# Appendix 12.3 Pumping Station - Capacity Calculation

1. Pumping Facility

| Alternative         | 1      | Alternative 1 |          |          |             | Alternative 2 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|--------|---------------|----------|----------|-------------|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area                | ·····  | Kandy         |          |          | Ka          | Katugastota   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pump Station        |        | P/S 1         | P/S 2-1  | P/S 2-2  | STP         | P/S 1         | STP         | P/S 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | m3/sec | 0.01220       | 0.02900  | 0.02900  | 0.30000     | 0.00700       | 0.27333     | 0.02900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P/S Flow            | m3/min | 0.732         | 1.740    | 1.740    | 18.000      | 0.420         | 16.400      | 1,740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P/S Type            |        | Circular      | Circular | Circular | Rectangular | Circular      | Rectangular | Circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number (+1)-standby |        | 1(+1)         | 1(+1)    | 1(+1)    | 2(+1)       | 1(+1)         | 2(+1)       | 1(+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Capacity            | m3/min | 0.74          | 1.74     | 1.74     | 9.00        | 0.42          | 8.20        | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Head                | m      | 9             | 48       | 48       | 12          | 14            | 14          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| h1 =                | m      | 7.00          | 40.00    | 40.00    | 10.00       | 7.00          | 10.00       | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| h2 =                | m      | 0.2           | 26.99    | 26.99    | 0.25        | 6,51          | 0.29        | and the second s |
| D ==                | mm     | 250           | 150      | 150      | 600         | 100           | 450         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L=                  | m      | 630           | 1,400    | 1,400    | 150         | 650           | 50          | and the second s |
| V =                 | m/sec  | 0.249         | 1.641    | 1.641    | 1.061       | 0.891         | 1.719       | 0.923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| h3 =                | m      | 1.50          | 1.50     | 1.50     | 1.50        | 1.50          | 1.50        | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Diameter            | mm     | 79            | 122      | 122      | 392         | - 60          | 374         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diameter            | mm     | 150           | 125      | 125      | 400         | 150           | 400         | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Motor Output        | kW     | 2.1           | 26.1     | 26.1     | 33.7        | 1.8           |             | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Motor Output        | kW     | 2.2           | 30       | 30       | 37          | 2.2           | 37          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### 2. Pump Pit (Circular)

| Alternative                  |        | Alternative 1 | Alternative 2 |          |          |          |
|------------------------------|--------|---------------|---------------|----------|----------|----------|
| Area                         |        | Kandy         | Katugastota   | Kandy    |          |          |
| Pump Station                 |        | P/S 1-1       | P/S 1-2       | P/S 2    | P/S 1    | P/S 2    |
|                              | m3/sec | 0.02900       | 0.02900       | 0.01220  | 0.02900  | 0.01220  |
| P/S Flow                     | m3/min | 1.740         | 1.740         | 0.732    | 1.740    | 0.732    |
| P/S Type                     |        | Circular      | Circular      | Circular | Circular | Circular |
| Number (+1)-standby          |        | 1(+1)         | 1(+1)         | 1(+1)    | 1(+1)    | 1(+1)    |
| Capacity                     | m3/min | 1.74          | 1.74          | 0,74     | 1.74     | 0.74     |
| Pump Minimum Starting Period | min    | 15            | 15            | 8        | 8        | 8        |
| Pump Pit Capacity            | cu.m   | 6,53          | 6.53          | 1.48     | 3.48     | 1.48     |
| Therefore                    | cu.m   | 7.00          | 7.00          | 2.00     | 4.00     | 2.00     |
| Ground Level                 | m      | 0.00          | 0.00          | 0.00     | 0.00     | 0.00     |
| Inlet Pipe Level             | m      | -4.00         | -4.00         | -4,00    | -4.00    | -4.00    |
| Effective Depth              | m.     | 1.00          | 1.00          | 1.00     | 1.00     | 1.00     |
| Тор                          | m      | 0.50          | 0.50          | 0.50     | 0.50     | 0.50     |
| Bottom                       | m      | 0.50          | 0.50          | 0.50     | 0.50     | 0.50     |
| Required Area                | sq.m   | 7.00          | 7.00          | 2.00     | 4.00     | 2.00     |
| Diameter                     | m      | 2.99          | 2.99          | 1.60     | 2.26     | 1.60     |
| Therefore                    | m      | 3.00          | 3.00          | 1.60     | 2.50     | 1.60     |
| Dimension (DIA)              | m      | 3.00          | 3.00          | 1.60     | 2.50     | 1.60     |
| (D)                          | m      | 6.00          | 6.00          | 6.00     | 6.00     | 6.00     |
| Retention Time               | min    | 4,06          | 4.06          | 2.75     | 2.82     | 2.75     |

### 3. Pump Pit (Rectangular)

| Alternative                  | Alter 1 | Alter 2     |             |
|------------------------------|---------|-------------|-------------|
| Area                         | Kandy   | Kandy       |             |
| Pump Station                 | STP     | STP         |             |
| P/S Flow                     | m3/sec  | 0.29570     | 0.26670     |
| 1/3 Flow                     | m3/min  | 17.742      | 16.002      |
| P/S Type                     |         | Rectangular | Rectangular |
| Number (+1)-standby          |         | 3(+1)       | 3(+1)       |
| Capacity                     | m3/min  | 5.92        | 5.34        |
| Pump Minimum Starting Period | min     | 15          | 15          |
| Pump Pit Capacity            | cu.m    | 22.20       | 20.03       |
| Therefore                    | cu.m    | 24.00       | 22.00       |
| Ground Level                 | m       | 0.00        | 0.00        |
| Inlet Pipe Level             | m       | -4.00       | -4.00       |
| Effective Depth              | m       | 0.80        | 0.80        |
| Тор                          | m       | 0.50        | 0.50        |
| Bottom                       | m       | 0.70        | 0.70        |
| Required Area                | sq.m    | 30.00       | 27.50       |
| Width                        | m       | 7.00        | 7.00        |
| Length                       | m       | 4.29        | 3.93        |
| Therefore                    | m       | 4.90        | 4.90        |
| Dimension (W                 | m       | 7.00        | 7.00        |
| (L)                          | m       | 4.90        | 4.90        |
| (D)                          | m       | 6.00        | 6,00        |
| Retention Time               | min     | 9.47        | 10.50       |

### Sewage Treatment Plant – Capacity Calculation

Appendix 12.4.1 Alternative 1 – Kandy (Oxidation Ditch)

Appendix 12.4.2 Alternative 2 – Kandy (Oxidation Ditch)

Appendix 12.4.3

Alternative 2 – Katugastota (Dual Power Aerated Lagoon)

# Appendix 12.4.1 Sewage Treatment Plant - Capacity Calculation

### CAPACITY CALCULATION OF FACILITIES Alternative 1 - Kandy (Oxidation Ditch)

### **1** BASIC CONDITIONS

### 1-1 BASIC ITEMS

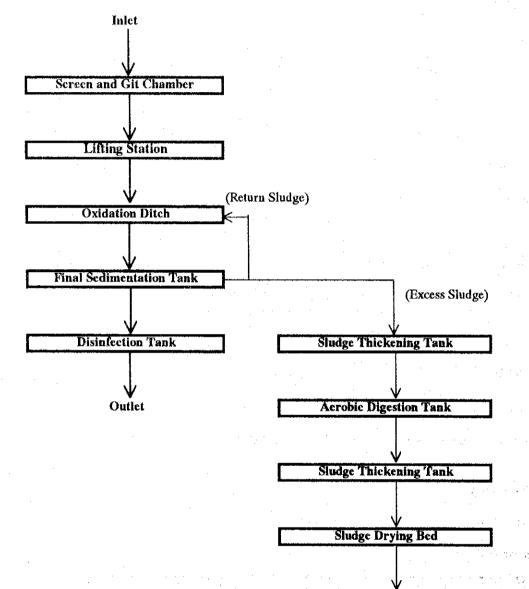
(1) Name : Kandy Sewage Treatment Plant

| (2) Land Area :             | Approximately                   |             | 3.00  | ha                               |
|-----------------------------|---------------------------------|-------------|-------|----------------------------------|
| (3) Elevation :             | 474.000                         | m           |       |                                  |
| (4) Inlet Pipe Level :      | 465.883                         | m           | ·     |                                  |
| (5) Pipe Diameter :         | 600                             | m           |       |                                  |
| (6) Land Use :              | -                               |             |       |                                  |
| (7) Collection System :     | Seperate Type                   |             |       |                                  |
| (8) Treatment Method :      | Sewage Treatm<br>Sludge Treatme |             |       | itch Method<br>kener, Drying Bed |
| (9) Effluent Point :        | Mada Ela River                  | r           |       |                                  |
| (10) Effluent Point Water I | evel :                          | . 4         | 70.64 | 0 m                              |
| (11) Target Year :          | Year 2005 (Pha                  | se 1), Year | 2015  | (Phase 2)                        |

(12) Lowest Monthly Average Temperature 23.6 °C (January)

### 1-2 Design Population

Design Population : 55,000 Persons (Total)


### 1-3 Design Sewage Flow

| ITEM           | m3/day | m3/hr  | m3/min | m3/sec |
|----------------|--------|--------|--------|--------|
| Daily Average  | 15,220 | 634.2  | 10.57  | 0.176  |
| Daily Maximum  | 18,000 | 750.0  | 12.50  | 0.208  |
| Hourly Maximum | 25,540 | 1064.2 | 17.74  | 0.296  |

### 1-4 Design Sewage Quality

| I | ITEM | INFLUENT | EFFLUENT | REMOVAL   | REMARKS |
|---|------|----------|----------|-----------|---------|
|   |      | (mg/L)   | (mg/L)   | RATIO (%) |         |
|   | BOD  | 240      | 30       | 88        |         |
|   | SS   | 250      | 50       | 80        |         |

### 1-5 Flow Chart (Oxidation Ditch)



**Composting/Disposal** 

### 1-6 Design Criteria for Oxidation Ditch

| ITEMS                                                                                                                                                                                                | UNIT                                                          | Formula or Value                                                                                                                     | Application                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1-6-1 Grit Chamber                                                                                                                                                                                   |                                                               |                                                                                                                                      |                                                                                             |
| <ol> <li>Water Surface Load</li> <li>Average Velocity</li> </ol>                                                                                                                                     | m3/m2/sec                                                     | < 1800                                                                                                                               | 1,800                                                                                       |
|                                                                                                                                                                                                      | m/sec                                                         | < 0.3                                                                                                                                | 0.3                                                                                         |
| 1-6-2 Oxidation Ditch                                                                                                                                                                                |                                                               |                                                                                                                                      |                                                                                             |
| <ol> <li>BOD-SS Load</li> <li>MLSS Concentration</li> <li>Return Sludge Ratio</li> <li>Water Depth</li> <li>Width</li> <li>Retention Time</li> <li>Oxygen Requirement</li> <li>Sludge Age</li> </ol> | kg/kg/day<br>mg/l<br>%<br>m<br>m<br>hour<br>kgO2/kgBOD<br>day | $\begin{array}{c} 0.03 - 0.05 \\ 3,000 - 4,000 \\ 100 - 200 \\ 1.0 - 3.0 \\ 2.0 - 6.0 \\ 24 - 48 \\ 1.4 - 2.2 \\ 8 - 50 \end{array}$ | 0.05<br>4,000<br>150<br>Same as Left<br>Same as Left<br>Same as Left<br>2.0<br>Same as Left |
| <ul> <li>1-6-3 Final Sedimentation Tank</li> <li>(1) Water Surface Load</li> <li>(2) Retention Time</li> <li>(3) Water Depth</li> </ul>                                                              | m3/m2/day                                                     | 8 - 12                                                                                                                               | 8 - 12                                                                                      |
|                                                                                                                                                                                                      | hour                                                          | 6.0 - 12.0                                                                                                                           | Same as Left                                                                                |
|                                                                                                                                                                                                      | m                                                             | 3.0 - 4.0                                                                                                                            | 3.0                                                                                         |
| <ul><li>1-6-4 Disinfection Tank</li><li>(1) Retention Time</li><li>(2) Dosage</li></ul>                                                                                                              | min.                                                          | > 15                                                                                                                                 | 15                                                                                          |
|                                                                                                                                                                                                      | mg/l                                                          | 2.0 - 4.0                                                                                                                            | 3.0                                                                                         |
| <ul> <li>1-6-5 Sludge Thickening Tank</li> <li>(1) Solid Matter Load</li> <li>(2) Water Depth</li> </ul>                                                                                             | kg/m2/day                                                     | 60 - 90                                                                                                                              | 70                                                                                          |
|                                                                                                                                                                                                      | m                                                             | Approximately 4.0                                                                                                                    | 4.0                                                                                         |
| <ul> <li>1-6-6 Aerobic Digestion Tank</li> <li>(1) Retention Time</li> <li>(2) Solid Matter Load</li> </ul>                                                                                          | day                                                           | 10.0 - 15.0                                                                                                                          | Same as Left                                                                                |
|                                                                                                                                                                                                      | kg/m2/day                                                     | 1.60 - 4.81                                                                                                                          | Same as Left                                                                                |
| <ul><li>1-6-7 Sludge Drying Bed</li><li>(1) Drying Period</li><li>(2) Depth of Bed</li></ul>                                                                                                         | day                                                           | 15 - 30                                                                                                                              | 20                                                                                          |
|                                                                                                                                                                                                      | m                                                             | 0.3 - 1.0                                                                                                                            | 0.3                                                                                         |

T

### 2 CAPACITY CALCULATION

### 2-1 Grit Chamber and Screen (Hourly Maximum)

| ITEM                  |            | SIGN    | UNIT      | CALCULATION        | RESULT |
|-----------------------|------------|---------|-----------|--------------------|--------|
| Туре                  |            | -       |           | Parallel Flow Type |        |
| Design Flow           |            | Q1      | m3/day    |                    | 25,540 |
|                       |            | Q2      | m3/sec    | -                  | 0.30   |
| Water Surface Load    |            | WSL     | m3/m2/day | -                  | 1,800  |
| Required Surface Area | a          | RSA     | m2        | Q1/WSL             | 14.189 |
| Basin Number (Total)  |            | BN      | basin     | -                  | 6      |
| Basin Number (Stand-  | -By)       | BNS     | basin     | . —                | 2      |
| Average Velocity      |            | V       | m/sec     | ~                  | 0.30   |
| Depth                 |            | H       | m         |                    | 0.80   |
| Width                 |            | W1      | m         | Q2/(V*H)           | 1.232  |
|                       | Therefore  | W2      | m         |                    | 1:20   |
| Length                |            | L1      | m         | RSA/W2/(BN-BNS)    | 2.956  |
| · ·                   | Therefore  | L2      | m         |                    | 2.70   |
| Dimension             | (W)        | W V     | m         | W2                 | 1.20   |
|                       | (L)        | L       | m         | L2                 | 2.70   |
|                       | (Basin)    |         | basin     | BN                 | 4      |
|                       | (Stand-By) | -       | stand-by  | BNS                | 2      |
| Screen Type           | /          | _ · · · |           | Fine Bar Screen    |        |
| Screen Set Number     |            | SSN     | set       | BN                 | 6      |
| Check                 |            |         | UNIT      | APPLICATION        | RESULT |
| Water Surface Load    |            |         | m3/m2/day | < 1800             | 1,971  |
| Average Velocity      |            |         | m/sec     | < 0.3              | 0.08   |

