
ATTACHMENT- 5

The Existing Data of Water Quality

The Existing Data of Water Quality (1/3)

og S	S	<u> </u>	8			ΓΙ	8	Γ.	<u> </u>		Τ	T	Γ	Γ	Γ	1	Γ	<u> </u>	r	ſ	Ī]	ľ	Ī	<u> </u>	Γ.	r	Γ	8	Ţ	Γ	23	Π	8	38	Γ	ø	Γ	Γ	T	1	Γ	Ţ	I -	П	S
ğ	(mg/) (mg/l)	ō	o,	õ	0.01	ó	01	õ	-	0.01	-	┞	0	-	န်		-	┞	ē	┞	ե	5	 	<u>-</u>	5	Ē	5	ō	ō	-	0	õ		7	0	ŀ	-	-	-	ŀ	Ŀ	-	-	2,2		F
S G			-		o.	20	48 0	4	26	12.0			8	-	12: 0.01		-	-	<u> </u>	 -	900	40 0.01	8	8 0.01	8	0.0	δ0 8 :		 -	-	8	Ö	-	0.01		-	-	-		 -	5 0.0			0.27	-	4.8
I	(mg/l)	õ	-	0.01	0	10	-	0.03	0.08	શ	800	900	0	-	o	8	0.3	220	o	0.24	500	0.01	500	100	ğ	-	Ļ.,	-	-	-	900	800	0.1			-	┢	5	2	0.01	5	600	0.01		2	8
	(man) th	9.1	H	L	0.8	3.2 0.01		0.04	0.1.0	0.1 0.05	9.	0 80	8.0	5	9,0	1.6	8	84	32		2.8.0	0,40	2,2	0	0.79 0.04	ļ	1.1 0.05	L	H	2	9		3.5		-	3	-	7.610.01	7.9: 0.01	8		_		7	2.3/ 0.01	o e
		524	170	L	510		8	102	12	838	8	ı	278	142	<u>. </u>	246	ŧ	ŀ	88		8	1	362	2.6	98		3	١	-	14.2	ł	170 0.55	L_I	č	3	27	Ω	1_	374 7	424	326 0.08	306	350 0.08	L	294 2	550 0.88 0.04
20 TOTAL		2	54				Ľ	34	2 2		L	L	2	9	90	26. 2	2 4338	<u> </u>	9	6 2954	ŀ	28	1	L	18	8		70 140	Q.		30 152		-				230	380	L	L	32	L		134		
8,	->	12 2	9	•	22	Ц				67 708	8 48	1.		12	9	13	L	8		L	<u>်</u>	L	20,5	l	15	Ŀ	12	0		Ľ	8 3		34 260	95:	13 4	8 37	3 110	9 160	8 130	┖.	88	33 336	24 164	13 40	2 128	51 231
_	IN (MG/I)	L.	0.3		25	4	453 670	2	21 . 12	5	2	1.	7	-	L	1	3240 2150	2	5	90	1		20 2	i	L.	30		L	1.	38 11.8						4.6	8 113	7 78	7.48			Į.		1	42	175
305	(mg/l) (mg/l)	0.25	L.			6	¥.		Ĺ	L	Ľ	47	_	_	2.9	8.5	č	- 2	0.25	300	0.3	4	Č	Ľ	2	0.0	<u>. </u>	0.3	┺	ိ	2.5	-	5	_	- 2	_	48	37	15.7	22		စ္	\$	4		1.2
-	_	6	1.0.0	5			á	1	3 0.01	٠	٠			ŀ		L		25.			_	_			L		1.3	Ľ			ŀ	1.51	_	3 0.01]		-	L		0.07					0.08
	(mg/l)	6'0	2.1		5.5		. 8	٠		6.67	0	L.		-	1.5	4	3		28		ò		-	28	F		0.46		î	3.6	,		3	Ċ		0	2.65	1.2	7		~	~	-	-		2.1
	(mg/l)	462	300	997	576	[.4900	120	276	204	133	201	312	124	3		2.6 9000	552	258	3360	108	1.4	3	262	282	403	77	258	355	186	147	282	860	571	330		615	516	420	8	479	380	378	204	330	23
ŏ	(mg/l)	36		21	3	5.6	12	12	4.5	3	4	2	40	9.	17	3.5	2.0	2.5	4	2	9.6	4,8	?	7	*		7.		ဂ	9,0	4	15	35			3.8		28	28	4.8		.75	42	60	8	8
2	3	26			: : :			23					8		77	10			010		15	8	137	2	36			:			38	57								ľ	00					80.08
2	(July	44				0,0	16	7.6	17	=			8	~	33	5			á		8.8	6.0	27	7.2	96		10	-			9.0	4		1			-			ľ	13	-			1	8
2	POW.		0.15			0	0.3		0.1	ō	3.9	1	:	10,511,50		9.0	ai i	8 1 9 7	-	2.9.11.8	1.9.	1	Ö		-	-	6:5:		ö	0.0	Г	0.7	391: 1:24	4.0	0.15	ò	0.45	0	040	0	0.3	0.1	15 0,13	9.0	3	5
2 2 2	(mb)	42		21	1.5	4	-22	•	2.3	r	2	4.6	5	0.5	3,4	0	2	9	•	2.9	1.9	3.0	5.3	2.4	2	7	0.9 5.9			0	6.4	5.1	39		_,	2.7		22	15	9.7	1.7	36	15	4.9 0.04	9	8
£	(may					0.05		:	0.03	0.05	ô	0.01	:			0.1	0.0	7		0,3	Ó	9	70	Γ		Γ	0.12	1		0.1		0.01	o			0.5		0.01			0.02	0.0	0.01	0.07	ó	0.0
Ş	(mgv)		170				3708											Ī		1	Ī		Γ	Γ		244	Π	0 140	Γ		П			365	700		230	ĺ					Í		1	
<u> </u>	(mg/l)		٥				0					Γ														0	П	٥	П				Ī	ö	0		0								1	
	7	2	0	-	۲,	8,5	0	•	0.0	0.7	4	3.7	က	75	4	5	7	9	8	38	Ċ.	1	4	7	10				٥	4	2	2.4	-	٥	٥	2	0	1	. 26	-	2.2	Ŧ	2.5	5.4	ς.	0.0
8	ð	2	٥	5	\$	v	10	S	S	9	8		S	3.0	2	ŝ	8	*	8	8	ટ્ટ	ş	3	0	2		6.9 200		٥	5	2	Ş	·	0	٥	ŝ		Š	9	5	2	S	z,	5	5	Š
¥	-	8.4	7	8.7		7.8	7.6	7.6		7.9		8	7.7	7.8	2.6	400 8.4	2	6	8	8.6	7.3	7.4	7.3	90	7.7	7.2	6.9	6.7		7.1		3)	®	8				7.9	8.3	8.9					_ E	8.1
ន		770	·	760	960	2	7000	200	480	\$	2,0	485	520	290	330	ş	5000	920	65	5600	180	9	750	4	470		130			310	245	470	÷			8		980	200	300	790	650	630	340	3	1580
Valer	-	46	121	63	9	2	¢	. 15	181		٥		8			169	~	7	8	50	63				43		4.7	8	102	ç	0.1			9	3	37	24	18	20	17	37	0	20	-	Ş	9
