Chapter 14

Appendix 14.1 Annual Operation and Maintenance Cost

T

Appendix 14.1 Annual Operation and Maintenance Cost

Kandy

Master Plan Alternative 1 (Not Applied)

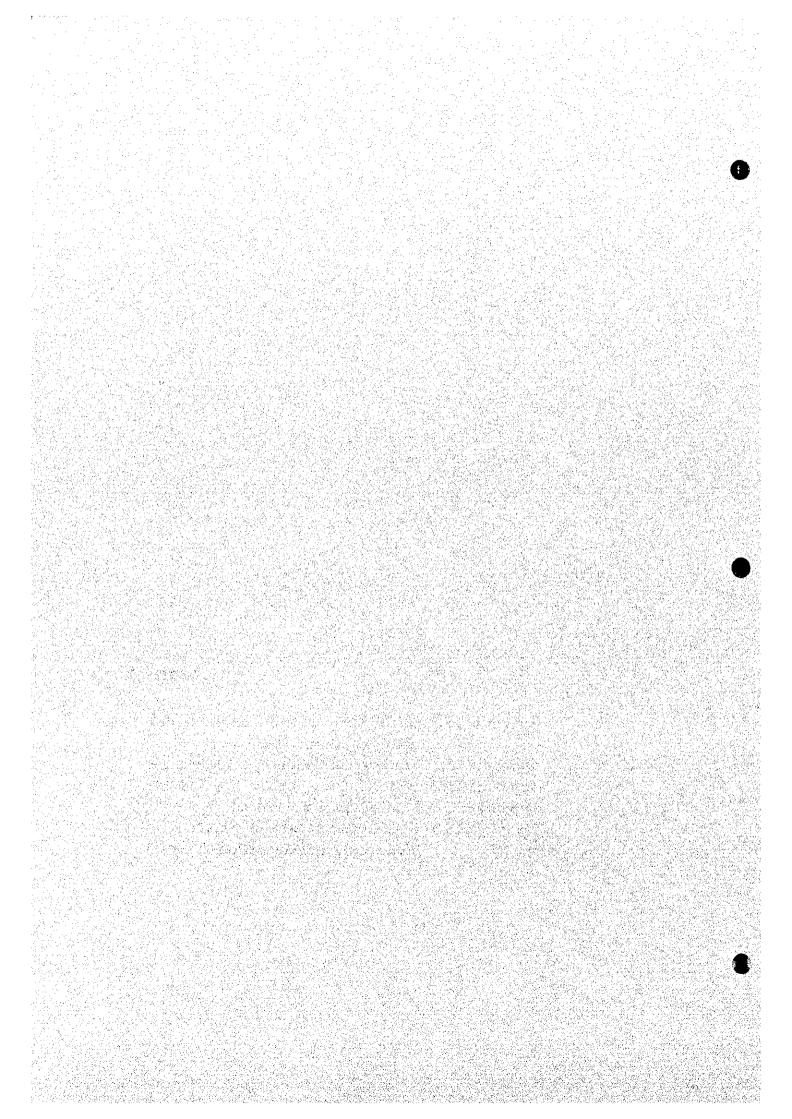
			Ele	ctricity				Man-Pov	ver	Spar	e Parts
Item	m3/day	m3/hr	hrs	kW	kWh	Rs/month	No.	Rs/month	Rs/month	Cost	Rs/month
1. Sewer							5	6,000	30,000		
2. Pumping Station											
Kandy										·	II
P/S 1	632	44	14.2	2.2	31	10,919	0	6,000	0	2,185	1,821
P/S 2-1	1,492	104	14.3	30	429	65,759	1	6,000	6,000	4,211	3,509
P/S 2-2	1,492	104	14.3	30	429	65,759	0	6,000	0	4,211	3,509
STP	15,215	540	28.2	45	1,268	181,573	0	•	0	15,711	13,093
Katugastota				•							
ISTP				, i				[
3. Sewage Treatment Plant											
Kandy	18,000n	n3/day	24	332	7,968	1,106,184	7	6,000	42,000	666,558	555,465
Katugastota								<u> </u>		·	
4. Chlorine	15,200	2 mg/l				27,862					
5. Maintenance	1						3	10,000	30,000		ļ
6. Manager/Engineer				1			3	15,000	45,000		
Sub-Total						1,447,137	19		153,000	692,876	577,397
Total							1		<u></u>	1	
month 2,177,534	j				Chlorine	Electricity			Man-Power	.	Spare Parts
vear 26,130,403]				334,339	17,031,304		÷	1,836,000		6,928,760
						· .					

Master Plan Alternative 2 (Applied) -Operation Starting 2014

			Ele	etricity	,			Man Pov	ver	Spar	e Parts
Item	m3/day	m3/hr	hrs	kW	kWh	Rs/month	No.	Rs/month	Rs/month	Cost	Rs/month
1. Sewer							5	6,000	30,000		
2. Pumping Station		·									
Kandy										· · · ·	
P/S 1	632	44	14.2	2.2	31	10,919	0	6,000	0	2,185	1,821
STP	13,853	492	28.2	37	1,042	150,365	0		0	14,729	12,274
Katugastota		1.1									
STP	1,492	104	14.3	15	214	36,180	0	6,000	0	2,438	2,032
3. Sewage Treatment Plant											
Kandy	17,000n	13/day	24	322	7,728	1,073,064	7	6,000	42,000	636,899	530,749
Katugastota	1,700m	3/day	24	31	744	109,272	3	6,000	18,000	35,242	29,368
4. Chlorine	15,200	2 mg/l				27,862			-		
5. Maintenance							3	10,000	30,000	i	· · · · · · · · · · · · · · · · · · ·
6. Manager/Engineer	[[3	15,000	45,000	L	
Sub-Total	İ		_		1	1,407,662	21	T	165,000	691,493	576,244
Total]									1	
month 2,148,906					Chlorine	Electricity			Man-Power	<u>'</u>	Spare Parts
year 25,786,869]				334,339	16,557,599			1,980,000		6,914,930

Feasibility Study -Operation Starting 2004

		I	Ele	ctricity				Man-Pow	/er	Spar	e Parts
Item	m3/day	m3/hr	hrs	kW	kWh	Rs/month	No.	Rs/month	Rs/month	Cost	Rs/month
1. Sewer							3	6,000	18,000		
2. Pumping Station								·			
Kandy										1.1	·
P/S 1	632	44	14.2	2.2	31	10,919	0	6,000	0	2,185	1,821
STP	6,926	492	14.1	37	521	78,483	0		0	9,864	8,220
Katugastota											·
STP				[
3. Sewage Treatment Plant					· · · ·	100 A.		$\{a_i,a_j\}_{i \in \mathbb{N}} \in \mathbb{N}$			
Kandy	8,50	0m3/day	24	174	4,176	582,888	5	6,000	30,000	320,246	266,872
Katugastota	·										·
4. Chlorine	7,300	2 mg/l				13,381				1.11	
5. Maintenance							2	10,000	20,000		
6. Manager/Engineer							2	15,000	30,000		
Sub-Total					•	685,671	12		98,000	332,295	276,913
Total										_	
month 1,060,583]				Chlorine	Electricity]	1	Man-Power	·	Spare Parts
year 12,726,999					160,571	8,067,478	1		1,176,000	. .	3,322,950


Chapter 15

Appendix 15.1	Initial Environmental Examination
••	Findings and Conclusions
Appendix 15.2	Water Quality Survey (Wet Season)
	Water Quality Survey (Dry Season)
	Land Acquisition Procedures

ļ

I

Appendix 15.5 Wastewater Treatment Plants Monitoring and Reporting Program

Greater Kandy – EIA – Appendix 15/A – IEE findings and conclusions

INITIAL ENVIRONMENTAL EXAMINATION

FINDINGS AND CONCLUSIONS

(EXECUTIVE SUMMARY)

1. Purpose of the Initial Environmental examination

The Initial Environmental Examination (IEE) is conducted as an integral part of the Water Supply and Environmental Improvement Master Plan for the Greater Kandy and Nuwara Eliya areas.

The IEE has the following specific objects:

1) to achieve a sound knowledge of the actual condition of the environment within the project impact areas;

based on this, to preliminarily assess the possible and/or potential environmental impacts which may be realized through the implementation of the proposed Water Supply (WS) and Waste Water (WW) projects, and

 to assess the need of implementing a full Environmental Impact Assessment (EIA), which, if necessary, will be conducted as an integral part of the Feasibility Studies which will follow the Master Plan.

2. Served population and water demand

- 2.1 Kandy Municipal
- 1) Served population in 1998 is 554,310 persons;
- 2) Served population in 2015 will be 694,160 persons;
- 3) Present water demand is 117,200 m3/day (211 L/persons*day)
- 4) Water demand in 2015 will be 195,900 m3/day (282 L/persons*day)

2.2 Nuwara Eliya

1) Served population in 1998 is 25,500 persons;

A-15.1-1

Greater Kandy – EIA – Appendix 15/A – IEE findings and conclusions

2) Served population in 2015 will be 51,400 persons;

- 3) Present water demand is 6,161 m3/day (241.6 L/person*day)
- 4) Water demand in 2015 will be 16,320 m3/day (317.5 L/person*day)

3. Project description

3.1 Water supply

3.1.1 Kandy Municipal

- Extraction of additional 42,500 m3/day at existing Kandy Municipal Plant (actual capacity 33,400 m³/day);
- Up to 118,000 m³/day new treatment plant at Polgolla (actual capacity: 1440 m3/day)
- Construction of 254 Km of transmission mains, ranging from 110 mm to 900 mm in diameter;
- 4) 61 reservoirs with a total storage capacity of 32,925 m³;
- 5) 45 pump stations, most of which will be located adjacent to reservoirs or treatment facilities.

3.1.2 Nuwara Eliya

- 1) Expansion of groundwater water sources;
- Expansion of existing stream supply at Bambarakele by construction of a new dam;
- Expansion of existing Lovers Leap stream supply with construction of two new dams;
- 4) New supply from a stream near Jayalauka with a new dam and 10-12 Km transmission main.

Existing transmission and distribution system will require upgrade to handle additional supply.

Greater Kandy -- EIA - Appendix 15/A - IEE findings and conclusions

3.2 Wastewater treatment

3.2.1 Greater Kandy

Three separate sub-areas are considered for priority interventions in the Greater Kandy Area: 1) Kandy Municipal, 2) Katugastota and 3) Akurana.

1) Kandy Municipal

- New Treatment Plant, aerated lagoons, to be located in Getambe, with capacity of 90 L/s (about 8,000 m3/day). Required area is 2.7 ha.
- 2) Collection mains with diameter varying from 200 to 100m mm, for a total length of 20.13 km.
- Two pump stations, with capacity of 8 L/sec and 100 L/sec, located at Lake side and Railroad.

2) Katugastota

- 1) New treatment plant, aerated lagoons, with capacity of 6.5 L/s. (561 m3/day). Total area required 0.5 ha.
- 2) 6.5 Km of collection mains, with diameter varying from 200 mm to 300 mm;
- 3) Two pump stations with capacity 3 L/s and 9 L/s, located at the bridge and at treatment plant site.

3) Akurana

- New treatment plant, aerated lagoons, with capacity of 6.0 L/s. (518 m3/day). Total area required: 0.5 ha.
- 2) 1.9 Km of collection mains, with diameter varying from 200 mm to 300 mm.

3.2.2 Newara Eliya

The following WW treatment facilities are planned in Nuwara Eliya (FIG 2.2):

- New treatment plant, aerated lagoons, with capacity of 20 L/sec (1728 m3/day), located in an area south of the Recreational Ground. Total required land is 0.5 ha;
- 2) 12.4 Km of collection mains, with diameter varying from 200 mm to 300 mm;
- Two pump stations with capacity 9 L/s and 20 L/s, located at the brewery and at racetrack.

Greater Kandy – EIA – Appendix 15/A – IEE findings and conclusions 4. Summary review of beneficial/adverse impacts

- The purpose of the present project is to prevent or alleviate the effect on the environment produced by the discharge of untreated or inadequately treated wastewater, and to improve the quality of life of resident people by increasing the amount of safe drinkable water supplied. When properly planned, designed, constructed and managed, the project will therefore have an overall beneficial impact on the environment.
- 2) The most important beneficial impacts will be:
- Reduction of public nuisance, because of increased safe water sources and reduction of open air sewers in urban areas;
- Improvement of public health, because of reduction of water vector diseases;
- Improvement of surface and underground water quality, because of reduction of untreated wastewater discharge.
- 3) The major permanent negative effect will be dislocation or resettlement of a few families actually living in the area selected for the new Polgolla water treatment plant. Resettlement, even if concerning a limited number of families, should be done in compliance with Sri Lankan Laws and regulations (see Par. 4.4). Compensation should be adequate in order to guarantee that dislocated/resettled families after the project will be "equal or better" than before.
- 4) Land acquisition for plant siting may also represent a problem, because almost all lands are private and chances of finding public lands where treatment plants or pumping stations may be sited are minimal.
- 5) Water quality in receiving surface and underground water bodies is likely to improve, because many raw sewage discharges will be replaced by a single treated waste water discharge, with strong reduction in the contaminants' content.
- 6) Major negative impact during construction will be on traffic and transportation, especially in densely populated urban areas, because of construction of mains. Kandy Municipal, Nuwara Eliya Municipal, and some of the minors town in Kandy District (Katugastota and Arakuna) will be affected.

Greater Kandy - EIA - Appendix 15/A - IEE findings and conclusions

- 7) A preliminary survey on traffic intensity in critical points of Kandy District has been carried out during the present study. Applicable mitigation measures (such as traffic diversion) will be studied in the EIA, but disturbances to population cannot be completely offset. A sound and thorough information campaign will also be helpful to mitigate the effects of public nuisance.
- 8) Noise and vibrations during construction are a routinely concern of EIA for projects which include deep trench excavation in urban areas, and may represent a critical issue in specific areas (high level residential areas, schools, hospitals). Mitigation measures will be provided in the EIA, but it is evident that negative impact cannot be completely offset. Again, an information campaign may help to overcame residents' complaints. Fortunately, this will be a temporary impact.
- 9) Offensive odors can be controlled at WS treatment plants, but are present at WW treatment plants, as a consequence of anaerobic decomposition. Impacts may be offset using adequate odor control techniques and with proper plant siting.
- 10) An important issue will be safety of workers and general public during construction, considering that all works will be conducted in densely populated areas. Suggestions on how to mitigate these effects will be given in the EIA. A specific Control and Monitoring Plan will be needed, establishing responsibilities as well as routinely and emergency procedures to be followed.
- 11) To make sure that the project will benefit the environment as expected, all domestic, public and commercial uses within the service areas should be required to connect to the system on a mandatory basis. The NWSDB, CEA and the Municipalities of Kandy and Nuwara Eliya, should be responsible for the enforcement of this measure.

5. Intensity of Impacts

Intensity of impacts is evaluated according to criteria established by CEA and reported at Para. 2.3, page 9 of "Guidance for Implementing the Environmental Impact Assessment (EIA) Process. Intensity is referred to permanent impacts only. An overall evaluation will be given for each criteria, turning for details to the previous Environmental Impact Matrix and/or to the specific chapters.

3

A-15.1-5

Greater Kandy -- EIA -- Appendix 15/A -- IEE findings and conclusions

Greater Kandy -- EIA -- Appendix 15/A -- IEE findings and conclusions

Criteria for impacts' intensity evaluation	Degree of intensity
Degree to which the proposed action will affect public health or safety	Highly positive
Degree to which the proposed action will affect unique characteristics of a geographical area.	None
Degree to which the impacts on the environment and related social conditions are likely to be highly controversial:	Minor controversies may arise related to resettlement of families in Kandy and land acquisition procedures;
Degree to which the possible effects on environment are highly uncertain on involve unique or unknown risks	None
Anticipated cumulative significant impacts which cannot be avoided / offset or mitigated:	None
Degree to which the proposed action may affect the right of future generation to benefit from environmental and cultural resources:	None

Intensity of impacts

6 Conclusions about ElA requirement

6.1 General

According to present Sri Lankan regulations, the water extraction, WS treatment plants, WW treatment plants and appurtenant works which are part of the present project, are subject to the EIA process only as plant siting is concerned. The laying of pipeline in Kandy, Nuwara Eliya and minor town of Kandy District is not a prescribed project and therefore is not required to follow the EIA process. However, because of the potential social and environmental impacts arising out of this activity, it is recommended to formulate a sound management plan for this activity which will minimize the adverse impacts on the society and the natural environment.

EIA requirement for the different project components are summarized in Table 6.2.

ð

Greater Kandy -- EIA -- Appendix 15/A -- IEE findings and conclusions

6.2 Recommendations of Central Environmental Authority

The following procedure is recommended by the Central Environmental Authority

- 1. NWSDB will officially submit the IEE to CEA;
- CEA will examine the report, and will assess if an EIA is needed or not, and to which extent. This step is necessary because the regulations expressed in Gazette 722/22 are to be considered as a general reference, and are subject to interpretation of the CEA;
- 3. CEA, on the base of IEE findings, will officially communicate to the NWSDB, within a two weeks period, if an EIA is definitely required or not.
- 4. If an EIA is required, the PP will also officially apply to the CEA, to know which will be the PAA entitled for revision and approval of the EIA;
- 5. The CEA will name a PAA and will officially communicate the name of the Agency to the PP.

6.3 Consultant's recommendations and justification for an EIA

Considering the preliminary evaluation of anticipated environmental effects presented in Chapter 5, and the recommendations received by the CEA in Colombo, it's the Consultant's opinion that an EIA is fully justified and will be needed. The EIA must comply with both JICA and Sri Lankan CEA regulations. Terms of Reference are given in Chapter 7. Appendix 15.2 Water Quality Survey (Wet Season)

POSTGRADUATE INSTITUTE OF SCIENCE

UNIVERSITY OF PERADENIYA PERADENIYA SRI LANKA

Report on

WATER QUALITY EXAMINATION

In the Kandy and Nuwara-Eliya Districts

Second phase - Rainy Season

Submitted to

JICA study Team, NWSDB,Kandy

By

Prof. O.A.Ileperuma (Project co-ordinator) Department of Chemistry University of Peradeniya Peradeniya, Sri Lanka

September 8,98

A-15.2-1

INTRODUCTION

An agreement was signed between the JICA study team and the Postgraduate Institute of Science, University of Peradeniya in March 1998 for the chemical and biological analysis of water quality of springs, streams, ground water sources, raw sewage, water bodies (rivers and lakes) and sludge. This study was to take in two phases namely, the dry season and the rainy season. The report for the phase 1 of this project (dry season) has already been submitted and the present report is on the study carried out during the rainy season. This reason season from July to September was quite normal with intermittent dry days. The dry season in contrast was quite unusual in that it was an exceptionally warm dry season in the hill country. The study area covered the greater Kandy area and the Nuwara Eliya basin. The corresponding collection points are depicted in the attached maps.

Experimental

Samples were collected in cleaned acid washed bottles and sampling was carried out according to accepted methods. Sample preservation depending on the parameter to be analysed was carried out in situ. The general procedures employed for all analytical determinations are those given in "Standard Methods for the Examination of Water and Wastewater" 19th edition (1995) published by the American Public Health Association, Washington, D.C. The following table gives the analytical procedures followed.

Parameter	Method
BOD,COD	Standard titrimetric procedure
Chloride, Fluoride	Ion-selective electrodes
Total nitrogen	Kjeldhal method
Total phosphorus	Spectrophotometry (Vanadomolybdate method)
Sulphate	Turbidimetry
Nitrate, nitrite	Spectrophotometry (Azo dye method with cadmium reduction)
Cd,Fe,Pb,Mn,Co,Zn	Atomic absorption spectrophotometry
Cu	
As,Hg	Atomic absorption with hydride reduction
SS, TDS	Gravimetry

Microbiological examinations for *E.Coli* and coliforms were estimated according to the ISO 4831:1990 International standards using the most probable number counts. These gave far more accurate readings for sewege samples compared with the data reported in the first report.

Results and Discussion

ð

T

(I) Raw water quality survey

Results of the raw water quality survey are given in tables 1-3 and the results of the pesticide analysis and their detection limits are given separately in annexure 1. There was total absence of any of the pesticides generally used in Sri Lanka in any of the water quality samples which were investigated (Annexure 1). In general these samples show increased turbidity and increased suspended solids compared to the values obtained during the dry season. The phosphate concentration also showed a significant increase in concentration during the rainy season specially in the Nuwara Eliya district. This is perhaps due to the washing of phosphate fertilisers which remain close to the ground during the dry season. The total hardness of the water during the rainy season is about 50% of its values during the dry season.