A-12.4-4

### 2-2 Oxidation Ditch (Daily Maximum)

| ITEM                  | SIGN       | UNIT      | CALCULATION                  | RESULT  |
|-----------------------|------------|-----------|------------------------------|---------|
| Туре                  | -          | -         | Re-circulation Flow Type     | ****    |
| Design Flow           | Q1         | m3/day    |                              | 18,000  |
|                       | Q2         | m3/hr     |                              | 750.0   |
| Basin Number          | BN         | Basin     | -                            | 6       |
| Inlet BOD Quality     | С          | mg/L      | -                            | 240     |
| Inlet SS Quality      | S          | mg/L      |                              | 250     |
| Inlet BOD Matter      | М          | kg/day    | Q1*C*10^-3                   | 4,320   |
| BOD-SS Load           | BS         | kg/kg/day | · -                          | 0.05    |
| MLSS Concentration    | SS         | mg/L      | -                            | 4,000   |
| Required Volume       | <b>V</b> 1 | m3        | M/(SS*BS*10^-3)              | 21,600  |
| Therefore             | V2         | m3        | -                            | 21,600  |
| Retention Time        | Т          | br        | (V2/Q1)*24                   | 28.8    |
| Return Sludge Ratio   | R1         | %         |                              | 150     |
|                       | R2         | -         | R1/100                       | 1.5     |
| Return Sludge Quality | RS1        | mg/L      | (SS*(1+R2)-C)/R2             | 6,507   |
| Therefore             | RS2        | mg/L      | -                            | 6,510   |
| Sludge Åge            | SA         | day       | SS*V2/(Q1*S)                 | 19.2    |
| Width                 | W          | m         | -                            | 6.0     |
| Water Depth           | Н          | m         | -                            | 3.0     |
| Length                | L1         | m         | (V2/BN)/(W*H)                | 200.0   |
| Therefore             | L2         | m         | -                            | 200.0   |
| Dimension (Width)     | W          | m         | W                            | 6.0     |
| (Depth)               | H          | m         | Н                            | 3.0     |
| (Length)              | L          | m         | L2                           | 200.0   |
| (Basin Number)        |            | basin     | BN                           | 6       |
| Required Oxygen       | O2-day     | kgO2/day  | Q1*C*10^-3*2.0               | 8,640.0 |
|                       | O2-hr      | kgO2/br   | (O2-day)/24                  | 360,0   |
| Aerator Motor Output  | ~          | kW        | O2-hr/1.9                    | 189.5   |
|                       | -          | kW        |                              | 180.0   |
| Aerator Type          |            | -         | Slanting Shaft Screw Aerator |         |
| Check                 |            | UNIT      | APPLICATION                  | RESULT  |
| Retention Time        |            | hour      | 24 - 48                      | 28.8    |
| Oxygen Supply         |            | kgO2/kg   | 1.4 - 2.2                    | 2.0     |
| Sludge Age            |            | day       | 8 - 50                       | 19.2    |

(0)

| ITEM                  | SIGN | UNIT      | CALCULATION               | RESULT |
|-----------------------|------|-----------|---------------------------|--------|
| Туре                  |      | -         | Radial Flow Circular Type |        |
| Design Flow           | Q1   | m3/day    |                           | 18,000 |
| Ŭ                     | Q2   | m3/sec    | _                         | 750.00 |
| Basin Number          | BN   | Basin     | -                         | 6      |
| Water Surface Load    | L    | m3/m2/day | 4.14*10^4*T^0.95*SS^-1.35 | 11.4   |
| Therefore             | L    | m3/m2/day |                           |        |
| Required Surface Area | A1   | m2        | Q1/L                      | 1500.0 |
| -                     | A2   | m2/Basin  | A1/BN                     | 250.0  |
| Water Depth           | Н    | m         | -                         | 3.0    |
| Diameter              | D1   | m         | (A2/3.14)^0.5*2           | 17.8   |
| Therefore             | D2   | . m       |                           | 18.0   |
| Dimension (Dian       | D    | m         | D2                        | 18.0   |
| (Depth)               | H    | m         | Н                         | 3.0    |
| (Basin Number)        | -    | Basin     | BN                        | 6      |
| Sludge Collector Type | ۰.   | -         | Central Drive Type        |        |
| Check                 |      | UNIT      | APPLICATION               | RESULT |
| Water Surface Load    |      | m3/m2/day | 8 - 12                    | 11.8   |
| Retention Time        |      | hour      | 6.0 - 12.0                | 5.1    |

### 2-3 Final Sedimentation Tank (Daily Maximum)

### 2-4 Disinfection Tank (Daily Maximum)

| ITEM              |           | SIGN | UNIT   | CALCULATION              | RESULT |
|-------------------|-----------|------|--------|--------------------------|--------|
| Chemical Type     |           | -    | -      | Chlorination Type        |        |
| Design Flow       |           | Q1   | m3/day | -                        | 18,000 |
|                   |           | Q2   | m3/min | -                        | 12.50  |
| Retention Time    |           | T    | min.   |                          | 15.0   |
| Basin Number      | T         | BN   | basin  | -                        | 2      |
| Required Volume   |           | v    | m3     | Q2*T                     | 94     |
| Width             |           | W    | m      |                          | 3.00   |
| Water Depth       |           | Н    | m      | -                        | 1.50   |
| Length            |           | L1   | m      | V/(W*H)                  | 20.833 |
|                   | therefore | L2   | m      | -                        | 21:00  |
| Dosage            | ,         | D    | mg/L   |                          | 3.0    |
| Required Chemical |           | RC1  | kg/day | Q1*D*10^-3/C             | 54.00  |
| _                 | Therefore | RC2  | kg/hr  | RC1/24                   | 2.25   |
| Dimension         | (W)       | W    | m      | W                        | 3.0    |
|                   | (Length)  | L    | m      | 1.2                      | 21.0   |
|                   | (Depth)   | H    | m      | H                        | 1.5    |
| · .               | (Basin)   | BN   | basin  |                          | 2      |
| Chlorine Feeder   |           | _    | unit   | including 1 for stand-by |        |
| Check             |           |      | UNIT   | APPLICATION              | RESULT |
| Retention Time    |           |      | min.   | 15                       | 15.1   |

Т

### 2-5 Sludge Thickening Tank (Daily Maximum)

| ITEM                    |          | SIGN  | UNIT      | CALCULATION               | RESULT |
|-------------------------|----------|-------|-----------|---------------------------|--------|
| Туре                    | T        | -     | -         | Radial Flow Circular Type |        |
| Design Flow             |          | Q1    | m3/day    | -                         | 18,000 |
|                         | Г        | Q2    | m3/hr     |                           | 634.2  |
| Basin Number            |          | BN    | Basin     | -                         | 2      |
| Inlet SS Quality        |          | С     | mg/L `    |                           | 250    |
| Removal Ratio           |          | R1    | %         | <b>_</b> .                | 80     |
|                         |          | R2    | - 1       | R1/100                    | 0.80   |
| Sludge Generation Ratio |          | SG1   | %         | -                         | 75     |
| (Oxidation Ditch)       | Γ        | SG2   | -         | SG1/100                   | 0.75   |
| Inlet SS Matter         |          | М     | kg/day    | Q1*C*R2*SG2*10^-3         | 2,700  |
| Solid Matter Load       |          | L     | kg/m2/day | -                         | 70.0   |
| Required Surface Area   |          | Al    | m2        | M/L                       | 38.6   |
|                         |          | A2    | m2/Basin  | A1/BN                     | 19.3   |
| Water Depth             |          | H     | m         | -                         | 4.0    |
| Diameter                |          | D1    | m         | (A2/3.14)^0.5*2           | 5.0    |
| T                       | herefore | D2    | m         | -                         | 5.0    |
| Dimension               |          | D     | m         | D2                        | 5.0    |
|                         | (Depth)  | Н     | m         | Н                         | 4.0    |
|                         | (Basin)  | Basin | Basin     | BN                        | 2      |
| Check                   |          |       | UNIT      | APPLICATION               | RESULT |
| Solid Matter Load       | T        |       | kg/m2/day | 70                        | 68.8   |

### 2-6 Aerobic Sludge Digestion Tank (Daily Maximum)

| ITEM                         | SIGN        | UNIT      | CALCULATION                | RESULT  |
|------------------------------|-------------|-----------|----------------------------|---------|
| Туре                         | · · ·       | -         | Circular Type              |         |
| Basin Number                 | BN          | Basin     |                            | 2       |
| Design Flow                  | Q1          | m3/day    |                            | 18,000  |
| Inlet SS Matter              | M           | kg/day    |                            | 2,700   |
| Moisture Content             | G           | %         | -                          | 97.5    |
| Sludge Volume                | V1          | m3/day    | M*100/(100-G)              | 108.0   |
| Temperature - Summer         | TS          | °C        | -                          | 26.5    |
| - Winter                     | TW          | °C        | -                          | 23.6    |
| Temperature - Sludge Age     | TSA         | day-°C    | VolatileSolidReduction=40% | 470     |
| Sludge Age                   | SA          | day       | TSA/TS                     | 19.9    |
| Total Mass of VSS            | VSS         | kg/day    | 0.8*M                      | 2,160   |
| VSS Reduction - Summer (41%) | VRS         | kg/day    | VSS*0.4                    | 864.0   |
| - Winter (40%)               | VRW         | kg/day    | VSS*0.41                   | 885.6   |
| Required Volume              | V           | m3        | V1/0.7/(0.125*0.8+1/SA)    | 514     |
| Water Depth                  | Н           | m         |                            | 4.0     |
| Diameter                     | D1          | m         | (A2/3.14)^0.5*2            | 12.8    |
| Therefore                    | D2          | : m       | -                          | 13.0    |
| Dimension                    | • D         | m         | D2                         | 13.0    |
| (Depth)                      | Н           | m         | Н                          | 4.0     |
| (Basin)                      | Basin       | Basin     | BN                         | 2       |
| Required Oxygen              | RO          | kgO2/day  | 2.3*VRS                    | 1987.2  |
| Required Air                 | RA          | kg-Air/br | RO/(0.1*0.233*1.293)/1440  | 2,748.4 |
| Check                        |             | UNIT      | APPLICATION                | RESULT  |
| Retention Time               |             | day       | 10.0 - 15.0                | 4.9     |
| Solid Matter Load            | • • • • • • | kg/m3/day | 1.60 - 4.81                | 10.2    |

### 

| ITEM                         | SIGN  | UNIT      | CALCULATION               | RESULT |
|------------------------------|-------|-----------|---------------------------|--------|
| Туре                         | -     | -         | Radial Flow Circular Type |        |
| Basin Number                 | BN    | Basin     | -                         | 2      |
| Inlet SS Matter to Digestion | M1    | kg/day    |                           | 2,700  |
| Removal Ratio at Digestion   | R1    | %         | -                         | 40%    |
| Inlet SS Matter              | M2    | kg/day    | M1*(1-R1)                 | 1620   |
| Moisture Content             | G     | %         | -                         |        |
| Sludge Volume                | V1    | m3/day    | M2*100/(100-G)            | 162.0  |
| Solid Matter Load            | L     | kg/m2/day | _                         | 70,0   |
| Required Surface Area        | A1    | m2        | M/L                       | 23.1   |
| · · ·                        | A2    | m2/Basin  | A1/BN                     | 11.6   |
| Water Depth                  | H     | m         |                           | 4.0    |
| Diameter                     | D1    | m         | (A2/3.14)^0.5*2           | 3.8    |
| Therefore                    | D2    | m         | • 1                       | 5.0    |
| Dimension                    | D     | m         | D2                        | 5.0    |
| (Depth)                      | Н     | m         | H                         | 4.0    |
| (Basin)                      | Basin | Basin     | BN                        | 2      |
| Check                        |       | UNIT      | APPLICATION               | RESULT |
| Solid Matter Load            |       | kg/m2/day | 70                        | 41.3   |

### 2-7 Sludge Thickening Tank (Daily Maximum)

### 2-8 Sludge Drying Bed (Daily Maxmum)

| ITEM             |                                       | SIGN  | UNIT       | CALCULATION    | RESULT |
|------------------|---------------------------------------|-------|------------|----------------|--------|
|                  |                                       |       |            | CALCULATION    |        |
| Design Flow      |                                       | Q1    | m3/day     | -              | 18,000 |
| Inlet SS Matter  | 1                                     | M1    | kg/day     | Q1*C*R2*10^-3  | 1,620  |
|                  | · f                                   | M2    | t/day      | M1/1000        | 1.62   |
| Moisture Content |                                       | G     | %          | -              | 97.0   |
| Sludge Volume    |                                       | V1    | m3/day     | M2*100/(100-G) | 54.0   |
| Drying Period    |                                       | P.    | day        |                | 10     |
| Required Volume  |                                       | V2    | m3/day     | V1*P           | 540.0  |
| Depth of Bed     |                                       | Η     | m          | -              | 0.3    |
| Required Area    |                                       | A     | m2         | V2/H           | 1,800  |
| Unit Number      |                                       | UN    | Unit       |                | 20     |
| Width per Unit   |                                       | W     | m          |                | 6.0    |
| Length per Unit  |                                       | L1    | m.         | A/(UN*W)       | 15.0   |
|                  | Therefore                             | L2    | m          |                | 15.0   |
| Dimension        | (Width                                | W     | m          | W              | 6.0    |
|                  | (Length)                              | L     | m          | L2             | 15.0   |
| · · · ·          | (Depth)                               | H     | • <b>m</b> | H              | 0.3    |
|                  | (Basin)                               | Basin | Basin      | BN             | 20.0   |
| Check            | · · · · · · · · · · · · · · · · · · · |       | UNIT       | APPLICATION    | RESULT |
| Drying Period    |                                       |       | day        | 20             | 10.0   |

# Appendix 12.4.2 Sewage Treatment Plant - Capacity Calculation

### **CAPACITY CALCULATION OF FACILITIES** Alternative 2 - Kandy (Oxidation Ditch)

3.00 ha

### **BASIC CONDITIONS** 1

### BASIC ITEMS 1-1

þ

Kandy Sewage Treatment Plant (1) Name :

| (2) Land Area | : | Approximately |  |
|---------------|---|---------------|--|
|---------------|---|---------------|--|

(3) Elevation 474.000 m :

(4) Inlet Pipe Level : 465.883 m

(5) Pipe Diameter : 600

(6) Land Use :

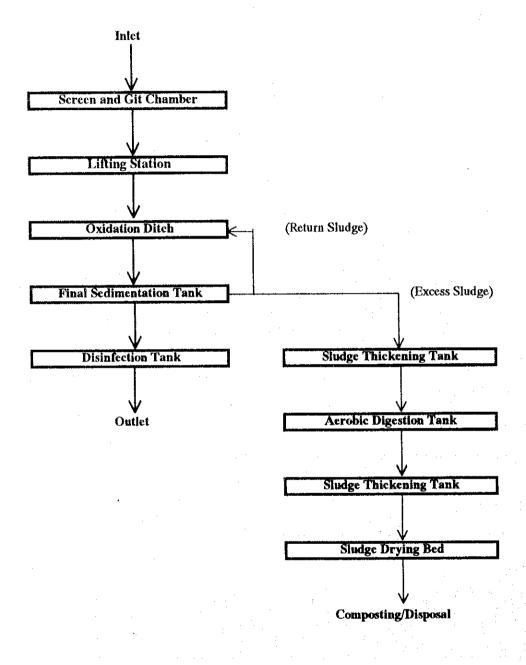
- Seperate Type (7) Collection System :
- Sewage Treatment : Oxidation Ditch Method (8) Treatment Method : Sludge Treatment : Sludge Thickener, Drying Bed

m

- Mada Ela River (9) Effluent Point :
- 470.640 m (10) Effluent Point Water Level :
- Year 2005 (Phase 1), Year 2015 (Phase 2) (11) Target Year
- 23.6 °C (January) (12) Lowest Monthly Average Temperature

### **1-2 Design Population**

49,700 Persons (Total) **Design Population** :


### **Design Sewage Flow** 1-3

| ITEM           | m3/day | m3/hr | m3/min | m3/sec |
|----------------|--------|-------|--------|--------|
| Daily Average  | 13,700 | 570.8 | 9.51   | 0.159  |
| Daily Maximum  | 17,000 | 708.3 | 11.81  | 0.197  |
| Hourly Maximum | 23,030 | 959.6 | 15.99  | 0.267  |

### **Design Sewage Quality** 1-4

| ITEM | INFLUENT | EFFLUENT | REMOVAL   | REMARKS |
|------|----------|----------|-----------|---------|
|      | (mg/L)   | (mg/L)   | RATIO (%) |         |
| BOD  | 240      | 30       | 88        |         |
| SS   | 250      | 50       | 80        |         |