Depth of	(L)	8	152	183	122	152	122	155	214		2	-	ş	-		226	ဒ္ဓ	707	120	8	Ş	124			62	Н	_ :	1	H			37	3	3	22	128	Н	-	308	40	11	33	59	2	2	26
)ent	3010	301	8	ş	<u>ş</u>	8	9		Н	ł	8			9 2	1tary	8	2	Hary	8	3			9	£08	8	ş	8	ş	8	ent	ž	9	8	ş	8	ş	8	8	8	itary.	Iteny	<u>و</u>	ş	8
1		Besement	Volcanics	Volcanios	Volcenics	Volcanics	Volcanios	· Volcanics	Volcanice		Volcanics		Voicenios			Volcenics	Sedimentary	Volcanics	Volcanics	Sedimentary	Volcanics	Volcanica			Volcenics	Votcanics	Volcanice	Volcanics	Volcanice	Volcanics	Volcanics	Basement	Вазетеп	Volcanics	Volcanice	Volcanics	Volcanics	Volcanica	Volcanica	Volcanics	Volcanics	Sedimentary	Sedimentary	Voicanice	Volcanics	Voicenios
Lettude Type of squifer		0.0e3 E	0.083		_	_		0.483			F	\vdash	_		1 4		0.550 Se	1 083 V	0 800				L.	H		Щ	-	Н	Ш	Н	\perp	_	-	-4	_1		-	•	-	Н		\neg	7	-	-	-
			1							H	\vdash	-		1				63 1.0	83	67 10.4	38 0.4	H	Ŀ			83 0.000	17 0.0	33 0.0	83 0	000	33 0.0	် လ	် လ	0/2	67 10.0	<u>်</u>	67 0.033	0 0	17 0 2	17 0.000	67 0.433	83 0.3	83 0.0	8 0.0		2
1	_	235.8	535.7	736,2	35.0	3	736.0	935.7	9	٩	ļ _s	ĺ,	2	4	2	4	36.0	535.8	136.0	536.0	355.7.	ç	8	Ā	~	135,8	435.0	135.7	36.0	36.1	35.7	37.7	칊	3	ŏ Ç	27.0	37.0	~ 28	136.7	36.8	80	37.0	36.9	30.8	<u>.</u>	20.8
SAMPLING LONGRAD	DATE	02-701-9235.867	ELDAMA PAVINE 29-MAY-5/35,783	13-JUN-9/36,283	11-JUN-9/35,967	18-101-8635,733	03-NOV-7 36.017	00-MAR-635,733	25-SEP-86	SEP	07-SEP-82	28-JUL-83	のうべついつつ	28~UUN-84	26-N∩ <u>-</u> 90	05-DEC-84	46-JUL-8536.050	16-JUL-8535.883	11JUN-9/36,083	16-JUL-8536,067 0.487	AUG-	04-DEC-90	24-AUG-90	23-MAY-04	15-701-02	06-AUG-4 35,883	25-SEP-8/35,917 0,033	21-SEP-435,733 10,050	16-MAY-6 36,083 0.017-	11-SEP-8 36.100 0.000	900	MAR	16-NOV-837,133 0,183	20-NOV-5 36,467 0.317	₹AP	22-MAR-737.033 0.050	16-APR-5 37.067	01-NOV-836.750 0 100	4 A	22-OCT-8/36.817	25-MAR-836.567	16-OCT-8/37,083 0,383	30-007-9 36.983 0.083	20-MAH-836.833 0.000	02-NOV-837,117 0.033	22-AUG-8/36.817 0.150
3		õ	IN1 29	13	-	=	ဗ	S	25	25	ò	28	8	28	ő	S	1	16	-	16	24	Š	24	23	45	8			-	1.	IE 16	?	<u>=</u>	2	5	8	\$	ő	õ	23	32	φ -	ጰ	ģ	5	22
MOMPHON		Ç	IA FAVI	LBE	DIS	¥	D.	NET									4.7	NG	(PE)	NT.	NET					9	J	ARAMIN	¥	7	A PAVIN	4	إ	5		≾	Į.	5	1	<u>⊀</u>	5	8	7	s		اٍ
		EMINING				٠.		KABARNET		L			÷	L,			MARKGAT	NOINYANG	TANGULBE	MARIGAT	KABARNET						EMINING	722 Kolband ELDAMA RAVINE	2484 Kolbetek KISANANA	4916 Kolbetek KISANANA	5396 Keitwick ELDAMA RAVINE 16-JUL-9235,733 (0.050	CENT	CENTRAL	HOMOH FOR	CENTRAL	ZANCERIA A	CENTRA	PUNURU	RUMURUT	AMUPUA	PUMURUT	MUKOGOOO	CENTRAL		CENTEN	SNT AL
DISTING	۰	616 Baringo	628 Kolbatek	3437 Baringo	3470 Fladings	3500 Renings	3868 Burings	4722 Baringo	COLUMN TO	9	e u	o.uu	Contract	Seringo	obum	opulas	6362 Peringo		6364 Beringo		8870 Seringo	o.	ocus	OCULA	84 Kottestes	576 Kalbatek	711 Kolbetek	Colbetted	Colbetek	olbetek	Coltyntek	alkipia.		4 Lelkipte	149 Lalkiple	290 Laileiche							- 4	- 5	- 1	
9		616	626	1437	470	Š	3868	1722 E	4915 Beringo	5072 Baringo	5170 Barnes	5349 Beringo	5487 Seringo	5754 Seringo	5755 Buringo	5883 Beringo	362	363 E	364 E	385	870 E	SOB7 Caringo	9152 Beringo	846 E	84 ×	576 K	Ž	¥22.	48 48 4	916 X	396 ×	26 L	2	히	9	280	201	286	297	900	342 Leikipie	372 ℃	373 L	8	2	SSS Lelkiple
<u> </u>		0	၁	Ü	o	ö	o	ပ	Ç	Q	ļ	U	-	C		ပ	ш		ပ			-	<u>က</u> ပ	Q-23 C 10846 Beringo	Ц		. 1	1	٥ ن	_	-		o,	اد	١	٠	Ö	O	J		_[o,	o	J.	3 6	5
4		ō	Ġ	9	Ö	S	Š	ó	ф С	o O	0	ċ	0-12 C	0.13	0-14 C	0-15	3 9 D	0-17	91-0	0-19 C	0.50	0.21	0-22 C	23	0.24	O-28	0.50	0 7 0	0.58	0-28 C	၁၀၈-၀	0.33	υ 20 0		8	S	8	3	8	0 00 0	9	2	ç	2	3 3	3

