200	0	757	688	996	0		0	96.7	87.6
1230	0	825	755	990	0	984	0	96.4	87.3
1300	. 0	832	719	984	0	992	0	96.5	87.3
1330	798	804	766	996	0	0	0	96.8	87.5
1400	806	841	861	973	0	0	1054	96.6	87.5
1430	880	896	844	963	0		1173	97.1	87.9
1500	924	962	929	986	0	0	1164	97.7	88.5
1530	846	989	911	998	0	0	1170	97.3	88.3
1600	.908	966	842	990	0	0	1090	97.3	88.2
1630	883	1010	864	990	0	0	1193	97.3	88.3
1700	1013	1031	857	975	0	0	1082	97.3	88.2
1730	1078	1123	1065	987	0	0	1092	97.7	88.3
1800	1117	1095	1005	991	0		1076	97.8	88.3
1830	1133	1096	1098	996	0	0	1190	98	88.5
1900	1130	1075	911	975	0	0	1205		88.4
1930	• • • • • • • • •	934	913	969	: 0	0	1203	97.7	88.4
2000	924	886	942	983	0		1073	97.3	88.3
2030	920	894	908	971	0		1188	97.1	88.1
2100	·····	926	928		0		1170	97.5	88.3
2130		915	926		0	0	1028	97	88
2200	924	917	947	970	0	0	1121	96.7	87.6
2230	948	914	1755	946	0	0	1099	96.1	87,3
2300	1800	1783	1746	995	0	0	978	92.4	85.7
2330	1765	1737	1739	984	0	0	1208	89.6	84.1
2400	1745	1789	1782	0	0	. 0	751	86.3	83.9
30	1770	1757	2446	1508	0	0	941	86.4	84.1
100	1741	1772	2575	1488	0	0	1471	86.4	84.1
130	2477	2771	2575	1514	0	0	1400	85.8	81
200	2575	2493	2575	1506	0	0	1435	87	82.4
230	2575	2493	2575	1519	0	0	1446	87.5	82.8
300			2575	1519	0	0	1445	87.3	82.6
330			2575	1487	0	0	1437	87.3	82.7
400			2575		0	. 0	1417	87.3	82.8
430			2575	1514	0	0	1428	86.8	82,2
500			2575		0			86.7	82,1
530	· · · · · · · · · · · · · · · · · · ·		.2575		0	0	1418	86.6	82.1
600			2575		0			86.7	82.3
630			2575				1460	86.6	82.3
700			2466		0			86	82
730	2458	2493	2450	0	0	0	512	81.4	81.5

 Table 10-9
 Measured Flowrate and Temperature around Chillers

10-50

.

Table 10-10 (Air Condition) Heat Loss from Entrance

No	Average Velocity	Temp Inside	Temp Outside	Width	Height	Area	Comments	Heat Release Rate
	m/s	°C	°C	m	m	m²		(kcal/hr)
1	1.086	21	30	1.7	2.05	3,485		38053
2	1.024	24	28	2	1.71	3.42		15649
3	-0.9	25	31	2,37	2.1	4.977	Auto Door 6 Sec	30024
4	-0,86	26	30	2.37	1.76	4.1712		16030
5	1.7	22	25	2,37	1.76	4.1712	Auto Door /Broken	23765
6	1.57	22	27	2.37	1.76	4,1712	Auto	36580
7	1.6	20	30	2.33	1.76	4.1008	······································	73299
8	-0.84	20	30	2,34	1,73	4.0482	Auto/Broken	37989
9	1.8	22	- 28	1.8	2.1	3.78		45607
10	2	23	30	1.77	2.1	3.717		58134
11	1.46	23	30	0.86	2.1	1.806		20620
12	1.53	24	. 31	1,77	2.1	3.717	·	44473
20	1.35	24	28	0.9	2.34	2.106		12705
Total								452,928

* Note: Negative value of average velocity means out-going air flow.