The conductivity of ground water sources was high compared to those collected from springs from Nuwara-Eliya. This is probably due to high calcium and magnesium salts as indicated by total alkalinity and hardness. The sulphate contents of these samples were also high. Out of the bore hole wells, those at the Race course, Galway forest lodge, Interfashion, Hill club and Palladium had relatively high mineralisation as seen in higher conductivities. The nitrate and free ammonia contents of the Palladium bore hole was very high most probably due to faecal contamination. There was an unusual situation with respect of the analytical results of WO/N/15.1 compared to analyses obtained later from the same bore hole. This is because this is a shallow bore hole and WQ/N/15.1 was collected when the weather was dry and samples WQ/N/15.2 and WQ/N/15.3 during very high rain. As a result its iron content was very high, turbidity was also high and CI was also high. In particular, this particular bore hole has high iron content also for the same reason. The water from this bore hole appeared brownish and this explains its high TDS values. There was no significant variation of the water composition for samples collected from springs over a 24 h period indicating little human activity. There is also no evidence of pesticide contamination for any of these samples (both spring water & bore holes at Nuwara Eliya). It is also clear that the sample at Lovers leap and Pedro intake had relatively high contamination by coliforms indicating human faecal contamination. The residual coliform counts from bore hole water samples probably arises due to contamination of the rubber hoses used to collect the sample and attached to the bore hole well.

It is also clear that the Palladium bore hole water is also highly contaminated as seen in its high bacterial contamination, high iron content, high chloride etc. This is a shallow bore hole present in a highly contaminated area and it is not surprising that its water is highly polluted. The high iron content may arise due to corroding metallic pipes since this bore hole is situated in the heart of the city. Also because of close proximity to septic tanks it exhibits a high level of ammonia. The Brewery bore hole was not in general use at the time samples were collected and the levels of heavy metals may be high for this reason.

The race course bore hole shows increased mineralisation (high conductivity) with higher concentrations of phosphate compared to other bore holes. This is due to it being close to an area which is intensively fertilised. Such fertiliser run-offs could explain its high phosphate level.

Samples from new bore holes WQ/N/18 and WQ/N/19 showed that the one near the golf course (WQ/N/19) has relatively high hardness and conductivity while that dug near Galway forest showed quite normal results.

Additional raw water quality samples were collected near the Gohagoda site where sample WQ/K/3 is the sample collected about 100 metres upstream of the sewage effluent flow. This sample clearly showed increased nitrate contamination but no big differences from other water quality samples.

Survey points and the keys to samples

Raw water quality

KANDY

WQ/K/1	Intake point of Kandy water treatment plant.
WQ/K/2	Polgolla dam intake

Additional sample for raw water quality was selected near the proposed intake at Gohagoda (near Katugastota) just up river from the sewage dumping site.

WQ/K/3 Gohagoda -proposed intake point before sewage flow

NUWARA ELIYA

Surface inta	ikes
WQ/N/ 1	Bambarakele
WQ/N/2	Shanthipura
WQ/N/3	Pedro intake
WQ/N/4	Water field (new)
WQ/N/5	Water field(old)
WQ/N/6	Piyatissapura
WQ/N/7	Brewery falls
WQ/N/8	Gemunupura
WQ/N/9	Lovers leap

Ground water resources

WQ/N/10	Hill club bore hole
WQ/N/11	Race course bore hole

Table 1. Raw water quality data (Kandy district) Units employed: Tempertaure ⁰C,COD,BOD,SS,TDS,CI,SO₄^{2,},As,Cd,Zn,Co ppm, Conductivity uscm⁻¹, Coliform total at 35 C/100ml, E.Coli. At 44 C/100ml

S

T

Sample T air Twrbidity PH Onductivity TDS Cf alkalinity Fee NJ NO2 F PO2 hadness WOKVI1 248 22.9 14.9 5.5 57.1 28.1 70.0 0.10 0.02 0.02 0.02 66.7 71.5 WOKV1.5 27.0 24.4 23.1 16.3 0.10 1.30 0.01 17.0 30.1 17.0 WOKV1.6 27.5 24.4 51.1 25.1 3.1									Total						Total
24.8 22.9 14.9 5.5 57.1 28.5 4.2 7.8 ND 1.89 0.05 0.02 0.05 0.02 2.04 3.01	Samola	T air	T water	Turbidity		onductivity	TDS	ច	alkalinity Free	NH3	NO. ⁻	NO2	LL.	PO.	hardness
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		24 8 VC	9 66	14.9		57.1	28.5	4.2	7.8	Q	1.89	0.05	0.02	0.62	6.7
Z23 Z11 6.8 46.4 Z31 3.1 16.3 0.10 1.33 0.18 0.04 3.01 Z35 Z311 14.7 6.7 44.2 Z21 3.1 20.5 0.13 1.98 0.08 0.03 3.14 Z70 Z40 Z51 7.2 44.2 Z21 3.1 20.5 0.13 1.98 0.08 0.03 3.01 Z70 Z40 Z51 6.4 49.8 Z4.5 Z5 18.7 1.00 1.70 0.10 0.03 3.01 Z715 Z4.3 54.1 Z5.5 3.6 Z1.7 0.08 0.06 0.01 0.03 3.01 Z80 Z34.5 Z4.3 54.9 Z7.5 3.8 16.9 0.06 2.94 0.10 0.10 0.10 0.10 0.01 0.01 0.01 0.01 1.88 2.04 Z80 Z34 19.9 0.16 2.17 0.08 2.06 <t< td=""><td></td><td>27.0</td><td>747</td><td>22.3</td><td>5.5</td><td>43.6</td><td>22.4</td><td>2.5</td><td>16.9</td><td>0.09</td><td>4.19</td><td>0.10</td><td>0.02</td><td>2.04</td><td>4 0</td></t<>		27.0	747	22.3	5.5	43.6	22.4	2.5	16.9	0.09	4.19	0.10	0.02	2.04	4 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.02	23.3	47.1	6.8	46.4	23.1	3.1	16.3	0.10	1.33	0.18	0.04	3.01	15.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3 5	23.1	14.7	6.7	44.2	22.1	3.1	20.5	0.13	1.98	0.08	0.03	3.14	15.2
27.5 24.2 11.5 6.4 49.8 24.5 2.5 18.7 1.00 1.70 0.10 0.02 4.04 28.0 23.6 25.1 6.5 49.7 24.8 3.6 21.7 0.08 206 0.91 28.0 22.3 55.1 6.4 51.1 25.5 3.6 22.3 0.22 24.1 0.10 0.10 0.10 1.88 24.0 22.3 54.3 57.5 3.6 27.3 0.22 24.1 0.10 0.02 4.04 24.9 27.3 5.2 54.9 27.5 3.8 16.9 0.06 2.33 0.10 0.02 2.04 25.5 24.5 23.3 6.8 51.7 25.9 2.7 16.9 0.06 2.07 0.02 1.81 25.5 24.5 23.3 6.8 51.7 25.9 2.7 16.9 0.06 2.07 0.05 1.71 23.8 23.4 19.9 7.1 51.4 27.7 4.1 19.9 0.12 1.81 <t< td=""><td>WOK/15</td><td>27.0</td><td>24.0</td><td>25.1</td><td>7.2</td><td>43.3</td><td>21.7</td><td>2.1</td><td>16.9</td><td>0.05</td><td>3.22</td><td>0.27</td><td>0.03</td><td>3.01</td><td>17.0</td></t<>	WOK/15	27.0	24.0	25.1	7.2	43.3	21.7	2.1	16.9	0.05	3.22	0.27	0.03	3.01	17.0
28.0 23.6 26.1 6.5 49.7 24.8 3.6 21.7 0.08 2.06 0.08 0.06 0.91 24.0 22.2 25.1 6.4 51.1 25.5 3.6 22.3 0.22 2.41 0.10 0.10 1.88 24.9 22.5 54.3 5.2 54.9 27.5 3.8 16.9 0.06 2.04 1.88 24.9 27.3 6.8 51.7 25.5 3.6 27.7 16.9 0.06 2.09 0.02 2.04 1.88 25.5 24.5 23.3 6.8 51.7 25.9 2.77 16.9 0.06 2.09 0.02 2.04 23.8 23.4 19.9 7.1 51.4 27.7 4.1 19.9 0.10 1.91 0.17 0.05 1.71 23.8 23.4 19.9 7.1 51.4 27.7 4.1 19.9 0.10 0.05 0.05 0.10 1.61 1.71 23.1 24.7 24.3 18.7 0.13 1.31	WOWI 6	27.5	24.2	11.5	6.4	49.8	24.5	2.5	18.7	1.00	1.70	0.10	0.02	4.04	17.0
24,0 22,2 25,1 6,4 51,1 25,5 3,6 22,3 0.22 2,41 0.10 0.10 1.88 24,9 24,3 5,4,3 5,2 5,4,9 27.5 3,8 16,9 0.06 2,53 0.10 0.10 1.88 24,9 27,3 5,2 5,4,9 27.5 3,8 16,9 0.06 2,53 0.10 0.02 2.04 25,5 24,5 23,3 6,8 51,7 25,9 2,7 16,9 0.08 2.08 0.09 0.02 2.04 23,8 23,4 19,9 7,1 51,4 27,7 4,1 19,9 0.12 1,76 0.07 0.05 1,71 23,8 23,4 19,9 7,1 5,1,4 27,7 4,1 19,9 0.10 1,13 0.06 6,85 5,9,2 2,17 1,71 1,71 1,71 2,4,3 1,23 0.05 0,05 1,71 1,71 1,71 1,71 1,71 1,71 1,71 1,71 1,71 1,71 1,71 1,11 </td <td>WONK/17</td> <td>28.0</td> <td>23.6</td> <td>26.1</td> <td>.5 6.5</td> <td>49.7</td> <td>24.8</td> <td>3.6</td> <td>21.7</td> <td>0.08</td> <td>2.06</td> <td>0.08</td> <td>0.06</td> <td>0.91</td> <td>18.9</td>	WONK/17	28.0	23.6	26.1	.5 6.5	49.7	24.8	3.6	21.7	0.08	2.06	0.08	0.06	0.91	18.9
24.9 24.3 54.3 5.2 54.9 27.5 3.8 16.9 0.06 2.53 0.10 0.02 2.04 25.5 24.5 23.3 6.8 51.7 25.9 2.7 16.9 0.06 2.53 0.10 0.02 2.04 25.5 24.5 23.3 6.8 51.7 25.9 2.7 4.1 19.9 0.12 1.76 0.07 0.05 1.81 23.8 23.4 19.9 7.1 51.4 27.7 4.1 19.9 0.12 1.76 0.07 0.05 1.71 23.8 23.4 19.9 7.1 51.4 27.7 4.1 19.9 0.10 1.31 0.05 0.05 1.71 27.0 24.6 11.7 6.4 56.0 28.0 3.3 21.7 0.13 1.63 0.07 0.05 0.03 3.85 27.1 24.6 11.7 6.4 56.0 28.0 3.3 23.6 0.07 0.03 3.64 27.4 24.3 12.5 53.0 <	WO/K/1.8	24.0	22.2	25.1	6.4	51.1	25.5	3.6	22.3	0.22	2.41	0.10	0.10	1.88	18.9
25.5 24.5 23.3 6.8 51.7 25.9 2.7 16.9 0.08 2.08 0.09 0.02 1.81 23.8 23.4 19.9 7.1 51.4 27.7 4.1 19.9 0.12 1.76 0.07 0.05 1.71 23.8 23.4 19.9 7.1 51.4 27.7 4.1 19.9 0.12 1.76 0.07 0.05 1.71 23.8 23.4 6.5 59.2 29.7 5.0 19.9 0.10 1.91 0.13 0.05 6.85 1.71 27.0 24.6 11.7 6.4 56.0 28.0 3.3 21.7 0.13 1.63 0.07 0.05 6.85 27.0 24.6 11.7 6.4 56.0 28.0 3.3 21.7 0.13 1.63 0.07 0.05 6.85 27.0 24.3 12.8 6.9 52.0 28.0 3.1 0.13 1.63 0.07 0.03 3.85 27.4 24.3 12.6 28.0 4.1 <	WOK2 1	24.9	24.3	54.3	5.2	54.9	27.5	3.8	16.9	0.06	2.53	0.10	0.02	2.04	17.1
23.8 23.4 19.9 7.1 51.4 27.7 4.1 19.9 0.12 1.76 0.07 0.05 1.71 24.7 24.2 16.4 6.5 59.2 29.7 5.0 19.9 0.10 1.91 0.13 0.06 6.85 27.0 24.3 16.4 6.5 59.2 29.7 5.0 19.9 0.10 1.91 0.13 0.06 6.85 27.0 24.3 17.7 5.0 19.9 0.10 1.91 0.13 0.06 6.85 27.0 24.6 11.7 6.4 56.0 28.0 3.3 21.7 0.13 1.63 0.07 0.03 3.85 27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.08 0.07 0.33 1.58 27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.07 0.07 0.33 1.58 27.8 23.4 21.7 0.13 1.63	WORD 2	25.5	24.5	23.3	6.8	51.7	25.9	2.7	16.9	0.08	2.08	0.09	0.02	1.81	4.8
24.7 24.2 16.4 6.5 59.2 29.7 5.0 19.9 0.10 1.91 0.13 0.06 6.85 27.0 24.3 28.2 7.2 50.7 25.3 4.3 18.7 0.13 1.32 0.08 0.03 3.85 27.0 24.6 11.7 6.4 56.0 28.0 3.3 21.7 0.13 1.32 0.08 0.03 3.85 27.0 24.6 11.7 6.4 56.0 28.0 3.3 21.7 0.13 1.32 0.07 0.33 1.58 27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.07 0.33 1.58 27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.07 0.07 3.58 27.8 23.4 27.5 6.8 55.8 58.0 4.1 35.6 0.29 1.57 0.08 0.07 3.67 27.8 23.0 15.0 6.9 <	MOKD 3	23.8	23.4	19.9	7.1	51.4	27.7	4.1	19.9	0.12	1.76	0.07	0.05	1.71	21.0
27.0 24.3 28.2 7.2 50.7 25.3 4.3 18.7 0.13 1.32 0.08 0.03 3.85 27.0 24.6 11.7 6.4 56.0 28.0 3.3 21.7 0.13 1.63 0.07 0.33 1.58 27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.03 0.07 0.33 1.58 27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.08 0.07 3.58 22.2 23.4 27.5 6.8 55.8 58.0 4.1 35.6 0.29 1.57 0.08 0.07 3.55 27.8 23.0 15.0 6.9 63.5 31.2 2.5 20.5 0.46 4.78 0.19 0.15 2.15 27.8 23.3 10.0 6.9 63.5 31.2 2.5 20.5 0.46 4.78 0.15 2.15 26.5 23.3 10.0 6.8 <	WOKI2 4	24.7	24.2	16.4	6.5	59.2	29.7	5.0	19.9	0.10	1.91	0.13	0.06	6.85	21.0
27.0 24.6 11.7 6.4 56.0 28.0 3.3 21.7 0.13 1.63 0.07 0.33 1.58 27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.08 0.07 3.58 27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.08 0.07 3.58 22.2 23.4 27.5 6.8 55.8 58.0 4.1 35.6 0.29 1.57 0.08 0.09 1.97 27.8 23.0 15.0 6.9 63.5 31.2 2.5 20.5 0.46 4.78 0.19 0.15 2.15 26.5 23.3 10.0 6.8 52.1 26.0 1.99 21.1 ND 3.52 0.16 1.51	NOK7 5	27.0	24.3	28.2	7.2	50.7	25.3	4.3	18.7	0.13	1.32	0.08	0.03	3,85	17.0
27.4 24.3 12.8 6.9 52.9 26.4 3.9 23.6 0.10 1.40 0.08 0.07 3.58 22.2 23.4 27.5 6.8 55.8 58.0 4.1 35.6 0.29 1.57 0.08 0.09 1.97 27.8 23.0 15.0 6.9 53.5 58.0 4.1 35.6 0.29 1.57 0.08 0.09 1.97 27.8 23.0 15.0 6.9 63.5 31.2 2.5 20.5 0.46 4.78 0.19 0.15 2.15 26.5 23.3 10.0 6.8 52.1 26.0 1.99 21.1 ND 3.52 0.13 0.16 1.51	NOK7 6	27.0	24.6	11.7	6.4	56.0	28.0	3.3	21.7	0.13	1.63	0.07	0.33	1.58	17.0
22.2 23.4 27.5 6.8 55.8 58.0 4.1 35.6 0.29 1.57 0.08 0.09 1.97 27.8 23.0 15.0 6.9 63.5 31.2 2.5 20.5 0.46 4.78 0.15 2.15 26.5 23.3 10.0 6.8 52.1 26.0 1.99 21.1 ND 3.52 0.13 0.16 1.51	VOK/27	27.4	24.3	12.8	6.9	52.9	26.4	3.9	23.6	0.10	1.40	0.08	0.07	3.58	20.8
27.8 23.0 15.0 6.9 63.5 31.2 2.5 20.5 0.46 4.78 0.19 0.15 2.15 26.5 23.3 10.0 6.8 52.1 26.0 1.99 21.1 ND 3.52 0.13 0.16 1.51	NOIKI2 8	22.2	23.4	27.5	6.8	55.8	58.0	4.1	35.6	0.29	1.57	0.08	0.09	1.97	28.3
26.5 23.3 10.0 6.8 52.1 26.0 1.99 21.1 ND 3.52 0.13 0.16 1.51	NO/K/3 1	27.8	23.0	15.0	6.9	63.5	31.2	2.5	20.5	0.46	4.78	0.19	0.15	2.15	37.8
	NO/K/3.2	26.5	23.3	10.0	6.8	52.1	26.0	1.99	21.1	Q	3.52	0.13	0.16	1.51	39.6

ð

Total iron		9	QZ	1.05	0.35	C7 8	4 4 6 6 6 6 6	0 5 1	1.38	0.29	0.23	0,40	0.10	0.54	0.35	0.54		0.23	1.94	0.6	Q		2	
•		Q	Ð	Q	CZ		<u></u>	Q	Ð	Ð	Q		2 Z	02	g	QN		S	g	Q	C Z		2	
	AS	Q	Q	Q	Ż	2	2	Q	g	QN	CZ		S	ç	Q	Ç	<u></u>	n	9	Ð	CN		ב	
:	Ê	Q	QN	Ż		2	S	Q	Q	Q	CN		QN	Q	QN	2		ON N	Q	OX			N	
	Mn	Q				2 i	n	Q	Q	QN	Ç		Q	QN				Q	Q	QN			Q	
	ບັ	CZ				R	Q	Q	QN	ç		R	Q	QN		2	nz	Q	ON NO	Ç	2		Q:	
	8	C				Q	Q	Q	CIN.			S	Q	CN			Ô	OZ	CN		2	n	9	
	Cu					ð	Q	az	Cz		2	n	QZ				Q	Q	CN.			QN	Q	
	F coli			20	260	100	1600	190			00	80	70			20	200	240	250		00	30	260	
Total	coliform	0001	10001	100	1100	006	3400	2200		- 0 4 0	RUU	300	000	0000	2000	210	2080	2600			600	100	1100	
	-		. 01>	~10 ¹	<104	<104	<104	FU1-7			<10	10 ¹	101/			<10 ¹	<10 ⁴	<104			<10.	<104	<10 ⁴	
	ς) ²	500	8	4.	2.1.2	1.8	66	4 -	₽ , 2		1.9	3.3	-	t. -	1.7	5.8	2.6		~ (ۍ. ۲ د	0.7	0.7	0.7	
		sample	WORN1.1	WQ/K/1.2	WQ/K/1.3	WO/K/1-4	MORT 5		WUND.	WO/K/1.7	WQ/K/1.8	WO/K/2.1		WU/WZ:Z	WQ/K/2.3	WO/K/2.4	WO/K/2 5		WUNZ.0	WO/K/2.7	WQ/K/2.8	WO/K/3_1	WO/K/3.2	