Value exceeding guideline for constituents of health algnificance
 Value exceeding guideline for permissible eestheric quality

Onideline Value
(** secondans with Thesign Manual for Water Supply as Kanya".)

· Permissible authoric quality

The Existing Data of Water Quality (2/3)

	THE NO. SIO.		0.01			T	01 25	14		1	4.5	2	20.00	6	001 20	0.19	10.01	-		200	1000	9	7.	98	0.01	0.01 40		0.52	0.02	0.01	0.01	30 0.01	8 9	0.1	I_	0.05	000	8 0.01 37.8	-	25	50.0		24)	-		300	1000	Q.	20: 0.01		4.001	7	0.00	0.00	0.00	22 25 0.00 0.00 0.00
	CA PO. CO.		1.8 0.01	47 0.01	0.03	25.001	-		4	79 0.01	500	,	500		-	2.1 0.04	2 0.07	0.79 0.01	151 0,01	0,0	2000		7 0.01	-	2.1 0.03		5 0.01	3	2000	200	40.04	- 00		8 8	L	6.0	9,0				2004	φ		0	0.01	0.24 0.1	9	P.0	0.01		ö		5 5 6 6	ပ် ပုံ ဝ ဝ ဝ	6 6 6 6 6	666
- F		-1-	222	190 178 0	9	300	404	236	280	102 316 0	Ş	3 8	3 6	24.	L	5 200	210	8	202 0	1	30,000	536	261 296		442	L		45.2	2 4	326	9: 290 0.	154	45 365	368	Ŀ	352 0	302	2 226 0.16	3.46	01.7	200	88 540 0	248	76	250	0 924		42 676 0	510	14 590	2 322 0	5	440	322 1	202 4 440 322 1 1 1	6 440 1 6 322 1
	So. C.	98	74	3	┛.	20 33	3	3.5 33	8	21 46 1	3 8	36 37		Š	85 158	166 324	418	4	319 66	0 0	1	67.	4	62 86	85 200 2	12 22	32 . 61	2 8	10.6	8	32 79	1.7 12	3 6	23 53	77.7	2.9 17	40 129	303, 109, 36	Ш	11.5	2.7. 5 9.3. 4B	277	. 5	1 45	_	70 168 07	2	156			۳)	•	03 10 64 22 6	٦١٣١٦	٦١٣١٣	
	(mg/l) (mg/l)			9	?	1.3	1 1			0.7		1	3 e	201	100.00	٥	3.4, 0.06	9.0	0.54	2	0 85	-	0.32 0.87	2.2 0	5,5 0.01	3.5 1.8	1.2		1 1 0 0 1	ò	0.55 0.08	2	2.5	2.6 0.08		0.58	0.4	0.54		1.4	1.60	1.3	1.4 0.3	0.33	9,0	1000	90	158	1.5	12.5 2.2			4			
	(mg/) (mg/) (mg/)		5,4	42 324	. 1		Ш		71 380	22 384	Т	900	7 2 2		118	1.1 1178	6.0		120 588	2	25		9	710	88		30 414	Ş	300	3 9	0.0	2.6		4.4		925	80 768	52 780	100	20 350	11.2 120	1153			58 420	126 /82	1	5.6 1200	Ž	4.8			32 516			
	× ĝ		3 6 140	24		8	0.2 6; 158	0.5 10 103	<u>-</u> ,	213	1 2	•	100			0.3 13 370	0.3 7.4 260	S-0	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.		.1 21 170	0.6	2 43 250	0.3 13 150		- 6	A A	14	5	5,6,4	4	15.6		8	4 7.6 195	2 11.1 130			2 0.4				ŀ	2 14 86		8 17 5.6	6				3,4 168	191	171	171
c /7) fam	the Ng Fe	0.01 24 0.1	2.2	0.01 21 0.		3.6.8	4		0.01 27 0	2001	7	1	0.01		40,010	0.01 0.1 0	6.3	0.01	9	000			0.1 1.4 0			3	0.01	0.04	0 0	.1.	0.2	0.01	_1.	_		0.2 0.2	0.2	4	1 ***		0.01 5.8 0.1		;	5.310	چ اع	0.07 30 02	1	4.2 6.7 0.8	9	0.5	0		28	38.02	32	28.02
water Cua	CO, HCO,				1		38 366	3		25	P000 a	#A7 0		0 244	24				27.0	9,0		536		0 380	1 44	36 403		0 45.2		0 329		-	0 365						346	40			1.0	3					019	1						
ng Data of	PH COL TURBE		- 5	9 /	2	L	2		3	٥	?	ų,	0.0	,	¢	5	4 5	6.0 5 7.5	7.9	0 0 0	2 0		7.6 5 1.5	0	2 5	S	0 10 6	1	0,0	20	5 0	7.0 5 1.1	7.5	8.3 5 2.4	0	8.8 5 3	0 8	8 5 1.2		_	0.4	8.8 5 - 50		8 5 5	<u>,</u>	5 5	20,00	8.3 10 20	7.7 2095	5.2 5	0 0		7.7 10 -23			17
I ne Exisur	(4 shrv	15	9 600	\$40			650		000		8	4	_			76 1960	1295	မ္တ မ	26 980	1	-		50 550	-	1660	8	2000	000		L	₽	12 235	356	_		747	23 1005 8	39 1300	12 166	3	2002	36 1926 8	1034	2 250	200	1320	58	1550	Ц	40 1400 8	47 1200 8		6 860 7	11	11	111
	Depth of	58	s 72	1		1	-	251	nt 122	213	7 6	# G	457	1000		180	80	52	2	3	152	128	155	92	213	99	3	3 5	70	20	2	٥ <u>٠</u>	900	82	88	36	႙ၟၜၞ	Ġ	25	8	†	43	180		8			206	146	\$ 5	1367		1	11		
	Lettude Type of equitor	33 Volcenics	50 Volcanics	33 Basement	Volcanio	13 Voleanies	33 Volcanice	57 Volcanics	o Basemer	33 Volcanio	DESEMBLE OF	organia Volenia	O VOICERIO	Volcania	Ordenio V	Volcenio	37 Volcanio	37 Volcanio	Volcanic	Volcania	7 Volcanie	Sediment.	SO Volcanic	7 Volcanio	3 Volcanio	3 Volcanio	Volcanio	7 Volcanio	Volcanica	7 Sedimente	3 Voicanica	Volcenic	Volcanics	3 Volcanios	7. Sediments	OVOICENICE	Volcanics	0 Basemen	7 Volcanica	Volcanio	VOICEUICE	O Voicenios	Volcanice	Volcanios	Севетел			3 Volcanios	7 Volcenice	Sedimentary	Volcenies		3	3 Volcanics	3 Volcenics	3 Volcanics
	PrayBuon	137.317 0.28	20-JAN-8636.683 0.750	337.167 0.1	36.967 0.1	136.717 0.0	04-DEC-7 36,400 0,483	36,300 0.50	\$37.333 0.20	38.500 0.1	37,083 0.2	330.707 0.6	230 / LOUDE	A 6 6 6 0 7	27 167 10 2	336.617 0.4	336.717 0.76	336.650 0.0	137.083 0.3	26.01/	136 433 0 51	38,950 0.18	136.683 0.65	36.767 0.16	38.800 0.18	37,033 0.03	36.850 0.10	37,050 0.06	36.517 0.35	36,983 0.11	36.583 0.48	36,400 0.13	136.567 0.21	36.817 0.18	37.250 0.26	36,483 0.55	36.550 0.58	36.967 0.50	36.683 0.71	36.600 0.30	5	36.850 0.250		5	37.300 0.35		2	36,867 0.03	36.683 0.76	36.760 0.33	20.000		40.311 0.40	04-0CT-0140.311 0.403	39,750 0.34	40.311 0.40: 39.750 0.34
	SAMPUNG	17-001-8	20-JAN-8	18-OCT-8	2000	22-0CT-8	04-DEC-7	- OB-AUG-4	13-OCT-8	24-OCT-8		13-0-1	S-VON-10	NON-YO	S G I S I D	25-WAR-6	26-MAR-6	30-OCT-8	18-00-1-8	CO-MAT-	27-WAR-8	20-FEB-5	13-JAN-8	26-JUL-56	28-MAR-8	21-APR-7	92-NOV-8	13-FEB-5	11-IAN-BE	03-CON-50	25-MAR-8	16-AUG-8	14-SEP-5	25-MAR-8	OS-AUG-6	09-AUG-9/36,483 10,550 Volcanics 2	SA OCT A	20-JAN-87	OR JAN-6	05 VUN-80	30.00 TOOOT	15-MAY-7 36.850	27-MAY-0	28-OCT-84	15-110-8	06-APR-86	25-WAY-82	OD-FEB-RG	22-NOV-9	20 WAR-9	27-0E		ON-OCT-0	04-OCT-0	04-OCT-0	04-OCT-0/40.311 08-OCT-0/39.750
	C DIVISION	CENTRAL	NGARUA	CENTRAL	CENTRAL	RUMURUTE	RUMURUTS	RUMURUTA	CENTRAL	CENTRA	I.	_ J _	- 1	THE PRINCIPLE	COCOUNT IN	RUMURUTI		LAMURIA	CENTRAL	CENTRAL	MGARUA	CENTRAL	NGARUA	CENTHAL	CENTRAL	CENTRAL	CENTRAL	- 1	PUNURUE	CENTRAL	1 1		SCHORUTION OF	CENTRAL	ENTRAL	GARUA	AUKOOODO	4UKOGODO	AMURIA	ENTRA!	YOU SEE	CENTRAL			MUKOGODO			LAMURIA	RUMURUT	RUMURUTI	Crecitors		aldalization	Unauffable	uneuflable	uneuflable
	to Orstrac			67.4 Le	•		951 Celkiple	1018 Lalkipie	1230 Leikipie	1381 (Leiklote			787	ğ		1819 Laterpla PRUMURUTI	1896 Levepte	2023 Lalidola	2 35 Lallone	2050	2318	2375 Lelidole	2400 Lastona	2561 Laidple	2562 Lelione	2576 Lalbpin	2504 Laught	2638	2727 Latteria	2803 Lalidole	ě		2889 Later	2898	3022 Lelidole	Q-85 C 3119 Lelitor	3420 Laton	3434 Lalepte	3533 Leitpie	3563 Lentols	4180 Leidole	4222 Calipie	5010 Laidple			5197 Lattera	5190 Leignie	D-10CC 5236 Lallone L	7805 Lellepie	9029 Lalloge	Office alterior		10823 Lalispia	0823 Leliopie 0830 Leliopie		0823 Lelispia 0830 Lelispia
	ş	046	O.47	0 9 0	9 0	3 (c	O	ပ လ	Š	8) 8)	J.C) ပိုင်	3 C) C		20 C	ပ (၁	9	3	8 6	0	0 99 0	0-70 C	0.7.0		0 73 0	0.74	2 2		o	o	0 0		0 0 0	ပ ရ	O 88	2 C	ე 88-0	ပ ဇွေ ဝ	0 8 0 0) (0 (0 (0	v	O	0 9 0	2 k) (0	0	၁ 	0.101	0 0) (3 (2		D-105C	10501- 0001-	2005 C C	2 5 0 0

The Existing Data of Water Quality (3/3)