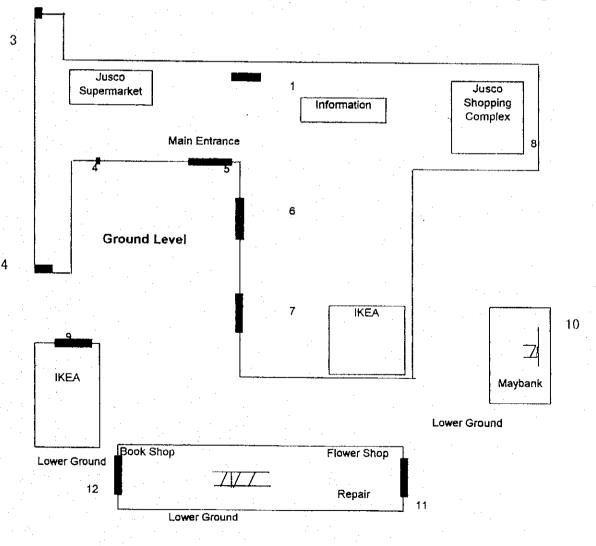
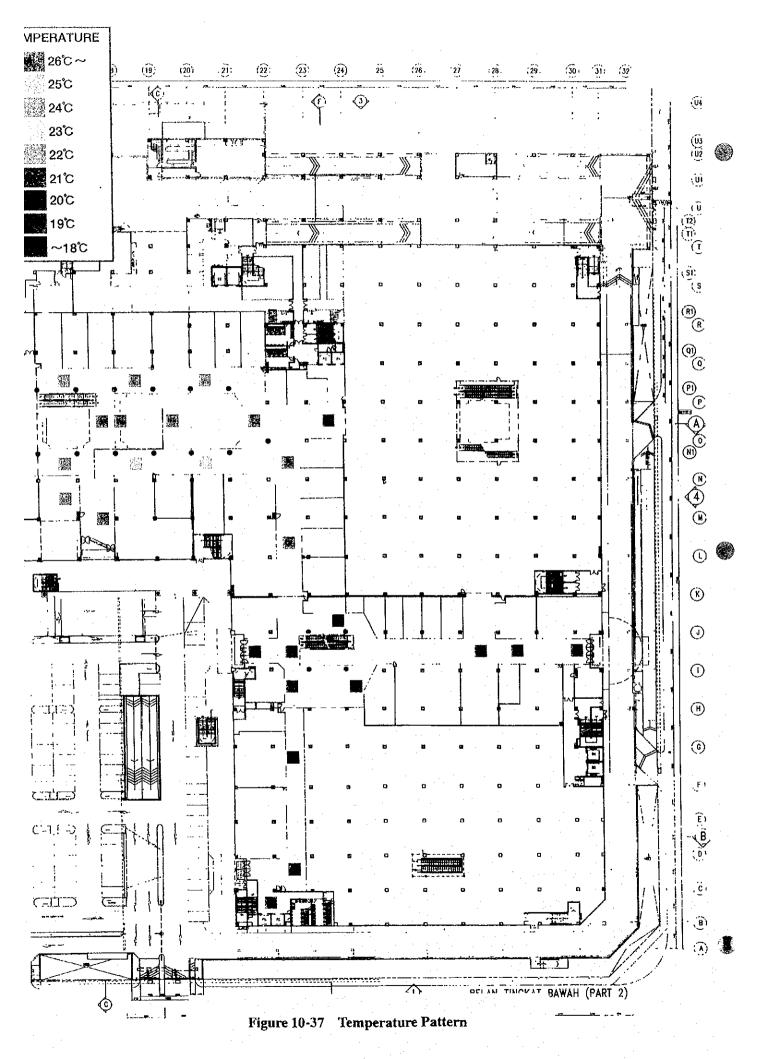
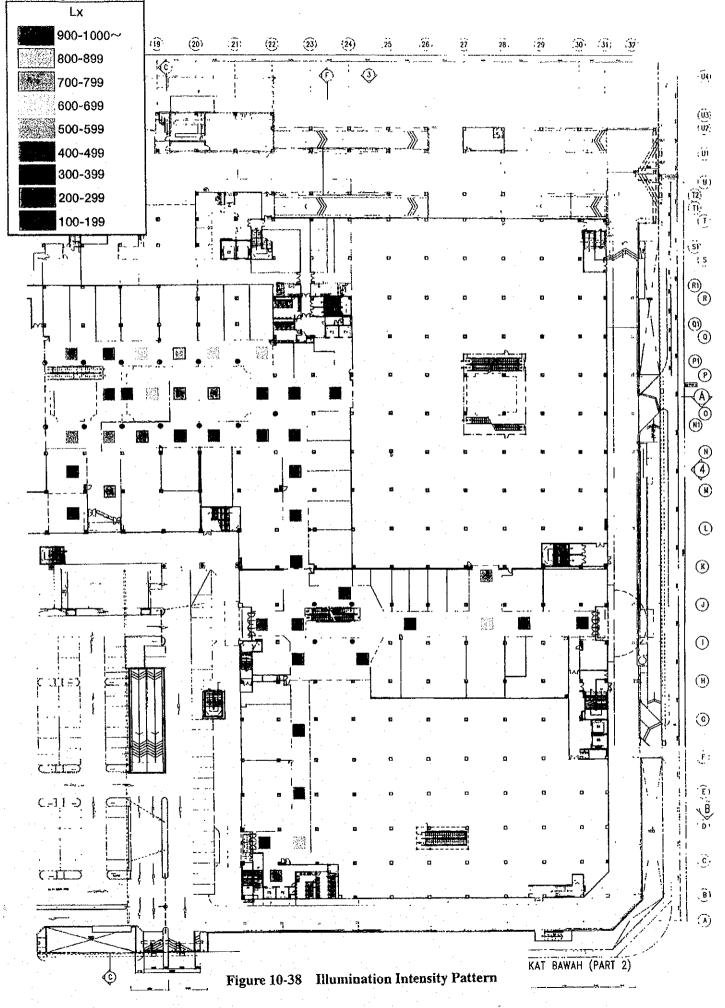




Figure 10-36 Measuring Points of Heat Loss

10-9 Energy Efficiency Promotion Checklist

Using a checklist of 101 energy efficiency promotion items, we found the following list of energy efficiency promotion items in this shopping complex.

10-9-1 Architectural Structure

(1) Installation of Blinds and Curtains

Around the back side of the building (service and office area), some windows have no blinds or curtains to shelter the rooms from sunshine.

(2) Renovating Glass Windows (Thermic Ray Absorption, Adjusting Films)

To shelter the building from sunshine, renovating the glass windows by adopting thermic ray absorption films would also be effective.

(3) Repair to Slits Weathering on the Walls

Slits and weathering causing air leakage should be repaired or renovated.

10-9-2 Renovation and Expansion of Facilities

(1) Air Conditioning

(a) Overall Air Heat Exchanger (Exhaust Air/Intake Air)

At present, fresh air to the building comes mainly from the entrances of the building.

The concentration of carbon dioxide in the building shows around 200 ppm, far below the maximum allowable contents of 1000 ppm. Therefore, it is not necessary to increase the intake air volume by opening the air damper of the air transferring room. And return air of the air conditioning system is reclycled to the air blower suction, providing the most effective method of energy efficiency promotion (direct use of cold energy).

However, in future when the occupancy rate and number of customers increase, the installation of an overall air heat exchanger is highly recommended.

The ratio of intake air to reclycle air should be adjusted by the concentration of carbon dioxide.

(b) Renovation of Regenerative System

This measure is being studied in detail as a recommended improvement.

(c) Alternation of Energy Source, Heat Source and Heat Sink

In this shopping complex, electricity is the main energy source. But in future, if LPG becomes available it is useful to study the adoption of a co-generation system.

(d) Adoption of Variable Air Volume (VAV) System / Variable Water Volume (VWV) System

This system (VAV) is already adoped in part. However the installation of an additional VAV system would be more effective when some energy efficiency promotion measures are adopted.

(e) Review of Zoning Conditions and Increasing Number of Zones

This shopping complex has quite a sophisticated and well designed air-conditioning system. However, the control of temperature is conducted by manual adjustment of air dampers at end users. Consequently, the temperature pattern in the building shows quite uneven data. This measure does not need big investment, but would be quite effective. We studied this in detail in the following section.

(f) Prevention of Draft by Adjustment of Room Pressure

Room pressure of the building depends on the discharge pressure of air blowers and the air tightness of the building. In this building, air flows from the main entrance to back entrance quite freely. After under taking some steps, re-measurement should be conducted to avoid unnecessary high pressure. A large pressure defference between outside and inside the building causes a waste of energy.

