CHAPTER III WATER POLLUTION MECHANISM IN PRAHOVA RIVER

3.1 General

A simulation model based on Streeter-Phelps Equation was applied to the Prahova River to identify the pollution mechanism for the prediction of the pollution condition by changes of pollution loads in the basin, and to examine the effect of countermeasures in controlling the pollution as well as to predict the future water quality.

3.2 BOD Pollution Analysis by Simulation Model

The Streeter-Phelps Model that is widely applied for non-estuary rivers to estimate BOD is consisted of two (2) equations mentioned below.

$$L = \left(L_a - \frac{L_a}{23!k}\right) \bullet 10^{-kt} + \frac{L_a}{23!k}$$

$$D_t = \frac{k_1}{k_2 - k} \left(L_a - \frac{L_a}{23!k}\right) \bullet \left(10^{-kt} - 10^{-ktt}\right) + \frac{k_1}{23!k_2} \bullet \left(\frac{L_a}{k} + \frac{D_b}{k_1}\right) \bullet \left(1 - 10^{-k2t}\right) + D_a 10^{-k2t}$$

L: Biochemical demand of carbonaceous oxygen (mg/ ℓ)

D: Dissolved oxygen deficit (mg/ ℓ)

Subscript u: Upper reach point L: Lower reach point

kr: BOD purification rate (=k1+k3) (ℓ/day)

kI: Removal rate of BOD with consumption of DO (ℓ /day)

k2: Re-aeration rate

k3: Removal rate of BOD without consumption of DO

La: BOD added from river bed (mg/l/day)

DB: DO supply or consumption except re-aeration

t: traveling time (day)

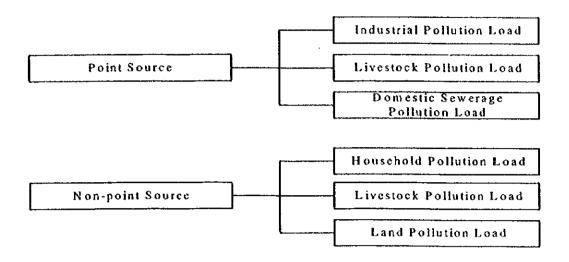
3.3 Modeling of Prahova River Basin

3.3.1 Division of the Basin

In consideration of existing water quality observation points prepared by the Romanian Waters Authority, supplemental observation points set by the JICA Study Team and water intake facilities and junctions of rivers, 23 model points are established in the Prahova River and the basin is divided into 23 model blocks for pollution analysis as indicated in Fig. C.3.1 and tabulated below. Schematic diagram is shown in Fig. C.3.2.

No.	Code of point	Name of Point	River	Distance * (Km)	Area of Model Block(km²)	Remarks
i	180-190	Predeal	Prahova	•	101.85	Uppermost Point of Prahova
2	195	Amonte Sinaia	-ditto-	11.2 (180)	104.36	
3	Α	Posada	-ditto-	13.2 (195)	123.99	
3 4	200	Cornu	-ditto-	17.8 (A)	112.24	
5	Daml	Paltinu Dam	Doftana	•	333.03	Uppermost point of Doftana
6	В	Ac. Voila	-ditto-	7.0 (Dam1)	32.80	
7	C	Cimpina	-ditto-	8.8 (B)	48.46	Confluence with Prahova
8	217	Nedelea	Prahova	18.6 (200)	76.01	·
8 9	220	Tinosu	-ditto-	28.2 (217)	49.34	
10	E	Finari	-dtto-	16.2 (220)	150.09	Confluence with Teleajen
11	M	Baicoi	Dimbu	•	35.31	Uppermost point of Dimbu
12	250	Goga	-ditto-	28.3 (M)	152.00	Lowest point of Dimbu
13	Dam2	Maneciu Dam	Teleajen	-	243.30	Uppermost point of Teleajen
14	J	Piatra	-ditto-	14.0 (Dam2)	223.35	
15	240	Gura Vitiorei	-ditto-	5.8 (J)	25.29	
16	K	Sipotu	-ditto-	19.9 (K)	479.31	
17	1,	Coslegi	-ditto-	17.6 (L)	206.73	Teleajen River upstream of confluence with Dimbu
18	260	Moara Domneasca	-ditto-	5.0 (L)	38.36	Lowest point of Teleajen
19	270	Gherghita	Prahova	8. 0 (E) 13.1 (260)	273.37	N. D. A. C.
20	275	Sangeru	Cricovul Sarat		112.85	Uppermost point of Cricovul Sarat
21	O	Popesti	-ditto-	18.7 (275)	370.65	
22	280	Ciorani	-ditto-	33.7 (O)	112.89	Lowest point of Cricovul Sarat
23	Н	Adincata	Prahova	21.8 (270) 5.4 (H)	268.03	Lowest point of Prahova

Note: *Distance measured from the point in parentheses


3.3.2 Classification of Pollution Load

Pollution load in the Prahova River Basin can be classified into point sources and non-point sources as explained below.

Point source consists of pollution load coming from 84 effluent channels of pollution sources related to industrial and livestock farm activities explained in Appendix B as wells as from 15 domestic sewerage such as Predeal, Azuga, Busteni, Sinaia, Breaza, Cimpina, Baicoi, Plopeni, Slanic, Valenii de Munte, Boldesti Scaieni, Urlati, Ploiesti, Floresti and Maneciu explained in Appendix D.

Non-point source is composed of pollution load coming from household, livestock farm and land. Household pollution load comes from households in the areas which are not covered by the domestic sewerage system mentioned above and wastewater is treated by simple septic tank and/or latrine..

Livestock farm pollution load included in the non-point source is coming from farms excluding large scale which are registered in the King II Database. Land pollution load is load washed during storms from forest, upland field and urban/built-up areas.

3.3.3 Pollution Load Generated/Effluent

(1) Point Source

Pollution Load from each channels of industrial, livestock farm and domestic sewerage is obtained as the product of annual flow rate and annual average BOD concentration observed by the Romanian Waters Prahova Office and stored in the King II Database.

(2) Non-point Source

(a) Household

Pollution load from household is calculated as follows.

L1pg : Household pollution load generated in a model block of model

point P (model block p)

L1pgm: Household pollution load generated in municipality M partially

or totally included in a model block P

Pm : Population of municipality M

R1mp: Ratio of urban/built-up area of municipality M included in the model block P to total urban/built-up area of municipality M (Refer to Table A.2.6)

G1 : Unit load of household (g/person/day)

As unit load, in consideration of difference of living standard in municipalities in the Prahova River Basin, two types of unit load of household are applied.

 Municipality
 Gray Water
 Black Water
 Total

 City
 34.0
 8.0
 42.0

 Town & commune
 27.2
 6.4
 33.6

In pollution load in black water, it is assumed that 50 % of load is flowed out from septic tank/latrine.

(b) Livestock Farm

Pollution load from livestock farm is calculated as follows.

 $L2pg = \sum L2pgm$

 $L2pgm = (G2c \cdot Cm + G2p \cdot Ppm) \cdot R2mp$

Where,

L2pg : Livestock farm pollution load generated in a model block P

L2pgm: Livestock pollution load generated in municipality M partially or

totally included in a model block P

Cm : Number of cattle in municipality M

Ppm: Number of pigs in Municipality M

R2mp: Ratio of area of municipality M included partially or totally in

the model block P to total area of M (Refer to Table A.2.5)

G2c : Unit load of cattle, 640 g/head/day

G2p : Unit load of pig, 200 g/head/day

(c) Land

Pollution load from land is calculated as follows.

 $L3pg = G3 \cdot af + G3u \cdot Au + G3b \cdot Ab$

Where,

L3pg : Land pollution load generated in a model block P

Af : Total area of forest and fallow land in a model block P

Au : Total area of agricultural land, pastureland and orchard in a

model block P

Ab : Area of urban/built-up zone

G3f : Unit load for Af, 7.5 g/ha/day

G3u : Unit load for Au, 85.75 g/ha/day

G3b : Unit load for Ab, 670 g/ha/day

Regarding land use for each model block, refer to Table A.2.3.

3.3.4 Runoff of Pollution Load

Pollution load effluent of point sources and also generated pollution load of non-point sources are decreased by natural purification effects such as deoxigenation, deposition and filtration, while flowing in small channels/drains before entering a main river. In general, this phenomena is modeled by multiplying runoff coefficient to pollution load effluent and/or generated pollution load.

In the Prahova River Basin, there are many secondary rivers and thus in some cases pollution load flows long time in these rivers and reduced mostly before entering main river course shown in Fig. C.3.1 in which the Streeter-Phelps Model is applied. In consideration of reduction characteristics in the Prahova River, the coefficient of runoff to the main river course (Cr) is defined as the product of Cra which is removal of load in drains or on-site before entering secondary rivers and Crb in the secondary rivers. Crb is assumed to be proportional to distance in the secondary rivers and becomes 1.0, if distance is equal to 0. The value of runoff coefficient for each of pollution sources is explained hereunder.

(1) Point Source

Pollution load from point source flows directly into main rivers or secondary rivers. Therefore, Cra is equivalent to 1.0. The distance from the respective point sources to the main rivers, which is measured along the secondary river, is tabulated in Table C.3.1.

(2) Non-points Source

(a) Household

$$Llpr = \sum Llpgm \cdot Clra \cdot Clrbpm$$

Where,

Llpr: Household pollution load runoff to the main river from a model

block P

Lipgm: Household pollution load generated in municipality M partially

or totally included in a model block P

C1ra : 0.6 for cities and towns, 0.2 for communes

Clrbpm: Function of distance from the urban/built-up area of

municipality M located in a model block P to the main river

(b) Livestock

$$L2pr = \sum L2pgm \cdot C2ra \cdot C2rbpm$$

Where,

L2pr : Livestock pollution load runoff to the main river from model

block P

L2pgm: Livestock pollution load generated in municipality M partially or

totally included in a model block P

C2ra : 0.1 both for cattle and pigs

C2rbpm: Punction of distance from the municipality M located in a model block P to the main river

(c) Land

L3pr = (G3f · Af · G3raf + G3u · Au · G3rau + G3b · Ab · Crab) · C3rbp Where,

L3pr : Land pollution load runoff to the main river from model block P

C3raf : 0.2 for forest and fallow land

C3rau : 0.2 for agricultural land, pasture land and

C3rab : 0.6 for urban/built-up zone

C3rbp: Function of distance of model block P to the main river

As for G3f, G3u, G3b, Af, Au, Ab, please refer to 3.3.3

3.4 Simulation Method

(1) Structure of BOD Pollution Simulation Model

Simulation structure of simulation model for the Prahova River is shown in Fig. C.3.3. The pollution load runoff which is calculated through the method mentioned above is assumed to flow into the middle points of the main river between the considered model point and the point upstream.

(2) Application of Streeter-Phelps Model

According to the observation conducted in the Prahova River, it can be concluded that DO is saturated in river water of all the course of the Prahova River and therefore, dissolved oxygen deficit need not be calculated. Also, it is concluded that there is little materials deposited on the river bed of the Prahova River and thus supply of BOD from river bed is disregarded.

(a) Kr

The comprehensive removal rate of BOD, which plays most important role in the water quality of the Prahova River, is calculated as follows.

$$Kr_T = Kr_{20} \cdot \theta^{-(T-20)}$$

Where,

 Kr_T : Comprehensive removal rate at temperature $T^{\circ}C$

Kr₂₀: Comprehensive removal rate at 20 °C

θ : BOD removal speed, 1.041 based on Gotaas, H.B.

T : Temperature (°C)

(b) Velocity

The velocity of each modeling point is estimated to compute the traveling time t in the Streeter-Phelps Model. During the supplemental water quality observation made by the JICA Study Team, discharge observation was also conducted with cross-sectioning. The velocity at model point was obtained from discharge based on the relation between velocity and discharge.

(3) Crb

Crb in runoff coefficient is calculated from distance L (Km) as mentioned below.

$$Crb = 0.99 \cdot 10^{-L}$$

(4) Calibration Condition

Calibration and/or parameters setting was made to attain average BOD concentration during September, October and November for (3) years from 1995 to 1997. Evaluation points for calibration are selected from those in the Prahova River set by the Romanian Waters. The discharge or flow rate at each model points is also average of data observed by the Romanian Waters Authority during same period for river BOD. The discharge at main points is tabulated below.

Pollution load from point sources are estimated as the product of actual annual wastewater flow rare and average BOD concentration for three (3) from 1995 to 1997. To obtain pollution load from non-point sources, latest population in municipalities, heads of cattle and pigs and area of land use data were used.

			(Unit : m³/s)
Point Code	Point Name	River	Discharge
A	Posada	Prahova	5.40
200	Cornu	-ditto-	7.05
217	Nedelea	-ditto-	9.00
220	Tinosu	-ditto-	9.49
H	Adincata	-ditto-	20.77
В	Ac. Voila	Doftana	3.42
. 3	Piatra	-Teleajen-	2.27
240	Gura Vitioarei	-ditto-	2.06
260	Moara Domneasca	-ditto-	9.08
250	Goga	Dimbu	1.85
280	Ciorani	Cricovul Sarat	1.06

3.5 Result

Judging form simulated BOD concentration in evaluation points which is computed by the model mentioned above, it is concluded that the established simulation model simulates well the BOD pollution mechanism of the Prahova River so as to examine the effect of countermeasures in controlling the pollution as well as to predict the future water quality.

3.5.1 Pollution Load

Table C.3.1 tabulates present pollution load runoff from each point source. Tables C.3.2, C.3.3 and C.3.4 indicate present pollution load runoff from household, livestock and land, respectively. Fig. C.3.4 shows pollution load generated (point source) and/or effluent (non-

point source) and pollution load runoff in each model block.

Present pollution load effluent from the point source and generated pollution load from the non-point sources totals 107.6 ton per day. The following table tabulates pollution load generated and/or effluent in four (4) major subbasins.

					(Unit : t/day)	
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total	
Sewerage	1.790	6.760	0.405	0.044	8.999	
Ü	(3.73%)	(42.02%)	(1.32%)	(0.35%)	(8.36%)	
Industry	5.362	2.056	1.817	0.001	9.236	
•	(11.16%)	(12.78%)	(5.90%)	(0.01%)	(8.58%)	
Livestock Farm	0.873	0.000	0.232	0.000	1.106	
	(1.82%)	(0.00%)	(0.75%)	(0.00%)	(1.03%)	
Point Source	8.025	8.816	2.455	0.058	19.341	
Sub-total	(16.71%)	(54.79%)	(7.96%)	(0.36%)	(18.06%)	
Non-point Source 1.	5.242	2.071	5.211	2.210	14.735	
(Septic/latrine)	(10.91%)	(12.87%)	(16.91%)	(17.45%)	(13.69%)	
Non-point Source 2	26.750	3.395	18.324	7.958	56.426	
(Livestock)	(55.68%)	(21.10%)	(59.46%)	(62.83%)	(52.43%)	
Non-point Source 3	8.023	1.807	4.829	2.453	17.112	
(Land)	(16.70%)	(11.23%)	(15.67%)	(19.36%)	(15.90%)	
Total	48.041	16.088	30.819	12.679	107.614	

As far as pollution load generated/effluent is concerned, non-point pollution load of livestock occupies 52.43 % of total pollution load generated/effluent, then followed by 18.06 % of point load composed of industrial, livestock farm and domestic sewerage

Following table indicates pollution load runoff to the main rivers. Total load runoff in the Prahova River Basin is estimated to be 33.3 ton/day. Regarding pollution load runoff, load related to the point source is as high as 58.0 %

	:				(Unit : t/day)
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total
Sewerage	1.790	6.760	0.404	0.044	8.998
· ·	(12.85%)	(62.41%)	(5.99%)	(2.44%)	(27.02%)
Industry	5.361	2.056	1.809	0.001	9.236
	(38.49%)	(18.98%)	(26.82%)	(0.06%)	(27.70%)
Livestock Farm	0.851	0.000	0.226	0.000	1.077
	(6.11%)	(0.00%)	(3.35%)	(0.01%)	(3.23%)
Point Source	8.002	8.816	2.439	0.045	19.302
Sub-total	(57.46%)	(81.39%)	(36.17%)	(2.51%)	(57.95%)
Non-point Source 1.	1.565	1.002	1.409	0.502	4.477
(Septic/latrine)	(11.24%)	(9.25%)	(20.90%)	(27.77%)	(13.44%)
Non-point Source 2	2.496	0.338	1.752	0.761	5.347
(Livestock)	(17.92%)	(3.12%)	(25.98%)	(42.17%)	(16.05%)
Non-point Source 3	1.864	0.676	1.144	0.498	4.180
(Land)	(13.38%)	(6.24%)	(16.96%)	(27.55%)	(12.55%)
Total	13.927	10.831	6.743	1.806	33.306

Out of four (4) major river basin, pollution road runoff to the Prahova Main River occupies 41.8 % of total pollution load runoff and that of the Dimbu River is 32.5 % and in these two (2) basins, share of the point sources in each basin are 57.5 % and 81.4 %, respectively.

In the Prahova Main River, pollution load runoff is largest at the model point 220 as indicated in Fig. C.3.4. The pollution runoff at 220 model point is 5.4 ton/day (38.9 % of total load

runoff in the Prahova Main River Basin) and 5.1 ton/day is from point source including those from S.C. Petrobrazi S.A. (code 4051), Comporsa Stancesti (4082) and F.B. Ploiesti (4047).

In the all of the Prahova River Basin, the largest volume of load runoff flows into the model point of 250 in the Dimbu River. At the 250 point, 8.8 ton/day equivalent of 81.4 % of total pollution load runoff in the basin flows into the river, which mainly comes from R.A.G.C.Ploiesti (domestic sewerage of Ploiesti, code 4162) and S.C.Astra Romana S.A. (4158).

3.5.2 BOD Concentration in Prahova River

Fig. C.3.5 shows simulated BOD concentration which is considered to be in good agreement with the observed one. Fig. C.3.6 indicates load balance in the Prahova River.

(1) Prahova Main River

Water quality is below 7 mg/l (Category II of National Standard). upstream of 217 Point (Nedelea). However, at 220 Points, BOD concentration increases and falls in category D (12 mg/l) due to the inflow of large volume of pollution load runoff mentioned above.

(2) Dimbu River

Due to large volume of BOD inflow at 250 point as explained in 3.5.1, BOD concentration at this point is 38.3 mg/l exceeding far the National Standard Category III and is worst in the Prahova River.

(3) Teleajen River

BOD concentration at 260 Point located after junction with the Dimbu River, BOD is as high as 15.7 mg/l.

(4) Cricovul Sarat River

BOD concentration is high and exceeding the National Standard III, though pollution load runoff is not much in this river.

CHAPTER IV RIVER WATER POLLUTION IN THE FUTURE

4.1 General

Applying the BOD simulation model explained in Chapter III, the water quality of the baseline case without undertaking any countermeasures in the year of 2015 is estimated. Prior to the 2015 case, the present baseline BOD concentration is also computed as the base for comparison, using the same discharge for the 2015 case, since the discharge and the pollution load are different from those for the calibration case mentioned in 3.5 and 3.6.

Following the baseline cases, the case, in which the permissible limit of wastewater effluent to lower the river BOD concentration within the Romanian river water standard is set in accordance with the Government Decision NTPA-001, was studied using the standard river flow rate as stipulated NTPA-001.

Then, using larger standard flow rate, which is more practical to the Prahova River, the permissible limit of wastewater effluent to river in 2015 is studied.

After that, for the case with proposed permissible limit and standard discharge, the BOD concentration in the years of 2005 and 2010 was estimated based on the implementation schedule.

In addition to the above, the water quality without measures and the permissible limit for the cases in which the economic growth is higher or lower than the average case were studies so as to estimate influence of the economic growth to water pollution control cost.

4.2 Baseline River Water Quality

4.2.1 Calculation Condition

(1) Pollution Load

Pollution load is estimated for the present baseline and the future baseline cases.

As explained in Chapter III, the pollution sources of BOD can be classified into point source and non-point source. Basically, the same present pollution load for calibration of present condition is used for the present baseline excluding the point source of domestic sewerage and S.C. Romfosfochim SA. As for the domestic sewerage, effluent discharge and BOD concentration is adjusted in consideration of increase in industrial wastewater and domestic wastewater which flow into domestic sewerage system as explained in detail in Appendix D, while the pollution load from S.C. Romfosfochim SA. is 0, since it was closed in August 1997.