	8 g	4	2,	Ž	Ŷ	ß	8	L	8	8		8	-	ľ		ſ	Γ			Ī	<u> </u>	Γ	Ţ				1	T]	Τ	T	ſ	Γ				
İ	2 8		0	ō	٥		0	1	0.4	ö		121			ľ	Γ	Ī	[-	Ī	600			0.01	8	õ	80.0	7	3 2	ò	o	ō	ē	98	00	0.01	o O
Ì	# 8 F	L L	1	ľ	ō	Ī	ō	õ	ñ	ğ		٥	-		ĺ	ľ		-	-	ľ	-	-	8	20	120	Ž,	2	8	3 3	g	Ş	12	28	38	ŝ	38	f -
ľ	8		T		ľ	Ť	ľ	ĺ	ľ						Ī	-	T	r	-	l	ľ	ľ	8	0.0	8	õ,	Ñ	į	۶	õ	000	δ. 0	80.0	0.05	6,0	0.0	0
ľ	\$ E	1	T		-	-	-		1-		-		1.1	6.35	Š			9	42	Ñ	3.2		3.8 0.08	0.2	0.6 0.02	9.5	9,0				63	4.0	4.4	4.7	10.0	::	80
	437	33.6	77.1	346	58	702	44	28	5	ay S	445	329	.7.	310 6.35	464	174	2	202	220	170	262	55	.		246	_1	22	3	Š	8	278	8	797	8	3	278	200
	8 4 8	. J	420	278	1273	 - -	624	8	ò	940		246	-	F	306	1	ı	171	305	420	۱	48.8	38	486	196	28	ġ 3		L	L	L.	L		8	8	8	2
	ကန့် ပြ	8	17	8	24 t	88	570	227	79.7 1761 7430 5020	804	500 1150	-1	8	-	428	51.5 419	8	159 1		124 4	37	16.4	5	113	H	316	000	285	1 ×		21	101	_			ł i	ğ
	\$ 0 E	28	51712	72	533	60	.953 1670	0.3	765.7	63	-	35	Ť	8.18	ľ	3	E	35	-	٢	4	5	<u>,</u>	306	ģ		807	366	100	,-		Ľ		L	IJ	L	5
ŀ	\$ 8	000	10.0	0.0	ł÷'	-		-	9.71	9.0		6.1	-	80	t	-	H	-			-	-	H	ľ		ή	1	1	1	100	+	1	-		-		-
	us w	-		1.3 0.0	99.0	- -	1.2 13.3	1.7	٠ د	+	0.9		6.1	ŀ	1.07	0.17	0.26	9.5	0.47	0.18	ر. دن	8	, ,	0.7	7	2.5	3	٥٣	1-	80	-	1	-	9.6	1.2	5.0	۲ ک
		250	3800	630			4500	150	8	8	LJ	L J	9400	ľ	1580	426 0	°		266 0			4.08 O	380		Ş	_[`	4			633	L	612	980	l_l		l	432
ł		L	4-	_	130	ľ		75	81.12	9	П	Н		Ŀ		K	L	9	ev.	L	*	Ι.		1	^}			100	1	L	L	L	Ц	Ц			Ĺ
ļ	\$ §	5	-		ı	-	1.3		^	4 156		9	7 69.	8	L	64		L		45	-	11.6	6 42	2 118	4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	90: 35:09	00.00		L	1 75	1	1_	8 8		ı		4.0
ŀ	2 §	-	ŀ	L	38:440	-	0100	-	16 3920	4, 31	67.230	12 8	14	_	L	18	L		_	Ц		_	28	o O	30	3			i c	32 154	,	_	3 I	11 38	!	13 137	4 . 27
$\left \cdot \right $	× See	5	0.36	0.5	0	-	56 4,16,1540 3162	5	ļ_	0.6		L	0.2	2	-		 -)B.	Ц	23	8	0	Ľ	Ц		_1		L	Ľ	1	L	5.7	6. 4.2			Ш	5
	9 (mg	30 0.01	o	0	380	L	, 9	0.01		00		44		l i	-	81 0.08	Ö	2,38		4322	32 0.38	3	i		ᅶ			300	17 0.05	67 0.05	12 0.04	4.9 0.05	42 6	7	33	l	24:0
	(mg/l) (mg/l)	ŀ	ŀ	-	60	-	H	۲	1014	H	H	Ц		0.1	L	0.02	0.2	24	2.4	7.78	4	0.1	ш		÷ ;		. 17	-1	02	1			0.3	ľ		0.1	0.1 0.24
,		136	77.	148	195	-	503	_	311	84	445		_	-	ļ.,	ö		0	-	7.		0	0.06	9		٦	s c	°	f	ŏ	-	ó		-	٥	٥	0
-	(mem) (mem)	0		0	-	-	41 5	-	L			41 2	-		H	-	_	Н	H	\vdash	H		H	+	\downarrow	+	-	+	-	-	 	L				\parallel	
	18 C	0	0	0	-	-	0	-	0	0	ō	o	3.2	1.2	•	8	7.8	3.5	8	g		12	1,1	0	ō	?;		-	2.5	8	9.	8	8	2	Š.	=	6.7
ł	88 88	0	õ	٥	3	40	2	10	ŝ	2	2	Ц	8	S	9	2	9	١. ا	8	٠.٠	9	20	\$	4	0	١	, 4) '''	1_		5	Ш		S	8		Ω.
ţ	E	7	6.7	7.3	a ¢	8	9.1	7.8	7.4	7.2	7.5	8.3	7.8	7.6	7.5	7.6	7.9					7.4	7	0.0	? 9	2,0	-	100	7.2	7.2	7	7.3	7.3	732	7.73	0,7	Ş
Ī	ů į	-			8		7500				3200			8	2600	710	2448	8	460	1100 64	8 50				3500		3 2			1554			192	367	848	670 7.9	õ
	a . Ê	23	20	S	_	-		88	11 2		•	4	8	12	26	51				*				5	27	200		1-	6	0	-			Ø	1	1	
ľ	Depth of res	105	116	102	152	90	13	25	-24	H	198	73	128	123	306	50		93						52	2	११		150	8	8	Н	Н	$\left \cdot \right $	7	\dashv	+	
ŀ		Ł	H	Н	Ŀ	2	ary	Ara	ary		L_i	_!			Н	ŭ	H	ē	-				4	-	<u>ا</u>	- '		ľ	-	-	-	-		-	\dashv	+	-
	\$ 6 9	Basemen	Basement	Sasement	Sedimentary	Sedimentary	Sedimentary	Sedimentary	Sedimentary		dimen	Volcanics	Sedimentary	Volcanios	Volcanics	Basement		Basement				Ì		Basement	pasemen	Datament	Record	Basement	Basement	Basement							
ŀ	Lattrude Type of equiter	╀	٠.	H					3 Sec		8	> 0	Š	> o		L		_		7				4	4			1-	ļ.	L.		_	-	5		1	
ŀ		31.18		1.483	1.783	05-JUN-8/37.617 1.133		0.787	24-SEP-7 37.617 1.133	Ц	12-FEB-7137,667 0,633 Sedimentary	13-MAY-7 37.317 0.983	25-MAY-7/37,000 (0.900	23-MAY-7 36.667 1.050	12-101-7637.317 0.983	8		12-FEB-7436.750 1.983		_				21-JUN-8/37,333 0.967	10-UCN-8437.350 0.983	21 11 11 184 36 083 10 817			1.333	21-APR-8 36,933 1,600				16-JAN-9(36.694 1.113		1	
	•	20-FEB-5-38,700	23-AUG-5 36.983	05~JAN-6:36.717	20-SEP-7 36.783	7 017	24-SEP-7 37.817	26-JUL-6937.367	37.617		37.667	37.317	% 80	6.667	37.317	7,333		M.750						7.333	7.350	9	7 06		6.867	6.933				6.694			
ľ		EB-5-12	UG-5	19-N	EP.7	ŏ	Ep.7	.59-J	EP-7	CT-7	10	A.7.	₹.,	AY-7). -70	10-7	<u>ن</u>	-B-710	07-MAH-78	03-JUN-78	11-AUG-78	04-MAR-70	8 10	8	2		16-OCT 8,37,067	17-APR-8/36,767	24-APP-8:36.867	90	\$ \$	44.89	80) 0	9	9	17-FEB-91
	SAMPLING	20-F	23-A) 	20 00 00	3	24-8	26~	26.5	12-OCT-71	2.5	₹.	25.K	23-K	3	2	٥ و	12-F	07-Y	8	<u> </u>	ğ	21-OCT-88	7	3		į	下	24-A	21-4	27-WAY-89	20-MAY-89	09-NOV-80	?	24-APH-90	97.40	V-110
	ž	Γ																1	1	1		1	1	1	1	T		l					1	1	1	†	-
	NOISING	KIRISIA	KIRISIA	KIRISIA	SALISIA	1	nerd tebble	eldalban	esquineur		Paullable	VAMEA	RISIA	HISIA	VAMEA	VAMBA V		neut lable						AMBA	AMBA	KIBISIA	A S	* Chabbe	PISA.	orderbaru.				FESIA			:
	DET THE			mburu h		3565 Semburu unaudabbe	3575 Semberu unautable	3586 Semburu u		WOR	3810 Semburu unsuitable	v modern	3832 Sembury KIRISIA	3833 Gembury KIRISIA	4254 Samburu WAMBA	4315 Samburu WAMBA	3	4449 Semburu uneutable	300	3	S	See.	SPER	7910 Sambur WAMBA	AMBAN WAMBA	7015 Sentum XIBISIA	7916 Sembury WAMBA	7917 Semburo unsultable	7019 Sumbury KIRISIA	abus u	Sp.	3	246	9068 Sentur IKIRISIA	A Property	NA CALL	200
ŀ	<u>e</u>	1505 Semburu	1627 Sembur	1830 Semburu	456 8	565 84	575 S	566 8	500 54	3808 Sembur	810	827 8	832 84	800	254.5		4417 Sembru	40	4457 Sember	4513 Sembers	4530 Semburo	4557 Sembury	7908 Samburo	8010	A SEMBLE		100	17	118 Sa	7919 Samburu	7921 Samban	7922 Sember	8963 Sembur	SOGB Sambur	000	DS28 Sambur	SOCK Samples
ŀ		ို	-				_		J	υĺ	_	_	ບ່	ပ ါ	-	-	_	- †	Ö 4	-+	_	_	إن	olo		-1-	-	F	L. I	-				5 k	5 0	ا د د	
ſ	£	2-110	0-111C	0-112C	0-113C	0-114C	0-1150	0-116C	-117C	21.0	3	0-12GC	2.50		12	27	2428	1260	-127C	D-128C	1250	200	1310	200) (1360	137C	3-13BC	2-1380	9	의	000	200	3 (3