(2) Lighting System

(a) The illumination intensity of the building shows quite eneven values. This is one of the items listed in this report for detailed study.

(b) Introduction of Power Factor Control System

The power factor of No.2 incoming supply shows a very low value. The cause of this low power factor is from the low operation load of chiller.

The introduction of a power factor control system would probably be an effective improvement. But in this study, the ice storage system was renovated.

10-9-3 Operation, Maitainance Management, Living Style and others (Air Conditioning)

(a) Reduction of Suction Air Volume during Air-conditioning

Judging from the carbon dioxide concentration and room temperature of the building, it is possible to decrease the suction air from the entrances.

This measure is one effective method for energy efficiency promotion.

(b) Adjustment of Suction Air Volume according to CO2 Content

This is another effective method, together with the installation of a carbon dioxide detector.

(c) Introduction of Automatic Control for Air-conditioning

The operation of the air-conditioning system is conducted by computer-control, installed in the control room of Bandar Utama City Corporation. However the shopping complex itself is unter the management of JASCO. The information exchange between JASCO and Bandar Utama City Corporation appears to be in sufficient to achieve the common target of attaining higher energy efficiency. Before the introduction of an automatic control system for air-conditioning, some rules should be established between both parties to enable mutual enjoyment of cost reductions by higher energy efficiency.

(d) Other Recommended Items

Inspection & Repair of Air-leakage in the Ducts

Cleaning of Coils & Filters of Air-conditioner

Clean Condensers & Evaporators of Chillers

Reinforcement of Monitoring System by Increasing Measuring Equipment

Clean Lighting Appliances and Replacement of Old Lamps

Increase Lighting Efficiency by Cleaning Inner Surfaces of Rooms

Extinguishing Lights Around Windows

Regular opening/closing of Blinds

Reliable closing of Front & Stair well Doors

Frequent opening/closing of Windows

Publication and Request to residents for Energy Efficiency Promotion

10-10 Results of Energy Audit

ð

10-10-1 Electrical Power Receiving and Distribution

The single line diagram and distributing network are shown in Figures 10-7 and 10-8 in Section 10-8.

	(Maxim	um Electricity / I	Facility Capacity×100)
Name of Transformer	Capacity	Max. EL	Demand Ratio
	MVA	MVA	%
	15	6.3	42.0
T11-2	15	5.4	36.0
T3-1(TX-1)	5	1.737	34.7
T3-2(TX-2)	5	4.018	80.4*
T1	2	1.736	86.8*
Т3	2	1.768	88.8*
UC-T4(Ring Feeder 2B)	1.5	1.535	102.3*
UC-T3	1.5		
UC-T2	2		
UC-T1	2	3.148	157.4*

(1) Demand Ratio of Transformers

Table 10-11 Demand Ratio of Transformers

The Demand Ratio of Electricity should be kept at around sixty percent (60%) to achieve high energy efficiency.

(2) Electric Power Balance

During the day time, Ring Feeder 2B and Nationwide Plaza of the No.1 System consume a considerable amount of electricity. Ring Feeder 1A of the No.2 System also consumes a large amount. Electricity to Chiller No.1/3/5 is only used during night time. Accordingly, the load of No.1 System is bigger than that of No.2 System.

(3) Incoming Voltage

The incoming voltage constantly exceeds 33 kV. The highest value shows 34.35 kV (104.1 %) at night during the measurement period. Higher incoming voltage, which makes

the voltage of the downstream side higher, will cause the following effects.

Electricity consumption increase in resistance load (fluorescent light) and rotation load (motor).

Reduction in the life span of fluorescent lights (for example).

(4) Frequency

The stability of electricity frequency depends mainly on the supplier's conditions. The deviation of frequency was within the allowable range between 49.5 and 50.5 V during almost all the measurement period; however it sometimes shot up to 49 to 51 V instantaneously. The rise and fall of the electricity's frequency leads to the electricity loss of rotating machines (lowers the efficiency).

(5) Electricity Consumption Trend

The difference in electricity consumption between day and night is as follows.

No.1 System: 3.2/5.5 kWh=58%

No.2 System: 1/2.5 kWh=40%

(6) Power Factor

The incoming supply No.1 is of a reasonable value, at over 0.85. The incoming supply No.2 is between 0.5 to 0.6, which is regarded as too low.

10-10-2 Air-conditioning System

(1) Chillers

The following is the simplified energy balance around the chiller system.

a) Number of chillers: 5

b) Capacity of chillers: AHU utilization 1000RT(Refrigeration Ton) /

unit (high temperature)

é

Ice making 700RT/unit (low temperature)

(Electricity consumption: 1,000kw/Unit)

c) Daytime operation (14 hours):

One unit operation 1,000RT/Hours×10Hours=10,000RT

Utilization of stored ice 4×700 RT $\times 10$ Hours=28,000 RT

Total 38,000 RT/day required

d) Ice making operation (10 hours):

4×700RT×10Hours=28,000RT

Capacity of ice tank: around 5,000 to 6,000 (×5=25,000 to 30,000)

(2) Cooling Towers

There are six cooling towers in the chiller circuits. The number of operating towers changes depending on the mode of operation by remote control, to achieve effective energy management. Judging from the appearance of cooling towers, there is no serious maintenance problem.

10-10-3 Lighting System and Air Conditions

The following tables show the illumination intensity and the room temperature of each floor.

	Average	Max	Min
Ground	518	2168	129
First Floor	368	1580	89
Second Floor	496	1081	89

Table 10-12 Illumination Intensity (Lx)

Table 10-13 Room Temperature (℃)

	Average	Max	Min
Ground	21.7	26	18
First Floor	21.4	23	19
Second Floor	22.5	24	19

a) Wind velocity is not a problem in most areas as it is below 0.5m/s.

b) As the average illumination intensity is a rather high value, a decreased value would contribute to considerable energy savings.

c) There are considerable differences in intensity between different areas.

d) Room temperature is rather low.

e) There are also big differences in temperature.

f) Front and back entrances are always open, which causes considerable heat loss.