Table 1. Raw water quality data (Kandy district)continued

Table 2. Raw	water quali	ty data - N	Table 2. Raw water quality data - Nuwara-Eliya district (Surface intakes)	strict (Sur	face intakes)	~								
					÷	·		Total						Total
Samula	Tair	T water	Turbidity	На	onductivity	TDS	ច់	alkalinity Free	e NH ₃	NO [°]	NO ₂	<u>ل</u> د,	PO.*	hardness
VALOANIA 4	0 8 C	15.5	0.89		10.5	5.2	1.10	6.0	0.05	1.18	0.04	0.04	2.72	3.8
	15.0	14.0	1.35	6.4	11.4	5.6	06.0	8.4	0.14	1.06	0.75	0.02	2.12	4.8
WOW 1	203	15.9	0.79	7.0	15.3	7.2	1.10	5.4	0.02	0.41	0.45	0.20	1.79	5.7
WOW/2 2	15.0	14.7	0.70	6.2	15.4	7.0	0.90	6.0	0.13	4.47	0.62	0.02	0.81	8.6 0.5
WOW3 1	23.1	16.2	1.20	8.2	11.4	5.8	1.00	7.2	QN	0.20	0.30	0.02	1.96	7.6
	17.0	15.2	1.35	6.2	11.0	5.4	0.85	9.1	0.01	1.94	0.56	0.02	1.82	4.8
WO/N/4 1	203	0.5	1.85	6.2	11.3	5.6	1.10	6.6	0.01	1.26	0.42	0.03	2.64	5.7
	0.54 12.0	146	1 15	6.8	10.6	5.3	1.00	7.2	0.27	0.93	0.75	0.02	3.21	4.8
		15.6	0.78	7.1	12.7	6.3	1.10	9.2	0.02	0.27	0.17	0.01	1.20	7.6
	15.4	147	1 25	6.2	11.2	5.6	1.00	8.4	0.27	0.84	0.95	0.02	1.25	5.7
MONIAL 1	23.4	15.8	0.85	6.7	12.1	6.0	1.07	7.8	Q	0.80	0.27	0.02	3.35	6.7
MOWE 2	16.0	15.0	0.75	6.2	11.4	5.6	1.00	7.2	Q	1.37	0.11	0.02	3.16	4.8
MON/1	16.2	15.2	1.00	8.2	13.1	6.5	1.00	8.4	0.02	0.87	0.18	0.02	2.80	4
WOW 2	16.1	14.8	1.40	6.7	11.8	5.9	0.90	9.1	0.19	0.52	0.88	0.02	1.69	4 .8
WO/N/8 1	21.0	15.7	0.95	7.2	12.8	6.3	1.20	8.4	0.02	0.96	0.27	0.05	2.30	8.6
2 8/N/UM	17.3	14.2	0.82	6.8	11.2	5.5	0.90	7.8	0.23	0.60	0.69	0.03	2.73	7.6
1 6/N/OM	20.9	15.1	1.84	6.5	11.1	5.5	1.10	8.5	0.02	0.20	0.24	0.05	2.82	5.7
WQ/N/9.2	18.4	14.8	1.20	6.0	10.8	5.0	1.00	7.2	0.38	2.02	0.62	0.02	0.30	4 8,

1000

È

A-15.2-7

Total imn		Q	0.35	C 2		0.35	Q	QZ	0.11	CZ	2 4	P	Q	Q	Q	0.23	0.2		P	0.18	Q	0.35	
•		2	Q			Q	Q	QN	Q	Z	<u>)</u>	QN	Q	Q	Q	Q	C Z	2	R	g	Ð	CZ	
	AS	Q	ÛZ		ž	Q	Q	Q	Q			Q	Q	Q	Q	2	2 C	2 !	CN N	Q	g	CN	1
-	δĻ	oz	CZ		S	Q	Q	QN	C N		ב	0 Z	Q	QN	S	Z			g	Q	Q	CN	2
·	Mn	QN	Q	2	n Z	QN	QN	Z			N	QN	Q	QN				אַר	2	Q	Q2		
	ບັ	QZ	Ç		0 Z	Q	QN				n Z	QZ	CN					R	Q	Q	QN		DZ DZ
·	B	C Z		צר	<u>0</u>	Q		Ę	24	2 I	Q	Q	Ş				2	S	OZ	C	e C		
	С		2 9	n	Q	0.2			<u>S</u>	N	2	ÛN				2		Q	QN			2 9	2 Z
	E. coli		<u>4</u> {	0 <u>-</u>	50	60		001		16	20	40	2 -	t (04	201	Ī	1 0	33			2001	80
Total	coliform	Ļ	5	200	140	160		2400	210	50	40	36	88	2	110	240	40	40	72	4 7 4		nntz.	140
	UN ON	4		<10 ¹	<10 ⁴		214	. 0l>	<10 ¹	<10 ¹	<104			~10 ~	<10 10	₹ 10 1	√10 ¹	<101 <	-011			012	<104
	۵0 ²⁻	•	1.30	1.10	1 70		NZ.F	1.30	1.20	1.60	40.		0/1	1.50	1.20	1.40	1.40	1 20		05.1	0.90	1.50	1.50
	0,0000	Sample	WON1.1	W0/N/1.2		MUNZ.	WQ/N/2.2	WQ/N/3.1	WQ/N/3.2	WQ/N/4.1	C FINON	2-4-N/D/M	WQ/N/5.1	WQ/N/5.2	WQ/N/6.1	WQ/N/6.2	WON7.1	ADMON 2	T INTOM	WQ/N/8.1	WQ/N/8.2	WQ/N/9.1	WQ/N/9.2

Table 2. Raw water quality data - Nuwara-Eilya district (Surface intakes) continued

Table 3. Raw water quality data - Nuwara-Eliya district (Ground water sources)	rater qualit	y data - N	uwara-Eliya di	istrict (Gro	und water s	ources)								
				Ċ	conductivit			Total						Total
	T air	T water	Turbidity	, Ha	y	TDS	ū	alkalinity Fre	Free NH ₃	N03	NO ₂	LL.		hardness
Saniple			61 1 61 1	60	177.0		2.19	106.0	0.24	1.78	0.08	0.04	4.93	40.0
	0.5		36.5	7.2	186.0		1.62	109.0	0.09	2.47	0,12	0.04	9.02	81.0
	0.0 7 7		43.3	7.4	220.0	110.0	1.58	142.0	0.19	2.54	0.09	0.05	3.11	106.0
	0.00	1 0	7.20	6.8	250.0		1.29	168.0	0.08	1.74	0.09	0.04	2.50	128.0
	46.0		22.40	7.1	250.0		1.62	165.0	0.04	1.48	0.08	0.02	9.45	123.0
WOW 11.2	23.0	404	1.33	6.8	260.0		1.25	170.0	0.11	4.26	0.09	0.04	3.77	128.0
	22.0	16.0	1 45	6.8	103.0	· .	1.62	81.0	D Z	2.72	0.18	0.03	2.73	. 55.0
WOW12 2	16.5	16.7	1.28	6.9	99.0	÷	1.81	54.0	0.07	4.26	0.09	0.02	6.21	43.0
MON/123	24.0	16.5	0.96	6.0	99.0		1.58	57.0	0.10	3.06	0.12	0.07	2.08	40.0
NOM13 1	0 6 1	17.0	2.18	5.8	176.0		15.49	11.0	0.13	00.6	0.12	0.06	3.47	60.U
		5 F	- -	5.5	176.0		26.91	12.0	0.07	7.41	0.10	0.04	5.77	53.0
W.0113.2	2 - C	174	0.54	4.9	180.0		25.11	12.0	0.16	8.74	0.11	0.05	1.94	54.0
WCN 19.9	0.00		2.34	7.8	260.0		2.04	171.0	0.07	2.78	0.09	0.04	1.44	128.0
	10.0	24.0	6.90	7.5	260.0		1.81	169.0	0.01	3.59	0.57	0.04	8.20	128.0
		0 U C	1.57	7.0	250.0	£.,	1.54	166.0	0.21	3.30	0.54	0.05	2.91	124.0
WOW 14.5	n 0 7 7	1.01 1.01 1.01	775.0	2.5	1000.0		1.58	373.0	2.75	97.12	14.2	0.04	4.40	275.0
WOW 15.1	5 K	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120.0	7.0	1020.0	· 🛨	24.00	391.0	0.16	32.17	2.06	0.02	3.45	294.0
AND ALLES			800.0	6.3	1000.0	· • ·	00.00	301.0	4.45	42.13	2.26	0.02	2.66	184.0
NOAVE 13.3	0.01	18.0	11.5	5.0	37.0		2.24	7.9	0.19	2.44	60.0	0.02	4.63	00 4
WONDE 2	0.61	18.5	22.5	5.8	29.0		1.54	9.7	0.27	3.88	0.09	0.02	5.11	4.7
VICINI 10.2	17.5	18.2	4	5.7	42.0		2.57	14.5	0.62	3.83	0.09	0.03	2.96	5.7
		1 C C	00 60	7.4	198.0		3.16	115.0	0.20	4.68	0.16	0.04	4.32	87.0
	2.0	17.0	0.50	7.0	200.0		3.16	110.0	0.06	6.48	0.09	0.04	5,69	91.0
		0.71	7 10	6.3	220.0		2.57	122.0	0.16	5.44	0.1	0.03	3.11	92.0
	2 4 4 7 4 7	0.74	0.2	6.2	49.8		2.63	27.3	0.04	4.28	60.0	0.17	0.32	20.8
W0/N/19	16.0	17.3	5.0	9.4	230.000		2.19	150.7	0.05	2.38	0.09	0.18	0.68	115.1
	1					•								

A-15.2-9

	Total iron	5.19	5.14	1.27	0.35	0.72	Q	Q	1.05	Q	1.65	0.50	0.24	0.29	0.44	Q	10.20	418.50	342.00	1.98	0.90	2.72	0.56	0.57	0.20	Q	Q Z	
	đ	Q	9	Q	Q	Ð	0 2	Q	Q	Q	Q	0 Z	Q Z	Q	g	Q	Q	QN	Q	Q	Q	Q	Q	Q	Q	Q	QN	
	As	QN	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	QN	QN	Q	Q	Q	Q	Q	QN	QN	QN	Q	Q	QN	Q	
	БН	QN	Q	Q	Q	Q	ND	QN	Q	Q	Q	Ŋ	Q	Q	Q	Q	Q	Q	Q	Q	Q	QN	Q	QN	2	Q	QN	
	Mn	0.40	0.33	0.07	Q	Q	QN	0.47	QN	Q	Q	Q	0.15	QN	Q	Q	1.62	9.33	7.93	0.07	0.13	0.07	Q	Q	0.05	QN	Q	
·	ັບ	Q	Q	Q	Q	Q	QN	QN	Q	Q	Q	QN	Q	QN	Q	Q	Q	1.34	0.94	Q	Q	Q	Q	2	Q	QN	Q	
	8	QN	QN	2	Q	Q	Q	QN	QN	Q	Q	Q	Ð	Q	Q	Q	Ð	Ð	Q	0.03	QN	Q	Q	Q	Q	Q	P	
•	วิ	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Ð	Q	Q	g	0.54	0.45	Q	0.08	Q	Q	Q	Q	Q	Q	
	E. coli	10	32	20	ĨZ	ą	10	10	40	20	EN	nil	lin	30	60	20	40	20	30	ĨŽ	P	10	Nil N	60	40	N	ĨZ	
Total	coliform	140	140	72	40	20	40	06	72	20	ĨZ	in Lin	lic	110	140	6	100	72	09	20	50	40	60	110	72	50	50	•
	CN.	<104	<104	<104	<104	<104	<104	<104	<104	<10⁴	<104	<10 ¹	<104	<104	<10⁴	<104	<104	<104	<10 ⁴	<104	<104	<104	<104	<104	<104	<104	<104	
	so4 ²⁻	2.11	2.62	2.12	1.85	1.65	3.78	1.45	3.29	5.28	7.04	3.04	8.83	2.45	3.37	2.95	2.75	3.58	1.75	1.61	2.37	2.65	1.78	1.12	3.02	2.18	1.97	
	Sample	WQ/N/10.1	WQ/N/10.2	WO/N/10.3	WQ/N11.1	WQ/N/11.2	WQ/N/11.3	W0/N/12.1	WQ/N/12.2	WQ/N/12.3	WQ/N/13.1	WQ/N/13.2	WQ/N/13.3	WQ/N/14.1	WON14.2	WO/N/14.3	WQ/N/15.1	WQ/N/15.2	WQ/N/15.3	WQ/N/16.1	WQ/N/16.2	WQ/N/16.3	WQ/N/17.1	WQ/N/17.2	WQ/N/17.3	WO/N/18	WQ/N/19	

Table 3. Raw water quality data - Nuwara-Eliya district (Ground water sources)continued

A-15.2-10

Sample points :

Kandy

1. Gatambe 2. Polgolla 3. Mahaweli river at Gohagoda

Nuwara - Eliya

Surface intakes

- 1. Bambarakelle
 - 2. Shanthipura
- 3. Pedro intake
- 4. Water field New 5. Water field - Old
 - - 6. Piyatissapura
- 7. Brewery intake
- 8. Gemunu Mawatha
- 9. Lovers slip

Ground water sources

10. Hill Club

11. Race Course bore hole

12. Upper Lake Road B.H.

13. Galway Forest Lodge

4. Interfashion

Palledium Hotel

16. Golf Club

7. Celon Brewery

19. New bore hole near golf ground 18. Galway new bore hole

WQ/N/12	Upper lake road bore hole
WQ/N/13	Galway forest bore hole
WQ/N/14	Interfashion bore hole
WQ/N/15	Palladium bore hole
WQ/N/16	Golf club bore hole
WQ/N/17	Brewery bore hole
WQ/N/18	Galway new bore hole
WQ/N/19	New bore hole near golf ground

The last two bore holes WQ/N/18 and WQ/N/19 are the newly dug wells and samples were collected once at the time they were dug and these data are also provided in the table for water quality (Nuwara-Eliya district)

2. Sewage quality survey

The location of sample collection and the key to sample numbers are given below:

Kandy K/1. High income house - Domestic sewage

K/2 Middle income house - Domestic sewage

K/3. Low income house - Domestic sewage

K/4. Hantana scheme - Before treatment

K/5. Office sewage - Education office, Kandy

K/6. High Income house- effluent from septic tank

K/7. Middle income house - Effluent from septic tank

K/8. Low income house - Effluent from septic tank

K/9 University office - Effluent from septic tank

K/10. Hantana scheme - After treatment

K/11. Hotel with treatment facility - Swiss Hotel Influent

K/12. Hotel with treatment facility - Swiss Hotel Effluent

K/13. Hotel (without treatment facility) Riverdale grey water

K/14. Industrial waste water - Chocolate company(before treatment

K/15. Industrial waste water - Chocolate company(after treatment)

K/16. Industrial waste water - Sun match company*

K/17. Hospital sewage - Peradeniya teaching hospital - Before treatment

K/18. Hospital sewage - Peradeniya teaching hospital - After treatment

K/19. Sewage effluent from the Gohagoda garbage at the dumping site

K/20. Sewage effluent from Gohagoda at the stream which flows into river just before entry into river

*Only one sample was collected from point 16 (Sun match company) since the effluent is discharged only at 3.00 p.m. from the factory.

Nuwara-Eliya N/1. Domestic sewage (middle income)

N/2. Domestic sewage (low income)

N/3 Domestic sewage (Ceybank hotel)

N/4. Municipality – Nuwara Eliya (office sewage)

N/5. Local eating house (domestic sewage)

N/6 Domestic sewage- hotel without treatment- Windsor hotel

N/7 Effluent from septic tank (middle income house)

N/8. Effluent from septic tank (Cey Bank Rest)

N/9 Effluent from septic tank (slum house)

N/10. Effluent from septic tank (municipality)

N/11.Hotel (with treatment facility) - before treatment (Grand Hotel)

N/12. Hotel (with treatment facility) - after treatment (Grand Hotel)

N/13. Industrial wastewater - drain (Ceylon Brewery)

N/14. Industrial wastewater - effluent after treatment (Ceylon Brewery)

N/15. Hospital sewage

N/16. Tea factory effluent

The analytical results are given in tables 4 & 5. The pH of the sewage samples were generally higher than 7.0 and hence within tolerance limits for disposal. Several had high sulphate contents (K/3,K/11,K/12,K/7,K/16). Contamination from chloride is very high in Suisse hotel influent (K/11), and those from K/16,K/19 and K/20. Phosphates may be high in sewege samples due to increased use of detergents for washing dishes etc. while the treatment appears to reduce this concentration. Among heavy metals, only zinc appears in almost all samples while cadmium is present in the sample K/11 (Riverdale grey water) and K/13 (Sun match company). Zinc probably originates in the galvanised tubing used in most sewage disposal systems.

The sewage effluent from the Gohagoda dumping site is quite dark in colour with a lot of dissolved solids (K/19 & K/20) and also had high Zinc. It also high chloride content. Sample SQ/N/8 (effluent from septic tank at Ceybank Rest) showed very high chloride & phosphate values while industrial waste water from the drain (Brewery) showed high sulphate content perhaps coming from the alum used for the treatment process.

The sample SQ/K/3.1 showing very high values for COD,SS and TDS and total nitrogen is owing to the fact that this particular sample when collected had a lot of suspended solids (taken early morning from the slums area housing scheme). This is the time that the cattle-sheds are washed and the water is highly turbid and contaminated with the excreta and cow-dung. The other two samples had less of all these parameters since only routine washing of dishes was involved at other times when the samples were collected.

3. River water quality

Т

The locations of sample collection and the keys to sample numbers is given below.

0.49 0.42 ii. coli Total oliforr 17×10⁵ 18×10⁵ 24×10⁵ 24×10⁵ 88×10⁵ 88×10⁵ 32×10⁴ 32×10⁴ 18×10⁴ 22×10⁴ 18×10⁴ 18×10⁴ 22×10⁴ 18×10⁴ 118×10⁴ 118×10⁴ 118×10⁴ 118×10⁴ 22×10⁴ 12×10⁵ 33×10⁵ 33×10⁵ 33×10⁵ 33×10⁵ 33×10⁵
 1.7

 1.78

 1.78

 1.78

 1.78

 1.78

 1.78

 0.80

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.41

 1.41

 1.41

 1.41

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40

 1.40
 < 2.87 8.90 213.0 186.0 222.0 230.0 270.0 330.0 105.2 29.0 54.5 50.5 50.5 54.6 60.8 58.2 58.2 26.2 26.2 26.2 1-N 34.5 77.0 7.7 15.4 17.9 92.6 86.4 106.1 53.3 S04²⁻ 8.2 7.6 43.8 22.5 7.5 6.3 8.6 10.2 11.2 8.6 12.1 10.9 11.8 33.2 28.8 35.2 25.8 25.8 36.0 36.0 36.0 36.0 7.9 25.1 7.9 25.1 37.2 25.3 37.2 25.8 37.2 25.8 25.8 30.2 25.8 63.1 63.1 $\overline{\mathbf{O}}$ 63.1 50.5 62.6 794.3 524.0 SQ 420 440 380 410 360 2680 386 220 200 150 ŝ 852 260 180 222 940 2361 230 05 Q 353 240 g 360 740 626 20 413 202 575 2866 2200 50 513 524 g 210 220 180 203 236 240 210 92.7 123 70 90 135 120 118 90 132 132 128 124 130 238 12 0 98 8 7.0 ູ ອີ <u>ອ</u>.ດ F 8. 8. 8. 8. 7.0 8 0.0 4.7.7 6.4 8.2 7.6 7.2 4 6.8 6.6 7.2 7.2 6.8 6.5 6.2 6.7 6.4 6.4 6.9 Tsewage 27.8 28.2 27.8 26.9 26.4 24.5 26.0 25.0 25.0 27.1 25.0 25.0 25.0 24.9 25.0 24.9 24.9 24.6 26.2 26.0 24.0 24.5 25.0 25.1 25.0 25.6 25:2 T air 27.5 27.8 27.2 27.2 27.4 26.8 25.0 27.5 27.0 27.5 28.0 27.0 27.0 27.0 26.8 26.4 26.4 26.3 26.0 25.8 26.0 26.1 28.0 27.0 28.5 28.8 27.0 28.4 SQ/K/1.2 SQ/K/1.1 SQ/K/1.3 SQ/K/2.2 SQ/K/2.3 SQ/K/3.2 SQ/K/4.1 SQ/K/4.3 SQ/K/4.10 SQ/K/4.11 SQ/K/4.12 SQ/K/2.1 SQ/K/3.3 Sample SQ/K/3.1 SO/K/4.2 SQ/K/4.4 SQ/K/4.5 SQ/K/4.6 SQ/K/4.8 SQ/K/4.9 SQ/K/4.7 SQ/K/5.1 SQ/W5.2 SQ/K/5.3 SQ/K/6.1 SONV6.2 SQ/K/6.3 SOIK7. SQ/K/7

Table 4. Sewege Quality Survey (Kandy district)

A-15.2-14

		ပိ	Q	Q	Q	Q	Q	Q	Q	Q	QN	Q	0 Z	Q	QN	Q	Q	0 2	Q	Q	Q	9	0 Z	Q	Q	ð	Q	Q	Q	02	9 Z
		чŊ	0.46	1.20	0.17	0.03	0.02	0.02	Q	0.1	0.09	Q	0.07	0.17	0.03	0.07	0.07	0.54	0.07	0.13	0.17	0.14	0.1	0.06	0.1	0.37	0.30	0.57	0.03	0.05	0.06
		ß	Q	Q	Q	Q	Q	Q	Q	QN	QN	0 Z	Q	Q	Q	Q	Q	Q	Q	Q	Q	0 N	Q	Q	Q	Q	QN	Q	Q	Q	Q
		As	QN	Q	Q	Q	Q	g	Q	Q	Q	Q	Q	Ð	Q	Q	QN	Q	Q	0.902	Q	Q	Q	Q	R	Q	Q	Q	Q	Q	Q
		ш S	28×10 ⁵	16×10 ³	78	20×10 ⁴	18×10 ⁴	16×10 ⁴	42×10 ²	32x10 ²	30×10 ²	10×10 ²	12x10 ²	8×10 ²	22×10 ²	20×10 ²	18×10 ²	<10	<10	<10	3×10 ⁶	3x10 ⁶	4×10 ⁵	2x10 ⁵	3x10 ⁵	2x10 ⁵	2x105	1200	140	100	100
	Total	coliform	28×10 ⁵	16×10 ³	110	30x10 ⁴	28×10 ⁴	24×10 ⁴	76x10 ²	60x10 ²	62x10 ²	30x10 ²	32x10 ²	34x10 ²	30×10 ³	28×10 ³	32×10 ³	18×10 ³	12×10 ³	130	48×10 ⁶	40×10 ⁶	42x10 ⁶	18×10 ⁶	16x10 ⁶	14×10 ⁶	45×10 ⁴	4500	3000	2500	2500
		ч <u></u> -г	20.50	7.08	2.28	11.89	8.31	12.20	19.05	10.58	15.34	10.35	25.89	18.75	14.32	11.44	11.44	17.70	5.40	13.00	11.17	6.13	8.66	7.67	4.74	15.52	8.15	8.00	7.46	7.46	5.75
		N-⊢	60.8	85.5	16.9	31.0	26.8	24.0	30.1	13.9	36.6	30.0	20.6	37.1	61.0	20.7	33.0	63.2	31.1	63.4	39.4	44.3	15.4	23.1	19.5	19.0	223.1	174.2	29.9	10.3	43.1
		S04 ²⁻																													
		ū																													
		TDS																													
ţ				·				280																	180					660	
ríci) cor		COD	580	1716	¢	65	57	ø	462	227	121	97	32	777	57	33	97	976	219	202	113	251	48					5	24	24	97
ndv dist		BOD	86	20	43	4 1	53														10.2						•		12.8	7.7	220
rev (Ka		Ha.	6.8	6.2	6.6	7.5	7.6	7.5													6.4	÷		~		5.9					
uality Sun	•	Tsewage	26.3	24.5	26.0	26.0	27.7	25.5	26.0	26.5	26.5	27.0	27.0	27.5	25.5	25.5	25.0	29.5	29.5	27.2	24.0	26.0	25.0	24.0							
wage Q	5	Tair	26.8	28.5	28.0	27.5	28.0	27.0	27.5	28.0	27.0	27.5	28.0	27.0	25.0	27.5	27.0	30.0	31.0	29.5	26.0	28.0	27.0	26.0	28.0	27.0	33.0	33.0	25.0	28.0	27. <u>0</u>
Table 4. Sewage Quality Survey (Kandy district) contd		Sample	SQ/K/7.3	SQ/K/8.1	SQ/K/9.1	SQ/K/10.1	SQ/K/10.2	-						~			ല്					~ .				ς.				Ņ	SQ/K/21.3
							,								A	-15	.2-1	15			÷.										