ATTACHMENT- 6

Water Quality Analysis
Final Report

FINAL REPORT

The Study on Project for Groundwater development in Laikipia and the Surrounding Areas of Samburu, Koibatek and Baringo Districts In The Republic of Kenya

WATER QUALITY ANALYSIS

August 1998

JOMO KENYATTA UNIVERSITY OF
AGRICULTURE AND TECHNOLOGY
(JKUAT)

Civil Engineering Department

TABLE OF CONTENTS

EXCUTIVE SUMMARY

CHAPTER 1

INTRODUCTION

- 1.1 General introduction
- 1.2 Terms of reference

CHAPTER TWO

METHODOLOGY

- 2.1 Sampling and Handling of Samples
- 2.2 Laboratory Tests

CHAPTER THREE

RESULTS AND DISCUSSIONS

- 3.1 Results and Analysis
- Samburu District
- Baringo District
- Koibatek District
- Laikipia District

APPENDIX A

APPENDIX B

EXECUTIVE SUMMARY

The study of water quality for boreholes from Baringo, Koibatek, Laikipia, and Samburu districts was carried out from 10/8/98 to 20/8/98. Analysis was done at the JKUAT laboratories. Sampling was done within this period with samples from Baringo and Samburu districts being received on 11/8/98 and from Koibatek and Laikipia districts on 18/8/98.

The maximum Temperature recorded was for sample from Molo river in Koibatek district. The temperature varied between 20° C and 20.4° C for all the samples.

The maximum pH recorded was 9.2 from Samburu district. The range in pH was between 9.2 and 6.8.

The turbidity varied between 17 NTU and 1 NTU units. The highest recorded turbidity in Baringo district was 14 NTU, 2NTU from Laikipia district, 17 NTU from Samburu district and 5 NTU from Koibatek district.

The fluoride levels were generally low, with a range of 0.2 to 3.5mg/l.The highest recorded fluoride content was from Baringo and Samburu districts. The minimum recorded fluoride content was obtained from Koibatek district.

The colour levels were varying between 4 and over 30. The highest recorded colour level content was from Koibatek district.

The carbonate levels were varying between 11 and 239 mg/l. The highest recorded carbonate content was from Baringo district.

The highest recorded hydrogencarbonate content was 465mg/l from Baringo district. The minimum recorded hydrogencarbonate content was obtained from Koibatek district. The range in hydrogencarbonate was between 48 and 465mg/l.

The Hardness levels were generally high, with a range of 47 to 503 mg/l. The highest recorded Hardness content was from Samburu district. The minimum recorded Hardness content was obtained from Laikipia district.

Calcium levels varied between 0.8 to 307.5 mg/l. The highest recorded Calcium content was from Samburu district. The minimum recorded Calcium content was obtained from Koibatek district.

Magnessium levels were varying between 2.3 to 325mg/l. The highest recorded Magnessium content was from Samburu district. The minimum recorded Magnessium content was obtained from Baringo district.

Manganese levels were generally low, with a range of 0 to 4.1mg/l. The highest recorded Manganese content was from Samburu district. The minimum recorded Manganese content was obtained from Baringo district.

The Chloride levels were generally low, with a range of 17.5 to 750 mg/l. The highest recorded Chloride content was from Samburu district. The minimum recorded Chloride content was obtained from Koibatek district.

Conductivity levels were generally high, with a range of 98 to 3760µs. The highest recorded Conductivity levels was from Samburu district. The minimum recorded Conductivity level was obtained from Koibatek district.

The Total Dissolved Solid levels varied between 10 to 1445 mg/l. The highest recorded Total Dissolved Solid levels was from Samburu district. The minimum recorded Total Dissolved Solid levels was obtained from Laikipia district.

The Iron levels were generally low, with a range of 0.1 to 8.8 mg/l. The highest recorded Iron content was from Baringo district. The minimum recorded Iron content was obtained from Laikipia district.

Potassium levels were generally low, with a range of 3.65 to 25 mg/l. The highest recorded Potassium content was from Laikipia district. The minimum recorded Potassium content was obtained from Samburu district.

The Sodium levels varied between 12.5 to 430mg/l. The highest recorded Sodium content was from Baringo district. The minimum recorded Sodium content was obtained from Koibatek district.

The Nitrates level varied between 0.1 to 19.36 mg/l. The highest recorded Nitrate content was from Samburu district. The minimum recorded Nitrite content was obtained from Samburu.

The Sulphate levels varied between 62 to 782 mg/l. The highest recorded Sulphate content was from Samburu district. The minimum recorded Sulphate content was obtained from Laikipia district.

The water from the four districts is expected to be hard. This is due to the presence of ions of magnesium, calcium carbonates, and hydrogenearbonates.

CHAPTER ONE

INTRODUCTION

1.1 GENERAL INTRODUCTION

The main objective of this monitoring exercise was to evaluate the quality of borehole water from the four districts so as to assess its general quality. The executive summary gives an overview of the accomplished consultancy work and the recommendations. This is followed in chapter one (1) with a general introduction of the scope and nature of the exercise, the outcome of the monitoring work and finally the contents of the report.

Chapter 2 gives details of both laboratory method and on-site measurements which were taken to determine the quality of the wastewater and the clean water.

The results and discussion are then presented in chapter 4.

Tables of the sampling points and their results and a list of the participants who concluded the study, and compiled the report are given in an Appendix A and B.

1.2 Terms of Reference

The department of Civil Engineering at Jomo Kenyatta of Agriculture and Technology(JKUAT) was sub-contracted by JICA Study Team to analyze ground water from Koibatek, Samburu, Baringo and Laikipia districts. The terms and conditions are contained in the main contract for consultancy provided by the JICA Study Team. The terms of reference are briefly reproduced below:-

The items to be analysed and monitored are water temperatures, pH, electrical conductivity, turbidity, hardness, colour, Sulphate, Nitrates, Total dissolved solids, Sodium, Potassium, Iron, Manganese, Hardness, Hydrogencarbonate, Carbonate, Calcium, Magnessium and fluoride.

CHAPTER TWO

METHODOLOGY

2.1 Sampling and Handling of the Samples
Sampling was done by the Engineer in-charge of the JICA study team water section.

2.2 Laboratory Tests

Laboratory analysis of the various parameters was carried out as explained.

Temperature:

This was measured in the laboratory using Celsius thermometer.

pH:

pH was determined on site using microcomputer pH meter, Palintest instruments.

Color:

This was determined in the Laboratory with Colimeter cylinders with plane -parallel base and sample observed in diffused light against a white background.

Turbidity:

Turbidity was determined by nephelometric turbidity meter in NTU

Electrical Conductivity:

Electrical conductivity was determined and measured by means of a conductivity meter, model, PT115 Palintest instruments.

Hardness:

Hardness was determined using titrametric method by EDTA titrant, prepared and standardized based on standard methods manual.

Total Dissolved Solids(TDS):

This was determined by filtration and oven-drying of the filtrate at $180^{\circ}C\pm2$ to a constant weight.

Metals:

All the metals were analysed by means of atomic absorption spectrophotometer

Flouride:

Fluoride concentration was determined using the palintest with a direct-reading photometer at 570nm wavelength and a calibration chart.

Nitrates:

Nitrates concentration was determined using the palintest with a direct-reading photometer at 570nm wavelength and a calibration chart

Chloride:

Chloride analysis was based on Argentometric method described in the Standard Methods Manual, 1989.

Sulphate:

Sulphate ions were determined by Gravimetric method as outlined in the Standard Methods Manual, 1989.

Carbonate ions and Hydrogen carbonate ions:

These were determined by titrimetric methods as per standard methods manual, 1989.

CHAPTER THREE

RESULTS AND DISCUSSION

3.1 Result ands Analysis

The tabulated results of the analysis are presented in appendix A in the following order

1) Samburu - Page 12 - 16

2) Baringo - Page 17 - 21

3) Koibatek - Page 22

4) Laikipia - Page 23 - 27

3.2 Discussion of Results.

i) Samburu District

pН

pH range was between 7.7 to 9.2. The pH of 9.2 was recorded at Kisima, Lorroki, while the pH of 7.7 was obtained from an existing well at Kiroriti, Baawa.

Conductivity

Conductivity range was from 1419 to 3760 µs. The conductivity of 1419µs was recorded at Tomiyoi, Maralal, while the one of 3760µs was recorded from an existing well at Wanba location.