### 1-5 Flow Chart (Oxidation Ditch)



A-12.4-10

### 1-6 Design Criteria for Oxidation Ditch

| ITEMS                          | UNIT       | Formula or Value  | Application  |
|--------------------------------|------------|-------------------|--------------|
| 1-6-1 Grit Chamber             |            |                   |              |
|                                |            |                   |              |
| (1) Water Surface Load         | m3/m2/sec  | < 1800            | 1,800        |
| (2) Average Velocity           | m/sec      | < 0.3             | 0.3          |
|                                |            |                   |              |
| 1-6-2 Oxidation Ditch          |            |                   |              |
|                                |            |                   |              |
| (1) BOD-SS Load                | kg/kg/day  | 0.03 - 0.05       | 0.05         |
| (2) MLSS Concentration         | mg/l       | 3,000 - 4,000     | 4,000        |
| (3) Return Sludge Ratio        | %          | 100 - 200         | 150          |
| (4) Water Depth                | m          | 1.0 - 3.0         | Same as Left |
| (5) Width                      | m          | 2.0 - 6.0         | Same as Left |
| (6) Retention Time             | hour       | 24 -48            | Same as Left |
| (6) Oxygen Requirement         | kgO2/kgBOD | 1.4 - 2.2         | 2.0          |
| (7) Shudge Age                 | day        | 8 - 50            | Same as Left |
|                                |            |                   |              |
| 1-6-3 Final Sedimentation Tank |            |                   |              |
|                                |            |                   | •            |
| (1) Water Surface Load         | m3/m2/day  | 8 - 12            | 8 - 12       |
| (2) Retention Time             | hour       | 6.0 - 12.0        | Same as Left |
| (3) Water Depth                | m          | 3.0 - 4.0         | 3.0          |
|                                |            |                   |              |
| 1-6-4 Disinfection Tank        |            |                   |              |
|                                |            |                   |              |
| (1) Retention Time             | min.       | > 15              | 15           |
| (2) Dosage                     | mg/l       | 2.0 - 4.0         | 3.0          |
|                                |            |                   |              |
| 1-6-5 Sludge Thickening Tank   |            |                   |              |
|                                |            |                   |              |
| (1) Solid Matter Load          | kg/m2/day  | 60 - 90           | 70           |
| (2) Water Depth                | m          | Approximately 4.0 | 4.0          |
|                                |            |                   |              |
| 1-6-6 Aerobic Digestion Tank   |            |                   |              |
| 1                              |            |                   |              |
| (1) Retention Time             | day        | 10.0 - 15.0       | Same as Left |
| (2) Solid Matter Load          | kg/m2/day  | 1.60 - 4.81       | Same as Left |
|                                |            |                   | L            |
| 1-6-7 Sludge Drying Bed        |            |                   | · ·          |
|                                |            |                   | ļ            |
| (1) Drying Period              | day        | 15 - 30           | 20           |
| (2) Depth of Bed               | m          | 0.3 - 1.0         | 0.3          |
|                                |            |                   |              |

0

### 2 CAPACITY CALCULATION

### UNIT CALCULATION RESULT **ITEM** SIGN Parallel Flow Type: Туре Q1 23,030 Design Flow m3/day \_ 0.27 Q2 m3/sec \_ 1,800 Water Surface Load WSL m3/m2/day \_ Q1/WSL 12.794 RSA **Required Surface Area** $m^2$ Basin Number (Total) BN basin -6 BNS Basin Number (Stand-By) basin 1 0.30 Average Velocity V m/sec -Н 0.80 Depth m -Q2/(V\*H) 1.111 Width W1 m :1.20 Therefore W2 m RSA/W2/(BN-BNS) 2.666 Length L1 m 2:70 Therefore L2 נח . $\overline{W2}$ 1.20 Dimension (W Ŵ m L L2 2.70 (L) m BN (Basin) basin 4 (Stand-By) stand-by BNS 2 -Screen Type Fine Bar Screen -SSN Screen Set Number BN 6 set APPLICATION RESULT UNIT Check 1,777 Water Surface Load m3/m2/day < 1800 < 0.3 0.07 Average Velocity m/sec

### 2-1 Grit Chamber and Screen (Hourly Maximum)

### 2-2 Oxidation Ditch (Daily Maximum)

| ITEM                  | SIGN       | UNIT      | CALCULATION                           | RESULT  |
|-----------------------|------------|-----------|---------------------------------------|---------|
| Туре                  | - ·        | ~         | Re-circulation Flow Type              |         |
| Design Flow           | Q1         | m3/day    |                                       | 17,000  |
| Ç                     | Q2         | m3/hr     | · · · · · · · · · · · · · · · · · · · | 708.3   |
| Basin Number          | BN         | Basin     | _                                     | 6       |
| Inlet BOD Quality     | С          | mg/L      |                                       | 240     |
| Inlet SS Quality      | S          | mg/L      | -                                     | 250     |
| Inlet BOD Matter      | M          | kg/day    | Q1*C*10^-3                            | 4,080   |
| BOD-SS Load           | BS         | kg/kg/day | -                                     | 0.05    |
| MLSS Concentration    | SS         | mg/L      | -                                     | 4,000   |
| Required Volume       | V1         | m3        | M/(SS*BS*10^-3)                       | 20,400  |
| Therefore             | V2         | m3 .      | -                                     | 20,400  |
| Retention Time        | Т          | hr        | (V2/Q1)*24                            | 28.8    |
| Return Sludge Ratio   | R1         | %         |                                       | 150     |
|                       | R2         | ~         | R1/100                                | 1.5     |
| Return Sludge Quality | RS1        | mg/L      | (SS*(1+R2)-C)/R2                      | 6,507   |
| Therefore             | RS2        | mg/L      | -                                     | 6,510   |
| Sludge Age            | SA         | day       | SS*V2/(Q1*S)                          | 19.2    |
| Width                 | W          | m         | ~                                     | 6.0     |
| Water Depth           | Н          | m         | -                                     | 3.0     |
| Length                | L1         | m         | (V2/BN)/(W*H)                         | 188.9   |
| Therefore             | L2         | m         | *                                     | 190.0   |
| Dimension (Width)     | W          | m         | W                                     | 6.0     |
| (Depth)               | Н          | m         | H                                     | 3.0     |
| (Length)              | L          | m         | L2                                    | 190.0   |
| (Basin Number)        | _          | basin     | BN                                    | 6       |
| Required Oxygen       | O2-day     | kgO2/day  | Q1*C*10^-3*2.0                        | 8,160.0 |
|                       | O2-hr      | kgO2/hr   | (O2-day)/24                           | 340.0   |
| Aerator Motor Output  | <b>-</b> . | kW        | O2-hr/1.9                             | 178.9   |
|                       | -          | kW        | -                                     | 180.0   |
| Aerator Type          | -          | -         | Slanting Shaft Screw Aerator          |         |
| Check                 | <u> </u>   | UNIT      | APPLICATION                           | RESULT  |
| Retention Time        |            | hour      | 24 -48                                | 29.0    |
| Oxygen Supply         |            | kgO2/kg   | 1.4 - 2.2                             | 2.0     |
| Sludge Age            |            | day       | 8 - 50                                | 19.2    |

ð

| ITEM                  | SIGN | UNIT      | CALCULATION                | RESULT |
|-----------------------|------|-----------|----------------------------|--------|
| Туре                  | -    | -         | Radial Flow Circular Type  |        |
| Design Flow           | Q1   | m3/day    |                            | 17,000 |
|                       | Q2   | m3/sec    | -                          | 708.33 |
| Basin Number          | BN   | Basin     |                            | 6      |
| Water Surface Load    | L    | m3/m2/day | 4.14*10^4*'I^0.95*SS^-1.35 | 11.4   |
| Therefore             | L    | m3/m2/day |                            | 12:0   |
| Required Surface Area | A1   | m2        | Q1/L                       | 1416.7 |
|                       | A2   | m2/Basin  | A1/BN                      | 236.1  |
| Water Depth           | H    | m         | -                          | 3.0    |
| Diameter              | D1   | m         | (A2/3.14)^0.5*2            | 17.3   |
| Therefore             | D2   | m         | -                          | 16.0   |
| Dimension (Diar       | D    | m         | D2                         | 16.0   |
| (Depth)               | Н    | m         | Н                          | 3.0    |
| (Basin Number)        |      | Basin     | BN                         | 6      |
| Sludge Collector Type | -    |           | Central Drive Type         |        |
| Check                 |      | UNIT      | APPLICATION                | RESULT |
| Water Surface Load    |      | m3/m2/day | 8 - 12                     | 14.1   |
| Retention Time        |      | hour      | 6.0 - 12.0                 | 4.3    |

### 2-3 Final Sedimentation Tank (Daily Maximum)

### 2-4 Disinfection Tank (Daily Maximum)

| ITEM              |           | SIGN | UNIT   | CALCULATION              | RESULT |
|-------------------|-----------|------|--------|--------------------------|--------|
| Chemical Type     |           | -    |        | Chlorination Type        |        |
| Design Flow       |           | Q1   | m3/day |                          | 17,000 |
|                   |           | Q2   | m3/min | -                        | 11.81  |
| Retention Time    |           | Т    | min.   | -                        | 15.0   |
| Basin Number      |           | BN   | basin  |                          | 2      |
| Required Volume   |           | V    | m3     | Q2*T                     | 89     |
| Width             |           | W    | m      | -                        | 3.00   |
| Water Depth       |           | Н    | m      | -                        | 1.50   |
| Length            |           | Li   | m      | V/(W*H)                  | 19.676 |
|                   | therefore | L2   | m      |                          | 20.00  |
| Dosage            |           | D    | mg/L   | -                        | 3.0    |
| Required Chemical |           | RC1  | kg/day | Q1*D*10^-3/C             | 51.00  |
|                   | Therefore | RC2  | kg/hr  | RC1/24                   | 2.13   |
| Dimension         | (W        | W    | m      | W                        | 3.0    |
|                   | (Length)  | L    | m      | 1.2                      | 20.0   |
|                   | (Depth)   | Н    | m      | Н                        | 1.5    |
|                   | (Basin)   | BN   | basin  | -                        | 2      |
| Chlorine Feeder   |           | -    | unit   | including 1 for stand-by | 3      |
| Check             | N         |      | UNIT   | APPLICATION              | RESULT |
| Retention Time    |           |      | min.   | 15                       | 15.2   |

### 2-5 Sludge Thickening Tank (Daily Maximum)

2

ALC: NO.

1

| ITEM                    | SIGN  | UNIT      | CALCULATION               | RESULT |
|-------------------------|-------|-----------|---------------------------|--------|
| Туре                    |       | **        | Radial Flow Circular Type |        |
| Design Flow             | Q1    | m3/day    | -                         | 17,000 |
| -                       | Q2    | m3/hr     | -                         | 570.8  |
| Basin Number            | BN    | Basin     | -                         | 2      |
| Inlet SS Quality        | С     | mg/L      | ~                         | 250    |
| Removal Ratio           | R1    | %         | -                         | 80     |
|                         | R2    | · _       | R1/100                    | 0.80   |
| Sludge Generation Ratio | SG1   | %         | -                         | 75     |
| (Oxidation Ditch)       | SG2   |           | SG1/100                   | 0.75   |
| Inlet SS Matter         | М     | kg/day    | Q1*C*R2*SG2*10^-3         | 2,550  |
| Solid Matter Load       | L     | kg/m2/day | · -                       | 70.0   |
| Required Surface Area   | A1    | m2        | M/L                       | 36.4   |
|                         | A2    | m2/Basin  | A1/BN                     | 18.2   |
| Water Depth             | H     | m         |                           | 4.0    |
| Diameter                | D1    | m         | (A2/3.14)*0.5*2           | 4.8    |
| Therefore               | D2    | m         | -                         | 5.0    |
| Dimension               | D     | m         | D2                        | 5.0    |
| (Depth)                 | Н     | m         | Н                         | 4.0    |
| (Basin)                 | Basin | Basin     | BN                        | 2      |
| Check                   |       | UNIT      | APPLICATION               | RESULT |
| Solid Matter Load       |       | kg/m2/day | 70                        | 65.0   |

### 2-6 Aerobic Sludge Digestion Tank (Daily Maximum)

| ITEM                            | SIGN       | UNIT       | CALCULATION                | RESULT  |
|---------------------------------|------------|------------|----------------------------|---------|
| Гуре                            | · ·        | -          | Circular Type              |         |
| Basin Number                    | BN         | Basin      | -                          | 2       |
| Design Flow                     | Q1         | m3/day     | -                          | 17,000  |
| Inlet SS Matter                 | M          | kg/day     | -                          | 2,550   |
| Moisture Content                | G          | %          | -                          | 97.5    |
| Sludge Volume                   | <b>V</b> 1 | m3/day     | M*100/(100-G)              | 102.0   |
| Temperature - Summer            | TS         | °C         | -                          | 26.5    |
| - Winter                        | TW         | °C         | •                          | 23.6    |
| Temperature - Sludge Age        | TSA        | day- C     | VolatileSolidReduction=40% | 470     |
| Sludge Age                      | SA         | day        | TSA/TS                     | 19.9    |
| Total Mass of VSS               | VSS        | kg/day     | 0.8*M                      | 2,040   |
| VSS Reduction - Summer (41%)    | VRS        | kg/day     | VSS*0.4                    | 816.0   |
| - Winter (40%)                  | VRW        | kg/day     | VSS*0.41                   | 836.4   |
| Required Volume                 | V          | m3         | V1/0.7/(0.125*0.8+1/SA)    | 485     |
| Water Depth                     | H          | . <b>m</b> |                            | 4.(     |
| Diameter                        | D1         | m          | (A2/3.14)^0.5*2            | 12:4    |
| Therefore                       | D2         | m          | -                          | 13.0    |
| Dimension                       | D          | m          | D2                         | 13.0    |
| (Depth)                         | Н          | m          | Н                          | 4.0     |
| (Basin)                         | Basin      | Basin      | BN                         |         |
|                                 | RO         | kgO2/day   | 2.3*VRS                    | 1876.8  |
| Required Oxygen<br>Required Air | RA         | kg-Air/hr  | RO/(0.1*0.233*1.293)/1440  | 2,595.7 |
| Check                           |            | UNIT       | APPLICATION                | RESULT  |
| Retention Time                  |            | day        | 10.0 - 15.0                | 5.      |
| Solid Matter Load               |            | kg/m3/day  | 1.60 - 4.81                | 9.      |

A-12.4-15

| ITEM                         | SIGN       | UNIT      | CALCULATION               | RESULT |
|------------------------------|------------|-----------|---------------------------|--------|
| Туре                         | -          | -         | Radial Flow Circular Type |        |
| Basin Number                 | BN         | Basin     |                           | 2      |
| Inlet SS Matter to Digestion | <b>M</b> 1 | kg/day    |                           | 2,550  |
| Removal Ratio at Digestion   | R1         | %         |                           | 40%    |
| Inlet SS Matter              | M2         | kg/day    | M1*(1-R1)                 | 1530   |
| Moisture Content             | G          | %         |                           | 99.0   |
| Sludge Volume                | Vi         | m3/day    | M2*100/(100-G)            | 153.0  |
| Solid Matter Load            | L          | kg/m2/day | -                         | 70.0   |
| Required Surface Area        | Al         | m2        | M/L                       | 21.9   |
|                              | A2 -       | m2/Basin  | A1/BN                     | 10.9   |
| Water Depth                  | Н          | m ·       |                           | 4.0    |
| Diameter                     | D1 .       | m         | (A2/3.14)^0.5*2           | 3.7    |
| Therefore                    | D2         | m         | -                         | 5.0    |
| Dimension                    | D          | m         | D2                        | 5.0    |
| (Depth)                      | Н          | m         | H                         | 4.0    |
| (Basin)                      | Basin      | Basin     | BN                        | 2      |
| Check                        |            | UNIT      | APPLICATION               | RESULT |
| Solid Matter Load            |            | kg/m2/day | 70                        | 39.0   |