The future pollution load in the year of 2015 was obtained based on the projection of socioeconomic condition as tabulated below.

Index	1998-2000 {%)	2001 - 2015 (%)	Ratio of 2015 to present
Population	0.0	0.5	1.08
GDP	0.0	4.2	1.85
Industry production	0.0	3.5	1.68
Livestock	0.0	0.0	1.00
Number of tourist	0.0	5.0	2.08

Regarding land use, no change is considered from the past trend of the land use. Therefore, pollution load from point source and non-point sources excluding livestock farm and land is estimated as mentioned below.

(a) Point Source

(i) Industrial and Livestock Farm

Regarding industrial load, following increasing ratio is applied to each of effluent channel of pollutant sources in consideration of present treatment method of pollutant sources as explained in detail in Appendix E.

Classification	Discharge	BOD Concentration	BOD Load
Factory w/treatment	1.68	1.61	2.70
Hotel w/treatment	2.08	1.95	4.06
Factory without treatment	1.68	1.0	1.68

(ii) Domestic Sewerage

As for the domestic sewerage in 15 municipalities, BOD load in the year of 2015 is obtained in consideration of increase of discharge and BOD concentration from industrial pollutant sources discharging into sewerage system as wells as increase of population covered by the sewerage system. Following table tabulates increasing ratio of BOD load from domestic sewerage.

Area	Present Load (kg/d)	2015 Load (kg/d)	Ratio
Ploiesti City	6,466	12,857	1.99
Cimpina City	521	1,167	2.24
Prahova Valley	1,108	1,988	1.79
Others	714	1,400	1.96
Total	8,808	17,412	1.98

Note: Prahova Valley includes Predeal, Azuga, Sinaia and Breaza and others covers Baicoi, Slanic, Valenii de Munte, Boldesti Scaieni, Urlati, Plopeni, Floresti, Maneciu and Busteni.

(b) Non-point Source

As mentioned above, non-point source only from household will be increased by 1.08 times from present pollution loads due to increase of population.

(2) Discharge of Prahova River

River flow rate fluctuates throughout the year and accordingly, river water quality also always varies depending on river flow rate. Hence, it is necessary to determine a

standard river flow rate for the assessment of river water quality. If the standard river flow rate is determined too small, dilution effects of the river water is under-estimated. As a result, the water pollution control cost required to attain the target river water quality will be over-estimated, although the river water quality with a high probability can be assured.

The standard river flow rate, which shall be decided in due consideration to the attained ratio of target river water quality, river water use categories, and improved river water quality by wastewater treatment.

In the NTPA-001, which stipulates effluent limits in wastewater discharging into rivers, the standard flow rate is defined as a yearly minimum monthly mean discharge with 95 % probability (hereinafter referred to as NTPA-001 .95% discharge). Regarding BOD, the effluent limit stipulated in the NTPA-001 is 20 mg/L. However, in case that river water quality standards stipulated in STAS 4706/88 cannot be attained under the condition of effluent limit of 20 mg/L and 95 % probability discharge, the effluent limit will be lowered so as to attain the river water quality standards in accordance with the NTPA-001.

The yearly minimum monthly discharge may be too small to be the standard river flow rate which requires high cost to control water quality. Therefore, in addition to the NTPA – 001 95 % discharge, water quality corresponding to 50 % (182nd day), 75% (274th day) and 95 % (347th day) flow rates of average flow regime is estimated so as to propose a new standard river flow rate.

Table C.4.1 tabulates existing river flow rates and those in the year of 2015 with 50 %, 75 % and 95 % as well as NTPA-001 95 % at respective model points. The flow rates in the year of 2015 is obtained from water balance calculation considering increase and/or decrease of withdrawal for and return flow from domestic, industrial and irrigation water at each model point. For the 95% average flow regime and NTPA-001 95 % flow rate, water is assumed to be released from the Paltinu and Maneciu dams to supply necessary domestic/industrial water and taken at the Voila and the Valenii de Munte intakes, respectively as explained in Appendix B.

4.2.2 Result

(1) Pollution Load

Fig. C.4.1 shows present pollution load generated (point source) and/or effluent (non-point source) and pollution load runoff in each model block, while Fig. C.4.2 indicates those in 2015.

Following table summarizes baseline present load generated and/or load effluent in major four (4) subbasins in the Prahova River.

					(Unit : t/day)
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total
Sewerage	1.700	6.649	0.410	0.050	8.808
•	(3.55%)	(41.62%)	(1.34%)	(0.39%)	(8.22%)
Industry	5.362	2.056	1.537	0.001	8.956
	(11.18%)	(12.87%)	(5.03%)	(0.01%)	(8.36%)
Livestock Farm	0.873	0.000	0.232	0.000	1.106
	(1.77%)	(0.00%)	(0.76%)	(0.00%)	(1.03%)
Point Source	7.935	8.705	2.179	0.051	18,870
	(16.55%)	(54.48%)	(7.13%)	(0.40%)	(17.61%)
Non-point Source 1.	5.242	2.071	5.211	2.210	14.735
(Septic/latrine)	(10.93%)	(12.96%)	(17.06%)	(17.44%)	(13.75%)
Non-point Source 2	26.750	3.395	18.324	7.958	56.426
(Livestock)	(55.79%)	(21.25%)	(\$9.99%)	(62.80%)	(52.66%)
Non-point Source 3	8.023	1.807	4.829	2.453	17.112
(Land)	(16.73%)	(11.31%)	(15.81%)	(19.35%)	(15. 97%)
Total	47.951	15.978	30.543	12.672	107.143

And following table tabulates baseline present load runoff to the main river in the same four (4) subbasins.

					(Unit : t/day)	
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total	
Sewerage	1.700	6.649	0.408	0.050	8.808	
-	(12.29%)	(62.03%)	(6.29%)	(2.73%)	(26.81%)	
Industry	5.361	2.056	1.537	0.001	8.955	
	(38.74%)	(19.18%)	(23.73%)	(0.06%)	(27.26%)	
Livestock Farm	0.851	0.000	0.226	0.000	1.077	
	(6.15%)	(0.00%)	(3.49%)	(0.00%)	(3.28%)	
Point Source	7.912	8.705	2.170	0.051	18.838	
	(57.18%)	(81.20%)	(33.52%)	(2.80%)	(57.36%)	
Non-point Source 1.	1.565	1.002	1.409	0.502	4.477	
(Septic/latrine)	(11.31%)	(9.34%)	(21.76%)	(27.69%)	(13.63%)	
Non-point Source 2	2.496	0.338	1.752	0.761	5.347	
(Livestock)	(18.04%)	(3.15%)	(27.06%)	(42.04%)	(16.28%)	
Non-point Source 3	1.864	0.676	1.144	0.498	4.180	
(Land)	(13.47%)	(6.30%)	(17.66%)	(27.47%)	(12.73%)	
Total	13.837	10.720	6.474	1.811	32.843	

Following table tabulates baseline load generated and/or effluent in the year of 2015. In this year, total load is estimated to be 130.4 ton/day, increases form the present baseline, by 21.7 %.

					(Unit : t/day)	
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total	
Sewerage	3.045	11.900	0.695	0.086	15.726	
	(5.18%)	(47.88%)	(2.06%)	(0.67%)	(12.06%)	
Industry	14.430	5.517	4.120	0.003	24.070	
	(24.55%)	(22.20%)	(12.18%)	(0.02%)	(18.47%)	
Livestock Farm	0.873	0.000	0.232	0.000	1.106	
	(1.49%)	(0.00%)	(0.69%)	(0.00%)	(0.85%)	
Point Source	18.348	17.417	5.048	0.089	40.902	
	(31.21%)	(70.07%)	(14.92%)	(0.69%)	(31.38%)	
Non-point Source 1.	5.662	2.237	5.628	2.387	15.914	
(Septic/latrine)	(9.63%)	(9.00%)	(16.64%)	(18.52%)	(12.21%)	
Non-point Source 2	26.750	3.395	18.324	7.958	56.426	
(Livestock)	(45.51%)	(13.66%)	(54.17%)	(61.76%)	(43.29%)	
Non-point Source 3	8.023	1.807	4.829	2.453	17.112	
(Land)	(13.65%)	(7.27%)	(14.28%)	(19.03%)	(13.13%)	
Total	58.783	24.855	33.829	12.887	130.354	

Baseline load runoff in the year of 2015 is summarized in the following table. The load runoff in 2015 to the main river will be 55.2 ton/day, increases by 68.2 % from the present one due to the increase of the point sources. The share of the point source in the total load runoff, which is 57.2 % in baseline present, will be 75.2 % in the year of 2015.

				(Unit : t/day)		
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total	
Sewerage	3.045	11.900	0.695	0.086	15.723	
•	(12.49%)	(60.99%)	(7.32%)	(4.56%)	(28.47%)	
Industry	14.427	5.517	4.119	0.003	24.066	
	(59.19%)	(28.28%)	(43.57%)	(0.15%)	(43.57%)	
Livestock Farm	0.851	0.000	0.226	0.000	1.077	
	(3.49%)	(0.00%)	(2.39%)	(0.00%)	(1.95%)	
Point Source	18.323	17.417	5.037	0.089	40.866	
	(75.18%)	(89.26%)	(53.28%)	(4.71%)	(73.99%)	
Non-point Source 1.	1.690	1.082	1.522	0.542	4,835	
(Septic/latrine)	(6.93%)	(5.54%)	(16.10%)	(28.66%)	(8.76%)	
Non-point Source 2	2.496	0.338	1.752	0.761	5.347	
(Livestock)	(10.24%)	(1.73%)	(18.53%)	(40.29%)	(9.68%)	
Non-point Source 3	1.864	0.676	1.144	0.498	4.180	
(Land)	(7.65%)	(3.46%)	(12.10%)	(26.33%)	(7.57%)	
Tota!	24.373	19.512	9.454	1.890	55.229	

(2) BOD Concentration in Prahova River

(a) NTPA-001 95 % Discharge

Fig. C.4.3 indicates present baseline BOD concentrations under the present NTPA-001 discharge together with observed BOD concentration. Fig. C.4.4 shows simulated baseline BOD concentration in the year of 2015 together with present baseline BOD concentration.

Following table tabulates comparison of BOD concentration present and in the year of 2015 under the NTPA-001 95 % discharge at the reference points of the Prahova River. In this flow condition, only 200 point, upstream of Cimpina of the Prahova River falls in category III and other five (5) points exceed category III even at present condition.

Model Point	Name of Point	River Name	Present	Future
200	_	Prahova	11.5 (III)	16.3 (D)
217	Nedelca	-ditto-	19.9 (D)	35.2 (D)
220	Prahova	-ditto-	27.7 (D)	49.4 (D)
Н	Adincata	-ditto-	30.6 (D)	42.4 (D)
260	Moara	Teleajen	46.2 (D)	56.3 (D)
280	Ciorani	Cricovul Sarat	61.3 (D)	33.1 (D)

Note: Alphabet in parentheses indicates BOD category.

(b) 50 %, 75 % and 95 % Flow Rates of Average Flow Regime

Fig. C.4.5 indicates present baseline BOD concentrations corresponding to 50 %, 75 % and 95 % flow rates of average flow regime together with observed BOD concentration. Fig. C.4.6 shows simulated baseline BOD concentration in the year of 2015 together with present baseline BOD concentration.

Following table tabulates comparison of BOD concentration present and in the year of 2015 at the reference points of the Prahova River. Water quality will be extremely worsened in the middle and lower reaches of the Prahova Main River and Teleajen River due to decrease of discharge in addition to the increase of load runoff of point source even under comparatively larger discharge than NTPA-001 95 % discharge.

(Unit: mg/l)

Model	Name of	River	:	Present			Year 2015	
Point	Point	Name	50%	75 %	95 %	50 %	75 %	95 %
200	-	Prahova	4.3 (I)	5.6 (II)	7.3 (III)	6.2 (II)	8.1 (III)	10.5 (111)
217	Nedelea	ditto-	7.4 (H)	10.5 (III)	15.8 (D)	12.4 (D)	18.8 (D)	27.2 (D)
220	Prahova	-ditto-	15.2 (D)	19.7 (D)	24.3 (D)	29.6 (D)	38.5 (D)	43.9 (D)
Н	Adincata	-ditto-	14.2 (D)	17.7 (D)	20.9 (D)	23.5 (D)	28.9 (D)	32.1 (D)
260	Moara	Teleajen	18.2 (D)	24.3 (D)	26.7 (D)	30.1 (D)	39.7 (D)	40.2 (D)
280	Ciorani	Cricovul Sarat	11.0 (11)	14.9 (D)	18.0 (D)	10.6 (111)	13.5 (D)	18.0 (D)

Note: Alphabet in parentheses indicates BOD category.

4.3 River Water Quality under Implementation of Permissible Limit in 2015

4.3.1 Calculation Condition

According to the Government Decision NTPA - 001, permissible limit of the wastewater effluents to the river is 20 mg/l in BOD. In case that river water quality stipulated in STAS 4706/88 cannot be attained under the condition of effluent limit of 20 mg/L, the effluent limit is lowered to 10 mg/L and 5 mg/L so as to attain the river water quality standards in the representative points of the Prahova River.

4.3.2 Target River Water Quality

Domestic and industrial water is mostly extracted from Doftana River and upper Teleajen River (upstream of Valenii de Munte) and Azuga River. Such river water will have no pollution problems even in future. Other river water uses are for industrial, irrigation and miscellaneous purposes in the middle and downstream reaches of Prahova Main, Teleajen and Cricovul Sarat rivers. Further, the water pollution of the Prahova River affects the irrigation water use in the Ialomita River which is located just downstream of the confluence of Prahova River.

In consideration to the existing water use situation of Prahova River, the target river water quality is determined for the following six (6) principal stations based on the national standards of surface water quality stipulated in STAS 4706/88.

(1) Prahova Main River: Cimpina (200), Nedelea (217), Prahova (220)

(2) Teleajen River: Moara (260)

(3) Cricovul Sarat River: Ciorani (280)

(4) Prahova River: Adincata (H)

The water quality at Cimpina Station represents the quality in the Prahova valley. Water quality shall be below 5 mg/l in BOD for water contact recreation use in the Prahova valley (category I).

Industrial water of Petrobrazi and F.E. Ploiesti is taken from the Nedelea Weir in addition to irrigation water. Hence, the river water quality at Nedelea shall meet the requirement of industrial water use of which BOD limit is 7 mg/l (category II). Further, the river water quality at Prahova Station represents that of the middle and downstream reaches in Prahova Main where irrigation and other miscellaneous water uses exist, then, the water quality shall be below 12 mg/l (category III).

In the middle and downstream reaches of Teleajen River, only irrigation and other miscellaneous water is extracted. Accordingly, the water quality at Moara shall be below 12 mg/l in BOD (category III).

The river water quality at Ciorani represents that of the middle and downstream reaches of the Cricovul Sarat where some irrigation and miscellaneous water is taken. The river water quality shall be below 12 in BOD (category III).

The river water quality at Adincata shall be below 12 mg/l in BOD to meet the requirement of irrigation and other miscellaneous water uses in the Ialomia River (category III).

The target river water quality of the above six (6) stations are summarized in the following table.

St. No.	St. Name	Station Location	Water Use	Category	BOD (mg/l)
200	Cimpina	Exit of Prahova Valley	Water Contact Recreation	1	< 5
217	Nedelea	Upstream of Nedelea Weir	Industry/Irrigation	H	< 7
220	Prahova	Downstream of Nedelea Weir	Irrigation/Miscellaneous	Ш	< 12
260	Moara	Teleajen Downstream	Irrigation/Miscellaneous	Ш	< 12
280	Ciorani	Cricovul Sarat Downstream	Irrigation/Miscellaneous	HI	< 12
H	Adincata	Upstream of lalomita Junction	Irrigation/Miscellaneous	III	< 12

4.3.3 Result

(1) Pollution Load

Fig. C.4.7 shows pollution load generated (point source) and/or effluent (non-point source) and pollution load runoff which is computed in condition that effluent BOD concentration limit from pollution sources, namely sewerage, industry and livestock farm is 20 mg/L, 10 mg/L and 5 mg/L.

Following table summarizes generated load and/or load effluent in major four (4) subbasins in the Prahova River for effluent limit of 20 mg/L.

			_	(1	Jnit : t/day)
Туре	Prahoya Main	Dimbu	Teleajen	Cricovul Sarat	Total
Sewerage	1.028	3.316	0.343	0.052	4.739
	(2.29%)	(28.71%)	(1.14%)	(0.40%)	(4.77%)
Industry	3.330	0.771	0.988	0.000	5,090
	(7.43%)	(6.69%)	(3.28%)	(0.00%)	(5.13%)
Livestock Farm	0.016	0.000	0.008	0.000	0.024
	(0.03%)	(0.00%)	(0.03%)	(0.00%)	(0.02%)
Point Source	4.373	4.087	1.340	0.053	9.853
Sub-total	(9.76%)	(35.46%)	(4.45%)	(0.41%)	(9.62%)
Non-point Source 1.	5.662	2.237	5.628	2.381	15.914
(Septic/latrine)	(12.64%)	(19.41%)	(18.69%)	(18.57%)	(16.02%)
Non-point Source 2	26.750	3.395	18.324	7.958	56.426
(Livestock)	(59.70%)	(29.45%)	(60.83%)	(61.93%)	(56.82%)
Non-point Source 3	8.023	1.807	4.829	2.453	17.112
(Land)	(17.91%)	(15.68%)	(16.03%)	(19.09%)	(17.23%)
Total	44.808	24.855	30.121	12.850	99.304

Generated load and/or load effluent from point source in the Prahova River Basin is reduced to 9.9 ton/day (75.9 % reduce) from 40.9 ton/day of baseline case and due to reduction of point load form point source, total load will be 99.3 ton/day from 130.4 ton/day of the baseline case.

Load runoff in the year of 2015 for the case of permissible limit of 20 mg/L is summarized in the following table. The load runoff in 2015 in the Prahova River Basin will be 24.2 ton/day, decreases by 56.2 % from the baseline. The share of the point source in the total load runoff, which is 74.0 % in baseline case, will be 40.7 %.

					(Unit : t/day)
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total
Sewerage	1.028	3.316	0.341	0.052	4.736
	(9.86%)	(53.64%)	(5.92%)	(2.81%)	(19.58%)
Industry	3.327	0.771	0.988	0.000	5,086
	(31.93%)	(12.47%)	(17.17%)	(0.02%)	(21.01%)
Livestock Farm	0.015	0.000	0.008	0.000	0.023
	(0.14%)	(0.00%)	(0.14%)	(0.01%)	(0.10%)
Point Source	4.370	4.087	1.336	0.053	9.845
Subtotal	(41.94%)	(66.11%)	(23.23%)	(2.84%)	(40.67%)
Non-point Source 1.	1.690	1.082	1.522	0.542	4.835
(Septic/latrine)	(16.22%)	(17.50%)	(26.45%)	(29.23%)	(19.97%)
Non-point Source 2	2.496	0.338	1.752	0.761	5.347
(Livestock)	(23.96%)	(5.46%)	(30.45%)	(41.09%)	(22.09%)
Non-point Source 3	1.864	0.676	1.144	0.498	4.180
(Land)	(17.88%)	(10.93%)	(19.88%)	(26.85%)	(17.27%)
Total	10.420	6.182	5.753	1.853	24.208

Regarding the load generated and/or effluent for the permissible limit of 10 mg/l and 5 mg/l, refer to Tables C.4.2 and C.4.3, respectively.

(2) BOD Concentration in Prahova River

(a) NTPA-001 95 % Discharge

Fig. C.4.8 and following table indicate BOD concentrations in 2015 under NTPA - 001 95% discharge, when the permissible limit is changed to 20 mg/l, 10 mg/l and 5 mg/l.