10-11 **Total Energy Balance of the Shopping Complex**

		1		and the second	the second second		
Energy	Utilization	Energy Const	imption	Lake Side Building			
Туре		Basic Unit	kcal / h*10 ³	Basic Unit	kcal / h*10 ³		
Electricity	Chiller	4700 kWh/h	10575	490 kWh/h	1100		
	Lighting	1870 kWh/h	4207	520 kWh/h	1170		
	Lifts	300 kWh/h	675				
	Others	200 kWh/h	450				
LPG	Cooking	2.86 m ³ /h	68	3.01 m ³ /h	71		
City	Kitchens / Toilets	12.23 m ³ /h	-	6.84 m ³ /h	-		
Water	·						
Total			15907				

 Table 10-14
 Total Energy Balance of the Shopping Complex

Energy Calculation Rate : (EL) 2250 kcal / kWh, (LPG) 23,640 kcal / Nm³

Energy Consumption Pattern and Maximum Demand :

Peak Consumption :	70%
Off-Peak Consumption :	30%
Maximum Demand :	9380 kW

a) Heat released from Cooling Tower

Total Condense Water: Temperature Difference: Heat Transferred:

24,700 Ton/Day 3.78℃ $93,300 \times 10^3$ kcal/Day

 $191,751 \text{ m}^2$ b) Total Area of the shopping Complex: c) Energy Consumption per Area:

1,990 kcal / m²/Day 717×10^3 kcal / m²/Year

Compared to Japanese energy consumption level, this shopping complex shows rather high value because of ice-storage system. (1996 Data of Japanese Department Store and Supermarket: 345×10^3 kcal / m²/Year)

Figure 10-39 illustrates energy flow of the shopping complex.

450,000 kcal/h 2.8% 675,000 kcal/h 4.2% 68,000 kcal/h 0.4% 4,297,000 kcal/h 26.7% 10,575,000 kcal/h 65.8% **Cooking & Others Air Conditioning** Lighting Others Lifts 16,065,000 kcal/h **Total Primary** Energy 100%LPG 68,000 kcal/h 0.3% 15,997,000 kcal/h Electricity 99.7%

Figure 10-39 Energy Flow of Shopping Complex

10-12 Measures for Energy Efficiency Promotion

10-12-1 Improvement of Electric Power Receiving and Distribution

(1) Demand Ratio of Transformers

It is recommended that in order to adjust the allocation of electricity load to each transformer, the maximum demand ratio should be kept under eighty percent (80%).

Č.

(2) Electric Power Balance

As the transformers are operating at below capacity, load imbalance poses no serious problem for the time being. However, further increase in load requires a study of the electric power balance together with the efficiency of transformers in future.

(3) Incoming Voltage

Tap adjustment of the transformer or adoption of an automatic voltage controller is recommended.

(4) Frequency

There is no regulation regarding acceptable frequency deviation in Japan. But a Japanese power supplier would keep it between 49.8 and 50.2 Hz in the case of a 50 Hz region for example. It is recommended that the operating conditions be observed constantly as a measure.

(5) Electricity Consumption Trend

It is preferable to keep the value at around seventy percent (70%) by improving the ice storage system for example.

(6) Power Factor

The following measures should be taken to improve the low power factor up to 0.5 to 0.6.

- a) Improve the operating method (including ice storage system), as the operating load is low judging from the power factor of 0.5 in the Chiller TX-1 circuit.
- b) Most circuits except Ring Feeder No.1A show below 0.6. It is recommended that the uneven current of each phase be studied and the connection load adjusted.
- c) In order to improve the power factor, it is necessary to review the condenser capacity and the automatic circuit of power factor adjustment.

10-12-2 Improvement of Air-conditioning System

(1) Chillers

Further energy savings could be attained by changing the current operating method to an improved one.

Present: one unit / daytime, four units / nighttime

Improved mode: zero unit / daytime, five units / nighttime

(No chiller operation during daytime)

This change could contribute to a reduction in the maximum demand and take advantage of the difference in electricity prices between night and day to the maximum extent. However, ice-making by the five chillers during night time will not be able to supply enough heat to the system, and additional ice-storage tanks will be required.

Unit operation for ice making:

 700×5 units $\times 10$ Hours = 35,000

A capacity increase of the chillers or an energy saving of 3,000 RT is required.

10,000 RT ice storage tanks are necessary.

From the above calculations, it is strongly recommended that new ice-storage tanks be installed by utilizing the existing spare tanks to the maximum. It is also recommended that a study be conducted on ice-storage expansion method tanks, since new effective energy-saving technology (energy regenerative system) is quite commonly used in Japan, such as plastic ice balls (latent heat storage).

To reduce the electricity consumption of pump motors, a variable water volume system (VWV) would be effective.

In Malaysia, the utilization of natural gas has become quite common and cost-effective. In the event of future expansion of this shopping complex, utilization of natural gas should be studied together with co-generation systems, absorption type chillers and so on.

The brine of this chiller system is ethylene glycols in water. And the concentration of ethylene glycols is 28% (35% is maximum concentration). Increasing the concentration of EG would lower the melting point and make the temperature difference greater. Consequently the chiller capacity could be increased.

(2) Air Handling Units

Maintenance of AHU is strongly recommended, especially for the leakage of ducts, cleaning of filters and removal of blocking materials. By careful maintenance of these, pressure drops through the system would decrease and electricity consumption could be saved together with air-quantity control. Installation of a heat exchanger for intake-air and recycling-air (overall type or partial exchangers) is recommended. Co-operation and collaboration between Bandar Utama City Corporation and JUSCO is essential to achieve effective energy use.

(3) Other Facilities

The building itself is quite new and built airtight. However, the following would further improve energy saving.

Install blinds and curtains (especially management area)

Renovate glass windows by adopting thermic ray absorption-adjusting film Repair of slits and weather strips on the walls.

10-12-3 Improvement of Lighting System and Air Conditions

a) As the lighting intensity of each shop is rather high, decreasing the lighting intensity of common areas would highlight the interior of the shops better.

b) To normalize the lighting intensity, the following measures should be studied.