### 2-7 Sludge Thickening Tank (Daily Maximum)

### 2-8 Sludge Drying Bcd (Daily Maxmum)

| ITEM             |           | SIGN         | UNIT   | CALCULATION    | RESULT |
|------------------|-----------|--------------|--------|----------------|--------|
| Design Flow      |           | Q1           | m3/day | -              | 17,000 |
| Inlet SS Matter  |           | <b>M</b> 1   | kg/day | Q1*C*R2*10^-3  | 1,530  |
|                  | Г         | M2           | t/day  | M1/1000        | 1.53   |
| Moisture Content |           | G            | %      |                | 97.0   |
| Sludge Volume    |           | <b>V</b> 1   | m3/day | M2*100/(100-G) | 51.0   |
| Drying Period    | T         | Р            | day    |                | 10     |
| Required Volume  |           | V2           | m3/day | V1*P           | 510.0  |
| Depth of Bed     |           | Н            | m      | -              | 0.3    |
| Required Area    |           | Α            | m2     | V2/H           | 1,700  |
| Unit Number      |           | UN           | Unit   | 1              | 20     |
| Width per Unit   | Î.        | . <b>W</b> - | m      |                | 6.0    |
| Length per Unit  | ļ         | L1           | m      | A/(UN*W)       | 14.2   |
|                  | Therefore | L2           | m      | -              | 14.5   |
| Dimension        | (Width)   | W            | m      | W              | 6.0    |
|                  | (Length)  | L            | m      | 1.2            | 14.5   |
|                  | (Depth)   | H            | · m ·  | H              | 0.3    |
|                  | (Basin)   | Basin        | Basin  | BN             | 20.0   |
| Check            |           |              | UNIT   | APPLICATION    | RESULT |
| Drying Period    | · · · · · |              | day    | 20             | 10.2   |

A-12.4-16

# Appendix 12.4.3 Sewage Treatment Plant - Capacity Calculation CAPACITY CALCULATION OF FACILITIES Alternative 2 - Katugasutota (Dual Power Aerated Lagoon)

### **1** BASIC CONDITIONS

### 1-1 BASIC ITEMS

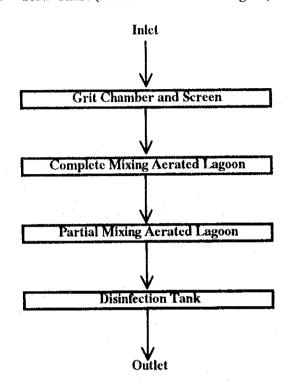
٨

(1) Name : Katugastota Scwage Treatment Plant

| (2) Land Area :              | Approximately                    | 1.2              | 0 ha            |
|------------------------------|----------------------------------|------------------|-----------------|
| (3) Elevation :              | 475.950                          | m                |                 |
| (4) Inlet Pipe Level :       | 472.447                          | m                |                 |
| (5) Pipe Diameter :          | 300                              | m                |                 |
| (6) Land Use :               | n, a. <b>⊷</b>                   |                  |                 |
| (7) Collection System :      | Seperate Type                    |                  |                 |
| (8) Treatment Method :       | Sewage Treatme<br>Sludge Treatme |                  |                 |
| (9) Effluent Point :         | Mahaweli Gang                    | a                |                 |
| (10) Effluent Point Water Le | vel :                            | 446.4            | m               |
| (11) Target Year :           | Year 2005 (Pha                   | se 1), Year 2015 | 5 (Phase 2)     |
| (12) Lowest Monthly Average  | e Temperature                    | 23               | .6 °C (January) |

### 1-2 Design Population

Design Population : 5,260 Persons


### 1-3 Design Sewage Flow

| ITEM           | m3/day | m3/hr | m3/min | m3/sec |
|----------------|--------|-------|--------|--------|
| Daily Average  | 1,500  | 62.5  | 1.04   | 0.017  |
| Daily Maximum  | 1,700  | 70.8  | 1.18   | 0.020  |
| Hourly Maximum | 2,500  | 104.2 | 1.74   | 0.029  |

### 1-4 Design Sewage Quality

T

| ITEM | INFLUENT | EFFLUENT | REMOVAL   | REMARKS |
|------|----------|----------|-----------|---------|
|      | (mg/L)   | (mg/L)   | RATIO (%) | ·       |
| BOD  | 240      | 30       | 88        |         |
| SS   | 250      | 50       | 80        |         |



### 1-5 Flow Chart (Dual Power Aerated Lagoon)

|                | ITEMS                                | UNIT       | Formula or Value | Application                           |
|----------------|--------------------------------------|------------|------------------|---------------------------------------|
| 1-6-1 G        | rit Chamber                          |            |                  |                                       |
| (1) W          | ater Surface Load                    | m3/m2/day  | > 1800           | 1,800                                 |
| (2) Av         | verage Velocity                      | m/sec      | > 0.3            | 0.3                                   |
| 1-6-2 Co       | omplete Mixing Aerated Lagoon        |            |                  |                                       |
| (1) Re         | etention Time                        | day        | 1.5 - 2.5        | 1.50                                  |
| (2) W          | ater Depth                           | m          | 3.0 - 4.0        | 3.0                                   |
|                | ower Requirement for Mixing          | W/m3       | > 6.0            | 6.0                                   |
| 1-6-3 Pa       | artial Mixing Aerated Lagoon         |            |                  |                                       |
| (1) <b>R</b> e | etention Time                        | day        | 2.0              | 2.0                                   |
| (2) W          | ater Depth                           | m          | 2.0 - 4.0        | 3.0                                   |
|                | ower Requirement for Mixing          | W/m3       | > 1.0            | 1.0                                   |
| (4) N          | umber of Cell                        | Cell/Basin | 1 - 3            | 3                                     |
| 1-6-4 St       | torm Water Settling Tank             |            |                  |                                       |
| (1) W          | Vater Depth                          | m          | 1.5 - 3.0        | 1.5                                   |
|                | etention Time (Hourly Max Rain)      | hour       | > 0.5            | 0.5                                   |
| (3) W          | Vater Surface Load (Hourly Max Rain) | m3/m2/day  | 75 - 150         | 150.0                                 |
| 1-6-5 D        | isinfection Tank                     |            |                  | · · · · · · · · · · · · · · · · · · · |
| (1) R          | etention Time                        | min.       | > 15             | 15.0                                  |
| . ,            | losage                               | mg/i       | 2.0 - 4.0        | 3.0                                   |

### 1-6 Design Criteria for Dual Power Aerated Lagoon

ł

4.5

Î

### 2 CAPACITY CALCULATION

### 2-1 Grit Chamber and Screen (Hourly Maximum)

| ITEM                  |            | SIGN | UNIT      | CALCULATION        | RESULT |
|-----------------------|------------|------|-----------|--------------------|--------|
| Туре                  |            | -    | -         | Parallel Flow Type |        |
| Design Flow           |            | Q1   | m3/day    |                    | 2,500  |
| C.                    |            | Q2   | m3/sec    | •                  | 0.029  |
| Water Surface Load    |            | WSL  | m3/m2/day | -                  | 1,800  |
| Required Surface Area | L .        | RSA  | m2        | Q1/WSL             | 1.389  |
| Basin Number (Total)  |            | BN   | basin     | <b></b>            | 2      |
| Basin Number (Stand-  | By)        | BNS  | basin     | -                  | 1      |
| Average Velocity      |            | V    | m/sec     | · · ·              | 0.30   |
| Depth                 |            | Н    | m         | -                  | 0.20   |
| Width                 |            | W1   | m         | Q2/(V*H)           | 0.482  |
|                       | Therefore  | W2   | m         | -                  | 0.50   |
| Length                |            | L1   | m         | RSA/W2/(BN-BNS)    | 2.778  |
| <b>0</b>              | Therefore  | L2   | m         | -                  | 3.00   |
| Dimension             | (W)        | W    | m         | W2                 | 0.50   |
|                       | (Ľ)        | L    | m         | 1.2                | 3.00   |
| -                     | (Basin)    | _    | basin     | BN                 | 1      |
| ·                     | (Stand-By) |      | stand-by  | BNS                | 1      |
| Screen Type           |            | · -  |           | Fine Bar Screen    |        |
| Screen Set Number     |            | SSN  | set       | BN                 | 2      |
| Check                 |            |      | UNIT      | APPLICATION        | RESULT |
| Water Surface Load    |            |      | m3/m2/day |                    | 1,667  |
| Average Velocity      |            |      | m/sec     | > 0.3              | 0.29   |

| ITEM                      | SIGN | UNIT     | CALCULATION                  | RESULT |
|---------------------------|------|----------|------------------------------|--------|
| Туре                      |      | -        | Rectangular Type             |        |
| Design Flow               | Q1   | m3/day   | -                            | 1,700  |
|                           | Q2   | m3/hr    | -                            | 70.83  |
| Retention Time            | T1   | day      | -                            | 1.50   |
| Inlet BOD Quality         | So   | mg/L     | -                            | 240    |
| Required Volume           | V1   | m3/basin | Q1*T                         | 2,550  |
| Basin Number              | BN   | basin    | -                            |        |
| Required Volume per Basin | VBN  | m3/basin | Q1*T/BN                      | 1,275  |
| Water Depth               | H    | m        | -                            | 3.00   |
| Required Surface Area     | A    | m2       | V/H                          | 42     |
| Width                     | W    | m        | -                            | 30.0   |
| Length                    | L1   | m        | A/W                          | 14.16  |
| Therefore                 | L2   | m        | -                            | 15.00  |
| Oxygen Demand Rate        | PR1  | kg/h     | (4.16*10^-5)*r*Q1*So         | 2:     |
| -max. oxygen uptake       | ſ_   | W/m3     | -                            | 1.     |
| Aeration Unit Power Rate  | PRO  | kg/h     | 1000*PR1/(N*Q1*T1)           | 5.2    |
| Therefore                 | PRO  | W/m3     | -                            | 5.     |
| -aeration performance     | N    | W/m3     | -                            |        |
| Power Requirement         | P1   | kW       | -                            | 16.    |
| 1) Oxygen Requirement     | P10  | kW .     | PR1/N                        | 13.4   |
| 2) Mixing Power           | P1M  | kW       | V1*P0*10^-3                  | 15.    |
| Dimension (Width)         | W    | m        | W                            | 30.0   |
| (Length)                  | L    | m        | 1.2                          | 15.0   |
| (Depth)                   | Н    | m        | Н                            | 3.0    |
| (Basin)                   | -    | basin    | BN                           |        |
| Aerator Type              |      | -        | Slanting Shaft Screw Aerator |        |
| Check                     |      | UNIT     | APPLICATION                  | RESULT |
| Retention Time            |      | day      | 1.5 - 2.5                    | 1.5    |

### 2-2 Complete Mixing Aerated Lagoon (Daily Maximum)

ACC'UN

| ITEM                          | SIGN           | UNIT       | CALCULATION                  | RESULT |
|-------------------------------|----------------|------------|------------------------------|--------|
| Туре                          | -              |            | Rectangular Type             |        |
| Design Flow                   | Q1             | m3/day     | -                            | 1,700  |
|                               | Q2             | m3/hr      |                              | 70.83  |
| Retention Time                | T2             | day        | -                            | 2.00   |
| Required Volume               | V2             | m3/basin   | Q2*T                         | 3,400  |
| Basin Number                  | BN             | basin      | -                            |        |
| Cells Number                  | CN             | cell/basin | -                            |        |
| Stand-by Cell Number          | CNS            | basin      | -                            |        |
| Sludge Accumulation           | SA             | m3/year    | 365*Q1*Xi/(x*10^6)           | 853    |
| -inert solid concentration    | Xi             | mg/l       | -                            | 5'     |
| -weight fraction of solids    | x              | -          | -                            | 0.04   |
| No. of Cells Cleaned per Year | CNC            | basin      | -                            |        |
| Total Sludge Accumulation     | TSA            | m3         | -                            | 1,280  |
| Required Volume               | V              | m3/cell    | (Q1*T+TSA)/(BN*CN-CNS)       | 930    |
| Water Depth                   | D              | m          | -                            | 4:00   |
| Required Surface Area         | A              | m2/cell    | V/H                          | 234    |
| Width                         | W              | m          | -                            | 30.00  |
| Length                        | L1             | m          | A/W                          | 7.800  |
| Therefore                     | L1             | m          | -                            | 8.00   |
| Power Requirement             | P2             | kW         | -                            | 4.0    |
| 1) Mixing Power               | P2M            | kW         | Q1*T2*CN*10^-3               | 3.4    |
| Dimension (Width)             | W              | m          | W                            | 30.00  |
| (Length)                      | L              | m          | L1                           | 8.00   |
| (Depth)                       | H              | m          | Н                            | 4.00   |
| (Basin)                       | -              | basin      | BN                           |        |
| (Cell)                        | - <del>-</del> | cell/basin | CN                           |        |
| (Stand-by Cell)               | -              | cell       | •                            | 1      |
| Aerator Type                  |                | -          | Slanting Shaft Screw Aerator |        |
| Check                         |                | UNIT       | APPLICATION                  | RESULT |
| Surface Area                  |                | m2         | •                            | 1,440  |
| Retention Time                |                | day        | 2.0                          | 2.0    |

### 2-3 Partial Mixing Acrated Lagoon (Daily Maximum)

### 2-6 Disinfection Tank (Daily Maximum)

| ITEM              | SIGN     | UNIT   | CALCULATION              | RESULT |
|-------------------|----------|--------|--------------------------|--------|
| Chemical Type     | -        | -      | Chlorination Type        |        |
| Design Flow       | Q1       | m3/day | -                        | 1,700  |
|                   | Q2       | m3/min | -                        | 1.18   |
| Retention Time    | Т        | min.   |                          | 15.0   |
| Basin Number      | BN       | basin  |                          | 1      |
| Required Volume   | V        | m3     | 'Q2*T                    | 18     |
| Width             | W        | m      | -                        | 1.00   |
| Water Depth       | H        | m      | -                        | 1.00   |
| Length            | L1       | m      | V/(W*H)                  | 17.708 |
| there             | fore L2  | m      | -                        | 18.00  |
| Dosage            | D        | mg/L   | -                        | 3.0    |
| Required Chemical | RC1      | kg/day | Q1*D*10^-3/C             | 5.10   |
| There             | fore RC2 | kg/hr  | RC1/24                   | 0.21   |
| Dimension (Wi     | dth) W   | m      | W                        | 1.00   |
| (Len              |          | m      | L2                       | 18.00  |
| (De               | pth) H   | m      | H                        | 1.00   |
|                   | pth) BN  | basin  | -                        | 1      |
| Chlorine Feeder   | -        | unit   | including 1 for stand-by | 3      |
| Check             |          | UNIT   | APPLICATION              | RESULT |
| Retention Time    |          | min.   | > 15                     | 15.2   |

¢

Appendix 12.5 Summary of Construction Cost Exchange Rate =

1.8 Yen/Rs

# Construction Cost - Master Plan : Alternatives

|    | E356                      |                | Alternative 1     | ve 1    |           |                | Alternative 2 | ve 2    |           |
|----|---------------------------|----------------|-------------------|---------|-----------|----------------|---------------|---------|-----------|
|    | racijines                 | Specifications | Civil             | M&E     | Total     | Specifications | Civil         | M&E     | Total     |
| S. | . Sewer                   |                |                   |         |           |                |               |         |           |
|    | Sub-Totai                 |                | 777,683           |         | 777,683   |                | 747,251       |         | 747,251   |
|    | 2. Pumping Station        | uc             |                   |         |           |                |               |         |           |
|    | Kandy                     |                |                   |         |           |                |               |         |           |
|    | P/S 1                     | 0.74*27*2      | 918               | 2,185   |           | 0.74*27*2      | 918           | 2,185   |           |
| 1  | P/S 2-1                   | 1.74*48*2      | 1,383             | 4,211   |           |                |               |         |           |
|    | P/S 2-2                   | 1.74*48*2      | 1,383             | 4,211   |           |                |               |         |           |
|    | STP-1                     | 9.0*14*4       | 7,211             | 12,050  |           | 8.2*14*4       | 7,211         | 11,275  |           |
|    | STP-2                     | 4.5*14*4       | 0                 | 3,661   |           | 4.1*14*4       | 0             | 3,454   |           |
|    | Katugastota               |                |                   |         |           |                |               |         |           |
|    | STP                       |                |                   |         |           | 1.74*24*2      | 1,210         | 2,438   |           |
|    | Sub-Total                 |                | 10,895            | 26,317  | 37,212    |                | 9,339         | 19,351  | 28,690    |
| S. | 3. Sewage Treatment Plant | nent Plant     |                   |         |           |                |               | _       |           |
|    | Kandy                     | 18,000m3/day   | 358,896           | 666,558 |           | 17,000m3/day   | 344,809       | 636,899 |           |
|    | Katugastota               |                |                   |         |           | 1,700m3/day    | 45,428        | 35,242  |           |
|    | Sub-Total                 |                | 358,896           | 666,558 | 1,025,454 |                | 390,237       | 672,141 | 1,062,378 |
| 1  | Total                     |                | 1,147,474 692,875 |         | 1,840,349 |                | 1,146,827     | 691,492 | 1,838,319 |