Total Hardness

Total Hardness range was between 0 and 503 mg/l, CaCO₃. The value of 503 mg/l, CaCO₃ was recorded at Kiroriti, Baawa.

Chlorides

Chlorides range was between 750 to 130mg/l. The value of 750 was obtained from an existing well at Wanba location, while the value of 130 was obtained from an existing well (AIC) at Wanba location.

Total Dissolved solids

Total Dissolved solids range was between 1445 and 590mg/l. The value of 1445 was obtained from Wanba location. While the value of 590 was from an existing well at Kiroriti location.

Sulphates

Sulphates range was between 0 and 782mg/l. The value of 782mg/l was obtained from Wanba location. While an existing well at Kiroriti location had no sulphate content.

Carbonates

Carbonates range was between 34.5 and 11 mg/l. The value of 34.5 mg/l was obtained from an existing well at Kiroriti location. While the 11 mg/l was obtained from Existing well at Tomiyoi village, Maralal location.

Hydrogencarbonate

Hydrogencarbonate range was between 238 and 144mg/l. The value of 238mg/l was recorded from a well at Wanba location. While the value of 144mg/l was obtained from a existing well at Wanba location.

Turbidity and colour

The highest colour level was sampling point No. 4, Wanba location and that was 8 and turbidity was 17NTU. The lowest was sampling point No. 1 at an existing well, Kiloriti location.

Fluorides

The highest value was 3.5mg/l and was recorded from an existing well at Kisima location. While the lowest value was 0.7mg/l at an existing well at Wanba location sampling point 4.

Nitrates

Generally was of high range between 0.07 and 19.36 mg/l, NO₃.

Metals

Sodium and magnesium were the most dominant ion in most of the well waters ranging from 370mg/l to 45.5mg/l for sodium and 325 to 6.375mg/l for magnesium. Manganese and iron were the least dominant metal ions. The highest recorded iron content was 2.0mg/l at Wanba sampling point 4. While for manganese the highest was 4.05mg/l recorded from the same point as that of iron.

ii) Baringo

рH

pH range was between 7.4 to 9.1. The pH of 9.1 was recorded at Makutano river while the pH of 7.4 was obtained from an existing well at Chepturu village, Koloa location.

Conductivity

Conductivity range was from 1517 to 525 µs. The conductivity of 1517 was recorded at Mukutani river, Mukutani location, while the one of 525µs was recorded from an existing well at Chepturu village, Koloa location.

Total Hardness

Total Hardness range was between 301 and 41mg/l. The value of 301 was recorded at Chemoligot village, Kositet location, while the one of 41 was recorded at Makutani location.

Chlorides

Chlorides range was between 140 to 40mg/l. The value of 140 was obtained from an existing well (CDN) at Tangulubei location, while the value of 40 was obtained from an existing well (AIC) at Chepturu, Koloa location.

Total Dissolved solids

Total Dissolved solids range was between 1060 and 340mg/l. The value of 1060 was obtained from Makutani seasonal river, Makutani location. While the value of 340 was from an existing well (AIC) Chepturu village, Koloa location.

Sulphates

Sulphates range was between 350 and 137 mg/l. The value of 350mg/l was obtained from Makutani seasonal river, Makutani village. While the value of 137mg/l was obtained from an existing well(AIC) Chepturu village, Koloa location.

Carbonates

Carbonates range was between 62 and 6 mg/l. The value of 62mg/l was obatined from Makutani river. While the 6mg/l was obatined from Existing well(AIC), Chepturu village, Koloa location.

Hydrogencarbonate

Hydrogencarbonate range was between 465 and 99mg/l. The value of 465mg/l was recorded at Makutani river. While the value of 99mg/l was obstained from a dug well (CDN) at Sibiro location.

Turbidity and colour

The highest colour level was sampling point No. 6 Makutani river and that was 11 and turbidity was 14NTU. The lowest was 1 at Chemolingot village, Kositei location.

Fluorides

The highest value was 2.40mg/l and was recorded at Chemolingot village, Kositei location. While the lowest value was 1.20mg/l at a dug well in Sibilo village, Sibilo location

Nitrites

Generally was of low range between 1.1 and 0.05mg/lN

Metals

Sodium and magnessium were the most dorminant ion in most of the well waters ranging from 430mg/l to 20mg/l for sodium and 14.875 to 2.265mg/l for magnessium. Manganesse and iron were the least dorminant metal ions. The highest recorded iron content was 3.25mg/l at Makutani. While for manganesse was 0.35mg/l and recorded at Chepturu village, Koloa.

iii) Koibatek District

Compared with water from the other three districts the values obtained were relatively low.

iv) Laikipia District

pΗ

pH range was between 7.7 to 8.2. The pH of 8.2 was recorded from an existing well at Kinamba location. While the pH of 7.7 was obtained from an existing well at Ilindigiri location.

Conductivity

Conductivity range was from 1048 to 486 µs. The conductivity of 1048 was recorded from an existing well at Ilindigiri location, while the one of 486µs was recorded from an existing well at Kinamba location.

Total Hardness

Total Hardness range was between 0 and 434mg/l, CaCO₃. The value of 434mg/l, CaCO₃ was recorded from an existing well at Ilindigiri location.

Chlorides

Chlorides range was between 75 to 17.5mg/l. The value of 75 was obtained from an existing well at llindigiri location, while the value of 17.5 was obtained from an existing well at Kinamba location.

Total Dissolved solids

Total Dissolved solids range was between 700 and 10mg/l. The value of 700 was obtained from an existing well at Ilindigiri location. While the value of 10 was from a spring at Segera, Sirima location.

Sulphates

Sulphates range was between 308.7 and 61.74 mg/l. The value of 308.7 mg/l was obtained from an existing well at Ilindigiri location, while the value of 61.74 mg/l was obtained from an existing well at Kinamba location.

Carbonates

Carbonates range was between 171 and 26 mg/l. The value 171mg/l was obtained from a spring at Segera, Sirima location, while 26mg/l was obtained from Existing well at Kinamba location.

Hydrogencarbonate

Hydrogencarbonate range was between 208 and 170mg/l. The value of 208mg/l was recorded from a spring at Segera, Sirima location. While the value of 170mg/l was obtained from an existing well at Kinamba location.

Fluorides

The highest value was 1.50mg/l recorded from a spring at Segera, Sirima location. While the lowest value was 0.3mg/l at an existing well at Rugutu Sirima location.

Nitrates

Generally was of low range between 1.19 and 0.09mg/lN

Metals

Sodium and magnesium were the most dominant ion in most of the well waters ranging from 62.5 mg/l to 55 mg/l for sodium and 115 to 30 mg/l for magnesium. Manganese and iron were the least dominant metal ions. The highest recorded iron content was 0.30 mg/l from a spring at Segera, Sirima location. While for manganese it was not traced.

APPENDIX A: RESULTS

Date samples were received 11/8/98 Date of Analysis 11-14/8/98

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor: Dr. G. Thumbi

Name of sampling site: Kiroriti, Baawa, Samburu District Sample No. 1

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.1
2	Conductivity(µs)	848
3	PH	7.7
4	Color	>30
5	Turbidity(NTU)	1
6	Carbonate (mg/l, CO ₃₎)	34.5
7	Hydrógen carbonate (mg/l, HCO ₃)	189
8	Manganese(mg/l, Mn)	No trace
9	Magnesium(mg/l, Mg)	110
10	Iron (mg/l, Fe)	0.8
11	Potassium (mg/l, K)	9.5
12	Sodium (mg/l, Na)	45.5
13	Calcium (mg/l, Ca)	39.8
14	Total Dissolved solids (mg/l,TDS)	590
15	Fluorides(mg/l, F)	1.1
16	Nitrates(mg/l, NO ₃)	19.4
17	Sulphates(mg/l, SO ₄)	No trace
18	Chlorides(mg/l,Cl)	180
19	Total Hardness(mg/l, CaCO ₃)	503

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor _Dr. G. M. Thumbi

Name of sampling site: Kisima, Lorroki, Samburu District Sample No. 2

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.1
2	Conductivity(µs)	919
3	pH	9.2
4	Color	>30
5	Turbidity(NTU)	2
6	Carbonate (mg/l, CO ₃₎)	24
7	Hydrogen carbonate (mg/l, HCO ₃)	147
8	Manganese(mg/l, Mn)	No Trace
9	Magnesium(mg/l, Mg)	0.5
10	Iron (mg/l, Fe)	No Trace
11	Potassium (mg/l, K)	3.7
12	Sodium (mg/l, Na)	141
13	Calcium (mg/l, Ca)	1.3
14	Total Dissolved solids (mg/l,TDS)	645
15	Fluorides(mg/l, F)	3.5
16	Nitrates(mg/l, NO ₃)	0.2
17	Sulphates(mg/l, SO ₄₎	262
18	Chlorides(mg/l,Cl)	175
19	Total Hardness(mg/I,CaCO ₃)	No trace