Sampling points

1. High Income house - domestic sewege 2. Middle income house- domestic sewege

3. Low income house - domestic sewege

Hantana scheme- beforte treatment

5.Education office

High Income house- effluent from septic tank
 Middle income house -effluent from septic tank
 Low income house- effluent from septic tank
 Low income house- effluent from septic tank
 University office -effluent from septic tank
 University office -effluent from septic tank
 Lotel with treatment facility -Suisse hotel influent
 Hotel with treatment plant Suisse hotel -effluent
 Hotel without treatment facility - Riverdale grey water
 Industrial waste water-Chocolate company before treatment

I6.Industrial waste water -Sun match company
 Hospital sewege- Peradeniya hospital- before treatment
 Hospital sewege- Peradeniya hospital - after treatment
 Sewage effluent from Gohagoda at the dumping site
 Sewage effluent from Gohagoda at the stream which flows
 I0. Sewage effluent from Gohagoda at the stream which flows
 NWSDB

5. Industrial waste water- Chocolate factory after treatment

survey(Nuw	Table 5. Sewage Quality survey(Nuwara-Eliya district)	rict)						Total					
BOD COD	0	SS	TDS	Ū	s04 ²⁻	2-1	d-L	coliform	E coli	As	B	Zn	წ
90.2 510.	***	220	250	30.2	Q	31.6	7.47	23×10 ⁶	<10	Q	0 Z	0.12	g
275.2 866.3		210	270	239.0	13.6	50.8	13.01	.23×10 ⁶	<10 <10	Q	Q	0,14	2
		170	410	193.0	6.9	38.2	18.66	18×10°	، 10	Q	Q	0.02	2
1.1		82	240	6.7	52.8	78.5	5.58	11×10°	2×10°	Q Z	Q Z	0.09	
		67	250	33.9	53.8	23.0	10.33	9x10'	، کرام	Q	0 Z	0.06	2
11		50	350	37.2	55.3	44.7	7.49	11×10°	2X10°	Q	Q	0.08	
÷ .		150	253	7.1	12	52.2	7.97	130×10 ³	<10 <10	Q	Q	0.08	2
		70	225	7.9	1.3	25.1	7.92	90×10 ³	<10	Q	Q	0.06	g
		30	190	6.8	1.9	62.4	10.31	100×10 ³		D Z	Q	0.06	2
		80	160	50.1	2.8	15.3	5.80	300x10 ²	200×10 ⁴	9	Q	0.05	Q Z
	·	70	180	10.9	4.6	72.4	10.98	250x10 ²	180×10 [°]	Q	Q	0.04	2
		60	240	53.7	10.6	28.6	12.50	320x10 ²	200×10 ⁴	Q	g	0.44	2 Z
		336	350	166.0	17.5	74.5	7.54	13x10 [°]	49x10 [°]	Q	Q	0.28	2
		148	93	14.4	9.9	21.7	7.84	33×10 ⁵	26x10 ³	Q	Q	2	2
120 540		210	420	156.0	24.2	54.2	11.80	5×10 ⁶	5×10°	Q	Ω Z	0.22	99
		180	430	128.0	20.2	50.8	10.20	5x10 [°]	5X10 [°]		g g	0.18	2 9
		200	520	148.2	23.8	62.0	12.80	4×10 [°]	4x10 [°]			0.16	2
		350	510	299.0	21.8	69.9	21.54	11×10°	11×10°			77.0	<u>ב</u>
		350	470	162.0	30.6	44.2	20.05	10×10°	10×10°			0.14	2 g
		320	430	229.0	30.9	33.1	21.39	8x10°	8x10 [°]	z		0.07	
		220	310	120.0	16.2	61.8	18.60	14×10'	14×10°	Q.	2	0.12	2
		178	382	110.6	20.4	58.6	17.40	12×10'	12x10°	Q	D Z	0.14	
		148	412	100.8	18.6	65.6	18.20	16×10 ³	16×10'	Q	Q Z	0.12	9 Z
		82	190	100.6	10.2	80.4	6.80	17×10°	11×10°	Q	Q	0.22	Q
		104	160	120.4	11.5	86.8	7.20	13×10 ⁶	10×10°	g	Q	0.2	g
		120	182	110.5	10.8	75.8	5.80	18×10°	10×10°	Q	0 Z	0.14	2
		10	197	79.4	6.2	83.5	14.29	94×10 ²	94×10 ²	Q	Q	0.07	2
		10	230	44.7	4.2	31.1	12.43	82×10 ²	80×10 ⁴	Q Z	2	0.08	2
		50	220	33.9	10.5	83.5	16.11	86×10 ²	86×10 ⁺	Q	02	0.07	

A-15.2-17

.

۲

	ວິ :	2	Q 9	2 !	2	2 !	2 S	2	Q Z	Q	2	2	Ð	2 Z	2									ashion										
·	Z Z	0,04	0.04	0.06	0.51	0.27	0.34	0.09	0.19	0.19	0.05	0.06	0.09	0.82	0.19								ment	17.Factory effluent -Interfashion										
·	8	Q I	Q	Q	Q	02	Q Z	0 Z	g	Q	0 Z	Q	Q	Q	Q							Ĩ	16. Lea Factory emident	iny effluei										
	As	Q	Q Z	Q	Q [´]	9	ð	9	2	Q	ON.	Q	Q	Q	QN			•				.	15. lea	17.Facto	·									
	E. coli	¥10	<to>10</to>	√10	<10	01×	~10 ^1	<10	<10	010 V	2×10°	2x10°	2x10 ⁶	<10 10	18×10 ²																			
Total	coliform	6.8×10 ⁴	6.4×10 ²	5.2x10 ²	23×10 ²	18×10 ⁴	26×10 ²	17×10 ³	12×10 ³	18×10 ³	79×10 ⁶	82×10 ⁶	86×10 ⁶	10	35×10 ⁴										-									
	<u>а</u> -	13.80	12.10	8.82	6.05	9.74	9.33	22.51	13.30	15.26	6.82	16.98	10.17	4.67	4.77									6. Domestic sewage - hotel without treatment facility- Windsor hote			•		atment	tment		water- effluent after treatment (Ceylon Brewery)	•	
	N-	36.6	22.0	27.1	29.6	32.1	42.7	31.1	28.0	6.9.9	44.2	31.1	44.1	29.1	31.3			,	•					icility- Wi	se)	•	÷		Before treatment	nent facility - Grand Hotel After treatment	። ጉ	ent (Ceylo		
	so4	15.3	14.4	15.6	1.79	89.4	8.1	29.4	28.8	7.8	1.6	1.6	1.7	0.3	0.5								•	atment fa	7. Effluent from septic tank (Middle income house)	est)	e)	lity)	stel	Hotel A	water- drain (Ceylon Brewery)	r treatme		
	ū	25.1	32.4	15.8	6.3	3.1	5.0	16.2	16.2	7.4	14.1	53.7	44	5.0	19.9			(omos			hote()		•	hout trea	ddle inc	sybank	im hous	nunicipa	- Grand	- Grand	n (Ceylo	ent afte		÷
d.	TDS	80	180	60	1090	160	120	1322	896	1332	180	240	340	62	346			Middle income		(LOW INCOME)	e (ceybank hotel)	inicipality	- 1	iotel with	tank (Mi	8. Effluent from septic tank (Ceybank rest	Effluent from septic tank (slum house)	10. Effluent from septic tank (municipality)	nent facility - Grand Hotel	t facility	ter-drain	ter- efflu	· · ·	
ict) cont	SS	20	30	10	3300	370	196	2556	1186	2545	06	110	180	37	427	•				vage (Li			house	vage - h	septic 1	septic 1	i septic t	n septic	eatmen	eatmen			vage	
iya distr	COD	57	49	97	980.7	1174	57	820.1	712	777	49	49	74	372.4	170	·			1. Domestic sewage	2. Domestic sewage	3. Domestic sewag	4. Office sewege-Mi	5. Local eating house	estic ser	ent from	ent from	ent from	uent fro	1. Hotel with treatr	1. Hotel with treatr	3. Industrial waste	14. Industrial waste	Hospital sewage	
wara-El	BOD	125	65	25	63	13	80	298	190	288	37	L.		60.2	100.2				1. DOM	2. Dom	3. Dom	4.Office	5. Loca	6. Dom	7. Efflui	8. Efflu	9. Efflu	10, Effi	11. Hot	11. Hot	13. Indu	14. Indu	15. Hos	
/ey (Nu	H	6.8	6.8	6.8	2.9	3.7	6.2	6.5	6.9	6.9	6.2	74	. u	0	7.3		•	i	Ellya		:	•	•	•			•							
lality sun	Tsewage	21.0	21.5	20.5	21.5	18.0	20.0	25.0	25.0	24.0	17.0	17.5			23.2		•	÷	Nuwara - Eliya							•				•				
vege Qi	Tair	19.5	17.0	17.0	22.5	17.0	17.0	22.5	17.0	17.0	0 00			0.11 7. AC	210			3				ал А. А.	۰.							•	•		* .	
Table 5. Sewege Quality survey (Nuwara-Eliya district) contd	Sample	SQ/N/12.1	SQ/N/12.2	SO/N/12.3	SOM/13.1	SO/N/13.2	SO/N/13.3	SO/N/14 1	SOM/14 2	SON/143	50/N/15 1	SOM15 2	0.0111-0-0	SOM/15.3	SO/N/17		Comple min	silling and line									- - -	•				2	· . · · · ·	

A-15.2-18

.

Kandy:

Kandy:	RWQ/K/1	Gangawata Korale- near University Gymnasium
	RWQ/K/2	Intake point of Kandy water treatment plant
	RWQ/K/3	Katugastota district (Pinga oya near meda-ela bridge)
	RWQ/K/4	Polgolla dam site intake
	RWQ/K/5	Stream near Polgolla University
	RWQ/K/6	Kundasale intake
	RWQ/K/7	Meda Ela
	RWQ/K/8	Down stream of the Gohagoda dumping site
Nuwara-El	liya	
	RWQ/N/1	Upstream of city's borders
	RWQ/N/2	Victoria park
	RWQ/N/3	Influent point to Gregory lake
	RWQ/N/4	Upstream of Hospital and Brewery
	RWQ/N/5	Influent point to Barrack's plain reservoir

The analytical data for samples are given in tables 6 & 7. The samples were most of the times brownish and muddy showing an increase in suspended solids and sometimes even high total dissolved solids during this season compared to the previous dry season data. The samples taken from Meda Ela which is a highly polluted canal show increased nitrate, sulphate, coliforms, suspended solids, etc. Dissolved oxygen was also very low for these samples.

Those samples collected from Nuwara Eliya were highly contaminated compared to Kandy samples. In particular, those samples collected at the influx point to Barracks Plain reservoir had very little dissolved oxygen with relatively high pH values. Also RWQ/N/4 and RWQ/N/5 showed high suspended and dissolved solids, high total nitrogen and high BOD values. These samples also had high COD values indicating increased contamination from organic wastes. This can be easily explained since sewage from the hospital, factories and even households are directly added to the stream feeding the Barracks Plain reservoir. There is also intensive agricultural activities and a lot of houses dumping septic tank wastes direct into this stream which explains the abnormal values for COD, SS, TDS and chloride for sample N/4.1. However apart from zinc which probably originate from rusting galvanized iron, heavy metal contamination is virtually non-existent.

It is also clear that the sample RWQ/N/3at the Victoria Park is highly contaminated due to coliforms and E. coli compared to RWQ/N/1 and RWQ/N/2. This is due to increased faecal contamination from human activity in the city.

Out of the Kandy samples RWQ/K/3 and RWQ/K/7 are those collected from Pinga-Oya and Meda-Ela and these are highly polluted streams which feed the Mahaweli river and this is the cause of their high level of contamination. The sample collected

•	8	7.5	7.4	4.3) (- 	ч ч ~ г	4,	7.9	4.8	3.4	3.8	6.4	7.0	6.4	4.5	4.6	3,8	76	- t-) (-		3.0	8.0	0.3	7.6	+ •	
	BOD	3.7	4.2	(C (C) * L	- •	1:2	1.7	4.7	4.7	4,2	4.7	3,2	4.2	6.4	×4.2	3.2	5	1 F- 0	- r ; r) 	1.1	7.8	8.2	, C	!	
	Condu	67.8	C 67	10	5		50.9	53.3	126.0	145.0	116.0	58.4	58.0	58.4	260.0	260.0	260.0	1. 5. 7. 7.				400.0	540.0	450.0	110.8) 	
	ပိ	Q	C Z		<u></u>	2 Z	Q	Q	Q	QZ	QN	C Z	2	Ż		ŝ						Q	Q	Q	C	2	
	uZ	0.02				20.0	Q	Q	0.02	Q	Q	0 14	CN S	Ş		5					Z	g	0.21	0.21		5	
	As	C Z	Ş			g	g	Q	0 Z	Q	Cz								2		Z	g	2	QN.		Š	
	8	C 2			2	Q	ŝ	Q	Q	Q	Ż	Ş									ב	g	Q	CZ	2	5	
	ថ	5 4	o c F c	4 C	5	4	3.5	4.0	6.9	7.1		ο σ	, 4 , 4	2 0	0 1 0				0 1 N 0		2.8	17.8	44.7	33.1		0.1	
	ш. coli	enn.		0001	1200	1100	800	800	G	400	1200				1000				001	1350	100	1200	1100	1000		NU21	
	Total		0027	1 0/L	2400	1800	2200	1300	2002	1200							2200		1300	1900	800	3000	1750	1400.		2600	
	д- Т-		70'0	0.23	0.67	0.62	0.64	0.86				0.00	0.85	0,00	0.80	/0.1	0.78	0.70	0.81	0.93	1.61	0.92			0.80	1.19	
	N-L	0	n n	3.6	8.2	11.0	6	u v	- 4 5 C	o c v c		N N	ς, ι Γ. ι	<u>0</u> 7	4.0	2 3	<u>, 1</u>	5 12	12.7	7.1	12.8	12.0		- 0 - u	0	6.27	
	so4 ²⁻		7.1	1.6	5	1.8	4		- c	0 0 N 1	າ.	0.0	4	6, i	ນ. ເ	4	1.6	1.7	2.4	6.2	4.1	5		2.0	4 ,0	1,5	
~	TDS		34.3	24.6	25.5	28.5	25.5	200	×0.1	0.00	7.7	58.0	29.1	28.9	29.3	130.0	130.0	129.0	26.8	28.2	27.3			0.07	20.0	143.0	
district	SS		60				- a						20							120	130				30.2	113 1	•
(Kandy)	8.1	8. 1	8.1	¢	- C 4	10.4	32.4	32.4	24.3	4	8.1	8.1	16.2	8.1	16.2	32.4	8.1	8.1	с Т	007	40°0	32.4	24.3	16.8	
Survey	Ţ	ī.	5.4	5,4	5.7	2 2) • 5 L	0 i 4 i	5.C	6.2	5.2	5.2	5.1	5.2	5.0	5.4	5.4	5.6	5.0	5.0	202		0 4	5.6	5.6	7.4	
Table 6 River Water Quality Survey (Kandy district)	water	March	23.6	23.7	24.3	0000	5 F 4	23.1	23.9	25.4	27.3	26.2	25.0	24.1	23.6	26.3	26.5	26.1	26.6	26.0	C FC	D. 1 1 1	Z9.1	26.1	25.2	24.2	۰.
r Water	L L L		23.1	24.6	23.0		24.0	26.4	23.7									26.0	26.4	27.1	5	4.07 4.0	25.0	26.0	24.5	33.0	
5 River			RWQ/K/1.1															· · ·		-		-	RWQ/K/7.1	RWQ/K/7.2	RWO/K/7.3		
Table		Sample	RWQ	0MA	DVIO/K/13		RWU/NZ.	RWO/K/2.2	RWO	RWO/K/3.1	RWQ	RWO	RWQ/K/4.1	RWQ	RWO	RWD	RWQ/K/5.2	RW0/K/5.3	RWO/K/6.1	C M A			RWO	RWQ	RWO	RWQ/K/8.1	•

River water quality Sample points

Gymnasium
 Gatambe intake

Kandy

3. Pinga-Oya

4. Doragamuwa junction

5. Open University - Polgolla

6. Kundasale

7. Meda ela 8. After Gohagoda intake

A-15.2-20

	00	7.9	8.4	1	1.1	ດ ດີ	ب 1-	3.5	v M		, 5, 1	4.0	4 5		う う	3.7	000	1	<u>თ</u>	47	ŕ
	BOD	0.6	0.5		c.0	6.8	3.7	25.7		·	3.2	21.7	25.2		18.7	25.2	08.0	1.04	28.5	547	4
Condu	ctivity	15.3	12.3		17./	53.0	62.0	76.0	000	0.00	70.0	84.0	126 O		144,0	116.0	¥ au	1.00	58.0	52.4	+.00
	ပိ	g	C		R	g	Q	Q		Z	Q	g	Cz	2	Z	0 Z	Ç	2	2		2
	Zn	0.19	0.21		0.03	0.05	0.07	0.39		9 5 0	0.02	0.43	0 01		0.10	0.69		0.40	0.15	200	c7.0
	As	0 Z	C	2	R	g	0 Z			Ż	0 Z	0 Z	Ç	2	D Z	0 Z	Ş	Z	Q	Ş	Z
	8	QZ		2	Q	Q	Q	C Z		2	Q	Q		2	Q	Q	2		Q	2	Z
	ū	68	- -		5.9	15.8	10.9	17.8		11.2	12.3	15.8	0 90	202	26.9	20		22.9	46.8		20.9
	E Coli	Ĩ	Ş	N,	40	60	20	20°	2	600	1180	760		2	30	10	2 9	0	1000		650
	tal colifor	70		001	120	150	20			2400	3000	0000		540	210	110		120	4500		1000
•	۲ ۲	2 01		5.4	7.16	6.98	2 73		00.01	3.40	6.26	10.86	20.00	ă ă	6.46	7 03	2	741	646		4.60
	N-L	1 27		JC	13.36	13 36	3 20	0.00	00.0	0.59	1 30	20.08		ິ /ກິດ	3.60	5 A 1	5	20.08	4 OD)	1.94
	so,²-																	-			
	TDS		ŧ.	28	44	5	3 r	- 6	20	13	83	3		7	121	10	2	290	144	ł	310
	SS:) (1	203	33				20	30	120		5	46	380		070	220	000	200	591
			40.0	218.6	121			7.0	291.4	¢	40 F		0000	810	307.6		202.4	60.7	0 0 1	100.0	121.4
	Ţ	2.0	0	9.9	89			0	9.9	63	5 u 5 u		0.0	99	8 9		0	99) L) (0.0	7.3
	water		14.0	14 12	18.0) · · ·	10.0	17.0	1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	2 4	7.0	16.5	17.5	18.7	10	17.0	19.2	į † > c	19.1	18.0
	T air T		20,0	18.0	10.01		20.0	10.5	16.0	16.0			16.5	17.6	u o		15.8	18.0		20.0	16.0
		Sallipo	RWO/N/1.1	RWO/N1.2	DINIONIA 2			RWO/NZ.Z	RWOW2.3			RWU/W3.2	RWOW3.3	RWO/N4.1	C MINOMO		RWO/N4.3	DIAIO/N/5 1		RWO/N5.2	RWQ/N5.3

Nuwara - Eliya 1. Top Pass 2. Victoria Park 3. Gregory Lake 4. Hawa Eliya 5. Vajira Mawatha

A-15.2-21

A.C.N.