Reduction of number of lights one switch covers

Utilization of outside light (sun shine)

Adoption of automatic on-off switch

Control system for lighting intensity

c) Decreasing the air volume of the AHU could increase the average temperature, leading to energy efficiency. In addition, the adoption of an inverter control for the AHU fan, which depends on heat requirements, would also contribute to further energy efficiency. The variable air volume (VAV) system should be studied for controlling air volume.

d) The installation of temperature censors at critical locations provides an effective energy saving method. And the cost of censors is quite cheap.

e) Front and back entrances are always open, which results in a large heat loss.

10-13 Selection of Energy Efficiency Promotion Technology

10-13-1 Electric Power Receiving and Distribution

(1) Demand Ratio of Transformers

Among the various electrical equipment, the transformer is highly efficient but still experiences energy loss. There are two kind of losses in the transformer, non-load loss ("Iron Loss") and load loss ("Copper Loss"). To decrease the loss, it is important to use low-loss materials and to optimize the transformer use. Specific examples of the latter are optimization of transformer capacity, high efficiency-operation (60 - 80%) and stoppage of unnecessary transformers.

In the case of this shopping complex, the second item should be studied.

T3-1/T3-2: Change of load allocation

T1/T3, UCT1, UCT1:

Installation of new transformer

(2) Electric Power Balance

This shopping complex has adopted the advanced chiller system. However, the design of the system does not fully utilize the merits of the freezing system, as there is still one chiller operating during the day time. By changing to non-chiller operation, this electric power balance could be normalized.

(3) Incoming Voltage

Tap adjustment of the transformer could be done without any investment as a minor improvement.

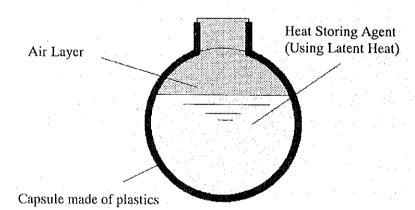
Adoption of an automatic voltage controller is recommended for major improvement.

(4) Power Factor

It is probable that the automatic power factor controller is not properly functioning judging from the data. (TX-1, Ring feeder)

Modification of the chiller operation method would improve the power factor.

10-13-2 Air-conditioning System


(1) Chillers

The adoption of Stockage par Chaleur Latente system (STL) is highly recommended. STL is illustrated in Figure 10-40.

a) This system is characterized by its larger heat capacity compared to the water (ice) heat storing system.

 $\mathcal{L}^{(1)}_{\mathcal{L}}$

- b) It would contribute to highly economical operation of the chiller system. And also the space for the tank is smaller compared to existing facilities.
- c) Either the utilization of existing spare tanks or new installation is possible.
- d) In the case of new installation, either vertical, horizontal or panel type can be adopted.
- e) As heat storage agents, there are several candidates to improve the chiller efficiency, such as NaCl, NH₃Cl, KCl and NaCO₃ solution for a lower temperature system.

Figure 10-40 Stockage par Chaleur Latente

f) During storage and release of heat, the heat transfer agent (water) circulates the outer side of the ball and exchanges heat with the heat storing agent through the plastic layer.

(2) Air Handling Units

In this shopping complex, a large amount of cold air is released from the entrances of the building. By making the system air-tight, it would be possible to use recycled air as a cold air source.

10-13-3 Lighting System and Air Conditions

(1) Lighting

It is preferable to adopt lamps of higher efficiency. Table 10-15 shows that the efficiency of a high pressure sodium lamp is about twice that of an incandescent bulb.

	Lamp Efficiency (lm/W)	Total Efficiency (lm/W)	Heat Generated (kcal/h/1000lm)	Average Life (hours)
Incandescent Bulb	15	15	57	1,000
Halogen Bulb	21	21	41	2,000
Fluorescence Lighting(40W)	81	65	13	10,000
Fluorescence	86	79	11	10,000
Lighting(100W)				
High Pressure Mercury Lamp	55	52	17	12,000
Metal Halide Lamp	76	72	12	9,000
High Pressure Sodium Lamp	119	108	8	12,000

Table 10-15 Lighting Source and Efficiency

(2) Air Conditions

Table 10-16 shows the characteristics of air leakage through three kinds of doors. As (area $(A) \times \text{flow factor } (\alpha)$) shows the degree of air-leakage, the rotating door is the best one among the three. However, a rotating door without an air-tight structure is less effective.

Type of Door	Position	Area $(m^2)(A)$	Flow Factor (α)	$A \times \alpha(m^2)$
1. Single Layer Door	Close	0.100	0.7	0.070
	Open	4	0.5	2.000
2. Double Layer Door	Close/Close	Two single connected in s	layer doors are eries.	0.049
	Open/Close		Ditto	0.070
3. Rotating Door	Close		· · · · · · · · · · · · · · · · · · ·	0.016
(Air Tight Structure)	Open	0.03	0.7	0.021

Table 10-16 Door Characteristics by Type Difference

10-14 Potential of Energy Efficiency Promotion

The following are the potentials of energy efficiency promotion.	
a) The stoppage of incoming transformer:	20 kW
b) Decreasing the illumination intensity:	24 kW
c) Increasing the temperature of building area by $2^{\circ}C$:	940 kW
20% reduction in electric energy for chiller	
d) Prevention of heat loss from entrances:	75 kW
80% reduction in entrance loss (452,000 kcal/h)	
e) Utilization of off-peak electricity:	940kW-100 kW
Decreased electricity: 20+24+940+75-100= 959kW	(23,000kW/D)
Converted electricity from daytime to night: 940kW	(22,560kW/D)
Current Daily Consumption: 7,070kW	(169,700 kW/D)
Rate of Decrease: 13.5%	

Convert Ratio: 13.3%

These ratios are quite high, and further studies are necessary to total the economic aspects.

10-15 Cost of Energy Efficiency Promotion

The following is a summary of the cost of energy efficiency promotion.

(1) Stoppage of incoming transformer

The transformer (T-11-1) could be stopped, since the transformer's total load is rather small. Consequently, only the transformer (T-11-2) would operate.

Manual cut-off operation could be conducted.

Cost : Zero

(2) Decreasing the illumination intensity

a) Extinguishing unnecessary lights : 100W*100 (10 kW)

Cost : Zero

b) Replacing incandescent bulbs (100W) with fluorescent lighting (60W) : 40W*100 (4kW).