# **Construction Cost - Feasibility Study**

|                    |                           | M/P (Alter   | tternative 2) |           |                | F/S (Phase 1) | e 1)    |         |                     | Phase 2 | : 2             |         |
|--------------------|---------------------------|--------------|---------------|-----------|----------------|---------------|---------|---------|---------------------|---------|-----------------|---------|
| Facilities         | es Specifications         | Ö            | M&E           | Total     | Specifications | Civil         | M&E     | Total   | Specifications      | Civil   | M&E             | Total   |
| 1. Sewer           |                           |              |               |           |                |               |         |         |                     |         |                 |         |
| Sub-Total          | otal                      | 747,253      |               | 747,251   |                | 463,191       |         | 463,191 |                     | 284,060 |                 | 284,060 |
| 2. Pumping Station | Station                   |              |               |           |                |               |         |         |                     |         |                 |         |
| Kandy              |                           |              |               |           |                |               |         |         |                     |         |                 |         |
| L/S 1              | 1 0.74*27*2               | 918          | 2,185         |           | 0.74*27*2      | 918           | 2,185   |         |                     |         |                 |         |
| I-dLS              | -1 8.2*14*2               | 7,211        | 11,275        |           | 8.2*14*2       | 7,211         | 8,137   |         | 8.2*14*2            | 0       | 3,137           |         |
| TTS                | STP-2 4.1*14*2            | 0            | 3,454         |           | 4.1*14*2       | 0             | 1,727   |         | 4.1*14*2            | 0       | 1,727           |         |
| Katugastota        | ustota                    |              |               |           |                |               |         |         |                     |         |                 |         |
| STP                | 1.74+24*2                 | 1,210        | 2,438         |           |                | 0             | 0       |         | 1.74*24*2           | 1,210   | 2,438           |         |
| Sub-Total          | leio                      | 9,339        | 19,351        | 28,690    |                | 8,129         | 12,049  | 20,178  |                     | 1,210   | 7,302           | 8,512   |
| 3. Sewage          | 1. Sewage Treatment Plant |              |               |           |                |               | •       |         |                     |         |                 |         |
| Kandy              | 17,000m3/day              | /day 344,809 | 636,899       |           | 8,500m3/day    | 190,707       | 320.246 |         | 8,500m3/day 154,102 | 154,102 | 316,654         |         |
| Katugastota        | istota 1,700m3/day        | /day 45,428  | 35,242        |           |                | 0             | 0       | 1       | 1.700m3/day         | 45,428  | 35,242          |         |
| Sub-Total          | otal                      | 390,237      | 672,141       | 1,062,378 |                | 190,707       | 320,246 | 510,953 |                     | 199,530 | 351,896         | 551,426 |
| Total              |                           | 1,146,827    | 691,492       | 1,838,319 |                | 662,027       | 332,294 | 994,321 |                     | 484,800 | 484,800 359,197 | 843,997 |

T

A-12.5-1

| Alternative 2 (A                      |                    |       |      |           | Master Plan |             | Feasibility Study |             |  |  |
|---------------------------------------|--------------------|-------|------|-----------|-------------|-------------|-------------------|-------------|--|--|
| ITEM                                  | DESCRIPTION        | Depth | UNIT | RATE      | QUANTITY    | COST        | QUANTITY          | COST        |  |  |
| Clay Pipe Laying                      | 150 mm (Lateral)   | 1.5   | m    | 5,498     | 9,300       | 51,131,400  | 4,500             | 24,741,000  |  |  |
|                                       | 150 mm             | 1.5   | m    | 5,498     | 4,651       | 25,571,198  | 4,651             | 25,571,198  |  |  |
|                                       | 150 mm             | 2,5   | m    | 7,871     | 793         | 6,241,703   | 793               | 6,241,703   |  |  |
|                                       | 225 mm             | 1.5   | m    | 7,142     | 1,527       | 10,905,834  | 1,527             | 10,905,834  |  |  |
|                                       | 225 mm             | 2.5   | m    | 9,603     | 1,859       | 17,851,977  | 1,509             | 14,490,927  |  |  |
|                                       | 225 mm             | 3.5   | m    | 12,459    | 691         | 8,609,169   | 691               | 8,609,169   |  |  |
|                                       | 225 mm             | 7.5   | m    | 27,832    | 100         | 2,783,200   | 0                 | C           |  |  |
|                                       | 300 mm             | 1.5   | m    | 10,593    | 1,942       | 20,571,606  | 1,942             | 20,571,606  |  |  |
|                                       | 300 mm             | 2.5   | m    | 13,173    | 680         | 8,957,640   | 680               | 8,957,640   |  |  |
|                                       | 300 mm             | 3.5   | m    | 16,147    | 80          | 1,291,760   | 80                | 1,291,760   |  |  |
|                                       | 300 mm             | 7.5   | m    | 31,994    | 80          | 2,559,520   | 80                | 2,559,520   |  |  |
|                                       | 400 mm             | 1.5   | m    | 15,652    | 2,590       | 40,538,680  | 840               | 13,147,680  |  |  |
|                                       | 400 mm             | 2.5   | m    | 18,373    | 548         | 10,068,404  | 348               | 6,393,804   |  |  |
|                                       | 400 mm             | 4.5   | m    | 25,001    | 200         | 5,000,200   | 0                 | C           |  |  |
| · · · · · ·                           | 450 mm             | 1.5   | m    | 17,475    | 75          | 1,310,625   | - 75              | 1,310,625   |  |  |
|                                       | 500 mm             | 1.5   | m    | 20,461    | 288         | 5,892,768   | 288               | 5,892,768   |  |  |
|                                       | 500 mm             | 2.5   | m    | 23,318    | 70          | 1,632,260   | 70                | 1,632,260   |  |  |
|                                       | 600 mm             | 1.5   | m    | 33,513    | 312         | 10,456,056  | 312               | 10,456,056  |  |  |
|                                       | 600 mm             | 2.5   | m    | 36,508    | 55          | 2,007,940   | 55                | 2,007,940   |  |  |
| HP Pipe Laying                        | 675 mm             | 1.5   | m    | 16,046    | 500         | 8,023,000   | 500               | 8,023,000   |  |  |
|                                       | 675 mm             | 2.5   | m    | 19,178    | 180         | 3,452,040   | 180               | 3,452,040   |  |  |
|                                       | 675 mm             | 3.5   | m    | 22,704    | 120         | 2,724,480   | 120               | 2,724,480   |  |  |
|                                       | 675 mm             | 4.5   | m    | 26,626    | 190         | 5,058,940   | 190               | 5,058,940   |  |  |
| · · · · · · · · · · · · · · · · · · · | 675 mm             | 5.5   | m    | 30,942    | 100         | 3,094,200   | 100               | 3,094,200   |  |  |
| <u> </u>                              | 750 mm             | 2.5   | m    | 21,242    | 150         | 3,186,300   | 150               | 3,186,300   |  |  |
|                                       | 825 mm             | 1.5   | m    | 20,005    | 400         | 8,002,000   | 400               | 8,002,000   |  |  |
|                                       | 825 mm             | 2.5   | m    | 23,413    | 480         | 11,238,240  | 480               | 11,238,240  |  |  |
|                                       | 825 mm             | 4.5   | m    | 31,416    | .700        | 21,991,200  | 700               | 21,991,200  |  |  |
| ·                                     | 825 mm             | 7.5   | m    | 46,382    | 50          | 2,319,100   | 50                | 2,319,100   |  |  |
| DI Pipe Laying                        | 100 mm             | 1.5   | m    | 6,242     | 650         | 4,057,300   | 650               | 4,057,300   |  |  |
|                                       | 150 mm             |       | m    | 7,358     |             |             |                   | -           |  |  |
| Manhole                               | Type 1             |       | Nr   | 80,181    | 517         | 41,453,577  | 369               | 29,586,789  |  |  |
|                                       | Туре 2             |       | Nr   | 93,941    | 57          | 5,354,637   | 57                | 5,354,637   |  |  |
|                                       | Туре 3             | · .   | Nr   | 109,418   | -           | -           | -                 |             |  |  |
| Connection Pipe                       | 100mmPVC,L=4m      |       | Nr   | 25,712    | 12,402      | 318,880,224 | 5,794             | 148,975,328 |  |  |
| Inspection Pit                        | RC,300×300         | ·     | Nr   | 5,098     | 12,402      | 63,225,396  | 5,794             | 29,537,812  |  |  |
| Siphon                                |                    | 4.5   | Nr   | 868,712   | 1           | 868,712     | 1                 | 868,712     |  |  |
| Siphon Pipe                           | 450mm×2            | 4.5   | m    | 27,024    | 40          | 1,080,960   | 40                | 1,080,960   |  |  |
| Siphon                                |                    | 7.5   | Nr   | 1,053,558 |             | 1,053,558   | 1                 | 1,053,558   |  |  |
| Siphon Pipe                           | 450mm×2            | 7.5   | m    | 40,127    | 40          | 1,605,080   | 40                | 1,605,080   |  |  |
| Road Crossing                         | Jacking(675mm)     |       | m    | 240,000   | 30          | 7,200,000   | 30                | 7,200,000   |  |  |
| TOTAL                                 | Sewer Main + Later | al    |      |           | 29,361      | 747,250,884 | 21,961            | 463,191,160 |  |  |
|                                       | Sewer Main         |       |      | 1. J. A.  | 20,061      |             | 17,461            |             |  |  |

### Appendix 12.6 Cost of Sewer

ĵ,

67

A-12.6-1

| ITEM                                   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth             | UNIT       | RATE      | COST              | Feasibility Study |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|-----------|-------------------|-------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| lay Pipe Laying                        | and a start of the second defendence on the start of the second se | 1.5               |            | 5,498     | QUANTITY<br>9,300 | 51,131,400        | Quantini                              | 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| lay Pipe Laying                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>1.5</u><br>1.5 | m          | <u> </u>  | 4,651             | 25,571,198        |                                       | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | m          |           |                   |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5               | m          | 7,871     | 793               | 6,241,703         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5               | m          | 7,142     | 1,527             | 10,905,834        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5               | m          | 9,603     | 1,859             | 17,851,977        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.5               | m          | 12,459    | 691               | 8,609,169         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.5               | m          | 27,832    | 100               | 2,783,200         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5               | m          | 10,593    | 1,268             | 13,431,924        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5               | m          | 13,173    | 320               | 4,215,360         | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 300 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.5               | m          | 31,994    | 80                | 2,559,520         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 400 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5               | m          | 15,652    | 2,590             | 40,538,680        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ************************************** | 400 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5               | m          | 18,373    | 548               | 10,068,404        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,5               | m          | 25,001    | 200               | 5,000,200         |                                       | 6 <i>#</i> _6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5               | m          | 17,475    | 674               | 11,778,150        | · · · · · ·                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5               | m          | 20,263    | 360               | 7,294,680         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.5               | m          | 23,446    | 80                | 1,875,680         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5               | m          | 33,513    | 363               | 12,165,219        | · · · · ·                             | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5               | <u>+</u> + | 36,508    | 70                | 2,555,560         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 7D D' 7                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | m          |           |                   |                   |                                       | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| IP Pipe Laying                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5               | m          | 16,046    | 632               | 10,141,072        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5               | m          | 19,178    | 55                | 1,054,790         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.5               | m          | 22,704    | 120               | 2,724,480         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 675 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5               | m          | 26,626    | 100               | 2,662,600         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 675 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5               | m          | 30,942    | 100               | 3,094,200         |                                       | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 750 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5               | m          | 17,972    | 180               | 3,234,960         | and the second second                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 750 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5               | m          | 21,242    | 330               | 7,009,860         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 750 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5               | m          | 28,964    | 90                | 2,606,760         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 825 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5               | m          | 20,005    | 400               | 8,002,000         | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | 825 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5               | m          | 23,413    | 480               | 11,238,240        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                                      | 825 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5               | m          | 31,416    | 700               | 21,991,200        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ·····                                  | 825 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.5               | m          | 46,382    | 50                | 2,319,100         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DI Pipe Laying                         | 100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5               | m          | 6,242     | 650               | 4,057,300         |                                       | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                        | 200 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5               | m          | 8,514     | 2,600             | 22,136,400        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Manhole                                | Type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.5              | Nr         | 80,181    | 509               | 40,812,129        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | Type 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Nr         | 93,941    | 65                | 6,106,165         |                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                        | Type 2<br>Type 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Nr         | 109,418   | 05                | 0,100,105         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Connection Pipe                        | 100mmPVC,L=4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ļ                 | Nr         | 25,712    | 12,402            | 318,880,224       |                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>          | -          |           |                   |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Inspection Pit                         | RC,300×300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5               | Nr         | 5,098     | 12,402            | 63,225,396        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Siphon                                 | 450 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5               | Nr         | 868,712   |                   |                   | ļ                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Siphon Pipe                            | 450mm×2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5               | m          | 27,024    |                   | 1,080,960         | ļ                                     | and the second s |  |
| Siphon                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5               | Nr         | 1,053,558 |                   | 1,053,558         | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Siphon Pipe                            | 450mm×2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5               | m          | 40,127    |                   | 1,605,080         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Road Crossing                          | Jacking(675mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | m          | 240,000   | 30                | 7,200,000         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| TOTAL                                  | Sewer Main + Later<br>Sewer Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al                |            |           | 31,961<br>22,661  | 777,683,044       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| Manhole Span | 50             | m      |
|--------------|----------------|--------|
| Manhole Type | 150 to 600 mm  | Type 1 |
|              | 700 to 900 mm  | Type 2 |
|              | 900 to 1200 mm | Туре 3 |

### Numbers of Service Connections

|                               | Kandy  | Reference      |
|-------------------------------|--------|----------------|
| Size of Family (people/house) | 6.65   |                |
| M/P Population (2015)         | 54,985 |                |
| Domestic (No. of Houses)      | 8,268  |                |
| Total (No. of houses)         | 12,402 | Domestic × 1.5 |
| F/S Population (2005)         | 19,262 |                |
| Domestic (No. of Houses)      | 2,897  |                |
| Total (No. of Connections)    | 5,794  | Domestic × 2   |