Ì

Table 7. River Water Quality (Nuwara-Eliya district)

from a stream near Polgolla (RWQ/K/5) was also polluted which is reflected in the analytical data with high total nitrogen, chloride and BOD.

4. Lake water quality

The location from where samples were collected and the key to samples is given below.

Kandy: LWQ/K/1, LWQ/K/2, LWQ/K/3, LWQ/K/4 Kandy Lake water samples along the length of the Lake on the Temple of the Tooth side (locations shown in the attached map)
 LWQ/K/5, LWQ/K/6, LWQ/K/7, LWQ/K/8 Kandy lake samples along the length of the Lake opposite the Temple of the Tooth side

Gregory lake (near playground)
Gregory lake (middle of the lake -southern end)
Barrack Plains Reservoir (at the beginning)
Barrack Plains Reservoir (end)
Barrack Plains Reservoir (middle)
Barracks Plains Reservoir (middle)
Gregory lake(middle)
Gregory lake(middle)

Note : More samples were collected from the lakes this season compared to the last season since it was felt that two samples collected in the first phase may not be enough to give a representative picture of the entire lake.

The analytical data are given in table 8 & 9.

The Kandy lake is relatively unpolluted compared to Nuwara Eliya lake system as seen in its higher DO values and lower COD values.

However, the total dissolved solids of the Kandy lake samples was relatively high due to more electrolytes dissolved in it and clearer water (less suspended solids). The barracks Plains reservoir which was virtually dry during the first phase was quite full of water at this time of collection.

Nuwara- Eliya lakes in general had high phosphate, high total nitrogen and high sulphate compared to Kandy lake. This is due to leaching of fertilizer residues sprayed on to vegetable plots during the dry season and which gets washed into lakes during the rainy season. The bacteria counts also show significant enhancement in spite of the dilution effects due to rain. This is because a lot of sewege and human waste get washed down with the rain and increase both coliform and E.Coli counts in the reservoirs.

A-15.2-22

1	ច	14.8	12.8	13.6	14.5	11.5	10.8	12.8	11.6	11,8	13.5	12.5	12.8	13.2	13.0	10.2	14.7		i c) 4 1 4	<u>n</u> :	11.5	11.5	12.5	14.6	ን ትቶ) }	
Elec	Con	260.0	250.0	248.0	260.0	230.0	250.0	250.0	276.0	240.0	240.0	244.0	238.0	260.0	250.0	244.0	261.0	250.0			7007	276.0	276.0	260	270	756	27	
	ပိ	ĪŻ	ĪZ	ŧż	ĪZ	Ī	ĪZ	Ī	I.	lin	ĪŽ	ĪZ	IZ	IIN.	ΞZ	z	EN.	2 9			Ī	z	Ī	EZ	Z		191	
	υZ	ΪŻ	ĨŻ	īž	ĒZ	ΗŻ	ΪN	Ī	IN	ž	Ē	ĨŻ	Z	0.96	0.78	0.88	401	0 0 0 1 1	0.0	6.	Ē	ĨŻ	ΞZ	ĒZ	ΞŻ		Z	
	8	IIN	ĨZ	ĒŻ	ĒŽ	ĪŽ	IN	N ii	ĨZ	Nil	EZ	Ĩ	IIZ	ΪŻ	Ż	Ż	EN.		EZ Z	Z	Ī	ĪŻ	ĒŻ	ĒZ	EZ.		IN	
Total	lron	0.06	0.1	0.08	0.23	0.2	0.26	0.64	0.52	0.68	0.32	0.36	0.3	0.25	0.26	50	2.4		67.L	1.28	4 1	1.2	1.2	2 38	1 78		1.00	
	As	ĒŻ	ĪZ	Z	Z	z	ĪZ	Ē	ĨŻ	ΪŻ	liz	ĨŻ	IIN.	Ĩ	ž			Ē	Ē	Ī	Ē	ĪZ	ĨZ	Ē			ZIL	
	Coli	4500	2000	3000	1000	2200	2000	1200	1400	1200	800	1200		1700	1200	1100		00/1	1700	1700	4000	4000	4000	0000	2000		0000	
otal	coliform E																		. 1									
-4	Ŭ						142 3																					•
						1			• •	÷.			•								•					1		
							15.6	÷.,																		1		
	so,2-	6.2	00 40	9 9 9 9			0.1	100	10.0	9	20 20 20 20 20 20 20 20 20 20 20 20 20 2		2 <u>7</u>		o c vi c	7	А 4	3.2	3.8	3.6	4.2	3.2	ία 1	7 C	4	7.4	3.8	
	TDS	63 0	90.0	28.0			20 Y	1 C 1 C	48.0	540			101		10.07	00.00	200	78.0	74.0	85.0	68.0	66.0			40 r 7 d	50.0	60.8	
	SS	σ	; ;	1 5	2 ç	2 4	5 5	4 7	- 4	2	5 8	100	ິດ	2	4 C	2	40	46	49	59	63	78	2 (c - (c) - (c)		0.00	40°.0	46.8	
	BOD	000	i c			ה - כ	0 0 V 0	40	4 C	4 0	1 u 1 u			0-0 0-0	20	2.0	3.4	4	4.8	ი	9	6.5			7.	2.4	1.8	
		374	26.2	1.00		34.0	04.0 • • • •		0 4 1 1				0.04 0.0	40.2	62.8	68. 4	54.8	63.8	66.4	72.8	34.3	16.4		0 1 1 1 1	2.85	68.3	76.2	
•	2 2	2 4			4 0	ວ ເ	o u o c	יים זיית				7.11	10.8	0.11.U	8.4	6.3	8.4 4	9,4	7.8	7.9	11.7	α C F	0 C	7.7	8.3 2.3	8.6 0.5	8.3	
	Ţ	2 a	1 0			2 2	4 0 4 0	7.0	4 0	7 - 0 0	4.0	4 (8.7	8.4	8.6	8.3	8.0	8.4	8.6	8.6	0) - 5 a		4 i	7.8	8.2	80	
• .	Twater	0.00		0.82 20.02	7.87	27.8	29.0	7.07	7.97	0.62	29.0	28.4	29.2	29.2	28.0	29.0	28.0	28.0	29.0	28.5	28.7	102	2.0	797	27.8	29.2	28.6	
÷		-	2 L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.0	28.0	27.5	28.5	28.0	21.5	C 22.5		27.5	28.5	28.0	27.5	28.5	28.0	27.5	28.5	28.0	37 E	, 10C	20.0	28.U	27.5	28.5	28.0	
,					-	÷.,		ς 10.1	· · ·		÷			: <u>`</u>	LWQ/K/5.1	14.00			1		1. L	ŝ.	LWWN'.			N		

Table 8. Lake Water Quality survey- Kandy district

Kandy : 8 points to cover the full area of lake points shown in the attached map

Sample points:

A-15.2-23

Gregory Lake - near the bridge
 Gregory lake - middle
 Barrack plains
 Barrack plains
 Barrack plains
 Barrack plains

There was no significant variation in the Kandy lake samples collected at different locations except for bacterial counts and this is perhaps due to the close proximity to hotels which discharge raw effluent into this waterbody without any treatment.

5. Sludge quality survey

 $\left(\right)$

Samples were collected from both Kandy and Nuwara-Eliya. However there were problems collecting samples during the first survey for this analysis as planned in the schedule of work since septic pits are either permanently sealed or the sludge form septic tanks is regularly cleaned by the municipalities. We were however able to complete the leftover sludge samples from the first survey during this period.

The samples points and the key to samples is given below:

Kandy	SQ/K/1 SQ/K/2	Septic tank sludge-office complex (University) Hospital sludge
	SQ/K/3	Sludge from septic tank- middle income house
Nuwara Eliya	SQ/N/1 SQ/N/2	Sludge from septic tank- middle income house Public toilet

The analytical results are given in table 10. One notable feature is the presence of Zn as a heavy metal in all these samples. Perhaps this originates from the galvanised piping used in plumbing etc. The high phosphate content in domestic sewege may be a reflection of the increased use of phosphate based detergents.

Table 10.Sludge Quality survey (Kandy and Nuwara-Eliya districts)

	Zn mg/kg	0.19	0.67	0.01	0.22	0.12	
	ပိ	EN	Ē	IZ.	Ē	Z	
	8	ΪŻ	ĨN	Ĩ	ĨZ	IIN	
	As	ĨZ	ĨZ	ΞŻ	Nil	EZ.	
•	T-P mg/kg	6.00	13.00	2.35	7.5	8.5	
۲-N	g/kg	8°3	5.38	5.95	8.7	8.1	
	SS mg/g	369.2	385.1	174.3	320.2	14.5 410.4	
•		20.2	30.7	8.6	10.5	14.5	
Water content		462.1	172.2	517.3	547.7	476.2	
-	Tsludge	28.3	28.2	28.3	20.3	20	 Senate Hospital Meewatura
	Tair	28.7	28.6	29.1	7	20.8	litty survey ints: Kandy
		SQ/K/1	SO/K/2	SO/K/3	SO/N/1	SONZ	Sludge quality survey Sample points: Kandy

Nuwara Eliya 1. Sludge from septic tank- middle income house 2. Public toilet

Pirimiphos Methyl y - HCH(Lindane) Heptachlorepoxid Parathion Methyl **Methamidaphos** Monocrotophos Chlorothaloni Chlorpyrifos ⁼enitrothion Dimethoate Endosulfan Quinalphos Carbofuran Profenofos Parameter ermethrin Malathion p'p, DDE oʻp, DDT pʻp, DDT oʻp, DDD pʻp, DDD Parathion Metalaxyl ⁻enthion β-HCH Diazinon a - HCH Propanil 8 - HCH Machlor Atrazine Dieldrin Captan Aldrin

瀫

Annexure 1- Pesticide analysis on water samples

T

	1 :	Ĵ.	tami	natior	{/ 0 // (
Parameter		5			
a-HCH	0.2				
в - нсн	0.4				
y - HCH(Lindane)	0.2				
8 - HCH	0.2				
Aldrin	0.5				÷
Dieldrin	0.5				
Heptachlorepoxide	0.5	•			
Endosultan	0.5				
p'p, DDE	0.5				
o'p, DDT	0.5	2			
p'p, DDT	0.5				
o'p, DDD	0.2				۰.
p'p, DDD	0.5				
Chlorpyrifos	<u></u>		·.		
Dimethoate	ŝ				
Diazinon	2			· · .	
Fenthion	N,	•			
Fenitrothion	M				
Malathion	2				
Monocrotophos	ທ່				
Methamidaphos	S	•			
Parathion	СЧ.				
Parathion Methyl	2				
Pinmiphos Methyl	2				-
Profenofos	2				
Quinalphos	N 1				
Carbofuran	່າ				
Chlorothalonil	Ś				÷
Captan	-	· .			
Metalaxyl	ŝ		:		
Alachior	2	•			
Propanil	2			•	
Atrazine	n (
Permethrin	10				÷

	· ·		Vew
		- <u> </u>	New Park
N2.1 N2.1	UNV3.1 UNV5.1 UNV5.1 UNV6.1 UNV7.1	N012 N12 113 113 113 113 113 113 113 113 113 1	
WQ/K/ WQ/N/	WQ/N/3 WQ/N/5 WQ/N/5 WQ/N/7 WQ/N/8	PUNQWU PUNQWU PUNQWU PUNQWU PUNQWU PUNQWU PUNQWU	WQ/N/1 WQ/N/1 WQ/N/1 Golf gro galway -
	00000000000000000000000000000000000000	2714 2714 2714 2714 2714 2714 2714 2714	SP1/ SP18 SP19 SP20 SP21

Appendix 15.3 Water Quality Survey (Dry Season)

POSTGRADUATE INSTITUTE OF SCIENCE

UNIVERSITY OF PERADENIYA PERADENIYA SRI LANKA

Report on

WATER QUALITY EXAMINATION

In the Kandy and Nuwara-Eliya Districts

Submitted to

JICA study Team, NWSDB,Kandy

By

2200

Prof. O.A.Ileperuma (Project co-ordinator) Department of Chemistry University of Peradeniya Peradeniya, Sri Lanka

July 8,98

r

INTRODUCTION

An agreement was signed between the JICA study team and the Postgraduate Institute of Science, University of Peradeniya in March 1998 for the chemical and biological analysis of water quality of springs, streams, ground water sources, raw sewage, water bodies (rivers and lakes) and sludge. The study area covered the greater Kandy area and the Nuwara Eliya basin. The corresponding collection points are depicted in the attached maps.

Experimental

Samples were collected in cleaned acid washed bottles and sampling was carried out according to accepted methods. Sample preservation depending on the parameter to be analysed was carried out in situ. The general procedures employed for all analytical determinations are those given in "Standard Methods for the Examination of Water and Wastewater" 19th edition (1995) published by the American Public Health Association, Washington, D.C.

The BOD, COD were analysed by standard titrimetric procedures. Cl- & F- were analysed using ion-selective electrodes. Total nitrogen was analysed using the Kjeldhal method and total phosphorus (T-P) using colorimetry (vanadomolybdate method. Cd, Zn and Co were determined using atomic absorption. As was determined by conversion into the hydride and Hg by converting into elemental form by borohydride reduction followed by atomic absorption spectrometry.

Results and Discussion

(I) Raw water quality survey

Results of the raw water quality survey are given in tables 1-6 and the results of the pesticide analysis and their detection limits are given separately in annexure 1. There was total absence of any of the pesticdes generally used in Sri Lanka in any of the water quality samples which were investigated.

The conductivity of ground water sources was high compared to those collected from springs from Nuwara-Eliya. This is probably due to high calcium and magnesium salts as indicated by total alkalinity and hardness. The sulphate contents of these samples were also high. Out of the bore hole wells, those at Upper Lake road, Galway forest and golf club had relatively low mineralization. The free ammonia contents of bore holes of Inter-fashion, golf club & brewery were also high which is perhaps due to the high level of fertilizer application in the surrounding areas. There was no significant variation of the water composition for samples collected from springs over a 24h period indicating little human activity except for the sample at the Water field(new) upstream with respect of these samples. There is also no evidence of pesticide contamination for any of these samples (both spring water & bore holes at Nuwara Eliya). It is also clear that the sample at Water field (new) is contaminated by coliforms indicating human faecal contamination of this source upstream.

It is also clear that the Palladium bore hole water is also highly contaminated as seen in its high bacterial contamination, high iron content, high chloride etc. This is a shallow bore hole present in a highly contaminated area and it is not surprising that its water is highly polluted. The high iron content may arise due to corroding metallic pipes since this bore hole is situated in the heart of the city. Also because of close proximity to septic tanks it exhibits a high level of ammonia. The hill club bore hole has exceptionally high concentrations of minerals as seen from the hardness and conductivity data and the bed rock may be of a dolomitic type.

Survey points and the keys to samples

Raw water quality

KANDY

ð

WQ/K/1	Intake point of Kandy water treatment plant.
WQ/K/2	Polgolla dam intake

NUWARA ELIYA

Surface intakes

WQ/N/ 1	Bambarakele
WQ/N/2	Shanthipura
WQ/N/3	Pedro intake
WQ/N/4	Water field (old)
WQ/N/5	Water field (new)
WQ/N/6	Piyatissapura
WQ/N/7	Brewery falls
WQ/N/8	Gemunupura
WQ/N/9	Lovers leap

Ground water resources

WQ/N/10 Hill club WQ/N/11 Old bore hole

- WQ/N/12 Upper lake road bore hole
- WO/N/13 Galway forest bore hole
- WQ/N/14 Interfashion bore hole
- WQ/N/15 Palladium bore hole
- WO/N/16 Golf club bore hole
- WQ/N/17 Brewery bore hole

2. Sewage quality survey

The location of sample collection and the key to sample numbers are given below:

Kandy K/1. Middle income house - Domestic sewage

K/2. Low income house - Effluent from septic tank

K/3. Low income house - Domestic sewage

K/4. Hantana scheme - Before treatment

K/5. Office sewage - Education office, Kandy

K/6. Middle income house - Effluent from septic tank

K/7. Hantana scheme - After treatment

K/8 NWSDB ***

K/9. Hotel with treatment facility - Swiss Hotel Influent

K/10. Hotel with treatment facility - Swiss Hotel Effluent

K/11. Hotel (without treatment facility) Riverdale grey water

K/12. Industrial waste water - Chocolate company

K/13. Industrial waste water - Sun match company

- K/14. Hospital sewage Peradeniya teaching hospital Before treatment
- K/15. Hospital sewage Peradeniya teaching hospital After treatment

Notes: Sample 12 could not be collected because the company refused entry to Premises.

Only one sample was collected from point 13 (sun match company) since the effluent is discharged only at 3.00 p.m. from the factory.

Nuwara-Eliya N/1. Domestic sewage (middle income) **

N/2. Domestic sewage (low income) *

N/3. Effluent from septic tank (Cey Bank Rest) *

N/4. Hotel (with treatment facility) - before treatment (Grand Hotel)

N/5. Hotel (with treatment facility) - after treatment (Grand Hotel)

N/6. Hotel (without treatment facility)- Cey Bank Rest *

N/7. Industrial wastewater - drain (Ceylon Brewery)

N/8. Industrial wastewater - effluent after treatment (Ceylon Brewery)

N/9. Hospital sewage

N/10. Municipality - NuwaraEliya *

* no flow

** adequate amount of sample was available only once

*** No sample was available to be collected

The analytical results are given in tables 7-9. The pH of the sewage samples were generally higher than 7.0 and hence within tolerance limits for disposal. Several had

high sulphate contents (K/7,K/10,K/13,K/14,K/15,N/7,N/10). Among heavy metals, only zinc appears in almost all samples while cadmium is present in the sample K/11 (riverdale grey water) and K/13 (Sun match company). Zinc probably originates in the galvanised tubing used in most sewage disposal systems.

The bacterial and E.Coli counts for samples N/7 and N/8 are low for a sewage sample since these two samples are from the Brewery (before and after treatment). The relatively low values of bacterial counts observed from hospital sewage may be due to the extensive use of disinfectants at the hospital.

The sample 3.1 showing very high values for COD,SS and TDS is owing to the fact that this particular sample when collected had a lot of suspended solids (taken early morning from the slums area housing scheme). This is the time that the cattle-sheds are washed and the water is highly turbid contaminated with the excreta and cow-dung. The other two samples had less of all these parameters since only routine washing of dishes was involved at other times when the samples were collected.

3. River water quality

The locations of sample collection and the keys to sample numbers is given below.

Kandy:	RWQ/K/1	Gangawata Korale- near University Gymnasium
·	RWQ/K/2	Intake point of Kandy water treatment plant
	RWQ/K/3	Katugastota district (Pinga oya near meda-ela bridge)
	RWQ/K/4	Polgolla dam site intake
	RWQ/K/5	Stream near Polgolla University
	RWQ/K/6	Kundasale intake
	RWQ/K/7	Meda Ela
Nuwara-Eliya	a	
	RWQ/N/1	Upstream of city's borders
	RWQ/N/2	Victoria park
	RWQ/N/3	Influent point to Gregory lake

RWQ/N/4Upstream of Hospital and BreweryRWQ/N/5Influent point to Barrack's plain reservoirThe analytical data for samples are given in tables 10-11. These samples showincreased contamination with the time of the day they were collected. The samples

collected very early in the morning showed high DO, lower BOD & COD and total coliforms. The samples taken from Meda Ela which is a highly polluted canal show increased nitrate, sulphate, coliforms, suspended solids, etc. Dissolved oxygen was also very low for these samples.