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site: Wanba, Wanba, Samburu District Sample No. 3

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20
2	Conductivity(µs)	778
3	pH	7.5
4	Color	>30
5	Turbidity(NTU)	2
6	Carbonate (mg/l, CO ₃₎)	18
7	Hydrogen carbonate (mg/l, HCO ₃)	238
8	Manganese(mg/l, Mn)	1.2
9	Magnesium(mg/l, Mg)	145
10	Iron (mg/l, Fe)	No trace
11	Potassium (mg/l, K)	6.25
12	Sodium (mg/l, Na)	42.5
13	Calcium (mg/l, Ca)	50
14	Total Dissolved solids (mg/I,TDS)	1380
15	Fluorides(mg/l, F)	1.3
16	Nitrates(mg/l, NO ₃)	0.2
17	Sulphates(mg/l, SO ₄)	556
18	Chlorides(mg/l,Cl)	130
19	Total Hardness(mg/l, CaCO ₃)	376

Date samples were received: 11/8/98	Date of Analysis: 11-1-1/8/98	
-------------------------------------	-------------------------------	--

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site: Wanba, Wanba, Samburu District Sample No. 4

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20
2	Conductivity(µs)	3760
3	pH	6.9
4	Color	8
5	Turbidity(NTU)	17
6	Carbonate (mg/l, CO ₃₎)	32
7	Hydrogen carbonate (mg/l, HCO ₃)	144
8	Manganese(mg/l, Mn)	4.1
9	Magnesium(mg/l, Mg)	325
10	Iron (mg/l, Fe)	2
11	Potassium (mg/l, K)	10.8
12	Sodium (mg/l, Na)	370
13	Calcium (mg/l, Ca)	307.5
14	Total Dissolved solids (mg/l,TDS)	1445
15	Fluorides(mg/l, F)	0.7
16	Nitrates(mg/l, NO ₃)	0.1
17	Sulphates(mg/l, SO ₄)	782
18	Chlorides(mg/l,Cl)	750
19	Total Hardness(mg/l, CaCO ₃)	434

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site: Tomiyoi, Mararal, Kirisia, Samburu District Sample No. 5

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.1
2	Conductivity(µs)	1419
3	PH	6.8
4	Color	16
5	Turbidity(NTU)	12
6	Carbonate (mg/l, CO ₃₎)	11
7	Hydrogen carbonate (mg/l, HCO ₃)	162
8	Manganese(mg/l, Mn)	0.5
9	Magnesium(mg/l, Mg)	140
10	Iron (mg/l, Fe)	1.8
11	Potassium (mg/l, K)	10.5
12	Sodium (mg/l, Na)	135
13	Calcium (mg/l, Ca)	122.5
14	Total Dissolved solids (mg/l,TDS)	1130
15	Fluorides(mg/l, F)	0.9
16	Nitrates(mg/l, NO ₃)	0.1
17	Sulphates(mg/l, SO ₄)	247
18	Chlorides(mg/l,Cl)	160
19	Total Hardness(mg/l, CaCO ₃)	214

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor : Dr. G. M. Thumbi

Name of sampling site: <u>Mukutan, Mukutan, Baringo District</u> Sample No. 6

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.1
2	Conductivity(µs)	1517
3	pH	9.1
4	Color	11
5	Turbidity(NTU)	14
6	Carbonate (mg/l, CO ₃₎)	62
7	Hydrogen carbonate (mg/l, HCO ₃)	466
8	Manganese(mg/l, Mn)	0.1
9	Magnesium(mg/l, Mg)	6.4
10	Iron (mg/l, Fe)	3.3
11	Potassium (mg/i, K)	20
12	Sodium (mg/l, Na)	430
13	Calcium (mg/l, Ca)	7.5
14	Total Dissolved solids (mg/l,TDS)	1060
15	Fluorides(mg/l, F)	1.5
16	Nitrates(mg/l, NO ₃)	0.1
17	Sulphates(mg/l, SO ₄)	350
18	Chlorides(mg/l,Cl)	100
19	Total Hardness(mg/l,CaCO ₃)	No trace

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor : Dr. G. M. Thumbi

Name of sampling site: Chemolingot, Kositei, Nginyang, Baringo District Sample No. 7

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.3
2	Conductivity(µs)	1032
3	pН	8.1
4	Color	>30
5	Turbidity(NTU)	1
6	Carbonate (mg/l, CO ₃₎)	33
7	Hydrogen carbonate (mg/l, HCO ₃)	278
8	Manganese(mg/l, Mn)	No trace
9	Magnesium(mg/l, Mg)	2.3
10	Iron (mg/l, Fe)	No trace
11	Potassium (mg/l, K)	9.3
12	Sodium (mg/l, Na)	95
13	Calcium (mg/l, Ca)	6.5
14	Total Dissolved solids (mg/l,TDS)	835
15	Fluorides(mg/i, F)	2.4
16	Nitrates(mg/l, NO ₃)	1.1
17	Sulphates(mg/l, SO ₄)	165
18	Chlorides(mg/l,Cl)	90
19	Total Hardness(mg/l, CaCO ₃)	No trace

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site: Chepturu, Koloa, Koloa, Baringo District Sample No. 8

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.2
2	Conductivity(µs)	525
3	pH	7.4
4	Color	27
5	Turbidity(NTU)	5
6	Carbonate (mg/l, CO ₃₎)	15
7	Hydrogen carbonate (mg/l, HCO ₃)	161
8	Manganese(mg/l, Mn)	0.4
9	Magnesium(mg/l, Mg)	No trace
10	Iron (mg/l, Fe)	1.8
11	Potassium (mg/l, K)	8.7
12	Sodium (mg/l, Na)	27.5
13	Calcium (mg/l, Ca)	31.8
14	Total Dissolved solids (mg/l,TDS)	340
_15	Fluorides(mg/l, F)	1.5
16	Nitrates(mg/l, NO ₃)	0.1
17	Sulphates(mg/l, SO ₄)	1379
18	Chlorides(mg/l,Cl)	40
19	Total Hardness(mg/l, CaCO ₃)	209

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site: Sibilo, Sibilo, Kipsaraman, Baringo District Sample No. 9

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.3
2	Conductivity(µs)	573
3	pH	8.7
4	Color	>30
5	Turbidity(NTU)	3
6	Carbonate (mg/l, CO ₃₎)	15
7	Hydrogen carbonate (mg/l, HCO ₃)	99
8	Manganese(mg/l, Mn)	No trace
9	Magnesium(mg/l,Mg)	14.9
10	Iron (mg/l, Fe)	0.8
11	Potassium (mg/l, K)	4.1
12	Sodium (mg/l, Na)	27.5
13	Calcium (mg/l, Ca)	29.5
14	Total Dissolved solids (mg/l,TDS)	420
15	Fluorides(mg/l, F)	1.2
16	Nitrates(mg/l, NO ₃)	0.8
17	Sulphates(mg/l, SO ₄)	144
18	Chlorides(mg/l,Cl)	60
19	Total Hardness(mg/l, CaCO ₃)	156

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor : Dr. G. M. Thumbi

Name of sampling site: Tangulubei, Tangulubei, Tangulubei, Baringo District

Sample No. 10

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20
2	Conductivity(µs)	839
3	pH	7.9
4	Color	>30
5	Turbidity(NTU)	
6	Carbonate (mg/l, CO ₃₎)	24
7	Hydrogen carbonate (mg/l, HCO ₃)	191
8	Manganese(mg/l, Mn)	No trace
9	Magnesium(mg/l, Mg)	13.4
10	Iron (mg/l, Fe)	No trace
11	Potassium (mg/l, K)	8.5
12	Sodium (mg/l, Na)	31
13	Calcium (mg/l, Ca)	24.5
14	Total Dissolved solids (mg/l,TDS)	400
15	Fluorides(mg/l, F)	1.4
16	Nitrite(mg/l, NO ₃)	0.4
17	Sulphates (mg/l, SO ₄)	62
18	Chlorides(mg/l,Cl)	140
19	Total Hardness(mg/l,CaCO ₃)	491

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site: Gubereti, Mogotio, Mogotio, Koibatek District Sample No. 11

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.4
2	Conductivity(µs)	98
3	pH	7.9
4	Color	4
5	Turbidity(NTU)	5
6	Carbonate (mg/l, CO ₃₎)	128
7	Hydrogen carbonate (mg/l, HCO ₃)	48
8	Manganese(mg/l,Mn)	0.1
9	Magnesium(mg/l, Mg)	5
10	Iron (mg/l, Fe)	8.8
11	Potassium (mg/l, K)	7.5
12	Sodium (mg/l, Na)	12.5
13	Calcium (mg/l, Ca)	0.8
14	Total Dissolved solids (mg/l,TDS)	285
15	Fluorides(mg/l, F)	0.20
16	Nitrite(mg/l.,NO ₃)	No trace
17	Sulphates(mg/l, SO ₄)	No trace
18	Chlorides(mg/l,Cl)	22.5
19	Total Hardness(mg/l, CaCO ₃)	No trace