. (Unit : mg/l)

Model Point	Point Name	River Name	20 mg/l	10 mg/l	5 mg/l
200	-	Prahova	9.3 (111)	7.6 (111)	6.6 (II)
217	Nedelea	-ditto-	20.3 (D)	16.1 (D)	13.9 (D)
220	Prahova	-ditto-	14.2 (D)	9.6 (111)	7.3 (H)
Н	Adincata	-ditto-	17.5 (D)	13.9 (D)	12.0 (III)
260	Moara	Teleajen	22.8 (D)	17.5 (D)	14.8 (D)
280	Ciorani	Cricovul Sarat	32.1 (D)	31.4 (D)	31.0 (D)

Note: Alphabet in parentheses indicates BOD category.

For the NTPA-001 discharge, when the permissible limit is set to be 5 mg/l, BOD concentration of Adincata falls in category III. However, the water in the upstream and middle reaches will exceed the BOD standards set from the water use.

(2) 50 %, 75 % and 95 % Flow Rate of Average Flow Regime

Fig. C.4.9 and following table indicate BOD concentration in 2015 under implementation of permissible limit of 20 mg/l corresponding to 50%, 75% and 95% flow rates of average flow regime.

Water quality will be extremely improved for the 50 % flow rate when concentration of wastewater is lowered to the permissible limit 20 mg/l. For this flow condition, BOD in the Prahova Valley attains category I and those of downstream of the Prahova River and the Cricovul Sarat are in the category III, while that for the Teleajen River exceeds a little the limit of category III.

For the case of 75 % flow rate, water quality of downstream reaches of all the rivers exceeds the limit of category III, while those for the Prahova Valley and Nedelea fall in the category II and III, respectively.

When the flow is reduced to 95 % flow rate, water quality will be worse exceeding limit of category III including the Nedelea.

					(Unit : mg/l)
Model Point	Point Name	River Name	50 %	75 %	95 %
200	-	Prahova	3.6 (I)	4.6 (11)	6.0 (111)
217	Nedelea	-ditto-	7.4 (111)	11.3 (111)	16.5 (D)
220	Prahova	-ditto-	9.9 (III)	12.5 (D)	14.2 (D)
Н	Adincata	-ditto-	10.1 (H)	12.3 (D)	13.6 (D)
260	Moara	Teleajen	12.4 (D)	16.1 (D)	16.3 (D)
280	Ciorani	Cricovul Sarat	10.3 (H)	13.1 (D)	17.4 (D)

Note: Alphabet in parentheses indicates BOD category.

The following table tabulates the cases in which the permissible limit is assumed to be 10 mg/L and the probable discharge is 75 % and 95 %. For the assumed permissible limit of 10 mg/L, water quality is improved and attains category III at Adincata point even in the 95 % discharge. However, in the points, where discharge is low, water quality is difficult to attain target water quality such as in Nedelea.

				(Unit : mg/l)
Model Point	Point Name	River Name	75 %	95 %
200	•	Prahova	3.8 (l)	4.9 (I)
217	Nedelea	-ditto-	8.9 (III)	13.0 (D)
220	Prahova	-ditto-	8.7 (111)	9.9 (111)
Н	Adincata	-ditto-	9.7 (III)	10.8 (H)
260	Moara	Teleajen	12.3 (D)	12.5 (D)
280	Ciorani	Cricovul Sarat	12.9 (D)	17.1 (D)

Note: Alphabet in parentheses indicates BOD category.

4.4 River Water Quality in 2005 and 2010

Based on the water quality analysis mentioned above, the master plan to improve the Prahova water environment is proposed based on the case in which the standard flow rate is 50 % of the average flow regime and the permissible limit of wastewater effluent of 20 mg/l.

The master plan intends to develop the sewerage system and industrial wastewater treatments so as to lower the wastewater quality by the permissible limit to river (NTPA-001) and sewerage system (NTPA-002) and thus satisfy the surface water standards in the Prahova River by the year of 2015.

To attain this objective, the implementation program in three (3) phases, namely first phase (2001-2005), second phase (2006-2010) and third phase (2011-2015) was established. Here, explained are the load generated/effluent and runoff load at 2005, the end of first phase and 2010, the end of second phase and river water quality at representative model points.

4.4.1 Implementation Program

The implementation program for the sewerage system and industrial wastewater treatment plants at the end of each phase is as follows.

(a) Sewerage System

The sewerage system to be developed in the master plan includes those in 16 municipalities, namely Predeal, Azuga, Busteni, Sinaia, Comarnic, Breaza, Cimpina, Baicoi, Plopeni, Slanic, Valenii de Munte, Boldesti Scaieni, Urlati, Ploiesti, Floresti and Maneciu.

In 2005, at the end of the first phase, the rehabilitation of treatment plants in 12 municipalities excluding Predeal, Azuga, Busteni and Comamic are completed and the construction of treatment plant is undertaken only in Ploiesti City.

In 2010, at the end of the second phase, the extension of sewer is in progress in 14 municipalities excluding Floresti and Maneciu. Regarding treatment plants, construction of those in Azuga, Busteni and Comarnic are completed and those in Cimpina and Ploiesti are under construction.

(b) Industrial Wastewater Treatment Plants

By the end of 2005, rehabilitation of treatment plants in eight (8) factories of petroleum refinery is completed so as that the wastewater from these factories is lowered to 20 mg/l.

By the end of 2010, rehabilitation and/or construction of new treatment plant are

completed so as that all the industrial wastewater is lowered to or below 100 mg/l.

4.4.2 Result

(1) Pollution Load

Tables C.4.4 and C.4.5 tabulates pollution load in 2005 baseline and with project, while Tables C.4.6 and C.4.7 indicates pollution load in 2010 baseline and with project.

The following table tabulates load generated and/or effluent in 2005 with project and percentage of load cut to baseline load.

					(unit : t/day)
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total
Sewerage	2.177	5.164	0.365	0.068	7.774
•	(8.29)	(39.81)	(32.48)	(6.41)	(32.79)
Industry	2.742	0.604	0.826	0.002	4.173
•	(67.29)	(81.20)	(65.56)	(3.36)	(70.18)
Livestock Farm	0.873	0.000	0.232	0.000	- 1.106
	0.00	- · ,	0.00	0.00	0.00
Point Source	5.792	5.768	1.424	0.070	13.053
Sub-total	(50.20)	(51.08)	(55.12)	(6.33)	(51.05)
Non-point Source	40.146	7.325	28.494	12.676	88.641
Total	45.938	13.092	29.918	12.746	101.694
	(11.28)	(31.51)	(5.52)	(0.04)	(11.81)

Note: Figures in parentheses indicate load cut percentage

The following table indicates load runoff in 2005 with project and percentage of load cut to baseline load. Rehabilitation and/or construction of treatment system for sewerage and industry can reduce 33.4 % of runoff load.

					(unit: t/day)
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total
Sewerage	2.177	5.164	0.363	0.068	7.771
•	(8.29)	(39.81)	(32.64)	(6.41)	(32.79)
Industry	2.740	0.604	0.825	0.002	4.171
	(67.31)	(81.20)	(65.58)	(3.36)	(70.19)
Livestock Farm	0.851	0.000	0.226	0.000	1.077
*	0.00	00,00	0.00	0.00	0.00
Point Source	5.768	5.768	1.414	0.070	13.020
Sub-total	(50.30)	(51.08)	(55.29)	(6.33)	(51.11)
Non-point Source	5.964	2.040	4.339	1.773	14.116
Total	13.732	7.808	5.753	1.843	27.136
	(33.23)	(43.54)	(23.31)	(0.26)	(33.41)

The same table of load generated and/or effluent in 2010 is shown below.

					(Unit:t/day)
Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total
Sewerage	1.541	4.411	0.470	0.090	6.512
	(50.34)	(58.75)	(31.27)	(6.80)	(55.32)
Industry	3.195	0.720	0.985	0.002	4.903
	(71.99)	(83.49)	(69.77)	(28.32)	(74.24)
Livestock Farm	0.078	0.000	0.036	0.000	0.113
	(91.12)	-	(84.62)	0.00	(89.74)
Point Source	4.814	5.131	1.491	0.092	11.528
Sub-total	(68.71)	(56.43)	(53.03)	23.77	(56.77)
Non-point Source	40.283	7.378	28.630	12.734	89.024
Total	45.096	12.509	30.121	12.826	100.552
	(18.99)	(44.24)	(8.18)	(0.06)	(18.74)

The load runoff in 2010 with project and percentage of load cut to baseline load are shown in the following table. The projects including rehabilitation and/or construction of treatment system for sewerage and industry can reduce 47.4 % of runoff load in the Prahova River Basin.

Туре	Prahova Main	Dimbu	Teleajen	Cricovul Sarat	Total
Sewerage	1.541	4.411	0.467	0.090	6.509
-	(50.34)	(58.75)	(31.40)	(6.80)	(55.33)
Industry	3.193	0.720	0.984	0.002	4.899
•	(72.00)	(83.49)	(69.79)	(28.32)	(74.25)
Livestock Farm	0.075	0.000	0.035	0.000	0.110
	(91.23)	•	(84.58)	0.00	(89.82)
Point Source	4.809	5.131	1.486	0.092	11.518
Sub-total	(68.69)	(65.92)	(64.32)	(7.28)	(66.79)
Non-point Source	5.973	2.040	4.340	1.786	14.139
Total	10.781	7.171	5.826	1.878	25.656
	(49.46)	(58.05)	(31.50)	(0.38)	(47.44)

(2) BOD Concentration

The estimated BOD concentration in the years of 2005 and 2010 with project is tabulated below. Due to progress of the rehabilitation and/or construction of treatment system, the water quality will be greatly improved and even in the year of 2005, the BOD concentration will be improved to category III in the most of the river points as tabulated below.

			1.31			(Unit:mg/l)
Model Point	Point Name	River Name	Present	2005	2010	2015
200	-	Prahova	4.3 (I)	4.8 (I)	4.2 (I)	3.6(1)
217	Nedelea	-ditto-	7.4 (III)	8.3 (III)	7.9 (III)	7.4 (111)
220	Prahova	-ditto-	15.2 (D)	11.3 (III)	10.2 (III)	9.9 (111)
н	Adincata	-ditto-	14.2 (D)	11.2 (111)	10.7 (III)	10.1 (H)
260	Moara	Teleajen	18.2 (D)	13.8 (D)	13.4 (D)	12.4 (D)
280	Ciorani	Cricovul Sarat	11.0 (111)	10.6 (III)	10.7 (III)	10.3 (III)

Note: Alphabet in parentheses indicates BOD category.

4.5 Impact of Economic Growth to River Water Quality

4.5.1 Calculation Condition

The National Commission for Economic Forecasting has predicted that the annual growth rate of the country will reach 2.7 % at the minimum and 4.3 % at the maximum, averaging 3.5 % in 2000. Hence, the pollution load and water quality mentioned above was obtained applying 3.5 % average growth rate for general industry together with annual growth rate of 0.5 % for population, 5.0 % for tourism industry and 0.0 % for livestock industry which are assumed based on the projection of the government and discussion with governmental officials.

The analysis hereunder is made to assess the variation of the projected river water quality and as a result, change of the required water pollution control cost, when the growth rate of the general industry, which has the greatest influence to river water quality among the population, tourism industry and livestock industry, changes to low growth (2.7 %) or to high growth (4.3 %).

4.5.2 Result

(1) Pollution Load

Table C.4.8 tabulates pollution load in 2015 baseline under low growth rate, while Table C.4.9 shows that in 2015 under low growth rate and permissible limit of effluent channels to rivers is assumed to be 20 mg/L.

Table C.4.10 tabulates pollution load in 2015 baseline under high growth rate, while Table C.4.11 and C.4.12 indicates the sama pollution load but the permissible limit is assumed to be 20 mg/L and 10 mg/L, respectively.

Following table compares baseline pollution loads runoff of average, low growth rate and high growth rate in 2015. Compared with the average case, the load runoff for low growth rate decreases 10%, while that for high growth rate increases also around 10%.

Source	Average	Low Growth		High Growth	
	Load (1) (kg/day)	Load (2) (kg/day)	(2)/(1)	Load (3) (kg/day)	(3)/(1)
Sewerage	15,723	14,928	0.949	16,659	1.060
Industry	24,066	19,363	0.805	30,146	1.253
Livestock Farm	1,077	1,077	1.000	1,077	1.000
Point Source Sub-total	40,866	35,369	0.865	47,882	1.172
Non-point Sub-total	14,362	14,362	1.000	14,362	1.000
Total	55,229	49,732	0.900	62,245	1.127

(2) BOD Concentration

Following table tabulates BOD concentration for low growth rate baseline and case of permissible limit of 20 mg/L

				(Unit : mg/l)
Model Point	Point Name	River Name	Baseline	Limit 20 mg/l
200	-	Prahova	5.9 (II)	3.4 (I)
217	Nedelea	-ditto-	11.1 (III)	7.0 (H)
220	Prahova	-ditto-	25.5 (D)	9.3 (111)
H	Adincata	-ditto-	21.1 (D)	9.9 (111)
260	Moara	Teleajen	27.3 (D)	12.2 (D)
280	Ciorani	Cricovul Sarat	10.5 (III)	10.3 (III)

Note: Alphabet in parentheses indicates BOD category.

Following table indicates BOD concentration for high growth rate baseline and cases of permissible limit of 20 mg/L and 10 mg/L

					(Unit : mg/l)
Model Point	Point Name	River Name	Baseline	Limit 20 mg/l	Limit 10 mg/1
200	-	Prahova	6.6 (II)	3.7 (l)	3.0 (l)
217	Nedelea	-ditto-	14.1 (D)	8.0 (111)	6.3 (H)
220	Prahova	-ditto-	34.9 (D)	10.4 (11)	7.2 (111)
н	Adincata	-ditto-	26.8 (D)	10.5 (III)	8.3 (111)
260	Moara	Teleajen	33.9 (D)	12.8 (D)	9.8 (III)
280	Ciorani	Cricovul Sarat	10.6 (III)	10.3 (D)	10.1 (III)

Note: Alphabet in parentheses indicates BOD category.

To attain the target water quality, all the wastewater of the sewerage systems and industrial establishments should be treated as low as 20 mg/L in the case of low growth rates, while the wastewater should be treated to 20 mg/L also in the case of high growth rate, since 10 mg/L limit may bring about too clean river water compared with target water quality.

CHAPTER V AQUATIC LIFE

5.1 General

The Ialomita River, together with its tributaries, represents one of the most important hydrological areas (10,430 km) in Romania. It springs in the Bucegi Mountains, in the region of Mecetul Turcesc, at a height of 2,395 m, then it flows into the Danube opposite Piua Pietrii (8 m height).

The Ialomita River Basin can be classified into three (3) areas it crosses: mountain, hill and plain. The first two (2) areas cover one third of its length, and the last, two thirds. The mountain area is between the Bucura Top (Peak) in the Bucegi Massif and Moroieni. The hill area extends between Moroieni and upstream Targoviste, and covers a sector of about 55 km. The plain area, extending between Targoviste and the river mouth, covers the longest sector of the river, over 300 km.

The Ialomita River has a length of 412 km and gathers 118 flowing tributaries. The most important tributaries are Cricovul Dulce - 71 km and the Prahova - 169 km. The Prahova River springs in the Carpathian Mountains near Predeal Town and it flows into Ialomita River opposite Patru Frati.

Since middle of 1960's, industrialization started in most of towns along the Ialomita and the Prahova rivers except Ploiesti City which had been developed as the center of petroleum industry in the middle of 19th century. Due to this development, various fish species that lived in these two (2) rivers had not been seen any more, whilst some new species started to live.

In this chapter, the results of study on aquatic life in the Ialomita and the Prahova rivers are described as an important aspects of water pollution. In Romania, researches on the benthonic and the ichthyological fauna started in 1962 and several authors had described those in the Ialomita and the Prahova rivers.

Based on these reports, the benthonic and the ichthyological fauna in 1960's, when the pollution was not serious, is first described. Then, existing fauna are explained based on the sampling survey and the interview survey conducted in August 1998 and the change of species from the 1960's is described as the conclusion.

5.2 Aquatic Fauna in 1960's

5.2.1 Benthonic Fauna

(1) Ialomita River

The first studies regarding the degree of saprobity of the Ialomita River were performed by the researchers: Simona Marcoci, Gh Bonciu from the Research Institute for the Environment Engineering.

Subsequently, researches on the benthonic fauna on the Ialomita River, which stressed upon the vital complexity of the river in correlation with the environmental factors, were performed between 1963 and 1965 by a staff managed by Gh. Brezeanu, Margareta Baltag and V. Zinevici and resumed in 1996 by the same staff, within the

Biology Institute In Bucharest.

As regards the Springs, the biocoenoses which appear are phytophilous and lithophilous The lithophilous biocoenosis is made up of Chironomidae, and the phytophilous biocoenosis is made up of Nematodes, Oligochaeta, Hidracarians, Plecoptera, Odonata, Trichoptera, Simuliidae, Collembola, Chironomidae. In this section the species characteristic to oligo-ß mesosaprobic area prevailed, and the purity degree was 94%.

Surpassing Cheile Tatarului, the nature lotic of the river is interrupted by the dam from Scropoasa, where the specific biotope habitat is lenitic. On the seacoast of the lake, on the sandy clay bottom there were found Gastropoda (*Pisidium sp.*). In the same lake area there develops a bioderm with numerous benthonic organisms Nematoda and Chironomidae.

Downstream the lake and the power station (hydroelectric station), the river has a poor fauna, which is recovered after 3-4 km, where the flow and stream variations are lessened. In this area, the biocoenoses keep the quantitative structure of upstream sector.

As for as the station placed downstream Teis, on the gravel-sand faces, even if one can find the same groups of organisms, their number is smaller. The benthenic fauna is made up of Oligochaeta, Hydracarians, Chironomidae, Simuliidae. The purity degree downstream Teis was of 59%, and downstream Targoviste 47%, the river water being included in the β -mesosaprobic category to α -mesosaprobic, the impurity being moderate to high. This difference is due to the evacuation of the industrial and domestic waters belonging to the town of Targoviste.

Downstream Targoviste, to the river mouth, there starts the plain area of the river (over 300 km). In this area the river crosses a region rich in oil-wells and gathers, directly or indirectly, by its tributaries - Ialomicioara, Cricovul Dulce, Prahova Sarata, important industrial and domestic evacuations.

The silt-sandy facies contains a high degree of organic substances and it is dominated by a poor biocoenosis, made up of Oligochaeta. The purity degree in this section was of 50%.

Opposite Dridu, Ialomita receives its main tributary the Prahova River, impurified by industrial and domestic waters, which contributes to the maintaining of its salubrity state. The purity degree of Ialomita, after the confluence with the Prahova River, is of 39%; the river water is included in the α -mesosaprobic category, high impurity; the bottom fauna is made up of Nemadoda, and Oligochaeta (Tubifex tubifex), the other species being present in rare samples.

Up to the river mouth, on an itinerary of 96 km, the Ialomita River does not have any other impurity source, the action of self-epuration standing out very clearly. The purity degree allowed higher values of 71%, the dominant species being those typical of the β -mesosaprobic waters moderate impurity.

The systematic list of the macrobenthos in the Ialomita River in 1968 is tabulated in Table C.5.1 and location map of the Ialomita and the Prahova rivers is shown in Fig. C.5.1.

(2) Prahova River

Upstream Azuga, the river is included in the oligosaprobic - β -mesosaprobic category. The next section, up to Banesti, corresponds to the β -mesosaprobic area.

Downstream Sinaia, after gathering industrial and city waters, the river has a purity degree characteristic to the moderate pollution waters towards high β -mesosaprobic to α -mesosaprobic. In this section numerous and various species of Oligochaeta, Gastropoda, Amphypoda, Hydracarians and Insecta are present.

On the itinerary Banesti – Floresti, downstream Brazi, after the confluence with the Teleajen River, there takes place the decrease in the diversity of the systematic groups and the increase in the number of the species characteristic to a water richer in organic substances. This section is included In the β -mesosaprobic to α -mesosaprobic area. Moderate to high impurity. Before Brazi, as well as before the confluence with the Teleajen River, the Palanca station, the benthonic biocoenoes ere represented by species characteristic to typical of moderate impurity β -mesosaprobic water.

The systematic list of the macrobenthos in the Prahova River in 1968 is tabulated in Table C.5.2.

5.2.2 Ichthyological Fauna

In the beginning of 1960's, Dr.P.Banarascu distinguished five (5) areas of pisicultural layers for mountain rivers mentioned below and described ichthyological fauna in the Ialomita and the Prahova rivers based on this classification.