Those samples collected from Nuwara Eliya were highly contaminated compared to Kandy samples. In particular, those samples collected at the influx point to Barracks Plain reservoir had zero dissolved oxygen with relatively high pH values. Also RWQ/N/4 and RWQ/N/5 showed high suspended and dissolved solids, high total nitrogen and high BOD values. These samples also had high COD values indicating increased contamination from organic wastes. This can be easily explained since sewage from the hospital, factories and even households are directly added to the stream feeding the Barracks Plain reservoir. There is also intensive agricultural activities and a lot of houses dumping septic tank wastes direct into this stream which explains the abnormal values for COD,SS, TDS and chloride for sample N/4.1. However apart from zinc which probably originate from rusting galvanized iron, heavy metal contamination is virtually non-existent.

Out of the Kandy samples RWQ/K/3 and RWQ/K/7 are those collected from Pinga-Oya and Meda-Ela and these are highly polluted streams specially during the dry season and this is seen from their high level of contamination. The sample collected from a stream near Polgolla (RWQ/K/5) was also highly polluted and being the dry season did not show any appreciable flow. This again is reflected in the analytical data with high total nitrogen, chloride and BOD.

4. Lake water quality

The location from where samples were collected and the key to samples is given below.

Kandy:	LWQ/K/1 LWQ/K/2	Kandy lake near Mahamaya college Kandy lake near lakefront hotel
Nuwara-Eliya		
• •	LWQ/N/1	Gregory lake (near playground)
	LWQ/N/2	Gregory lake (middle of the lake)
	LWQ/N/3	Barrack Plains Reservoir (middle)
	LWQ/K/4	Barrack Plains Reservoir (end)

The analytical data are given in table 12.

The Kandy lake is relatively unpolluted compared to Nuwara Eliya lake system. However, the total dissolved solids of the Kandy lake samples was relatively high. However Kandy lake had more electrolytes dissolved in it and clearer water (less suspended solids). Samples numbers LWQ/N/4.1 to 4.3 show high BOD and virtually no dissolved oxygen and these are the samples taken from the Barrack's plains which is extremely highly polluted. At the time of sample collection it could be hardly called a lake since no water was visible from a distance. Samples were collected under the vegetation at several places perhaps owing to the prevailing drought at that time.

5. Sludge quality survey

Samples were collected from both Kandy and Nuwara-Eliya. However there were problems collecting samples for this analysis as planned in the schedule of work since septic pits are either permanently sealed or the sludge form septic tanks is regularly cleaned by the municipalities.

The samples points and the key to samples is given below:

Kandy		Hantana Housing scheme treatment plant Suisse Hotel
	SQ/K/3	Sun Match company
Nuwara Eliya	SQ/N/1 SQ/N/2	Ceylon brewery Grand Hotel

The analytical results are given in table 13. In certain cases the sludge was fairly dry and in others mostly wet. Also, the sludge collected from the Brewery is contaminated with silica used in the sand filters since the sludge is disposed along with the silica used in the filter. This may account for the fact that there is significant non-organic matter in the analytical data. The same is true for Hantana housing scheme sludge where sludge is inevitably contaminated with sand or soil. The type of sludge from the sun match factory is mainly of the inorganic raw materials used for the match manufacturing process and is has very little organic matter .One notable feature is the presence of Zn as a heavy metal in all these samples. Perhaps this originates from the galvanised piping used in plumbing etc. The high phosphate content may be a reflection of the increased use of detergents specially in the hotel industry.

Water Ouality Sample points:

Kandy

WQ/K/1. Kandy water treatment plant (Getambe) WQ/K/3. Polgolia dam

Nuwara-Eliya Surface intakes:

ce intakes: WQ/N/I. Bambarakele WQ/N/2. Shanthipura WQ/N/3. Pedru intake WQ/N/4. Water field - old WQ/N/5. Water field - new WQ/N/5. Piyatissapura WQ/N/7. Brewery falls WQ/N/9. Lovers leap

A-15.3-8

Ground water resources: WQ/N/10. Hill Club WQ/N/11. Old bore h

WQ/N/10. HIII Club WQ/N/11. Old bore hole WQ/N/13. Upper Lake Road WQ/N/13. Galway Forest bore hole WQ/N/14. Interfashion WQ/N/15. Palladium bore hole WQ/N/16. Golf Club bore hole WQ/N/17. Brewery bore hole

Table 1. Raw Water Quality Data (Kandy district)

Units employed : Temperature- °C, COD,BOD,SS,TDS(mg/l), free ammonia,CI,NO₃',NO₂',PO₄²- SO₄², Cu,Mn,Pb,Hg,Ct,Fe,As,Cd,Zn,Co - ppm Total hardness and alkalinity (mg/l), Conductivity µs cm⁻¹, Coliform Total at 35°C/100ml, *E.Coli* at 44°C/100ml

Ŋ

1

	., <u></u>				****	-				*-				******						1
E, Coli	170**	150**	++02	200*	150**	**0001	~10001~	20**	I50**	**07		540++	40**	120**	**072		100**	40**	**01	2
Total coliform	280**	800**	100**	>1000*	**UUT		>1000**	400**	400**	180**		4096	250**	**009	**090	202	160**	180**	**000	2007
SO4 ²⁻	3.31	3.41	1.13	2.98	2 53	1	2.68	2.31	2.53	2 50	2.4	2.31	2.68	1.21	16.0	40.4	2.41	2.58	5,0	70.7
Total Hardne ss	23.3	25.2	31.0	32.9	C C C C	7.17	29.1	38.8	27.2	C ¥ C	7.07	23.3	31.0	31.0	0 74	20.2	27.2	38.8		7.12
PO4 ³⁻	0.80	1.10	0.38	0.47		70.0	0.52	0.93	0 83		J.UU	0.75	0.81	0,81		0.80	0.64	16.0		0.83
ļ.,	0.04	0.20	0.05	010	2010	cv.v	0.17	0.05	110	44.0	cn'n	0.12	0.04	0.07		c0.0	0.05	0.06		40.0
-20N	0.02	0.01	0.03	in N		NI	Nil	0.24	0 77		0.01	0.01	0.01	2		ĨZ	Nil	0.06		0.27
- SON	1.28	1 28	926	00.7	20.7 C	2.61	2.91	3.02	216		22.1	2.14	\$ 05	54.5		3.97	2.50	L 1 7		2.09
Free NH ₃	Nil	152	NEI			IZ	ΕN	ĒZ		07.V	īz	0.02	ž			Z	ž		c.v.v	0.19
Total Alkali nitv	24.8	5.F2 C PC			0.00	36.3	29.1	202		0.17	26.6	23.6	35.1		1.00	30.3	701		57.7	28,4
ü	64	1		0,0 † t	0.1	5.0	5.6	4	r v i c	0.7	0.0	6 L	, - . r	ן - - ר	† -	с, 2	y y	ן ד 	0.	8.4
TDS	5	3 9		<u>;</u> ;;	1	ц,	ΨĹ		5 5	ò	<u>ุ</u> บ	ç	3 4	2	ň	I	2.4		20	73
Cond. µs/cm	14	+.10 2 0 3	U. V.	00.0	20.0	74.1	151	1.21	1.0	/0.4	66.7	77.8		5	07.0	718	8 71	0.0	8.YC	77.8
μd	53	4 C 0 C	2.0	0.7	6.8		1	, v ,	י י סיי	0.0	6.6	3	5 L	<u>.</u>	6.0	68		2	<u>.</u>	6.8
Turbidity NTU	0	2.0	t0.0	ন ন	5.0	च च	010	.	× +	5.6	20.9		0.0	ر. م	2.7	8 FL		0.00	22.4	4.5.
SAMPLE		WQ/K/1.1	WQ/K/1.2	WQ/K/1.3	WQ/K/1.4	WO/K/I S		a l'N/N	WUKVI./	WQ/K/1.8	WOW 1		MUN4.4	WQ/KV2.3	WORK/2.4			WQINZ.6	WO/K/2.7	WO/K/2.8

* per 10 ml

** per 100ml

Table 2. Raw Water quality (Kandy district) heavy metals and cyanides (mol/l)

-						-		-														
Ś	< 104	104	2	10 ¹	101 1	27.7	10	< 10-	v 104		, 0, v	<10-4	705		-0I>	* 10* V	4	 N N 	t_01 V	104	1.0	< 10
Total iron	0.5	2	<u></u>	0.4	÷	÷.	4.0	0.6	0.4		0.5	0.6		0.0	0.2	0.7		<u>c.</u> 0	1.0	¢	1.0	0.7
ර්	Nij		INI	Nil		IN	EZ	Nil	NGI		Z	Nil	;;	NIL	Nil Nil	152		NIL N	IZ	A FOR	HZ	IN
ЯН	N:N		NFT	Nil	! :	JIL VII	IIN	ΠN	NEI V	IIN	Nil	N:I		NT NT	Nil	N LIN	111	N I	EN		IZ	IFN
44	Nil		IN	112	111	NII	Nil	Nil		HN	Nil	N	1111	IIN	Nil N	NT1	1111	IN	IIN		IIN	Nil
Cd	LIN	TIN	IN	Nil	TIN	IZ	lin	Nil		NI	IN	Net.	TTNT	Z	EN		INI	E	EN		IZ	lin
As	NG	ITNI	Nil	NG	TTAT	NI	IIN	IIN		IIN	Nil		IIII	Nil	1.Z		IIN	IIN	Nil	1,11	Nil	Nil
Mn	20.0	00.0	0.10		V. IV	0.11	0.06	600	77.7	0.13	0.12		00	0.10	20.05		0.0/	0.09	20.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.25	0.20
5	3	Ī	II.N		IIN	Nil	L!N		IIN	IIZ	EN		FZ	Nil			NI	Nil		IN	IIN	Nil
CAMPI F		WQKVI.1	WO/K/1 2		WQKV1.3	WO/K/1.4			W CINION	WO/K/1.7	NOW 8	W CIN 10	WO/K/2.1	WOKD 2		CTVINA	WO/K/2.4	WOK D S		NON 20	WO/K/2.7	WQ/K/2.8

r											*****						-		-				"1
E. coli	28	IZ	5	E	12	50	EN	Ē	0001<	ĨZ	EZ	Ē	320	280	40	Nin A		<u>-</u>	Z	90	Ĩ	Ż	
Total Colifor m	44	01	60	60	40	001	60	80	>1000	80	40	60	700	600	800			400	140	12	90	02	
ż	<104	<104	<104	<10-4	<104	<107	<10-4	<104	<10 [*]	₹01 V	<104	₹10 _₹	<104	<10 ¹⁴	<104	P-017		√	r_01∨	~10-	₹0T>	<104 <104	
SQ4 ²	0.75	0.06	1.38	0.01	0.63	0.31	0.88	IIN	0.60	0.48	0.01	11N	0.63	0.04	0.56		50°0	0.31	0.57	4.06	1.68	3.21	
Total Hardne ss	5.8	5.8	5.8	4.6	4.9	5.8	3.9	8.5	3.9	4.5	5.8	5.9	7.8	8.7	0 7		0.0	4.9	6.8	107.0	111.0	108.0	
PO4	0.89	0.57	1.31	0.85	0.82	0.60	0.55	1.28	0.54	1.16	0.85	0.93	0.84	0.00	27.0		0.73	1.21	1.43	0.57	0.45	0.53	
i	0.03.	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.03	0.03	200	CV.V	0.03	0.03	0.03	0.07	0.09	0.05	
NO2	0.05	IIN	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	Z	0.05	EZ.	200	5	Z	0.05	Nil	0.05	Nil	IIN	
.ºON	0.26	0.48	2.11	2.36	0.57	0.44	0.21	0.14	2.28	0.58	0.17	0.63	2.45	01	22.4	C+.0	0.54	0.37	1.21	1.27) ((3.18	
Free NH ₃	19Z	IIN	IIN	II	ΗN	Nil	ΪŻ	N.I.	IIN.	0.21	į	0.78	N N	0.79	07.0	IIN	0.54	lin	0.35	0.02	ΞŻ	0.27	
Tot alkali nitv	10	13	3.0	8.4	7.3	73	6.2	64		2.6	0.0		2 6	<u> </u>		<u>.</u>	7.9	6.1	6.2	138.0	132.0	137.0	
ö	0.76	1 98	0 79	1.04	1 4	160	1 10	1 00	1 41	121	1 20	21.1	10.1	31.6	7.12	2.92	2.13	1.09	151	1 20	05.5	2.50	
TDS	16	2 1	1 5	19	2 1	1 5	1		19	2 1	1	2 5	1 5	1.	11	×	9	~	v.	011	120	122	
Cond	8 81	12.8	17.6		2.01	171	181	166	2001	2 4	0.41		200	0.04	1.1.1	I3.6	14.2	14.5	5.61	0.000	0.144	220.0	
Hd	22		199	2.0	5.7	- 0	0, 0	1 4		1 F T		0,0		+ 4 0 •	1 1 1	1.7	4.6	66	- 4 - 17	י וי י ר	- L j u	5.2	
Turb idity	707	27.46	00.4	07.0	190	5.5	1 18	0 53	40.0		17.1		21.4	C+.4	1.83	1.09	1.50	0 47	1 20	0.02.1		7.00	
SAMPLE									2.4/N/JW		7.C/N/DM	WQ/N/0.1	7.0/N/OM		WQINI7.2	WO/W/8.1	WO/N/8 2				TOTANA	WO/N/10.3	,

Table 3. Raw Water Quality (Nuwara-Eliya district) Ground water sources

L

湯湯

Table 4. Raw Water Quality (Nuwara-Eliya district) Ground water sources-heavy metals

iron	IIN	IIZ	ΪŻ	IIZ	IIZ	0.2	liz	Nil	E	IIN	IN	IIN	0.3	Ē	0.2	IEN	IIN	Nil	0.5	1.0	1.0	
2,	Nil	IN	IIN	IIN	IIN	IIN	IIN	IIZ	IIN	IIN	IIN	IIN	IIN	Nil	Nil	IIN	HZ	IN	IIN	IIN	Nil	
3	IIN	lin	Nil	IIN	IEN	IIN	Nil	IIN	HN	IIN	IIN .	IIN	IIN	IN	IIN	Nil	IIN	IN	IIN	Nil	EN	
AS	IIN	IIN	IIN	IIN	liN	Nii	Nü	ΠN	Ϊ̈́Ν	IIN	Nil	Nil	Nil	IIN	IIN	Nil	E	IIN	IIN	lin	IIN	
SH H	Nil	ΠN	Nil	Nil	IIN	IIZ	IIZ	ΠŻ	IIN	Nil	Nil	IIN	IIN	NIL N	IIN	, IIN	Nii	Nil	ΕN	ΞZ	N.	· ·
Mn	Nil	IIN	IZ	IIN	Nil	IIN	Nil	IIN	Nil	IEN	IIN	IIN	NIL	NII	IN	IIN	IN	IIN	IN N	i N	IIN	
ර්	l!!X	Ż	Z	liN	IIZ.	li Z	liZ.	IIX	liz	liz.	li Z	Ż	L I	Ż	Ż	EZ.	I.Z	L IZ	112	112	E Z	
õ	U!N	II.N	I I	i N	IZ	i î N	IN	Į	E	EN	I II N		EN	E	E				I EN			114
SAMPLE	1 L/IVU/M			WOWD 2				WOWA 2		NOWS 2	WOWK 1	T-DVI/OM	MONT 1			WON/8 2					2.01/N/JW	C.DT MIN M

E. coli				EZ I											<u>^</u>				
Total	form Con	10	EZ	IEN	E	Ē	Ē	Ē	Ĩ	Ż	Ĩ	E	140	200	>1000	~1000	Ē	ĨZ	2
ĊN.		<107	₹01 V	₹01×	₹01 10-₹	₹01 V	707 V	70 ⊽	70 ⊽	701∨ V107	√10 ⁴	₹01 V	√10 ⁷	√10 √	707 ⊽	v10₁ √10	<10 ⁴	<10 ₄	₹ 0 V
SO4 ²⁻		2.13	0.78	2.18	2.13	1.88	1.86	20.13	1.63	4.78	0.13	0.07	3.72	0.32	11.14	0.98	0.60	2.46	2.68
Tot	hard ness	136.0	136.0	132.0	49.0	49.0	47.0	46.0	50.0	47.0	138.0	124.2	135.8	162.4	205.6	194.0	ΞZ	6.79	110.5
PO4		1.31	I.25	1.31	0.73	0.75	16.0	0.94	0.68	0.94	1.70	0.41	0.58	0.08	0.17	0.23	0.27	0.37	0.38
<u>ن</u> بر		0.10	0.07	0.07	0.10	0.04	0.04	0.06	0.07	0.12	0.13	0.09	0.08	0.05	0.05	0.05	0.03	0.03	0.05
.ºon		0.05	0.05	0.06	0.05	0.05	IN	0.02	0.05	IIN	0.04	0.04	IIN	IIN	Nil	0.26	EN	Nil	11N
SON		0.59	1.55	1.99	2.00	2.21	3.75	5.39	7.08	5.04	0.76	2.69	2.17	0.56	0.16	0.17	1.78	4.49	\$ 03
Free	NH ³	IIN	0.08	Nii	Nil	Nil	IN	IIN	0.26	IIN	IIN	2.69	2.17	0.05	5.49	4.16	Nil	2.39	\$ 03
Total	•Alkalini ty	169.0	163.0	162.0	58.0	54.0	54.0	5.5	10.3	7.3	151.0	30.5	154.0	43.6	30.3	37.8	<u>8.5</u>	12.7	122 84
С		1.30	1.60	2.80	1.90	2.40	3.30	21.38	22.90	30.90	1.99	3.20	2.75	143.00	144.54	155.24	1.58	8.12	3 98
TDS		142	136	661	81	74	- 1- 1-	121	128	120	72	86	146	87	83	06	21	18	165
Cond		270.0	260.0	262.0	134.0	111.0	108.0	142.0	151.0	151.0	250.0	134.0	2.54.0	142.0	138.0	143.0	110.0	65.1	0.000
Hq		7.8	52	7.2	5.5	6.8	6.1	5.1	5.0	6.2	6.9	5.8	- 1	5.6	5.2	62	73	00 +	٢
Turbid	ity	0.42	041	2.01	0.45	0.47	0.67	0.81	0.36	0.71	3.68	1.28	3.30	5.30	25.70	5.80	1 20	1.20	1 20
SAMPLE		I I I/N/UM	WO/N/11 2	MON/113	WO/N/12.1	WO/N/12.2	WO/N/12.3	WO/N/13.1	WO/N/13.2	WO/N/13.3	WON/14.1	WO/N/14.2	WO/N/14 3	WO/N/151	W0/N/15.2	WO/N/153	MON/161	WO/N/16.2.	I LINOW

- Table 5. Raw Water Quality (Nuwara-Eliya district) bore holes

metals
s - heavy metals
Bore hole
ya district)
(Nuwara-Eliya district)
- Quality (1
Table 6. Raw Water Quality
Raw
Table 6. Ra

<u>ـــ</u>	SAMPLE	5 C	G	Cr	Mn	Hg	As	Чď	Total iron
		IIN	Nil	liN	IIN	NII	IIN	Nil	0.2
		i Ż	liz	EN	Nil	IIN	IIN	Nil	IIN
-	MON/113	IZ	IN	Nil	IN	Nil	IIN	NII	IIN
	WOW1212		IN	Nil	IIJ	IIN	IIN	Nil	0.2
-	WOW/12 2	IIN	ιiΝ	liN	ΠŊ	NLI	IIN	IN	IIN
	WO/N/12.3	Ę	NI	lin	HN	Nil	Nil	IN	0.3
	MON/13 1	IZ.	NI	IIN	0.20	IIN	R	IIN	0.2
	WO/V/13.2	IZ	Nil	Nil	0.22	IIN	EZ	IIZ	IN
	WOW/13 3	IS	IIN	Nil	0.24	Nil	IIN	IIN	0.2
	WOW/14 1	E	IIN	IIN	IIJ	Nil	IIN	IIN	0.2
	WO/N/14.2	IZ	IIN	Nil	ĨŻ	IIN	IIZ	IZ	0.1
	E TI/NUM	li Z	Nil N	Nil	Nil	Nil	IIN	IIZ	0.3
	WOW/151	Z	IIN	ΗN	0.17	IIN	IIN	II.	1.5
	WO//152	ΞŅ	IIN	IIN	0.22	IIN	IIN	ΠZ	1.8
	WOW153	liN	IN	IIN	0.20	IIN	lin	ΠŻ	1.7
	WOW/161	IZ.	IN	liN	0.10	IN	IIN	IN	IN
	WO/N/16.2	iž	IIN	IIN	0.13	IIN	IIN	ΠZ	IIN
	WQ/N/17.1	IN	IIN	liN	0.06	Nil	E	IZ	0.5

Sevvage quality 2.3.2

Kandv Sample points:

X/2. Low income house - Effluent from septic tank K/1. Middle income house - Domestic sewage X/3. Low income house - Domestic sewage