Date samples were received: 18/8/98	Date of Analysis: 18-20/8/98	
Part sumpres mere received, 10/0/20	Date of 1 mary 515, 10 20, 0, 25	

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site: <u>Ilnoigiri, Mukogodo, Laikipia District</u> Sample No. 12

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20
2	Conductivity(µs)	1048
3	pH	7.7
4	Color	>30
5	Turbidity(NTU)	2
6	Carbonate (mg/l, CO ₃₎)	107
7	Hydrogen carbonate (mg/l, HCO ₃)	194
8	Manganese(mg/l, Mn)	No trace
9	Magnesium(mg/l, Mg)	115
10	Iron (mg/l, Fe)	0.4
11	Potassium (mg/l, K)	15
12	Sodium (mg/l, Na)	62.5
13	Calcium (mg/l, Ca)	37.6
14	Total Dissolved solids (mg/l,TDS)	700
15	Fluorides(mg/l, F)	1.30
16	Nitrite(mg/l, NO ₃)	1.2
17	Sulphates(mg/l, SO ₄)	308.7
18	Chlorides(mg/l,Cl)	75
19	Total Hardness(mg/l, CaCO ₃)	434

Date of Analysis: 18 -- 20/8/98

Date samples were received: 18/8/98

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site: Segera, Mohoria, Sirima, Lamuria, Laikipia District

Sample No. 13

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.3
2	Conductivity(µs)	730
3	pH	7.7
4	Color	>30
5	Turbidity(NTU)	1
6	Carbonate (mg/l, CO ₃₎)	171
7	Hydrogen carbonate (mg/l, HCO ₃)	208
8	Manganese(mg/l, Mn)	No trace
9	Magnesium(mg/l, Mg)	45
10	Iron (mg/l, Fe)	0.3
11	Potassium (mg/l, K)	12.5
12	Sodium (mg/l, Na)	62.5
13	Calcium (mg/l, Ca)	17
14	Total Dissolved solids (mg/l,TDS)	10
15	Fluorides(mg/l, F)	1.5
16	Nitrite(mg/l, NO ₃)	0.6
17	Sulphates(mg/l, SO ₄)	144.1
18	Chlorides(mg/l,Cl)	35
19	Total Hardness(mg/l, CaCO ₃)	197

Date samples were received: 18/8/98

Date of Analysis: 18 - 20/8/98

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor : Dr. G. M. Thumbi

Name of sampling site: Rugutu, Segera, Central, Laikipia District Sample No. 14

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.1
2	Conductivity(µs)	696
3	pH	7.8
4	Color	>30
5	Turbidity(NTU)	2
6	Carbonate (mg/l, CO ₃₎)	33
7	Hydrogen carbonate (mg/l, HCO ₃)	187
8	Manganese(mg/l, Mn)	No trace
9	Magnesium(mg/l, Mg)	45
10	Iron (mg/l, Fe)	0.3
11	Potassium (mg/l, K)	25
12	Sodium (mg/l, Na)	60
13	Calcium (mg/l, Ca)	19.2
14	Total Dissolved solids (mg/1,TDS)	515
15	Fluorides(mg/l, F)	0.3
16	Nitrates(mg/l, NO ₃)	0.2
17	Sulphates(mg/l, SO ₄)	82.3
18	Chlorides(mg/l,Cl)	37.5
19	Total Hardness(mg/l, CaCO ₃)	47

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor : Dr. G. M. Thumbi

Name of sampling site: Kinamba, Ngarua, Laikipia District

Sample No. 15

	ounder Sumpling Sites. Indianaed, Inguinea, Example 12101 (c)		
S/No	Parameter tested	Results obtained	
1	Temperature(°C)	20.2	
2	Conductivity(µs)	486	
3	рН	8.2	
4	Color	>30	
5	Turbidity(NTU)	1	
6	Carbonate (mg/l, CO ₃₎)	26	
7	Hydrogen carbonate (mg/l, HCO ₃)	170	
8	Manganese(mg/l, Mn)	No trace	
9	Magnesium(mg/l, Mg)	30	
10	Iron (mg/l, Fe)	0.1	
11	Potassium (mg/l, K)	25	
12	Sodium (mg/l, Na)	55	
13	Calcium (mg/l, Ca)	10.2	
14	Total Dissolved solids (mg/l,TDS)	175	
15	Fluorides(mg/l, F)	1.4	
16	Nitrates(mg/l, NO ₃)	0.1	
17	Sulphates(mg/l, SO ₄)	61.7	
18	Chlorides(mg/l,Cl)	17.5	
19	Total Hardness(mg/l, CaCO ₃)	No trace	

Name of Testing Technician: R. Matano & F. Munyi

Name of Supervisor: Dr. G. M. Thumbi

Name of sampling site Lake Baringo Lodge, Baringo District

Sample No. 16

S/No	Parameter tested	Results obtained
1	Temperature(°C)	20.3
2	Conductivity(µs)	645
3	pH	7.8
4	Color	7
5	Turbidity(NTU)	4
6	Carbonate (mg/l, CO ₃₁)	239
7	Hydrogen carbonate (mg/l, HCO ₃)	161
8	Manganese(mg/l, Mn)	0.1
9	Magnesium(mg/l, Mg)	15
10	Iron (mg/l, Fe)	8.8
11	Potassium (mg/l, K)	15
12	Sodium (mg/l, Na)	6.5
13	Calcium (mg/l, Ca)	5.2
14	Total Dissolved solids (mg/l, TDS)	410
15	Fluorides(mg/l, F)	3.5
16	Nitrates(mg/l, NO ₃)	4.18
17	Sulphates(mg/l, SO ₄)	102.9
18	Chlorides(mg/l,Cl)	50
19	Total Hardness(mg/l,CaCO ₃)	No trace

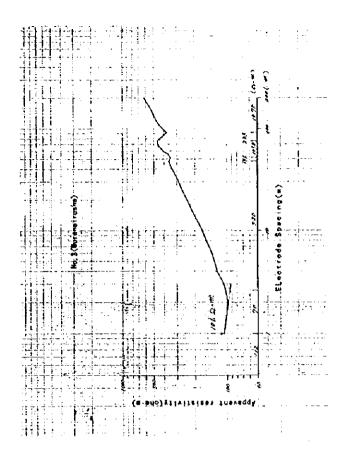
APPENDIX B: LIST OF PARTICIPANTS

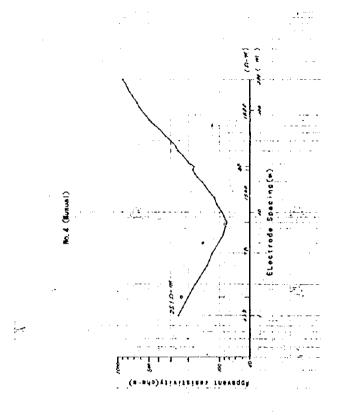
Dr. E. Asano

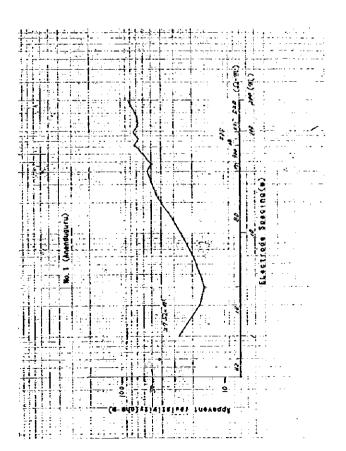
Dr. G. M. Thumbi

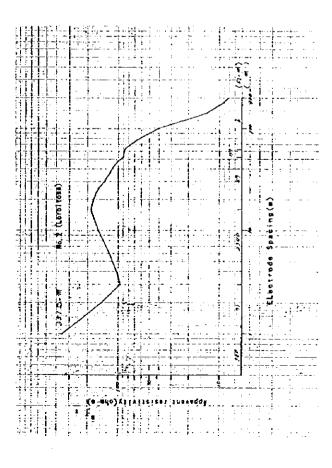
Mr. A. O. Mayabi

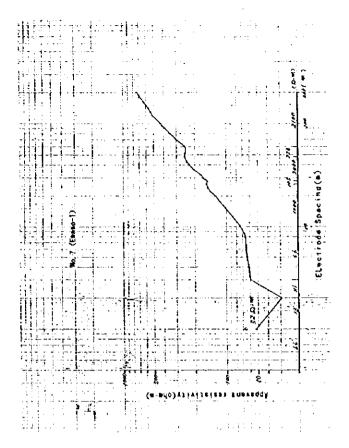
Mr. F. Munyi


Mr. R. Matano


All from Department of Civil Engineering


ATTACHMENT- 7


The Graph of Electric Soundings Analysis
(VES Curve)


.