(1) Classification

- Trout area (Salmo truta fario);
- Umber or grayling area (Thymallus thymallus or Barbus meridionalis peteny);
- Broad snout area (Chondrostoma nasus);
- Barbel area (Barbus barbus);
- Carp area (Cyprinus carpio).
- (a) Trout Area (Salmo truta fario)

The rivers in this region are characterized by a temperature up to 20°C and the stream of water is very quick. The fish species which live in this region are: Salmo truta fario (the trout), Cotus gobio (the groundling), Phoxinus phoxinus (the minnow), Noemacheilus barbatulus (the loach). Downstream this region the following species penetrate: Barbus meridionalis peteny, Thimallus thimallus, Alburnoides bipunctatus, Cobitis romanica, Cobitis aurata.

(b) Grayling Area (Thymallus thymallus or Barbus meridionalis petrny), downstream the trout area, at about 400 m height, the riverbed is stony cobbles – pebbles.

In this area it is possible to appear the species of the trout area: Phiximus phoxinus (the minnow), Noemacheilus barbatulus (the roach), Cottus gobio, Alburnoides bipunctatus, Gobio uranoscopus frici, Cobitis romanica, Cobitis aurata.

In the downstream section there also penetrate: Chondrostoma nasus, Leuciscus cephalus, Leuciscus leuciscus, Barbus barbus, Gobio gobio.

(c) Broad snout Area (Chondrostoma nasus) - typical of the areas with stony bottom and sandy.

The following species are present: Chondrostoma nasus (the broad snout), Leuciscus cephalus (the chub; the dace), Vimba vimba (the hake; the codling), Leuciscus leuciscus. There can be present: Esox lucius (the pike), Lota lota (the burleot), Rhutillus sericeus (the rhodeus), rarely Perca fluviatilis (the perch) and Rutilus rutilus (the roach).

(d) Barbel Area (Barbus barbus) typical of the large rivers, with a sandy and movable bed.

There can also be met: Chondrostoma nasus, Leuciscus cephalus, Alburnus alburnus (the bleak). In the large rivers: Silurus glanis (the sheat fish), Lota lota (the burbot), Esox lucius (the pike) and Aspro zigel (the blenny).

Among the small size species, the most characteristic ones are Gobio gobio and G. kesleri.

There also can be met the following species: Cyprinus carpio (the carp), Abramis brama (the bream), Rutilus rutilus (the roach), Blicca bjoerkna, Leuciscus idus (the cisco; the lake herring), Perca fluviatilis (the perch), Acerina cernua (the pope, the ruff, the black-tail), as well as Lepomis gibbosus, Ichtalurus nebulosus, Cobitis taenia, Gobio albipinnaratus, Aspius aspius (the rapacious carp).

(e) Carp Area (Cyprinus carpio)

This area is characterized by deep water, low transparence silt-sandy or clay riverbed. The following species are present: Cyprinus carpio (the carp), Silurus glabis (the sheat fish), Leuciscus idus (the cisco).

(2) Ialomita River

- (a) Salmo truta fario lives down to upstream Pietrosita (Fig. C.5.2 (1)); Noemacheilus barbatulus (the loach) from Pietrosita to Targoviste (Fig. C.5.2 (2)); Phoxinus phoxinus to downstream Targoviste (Fig. C.5.2 (3)); Cottus gobio gobio (the miller's thumb) down to upstream Pietrosita (Fig. C.5.2 (4)).
- (b) Thymallus thymallus— is absent in the Ialomita Rivers (Fig. C.5.2 (5)); Alburnoides bipunctatus bipunctatus (the sunfish) lives between Targoviste and confluence with the Prahova River (Fig.C.5.2 (6)); Gobio gobio obtusirostris upstream Targoviste to confluence with the Prahova River; Gobio uranoscopus frici endemic in the Danube area, 10 km upstream Targoviste (Fig. C.5.2 (7)); Gobio albibipinnatus from Tandarei; Barbus meridionalis from Pietrosita to the

confluence with the Prahova River (Fig. C.5.2 (8)).

- (c) Chondrostoma nasus—absent in the whole Ialomita hydrologiol area (Fig. C.5.2 (9)); Leuciscus (Squalius) cephalus upstream Pucioasa to the confluence with the Prahova River (Fig. C.5.2 (10)); Leuciscus idus (the cisco)—at the flow into the Danube (Fig. C.5.2 (11)); Rhodeus sericeus amarus (the rhodeus) from Dridu to the Danube (Fig. C.5.2 (12)); Barbus barbus (the barbel) from Pucioasa to the confluence with the Prahova River, then, from Slobozia to the river mouth (Fig. C.5.2 (13)). Cobitis taenia—where the river flows into the Danube (Fig. C.5.2 (14)).
- (d) Aspius aspius (the rapacious carp) from the Danube to river mouth (Fig. C.5.2 (15)); Leucispus delineatus (fish fry) from Targoviste to the river mouth (Fig. C.5.2 (16)); Alburnus alburnus (the bleak) from Targoviste confluence with the Prahova River (Fig. C.5.2 (17)); Abramis brama (the bream) where the river flows into the Danube (Fig. C.5.2 (18)); Pelecus cultratus from Dridu to the river mouth (Fig. C.5.2 (19)).
- (e) Cyprinus carpio_- from Tandarei to the river mouth (Fig. C.5.2 (20)); Bilcca bjoerkna (the Romanian freshwater fish) at the confluence with the Danube (Fig. C.5.2 (21)); Carassius carassius (the crucian) in the Ialomita hydrological area (according to the data supplied by Professor Dr. Zemiankovski), (Fig. C.5.2 (22)); Carassius auratus gibelio (the crucian carp) from Tandarei (Fig. C.5.2 (23)); Rutilus rutilus (the roach) from Tandarei (Fig. C.5.2 (24)); Silurus glanis (the sheat fish) on the inferior and partly middle water way of the Ialomita River (Fig. C.5.2 (25)); Esox lucius (the pike) at the confluence with Danube (Fig. C.5.2 (26)); Acerina schraetser at the confluence with the Danube (Fig. C.5.2 (28)).

(3) Prahova River

(a) Salmo truta fario - up to Azuga (Fig. C.5.2 (1)); Noemacheilus barbatulus (the loach) between Busteni and Sinaia (Fig. C.5.2 (2)). Phoxinus phoxinus - up to downstrem Sinaia (Fig. C.5.2 (3)); Barbus meridionalis - at Cimpina (Fig. C.5.2 (8)).

5.3 Existing Aquatic Fauna

5.3.1 Observation of Benthonic Fauna

Sampling observation of the benthonic fauna is made in end of August 1998. The result is tabulated in Table C.5.3 for the Ialomita River and C.5.4 for the Prahova River. The sampling points and its characteristics are explained hereunder.

(1) Ialomita River

- (a) Site No. 1 Padina 750 1.5 km from the spring
 - (i) Substratum in sample area: boulders-cobbles;
 - (ii) Water width in sample area 5-7 m;

- (iii) Water clarity: clear and bright;
- (iv) Depth in sample area 15-25 cm;
- (v) Total organisms on sample 19;
- (vi) Biocoenosis is made up: Oligochaeta, Amphiopoda, Collembola, Ephemeroptera, Plecoptera, Trichoptera, Ceratopogonidae, Chironomidae;
- (vii) The purity degree after Knopp' Method 94%, oligosaprobical category;
- (viii) After Belgian Biotic Index: 8-7 biotic index, Class II slightly polluted.
- (b) Site No. 2 Branesti upstream Targoviste
 - (i) Substratum in sample area: cobbles;
 - (ii) Water width in sample area 20-25 m;
 - (iii) Water clarity: clear;
 - (iv) Depth in sample area 15-50 cm;
 - (v) Total organisms on sample 120;
 - (vi) Biocoenosis is made up: Oligochaeta, Collembola, Ephemeroptera, Trichoptera, Chironomidae;
 - (vii) The purity degree after Knopp' Method 46%, β-mesosaprobic α-mesosaprobic
 - (viii) After Belgian Biotic Index 6-5 biotic index, Class III moderately polluted-critical situation.
- (c) Site No. 3 Sacuieni downstream Targoviste
 - (i) Substratum in sample area: sand;
 - (ii) Water width in sample area 10-15 m;
 - (iii) Water clarity: cloudy;
 - (iv) Depth in sample area 15-40 cm;
 - (v) Total organisms on sample 61;
 - (vi) Biocoenosis is made up: Oligochaeta, Ephemeroptera, Chironomidae;
 - (vii) The purity degree after Knopp' Method 14%, α-mesosaprobic polisaprobic;
 - (viii) After Belgian Biotic Index 2-0 biotic index, Class V very heavily polluted.
- (d) Site No. 4 Silistea Snagov

- (i) Substratum in sample area: sand;
- (ii) Water width in sample area 15-20 m;
- (iii) Water clarity: clear;
- (iv) Depth in sample area 15-50 cm;
- (v) Total organisms on sample 48;
- (vi) Biocoenosis is made up: Oligochaeta, Ephemeroptera, Chironomidae;
- (vii) The purity degree after Knopp' Method 36%, β-mesosaprobic α-mesosaprobic-
- (viii) After Belgian Biotic Index 6-5 biotic index, Class III, moderately polluted-critical situation.
- (e) Site No. 5 Ciochina
 - (i) Substratum in sample area: silt;
 - (ii) Water width in sample area 15-20 m;
 - (iii) Water clarity: turbid;
 - (iv) Depth in sample area 50-80 cm;
 - (v) Total organisms on sample 61;
 - (vi) Biocoenosis is made up: Oligochaeta, Chironomidae;
 - (vii) The purity degree after Knopp' Method 20%, α-mesosaprobic polisaprobic;
 - (viii) After Belgian Biotic Index 6-5 biotic index, Class V, very heavily polluted.
 - (f) Site No. 6 Tandarei
 - (i) Substratum in sample area: silt;
 - (ii) Water width in sample area 15-20 m;
 - (iii) Water clarity: turbid;
 - (iv) Depth in sample area 80-100 cm;
 - (v) Total organisms on sample 50;
 - (vi) Biocoenosis is made up: Oligochaeta, Chironomidae;
 - (vii) The purity degree after Knopp' Method 20%, α-mesosaprobic polisaprobic;

(viii) After Belgian Biotic Index 6-5 biotic index, Class V, very heavily polluted.

(2) Prahova River

- (a) Site No. 1 Prahova 1.5 km from the spring
 - (i) Substratum in sample area: cobbles pebbles;
 - (ii) Water width in sample area 2-3 m;
 - (iii) Water clarity: clear and bright;
 - (iv) Depth in sample area 7-10 cm;
 - (v) Total organisms on sample 107;
 - (vi) Biocoenosis is made up: Oligochaeta, Hirudinea, Gastropoda, Amphiopoda, Collembola, Ephemeroptera, Trichoptera, Simulidae, Chironomidae;
 - (vii) The purity degree after Knopp' Method 75%, β-mesosaprobic;
 - (viii) After Belgian Biotic Index: 6-5 biotic index, Class III moderately polluted.
- (b) Site No. 2 5-7 km downstream Comarnic
 - (i) Substratum in sample area: cobbles peblles;
 - (ii) Water widh in sample area 10-15 m;
 - (iii) Water clarity: cloudy;
 - (iv) Depth in sample area 50-80 cm;
 - (v) Total organisms on sample 36;
 - (vi) Biocoenosis is made up: Collembola, Ephemeroptera, Simulidae, Chironomidae:
 - (vii) The purity degree after Knopp' Method 66%, β-mesosaprobic;
 - (viii) After Belgian Biotic Index 6-5 biotic index, Class III moderately pollutedcritical situation.
- (c) Site No. 3 Tinosu
 - (i) Substratum in sample area: gravel;
 - (ii) Water width in sample area 14-18 m;
 - (iii) Water clarity: cloudy;
 - (iv) Depth in sample area 1-1,2 m;
 - (v) Total organisms on sample 86;

- (vi) Biocoenosis is made up: Oligochaeta, Ephemeroptera;
- (vii) The purity degree after Knopp' Method 28%, α-mesosaprobic;
- (viii) After Belgian Biotic Index 4-3 biotic index, Class IV heavily polluted.
- (d) Site No. 4 Adincata
 - (i) Substratum in sample area: silt sand;
 - (ii) Water width in sample area 40-50 m;
 - (iii) Water clarity: turbid;
 - (vi) Depth in sample area 50-90 cm;
 - (v) Total organisms on sample 48;
 - (vi) Biocoenosis is made up: Oligochaeta, Gastropoda, Chironomidae;
 - (vii) The purity degree after Knopp' Method 45%, β-mesosaprobic α-mesosaprobic;
 - (viii) After Belgian Biotic Index 6-5 biotic index, Class III, moderately pollutedcritical situation.

5.3.2 Conclusion

(1) Benthonic Fauna

(a) Ialomita River

- (i) At the stations located in the upper reaches, i.e. Padina station and Pietrosita station, species characteristic to oligo-β-mesosaprobic water were recorded in 1962 as well as in 1998, the water purity degree being almost the same (94%).
- (ii) At the stations located downstream Laculete and Branesti, due to the increase of water pollution by industrial and domestic wastewater discharge in Pietrosita city, Moroieni city, Doicesti city and Fieni city, the water purity degree decreases to 46% and the benthic fauna is dominated by species characteristic to β-mesosaprobic water. This condition indicates a moderate water impurity.
- (iii) The benthic fauna at the station located upstream Targoviste city was scarce in both 1962 and 1998, being composed of mainly Oligochaeta and Chironomidae. Very low values (14%) of the water purity degree were recorded, which is characteristic to α-mesosaprobic water and indicates a moderate to high water impurity.
- (iv) At the stations located in Dridu and Silistea-Snagov, downstream the confluence with Prahova River, although the benthic fauna continues to be dominated mainly by Oligochaeta and Chironomidae, the purity degree

increases due to the natural purification up to 36%~39%. This condition is characteristic to β and α -mesosaprobic water and indicates a moderate to high water impurity.

(v) The last section being studied is the station located downstream Slobozia City. Due to the high pollution load generated by the industrial, agricultural and domestic wastewater discharge, the water purity degree decreased from 71% in 1962 to 20% at present. This condition is characteristic to αmesosaprobic-polisaprobic water and indicates a high to strong water impurity.

(b) Prahova River

- (i) Similar to the Ialomita River, the benthonic fauna at the station located in Predeal town is dominated by species characteristic to the low to moderate oligo-β-mesosaprobic water pollution. The purity degree is high, i.e. 75%.
- (ii) After the confluence with the Teleajen River, receiving the wastewater discharged by the oil refineries in the area, the station located in Tinosu recorded in both 1962 and 1968 the lowest values of the water purity degree (28%). The water in this section of the Prahova River is α-mesosaprobic, which indicates a high water impurity.
- (iii) Due to the natural purification and the reducing of pollution sources, at the stations located in Dridu and Adincata benthonic fauna includes insects too. The water purity degree is between 40%~45%, being thus characteristic to moderate to high water impurity.

(2) Ichthyological Fauna

(a) Ialomita River

At present, the number of species in the Ialomita River has decreased considerably compared to the situation in the '60s, due to the water pollution following the industrialization. Especially, species which are not resistant to water pollution have completely disappeared in the lower reaches. However, due to recent decrease in activity of some factories and livestock farms, fish seedling is reported on the lower reaches of the Ialomita River.

(b) Prahova River

In the middle and lower reaches of Prahova River there are no bibliographical data regarding the ichthyological fauna, while on the upper reaches, same species that found in 1960's can be met.

REFERENCES

1) Banarascu, P., "Pisces Osteichties XII (Fish Vertebrate XII) ", Editura Academiei, Bucharest, 1964

TABLES

Table C.1.1 Name and Location of Periodical Observation Points

Site			Distance from	
Code	River Name	Site	River Head (km)	Remarks
180	Prahova	Predeal	5.0	
195	Prahova	amonte Sinaia	15.0	
200	Prahova	Cornu	53,0	
217	Prahova	Nedelca	73.0	
220	Prahova	Tinosu	105.0	
270	Prahova	Gherghita	•	
290*	Prahova	Adincata	140.0	
190	Azuga	Azuga	21.0	
205	Dostana	amonte Traisteni	1.0	
230	Teleajen	Cheia	10.0	
240	Teleajen	Gura Vitioarei	58.0	
260	Teleajen	Moara Domneasca	110.0	
250	Dimbu	Goga	37.0	
275	Cricovul Sarat	Sangeru	10.0	
280	Cricovul Sarat	Ciorani	88.0	
300	[alomita]	Cosiereni	156.0**	

^{*} The observation was made in 1995 but stopped in 1996 and 1997.

^{**} Measured from the river head of the Prahova Main River.

Table C.1.2. River Water Quality at Monitring Station (1995-1997)

		TableC.1.2.	. River W	<u>rater Qua</u>	lity at Mo	onitring S	tation(1	995~199	7)	
Point	Clasification	Dischrge	Temperature	BOD	COD	SS	CN ⁻			Cd (mg/l)
No.	Ì	(m^3/s)	(°C)	(mg/l)	(mg/l)	(mg/i)	(mg/l)	(mg/1)		
	average	1.61	6.6	3.84	2.09	75.67			0.00	~
180	minimum	0.14	0.0	2.20	1.20	25.00	-	-	0.00	h
	maximum	7,62	18.0	5.40	2.8	165.00	_	-	0.00	
	average	2.16	7.3	4.34	2.41	89.19	0.01	0.001	0.00	0.000
195	minimum	0.25	0.0	3.40	1.90	32.00	0.00	0.000	0.00	0.000
	maximum	10.90	20.0	6.30	3.50	141.00	0.02	0.002	0.10	0.000
	average	8.96	9.1	6.21	3.42	169.15	0.01	0.009	0.09	0.000
200	minimum	2.50	0.0	3.20	1.80	38.00	0.00	0.000	0.00	0.000
	maximum	32.60	23,0	13.50	5.90	1218.00	0.01	0.020	3.03	0.003
	average	8.33	10.2	6.23	3.50	138.52	0.01	0.016	0.61	0.000
217	minimum	0.31	1.0	4.50	2.50	40.50	0.00	0.013	0.00	0.000
	maximum	29.60	26.0	9.20	6.10	600.00	0.01	0.019	5.50	0.000
	average	10.98	11.4	18.02	11.00	324.39	0.03	0.087	6.03	0.004
220	minimum	4.75	0.0	8.30	4.40	93.00	0.00	0.000	0.00	0.001
	maximum	31.40	28.0	50.10	33.40	581.00	0.13	0.360	17.17	0.007
	average	-	12.6	25.13	15.90	294.64	0.05	_	4.12	0.005
270	minimum		1.0	12.10	7.00	91.00	0.02	-	1.30	0.000
	maximum	-	28.0	52.30	35.90	876.00	0.21	-	9.99	0.009
	average	18.72	_	4.74	5.27	130,49	-		-	
290	minimum	12.50	· 	0.80	4.40	21.70	-	-	_	
	maximum	25.70		11.60	6.10	513.60	_	_	_	
	average	17.09	-	5.20	5.6	177.13	_	_	_	-
300	minimum	2.90		2.40	4.60	28.40	_	_		
	maximum	37.20		10.20	7.20	742.60	-		_	•••
	average	1.21	5.7	3.32	1.84	66.97			0.00	
190	minimum	0.12	0.5	1.80	1.00	16.00	_	_	0.00	
	maximum	4.82	14.0	4.50	2.40	117.00	_	_	0.00	
	average	4.16	6.7	3.37	1.83	73.28	-	_	0.00	
205	minimum	1.20		1.50	0.90	25.00	_	_	0.00	-
	maximum	7.80	19.0	5.00	2.90	133.00			0.00	-
	average	0.80		3.69	2.02	64.58	-		0.00	_
230	minimum	0.20		1.50	0.90	14.00	_	_	0.00	_
	maximum	2.29	18.0	4.80	2.50	112.00	-	·	0.00	
	average	3.80		6.08	3.38	200.93	0.01	0.011	0.02	0.001
240	minimum	0.49		4.70	2.30	41.00	0.00	0.000	0.00	0.000
	maximum	12.30		6.70	3.70	1788.00	0.01	0.020	0.40	0.003
	average	8.68		22.22	13.81	335.28	0.04	0.052	6.27	~
260	minimum	5.69	1.0	6.40	3.50	81.00	0.00	0.000	0.00	
	maximum	19.30		42.20	28.10	1049.00	0.33	0.220	22.46	-
	average	2.58		34.70	22.64	305.09	0.01	0.118	15.08	0.008
250	minimum	0.72	1.0	13.50	8.40	109.00	0.00	0.000	2.30	0.000
-	maximum	32.00		54.40	36.30	1121.00	0.02	0.300	60.40	0.030
	average	0.25		15.65	9.21	307.32		0.050	1.04	0.000
275	minimum	0.06		4.10	2.30	120.00		0.000	0.00	0.000
	maximum	1.38	25.0	77.10	41.30	1521.00	_	0.187	15.60	0.000
	average	0.99		17.62	10.64	327.88	0.03	0.044	3.25	0.002
280	minimum	0.17		6.70	3.10	56.00	0.00	0.000	0.00	0.000
	maximum	6.00	f	38.00	25.20	1772.00	0.16	0.180	17.30	0.007