A-12.6-2

Appendix 12.7 Unit Cost Appendix 12.7.1 Unit Cost of Civil Works

### are used for cost estimate.

|          | ltem                                |                | NWSD         | B Rate 97    |            | outh - Ground |                                       |            | outh - Pumpin |              | Applied   | Adjusted  |
|----------|-------------------------------------|----------------|--------------|--------------|------------|---------------|---------------------------------------|------------|---------------|--------------|-----------|-----------|
|          |                                     |                |              | Overhead 20% | Local (Rs) | Forign(Yen)   | Total (Rs)                            | Local (Rs) | Forign(Ycn)   | Total (Rs)   |           |           |
| 1.1      | Excavation                          |                |              |              |            |               |                                       |            |               |              |           |           |
|          | Bulldozer (incl. Backfilling        | <u>;)</u>      | (Basement)   | (Basement)   |            |               |                                       |            |               |              |           | 490.00    |
|          | Backfoe (incl. Backfilling)         |                | (Pit/Irench) | (Pit/Trench) | (150 mm)   |               |                                       | (225 nm)   |               |              |           | 790.00    |
|          | Rock excavation                     | m³             | 1,469.00     | 1,763.00     | 69.00      | 544.38        | 371.43                                | 1,716.00   | 195.27        | 1,824,48     | 1,808,99  | 1,990.00  |
| 2.1      | Earth Filling                       |                |              |              |            |               |                                       |            |               |              |           | 430,00    |
|          | earth available at site             | m <sup>3</sup> | 141.00       | 169,00       |            |               |                                       |            |               |              | 169.00    | 190.00    |
|          | earth to be borrowed                | m²             | 324.00       | 389.00       |            |               |                                       |            |               |              | 389.00    | 430.00    |
| 3.       | Soil Disposal                       |                |              |              |            |               |                                       |            |               |              |           | 310,00    |
|          | On site                             | m <sup>3</sup> | 68.00        | 82.00        |            |               |                                       |            |               |              | 68.00     | 80,00     |
|          | Off site                            | m              | 232.00       | 278.00       |            |               |                                       |            |               | L            | 278.00    | 310.00    |
| 4.       | Piling                              | Ī              |              |              |            |               |                                       |            |               |              |           |           |
|          | On site 600 mm dia.                 | m              |              |              | 1,824.81   | 14,399.00     | 9,824.25                              |            |               |              | 9,824.25  | 10,810.00 |
| 5.       | Concrete Work                       | Γ              |              |              |            |               |                                       |            |               |              |           |           |
| <b>—</b> | Orade 10                            | Ι.             |              |              |            |               | · · · · · · · · · · · · · · · · · · · | <u></u>    |               |              |           | 7,840.00  |
| Г        | Foundations                         | m              | 3,743.00     | 4,492.00     | 76,07      | 600.18        | 409.50                                | 514.80     | 58.58         | 547.34       | 7,123.19  |           |
| F-       | Orade 20/30                         |                | (Grade 20)   |              | (Grade 30) |               |                                       | (Orade 30) | L             |              | 8,658.97  | 9,530.00  |
| Γ        | Columns                             | m <sup>3</sup> | 4,868.00     | 5,842.00     | 1,820.50   | 14,362.89     | 9,799.88                              | 6,864.00   | 781.07        | 7,297.93     | 8,659.97  | 9,530.00  |
| 6.       | Form Work                           | Ī              |              | T            |            |               |                                       |            |               |              | 960.43    | 1,060.00  |
| 7.       | Reinforcement                       | 1              |              |              |            |               |                                       |            |               | L            | 66,328.41 | 72,970.00 |
|          | Tor steel                           |                | 50,220.00    | 60,264.00    | 13,510.53  | 106,591.98    | 72,728.30                             | 62,920.00  | 7,159.76      | 66,897.64    | 66,329.41 | 72,970.00 |
| L        | Mild steel                          | tor            | 46,920.00    | 56,304.00    | 11,312.83  | 89,253.07     | 60,897.87                             | 62,920.00  | 7,159.76      | 66,897.64    | 66,329,41 | 72,970.00 |
| 8,       | Building                            |                |              |              | L          | ·             |                                       |            | <b></b>       | ·            | l         |           |
|          | Offices 2F, 126 m <sup>2</sup>      | m              | 9,600.00     | 11,520.00    | 13,494.97  | 1,535.61      | 14,348.09                             |            |               | ļ            | 14,226.22 | 15,700.00 |
| Г        | Operating houses                    | m <sup>1</sup> | 8,600.00     | 10,320.00    | I          |               |                                       |            |               | · ·          |           | 20,000.00 |
| r        | Pumping Station BF, 181n            | n <sup>2</sup> |              |              | ·          | 1             |                                       | 31,855.72  | 3,624.91      | 33,869.56    | 33,581.87 | 37,000.00 |
| F        | Chlorine House 1F, 24m <sup>2</sup> | m              |              |              | 17,014.23  | 1,973.50      | 18,110.62                             | <u> </u>   | · · ·         | L            | 17,953.99 | 19,800.00 |
| F        | Store houses 1F, 24m <sup>2</sup>   | m              | 8,200.00     | 9,840.00     | 18,950.98  | 2,156.46      | 20,149.01                             |            |               |              | 19,977,86 | 22,000.00 |
| F        | Quarters 1F, 100m <sup>2</sup>      | m              |              |              | 17,496.47  | 1,971.32      | 18,591.64                             |            |               | L            | 18,435.19 | 20,300.60 |
| 9.       | Pavement                            | 1              |              |              | r          | 1             |                                       |            |               |              |           |           |
| F        | Reinstatement                       | m              | -            |              | 206.58     | 1,629.82      | 1,112.04                              | Actual pay | ment to RDA   | Rs. 2000.00) | 2,000.00  | 2,000.00  |
| 10       | ). Miscellaneous                    | T              |              | 1            | 1          |               |                                       |            |               |              |           |           |
| <b>F</b> | Miscellancous                       | %              | -            | -            | Γ          |               |                                       | I          |               |              | L         | 5 to 20 % |

Ø

### Appendix 12.7.2 Unit Cost of Piping Materials

are used for cost estimate.

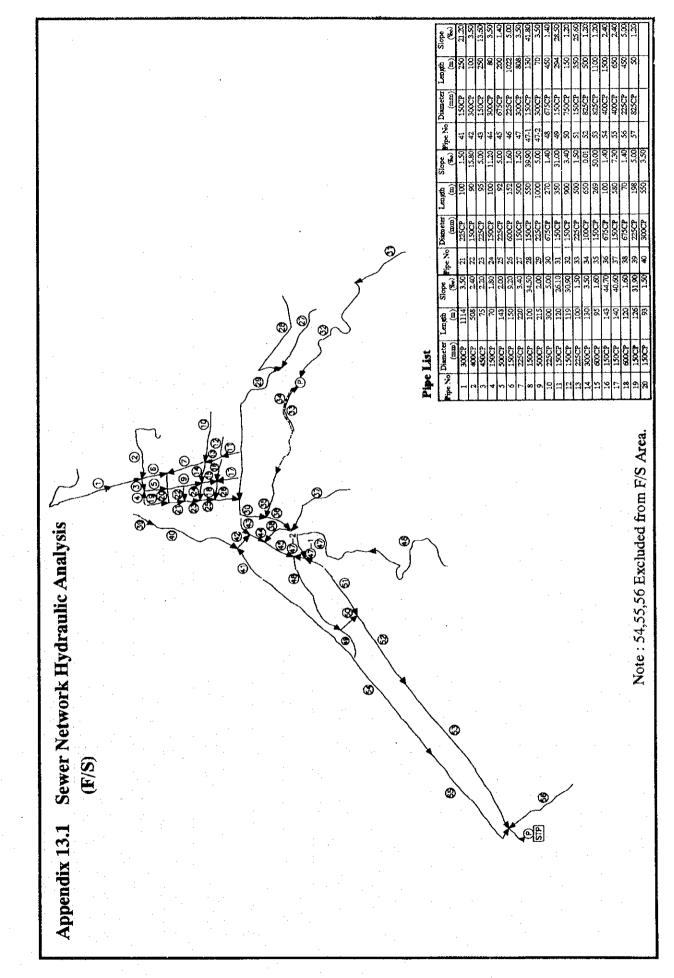
|          |            |              |          |            | L            |            |              |            |             |            |                                       |                        |                                           |  |  |
|----------|------------|--------------|----------|------------|--------------|------------|--------------|------------|-------------|------------|---------------------------------------|------------------------|-------------------------------------------|--|--|
| T        | 1          | Diameter (n  | nni)     | NWSD       | B Rate 97    | Beire Lake | Manufacturer |            | Towns       | South      |                                       | Applied                | Adjusted                                  |  |  |
|          |            |              |          | Rs/m       | Overhead 20% | Rs/m       | Rs/m         | Local (Rs) | Forign(Yen) | C. D. (Rs) | Total (Rs)                            |                        |                                           |  |  |
| . W      | ater       | Supply       |          |            |              |            |              |            |             |            |                                       |                        |                                           |  |  |
|          | DIP        |              |          | (CIF+C.D.) |              |            |              |            |             |            |                                       |                        |                                           |  |  |
|          | 1          | 200          | mm       | 2,647.48   | 3,177.00     |            |              |            |             |            |                                       |                        | 3,500.00                                  |  |  |
|          | ~          | 250          | mm       | 2,981.44   | 3,578.00     |            |              | 65.58      | 6,467.59    | 661.72     | 3,807.10                              | 3,807.10               | 4,190.00                                  |  |  |
|          |            | 300          | ກາກາ     | 3,794.56   | 4,553.00     |            |              | 82.79      | 8,165.06    | 835,39     | 4,806.30                              | 4,806.30               | 5,290.00                                  |  |  |
|          |            | 350          | mm       | 4,537.50   | 5,445.00     |            |              | 103.27     | 10,234.03   | 1,041.95   | 6,018.57                              | 6,018.57               | 6,630.00                                  |  |  |
|          |            | 400          | mm       | 5,324.00   | 6,389.00     |            |              | 137.05     | 13,515.35   | 1,382.79   | 7,955.72                              | 7,955.72               | 8,760.00                                  |  |  |
|          |            | 450          | mm       | 6,352.50   | 7,623.00     |            |              | 144.09     | 14,210.53   | 1,453.92   | 8,364.93                              | 8,364.93               | 9,210.00                                  |  |  |
|          |            | 500          | nun      | 7,292.67   | 8,751.00     |            |              | 193.08     | 19,041.13   | 1,948.15   | 11,208.43                             | 11,208.43              | 12,330.00                                 |  |  |
| -1       | -1         | 600          | mm       | 9,075.00   | 10,890.00    |            |              | 223,43     | 22,034.08   | 2,254.36   | 12,970.21                             | 12,970.21              | 14,270.00                                 |  |  |
|          |            | 700          | mm       | 11,918.50  | 14,302.00    |            |              |            |             |            |                                       |                        | 20,000.00                                 |  |  |
|          |            | 800          | mm       | 14,762.00  | 17,714.00    |            |              | 462.19     | 45,580.63   | 4,663.47   | 26,830.72                             | 26,830.72              | 29,520.00                                 |  |  |
|          |            | 900          | mm       | 15,851.00  | 19,021.00    |            |              |            |             |            |                                       |                        | 35,000.00                                 |  |  |
|          | PVC        | C (type 600) |          |            | 1            |            |              |            |             |            |                                       |                        | (type 600)                                |  |  |
|          | 1          | 63           | mm       | 50,00      | 60.00        |            |              | 55.95      | 55.18       |            | 82.23                                 | 82.23                  | 100.00                                    |  |  |
|          | _          | 75           | ກນາ      | 78.00      | 94,00        |            |              |            |             |            |                                       | 114.78                 | 130.00                                    |  |  |
|          |            | 90           | ກາກາ     | 118.00     | 142.00       |            |              | 109.75     | 108.23      |            | 161.29                                | 161.29                 | 180.00                                    |  |  |
|          |            | 110          | nım      | 173.00     | 208.00       |            |              | 161.15     | 158.93      |            | 236.83                                | 236,83                 | 270.00                                    |  |  |
|          |            | 160          | ញា       | 340.00     | 408.00       |            |              | 340.35     | 335.65      |            | 500.18                                | 500.18                 | 560.00                                    |  |  |
|          |            | 225          | mm       | 655.00     | 786.00       | l          |              | 667.15     | 657.94      |            | 980.45                                | 980.45                 | 1,080.00                                  |  |  |
| 2. S     | ewei       | rage         |          |            |              |            |              |            |             |            |                                       |                        |                                           |  |  |
|          |            | C (type 600  | )        |            |              |            | (type 400)   | (type 600) | [           |            |                                       |                        | (type 600)                                |  |  |
|          |            | 110          | mm       | 173.00     | 208.00       |            | 1.1.1        | 161.15     | 158.93      |            | 236.83                                | 236.83                 | 270.00                                    |  |  |
|          |            | 160          | mm       | 340.00     | 408.00       |            | 786.95       | 340.35     | 335.65      |            | 500.18                                | 500.18                 | 510.00                                    |  |  |
|          |            | 225          | mm       | 655.00     | 786.00       |            | 1,496.80     | 667.15     | 657.94      | T          | 980.45                                | 980.45                 | 990.00                                    |  |  |
|          |            | 280          | nim      |            | 1,216.00     |            | 2,294,65     |            |             |            |                                       | 2,294.65               | 2,300.00                                  |  |  |
|          |            | 315          | nım      | 1,010.00   | 1,22010      | ·····      | 2,888.02     |            | 1           |            |                                       | 2,888.02               | 2,890.00                                  |  |  |
|          | Hu         | ne Pipe      |          |            | +            | <u> </u>   | 1            |            |             |            |                                       |                        |                                           |  |  |
|          | 1          | 150          | mm       | 352.00     | 422.00       | 1          | 198.39       |            | 1           | · · ·      |                                       |                        |                                           |  |  |
|          |            | 225          | าหา      | - c        | 596.00       | <b> </b>   | 273.13       |            | 1           |            |                                       |                        | 1. A. |  |  |
|          |            | 250          | mm       |            | 1            | t          | 1            | 1          | 1           |            | 1.1                                   |                        | · · ·                                     |  |  |
|          |            | 300          | mm       |            | 792.00       | t          | 355.25       |            | 1           |            |                                       | 792.00                 | 800.00                                    |  |  |
|          |            | 375          | nm       |            |              | <u> </u>   | 516.73       | <u> </u>   | 1           | ·          |                                       | 1,080.00               | 1,080.00                                  |  |  |
|          |            | 400          | nım      |            | 1            | <u> </u>   | 1            |            |             |            |                                       | 1.0                    |                                           |  |  |
|          |            | 450          | mm       |            | 1,194.00     | <b></b>    | 611.31       | 2,577.99   | 1,307.04    |            | 3,200.39                              | 1,194.00               | 1,200.00                                  |  |  |
|          | <b>—</b> — | 500          | mm       |            |              | 1          |              |            | 1           |            |                                       |                        |                                           |  |  |
|          | 1          | 544          | mm       |            |              | 1          | 1            | 4,124.78   | 2,091.26    |            | 5,120.62                              | (with inner            |                                           |  |  |
|          | †          | 600          | mm       |            | 1,663.00     | 1          | 847.07       | T          |             |            |                                       | 1,663.00               | 1,670.00                                  |  |  |
|          | <u>†</u>   | 675          | mn       |            | 1            | 5,960.00   | 1            | 1          | 1           | 1          |                                       | 5,960.00               | 5,960.00                                  |  |  |
|          | <b>†</b>   | 750          | <u>+</u> |            | 2,242.00     | 6,790.00   | 1,092.52     | T          |             |            |                                       | 6,790.00               | 6,790.00                                  |  |  |
| -        | +          | 825          | mm       |            | +            | 7,630.00   | 1,093.52     | 1          |             | 1          | 1                                     | 7,630.00               | 7,630.00                                  |  |  |
| -        | +          | 900          | mm       | -          | 3,050.00     | 1          | 1,495.76     | 1          |             | 1          | 1                                     | 3,660.00               | 3,660.00                                  |  |  |
|          | ╉╼┈        | 1050         |          |            |              | <u>†</u>   | 3,820.13     | t          |             |            | 1                                     | 4,752.00               | 4,760.00                                  |  |  |
| ⊢        | C1         | d            | 1        |            |              | 1          | 1            | 1          |             | 1          | 1                                     | 1                      | 1                                         |  |  |
| <u> </u> | LC18       | y Pipe       | +        | 410.00     | 403.00       | 710.0      |              |            | +           | +          | +                                     | 730.88                 | 740.00                                    |  |  |
| —        |            |              | mm       |            |              |            |              | ╂────      |             |            | +                                     | 730.88                 | 740.00                                    |  |  |
|          |            | 225          | mn       | 648.00     | 778.00       | 1,789.8    | ŧ            | 1          | 1           |            | <b></b> -                             | 1,789.84               | 1,790.00                                  |  |  |
|          |            | 250          | mn       | 1          |              | L          |              | L          |             |            |                                       | <b></b>                | L                                         |  |  |
|          |            | 300          | mn       | 1,235.00   | 1,482.00     | 4,464.6    | 6            |            |             | 1 ·        | 1.                                    | 4,464.66               | 4,470.00                                  |  |  |
|          | +-         | 400          | -        | ·····      | 1            | 8,578.3    |              | 1          | 1           | T          | 1                                     | 8,578.39               | 8,580.00                                  |  |  |
| <u> </u> | 1          | 450          |          | -          |              | 9,959.2    |              |            | 1           | 1          | 1                                     | 9,959.28               | 9,960.00                                  |  |  |
|          | +          |              | -        | -          |              |            |              | 1          |             | 1          | +                                     |                        |                                           |  |  |
|          | 1          | 500          | ար առ    | 11         | 1            | 12,457.1   | 0            |            |             |            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12,457.10<br>24,476.30 |                                           |  |  |

Note: 1. For transmission mains of water supply, 20 % of the cost of pipes shall be add to compensate the cost of specials, valves etc. 2. For diatribution mains of water supply, 35 % of the cost of pipes shall be add to compensate the cost of specials, valves etc.