K/5. Office sewage - Education office, Kandy X/4. Hantana scheme - Before treatment

X/6. Middle income house - Effluent from septic tank

V7. Hantana scheme - After treatment K/8. NWSDB ***

K/11. Hotel (without treatment facility) Riverdale grey water Effluent K/9. Hotel with treatment facility - Swiss Hotel Influent K42-Industrial-waste-water-Chocolate-company K/10. Hotel with treatment facility - Swiss Hotel

K/13. Industrial waste water - Sun match company

K44. Hospital sewage - Peradeniya teaching hospital - Before treatment

KHA. Hospital sewage - Peradeniya teaching hospital - After treatment メメメ

Notes: Sample 12 could not be collected because the company refused entry to premises

Only one sample was collected from point 13 (sun match company)

Nuwara-Eliva

V/3. Effluent from septic tank (Cey Bank Rest) * N/2. Domestic sewage (low income) *

N/I. Domestic sewage (middle income) **

V/4. Hotel (with treatment facility) - before treatment (Grand Hotel)

N/5. Hotel (with treatment facility) - after treatment (Grand Hotel)

N/6. Hotel (without treatment facility)- Cey Bank Rest *

N/7. Industrial wastewater - drain (Ceylon Brewery)

N/8. Industrial wastewater - effluent after treatment (Ceylon Brewery)

N/9. Hospital sewage

N/10. Municipality - NuwaraEliya *

* no flow

** adequate amount of sample was available only once

3			present of								aug. 4		A	A					!
		Z	Ż	EZ -	IIN	Z	EZ.	0.7	0.3	0.2	EEZ	TEZ	ĒZ	Ē	0.01	EZ	FEZ _	EZ -	EZ
ЧZ		0.16	0.18	0.20	0.20	0.17	0.18	0.06	0.02	0.15	0.05	0.03	0.05	0.12	0.05	0.10	4.20	4.60	4.50
Ca		IN	IIN	Nil	IIN	IIN	IIN	IIN	IIN	IIN .	IIN	EN	IIN	IIN	IIN	IIN	0.05	0.04	0.04
As		IIN	II	ΪΫ	ΞŻ	Nil	EZ	IIZ	ΠŻ	IIZ	lin	Nil	Nil	ΞŻ	Nil	ΠIJ	FZ	Ξ	Ē
E. coli		>1000	>1000	>1000	*000i<	>1000*	>1000*	>1000	200	80	>1000*	×0001<	>1000*	>1000	>1000	>1000	>1000*	>1000*	>1000#
Total coliform		>1000	>1000	>1000	>1000*	>1000*	>1000*	>1000	600	700	>1000*	>1000*	>1000*	>1000	>1000	>1000	*0001<	>1000*	>1000*
а, 		1.63	1.31	1.37	1.02	1.03	1.17	1.03	1.13	1.05	1.23	1.35	1.41	0.98	0.83	0.88	0.93	0.98	1.31
Z, H	-	80	40	103	85	92	109.	529	144	187	55	61	63	. 57	112	73	323	283	245
SO4		3.5	13.2	5.4	13.8	I4.6	14.9	24.83	2.78	34.81	0.98	0.03	0.65	13.20	18.40	4.60	10.00	10.90	12.80
ָם ו		32	38	37	46	84	18	117	151	201	117	199	158	58	125	48	41	45	39
SQT		127	98	90	125	162	68	2584	220	329	229	352	300	172	158	171	568	480	510
SS		159	561	179	102	136	116	1578	172	522	101	184	188	120	123	119	5804	42.76	066
COD		244	52	262.9	64	72	48	3288	360	256	160	384	184	130	182	126	1736	1804	535
BOD		172.7	70.2	230.2	67.7	35.2	35.2	318	127	17.7	90.2	120.3	70.2	50:2	65.2	85.2	240.2	202.7	120.2
Hď		7.2	7.7	6.9	6.6	7.0	6.7	10.0	9.0	7.4	8.4	8.7	7.8	6.4	+'2	7.6	7.1	7.2	7.3
T setuade	30110 BC	27.4	28.1	28.5	27.5	28.0	27.5	28.0	30.0	28.5	29:5	29.6	27.5	28.5	29.5	29.0	27.0	28.0	27.0
T air		28.3	29.5	31.3	28.5	27.5	27.0	31.0	29.5	31.0	31.5	31.2	29.5	30.0	31.5	32.0	28.5	27.5	27.0
Sample	020	Sewage	1.2	/1.3	12.1	12.2	/2.3	/3.1	K/3.2	/3.3	/4.1	/4.2	/4.3	/5.1	15.2	/5.3	/6.1	/6.2	/e.3 ° -

* per 10 ml

Ò

									ľ	-								ľ
	Sample	Tair	۴	Hd	BOD	COD	SS	TDS		SO4 '	Z F	ц. Ч.	Total	E. coli	AS	3	Zn	රී
			sewage										colitor m					
•	Sewage																	
	K/7.1	31.5	30.5	7.8	10.20	32	5	244	199	24.93	81	1.65	>1000*	>1000*	E	IIN	0.04	IIN
	K/7.2	31.4	30.0	7.5	11.50	40	116	283	200	0.98	88	I.43	>1000*	>1000*	Ξ	ΪŻ	0.03	Nil
•	K/7.3	29.5	29.0	8.0	60.20	108	61	205	199	12.96	117	1.53	>1000*	>1000*	lin	Ξ	0.03	EZ
·	K/8.1	30.0	29.0	7.2	5.20	42	174	117	42	13.40	104	1.27	>1000	>1000	īIJ	IN	0.06	IIZ
	K/9.1	28.9	27.1	8.3	90.20	424	170	318	147	3.61	226	1.63	>1000	>1000	IIZ	E	0.05	IIN
	K/9.2	29.1	27.2	8.7	120.50	636	342	352	150	2.43	48	1.73	>1000	>1000	Nil N	IIN	0.06	Nil
	K/9.3	29.5	28.1	<u>8.5</u>	135.05	848	253	383	142	2.86	61	1.55	>1000	>1000	ΗŻ	IIN	0.05	EN
	K/10.1	28.9	27.2	1.1	0.20	120	54	389	117	24.83	60	1.28	>1000*	>1000*	IIN	Nil	0.07	ΕŊ
	K/10.2	29.8	27.6	+'1'	12.70	-144-	119	450	151	2.78	66	1.65	>1000*	>1000*	IIN	IIN	0.06	IIJ
	K/10.3	29.1	28.5	7.8	15.30	120	135	398	114	7.36	47	1.35	>1000*	>1000*	IIN	IIN	0.07	IIN
	K/II.1	31.0	27.5	7.6	160	148	168	142	147	3.61	92	1.56	>1000	>1000	ΗN	0.05	0.10	IIN
	K/11.2	29.5	28.0	7.2	120	56	181	153	150	2 43	58	1.68	>1000	>1000	Nil	0.06	0.05	ΕZ
	K/11.3	31.0	29.5	7.0	333	1200	188	802	210	3.68	64	1.58	>1000	>1000	E	0.05	0.07	EZ
13 . 1 ~ ~	+ KVI31-	31.5	30.0	8.6	2.70	78	500	614	119	107.80	44	1.53	>1000	>1000	HN	0.05	0.60	ΠZ
11.1	- K/13.1	28.5	30.0	7.0	85.20	208	281	159	84	13.90	145	1.01	>1000*	>1000*	IIN	IIN	0.60	ΗN
-	K/13.2	29.0	29.5	7.1	45.20	192	247	168	24	17.30	122	1.02	>1000*	>1000*	HN	lin	0.40	EZ
	K/13.3	29.5	28.0	6.3	15.20	344	80	144	26	14.10	124	1.31	>1000*	>1000*	NH N	ΠIJ	0.22	IIN
	K/H.1	28.5	29.0	6.7	40.20	152	300	133	29	25.20	81	1.38	>1000*	>1000*	ĦZ	ĦZ	0.25	0.4
	K/14.2	29.0	29.0	6.8	35.20	144	273	119	23	23,40	104	1.41	>1000*	>1000*	IIN	Nil	0.27	0.4
	K/14.3	29.5	28.0	6.6	10.20	144	108	135	. 26	24.30	115	1.46	>1000*	>1000*	Nil	Nil	0.25	0.4
	Ì																	2

ð

Table 8. Sewage Quality Survey (Kandy district) contd.

Ŀ

* per 10 ml

A-15.3-17

T			IIN	ij	Ę	厚	II.	F	ij	Ę	II	Ę	Ē	B	厚	Ę	F	ij	1	Ę
ပိ							·					·····			•					
Zn	0.38	0.15	0.03	0.10	0.10	0.12	0.16	0.12	0.14	1.20	0.80	0.38	0.40	0.60	0.50	0.50	0.10	0.07	0.07	0.10
g	II.X	E	IIN	Nil	ΝΪ	EN	0.06	0.07	0.06	IIN	IIN	IIN	IN	E	E	EZ	IIN	IIN	Ē	lin
As	152	E	IN	EN	III	Nil	Nil	Nii	IIN	III.	IIZ	E	IIZ	E	EN	EZ	Nil	IN	ΗŻ	Ę
E. coli	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	20	270	100	800	20	70	230	6	40	450
Total Colifor m	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	>1000	140	400	300	1000	140	100	009	62	100	700
d-T	76 0	1.56	1.53	0.95	0.87	0.93	1.98	1.73	1.84	1.23	1.53	1.63	1.67	1.78	1.63	1.78	0.98	1.03	0.94	1.23
T-N	180	149	116	134	158.	169	129	144	86	68	155	104	137	183	107	151	84	104	66	140
SO4 ²⁻	2 71	1/10	4.31	3.68	3.50	3.79	2.44	3.14	2.95	0.98	33.87	33.47	32.76	43.63	46.83	45.23	1.63	3.45	2.86	90.69
ü	108-3	17.021	152.1	41.7	39.9	43.9	87.1	76.1	93.4	97.7	148.1	158.9	160.5	186.9	164.8	175.8	21.4	24.5	22.6	202.8
TDS	LLL	285	262	192	204	194	191	202	187	80	151	151	172	683	708	695	269	274	282	87
SS	0201	4CU1	207	131	142	136	223	242	253	450	386	386	351	325	401	375	151	164	158	142
COD	1/12	1010	336	340	296	388	160	176	240	280	1192	804	908	1860	1952	1876	72	112	260	880
BOD	000	075	236	95	103	75	20	40	75	30	298	290	305	283	355	305	29	40	18	- 12 -
Hď	с 1,	7.6	1 T	7.2	6.8	7.3	8	83	2.9	6.2	6.2	5.0	6.0	7.2	6.1	7.6	10	8.4	7.8	5.5
T sewa ge		22.5	0.01	0 77 0	24.0	25.0	23.0	23.5	23.0	24.0	23.0	26.0	24.0	23.0	26.0	25.0	20.0	19.0	22.0	21.0
T air	i	0.12	0.02	20.00	23.0	20.0	20.02	22.0	20.02	22.0	26.0	22.5	20.0	26.0	22.5	20.0	22.0	22.0	20.0	24.0
SAMPLE	Sewage		1.2/N	N/4 1	N/4 2	E 7/N	N/5 1	N/S 2	N/5.3	1 9/N	N/7 I	N/7 2	N/7 3	N/8 1	N/8.2	N/8 3	1 6/N	N/9.2	N/9.3	N/10.1

Table 9. Sewage Quality Survey (Nuwara-Eliya district)

2.3.3. River Water Quality

ġ,

Sample points :

Kandy:

RWQ/K/1. Gangawata District (University) RWQ/K/2. Intake point of Kandy water treatment plant (Gatambe) --

RWQ/K/3. Katugastota District (Pinga Oya - near Meda ela bridge)

RWQ/K/4. Polgolla dam RWQ/K/5. Ela near Polgolla dam RWQ/K/6. Kundasale District (Kundasale intake) RWQ/K/7. Meda Ela

RWQ/N/4. Upstream of Hospital and Brewery RWQ/N/5. Influent point to Barrack Plains reservoir RWQ/N/3. Influent point to Gregory Lake Nuwara - Eliya: RWQ/N/1. Upstream of city's border RWQ/N/2. Victoria Park

	1	~	5	~	5	15	~	0	0	~	<u></u>	0	<u>v</u>	5	5			2	2	н	9	, ,	 >	7
ъ		5.4(4.0.	5.4.	4.1	4.57	8, M	22.9(21.3(21.3	4	4.0	4	20.8	19.9	21.3	5.5	6.0		50.1	75.8			
ပိ		IIN	ΗN	EN	EZ	ΕŊ	Ē	EZ	E	Ē	Ē	E	Ē	E	IEN	ĒŻ	Ħ	Ī	IN	E	Ę		NIL NIL	
Zn		0.02	0.02	0.02	0.01	0.01	10.0	0.02	0.06	0.01	0.02	0.01	0.01	0.01	10.0	0.01	0.01	0.01	0.01	0.02	0.00		00.0 0	
G		ΗN	IN	IIN	IIN	Nil	IIN	IIN	ΠZ	EZ	IIN .	ΕIJ	ΗŻ	IEN	EZ	IEN	IIN	Nil	IHN	ĦΖ	EN/	171	Ĩ	
As		Nil	IIN	ΗN	Nil	IIN	IIN	ΞZ	ĒZ	Ē	E	E	FZ	IN	Nil	liñ	FN	IIN	IIN	IIN	192		HN	
E. coli		100	500	150	70	150	150	>1000	>1000	>1000	20	>1000	>1000	250	>1000	>1000	80	100	80	>1000	40		08	
Total	coliform	250	>1000	800	100	800	600	>1000	>1000	>1000	140	>1000	>1000	600	>1000	>1000	220	250	220	>1000	000	202	250	
T-P		13	1.5	13	0.8	0.8	0.8	1.5	1.8	1.6	1.4	1.7	1.4	1.9	1.7	1.9	1.8	2.4	1.2	5	; <u>-</u>]	~	1
T-N		3.72	4.30	3 70	2.22	5.26	4.60	6,44	6.58	6.06	4.97	4.48	4.92	7.06	7.58	6.96	4.06	4.24	3.88	18 40	CF 31	74.01	16.22	
SO4 ²		61		000	, er	2.5	2.1	1.6	3.4	4.1	2.6	2.1	2.4	13	4	4	3.4	2.9	~	104		0.0	10.4	
TDS		38	12	44		107	35	67	50	98	18	9	35	151	162	169	40	46	200	101	101	18/	201	-
SS)	133	130	147	140	130	175	201	172	188	143	151	158	121	120	55	110	123	115	258		517	268	
QC) }	1	n e V	2 4	5 v) C	1 00	2.2	1.2	1 0	45	4 9	44	4	2		. r	54	 	2 7		5.0	0.3	
ROD	1))	57 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	202.0	02.3	2.1	4 70	4.20	4.70	4.70	5.45	3 45	0L F	3 70	0000	71 70 70 70	576	3 20	02.7	100	00.7	8.20	5.96	
	 } }	, ,	+ r 7	7 7	+ c	70	77 77	i ei	÷.	× ~	87	54	10	+ 7 7 7		t 6		24	+ + + + + +	;	} {	52	60	
Eler	Cond.	Contra Contra	35	65	55		5 5	781	193	200	02	09	96	000	0.97	200	63	3 6	70	10	5	470	500	-
1	 174		+ •			7.0	- 0 - 7	2.6	, v , v						0 0	0.0	~ ~		10) () (0	6.5	6.6	<u> </u>
٤		Waler	C.C2	0.67	+.47	7.07	+. 4 - 4 - 4 - 4	1.07	20.5			7.72	0.10	+ 0 + 0	0.10	0.10	4.07	7.10	0.10	0.17	C.02 .	32:4	28.0	
F	-	air	74.7	0.67	1.47	7.62). 	1.02		201	1.02	1.10	1.20		C.U.C	C.22	+ /7	0.10	0.75	70.07	27.6	32.3	28.6	
-1-	Sample		RWQ/K/1.1	RWQ/K/1.2	RWQ/K/L3	RWQ/K/2.1	RWQ/N/2.2	KWQIN4.3			C.C.N/XWX	KWQ/N4.1	KWQ/N+.2	KWU/N/4.5	1.c/X/JWX	RWQ/K/2.2	C.C/X/D/WX	KWQ/K/6.1	KWUK/6.2	KWU/K/0.3	RWQ/K/7.1	RWO/K/7.2	RWQ/K/7.3	

Table 10. River Water Quality Survey (Kandy district)

රී		EZ	E	i z		Ĩ	Z	EZ	IIN	1!N	A 138		Z	ĒZ	ĪŻ	N TOT		EZ	152			
Zn		E	E	112		0.02	0.02	0,02	0.18	0.06	600	cn-n	0.06	0.12	0.13	0000	07.0	0.11	510			
As		Z	EN	Nil I		Ē	Ë	ΕZ	ĦŻ	Ż	111	Z	Z	EZ	EZ	617		Z	152			
B		IZ	IIN	NET		ŦZ	Ξ	ΕIJ	ΕZ	IEZ	1	Ĩ	Ż	ΠŻ	IIN		NI	Nil	ΕN	7717		
CI.		1.41	1.67	1 20	1.00	21.38	24.54	24.55	27.54	21.30		21.3/	158.45	61.66	61.66		KC.1C	69.61	77 44	1		
E. coli		400	120	046	007	>1000	>1000	>1000	>1000	>1000		>1000	>1000	>1000	60		20	4	NFI	7767		
Total	coliform	1600	800	1000		>1000	>1000	>1000	>1000	>1000		>1000	>1000	>1000	250		240	300	00	00		
T-P		0.3	04		ς.υ	0.4	0.5	0.4	2.1	0 0	4	2.0	0.3	0.4	03	; ;	0.5	0.5	<	+.0		
T-N		7.20	7.42		0.08	8.34	9.20	8.88	101	17.6	14.0	11.6	21.6	23.6	717	· · · ·	20.2	23.0	000	0.02		
S04 ²	-	0.1	0.2		0.1	0.1	0.3	0 1	10			4	Nil	0.1	EN	111	0.6	IN		0.1		
SUT		29	32		40	5	78	65	177	150		165	406	425	NOV		321	305		512		
SS		145	152		152	124	130	128	6	1 8	0	Ś	1123	905	1075		389	315		- 0/ £		
COD		24	FC	4	16	32	36	16	24	2	5	24	416	60	116	110	532	1084		324		
DO		7.8	0 1	- 1	1.1	0.9	1.5	00	, c , c	- 0 1 t	0.	6.6	6.1	26	1 0	C.4	IIN	EN.		•		
BOD		0 93	011	(+.1	1.68	8.10	521	8 30	01.9	01.0	12.10	4.10	40.20	17 TO		N7.CC	135.20	\$		I05.20	¢	75.20
Elec.	Cond	20		24	50	190	200		220			200	720	047		4 /0	400	VUV		370		
Hq	•	36		> †	5.2	6.2	5.5	i v i v	n 0 t ≂	o t	<u>.</u>	5.6	56	i C		<u>, ч</u>	5.6	0	¢ t	4		
[water	0 71		0.02	19.8	15.5	226	2.44	0.44	7.07	23.8	25.2	20.9	0 2 2 0	0.04	21.9	23.8	27.0	41.7	27.1		
۔ ب	air	18.5		10.0	26.0	16.0	250		0.02	0.01	30.0	28.5	75.0		0.02	78.0	24.0		N-07	26.0		
SAMPLE		1 DIWOMA	TININAN	KWU/N/1.2	RWO/N/1.3	1 UNOWA		2.2/1/XWV	C.2/N/DWA	KWUNJ.1	RWQ/N/3.2	RWON/33	I FILVOMA		Z +/N//WA	RW0/N/4.3	1 S/NOWa		7.CVIDWA	RWQN/5.3		

Table 11. River Water Quality Survey (Nuwara-Eliya district)

I

ð

2.3.4. Lake Water Quality

Sample points

Gregory Lake (near the play ground)	Gregory Lake (middle)	Barrack Plains Reservoir (middle)	Barrack Plains Reservoir (end)	Kandy Lake (point 1) Near Mahamaya College	Kandy Lake (point 2) Near Lakefront Hotel
I/NOW]	WQ/N/2	ENN/DW.	WQ/N/4	WQ/K/1	WQ/K/2

<u>Units</u>

Temperature °C COD, BOD, SS, TDS, CI, SO₄², As, Cd, Zn, Co Conductivity :s cm⁻¹ Coliform Total at 35°C/ 100ml *E. coli* at 44°C/ 100ml