Table C.1.3 Nationa	Standard	of River V	Vater Qua	lity (1/2)
	Adı	missible Val	luc	
Parameter	Qu	ality catego	ry	Method of Analysis
	I	u	Ш	
Color		Colorless		*
Odor	·	Odorless		*
pH		6.5~8.5	A - 10 A - 100 Mary 1 - 100 -	STAS 6323-75
Ammonium(ionised NII4), mg/l	1	3	10	STAS 8683-70
Ammonia (non-ionised NH ₃), mg/l	0.3	0.3	0.5	STAS 8683-70
Nitrate(NO ₃), mg/l	10	30		STAS 8900/1-71
Nitrite (NO ₂), mg/l	11	3	-	STAS 9800/2-71
Calcium, mg/l	150	200	300	STAS 3662-62
Chlorine(free residualCl2), mg/l		0.005		STAS 6364-78
Chloride, mg/l	250	300	300	STAS 8663-70
Carbon Dioxide(free), mg/l		50		STAS 3263-61
Phenol(steem extraction, CH6OH5),	0.001	0.02	0.05	STAS 7167-65
mg/l				
Iron(total), mg/l	0.3	11	1	. STAS 8634-70
Phosphorus, mg/l		0.1	,	STAS 10064-75
Hydrogen Sulfide and	пot	not	0.1	STAS 7510-66
sulfide(S ²⁻),mg/l	present	present		
Magnesium, mg/l	50	100	200	STAS 6674-77
Manganese, mg/l	0.1	0.3	0.8	STAS 8662-70
Dissolved Oxygen, mg/l	6	5	4	STAS 6536-88
Petroleum products, mg/l		0.1	,	STAS 7877-87
Total dissolved solids, mg/l	750	1000	1200	STAS 9187-84
Sodium, mg/l	100	200	200	STAS 8295-69
BOD, mg/l	5	7	12	STAS 6560-82
COD(Mn), mg/i	10	15	25	STAS 9877-74
COD(Cr), mg/l	10	20	30	STAS 6954-82
Sulfate, mg/ł	200	400	400	STAS 8601-70
Silver, mg/l		0.01		STAS 8190-68
Arsenic, mg/l		0.01		STAS 7885-67
Barium, mg/l		1.0	<u>-</u>	STAS 10258-75
Cadmium ,mg/l		0.003		STAS 7852-80

Table C.1.3 National Standard of River Water Quality (2/2)

					nissible '			
		Par	ameter	Qu	ality cate	gory		Method of
				I	11		Ш	Analysis
Cyan	ide , mg	1			0.01			STAS 7685-79
Coba	dt, mg/l		··· • · · · · · · · · · · · · · · · · ·	ļ	11			STAS 8288-69
Char.	mium	hexav	alent, mg/l		0.5			STAS 6323-75
Cnro	nuun	trival	ent, mg/l		0.05			07740 7044 (7
Copp	er, mg/l				0.05			STAS 7844-67
Anio	nic Dete	rgents,	mg/l		0.5			STAS 7795-80
Fluor	ride, mg/	1			0.5*			STAS 8910-71
Poly	cyclic are	omatic	hydrocarbons, mg/l	ļ 	0.0002	<u> </u>		**
Merc	ury, mg/	1			0.001			STAS 8045-79
Moly	bdenum	, mg/l			0.05			STAS 11422-84
Nick	el, mg/l				0.1			STAS 7987-67
	herbio	ides	triazine, mg/l	ļ. <u> </u>	0.001		 	**
			trizinone, mg/l	<u> </u>	0.001			**
ç	}	<u> </u>	toluidine, mg/l] 	0.001			**
Pesticides	insecti	cides	organochorine mg/l	ļ 	0.0001	l	.,	STAS 12650-88
Pest			organophosphorus,		not prese	ent		**
			organometallic, mg/l		not prese	ent		**
	nitro-de	rivativ	/es,mg/l		not prese	ent		4+
Lead	l, mg/l				0.05			STAS 8637-79
Sele	nium, m	2/I			0.01			STAS 12663-88
Zinc	, mg∕i				0.03			STAS 8314-87
Tota	l Colifor	ms, i	mg/l	100000				STAS 3001-83

Notes: The quality conditions for waters of category III correspond to requirement related to the biological processes which ensure self purification.

- * For surface waters in category I used for centralized portable water supply, the admissible maximum is 1.2mg/l.
- ** Method of analysis conforms with instruction of the National Water Council.

 (Source: STAS 4706)

Table C.2.1 Location of Supplementary Water Quality Analysis in Prahova River(1/2)

13			upplementary Water Qu			the second second second	the same of the same of the same of
Site No.	River Name	Water Classification	Sampling Site	Remarks	Code No.	Latitude	Longitude
	Prahova		Predeal	Periodical Point	180	25°34'142"	45° 27' 169"
2	Prahova	Main River	amonte Sinaia	Periodical Point	195	25° 34'095"	45*22'960"
3	Prahova	Main River	Comu	Periodical Point	200	25°43'137"	45°07'754"
4	Prahova	Main River	Nedelea	Periodical Point	217	25° 48'314"	44° 58' 586"
5	Prahova	Main River	Tinosu	Periodical Point	220	26' 05'318"	44° 47'779"
6	Prahova	Main River	Gherghita	Periodical Point	270	26° 16'095''	44° 48' 587"
7	Prahova	Main River	Posada	Supplementary Point	A	25° 37'255''	45° 16'281"
8	Prahova	Main River	Finari	Supplementary Point	Ε	26° 11'504''	44° 48'290"
9	Prahova	Main River	ADINCATA	Supplementary Analysis Point	н	26° 26'638"	44" 45'615"
10	Prahova	Factory Effluent	S.C.BERE.S.A. /Azuga	Beer	4006	25° 32'980"	45*26'213"
11	Prahova	Factory Effluent	Hospital/Azuga	Hospital	4010	25" 33'265"	45*25'516"
12	Prahova	Factory Effluent	S.C.HARTIA.S.A./Busteni	Paper/Pulp	4014	25° 32'300"	45° 24'477''
13	Prahova	Factory Effluent	S.C.PETROUTILAJ	Petro-industry	4292	25' 43'143"	45° 07'601''
14	Prahova	Factory Effluent	/Cimpina S.C.VICTORIA S.A.	Tite	4039	25*46'840"	45°02'163"
15	Prahova	Factory Effluent	/Floresti RENEL /Ploiesti	Thennal Plant	4047	26°00'518"	44° 51′093"
16	Prahova	Factory Effluent	/Termal Plant S.C.PETROBRAZI.S.A.	Petro-industry	4051	26°01'185"	44* 49'589"
17	Prahova	Sewerage Effluent	/Brazi Predeal town		4317	25' 34'039"	45° 28' 639"
18	Prahova	Sewerage Effluent	Busteni town		4011	25° 32'123"	45"24'725"
19	Prahova	Sewerage Effluent	Sinais town		4018	25° 33'768"	45° 19'062"
20	Prahova	Sewerage Effluent	COSILIUL LOCAL Poiana		4032	25° 43' 143"	45° 07'601"
21	Prahova	Sewerage Effluent	Campina Breaza town		4028	25° 41'221"	45" 10'085"
22	Prahova	Sewerage Effluent	Cimpina towm		4034	25* 44'862"	45" 06'300"
23	Prahova	Stock Farm Effluent	F.P.Comporsa/Stancesti		4082	25° 52'923"	44° 51' 594"
24	Prahova	Stock Farm Effluent	F.P.SancaSRL/Gherghita		4123	26' 16' 162"	44°48'530"
25	Azuga	Tributary	Azuga	Periodical Point	190	25"35"500"	45° 26' 684"
26	Azuga	Factory Effluent	S.C.POSTAV.S.A./Azuga	Textile	4007	25" 32'965"	45° 26'462''
27	Azuga	Factory Effluent	S.C.SINTER.REF.S.A.	Refractory Materials Factory	4004	25° 35' 497"	45*26'681"
28	Azuga	Sewerage Effluent	Azuga town		4008	25' 33'266"	45" 26'866"
29	Doftana	Tributary	amonte Traisteni	Periodical Point	205	25°43'125"	45° 11'275"
30	Doftana	Tributary	Ac.Voila	Supplementary Point	В	25° 45'040"	45° 11'364"
31	Doftana	Tributary	CIMPINA	Supplementary Point	C	25° 45' 101"	45° 06'233"
32	Doftana	Factory Effluent	S.C.STEAUA.ROMANA.S.A.	Petrochemical	4035	25' 46' 125"	45° 08' 123"
33	Teleajen	Tributary	Cheia	Periodical Point	230	25° 54'998"	45° 27' 987"

Table C.2.1 Location of Supplementary Water Quality Analysis in Prahova River (2/2)

			upplementary water Q	wanny Anarysi	2 111 1		
Site No.	River Name	Water Classification	Sampling Site	Remarks	Code No.	Latitude	Longitude
34	Teleajen	Tributary	Gura Vitloarel	Periodical Point	240	26° 02'251"	45° 09' 771''
35	Teleajen	Tributary	Moara Domneasca	Periodical Point	260	26"09'519"	44*50'770"
36	Teleajen	Tributary	Piatra	Supplementary Point	J	26°02'860"	45° 12'820''
37	Teleajen	Tributary	Sipotu	Supplementary Point	К	26° 00'948"	44" 59'775''
38	Teleajen	Tributary	Coslegi	Supplementary Point	L	26°09'136"	44° 54'063"
39	Teleajen	Factory Effluent	SALINA Slanic	Salt	4582	25° 56'094''	45' 13'447"
40	Teleajen	Factory Effluent	S.C.GES.S.A. /Boldesti Scaleni	Glass Ware	4022	26°00'373"	44° 59'903"
41	Teleajen	Factory Effluent	S.C.CAHIRO.S.A. /Boldesti caleni	Paper	4102	26°00'642"	45° 00'425"
42	Teleajen	Factory Effluent	S.C.ARPACOR.S.A./Bucov	Rubber	4112	26°02'610"	44° 55' 705''
43	Teleajen	Factory Effluent	S.C.REALS SA/Pleasa	Refractory Ceramic	4106	26* 02'053"	44° 58'690"
44	Teleajen	Factory Effluent	S.C.SOCERAM SA.,	Building Materials	4103	26" 02'053"	44" 58'690"
45	Teleajen	Factory Effluent	S.C.PETROTEL S.A.	Petrochemical	4148	26° 05'896''	44° 57'266"
46	Teleajen	Factory Effluent	S.C.MATIZOL.S.A./Berceni	Isolation Materials	4150	26° 06'495"	44" 56'884"
47	Teleajen	Factory Effluent	S.C.ROMFOSFOCHIM.S.A. /Valea Calugareaca	Chemical Products	4117	26°08'895"	44° 55′713"
48	Teleajen	Sewerage Effluent	Cheia Town		4086	25° 56'472"	45° 26' 503"
49	Teleajen	Sewerage Effluent	Valenii de Munte town		4506	26°02'213"	45° 09'923''
50	Teleajen	Sewerage Effluent	Maneciu de Ungureni village		4088	26°00'721"	45° 18'222"
51	Teleajen	Sewerage Effluent	Boldesti Scaieni town		4517	26°00'892"	44° 59'884"
52	Teleajen	Sewerage Effluent	Slanic		4127	25' 56'889"	45° 12'024''
53	Teleajen	Stock Farm Effluent	F.V.si F.P.Agros /Scaieni		4577	26° 00'300''	44° 51'642"
54	Dimbu	Tributary	Goga	Periodical Point	250	26°08'472"	44° 53' 143"
55	Dimbu	Tributary	Baicoi town	Supplementary Point	М	25° 54'025"	44° 45'027''
56	Dimbu	Factory Effluent	S.C.DACIA.S.A. /Ploiesti	Metal Works /Repair	4147	26°03'396"	44* 55'973"
57	Dimbu	Factory Effluent	24 LANUARIE. /Ploiesti	Metal Works	4141	26°01'796"	44° 56′995′
58	Dimbu	Factory Effluent	S.C.ASTRA.LOMANA. Plojesti	Petrochemical	4158	26° 03'749"	44" 55'482"
59	Dimbu	Sewerage Effluent	Baicoi town		4041	25" 54'025"	44° 45'027"
60	Dimbu	Sewerage Effluent	Ploiesti city		4162	26" 03'740"	44° 55'362''
61	Cricovul Sarat	Tributary	Singeru	Periodical Point	275	26°20'128"	45° 07'758"
62	Cricovul Sarat	Tributary	Ciorani	Periodical Point	280	26°24'125"	44° 41° 157"
63	Cricovul Sarat		Popesti	Supplementary Point	0	l	45 01 173"
64	Cricovul Sarat	Effluent	Urlati town		4374		44° 58'713"
65	Cricovul Sarat	Nonpoint Source Effuent	Valea Dulce	Model Point of Non-Point Source		26° 12'168"	45° 06′830''
							

		oints of Third St		iality Analysis in Prahova	
Site No.	River Name	Water Classification	Sampling Site	Remarks	Code No.
1	Prahova	Main River		Periodical Point	180
2	Prahova	Main River	amonte Sinaia	Periodical Point	195
3	Prahova	Main River	Comu	Periodical Point	200
4	Prahova	Main River	Nedelea	Periodical Point	217
5	Prahova	Main River	Tinosu	Periodical Point	220
6	Prahova	Main River	Gherghita	Periodical Point	270
7	Prahova	Main River	Posada	Supplementary Point	A
8	Prahova	Main River	Finari	Supplementary Point	В
9	Prahova	Main River	Adincata	Supplementary Point	Н
10	Prahova	Factory Inflow	S.C.BERE.S.A. /Azuga	S.C.BERE.S.A. /Azuga	4006
11	Prahova	Factory Effluent	S.C.BERE S.A. /Azuga	S.C.BERE.S.A. /Azuga	4006
12	Prahova	Factory Effluent	Hospital /Azuga	Hospital	4010
13	Prahova	Factory Inflow-1	LR.A. Campina	Land Transport	4575
14	Ртаћоуа	Factory Inflow-2	I R.A. Campina	Land Transport	4575
15	Prahova	Factory Effluent	I.R.A. Campina	Land Transport	4575
16	Prahova	Factory Effluent-1	S.C.PETROUTILAJ/Cimpina	Petro-industry	4292
17	Prahova	Factory Effluent-2		Petro-industry	4292
18	Prahova	Factory Effluent-1	S.C. VICTORIA S.A.	Tire	4039
19	Prahoya	Factory Effluent-2	S.C. VICTORIA S.A.	Tire	4039
20	Prahova	Factory Effluent	RENEL /Ploiesti/ Termal Plant		4047
21	Prahova	Factory Inflow-1	S.C.PETROBRAZIS A.	Petroindustry	4051
———		Factory Inflow-2	S.C.PETROBRAZIS A.	Petroindustry	4051
22	Prahoya	Factory Effluent-1	S.C.PETROBRAZI.S.A.	Petroindustry	4051
23	Prahova	Factory Effluent-2	S.C.PETROBRAZIS A.	Petroindustry	4051
24	Prahova	Factory Effluent-3	S.C.PETROBRAZIS A.		4051
25	Prahova	Factory Effluent-4	S.C.PETROBRAZIS.A.	Petroindustry	
26	Prahova	Factory Effluent-5		Petroindustry	4051
27	Prahova	Sewerage inflow	S.C.PETROBRAZIS.A.	Petroindustry	4051
28	Prahova	<u> </u>	Predeal Town		4317
29	Prahova	Sewerage Effluent	Predeal Town	<u> </u>	4317
30	Prahova	Sewerage Effluent	Busteni Town		4011
31	Prahova	Sewerage Inflow	Sinaia Town		4018
32	Prahova	Sewerage Effluent	Sinaia Town		4018
33	Prahova	Sewerage Effluent	CONSILIUL LOCAL		4032
34	Prahova	Sewerage inflow	Breaza Town		4028
35	Prahova	Sewerage Effluent	Breaza Town	·	4028
36	Prahova	Sewerage Inflow	Cimpina City		4034
37	Prahoya	Sewerage Effluent	Cimpina City		4034
38	Prahova	Stock Farm Inflow	F.P.Comporsa/Stancesti		4082
39	Prahova	Stock Farm Effluent	F.P.Comporsa/Stancesti		4082
40	Prahova	Stock Farm Inflow	F.P.SancaSRL/Gherghita		4123
41	Prahova	Stock Farm Effluent	F.P.SancaSRL/Gherghita		4123
42	Azuga	Tributary	Azuga	Periodical Analysis	190
43	Azuga	Factory Effluent	S.C.SINTER REF.S.A. /Azuga	Refractory Materials Factory	4004
44	Azuga	Sewerage Effluent	Azuga town		4008
45	Doftana	Tributary	amonte Traisteni	Periodical Point	205
46	Doftana	Tributary	Ac. Voila	Supplementary Point	8
47	Doftana	Tributary	Cimpina	Supplementary Point	C
48	Doftana	Factory Inflow-1	S.C.STEAUA ROMANA	Petrochemical	4035
49	Doftana	Factory Inflow-2	S.C.STEAUA ROMANA	Petrochemical	4035
50	Doftana	Factory Inflow-3	S.C. STEAUA ROMANA	Petrochemical	4035
	Doftana	Factory Effluent	S.C.STEAUA ROMANA	Petrochemical	4035
51				 	
51		Tributary	Cheia	Periodical Point	230
52	Teleajen	Tributary Tributary	Cheia Gura Vitioarei	Periodical Point Periodical Point	
		Tributary Tributary Tributary	Cheia Gura Vitioarei Moara Domneasca	Periodical Point Periodical Point Periodical Point	240 260

Table C.2.2 Points of Third Supplementary Water Quality Analysis in Prahova River(2/2)