# Appendix 12.7.3 Unit Cost of Pipe Laying

|                 |                                                                                                                |                                              |               |                   |                 | are used for o | ost estimate.   |              |            |          |          |
|-----------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|-------------------|-----------------|----------------|-----------------|--------------|------------|----------|----------|
|                 |                                                                                                                |                                              | NRUAD         |                   |                 | 1<br>70        | <u></u>         | Toman        | Cul Leules | Analised | Adjusted |
|                 | Diamete                                                                                                        | r                                            |               | B Rate 97         |                 | Towns South    | (D) + 1 (D) >   | Japan        | Sri Lanka  | лфриса   | Adjusted |
|                 | (nun)                                                                                                          |                                              | Rs/m          | Overhead 20%      | Local (Rs)      | Forign(Yen)    | Total (Rs)      | Man-Day      | Rs/m       |          |          |
| . Layin         |                                                                                                                |                                              |               |                   | L               |                |                 |              |            | (only Pi | e Laying |
| DIF             |                                                                                                                |                                              |               |                   | excavation, bac | kfilling etc.) |                 |              |            |          | 104.0    |
|                 | 200                                                                                                            | mm                                           | 559.00        | 671.00            |                 |                |                 | 0.18         | 124.60     | 124.60   | 125.0    |
|                 | 250                                                                                                            | mm                                           | 580.00        | 696.00            | 100.06          | 789.40         | 475.96          | 0.22         | 154.00     | 154.00   | 154.0    |
|                 | 300                                                                                                            | mm                                           | 698.00        | 838.00            | 105.58          | 832.96         | 502.23          | 0.26         | 182.70     | 182.70   | 183.0    |
|                 | 350                                                                                                            | mm                                           | 740.00        | 888.00            | 123.73          | 976.16         | 588.57          | 0.32         | 222.60     | 222.60   | 223.0    |
|                 | 400                                                                                                            | nım                                          | 795.00        | 954.00            | 129.25          | 1,019.72       | 614.83          | 0.38         | 269.03     | 269.03   | 270.0    |
| _               | 450                                                                                                            | mm                                           | 852.00        | 1,022.00          | 149.53          | 1,180.10       | 711.48          | 0.45         | 316.87     | 316.87   | 317.0    |
|                 | 500                                                                                                            | nun                                          | 942.00        | 1,130.00          | 258.50          | 2,039.45       | 1,229.67        | 0.52         | 365.40     | 365.40   | 366.0    |
|                 | 600                                                                                                            | mm                                           | 1,077.00      | 1,292.00          |                 |                |                 | 0.66         | 463.87     | 463.87   | 464.0    |
|                 | 700                                                                                                            | nun                                          | 1,234.00      | 1,481.00          |                 |                | ,               | 0,80         | 562.33     | 562.33   | 563.0    |
|                 | 800                                                                                                            | mm                                           | 1,395.00      | 1,674.00          | 385.00          | 3,037.48       | 1,831.42        | 0,96         | 672.00     | 672.00   | 672.0    |
|                 | 900 m                                                                                                          |                                              | 1,578.00      | 1,894.00          |                 |                |                 | 1.09         | 765.10     | 765.10   | 766.0    |
| PV              | Ċ                                                                                                              |                                              | (only P       | pe Laving)        | (with 1 to 2m   | excavation, ba | ckfilling etc.) | )            |            |          |          |
| -1              | 63                                                                                                             | mm                                           | 11.76         | 14.00             | 29.04           | 229.11         | 138.14          | 0.04         | 30.10      | 30.10    | 31,0     |
|                 | 75                                                                                                             | mm                                           | 11.76         | 14.00             | 29.04           | 229.11         | 138.14          | 0.04         | 30.10      | 30.10    | 31.0     |
|                 | 90                                                                                                             | mm                                           | 13.94         | 17.00             | 29.04           | 229.11         | 138.14          | 0.06         | 39.90      | 39.90    | 40.0     |
|                 | 110                                                                                                            | mm                                           | 15.00         | 18.00             | 34.98           | 275.98         | 166.40          | 0.06         | 39.90      | 39.90    | 40.0     |
| 1               | 160                                                                                                            | mm                                           | 15.00         | 18.00             | 38.94           | 307.22         | 185.24          | 0.07         | 51.80      | 51.80    | 52.0     |
|                 | 225                                                                                                            | ញាញ                                          | 18.15         | 22.00             | 40.04           | 315.90         | 190.47          | 0.10         | 72.80      | 72.80    | 73.0     |
|                 | 280                                                                                                            | mm                                           | 18.74         | 22.00             |                 |                |                 | 0.14         | 98.00      | 98.00    | 98.0     |
| <u> </u>        | 315                                                                                                            | mm                                           | 10/1/1        |                   | <b>†</b>        | t              |                 | 0.17         | 119.00     | 119.00   | 119.0    |
| -+-             |                                                                                                                |                                              |               |                   | <u>†</u>        | <u> </u>       |                 |              |            |          |          |
| <del>u</del> ., | 1<br>me Pipe/Clay                                                                                              | l<br>Pina                                    | (with excava  | tion, backfilling | (denth is unk   | []             |                 |              |            |          | ·        |
|                 | 150                                                                                                            |                                              | 134.00        | 161.00            | (depin is diki  | 1              |                 | 0.32         | 224.00     | 112.00   | 112.0    |
|                 | the second s | mm                                           | 164.00        | 197.00            | <b> </b>        | <u> </u>       |                 | 0.40         | 277.20     | 138.60   | 139.0    |
|                 | 225                                                                                                            | mm                                           | 104.00        | 197.00            | <b> </b>        |                | ····            | 0.46         | 319.20     | 159.60   | 160.0    |
|                 | 300                                                                                                            | mm                                           | 227.00        | 272.00            | ł               |                |                 | 0.53         | 369.60     | 184.80   | 185.0    |
|                 | 300                                                                                                            | mm                                           | 270.00        |                   | <b>.</b>        | l              |                 | 0.60         | 420.00     | 210.00   | 210.0    |
|                 |                                                                                                                | mm                                           | 270.00        | 324.00            | <b>_</b>        | <b>}</b> -     |                 | 0.61         | 428.40     | 214.20   | 215.0    |
|                 | 400                                                                                                            | mm                                           | <b>220 00</b> | 206.00            |                 | 1 001 10       | 3,406.71        | 0.84         | 588.00     | 294.00   | 294.0    |
| <u> </u>        | 450                                                                                                            | mm                                           | 330.00        | 396.00            | 2,033.77        | 2,883.18       | 5,400.71        | 0.84         | 604.80     | 302.40   | 303.0    |
|                 | 500                                                                                                            | mm                                           |               | <u> </u>          | 2 012 72        | 2,883.18       | 3,406,71        | 0.96         | 672.00     | 336.00   | 336.0    |
|                 | 544                                                                                                            | mm                                           | 410.00        | 102.00            | 2,033.77        | 2,003.10       | 5,400,71        | 1.06         | 744.80     | 372.40   | 373.0    |
|                 | 600                                                                                                            | mm                                           | 410.00        | 492.00            | <u> </u>        |                | <b> </b>        |              | 784.00     | 392.00   | 392.0    |
|                 | 675                                                                                                            | mm                                           | 500.00        |                   | <b> </b>        |                |                 | 1.12<br>1.15 | 803.60     | 401.80   | 402.0    |
|                 | 750                                                                                                            | mm                                           | 500.00        | 600.00            | <b></b>         |                | <u> </u>        | 1.13         | 840.00     | 401.00   | 402.0    |
|                 | 825                                                                                                            | mm                                           |               | 780.00            | ·               | <b></b>        |                 | 1.20         | 862.40     | 420.00   | 420.0    |
|                 | 900                                                                                                            | mm                                           | 650.00        | 780.00            | <b>_</b>        | <b> </b>       |                 |              | L          | 470.40   | 471.0    |
|                 | 1050                                                                                                           | mm                                           | 680.00        | 816.00            |                 |                |                 | 1.34         | 940.80     | 470.40   | 4/1.0    |
|                 | vation                                                                                                         |                                              | <b>.</b>      |                   | L               | ļ              | <b></b>         |              | <b></b>    | <b></b>  |          |
|                 | ckfoe                                                                                                          | 1                                            |               |                   |                 | L              | L               | ļ            |            | <b></b>  | 790.0    |
|                 | cl. Backfillin                                                                                                 | g)                                           | L             | L                 | 1               |                | L               | 1            |            | <b> </b> |          |
| 3. Soil         | Disposal                                                                                                       |                                              |               | L                 |                 | <u> </u>       | L               | <b>_</b>     |            |          | <u> </u> |
| Of              | f site                                                                                                         | m <sup>3</sup>                               |               |                   |                 |                |                 | [            | i          | I        | 310.0    |
|                 | cfilling with s                                                                                                |                                              | <b> </b>      | t                 | 1               | 1              | 1               | 1            | 1          | 1        |          |
|                 |                                                                                                                | 1 4                                          | <b> </b>      | <u> </u>          |                 | t              | +               | 1            | 1          | 1        | 1,000.   |
|                 | th sand suppl                                                                                                  | <u>y m</u> <sup>3</sup>                      |               |                   | <u> </u>        | <u> </u>       | ļ               | <u> </u>     | +          | <b>{</b> | 1,000.   |
| 5. Pave         |                                                                                                                | <u>                                     </u> | Į             | <b> </b>          | <b>.</b>        | ·}             | <u> </u>        | <b>_</b>     | ·          | +        |          |
| l n             | instatement                                                                                                    | m <sup>2</sup>                               | l I           | 1                 | 1               | 1              | 1               | 4            | 1          | 1        | 2,000.0  |


ļ

A-12.7-3

# Chapter 13

| Appendix 13.1 | Sewer Network Hydraulic Analysis |
|---------------|----------------------------------|
|               | (F/S)                            |
| Appendix 13.2 | Trunk Sewer Profile              |
| Appendix 13.3 | Pumping Equipment                |
|               | - Capacity Calculation           |
| Appendix 13.4 | Sewage Treatment Plant           |

- Capacity Calculation Appendix 13.5 Hydraulic Calculation Appendix 13.6 Drawings Appendix 13.7 Storage Capacity of Sewer (Kandy)



A-13.1-1

10 10

è

| μ                  |               |                             |          |                  |       |                    |                  |       |                  |                   |       |                  |             |           |                  |                  |               |         |                   |
|--------------------|---------------|-----------------------------|----------|------------------|-------|--------------------|------------------|-------|------------------|-------------------|-------|------------------|-------------|-----------|------------------|------------------|---------------|---------|-------------------|
| 0.324m3/capita-day |               | Remarks                     |          |                  |       |                    |                  |       |                  |                   | -     |                  |             |           |                  |                  |               |         |                   |
| 324m3/             | <u>i</u>      |                             | E        | 100              |       | 126                | 175              |       | 100              | <u>372</u><br>100 |       | 00 00            |             | 134       | 100              | 100              |               | 167     | i                 |
|                    |               |                             |          | I                |       |                    | 1 1              |       |                  |                   |       |                  |             | 1 1       | 1 1              | 1                |               | 1 1     |                   |
| Flow               |               | Level                       |          | 533314<br>506804 |       | 535567<br>- 506694 | 505890<br>505725 |       | 506215<br>506089 | 502980<br>501414  |       | 506252<br>505502 | L<br>C<br>S | 506631    | 505172<br>501722 | 501414<br>500284 |               | 506252  | • • 1 ·<br>1<br>1 |
| ewage              | er            | G.L.                        | ×        | 53550            |       | 54357              | 50814            |       | 50739            | 50726<br>50297    |       | 50750            |             | 50814     | 50975            | 50297<br>50184   |               | 51100   | +                 |
| WUnit Sewage       | gn Sever      | Flow                        | щ3/S     | 00572            |       | 01020              | 01337            |       | d0065            | d1689             |       | 00262            |             | d0146     | 00834            | 01689            | • • • • • • • | 00318   | ŀ                 |
| n×                 | Design        | λ                           | s/m      | d809             |       | 0812               | 0841             |       | d365             | 0860              |       | 0658             |             | 1821      | \$008            | 0860             |               | 0799    |                   |
|                    |               | Slope                       | 98       | 350              |       |                    |                  |       |                  | 200               |       | 8                |             | 83        | 3450             |                  |               |         |                   |
|                    |               | Dia.                        | Ë        | 300              |       | 400                | 450              |       | 150              | 500               |       | 225              |             | 150       | 225              | 200              |               | 225     |                   |
|                    |               | Accum.                      | na3/s    | d0254 ¢          |       | 00392              |                  |       | ¢.               | \$ 92.900         | •     | ,<br>00045 ø     |             | 00015 Ø   | 00078 ¢          | 00769 Ø          |               | 00118 Ø |                   |
|                    | 2             |                             |          | 001143 00        |       | 003796             |                  |       | 00086            | 005240 00         |       |                  |             |           | 1                |                  |               |         |                   |
|                    | Other Flow    | Accus.                      | : m3/s   |                  |       |                    |                  |       |                  | 50<br>002         |       | 53 000453        |             | 51 000151 | 71 000777        | 51 006168        |               | 1001035 |                   |
|                    | 0th           | Sec.                        | m3/s     | 001143           |       | 96.796             |                  |       | 000086           | 00123             |       | 000453           |             | 000151    | 000173           | 000151           |               | 001035  |                   |
|                    |               | Flow                        | m3/s     | 00140            | ~     | 00012              |                  |       | • • • • • •      | 00152             |       |                  | <br>        |           |                  | 00152            |               |         | +                 |
|                    | ge Flow       | Population<br>Sec. Accum.   | a.       | 3742             |       | 307                | 4                |       |                  | 4049              |       |                  |             |           |                  | 4049             |               | 385     |                   |
|                    | Sewage        | D Popu<br>Sec.              | ٩.       | 3742             | · · · | 307                |                  |       |                  |                   |       |                  |             |           |                  |                  |               | 385     |                   |
|                    | <br>          | Pop/D                       | P/ha     |                  |       |                    |                  |       |                  |                   |       |                  |             |           |                  | · · · ·          |               |         |                   |
|                    |               | R.O.                        | 围3/S     |                  |       |                    |                  |       |                  |                   | ·     |                  |             |           |                  |                  |               | <b></b> |                   |
|                    |               | e Area<br>Accum.            | म        |                  |       |                    |                  |       |                  |                   |       |                  | <br>        |           |                  |                  |               |         |                   |
|                    | Storm Run-off | Service Area<br>Sec. Accum. | et<br>Et |                  |       | <br>               |                  |       |                  |                   |       |                  |             |           |                  |                  |               |         |                   |
|                    | Storm         | 0                           | -        |                  |       |                    |                  |       |                  |                   |       |                  |             |           |                  |                  | <u> </u>      |         |                   |
|                    |               | Rainfall<br>per<br>ha       | ∎3/s•ha  |                  |       |                    |                  |       |                  |                   |       | -                |             |           | <br>  .          |                  |               |         |                   |
|                    |               | - <sup>22</sup>             | ain ∎3   |                  |       |                    |                  |       |                  |                   |       |                  |             |           |                  | 1                |               |         |                   |
|                    |               |                             | 2        | 114              |       | 805                | 190              | 3     | 3                | 1332              |       | 530              |             | 150       | 320              | 1547             |               | 30      |                   |
|                    | Length        | Sec. Accum                  | -        | 114              |       | - Sc               | *                |       | 2                | 1                 | •     | 530              | · .         | 150       |                  | 1 .              |               | 300     |                   |
|                    | 63            | Accus. St                   | R        |                  |       | <u></u>            |                  | <br>3 |                  |                   | .<br> |                  |             |           |                  |                  |               | 227     |                   |
|                    | Service Area  |                             |          | <u> </u>         |       |                    | -                | 1     |                  |                   |       |                  | <u> </u>    |           |                  |                  | ·             | 8       |                   |
|                    | Ser           | Sec.                        | ц        |                  |       | <u></u> ž          | 9 <b>-</b>       |       |                  | <br>              | <br>  |                  |             |           |                  |                  | · <b>-</b>    |         |                   |
|                    |               | lo. Down<br>stream          |          | m                |       | <u> </u>           | ۍ<br>            |       |                  | 60 ·              |       | 80               |             | ļ         |                  | 15               |               | 3       |                   |
|                    |               | Pipe No.                    |          |                  | 1     | 63                 | m                |       | 4                | S                 |       | -                |             | 9         | -                |                  |               | 10      |                   |