					-	(* * 1 5 * *	-	-					-	فزجتم الدم				-		
IJ		10.7	9.8 8	11.8	11.2	11.8	14.1	3.8	6.2	10.7	36.3	36.3	33.9	43.6	42.6	39.8	38.9	43.7	39.8	
റ		IIN	E	EZ	ΠŊ	ĒŻ	EZ	IIN	ΠŻ	Ę	EN	ĪZ	NEI	FE	Ę	EZ	E	EZ	EZ	
Zn		0.02	0.02	0.01	0.01	0.02	0.02	0.07	0.10	0.07	0.07	0.07	0.07	0.08	0.09	0.10	0.07	0.06	0.07	
g		EZ	ΠZ	IIZ	EZ	EZ	HN	EZ	IIZ	ΠŊ	EZ	EZ	ΠŊ	HZ	ΕŻ	EZ	FZ	EZ	ΗZ	
Total	Iron	1.4	1.5	1.5	1.2	1.5	1.8	1.8	2.0	3.1	3.0	3.2	4.0	0.5	0.6	0.5	0.4	0.4	0.4	
AS		EZ	FZ	ΕZ	IEN	EZ	EZ	EZ	EZ	Ę	IIN	E	EZ	III Z	Nil	E	ΠŻ	E	EZ	-
E. coli		50	80	06	60	08	60	740	160	>1000	>1000	>1000	>1000	2	12	50	40	50	10	
Total	coliform	180	180	70	180	200	230	>1000	300	>1000	>1000	>1000	>1000	200	250	500	600	800	40	
d-⊥	••••	0.2	0.3	0.3	0.8	0.8	0.8	0.6	0.7	0.8	1.5	1.4	1.4	1.4	4	1.3	1.0	0.9	4	
Υ-̈́Υ		37.0	51.0	58.0	23.0	48.0	38.0	40.0	30.6	36.2	44.8	51.0	59.0	35.0	32.0	38.0	20.0	22.0	24.0	
SO4 ²	-	0.6	0.4	0.6	0.6	0.1	0.7	5.0	3.9	4.8	0.9	0.4	0.3	6.1	6.2	5.0	6.2	77	5.4	•
SQL		60	150	60	66	100	70	60	80	70	150	160	160	134	130	134	132	148	118	
SS		145	150	148	122	130	142	236	260	271	222	287	174	60	62	64	62	73	76	
BOD		3.2	6.3	3.5	5.9	5.2	4.7	12.3	12.1	14.8	31.6	28.7	30.1	11.0	8.5	6.5	5.6	9.2	11.8	
COD		28	28	28	44	80	12	24	44	28	152	124	128	28	20	16	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	
Q		7.0	9.0	9.4	7.8	8.8	8.1	0.0	0.2	0.1	ΠZ	0.2	ΠZ	5.2	5.0	4.8	6.8	7.1	7.4	
Elec	cond	128	139	128	133	132	130	125	132	125	293	325	368	250	260	260	230	250	250	
Hd	•	6.2	4 2	6.6	6.0	5.2	7.0	4	6 7	4	42	4.9	4	8.6	4.	7.3	7.3	8.5	6.8	
T	water	22.3	20.2	25.1	22.2	22.6	23.9	20.0	21.2	21.1	20.2	22.2	20.1	29.2	30.6	29.5	30.5	32.2	30.5	
. ۲	air	21.0	25.5	25.5	23.0	25.0	28.0	24.0	29.0	27.0	25.5	26.0	27.0	31.6	34.9	31.8	29.5	37.1	30.9	
SAMPLE		I WOWLI	I WOW!	T WOW1 3	L.WON/2.1	1.WO/N/2.2	1 WON/2 3	I MOWI	1 WOW/3 2	T WOW 3	T WOW/4 I	1.WON/4.2	1 WON/4 3		LWO/K/1.2	LWO/K/1.3	1 WO/K/2 1	1 WO/K/2 2	LWQ/K/2.3	

Table 12. Lake Water Quality (Kandy and Nuwara-Eliya districts)

1

+

A-15.3-23

Districts)
uwara-Eliya
/ and N
(Kandy ar
' survey
Sludge quality
Table 13.

SAMPLE	T	Tsiudge	Water	SS (%)	VSS(%)	T-N	T-P	AS	g	රි	Zn
		P	content(%)			g/Kg	mg/Kg] mg/kg
SO/K/i	28.7	28.5	5.84	52.82	5.18	24.10	14.35	Nil	IIN	IIN	0.27
SO/K/2	29.5	29.7	60.38	24.01	2.27	38.40	12.56	Nil	IIN	IIN	0.05
SO/K/3	1 66	28.2	3.32	2.28	2.20	1.96	19.30	Nil	Nil	Nil	0.26
L/N/OS	23.0	20.5	67.53	4.96	0.73	11.32	11.86	Nil	Nil	Nil	0.10
SO/N/2	22.2	20.6	93.99	4.06	0.29	9.88	13.50	Nil	Nil	Nil	0.04

Sludge guality survey

Sample points: Kandy SQ/K/1. Hantana Housing Scheme SQ/K/3. Suisse Hotel SQ/K/3. Sun Match Company

SQ/N/1. Ceylon Brewery SQ/N/2. Grand Hotel Nuwara-eliya:

Det. Limit	1/Bri	0.2	4.0	0.2	0.2	0.5	.0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		S	7	2	7	7	S	2	2	~	7	2	7	S	S	-1	S	67	7
SP 20			QZ		QN	0.N	0'N	N.D	N.D	QZ	0.Z	Q'N	N.D	N.N	0.Z	N.D	D'N N	D.N	0.Z	Q Z	0 Z	N.D	0 Z	0 Z	Q.Z	N.D	N.D	ŊŊ	0 Z	N.D	Û Z	QZ	N.D
SP 19		0 Z	Q.Z	Ū.Ŋ	QN	QN	Q.N	Q.N	QN	Q.Z	QZ	N.D	D'N	Ŋ.Ŋ	r. V	QZ	QN	QN	0 Z	Q'Z	N.D	N.D	0 Z	Q.Z	O.Z	Q'N	D'N	O Z	âż	QZ	N.D	QZ	N D
SP 18	1	n z	0.Z	D.N N	ŊŊ	N.D	N.D	D N	Ŋ	a z	0.Z	N.D	D'N	0 Z	Q.Z	Q.Z	ŊŻ	0 Z	D.N	D.X	Q.N	0Z	0 Z	Q.Z	ŊŻ	ŊŊ	N.D	Q.Z	0.Z	D.Z.	Q.N	D.Z	ŊŊ
SP 17		a z	D Z	D.N	<u>N.D</u>	ND	Q Z	N D	Q.N	0 Z	0 Z	N.D	QZ	0 Z	0 Z	D.Z	0 Z	0 N	O Z	N.D	ΠŊ	0 N	0 Z	O Z	D.Y.	D'N	O Z	D Z	Q Z	N.D	<u>n</u> N	0 Z	D Z
SP 16		0 Z	Q.Z	Q.Z	QN	D'N	N.D	N.D	QN	QZ	Q.Z	U.N	QN	Q.N	0.Z	Q.N N	U.N	QN	QZ	Q.N	N.D	Q N	Q.Z	Q.Z	Q.Z	QZ	Q Z	Ŋ	Ŋ	Q.Z	QN	g	Q.X
SP 15			U.Z	Q.Z	Q.N	D.N	Q.N	U.N	ŊŊ	Q'Z	Q.Z	Q.Z	Q'N	a z	Q Z	Q'Z	N.D	Q'Z	QZ	D.N	N.D	Q'N	QZ	Ŋ	Q.Z	N.D	QZ	ŊŊ	Q.Z	Q.N	qz	gz	N.D
SP 14		Q Z	Q.Z		N.D	Q.X	N.D	N.D	0 Z	Q Z	Q Z	Ω̈́Z	D.N	C N	Q.N	Q.N	N.D	O Z	N.D	N.D	N.D	0 Z	0 Z	D.N N	D'N	D.D	D.N	D'N N	Q.Z	<u>O</u> Z		0 Z	
SP 13		0 Z	0.Z	ND	ΝD	D.N	N.D	Q.N	N D	Q.N	N.D	Q N	ND	N.D	N.D	D.N	<u>D N</u>	<u>U N</u>	N.D	N.D	N.D	<u>n</u> N	QN	Ŋ	Q.N	N.D	ND	Q N	D'N	N.D	Q N		D Z
SP 12		0 Z	ΩŻ	N.D	N.D	N.D	N,D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	ND	N.D	N.D	N.D	Q.N	ŊŻ	ŊŻ	N.D	N.D	N.D	N.D	N.D	N D	N.D	N.D
SP 11		Q.Z	Q.N.	N.D	N.D	Q.N.	N.D	N.D	N.D	N.D	N.D	ŊŊ	N.D.	N.D	N.D	N.D	ND	0'N	N.D	D'N	N.D	U.N	D.N	Q.X	D.Z	ND	N.D	Q.N	N.D	N.D	Q.X.	ŊŊ	Q X
SP 10		0 Z	0 Z	N.D	<u>n n</u>		D N		ND	N.D	N.D	O N	N.D	N.D	N.D	ND	N.D	0 N	ND	N.D	N.D	ND	N.D			N.D		N.D	N.D	N D	Q.N N	D N	U.D
di S		ŊŻ	Q'N	N.D	N.D	Q Z	D.N	ΩN	D.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	Q.N	D'N	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	Q.N N	ND
s SP		Q.Z	D'N	N.D	Q N	Q Z	N.D	N.D	D'N	ND	N.D	N.D	N.D	N.D	ND	N.D.	N.D	N.D	Q.N	D.N.	Q.X	N.D	N.D	N.D				D.N			D.Z		
- SP		Q.Z	Q'N	N.D	N.D	Q.X.	QZ	ND	N.D	N.D	N.D	N.D	Q.N	D.Z	D'N	N.D	Q.Z	N.D	N.D	D.N.	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	ŊŊ		ND		
SP 6		N.D	N.D	N.D	C N	a z	Q N N	N.D	D'N	ΠN	D'D	ND	ΩN	D.N	N.D	N.D	ND	<u>U N</u>	Q Z	Q N N	Q.N	N.D	N.D	N.D	N.D	N.D	D N]	D.N	N D		N D		
sP 5		N.D	N.D	N.D	QN	N.D	N.D	ND	N.D	N.D	D.D	N.D	N.D	N.D	N.D	D.Z	N.D	N.D	D'N	U.N.	N.D	N.D	N.D	N.D	N.D	Q.Z	N.D		ND		N.D	N.D	ND
SP 4		D.N	N.D	D'N	0 Z	0 Z	D.N.	U.N	N.D	D.Z	Q.X	D.N	U.Z	Q.Z	D.Z	Ŭ Z	N.D	D.N N	D.N.	Q.X.	Q N	Ū.N	A Z	N.D	N.D	D'N	D'N	D.Z	D Z	N.D	N.D	D'N N	D Z
3 SP		D.D	N.D	O Z	QN	DZ	D Z	0 Z	D N N	D Z	D'N	D Z	0 Z	Q Z	D Z	Q Z	D Z	D N N	D.Z	0.Z	N.D	D N N	D Z	N.D	N.D	D Z	D N	D N	Q.Z	N.D	D.D	N.D	D N
2 SP		D Z	N.D	D N D	Q Z	Q Z	D Z	0 Z		· · ·	Q.N			D.N	D.N.	N.D	U.N	0 Z	D Z	Q Z	D N N	U N	D Z	U.X	D.D	D N N	ND	D Z	D.N.	N.D	N.D	D.N.	Q Z
SP		Q.N Q	ND	D'Z	QZ	QN	D N N	N.D	Q Z	D.Z	D'N N	N.D.	ND	D'Z	N.D	N.D	N.D	QN	Q Z	Q.Z	D'N	D'N N	Q'Z	QZ	Q'N	Q'N	Q.X	QN	D.Z	D.Z	ΩN	Q.N.	
Parameter		α-HCH	в-нсн	y-HCH(Lindane)	8-HCH	Aldrin	Dieldrin	Heptachlorepoxide	Endosulfan	p'p,DDE	o'p,DDT	p'p,DDT	o'p.DDD	p'p,DDD	Chlorpyrifos	Dimethoate	Diazinon	Fenthion	Fenitrothion	Malathion	Monocrotophos	Methamidaphos	Parathion	Parathion Methyl	Pirimiphos Methyl	Profenophos	Quinalphos	Carbofuran	Chlorothalonil	Captan	Metalaxyl	Alachlor	Pronanil

N.D not detected

A-15.3-25

L. A

ł

1000

Annexure 1. Pesticide analysis results of raw water samples

Key to sample numbers in the pesticide analysis

SP1=WQ/N/3.1 SP2=WQ/N/13.1 SP3= WQ/N/10.1 SP4 = WQ/N/5.2SP5 = WQ/N/6.2SP6= WQ/K/3.1 SP7= WQ/K/1.1 SP8 = WQ/N/2.2SP9= WQ/N/12.1 SP10= WQ/N/9.2 SP11 = WQ/N/4.2SP12= WQ/N/11.1 SP13= WQ/N/8.2 SP14= WQ/N/1.2 SP15= WQ/N/8.2 SP16= WQ/N/7.1 SP17=WQ/N/14.1 SP18=WQ/N/ 15.1 SP19=WQ/N/16.1 SP20=WQ/17.1

Appendix 15.4 Land Acquisition Procedures

Annex A1

i

ii

iii

Land Acquisition

There are two procedures described for land acquisition for a public purpose, namely; (i) when land acquisition to be undertaken under normal conditions and (ii) when the land acquisition is urgently required. Two procedures are described in detail in the Land Acquisition Act of 1950 (as amended in 1954, 1955, 1961, 1964, 1969, 1971 and 1979). Stepwise procedures are laid down in the Act and is shown in the schematic diagram annexed. The salient features of the Land Acquisition Act is given below.

When a Government Department or Agency require to acquire a particular land for a public purpose, an application is made to the Secretary of the Ministry in charge of the subject of Land.

The Ministry issues a directive to the Land Commissioner and the Commissioner in tern issues a directive to his representative in the district (District Secretary, Asst. Land Commissioner, District land Officer or Divisional Secretary to give notice.

Under normal circumstances the land acquisition procedure begin with a Preliminary Investigation and Declaration of the intention to acquire the identified land for a public purpose as required by the Section 2 to 5 of Chapter 460 of the Land Acquisition Ordinance. Notices are posted near the land to be acquired and adequate time is given to the owners or claimants to register objections to the take over of the land and or to place claims for compensation. After these initial procedures if the Minister in Charge of the subject of land makes the decision to acquire the particular land area, the minister directs the acquiring officer to publish in the Government Gazzette the intentions to acquire said land.

If the exact location of the land to be acquired is not know, the Secretary of the Ministry in charge of the subject of Land will direct the Land Acquisition officer post a notice in the area, where the land is required. Then the Acquisition Officer will authorize the interested Agency/Department to make the investigations.

Objections to take over of land will be inquired in to and the Minister in charge of the subject of lands will make a final decision in this regard .

If the Minister decides to acquire the land, the decision will be communicated to the Surveyor General who will take action to prepare a plan of the said land, if there is no such plan already available.

vi

iv

v

The copy of the plan is sent to the chief valuer for valuation of the said land/property. If the value of the land is more than Rs.500/ the notice should be published in news papers all three languages. The notice require that persons affected or interested to appear before the Acquiring Officer on a date specified not less than 21 days from the date of the notice. The interested parties should notify in writing, at least 7 days prior the date specified, giving particulars of compensation. The acquiring officer can on good cause shown extend the date for notification of claims and appearance before him up to a period of 28 days. A copy of the claim is forwarded to the chief valuer.

On the fixed date or the new date fixed, the Acquiring Officer will cause an inquiry in to the claims for compensation. After the inquiry the Acquiring Officer will give a decision regarding any dispute among claimants. In the even that the claimants are not satisfied with the compensation determined by the Acquiring Officer, those who are affected are allowed to appeal to the Board of Review. The decision of the Board of Review is final.

Payment of compensation arise at two stages in the process of land acquisition, namely; (1) At preliminary Investigation stage and (11) at the stage of taking over of possession of land by the State.

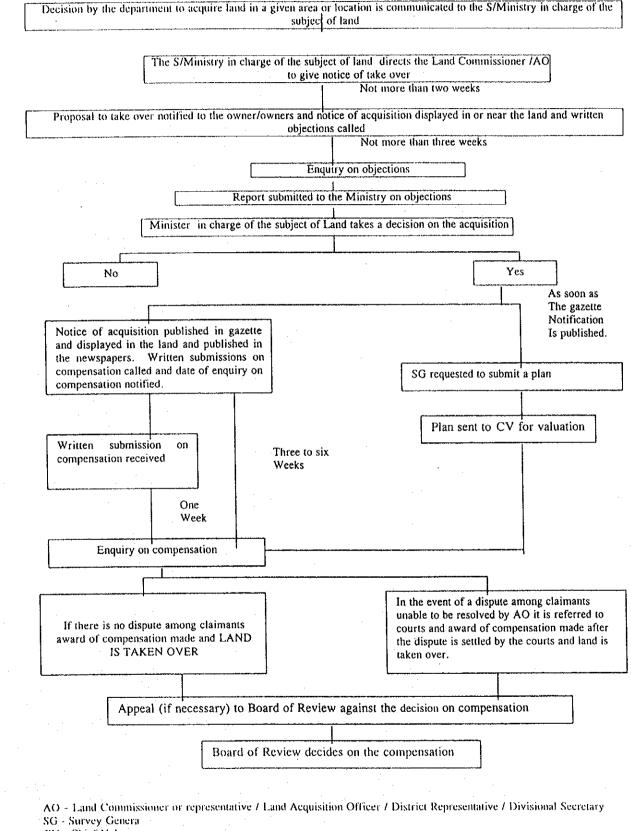
In the first stage any damage caused to movable and immovable property on the land at the preliminary investigations, for each owner the Officer responsible for land acquisition determines the compensation. Land Acquisition Officer in the Division/ District then inform the possible claimants about the compensation by posting a notice at the site

The second and the final compensation is determined by the Officer in charge of land acquisition in the district after considering the claims made by the affected, current market value, claimants ownership relation to the land and any other factor that may be required for the valuation under Section 17 of the Chapter 460 of the Land Acquisition Ordinance.

Where no interested persons appear on the date of the inquiry the inquiry will be postponed for at least 14 days and a notice will be posted in or near the land stating that the amount of compensation will be determined on the adjourned date whether the interested persons appears or not.

At any time after the award the Minister may publish an order in the gazette directing the acquiring officer to take possession of the land and from the date of the publication of the order the land will vest absolutely in the hands of the State. The possession of an occupied house can not be taken without giving the occupant at least 48 hrs notice.

Annex A2


vii

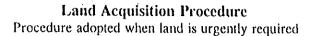
viii

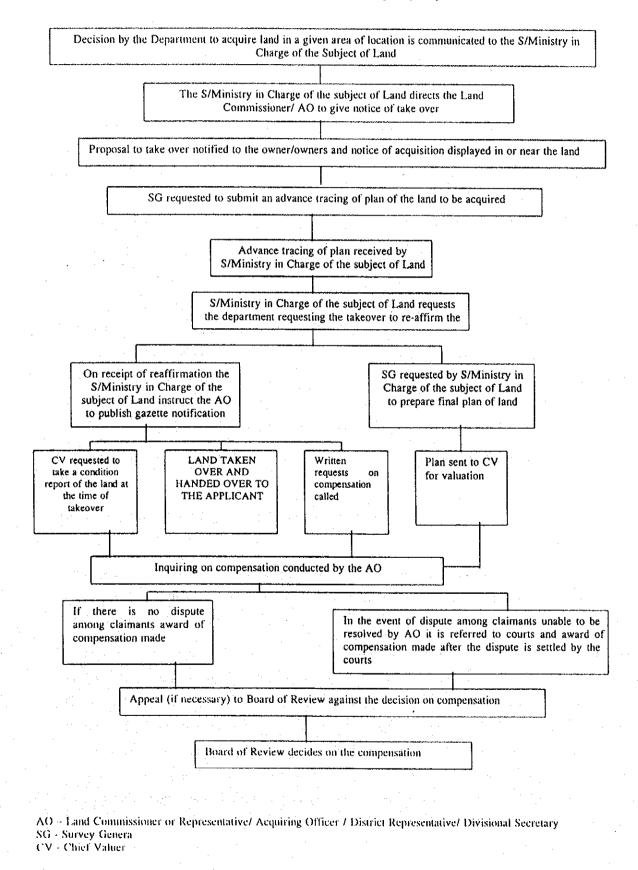
ix

х

Land Acquisition Procedure Procedure adopted when land is not urgently required.

CV - Chief Valuer.


Annex A2


Urgent Land Acquisition

This procedure deviates from the normal, because of the urgency to take over an specified land area. Deviation is from the step of posting the notices.

Soon after posting of notice under Section 2 of the Chapter 460 of the Land Acquisition Ordinance that is after posting of a notice on the identified land and in the neighbouring area indicating the intended acquisition under Section 4 of the said Ordinance, if a need arises for immediate possession of the said land Minister has the power to Publish in the Government Gazette an Order to take over the possession of the said land for the State. The step by step procedure is given in the attached chart 2.

(Deviation from the time frame indicated is common for Urgent Acquisition)

A-15.4-5

Ø