Site No.	ble C.2.2 Por River Name	Water Classification	Ipplementary Water Qi Sampling Site	uality Analysis in Prahova Remarks	River(2/2) Code No.
·		Tributary	Sipotu	Supplementary Point	K
	101003111	Tributary	Coslegi	Supplementary Point	L
	1 Citajen	Factory Effluent	SALINA Slanic	Salt	4582
58	- Cicajeti	Factory Inflow	S.C.GES.S.A. /Boldesti	Glass Ware	4022
59	201043011	Factory Effluent	S.C.GES.S.A. /Boldesti	Glass Ware	4022
	1 4:40,414	Factory Inflow	S.C.CAHIRO.S.A./Boldesti	Paper Paper	4102
61	Tolonjoin	Factory Effluent	S.C.CAHIRO.S A /Boldesti	Paper	
62	reteujen	<u>-</u>		Rubber	4102
63	10.00,00	Factory Effluent	S.C.ARPACOR.S.A./Bucov		4112
64	Teleajen	Factory Inflow	S.C.REALS S. A. /Pleasa	Refractory Ceramic	4106
65	Teleajen	Factory Effluent	S.C.REALS S. A. /Pleasa	Refractory Ceramic	4106
66	Teleajen	Factory Effluent	S.C. SOCERAM S. A.	Building Materials	4103
67	Teleajen	Factory Effluent	S.C. PETROTEL S. A./Ploiesti	Petrochemical	4148
68	Teleajen	Factory Inflow	S.C.MATIZOL S.A./Berceni	Isolation Materials	4150
69	Teleajen	Factory Effluent	S.C.MATIZOL.S.A./Berceni	Isolation Materials	4150
70	Teleajen	Factory Effluent	S.C.ROMFOSFOCHIM.S.A./	Chemical Products	4117
71	Teleajen	Sewerage Inflow	Cheia Town		4086
72	Teleajen	Sewerage Effluent	Cheia Town		4086
73	Teleajen	Sewerage Inflow	Maneciu Ungureni Village		4088
74	Teleajen	Sewerage Effluent	Maneciu Ungureni Village		4088
75	Teleajen	Sewerage Inflow	Valenii de Munte Town		4506
76	Teleajen	Sewerage Effluent	Valenii de Munte Town		4506
77	Teleajen	Sewerge Inflow	Plopeni Town		4578
78	Teleajen	Sewerge Effluent	Plopeni Town		4578
79	Teleajen	Sewerage Inflow	Boldesti Scaieni Town		4517
80	Teleajen	Sewerage Effluent	Boldesti Scaieni Town		4517
81	Teleajen	Sewerage Inflow	Slanic Town		4127
82	Teleajen	Sewerage Effluent	Slanic Town		4127
83	Teleajen	Stock Farm Inflow	F.V.si F.P.Agros/Scaleni		4577
84	Teleajen	Stock Farm Effluent	F.V.si F.P.Agros/Scaleni		4577
85	Dimbu	Tributary	Goga	Periodical Point	250
86	Dimbu	Tributary	Baicoi town	Supplemen-tary Point	M
87	Dimbu	Factory Infflow	COCA COLA Ploiesti	Food Products and Beverages	4311
88	Dimbu	Factory Effluent	COCA COLA Ploiesti	Food Products and Beverages	4311
89	Dimbu	Factory Effluent	S.C.Vega Ploiesiti	Petro chemical	
90	Dimbu	Factory Effluent	FEROEMAIL Ploiesti	Metal Products Fabricated	4137
	Dimbu	Factory Infflow	I.N.C.A.F. Ploiesti	Food Products and Beverages	4146
91	Dimbu	Factory Effluent	LN.C.A.F. Ploiesti	Food Products and Beverages	4143
92	Dimbu	Factory Effluent	S.C.DACIA.S.A./Ploiesti	Metal Works/ Repair	4143 4147
93		Factory Effluent	24 IANUARIE /Pioiesti	Metal Works	4141
94	Dimbu Dimbu	Factory Inflow	S.C.ASTRA ROMANA/	Petrochemical	4158
95		Factory Effluent	S.C.ASTRA ROMANA/	Petrochemical	4158
96	Dimbu	Sewerage Inflow	Baicoi Town	1 AM ANIMITAGE	4041
97	Dimbu	Sewerage Effluent	Baicoi Town		4041
98	Dimbu	Sewerage Inflow	Ploiesti City		4162
99	Dimbu	Sewerage Effluent	Ploiesti City	_	 ·
100	Dimbu	<u> </u>		Projection Deint	4162
101	Cricovul Sarat	Tributary	Singeru	Periodical Point	275
102	Cricovul Sarat	Tributary	Ciorani	Periodical Point	280
103	Cricovul Sarat	Tributary	Popesti	Supplementary Point	0
104	Cricovul Sarat	Sewerage Inflow	Urlati Town		4374
105	Cricovul Sarat	Sewerage Effluent	Urlati Town		4374

S.C.PETROUTICA J./Cimpine 3.09 1.21 080 8.26 187.98 950 0.07 Factory Effluent Petro-industry 4292 1898/2/11 Beige Domestic Prahova S.C.HARTIA. 0.10 3.76 10.66 1.91 Paper/Pulp 0.12 35 0.25 14 8.07 880 8 1998/2/10 4014 Coloriess Oderless Prahova Factory 300 0.00 1.08 417 298.39 9.57 4.98 5.83 2411 1998/2/10 4010 Domestic Hospital /Azuga Prahova Hospital Factory Effluent Boige Table C.2.3 Results of Supplemmentary Water Quality Analysis (First Time) (1/5) 257.78 0.02 3.86 0.50 0.10 48.59 0.28 8 0.74 4.35 S.C.BERES. 7.11 S.C.BERES. 1998/2/10 A /Azuga A. / Azuga 4006 Domestic Prahova Factory Effluent Beige 28.24 65.1 121 7.92 1.34 0.80 0.0 0.32 8 96 8.93 3.19 83 Supplemen-5.5 LightBeige Main River tary Point 11/2/8661 Adincata Prahova Oderless I Supplement tary Point 1.28 253 8.05 1.93 1.60 3.99 13.02 0.52 12.63 5.1 12.81 Main River LightBeige 1998/2/9 Prahova u Finari õ 7.39 000 3.51 0.10 10.04 3.41 5.32 0.31 4 3, Supplementary Point Main River 1998/2/11 Coloriess Odertess Prahova Posada < 23,10 149 7.78 2.04 0.70 0.06 9.79 12.14 4.47 35 99 0 5.7 8 Main River 1998/2/11 LightBeige Periodical Point Gherghita 270 Prahova ı ö 230 8.00 1.47 09. 0.34 12.95 3.67 12.52 146 8 2 1.27 16.03 LightBeige Main River Periodical Point 220 1998/2/9 Prahova Tinosu ō 14.15 0.73 147 8.16 0.95 0.50 90.0 0.10 11.64 4.49 3.03 88 5. LightBoige Main River 998/2/11 Periodical Prahova Nedelea 217 Oderless Point 321 7.46 0.67 1.10 0.08 0.22 11.62 4.93 2.39 328 5.28 3.8 Main River Periodical Point 1998/2/9 Ordorless 200 Prahova Cornu Brown 0.28 25 8.11 0.59 1.10 90'0 0.24 11.90 2.23 5.21 Ľ 2.24 27 Main River Periodicat Point Colorless Ordorless 1998/2/9 Prahova 195 amonte Sinala 8.08 1.24 0.78 0.08 0.46 <u>3</u> S Ç 12.87 6. Main River Periodical Point Coloriess Ordoriess 1898/5/9 8 Prehove Predeal Anionic Detergents Discharge(m²/s) Water Temperature(°C) River Name Disolved O₂ (mg/!) Water Classification Sampling Site Petroleum (mg/!) COD(Mn) (mg/l) Code No. Cadmium (mg/l) Remarks Organochlorine Lead (mg/l) Site No. Cyanide (mg/l) Sampling Date Copper (mg/!) Phenol (mg/l) DQ43- (mg/!) VO2- (mg/l) NO3- (mg/l) BOD (mg/l) Crot (mg/1) Ni2+ (mg/L) NT4+ (m/L) Cr3+ (mg/!) EC(mS/cm) Zinc (mg/!) (me/i) CL(mc/s) ₹(3**€**) Turbidity ફે

Sing Is No. Finance of Particles Finance of Particl			Tapi	Table C.2.3 Results of		plemmen	Supplemmentary Water Quality Analysis (First 11me) (4/5)	r Quality	Analysis	(First Lim	(2/7)			
Námbre Práthosa <	Site No.	14	- 15	91	17	18	61	20	21		23	24	62	92
Option Factory Effloard Factory Effloard Schweize Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing Sweezing	River Name	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova		Prahova	Prahova	Azuga	Azuga
18.56 SC.VCTORIA.S.A./Retail: S.C.PETTOROPIAS.D. Received: B. Justenii Ginais town CONSILUAL Bineras town Chockean P. Control <	Water Classification	Factory Effluent				Sewerage Effluent		1	Sewerage Effluent		į.	Stock Farm Effluent	Tributary	Factory
arks Tire from the pro-industry (1992) and the pro-industr	Sampling Site	S.C.VICTORIA.S.A	RENEL /Ploiesti/	1	Predeal town	Busteni town		CONSILIUL	Breaza town	Cimpina cit y	F.P.Compors a/Stancesti	ا سا	Azuga	S.C.POSTA V.S.A./Azug
No. 4039 4047 4051 4517 4011 4018 4028 4028 4024 4028 4024 4028 4	Remarks	Tire	Thormal Plant	Petro-industry									Periodical Analysis	Textile
1989/2/11 1998/2/9 1998/2/9 1998/2/9 1998/2/10 1998/2/	Cods No.	4039	4047	4051	4317	4011	4018	4032	4028	4034	4082	4123	190	4007
December	Sampling Date	1998/2/11	1898/2/9	-	1998/2/9	1998/2/10	П	1998/2/11	1998/2/11	1998/2/12	1998/2/9	1998/2/11	1998/2/9	1998/2/10
Simple Sign	Discharge(m ³ /a)				0.05	0.11	0.27	0.01	0.04	0.15	90.0	0.02	89:0	0.03
Baige Light Baige <t< td=""><td>Water Temperature(*C)</td><td>20.8</td><td></td><td></td><td>5.0</td><td>4.9</td><td>7.0</td><td>8.3</td><td>8.4</td><td>10.2</td><td>8.6</td><td>8.5</td><td>60</td><td>3.8</td></t<>	Water Temperature(*C)	20.8			5.0	4.9	7.0	8.3	8.4	10.2	8.6	8.5	60	3.8
Domestic Oil Domestic	Color		LightBeige	LightBeige	Coloriese	LightBeige	LightBeige	LightBaige	LightBoigo				Colortess	Gray
0 061 118 161 0.56 0.21 0.23 0.47 0.73 0.48 6.11 2.00 1 0 0 1 1.14 1.15 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.27 1.22 2.24 1.22 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 1.20 2.24 2.24 2.24 2.24 2.24 2.24	Ode	Domestic	Ö			Domestic		Г	Domestic		. 0			Domestic
4.3 1.49 1.31 2.2 27 4.4 100 880× 475 0 0.70 1.39 2.58 1.20 2.20 6.44 1.02 6.84 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	EC(mS/cm)	l		1.61	35	0.21	38	.47	0.73			2.00	0.26	0.59
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Turbidity	43			22	7.2	122	27	2	100	>008	475	3	200
() ()<	To.	7.93			7.58	7.86	7.60	7.21	6.90	7.72	6.83	7.06	7.96	7.28
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	NH4+ (mc/!)	0.70			9.02	990	12.88	2.60	979	1.03	566.63	72.12	0.44	2.96
1, 1, 1, 1, 1,	NO3- (mg/l)	08:0			81	01.0	000	0.50	06:0	0.10	6.40	7.60	1.10	0.60
1,0 2,0	NO2- (mg/l)	01.0			0.28	0.10	0.08	0.26	1.80	0.10	14.00	0.20	0.02	0.50
(mg/1) 2.04 2.90 1.12 3.76 1.12 4.32 3.94 3.240 1.240 (mg/1) 6.16 1.934 1.044 2.90 1.12 3.76 1.12 6.10 1.13 3.20 (mg/1) 2.04 34.56 55.37 1.283 3.13 45.98 11.66 10.37 60.47 2.267.23 378.77 (mg/1) 4.15 18.38 27.18 7.03 5.32 11.28 5.75 10.55 16.79 407.73 231.84 (mg/1) - - - - - - - - - - - (mg/1) -	CI-(mg/l)	-	•	:	-		•	•	l	'	-	-	1	
(mg/l) 6.16 1.29 1.12 3.76 1.12 4.32 3.94 32.40 1.240 (mg/l) 6.16 1.984 1.044 9.55 10.11 9.76 5.81 6.61 6.10 1.13 3.240 17.40 (mg/l) 2.04 34.56 55.37 1.283 3.13 45.89 11.66 10.37 60.47 2.267.23 378.77 (mg/l) 2.04 34.56 35.32 11.28 5.75 10.55 16.79 407.73 236.74 (mg/l) - </td <td>Phenol (mg/l)</td> <td>-</td> <td></td> <td>B</td> <td></td> <td>. ,</td> <td></td> <td></td> <td>•</td> <td></td> <td>-</td> <td>1</td> <td>ı</td> <td>ı</td>	Phenol (mg/l)	-		B		. ,			•		-	1	ı	ı
(mg/l) 6.16 19.84 10.44 9.55 10.11 9.76 5.81 6.61 6.10 1.13 3.20 (mg/l) 2.04 3.45 2.53 1.23 3.13 4.65 10.37 6.04 407.73 2.378.77 (i) 4.15 1.23 3.22 1.128 5.75 10.55 407.73 2.378.47 (i) 4.15 1.83 3.24 1.28 5.75 10.55 407.73 2.378.47 (i) 4.15 4.15 4.26 1.23 4.26 1.23 4.07.73 2.378.44 (i) -	PO43- (mg/l)	9 70	0.20		2.90	1.12	3.78	1.12	4.32	3.94	32.40	12.40	0.08	0.74
(mg/1) 2.04 34.56 55.37 12.83 3.13 45.98 11.66 10.37 66.47 2261.23 378.77 (mg/1) 4.15 18.38 27.18 3.13 45.98 11.66 10.37 66.47 2261.23 378.77 (mg/1) 4.15 18.38 27.18 27.3 4.2 11.28 5.75 10.55 10.55 10.73 4.2 17.3 4.2 17	Disolved O ₂ (mg/l)	6.16			9.55	10.11	9.76	5.81	19'9	6.10	1.13	3.20	13.93	2.44
1	Petroleum (mg/1)	٠	•	-	:	-	:	: *	-	. !		1	1	ŧ
mag/1) 4,15 18,38 27,18 7,03 5,32 11,28 5,75 10,55 10,59 407,13 231,84	BOD (me/!)	2.04	34.56		12.83	3.13	45.98	11.66	10.37	75.03	2367.23	378.77	0.96	56.03
mg/l/s - 154 121 44 133 48 73 1833 1833 999 mg/l/s -	COD(Mn) (mg/!)	4.15			7.03	5.32	11.28	5.75	10.55	-	407.73	231.84	960	20.08
mg/l/s <th< td=""><td>SS (me/l)</td><td>1.6</td><td>98</td><td></td><td>121</td><td>4</td><td>133</td><td>48</td><td>73</td><td>123</td><td>1833</td><td>599</td><td>83</td><td>123</td></th<>	SS (me/l)	1.6	98		121	4	133	48	73	123	1833	599	83	123
6/1)	Cadmium (mg/l)	-	-	t		-		•	L	1		•	1	4
	Cyanida (mg/l)	,	1	:	•	•	1	•	•	-	1			1
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Cr8+ (mg/l)	_				ı	•	-		-	•		# :	t
(1)	Cr3+ (mg/l)	ŗ	,	,	ŧ	-	•	•		-	•			•
	Copper (mg/1)	-		•			•	1		1	•		t	1
	Anionic Detergents	•	•	•	E	7.1.	-	1	1	1	•		•	-
direction of the control of the cont	Hg (mg/1)	1	1	*	1		1					•	•	
	Ni2+ (mg/L)	1	1	27.4			-	-				_	-	-
1	Organochlorine	•	-	-	•	•	•			1	1	•	* 2.	
Zinc⟨me//⟩	Lead (mg/l)	1	-	1			•	[8	4		-	,	1	
	Zinc (mg/l)	e :	-	•		 		, 			- 			

10.30 0.70 8,50 18.77 4582 1998/2/11 SALINA Slanic Coloriess 33 Teleajen Oderless Factory Effluent S. 612 8.13 1.29 0.80 0.24 10.89 9.4 023 9.68 8 10.90 369 Supplementary Point LightBeige 1998/2/12 Tributary ., Teleajen Odorless 38 Coslegi 0.18 130 1.39 5.15 6.47 2.87 66 30 4.88 90.0 12.20 Supplemen-LightBoige tary Point 398/2/11 Tributary Oderless Teleajon ¥ Sipotu 8.40 0.00 0.08 0.16 1.53 12.34 2.89 3.29 99 Supplementary tary Point 1998/2/10 Light Beige Tributary Teleajon Oderless Piatra Table C.2.3 Results of Supplementary Water Analysis (First Time) (3/5) 172 8.12 1.00 200 17.34 5.81 8.73 8.50 8 90 66 Moara Domneasca Periodical Point 1998/2/12 Teleajen Tributary 260 Beige Oderless 1.66 9.18 3.28 3,13 2.50 80.0 0.16 11.98 06.0 LightBeige Tributary 1998/2/10 Periodical 240 Oderless Teleajen Gura Vitioarei Point 2 7.05 0.39 1.90 0.50 2.62 0.79 0.93 8 12.19 7 Periodical Point 1998/2/10 Colorless Oderless Tributary Teleajen 230 S.C.STEAUA Cheia ROMANA 22 2 22 2 20 0 60 26 4 0.06 9.60 0.27 9 5.07 7.91 ¥ 1998/2/12 4035 LightBeige chemical Doftana Factory Effluent Petroō 8.23 0.26 10.13 4 124 0.50 0.18 1.78 9 Supplementary Point 1998/2/12 Inbutary ပ Odorless Doftana Cimpina Beige 4 39 8.08 0.52 0.02 10.34 3.27 1.85 0,32 Supplementary Point 1998/2/12 **Iributary** Coloriess Doftana Ac.Voila Odorless 8 හ 0.32 5 8.18 3.61 0.08 0.12 2.63 င္ဘ 4 9.57 1.29 0.49 1998/2/12 Periodical Point amonte Traisteni 205 Iributary Colorless Doftana Odorless Α. 0.36 70 6.80 10.56 0.20 0.58 8.14 26.38 10.97 118 0.02 4.46 Azuga town 1998/2/10 4008 Sewerage Effluent Domestic Azuga <u>چ</u> 13.012 S.C.SINTER. REF.S.A. 0.12 0.4 0.26 7.95 0.57 0.04 3.94 3.83 = Refractory Materials Factory 2004 1998/2/9 Colorless Domestic Factory Azuga Disolved O₂ (mg/l) River Name Petroleum (mg/1) Classification Sampling Site COD(Mn) (mg/l) Cadmium (mg/l) Cyanide (mg/l)
Cr6+ (mg/l)
Cr3+ (mg/l)
Copper (mg/l) Discharge(m²/s) Site No. Organochlorine Code No. Sampling Date Remarks 2043- (mg/l) Hg (mg/!) Ni2+ (mg/∟) Phenol (mg/!) (**a**g√ Lead (mg/!) Zinc (mg/!) 103- (mg/1) (mg/ (E) EC(mS/cm) Anionic