As the life of fluorescent lighting is about ten times longer (10000hrs) than an incandescent bulb (1000hrs), the cost difference could be neglected.

Incandescent bulb (100W), ¥300/Piece ; Fluorescent lighting (60W), ¥1,440/Piece

Cost : Zero

c) Automatic on-off system activated by lighting intensity : 100W*100 (10kW) Material Cost, ¥166,000 ; Renovation Cost, ¥100,000

Cost: ¥266,000

(3) Increasing the temperature of building area by 2°

Cost: Zero

Cost: ¥126,000

Cost: ¥8,000,000

(4) Prevention of heat loss from entrances

80% reduction in entrance loss

- a) Air Curtain
- b) Rotating Door

(5) Utilization of off-peak electricity

- a) Ice Strorage : ¥68,000,000
- b) Brine and chilled water exchanger/ brine tank/ pumps : ¥10,000,000
- c) Instrument : ¥8,000,000
- d) Piping : ¥21,200,000

Cost: ¥107,200,000

10-16 Benefit of Measures for Energy Efficiency Promotion

In this section, benefits are estimated of the five measures for energy efficiency promotion for which energy-saving potentials have been estimated, based on the current price of energy in Malaysia.

())

10-16-1 Current Price of Energy in Malaysia

Electric power could be saved by all the recommended measures for improved energy efficiency. The current price of electric power conforms to category C2 of TENAGA NASIONAL's tariff, effective from 1 May, 1997, in the case of Bandar Utama Shopping Center. The following rates are applied, according to this category of tariff.

- Peak load rate (between 800 and 2200 hours): 0.208 RM/kWh
- Off-peak load rate (between 2200 and 800 hours): 0.128 RM/ kWh
- Maximum demand charge: 25.7RM/kW/month

10-16-2 Benefits of Measures

(1) Stoppage of Incoming Transformer

The benefit derived from this measure is estimated at 36,770 RM/year by the calculations shown in Table 10-17 below.

Table 10-17 Estimation of Benefit from the "Stoppage of Incoming Transformer" Measure

No.	Item		Estimated Value	Remarks
· ·	· · · · · · · · · · · · · · · · · · ·		Estimated value	I Contar K5
_	icity Saving Effectiveness		20 kW	
1				
2	Electricity saving at peak time		102,200 kWh/ycar	① x 14 h/d x 365 d/y
3	Electricity saving at off-peak time		73,000 kWh/year	① x 10 h/d x 365 d/y
(1)	Saving in max. demand		20 kW/month	1
Savin	g in Electricity Bill			
(5)	Electricity saving at peak time		21,258 RM/year	② x 0.208 RM/kWh
6	Electricity saving at off-peak time		9,344 RM/year	③ x 0.128 RM/kWh
\bigcirc	Saving in max. demand charge		6,168 RM/year	④ x 25.7 RM/kW/m x 12 m/y
8	Saving in Electricity Bill	· .	36,770 RM/year	5 + 6 + 7

(2) Decreasing the Illumination Intensity

A 58,533 RM/year benefit is estimated from this measure by the calculations shown in Table 10-18, assuming that effectiveness of this measure is concentrated in the twelve hours of business.

Table 10-18 Estimation of Benefit from the "Decreasing the Illumination Intensity" Measure

No.	Item	Estimated Value	Remarks
Electr	icity Saving		÷
1	Effectiveness	24 kW	
2	Electricity saving at peak time	210,240 kWh/year	① x 24 h/d x 365 d/y
3	Electricity saving at off-peak time	none	
4	Saving in max. demand	48 kW/month	① x 24 / 12
Savin	g in Electricity Bill	·	
6	Electricity saving at peak time	43,730 RM/year	② x 0.208 RM/kWh
6	Electricity saving at off-peak time	0 RM/year	③ x 0.128 RM/kWh
1	Saving in max. demand charge	14,803 RM/year	④ x 25.7 RM/kW/m x 12 m/y
8	Saving in Electricity Bill	58,533 RM/year	5+6+7

(3) Increasing the Temperature of Building Area by 2°

Table 10-19Estimation of Benefit by the Measure"Decreasing the Temperature of Building Area by $2^{\circ}C$ "

No.	Item	Estimated Value	Remarks
Electric	city Saving		
1	Effectiveness	940 kW	
2	Electricity saving at peak time	8,234,400 kWh/year	① x 24 h/d x 365 d/y
3	Electricity saving at off-peak time	na a strategian. Na tratta tratta	
4	Saving in max. demand	1,611 kW/month	① x 24 / 14
Saving	in Electricity Bill		
5	Electricity saving at peak time	1,712,755 RM/year	② x 0.208 RM/kWh
6	Electricity saving at off-peak time	0 RM/year	③ x 0.128 RM/kWh
\bigcirc	Saving in max. demand charge	496,965 RM/year	④ x 25.7 RM/kW/m x 12 m/y
8	Saving in Electricity Bill	2,209,720 RM/year	(5) + (6) + (7)

The benefit of this measure is estimated at 2,209,720 RM/year, which is the largest among those of the recommended measures for Bandar Utama Shopping Center. The estimation is made as shown on Table 10-19, assuming that effectiveness is concentrated in the fourteen peak-time hours.

(4) Prevention of Heat Loss From Entrances

A 182,916 RM/year benefit is estimated from this measure by the calculations shown in Table 10-20, assuming that effectiveness of this measure is concentrated in the twelve hours of business.

Table 10-20Estimation of Benefit from the"Prevention of Heat Loss From Entrances" Measure

No.	Item	Estimated Value	Remarks
Electr	icity Saving		
1	Effectiveness	75 kW	
2	Electricity saving at peak time	657,000 kWh/year	① x 24 h/d x 365 d/y
3	Electricity saving at off-peak time	none	
4	Saving in max. demand	150 kW/month	① x 24/12
<u>Savin</u>	g in Electricity Bill		
5	Electricity saving at peak time	136,656 RM/year	② x 0.208 RM/kWh
6	Electricity saving at off-peak time	0 RM/year	③ x 0.128 RM/kWh
\bigcirc	Saving in max. demand charge	46,260 RM/year	④ x 25.7 RM/kW/m x 12 m/y
8	Saving in Electricity Bill	182,916 RM/year	5+6+7

(5) Utilization of Off-peak Electricity

A 836,520 RM/year benefit is estimated from this measure by the calculations shown in Table 10-21. By this measure, part of the peak electricity demand is able to be shifted into the off-peak period in order to use electricity at a lower rate.

No.	Item	Estimated Value	Remarks
Electr	icity Saving		
1	Effectiveness	940 kW	
2	Electricity saving at peak time	8,234,400 kWh/year	① x 24 h/d x 365 d/y
3	Electricity saving at off-peak time	- 9,110,400kWh/ycar	- (① + 100) x 24 h/d x 365 d/y
4	Saving in max. demand	940 kW/month	1
Savin	g in Electricity Bill		
5	Electricity saving at peak time	1,712,755 RM/year	② x 0.208 RM/kWh
6	Electricity saving at off-peak time	-1,166,131 RM/year	③ x 0.128 RM/kWh
1	Saving in max. demand charge	289,896 RM/year	④ x 25.7 RM/kW/m x 12 m/y
8	Saving in Electricity Bill	836,520 RM/year	(5) + (6) + (7)

Table 10-21 Estimation of Benefit from the "Utilization of Off-peak Electricity" Measure

A. S.A.

10-17 Financial Evaluation of Measures

In this section, financial evaluations are made of the following measures involving investment in order to find out the financial feasibility of the measures.

- Decreasing the illumination intensity
- Prevention of heat loss from entrances
- Utilization of off-peak electricity

Financial evaluation is not conducted for two measures with benefits, "Stoppage of Incoming Transformer" and "Increase the Temperature of Building Area by 2°C", since they do not require investment.

10-17-1 Method of Financial Evaluation

(1) Applied Method

Two different methods, both widely used and accepted for financial evaluation of the investment projects, are applied in the study. The first method is the payback period method to calculate the payback period defined as the period, required to recover the investment outlay through the accumulated net cash flows earned by the project. The second method is the internal rate of return (IRR) method on discounted cash flow basis. Financial Internal Rate of Return on Investment (FIRROI) is defined the discount rate for which the present value of net receipts from the project is equal to the present value of the investment.

(2) Payback Period

Net cash flow is defined as follows:

- 1) Increased Sales Revenue
- 2) Less: Fixed Investment
- 3) Less: Pre-production Expenditure
- 4) Less: Increase in Net Working Capital
- 5) Less: Increased Operating Costs
- 6) Less: Increased Marketing Costs
- 7) Less: Increase in Corporate Tax Paid

In the case of the investment for improved energy efficiency, the change in sales revenue and

marketing cost should be zero. The changes in net working capital and pre-production expenditure are negligible in the case of projects for improved energy efficiency. Fixed investment was estimated in the previous section. Changes in operating costs, which mainly include changes in utility bills such as electricity and fuel, were also estimated. Corporate tax change is calculated based on the change in taxable profit due to changes in operating costs, in consideration of the country's tax rate, and depreciation system.

When calculating the payback period, a cash flow table starting from the construction period to the operating period is created. Accumulated net cash flow is negative during construction due to fixed investment and pre-production expenditure, however it will increase by the recovery of capital and become zero in a certain year. The payback period is defined as the period from the start of operation until the year when the cumulative net cash flow is zero.

(3) Internal Rate of Return (IRR)

The calculation procedure begins with the preparation of a cash flow table in the same way as the payback period method. Then, the discount rate when the cumulative net cash flow of the project becomes zero is obtained by trial-and-error. The thus discounted rate obtained is the Financial Internal Rate of Return on Investment (FIRROI).

10-17-2 Premises for Financial Evaluation

Financial evaluations are made on the following premises.

- 1) Exchange rate: US\$ 1 = RM 3.8; US\$ 1 = JY 118
- 2) Project life: 15 years from the start of operation
- 3) Corporate tax rate: 35 percent
- 4) Depreciation: The straight-line method is applied. Depreciation rate is 7.5% per annum for the plant and machinery.
- 5) Fixed investment: The fixed investment cost shown in Table 10-22 in Malaysian Dollars, converted from Japanese Yen value in the section 10-15, is used for the financial evaluation.

Table 10-22 Fixed Investment for Measures

Measures	Fixed Investment, RM
Decreasing the illumination intensity	8,566
Prevention of heat loss from entrances	261,685
Utilization of off-peak electricity	3,452,203

10-17-3 Results of Financial Evaluation

Table 10-23 shows FIRROI before tax, FIRROI after tax and payback period for the three measures. Estimated cash flow tables for these measures are presented in Tables 10-24 through 10-26.

Measures	FIRROI before tax	FIRROI after tax	Payback Period
Decreasing the illumination intensity	683.3%	446.8%	0.2 years
Prevention of heat loss from entrances	69.9%	47.9%	2.1 years
Utilization of off-peak electricity	23.2%	16.4%	5.4 years

Table 10-23 Results of Financial Evaluation

10-17-4 Conclusion of Financial Evaluation

According to the information obtained during the field survey, the lending rate in Malaysia has been ranging from 12 to 14% per annum recently. This rate could be regarded as an indication of the opportunity cost of capital in Malaysia.

For all three measures, FIRROIs calculated exceed this rate. In addition, the first two measures, "Decreasing the illumination intensity" and "Prevention of heat loss from entrances", have good payback periods, and the last measure "Utilization of off-peak electricity" has a reasonable payback period duration. It is concluded that all three measures can be regarded as financially feasible under the conditions of this study.