			Table C.2.3 Results		of Suppleme	of Supplementary Water Quality Analysis (First Time) (4/5)	r Quality /	Analysis (F	irst Time)	(4/5)			
Citta No	40	41	42		44	45	46	47	48	49	20	51	52
River Name	Teleajon	Teleajen	Teleajen	Teleajen	Teleajen	Teleajen	Toloajen	Teleajen	Teleajen			Teleajen	Teleajen
Water Classification	Factory Effluent	Factory Effluent	Factory Effluent Factory Effluent	Factory Effluent	Factory Effluent	Factory Effluent Factory Effluent		Factory Effluent	Sewerage Effluent	Sewerage Effluent	Sewerage Effluent	Sewerage Effluent	Sewerage Effluent
Sampling Site	S.C.GES.S.A . /Boldesti		S.C.CAHIRO S.C.ARPACO	S.C.REALS S.A./Pleas	S.C.SOCERA M S.A.	S.C.PETROTE L.S.A./Ploiesti	S.C.MATIZO LS.A/Berc	S.C.ROMFO SFOCHIM.S.	Cheia Village	Valenii de Munte town	Maneciu Un- gureni Village	Boldesti Scaieni	Sianic
Remarks	Glass Ware	Paper	Rubber	Refractory Ceramic	Building Materials	Petro- chemical	Isolation Materials	Chemical Products					
Code No.	4022	4102	4112	4106	4103	4148	4150	4117	4086	4506	4088		4127
Sampling Date	1998/2/11	1998/2/11	1998/2/12	1998/2/12	1998/2/12	1998/2/12	1998/2/12	1998/2/12	1998/2/10	1998/2/10	1998/2/10	1998/2/:1	1998/2/11
Discharge(m ³ /s)	0.03	-	_	0.05	0.04	0.64	0.04	0.08	0.32	0.05	0.03	80.0	0.01
WaterTemperature(°C)	11.4	13,3	11.1	14.0	9.8	16.2	9	4.3	3.6	7.5	4.1	0.5	4.5
Color	LightBei	LightGra	Coloriess	Coloriess	Coloriess	Beige	LightBeige	Yellowish	Colorless	LightBeige	LightBeige		Colorless
Odor	Domestic	Specific	Odorless	Odorless	Odorless	Oil	Specific	Specific	Odorless	Domestic	Domestic	Domestic	Domestic
EC(mS/cm)	0.18		2.30	4.68	1.95	1.33	1.76	1.99	5.23	1.23	8.13	0.17	2.16
Turbidity	82	525	6	42	2	67	87	137		58	144	21	26
Ia	7.50	7.55	8.23	7.92	7.93	8.77	7.64	7.13	8.60	7.38	8.55	7.67	7.80
NH4+ (mg/1)	10.30	4.89	1.00		0.41	06'0	1.96	7.21	1.42	14.94	43.79	6.95	4.12
NO3- (mg/l)	1.20			0.10	2.00	0.50	1.00	0.20	220	1.60	1.40	1.50	030
NO2- (mg/l)	4.20	3.00	0.36	4.40	0.36	0.14	0.42	1.80	0.08	2.20	0.12	1.30	020
CI-(mg/i)	-	1	1	1	ľ	1		1	1	_	j	,	,
Phenol (mg/l)	-	-	•	ļ	1		1	1	ŧ		: : 1	•	\$
PO43- (mg/l)	4.62	0.30	0.28	3.30	90'0	80.0	0.08	2.40	0.40	5.18	2.08	2.38	1.06
Disolved O ₂ (mg/l)	1.50	3.40	7.70	3.57	8.00	7.05	5.70	7.69	10.30	8.60	7.40	4.20	8,00
Petroleum (mg/l)		:	,		•		-			1	-	,	ı
BOD (mg/1)	3.48	35.25	5.62	6.49	1.54	.8.10	17.69	50.16	1.72	3.85	65.28	8.20	924
COD(Mn) (mg/l)	16.91	24.78	2.82	5.00	1.45	5.81	12.59	23.90	2.30	8.77	27.43	5.43	5.11
SS (mg/!)	89	153	12	23	11	108	52	124	47	79	76	43	48
Cadmium (mg/l)	*	1		_	l	į	ı	·	1	1	:	,	
Cyanide (mg/l)	1	1	_	_	•	-	1	_	!	ŀ			ı
Cr6+ (mg/1)	,	1	•	-	•	•	,	,	1	1	1	1	ı
Cr3+(mg/1)			1	-		•		•	1	1	-	-	,
Copper (mg/l)	,	,	-	1	-		1		1		,	,	ı
Anionic Detergents	ı	1	•	1	1	•	1	•	1	•		1	
Hg (mg/1)	ş	,	1	1	•	•			1	1	,	•	1
Ni2+ (mg/L)	ļ	•	-	•		i	•	•	•	•	1	١	ı
Organochlorina		1	ŧ	•	•		1	1		1	•		ı
Lead (mg/l)			-		-		_	1	•	-	•	'	1
Zinc (mg/l)	ì	,	-	-	-	1		•	1	1	•	•	1

Stock Farm Stock Farm Effluent F.Vs.i.F.P. s/Scaleni 1998/2/11		55 Dimbu	55 56 57 58 59 60 61 62 Dimbu Dimbu Dimbu Dimbu Dimbu Cricovul Cricovul Cricovul	57 Dimbu	58 Dimbu	59 Dimbu	80 Dimbu	61 Cricovul		Cricovui	4 3	Cricovul
9 E 9	Dimbu Tributary 70 Goga						Dimbu	Cricovul	5	Ę	<u> </u>	Cricoval
E 5	Tributary ro Goga				•	_		Sarat			Sarat	Sarat
<u>ş</u>	ro Goga	Tributary	Factory Effluent	Factory Effluent	Factory Effluent	Sewerage Effluent	Sewerage Effluent	Tributary	a'y	ڇَ	&	Model Point of non-point Source
4577		Balcoi town	S.C.DACIA.S. A./Ploiesti	24 IANUARIE./	S.C.ASTRA ROMANA/	Baicoi town	Ploiesti city	Singeru	Ciorani	Popesti	Urlati town	Vales Duice
4577	Periodical Point	Supplementary Point	Metal Works/ Repair	Metal Works Petro- chemic	Petro- chemical			Periodical Point	Periodical Point	Supplemen- tary Point		Supplementary tary point
1998/2/11	250	2	4147	4141	4158	4941	4162	275	280	0	4374	
,	1898/2/11	1998/2/10	1998/2/10	1998/2/10	1998/2/10	1998/2/10	1998/2/10	1998/2/12	1998/2/11	1998/2/12	1998/2/12	1998/2/17
	_	_	0.22	0.25	0.34	10.0	1.58	0.03	3.85	2.43	0.07	30.0
Water Temperature (C 30	30.0		7.3	10.0	18.0	3.0	14.6	3.2	1.7	2.1	10.6	7.0
Proven	LirhtBei	LightBeire	Colories	LightBeige	LightBeige	Coloriess	LightBeige	Beige	LightBeige	Beige		Brown
	ō	Γ	Odorless		Г	Odorless	Domestic	Odorless		Odorfess	Specific	Odoriess
S/cm)	1.31	1-	0.91	0.82	96.0	3.33	. 0.97	0.51	4.69			11.50
			10	37	59	11	19	710	800<			Š
			7.68	17.7	7.48	7.92	7.78		8.17	823	7.91	8.19
+ (mz/l)			2	9.02	1.55	1.08	16.74			2.94	7.34	1.93
			-	1.40	2.70	1.60	1.60	0.80		0.70	0.50	080
	4.60		080	0.18	98'0	0.10	0,40		0.10	0.04	0.20	0.10
	Ľ	!		•			t		1	-	,	:
Phenol (me/l)				,	1			1	1	,	ı	-
	5.80 0.32	200	0.32	1.82	0.22	0.34	6.14	0.20	0.22	0.12	96.8	0.40
(I/Ju			7.30	8.20	4.20	9.90	2.90	11.10	13.56	12.00	3.10	10.10
'	ľ		: •	•		1	•	•	1	1	_	•
BOD (mr/l)	L	13.71	1.20	0.54	26.06	9.31	48.65	14.41	8.66	28.75	104.83	29.59
() j	L		3	5.64	11.28	4.38	9.40	10.01	5.11	23.90	30.68	24.59
				62	101	30	73	193	593	148	116	7799
- (I/BW)			-	-	3	1		_	·		-	
Cyanide (mg/l)	-	ŧ	-	1	1	'	ŀ	-	•			•
Cr6+ (mg/1)		٠	1	-	_	ŝ	,	<u> </u>		'		•
Cr3+ (mg/1) ~	1	-	-	ì	ı	ŧ	•	1	1	١	'	
e	ī	-	-	,	1	•	-		-	1	-	-
Anionic Deterrents			,		,	1	-	•	1	ι	ı	2
Hr (mr/l)	 -	ı	ľ		,		-	-	-	1	ı	1
Q.	,	•	,		,	1	-		1	ı	'	1
99,		1		-	ļ	,	-	-		•	_	١
med (mg/l)	,	,		,			,	•	1	•		1
Zinc (mg/1)	,		,	,		í	1	1	-	-	•	t

National Personal P			<u></u>	Table C.2.4 Results of S	Kesuns or	anddae	CILLAL Y YY	TICL CUST	LY CLIMOLY OF	3 (3550)	(~ /*) (ATTT T	,		
Main River Ma	- N - 4:3	-			4	5	9	7	ဆ	G	. 10	1.1	12	13
Main River Ma	River Name	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova
Principal Supplication Annotation Communication Timosus Timosus Cheerstriat Financial Supplement Supplement <td>Water Classification</td> <td>Main River</td> <td>Factory Effluent</td> <td></td> <td>Factory Effluent</td> <td>Factory Effluent</td>	Water Classification	Main River	Main River	Main River	Main River	Main River	Main River	Main River	Main River	Main River	Factory Effluent		Factory Effluent	Factory Effluent
Periodical point Periodical poin	Sampling Site	Predeal	amonte Sinaia	Comu	Nedelea	Tinosu	Gherghita	Posada	Finari	Adincata	S.C.BERE.S. A. /Azuga		S.C.HARTIA. S.A.	S.C.HARTIA S.C.PETROUTILA S.A.
1890 1895 200 217 220 270 1898-23/2 19	Remarks	Periodical Point	Periodical Point	Periodical Point	Periodical Point	Periodical Point	Periodical Point	Supplementary tary Point	Supplemen- tary Point		S.C.BERE.S. A. /Azuga	Hospital	ç	Petro
1998/3/2 1998/3/2	Code No.	180	195	200	217	220	270	¥	ш	I	4006	4010	4014	4292
Coloriess 1.34 5.06 9.24 1.4.60 1.6.60 32.6.5 B.S.B. 2.1.6 32.6.5 5.0.2	Samoling Date	1998/3/2	1998/3/2	1998/3/3	1998/3/4	1998/3/2	1998/3/5	1998/3/3	1998/3/2	1998/3/5	1998/3/3	1998/3/3	1998/3/3	1998/3/4
C) 0.00 closes 4.2 6.9 7.1 8.6 9.8 6.4 9.4 9.2 5.3 1.37 Colorless	Discharge(m ³ /s)			9.24	14.60	16.60	32.63	8.88	21.68	32.92	0.02	0.02	0.13	0.02
Coloriess Coloriess LightBeige LightBeige LightBeige LightBeige Coloriess Colories Coloriess Coloriess Coloriess Coloriess Coloriess Coloriess Coloriess Coloriess Coloriess Colories	Water Temperature (°C)	2.0		6.9	. 7.1	8.6	8.6	5.4	9.4	9.2	5.3	13.7	6.4	12.1
Ocionifessa Octonifessa	Color		Colorless	LightBeige		LightBeige	LightBoige	Colorless	LightBeige	LightBeige	Gray		LightBeige	Colorless
0.20 0.26 0.45 0.69 0.71 1.50 0.28 0.73 1.47 0.29 1.0 3.1 2.16 3.36 2.55 1.72 2.5 3.47 2.07 8.1 6.54 1.50 0.46 0.89 1.75 1.44 0.39 1.57 0.28 2.22 1.00 0.46 0.49 0.89 0.20 0.60		Odorless	Odorless	Odorless		Odorless	Odorless	Odorless	Odortess	Odorless	Domestic		Odorless	į
10	S/cm)	0.30			69.0		1.50	0.28	0.73	1.47	0.29	0.51	. 0.23	1.09
654 730 836 846 804 757 834 814 830 728 100 1.06 0.46 0.95 1.75 1.74 0.39 1.57 0.28 0.28 0.30 0.30 0.50 0.40 0.80 0.80 0.90 1.40 0.80 0.02 0.03 0.05 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.08 0.09 0.08 <	Turbidity	9			336	522	172	25	347	207	81	æ	147	141
1,00 1,00 1,00 0.46 0.85 1,75 1,44 0.39 1,55 0.28 2.22 0,30 0,30 0,50 0,40 0,80 0,50 0,50 0,50 0,50 0,20 0,30 0,50 0,50 0,50 0,50 0,50 0,50 0,20 0,00 0,00 0,00 0,00 0,00 0,50 0,50 0,50 0,50 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,12 0,20 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,12 0,12 0,00 0,000 0,000 0,000 0,000 0,000 0,000 0,12 0,12 0,12 0,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 <td>F</td> <td>6.54</td> <td></td> <td>8.36</td> <td>8.46</td> <td>8.04</td> <td>161</td> <td>8.34</td> <td>8.14</td> <td>8.30</td> <td>7.28</td> <td>7.58</td> <td>7.54</td> <td>8.07</td>	F	6.54		8.36	8.46	8.04	161	8.34	8.14	8.30	7.28	7.58	7.54	8.07
0.30 0.30 0.56 0.40 0.80 2.30 0.50 0.40 0.80 0.50 <th< td=""><td>NH4+ (mg/1)</td><td>1.8</td><td></td><td>0.46</td><td>0.95</td><td>1.75</td><td>1.44</td><td>0.39</td><td>1.57</td><td>0.28</td><td>2.32</td><td>6.57</td><td>0.75</td><td>6.18</td></th<>	NH4+ (mg/1)	1.8		0.46	0.95	1.75	1.44	0.39	1.57	0.28	2.32	6.57	0.75	6.18
0.02 0.04 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.00 <th< td=""><td>NO3 (mg/1)</td><td>0.30</td><td></td><td></td><td>0.40</td><td>080</td><td>2.30</td><td>0.50</td><td>0.90</td><td>1.40</td><td>080</td><td>0.40</td><td>0.40</td><td>060</td></th<>	NO3 (mg/1)	0.30			0.40	080	2.30	0.50	0.90	1.40	080	0.40	0.40	060
24.82 14.16 49.64 156.21 165.20 212.73 24.81 134.73 205.64 17.73 0.000 0.000 0.003 0.000 0.220 0.040 0.000 0.000 0.004 0.003 0.004 0.220 0.240 0.000 11.49 <	NO2-(mg/l)	0.02			0.08	80'0	09:0	0.08	0.08	•			0.08	1,12
0.000 0.000 0.000 0.0220 0.040 0.220 0.040 0.020 0.040 0.020 0.000 <t< td=""><td>CI-(mg/l)</td><td>24.82</td><td></td><td></td><td></td><td></td><td>212.73</td><td>24.81</td><td>134.73</td><td></td><td>•</td><td></td><td>39.01</td><td>183.64</td></t<>	CI-(mg/l)	24.82					212.73	24.81	134.73		•		39.01	183.64
0.30 0.18 0.20 0.04 0.26 0.40 0.20 0.012 0.20 2.00 1) 13.80 11.75 11.42 13.36 12.10 9.80 11.95 14.10 10.30 11.49 0,00 0.00 0.40 3.10 6.20 9.80 11.95 14.10 10.30 11.49 1,67 4.53 3.95 1.72 4.09 5.54 2.66 7.06 3.10 4.30 1,68 3.09 0.00 0.00 0.00 0.00 2.53 1.72 4.09 2.54 1.16 4.73 2.29 2.53 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Phenol (mg/l)	0000	L		0000	0.220	0.040			1	0.000	0.000	0.001	0.007
13.80	PO43-(mg/l)	0.30	L		0.04	0.26	0.40	0.30	0.12	0.28	2.00	2.74	0.22	2.84
0,000 0,000 0,400 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,510 4,30 4,30 4,30 1,30 4,30 4,30 4,30 2,64 7,06 4,10 4,960 4,30 4,30 1,10 4,10 4,960 2,53 1,14 4,13 4,10 4,10 4,960 2,53 1,14 4,13 4,13 1,16 4,13 2,29 2,53 1,14 4,13 1,14 4,13 1,14 4,13 1,14 4,13 1,14 4,13 1,14 4,13 1,14 4,13 1,14 4,13 1,14 <td>Disolved O, (mg/!)</td> <td>13.80</td> <td>L</td> <td></td> <td>13.36</td> <td>12.10</td> <td>08'6</td> <td>11.95</td> <td>14.10</td> <td>10.30</td> <td>11.49</td> <td>5.46</td> <td>12.05</td> <td>8,11</td>	Disolved O, (mg/!)	13.80	L		13.36	12.10	08'6	11.95	14.10	10.30	11.49	5.46	12.05	8,11
1.67 4.53 3.95 1.85 8.50 5.54 7.06 4.10 49.60 1.66 3.09 2.53 1.72 4.09 2.45 1.16 4.73 2.29 25.31 9 44 1.34 1.08 1.68 1.30 2.45 1.16 4.73 2.29 25.31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 </td <td>Petroleum (mg/l)</td> <td>000</td> <td></td> <td>0.40</td> <td>3.10</td> <td>6.20</td> <td>05.6</td> <td>0.00</td> <td>3.40</td> <td>5.10</td> <td>4.30</td> <td>1.20</td> <td>1,80</td> <td>11.70</td>	Petroleum (mg/l)	000		0.40	3.10	6.20	05.6	0.00	3.40	5.10	4.30	1.20	1,80	11.70
1.56 3.09 2.53 1.72 4.09 2.45 1.16 4.73 2.29 25.31 9 44 134 108 168 130 37 171 162 114 0.000 0.000 0.005 0.006 0.007 0.006 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010	BOD (mg/l)	1.67			1.85	8.50	5.54	2.66	7.06	4.10	49.60	24.71	7.43	16.52
44 134 168 130 37 171 162 114 0,000 0,000 0,005 0,006 0,006 0,007 0,006 - 0,000 0,000 0,000 0,016 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,010 0,010 0,010 0,010 0,000 0,000 0,000 0,000 0,000 0,010 0,010 0,010 0,000 0,000 0,000 0,000 0,000 0,000 0,010 0,010	COD(Mn) (mg/l)	1.56			1.72	4.09	2.45	1.16	4.73	2.29	25.31	11.08	5.10	6.64
0,000 0,000 <th< td=""><td>SS (mg/l)</td><td>6</td><td></td><td></td><td>108</td><td>168</td><td>130</td><td>37</td><td>171</td><td>162</td><td>114</td><td>128</td><td>151</td><td>126</td></th<>	SS (mg/l)	6			108	168	130	37	171	162	114	128	151	126
0.000 0.0010 0.016 0.001 0.000 <t< td=""><td>Cadmium (mg/1)</td><td>0000</td><td></td><td>L</td><td>900.0</td><td>0.037</td><td>900.0</td><td></td><td></td><td>•</td><td>0.000</td><td>0000</td><td>0.000</td><td>0000</td></t<>	Cadmium (mg/1)	0000		L	900.0	0.037	900.0			•	0.000	0000	0.000	0000
0.000 0.000 <th< td=""><td>Cvanide (mg/l)</td><td>0.000</td><td></td><td></td><td>0.018</td><td>0.007</td><td>0.005</td><td></td><td></td><td>_</td><td>0.000</td><td>0000</td><td>0.000</td><td>0.002</td></th<>	Cvanide (mg/l)	0.000			0.018	0.007	0.005			_	0.000	0000	0.000	0.002
0.000 0.000 <th< td=""><td>Cr6+ (mg/l)</td><td>0000</td><td></td><td></td><td>0000</td><td>0.000</td><td>0000</td><td>-</td><td></td><td></td><td>0000</td><td>0000</td><td>0.000</td><td>0.043</td></th<>	Cr6+ (mg/l)	0000			0000	0.000	0000	-			0000	0000	0.000	0.043
0.000 0.000 0.000 0.021 0.000 0.015 0.000 0.004 0.000 0.015 0.280 0.112 0.211 0.146 - 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.010 0.000 0.000 0.000 0.000 0.010 0.020 0.010 0.000 0.003	Cr3+ (mg/l)	0000			0.00	0000	0000	-	_	•	0.001	0000	0.000	0.010
0.000 0.015 0.280 0.112 0.211 0.146 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.010 0.000 0.000 0.000 0.000 0.010 0.020 0.000 0.003	Copper (mr/1)	0000		0000	0.021	0.000	0.015		-	_	0.000	0000	0.000	0.009
0.000 0.003 0.003 <th< td=""><td>Anionic Detergents</td><td>0000</td><td></td><td></td><td>0.112</td><td>0.211</td><td>0.146</td><td>-</td><td>_</td><td>-</td><td>0.004</td><td>0.730</td><td>0.006</td><td>0.002</td></th<>	Anionic Detergents	0000			0.112	0.211	0.146	-	_	-	0.004	0.730	0.006	0.002
0,000 0,000 <th< td=""><td>Hg (mg/l)</td><td>0000</td><td></td><td></td><td>0000</td><td>0000</td><td>0000</td><td>1</td><td></td><td>;</td><td>0.000</td><td>0000</td><td>0.000</td><td>0000</td></th<>	Hg (mg/l)	0000			0000	0000	0000	1		;	0.000	0000	0.000	0000
0.000 0.000 0.000 0.017 0.000 0.010 0.030 0.030 0.030 0.003	Ni2+ (mg/L)	0000			0000	0.050	0000	_			0.000	0000	0.000	0.040
0.000 0.000 0.000 0.017 0.000 0.010 0.000	Organochlorine	i	Ľ	Ľ	1	ı	-	15 TH - 17		1	•	•		,
0,000 0,000 0,030 0,010 0,020 0,030 0,003	Lead (mg/l)	0000			0.017	0.000	0.010	-		_	0.000	0.000	0.030	0.034
	Zinc (mg/l)	0000	Ĺ	0.030	0.010	0.020	0.030)	1	1	0.003	0.010	0.002	0.018