			Tabl	Table 10-24 C	ash Flow 1	able (Mea	sure: Decr	Cash Flow Table (Measure: Decreasing the Illumination Intensity)	llluminatio	n Intensity	~				Cni	Unit: RM
				ſ	-		9	4	8	6	10	11	12	13	14	15
Year	0		7													
Less: Fixed investment Plus: Reduction in operating cost	8,566 0	58,533	58,533	58,533	58,533	58,533	58,533	58,533	58,533	58,533 20.262	58,533 20,262	58,533 20,262	58,533 20,262	58,533 20,262	58,533 20,412	58,533 20,487
Less: Corporate lax increased	0	20,262	20,262	207,02	707'07	202,02	20202	58,533	58,533	58.533	58,533	58,533	58,533	58,533	58,533	58,533
Incremental Cash Flow (before Tax Incremental Cash Flow (After Tax)	-8,566 -8,566	38,271 38,271	38,271	38,271	38,271	38,271	38,271	38,271	38,271 297.605	38,271	38,271 374,148	38,271 412,419	38,271 450,691	38,271 488,962	38,121 527,083	38,047 565 , 130
Cumulative net cash flow	-8,566	29,705	67,977	106,248	144,519	127'121	700,122		2004 1 1 2	-		•				•
Denreciation		642	642	642	642	642	642	642	642	642	642	642	642	642	214	0
		- -			•											
			Table	Table 10-25 Car	sh Flow Ta	ble (Measu	ure: Prevei	sh Flow Table (Measure: Prevention of Heat Loss from Entrances)	at Loss fro	m Entranc	cs)				4] L	NB date
				-						ľ		:	¢1	13	7	15
Vers	0	1	2	3.	4	5	ę	-	×	4		11	14			
Less Fixed investment Plus: Reduction in operating cost	261,685 U D	182,916 57.151	182,916 57,151	182,916 57,151	182,916 <i>57</i> ,151	182,916 57,151	182,916 57,151	182,916 57,151	182,916 57,151	182,916 57,151	182,916 57,151	182,916 57,151	182,916 57,151	182,916 57,151	182,916 61,731 1016	182,916 64,021
Incremental Cash Flow (before Tax) Incremental Cash Flow (before Tax)	-261,685 -261,685	182,916 125,765	182,916 125,765	182,916 125,765	182,916 125,765	182,916 125,765	182,916 125,765	182,916 125,765	182,916 125,765 744,433	182,916 125,765 870 197	182,910 125,765 995 962	125,765 125,765 1,121,726	125,765 125,765 1247,491	125,765 125,765 1,373,255 1	121,185 494,441 1	118,895
Cumutative net cash flow	-261,685	-135,920	-10,155	115,609	241,5/4	001,100	505,264	onotorn					10 676	767 01	6 547	c
Depreciation		19,626	19,626	19,626	19,626	19,626	19,626	19,626	19,626	19,626	19,626	19,620	19,020	070'61	7+5-10	2
				2 	•	•										
			T	Table 10-26	Cash Flot	w Table (M	leasure: Ui	Cash Flow Table (Measure: Utilization of Off-peak Electricity)	Off-peak I	Electricity)					'n	Unit: RM
	4		ſ	ę	Ą	~	9	L	8	6	10	11	12	13	14	15
Year Less Fixed investment n. n. h. douter is constitue cost	3,452,203	836.520	836.520	836.520	836,520	836,520	836,520	1	836,520	836,520	836,520	836,520	836,520		836,520	836,520 203 727
Less Cornorate tax increased	0	202,162	202,162	202,162	202,162	202,162	202,162		202,162	202,162	202,162	202,162	202,162	201,102	67 CT 207	236,520 836,520
Incremental Cash Flow (before Tax -3,452,203	-3,452,203	836,520	836,520	836,520	836,520	836,520 634 358	836,52U 634,358	1.1	634.358	634,358	634,358		634,358		573,945	543,738
Incremental Cash Flow (Alter 1ax) -5,452,203 Cumulative net cash flow -3,452,203		-2,817,845		-1,549,128	-914,770	-280,412	353,947	988,305	1,622,663	2,257,022	2,891,380		4,160,097	4,794,455		,912,138
Denerciation	0	258,915	258,915	258,915	258,915	258,915	258,915	258,915	258,915	258,915	258,915	258,915	258,915	258,915	86,305	0

•

10-77

10-18 Recommendations for Energy Efficiency Promotion

Based on the energy audit and subsequent study for Bandar Utama Shopping Center, the following measures are recommended for improving its energy efficiency.

(1) Measures Requiring Investment

- (a) The following are recommended: decrease the illumination intensity by installing an automatic on-off system activated by lighting intensity; replace incandescent bulbs with fluorescent lights; and extinguish unnecessary lights. This investment measure can be regarded as financially feasible based on the financial evaluation.
- (b) It is recommended that heat loss from entrances be prevented by installation of a rotating doors and air curtains. The investment for this measure appears financially feasible.
- (c) It is recommend that off-peak electricity be utilized by expanding the ice storage system. The investment can be said to be financially feasible as well.

(2) Measures Not Requiring Investment

- (a) Stoppage of the incoming transformer, T-11-1, is recommended. This measure will enable an RM37,000 annual saving in the electricity bill without any investment.
- (b) It is recommend that the temperature of building areas be increased by 2°C. By this measure, an RM 2.2 million annual saving in the electricity bill is expected. This is the largest benefit among the recommended measures.

(3) Other Recommendations

Other recommendations are listed in Table 10-27.

Table 10-27 Other Recommendations

Category		Recommendations
Architectural Structure	(a)	To install blinds and curtains on windows to shelter rooms from sunshine
	(b)	To renovate glass windows by adopting thermic ray absorption film
	(c)	To repair slits and replace weather strips on the walls
Renovation and Expansion of Air-	(a)	To install an overall air heat exchanger in future when the number of customers increases
conditioning	(b)	To make a study on the co-generation system if LPG becomes available as a heat source in future
	(c)	To install an additional Variable Air Volume (VAV) system
	(d)	To adjust the room pressure to prevent excess draft
Operation,	(a)	To reduce suction air volume from entrances
Maintenance, Management, Living Style and Others	(b)	To adjust suction air volume by installation of carbon dioxide detectors
	(c)	To establish rules of air-conditioning system operation between Bandar Utama City Corporation and JUSCO before introducing an automatic control system for the air-conditioning system
	(d)	To inspect and repair air leakage from the ducts
	(e)	To clean coils and filters of air-conditioners
	(f)	To clean condensers and evaporators of chillers
	(g)	To reinforce the monitoring system by increasing the number o measuring equipment pieces
	: (h)	To clean lighting appliances and exchange aged lamps
	(i)	To increase lighting efficiency by cleaning the inner surfaces or rooms
	(j)	To extinguish lights around windows
	(k)	To regularly open/close blinds
an a	(l)	To regularly close front & stairwell doors
	(m)	To frequently open/close windows