		Table	Table C.2.4 Results of Supplementary Water Quality Analysis (Second Time)	lts of Sup	olementar	y Water (Juality Ar	nalysis (Se	cond Tim	(e) (2/5)			
Cite MA	14	15	16	1,1	18	19	20	21	22	23	24	25	38
River Name	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	Prahova	shova	Prahova		Azuga
Water Classification	Factory Effluent		Factory Effluent Factory Effluent	Sewerage Effluent	Sewerage Effluent	Sewerage Effluent	Sewerage Effluent	Sewerage Effluent	Sewerago Effluent	Stock Farm Effluent	Stock Farm Effluent	Tributary	Factory Effluent
Sampling Site	S.C.VICTORIA.S.A RENEL	RENEL /Ploiesti/	S.C.PETROBRAZ Predeal		Busteni town	Sinaia town	CONSILIUL	Breaza town Cimpina cit y	Cimpina cit y	F.P.Compors a/Stancesti	F.P.SancaSR L/Gherghita	Azuga	S.C.POSTA V.S.A./Azug
Remarks	Tiro	Thermal Plant	Petro-industry					_				Periodical Analysis	Toxtile
Code No.	4039	4047	4051	4317	4011	4018	4032	4028	4034	4082	4123		4007
Sampling Date	1998/3/4	1998/3/2	1998/3/2	1998/3/2	1998/3/3	1998/3/3	1998/3/4	1998/3/4	1998/3/4	1998/3/2	1998/3/5	1998/3/2	1998/3/3
Discharge(m ³ /s)	0.10	0.77	0.54	0.03	0.11	60'0	0.003	0.02	0.19	0.10	0.00	1.96	0.03
Water Temperature (°C)	21.8	10.2	14.3	4.8	6.0	5.3	8.5	9.8	12.1	11.2	9.3	2.3	5.9
Color	Colorless	LightBeige	LightBeige	Colorless	Brown	Coloriess	LightGray	Gray	Colorless	Gray	Gray		Gray
Odor	Odorless	Specific		25	Ę,	Domestic		Domestic	Domestic	Specific	Specific	Odorless	Domestic
EC(mS/cm)	0.59	1,12	0.21	0.39	91.0	1.27	5.66		0.51	4.37		0.23	0.38
Turbidity	11	224	94	35	669	45	32	81	101	800<		e	353
Fd	8.17	78.7	7.56	6.81	8.18	8.23	7.33	7.77	7.17	7.32	7.54	7.83	6.77
NH4+ (mg/1)	0.26	2.01	9.02	5.28	1.08	0.82	5.98	16.23	9.14	376.04	96.59	0.85	2.16
NO3- (mg/l)	1.60	0.70	1.70	09:0	070	09'0	06'0	0.20	0.20	0.80	1.70	0.30	0.70
NO2- (mg/!)	900	0.08	0.38	0.14	0.10	80'0	0.30	1.00	1.04	0.80	0:30	00.00	0.18
CI-(mg/l)	92.18	7	191.46	49.64	20.18	24.81	141.82	85.09	63.82	1283.52	670.91		79.67
Phenol (mg/l)	0.003		0.820	0.000	0000	000'0	0.000	0.000	0.002	•	,	000:0	0.011
PO43- (mg/1)	80.0	0.20	0.30	1.40	0.48	0.40	1.80	7.18		31.60	27.80	0.14	0.3%
Disolved O, (mg/l)	7.11	11.40	8.60	11.20	11.79	11.26	6.53	5.79	5.22	4.70	1.90	13.33	8.83
Petroleum (mg/l)	4.40	6.40	9.50	0.40	6.10	2.80	7.00	2.80	6.20	6.30	9.10	000	10.60
BOD (mg/!)	1.23	9.82	20.41	7.54	4.90	2.30	6.07	9.50	10.54	2504.16	284.68	0.39	21.89
COD(Mn) (mg/l)	1.02	3.29	14.62	2.06	2.20	1.40	3.93	6.50	7.55	381.66	59.36	0.68	11.08
SS (mg/l)	44	115	145	54	203	33	- 6	110	125	1969	313	S	146
Cadmium (mg/l)	0000	0000	0.008	0000	000:0	0000	0.009	0.043	0.019	1	1	0000	0.000
Cyanide (mg/l)	0000	0000	7100	0000	0.004	0.001	0.010	600.0	6000		•	0000	0.002
Cr6+ (mg/l)	0000	0000	9000	0000	0000	0000	800.0	0.050	0.050	1	-	0000	090'0
Cr3+ (mg/1)	0000	0000	00000	0000	0000	0000	0000	060'0	600.0	ľ	1	0000	0.002
Copper (mg/!)	0.030	0000	0.002	0000	0000	0.007	0.003	0.007	0.016	ı	1	0000	0.008
Anionic Detergents	6000	0.014	0.352	0.003	0.004	0.010	0.032	0.026	0.042	1	1	0000	0.209
Hg (mg/1)	0000	000'0	00000	0.000	0000	0.000	0000	0.000	0.001	ŀ	1	0000	0:000
Ni2+ (mg/L)	0000	0000	000'0	0.000	0000	0.000	0.005	0.083	090.0	1	'	0000	0000
Organochlorine	•	ŀ	1	_	ŀ	,	1	1	ı	-	1	1	ı
Leed (mg/I)	800.0	0.002	0003	0.003	0.002	0.000	0000	0.012	0.040	2	-	0000	0000
Zinc (mg/l)	0.007	0.007	0.016	0.000	100.0	0.002	0 007	0.008	0.032		-	0000	0.005

	į	84	9.0	7 20 30		ák.	97 33 34 35	34	35	36	37	38	39
Site No. River Name	Azuga	Azuga	Doftena	Doftana	Doftana	Doftana	Teleajen	Teleajon	Teleajen	Teleajen	Teleajen	Teleajon	Teleajen
Water Classification	Factory Effluent	Sewerage Effluent	Tributary	Tributary	Tributary	Factory Effluent	Tributary	Tributary	Tributary	Tributary	Tributary	Tributary	Factory Effluent
Sampling Site	S.C.SINTER.	Azuga town	amonte Traisteni	Ac.Voila	Cimpina	S.C.STEAUA ROMANA	Cheia	Gura Vitioarei	Moara Domneasca	Piatra	Sipotu	Coslegi	SALINA Slanic
Remarks	Refractory Materials		Periodical Point	Supplemen- tary Point	Supplementary Point		Periodical Point	Periodical Point	Periodical Point	Supplementary Point	Supplemen- tary Point	Supplementary tary Point	Salt
Code No.	Factory 4004	4008	205	160	O	4035	230	240	260	7	¥	7	4582
	10007273	1600/3/2	1008/1/5	1998/3/5	1998/3/4	1998/3/4	1998/3/2	1998/3/2	1998/3/2	1998/3/2	1998/3/3	1998/3/2	1998/3/3
Т	370/00	۲	1 60	DL 9	500	900	0.58		26.43	7.08	10.72	9.13	80.0
Discherge(m/s)	80.0 9.6	5.1	5.1	5.3	4.7	8.1	3.0	8.0	9.3	6.5	3.6	9.5	6.5
	. argania	•	Colorbas	Colorina	Colorless	Colorless	Colorless	Beigo	LightBoige	LightBeige	Beige	Light Beige	LightBeige
	Ododess	ş	Odorlens	Odorless		ō		Odoriess	Odorless	Odoriess	Odoriess	Odorfess	Odorless
S/cm)	0.24	25.0	0.26	0.30	0.60	1.91	0.25	96.0	1,44	0.75	J	Ť	39.0
Turbidity	4				235	11	99						
	7.84	17.7	8.32	8.44	8.19	8.03	7.75	8.10	7.99	8.22	8,13	8.15	7.85
NH4+ (mg/1)	0.95	2.80	0.28	0.49	6.0	1.00	0.95	1.37	7.65	1.03			20.61
NO3- (mr/l)	0.50	0.0	0:30	050	0.40	0.70		0.70	2.80	070	1.40	:	0.60
NO2- (me/)	000	200	0.02	0.02	90'0	90:0	0.00	90.0		Õ			
C)-(me/1)	28.36		14.82	14.82	12.66	248.19	12.61			88	134.73	312	
Phenol (me/l)	0000		0000			860.0	0000		١	*	•	-	0000
DO43- (me/!)	A1.0		0.28	0.16	0.28	0.24	0.14	0.24		0.28			3.60
Disphard O. (me/l)	12.88		14.61	11.87	13.16	10.63	12.45	11.50	11.30	11.89			723
Petroleum (ms/l)	080	330	0.00	000	1.90	6.40	000	0.80	8.50		3.50		1,30
BOD (mr/!)	50+	14 99	1.68		2.85	15.99	1.19	10.16	3.73	3.61	4.70	•	16.64
COD(Ma) (mar/l)	78 0	8.51	760		2.20	11.80	1.00	7.47	2.97	2.65	3.19	2.65	9.11
SS (me/l)	40	7,	13		88	63	6	200	72	75	135	101	36
	2	200	0000	•	,	0.007	0000	0.005	0.004	•	i	*	0000
Cacamon (mg/l)	3	200	0000			0.002	0000	1000	0.002	-	-	_	0000
	300		500			0000	0000		0.040		1	1	0000
(1,4,4,4,4)	3	8000	0000			0000			0.008	,		•	0000
Coppe (me/l)	0000	0000	0000			0.037	0000	0.000	0.042	-	_	1	0000
Anone	5000	1100	0000	,	1	0.349	0000	10.031	0.841	_	_	ı	0.002
He (me/!)	0000	0000	0000			0000		0000	0000		1	1	0000
N/2+ (me/L)	0000	0100	0000		1	0000	0000	0000	0000	-	1	1 1 1 1 1 1	0000
Oreanochlorine	,	•	•	ļ	ì	ī				•	ŧ	1	ļ
Lead (mc/l)	0000	0000	0000	•	ı	710.0	0000	0000	0.009	1		<u>.</u>	0000
								****	****				****

51 52	Teleajen	Sewerage Sewerage Effluent Effluent	Un- Boldesti Slanic Ilago Scaieni		4517	1998/3/3 1998/3/	0.07	7.0 11.6	Colorless	Domestic Domestx	1.64		7.86	7.34	1.30	0.88	312.00	0.013	3.56	3.80	5.60	8.61	391 4	87	0.003	0.004	0.008	0.003	0000 0000 0000		0.043	0.000	0.000	0.000
9 90	Tele	age Sewerage It Effluent	Valenii de Maneciu Un- Munte town gureni Village		4506 4088	3/2 1998/3/2		힑		Domesti		81										16.40 38	10.44					0.002	0.004					
upplementary water Quality Analysis (Second 1917)	Teleajen Teleajen	Sewerage Sewerage Effluent Effluent	Cheia Valenii de Village Munte tov		4086 4:	1998/3/2 1998/3/2	0.05	5.0		Odorless Domestic	0.51	2	7.86	0.82	0.40	0.02	25.09	000:0	0.20	10.60	0.20	0.68	0.92	12	0.000	0000	0.000	0000	0.000	0.089	V.V.V.	0.000	0.000	0000
ķ	Teleajen	Factory S Effluent E	S.C.ROMFO (SFOCHIM.S.)	Chemical Products	4117	1998/3/4	0.02	6.9	LightBeiga (Specific	2.19	25	7.29	6.44	1.30	00.00	460.92	0.000	0.64	8.10	2.60	18.19	10.76	153	0.002	0.001	0.008	0.002	0.030	0.008		0.000	0.000	
N V	Teleajen		S.C.MATIZO L.S.A./Berc	Isolation Materials	4150	1998/3/4	0.03	14.4	Beige	Specific	1.82	143	7.54	4.64	0.90		390,00	0.012	0.56	4.75	1,40	19,46	16.55	121	0.001	0000	0000	0000	0000	L		0.000		
75	Teleajen	Factory Effluent Factory Effluent	S.C.PETROTE L.S.A./Ploiesti	Petro- chemical	4148	1998/3/4	09.0	18.9	Beige)iO	1.20	62	7.84	1.08	0.70	0.18	212.73	0.048	0.26	5.70	9.20	9.71	4.90	141	0.009	0.002	0.004	0.00	0000	0.205		0000	0.000	0.000
	Teleajen	Factory Effluent	S.C.SOCERA M.SA.	Building Materials	4103	1998/3/4	0.03	10.4	Coloriess		1.92	8	7.96	\$6'0	06.9	0.30	225.46	000'0	0.40	8.20	1.90	111	89'0	9	0:000	0000	0000	0000	0000	0.006		0000	0.000	0.000
	Teleajen		S.C.REALS S.A./Pleas		4106	1998/3/4	0.03	16.2	7	35	2.51		7.91	8.63	1.20	0.20	238.19		4.20				3.29		0000							000		
	7. Teleajen	Factory Effluent Factory	S.C.CAHIRO S.C.ARPACO S.A./Boldes R.S.A./Bucov	Rubber	4112	1998/3/4	0.01	10.9	Colorless	Odorless	2.77	22	7.80	144	6.50	3.20	ľ		0:36	7.78	3.70	7.35	3,81	42	0000	0000	0000	0.000	600'0	0.011		0000	0000	0000
ı	Teleajen	Factory Effluent		Paper	4102	1998/3/3	0.02	141	Grav	Specific	1.86	382	7.72	1.80	3.90	5.60	2		0.72	7.40	5.30	24.80	21.74	337	0.000	0000	0000	0.000	0000	0.040		0000	0000	0.000
	40 Teleajen	Factory Effluent	S.C.GES.S.A.	1.	4022	1998/3/3	100		LightBaire	Γ	1 69	18	7.33	12.88	06.0	2.40	214.14	0000	4.74	2.50	5.50	10.01	7.35	136	0000	0000	0000	0000	0000		l	0000	0000	0000
	Site No. River Name	Water Classification	Sampling Site	Remarks	Code No.	Samuline Date	Displaces (m3/c)	Water Temperature (°C)	Color	Odor	EC(mS/cm)	Turbidity	Ę	NH4+ (mg/l)	NO3- (mg/1)	NO2- (mg/1)	CI-(mg/I)	Phenol (mg/l)	PO43- (mg/l)	Disolved O. (mg/1)	Petroleum (mg/1)	BOD (mg/l)	COD(Mn) (mg/l)	SS (mg/1)	Cadmium (mg/1)	Cvanide (mg/l)	Cr6+ (mz/l)	Cr3+ (mg/l)	Copper (mg/l)	Anionic Deterrents		(mg/1)	Hg (mg/l) Ni2+ (mg/L)	Hg (mg/l) Ni2+ (mg/L) Organochlorine

		Table C.	Table C.2.4 Results of Suppl	is of Supply	mentary	lementary Water Quality Analysis (Second Time) (5/5)	ality Anal	ysis (Seco	nd 11me)	(0/0)			
ON ets	53	72	55	56	57	58	- 89	09	61	62	B	3	92
Diver Name	Telesien	Dimbo	Dimbu	Dimbu	Dimbu	Dimbu	Dimbu	Dimbu	Cricovui	Cricovul	Cricovul	Cricovul	Cricovul
	}								Sarat	T	Sarat	Sarat	Sarat
Water Classification	Stock Farm Effluent	Tributary	Tributary	Factory Effluent	Factory Effluent	Factory Effluent	Sewerage Effluent	Sewerage Effluent	Tributary	Tributary	Tributary	Sewerage Effluent	Model Point of non-point Source
Sampling Site	F.V.si.F.P.Agro Goga s/Scateni	Goga	Baicoi town	S.C.DACIA.S. A/Ploiesti	24 IANUARIE/	S.C.ASTRA ROMANA/	Baicoi town	Ploiest city	Singeru	Ciorani	Popesti	Urlati town	Valea Duice
Remarks		Periodical Point	Supplemen- tary Point	Metal Works/ Repair	Metal Works Patro- chemic	Petro- chemical			Periodical Point	Periodical Point	Supplemen- tary Point		Supplementary point
Code No.	4577	250	×	4147	4141	4158	4941	4162	275	280	0	4374	
Semoling Date	1998/3/3	1988/3/5	1998/3/4	1998/3/4	1998/3/4	1998/3/4	1998/3/4	1998/3/4	1998/3/5	1998/3/5	1998/3/5	1998/3/5	1998/3/5
Discharge(m ³ /a)	0.03	-	0.08		0.46	00.0	0.04	1,94	21.0	1.35	0.92	0.05	60.0
Water Temperatura(°C			8.0	11.7	15.4		12.0	5.4	6.8	1.6	9	12.9	7.6
Color	Brown	Beige	LightBeige	Coloriess	Coloriess	LightBeige	Gray	LightBeige	Beige	LightBeige	LightBeire	1	Beige
Odor	Domestic	Product	П	Odorless	IiO	Oi!	Domestic	Domestic		Odorless	Odorless	- 4	Odorless
EC(mS/cm)	67.7		5.37	1.15	1.14	1.18	0.63	1.21	5.73		4.81	1.21	9.90
Turbidity	460	73	10	13	11	38	73	103	X008		209	583	373
Ha	6.69	7.83	8.55	8.79	7.66	7.66	7.65	7.94	8.10	8.35	8.17	7.08	3.10
NH4+ (mg/!)	81.13		2.32	3.61	1.67	8.26	13.39	20.30	0.26	0.31	0.08	25.76	0.18
NO3- (mr/l)	1.40		1.40	09'0	09.0	0.20	2.80	06:0	1.20	2.00	2.80	0.80	0.90
NO2- (mr/l)	0.20			0.38	0.72	0.18	0.14	0.04	80 0	0.42	0.14		0.10
CI-(mg/l)	3722.77		1701.84	191.46	205.64	212.73	17727	163.09	1418.2	1	1347.29		3190.95
Phenol (mg/l)	<u>'</u>	0.180	-		0.000	0.064	0000	0.004	0000	0.000	,	0.005	1
PO43- (mg/1)	96.6	1.16	0.18	1.28	0.78	0.14	4.18	5.64	0.18	0.24	0.12	0.77	0.10
Disolved O ₂ (mg/l)	0.14	5.17	20.40	20.30	6.60	02.9	3,30	3.70	11.27	13.10	11.30	2.36	11.50
Petroleum (mg/I)	7.40		3.40	4.50	4.10	12.70	4.60	16.30	0.20	1.50	1.90	7.90	0.80
BOD (mg/!)	231.49	14.92	5.22	4.93	4:05	15.97	14.55	33.45	5.76	3.21	3.94	72.82	3.40
COD(Mn) (mg/l)	55.96		2.84	2.45	2.21	10.76	8.54	10.76	3.32	332	2.68	37.20	3.48
SS (mg/1)	2864	87	12	22	18	114	128	183	258	152	113	152	153
Cadmium (mg/l)	,	0.010	-	0.007	0.016	0000	0.025	0.040	0000	0.002	'	0.010	,
Cyanide (mg/l)	,	0.020	-	0.001	0.002	0.001	0.010	0.005	0000	0.007	١	0.006	,
Cr8+ (me/1)	,	090'0	+	0.050	0000	0000	0.042	0.080	0.000	0.000	1	0000	,
Cr3+ (mg/1)	,	0000		0.030	0000	0000	0.008	0.030	0000	0.000	,	0.000	;
Copper (mg/l)		0.020	_	0000	0.023	0000	0.019	0.028	0000	0000	,	0.001	(
Anionic Detergents	1	1.21	-	0.075	0.003	0.893	0.186	2.982	0000	0.044	1	0.750	-
Hg (mg/1)	-	0000	-	0000	0.000	0000	0.000	0.003	0000	0.000		0000	1
Ni2+ (mg/L)		0000	-	0000	0.030	0.008	090'0	0.080	0000	0.000	•	0.002	,
Organochiorine	1	,	-	ŧ	1	•			1	1			1
(I/Bu) peer	•	0.050	-	0.030	0.016	900'0	0.024	0.068	0000	0.000		0.000	-
Zinc (mg/l)	*	0.023	ş	8000	0.031	0.010	0.020	0.050	0.000	0.005	1	0,003	ì