Sewage Flow Calculation Table (Kandy)

A-13.1-2

| 5               | 0.324m3/capita·day |               | Remarks          |               |                        |       |                        |                        |                        |                        |   |                        |          |                        |                        |   |                        |                  |                        |
|-----------------|--------------------|---------------|------------------|---------------|------------------------|-------|------------------------|------------------------|------------------------|------------------------|---|------------------------|----------|------------------------|------------------------|---|------------------------|------------------|------------------------|
| ο.              | : 0.324m           |               | et<br>D          | P3            | 74 - 340<br>42 - 139   |       | 09 100<br>29 100       | 67 139<br>17 154       | 68 330<br>04 100       | 13 110<br>             |   | 13 135<br>87 147       |          | 04 125<br>             | 97 - 206<br>71 - 100   |   | 34 159<br>14 158       |                  | 20 429<br>70 285       |
|                 | Flow               |               | Level            |               | 54 509074<br>50 505942 |       | 18 510009<br>50 505329 | 50 505867<br>50 505717 | 50 503868<br>34 500504 | 34 500013<br>53 459861 |   | 33 506413<br>53 499887 |          | 22 505804<br>53 500015 | 53 498797<br>04 498371 |   | 39 505534<br>36 501614 |                  | 36 498820<br>77 498570 |
|                 | WUnit Sewage Flow  | ewer          | Ч.<br>С. Г.      | 22            | 51054                  |       | 8 50750                |                        | 2 50784                | 50184<br>50153         |   | 2 50193                |          | 7 50153                | 50153                  |   | 50739<br>2 50336       | <br>             | 4 50235                |
|                 | «Unit              | Design Sewer  | FION             | s m3/s        | 12 00246               |       | 5 00268                | 17 00174               | )9 q0572               | 19 02456               |   | 2 00322                |          | 100307                 | 10 02456               |   | 9 00272                | <br>1 00059      | 17 00174               |
|                 |                    | <u> </u>      | Slope V          | S/E 9         | 2610 1392              |       | 3090 1515              | 150 Q437               | 350 0809               | 160 0869               |   | 4470 1822              |          | 4060 1736              | t50 0869               |   | 3190 1539              | <br>150 0334     | 150 0437               |
|                 |                    |               |                  | <br>          | 150 21                 |       | 150 3(                 | 225                    | 300                    | 600                    |   | 150 4                  |          | 150 4(                 | 600                    |   | 150 31                 | <br>150          | 225                    |
|                 |                    |               | EE.              | ری<br>او      | 13                     |       | е<br>11                | 37 \$                  | 76 Ø                   | 57 \$                  |   | 15 Ø                   |          | 15 0                   | 01 Ø                   |   | 15 &                   | <br>\$<br>0      | 00020 Ø                |
| н<br>- н<br>- н |                    | 3             | Accum            | s B3/s        | 000129 00013           |       | 11000 801000           | 000366 00037           | 001617 00176           | 007914 00557           |   | 000151 00015           |          | 000151 00015           | 008345 (1001           |   | 151 00015              | <br>000086 00009 | 000496 000             |
|                 |                    | Other Flow    | Sec. Accum.      | 's ∎3/s       | 000123 000             |       | 000108                 |                        | 000216 001             | 700 02129              |   | 000151 000             |          | 000151                 | 000129 008             |   | 000151 000151          | <br>000386 000   | 000259 000             |
|                 |                    | ð             |                  | /s m3/s       | 8                      |       | 8·                     | 8-                     | 00014                  | 00166 000              |   | 8                      | ••••-    | 8                      | 00166                  |   | 8                      | <br>8            |                        |
|                 |                    | low           | Flow             | P #3/s        |                        |       |                        |                        | 382<br>382             |                        |   |                        |          | ,-                     | 4434 001               |   |                        | <br>             |                        |
|                 |                    | Sewage Flow   | Pop/D Population | b d           |                        |       |                        | · · · ·                |                        |                        |   |                        |          |                        | •                      | - |                        |                  |                        |
| n d y           | -                  |               | Pop/b            | P/ha          |                        |       |                        |                        |                        |                        |   |                        |          |                        |                        |   |                        |                  |                        |
| (Ka             |                    |               | -0.<br>          | <b>B</b> 3/s  |                        |       |                        |                        |                        |                        |   |                        |          |                        |                        |   |                        | <br>             |                        |
| able (Kandy)    | · · ·              | 5             | ice Area         | Accura.       |                        |       | <b> </b>               | <br>                   |                        |                        |   |                        |          |                        |                        |   |                        | <br>             |                        |
|                 |                    | Storm Run-off | 1.31-            | yec.          |                        |       |                        |                        |                        |                        |   |                        |          |                        |                        |   |                        | <br>             |                        |
| tiol            |                    | Stor          | 0                | ·             |                        |       |                        |                        |                        |                        |   |                        |          |                        |                        |   |                        | <br>             |                        |
| Calculation     |                    |               | Rainfall         | na<br>13/s-ha | <br>                   |       |                        |                        |                        |                        |   |                        |          |                        |                        |   |                        | <br>             |                        |
| Ca              | •<br>• •           |               | H                | , a           |                        | · · . |                        |                        |                        |                        | - |                        |          |                        | -                      |   | -                      | 1                |                        |
| N<br>N<br>O     |                    | Length        | Sec. Accum.      |               | 1                      |       | 119                    | 1.11                   |                        | -                      |   | 143                    |          | 140                    |                        |   | 126                    | 8                | 226                    |
| FI              |                    | [e]           | 1                |               | 120                    |       | 119                    |                        | 130                    | 5                      |   | 143                    |          | 140                    | 120                    |   | 125                    | 6                | 100                    |
| Sewage Flow     |                    | Service Area  | Accum.           | Ę             |                        |       |                        |                        | 227                    | <del>6</del>           |   |                        |          |                        | 658                    |   |                        |                  |                        |
| Se              |                    | Servi         | Sec.             | Ē             |                        |       |                        |                        |                        |                        |   |                        |          |                        |                        |   |                        | <br>             | •••••                  |
|                 |                    |               | Down             | stream        | 11                     |       |                        |                        |                        | 81                     |   | 18                     | .<br>  . |                        | 26                     |   | 5                      | <br>             | 53                     |
| · ·             |                    |               | Pipe No.         |               | II                     |       | 21                     | 51                     | 14                     | SI                     |   | 16                     |          | LI .                   | -18                    |   | 61                     | 50               | 51                     |

### A-13.1-3

| ĉ           | .324m3/capita.day |               | Remarks                     |          |          |          |                  |            |                |               |                  |      |                  |   |                  |                |                |             |            |                  |
|-------------|-------------------|---------------|-----------------------------|----------|----------|----------|------------------|------------|----------------|---------------|------------------|------|------------------|---|------------------|----------------|----------------|-------------|------------|------------------|
| പ           | 0.324±3/0         | ·             | -                           | E        |          | 102      | 285<br>228       |            | 113            | 228           | 201<br>407       |      | 100              |   | 183              | 100            | 408            |             | 001-10     | 235<br>354       |
| -           | Flow : (          |               | Level                       | ×        |          | 502021   | 498670<br>498195 |            | 500543<br>     | 498195        | 497360<br>497116 |      | 533258<br>511309 |   | 511316<br>510484 | 510409         | 497041         |             | 525709<br> | 513476<br>509161 |
|             | evage F           | er            |                             | ×        |          | 50320    | 50177            |            | 50184<br>50072 | 50072<br>5004 | 50004<br>50185   |      | 51248            |   | 51265            | 51248<br>50185 | 50785<br>49979 |             | 51900      | 51500<br>51287   |
|             | ₩Unit Sevage      | Design Sewer  | Flow                        | a3/s     |          | 00191    | 00318            |            | 00161          | d0318         | ¢2456            |      | 00304            |   | 0029             | d0318          | 03145          |             | 00268      | d0089            |
|             | *                 | De            | >                           | a/s      |          | 1083     | 0799             |            | q912           | 0799          | 0869             |      | 1721             | " | d334             | 662D           | 62.80          |             | 1917       | q503             |
|             |                   |               | Slope                       | <u> </u> |          | 1580     | 200              |            | 1120           | ອີ            | 1,60             |      | 3990             |   | 120              |                | 7              |             | 3100       | 340              |
|             |                   |               | Dia.                        | 8        |          | 150      | 225              |            | 150            | 225           | 600              |      | 150              |   | 150              | 225            | 675            |             | 150        | 150              |
|             |                   | L             | Accian.                     | m3/s     |          | 00011 0  | 00091 Ø          |            | ¢<br>00003     | ci0132 ¢      | 01162 Ø          |      | 00044 ∅          |   | \$<br>0000       | 00106. Ø       | 01279 Ø        | · · ·       | 0003 ¢     | 00031            |
|             |                   | 3             | Accum.                      | ∎3/s t   |          | 000108   | 906000           |            | 000086         | 001316 C      | 00363            |      |                  |   |                  | 000388 0       | 010437         |             | 6          | <del>-</del>     |
|             |                   | Other Flow    | Sec. A                      | ±3/s ∎   |          | 0 801000 | 000302           |            | 000086         | 00324 0       | 00302 0          |      |                  |   |                  | 00386 0        | 000086         |             |            |                  |
|             |                   |               | Flow                        | a3/s     |          |          |                  |            |                |               | 99100            |      | 00044            |   | 0000             | 00067          | 00235          |             | 0003       | 00031            |
|             | 1                 | Flow          | · · · · · · ·               | d.       |          |          |                  |            |                |               | 4434 0           |      | 1173 0           |   | 244 0            | 1782 0         | 6259 0         |             | 68         | 828              |
|             |                   | Sewage Flow   | Popul<br>Sec.               | Ч        |          |          |                  |            |                |               |                  | ···· | 1173             |   | 244              | 365            | \$             |             | 69         | 260              |
| a d y       |                   |               | Pop/D                       | P/ha     |          |          |                  |            |                |               |                  |      |                  |   | · ·              |                |                |             |            |                  |
| (Kandy)     |                   |               | <b>R</b> .0.                | m3/s     |          |          |                  |            | <br>           |               |                  |      |                  |   |                  |                |                |             |            | · · · · · ·      |
| Table (     |                   | 4.            | e Area<br>Accum.            | ha       |          |          |                  |            |                |               |                  |      |                  |   |                  |                |                |             |            |                  |
|             |                   | Storm Run-off | Service Area<br>Sec. Accum. | ह्य      |          |          |                  | • <b>-</b> |                |               |                  |      |                  |   |                  | · · · · ·      |                |             |            |                  |
| tior        |                   | Stor          |                             |          |          |          |                  |            |                |               |                  |      |                  |   |                  |                |                | · · · · · · |            |                  |
| Calculation |                   |               | Rainfall<br>per<br>ha       | 3/s-ha   |          |          |                  | :          |                |               |                  |      |                  |   |                  |                |                |             |            |                  |
| Cal         |                   |               | F                           | nin -    |          |          | · ·              |            |                |               |                  | ·    |                  |   |                  |                |                |             |            |                  |
| M (         |                   | t:            | cetan.                      | E        |          | 6        | 321              |            | <u> </u>       | 413           | 1914             |      | 550              |   | 200              | 1550           | 2184           |             | 350        | 1250             |
| Flow        |                   | Length        | Sec. Accum                  | =        | <u> </u> | 8        | 8                |            | 8              | 6             | <b>i</b> .       |      | 550              |   | 200              | 1000           | 270            |             | 350        | 8                |
| Sewage      |                   | Area          | Accum.                      | r<br>R   |          |          | +                |            |                |               |                  |      | 590              |   | 1                |                | 1748           |             |            | 485<br>          |
| Sev         |                   | Service Area  | Sec.                        | r<br>R   | <br>     | -        |                  |            | · · · · · · ·  |               | <br>             | <br> | 230              |   | <u>₽</u>         |                | 37             |             |            |                  |
|             | r                 |               | Down Stream                 | 1        |          |          | 25               |            |                |               | 8                |      | 29               |   |                  |                | 36             |             | <u> </u>   | 33               |
|             |                   |               | Pipe No. D                  |          |          | 22       | 53               |            | 24             | 25            | ະ<br>ສ           |      | 8                |   | 27               | 53             | 30             | - 1 m       | 31         | 32               |

A-13.1-4

. .

6

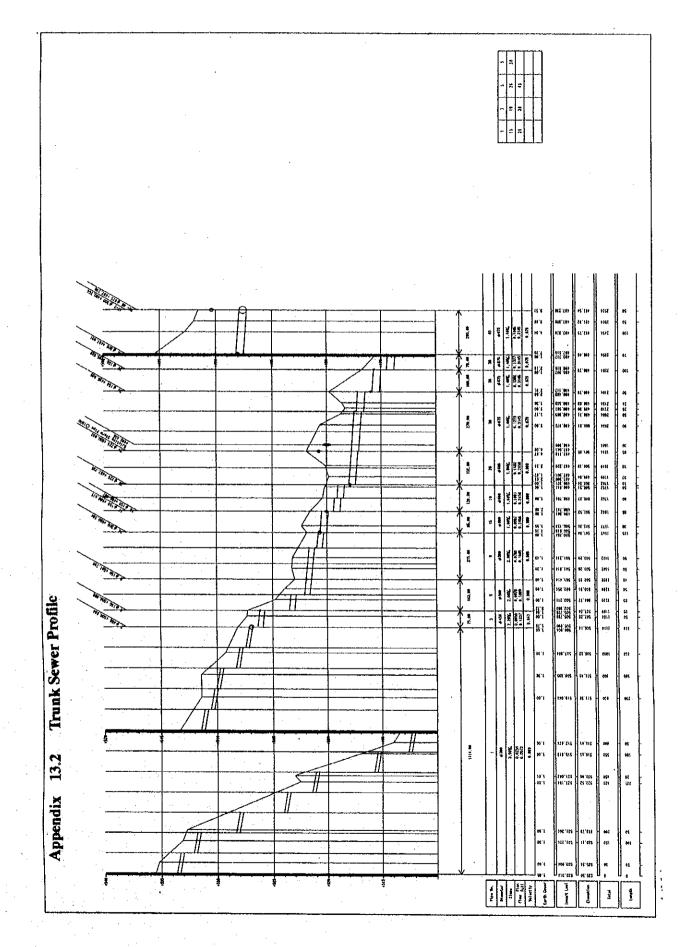
Sewage Flow Calculation Table (Kandy)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ▶.            |          |                    |              |          |                  |                  |                  |                  |               |                  |                  |                            |                     |                  |             |                   |                  |         |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|--------------------|--------------|----------|------------------|------------------|------------------|------------------|---------------|------------------|------------------|----------------------------|---------------------|------------------|-------------|-------------------|------------------|---------|------------------|
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | im3∕capita-da |          | Remarks            |              |          |                  | umping Station   |                  |                  |               |                  |                  |                            |                     |                  |             |                   |                  |         |                  |
| Burrier krass         Langth         Automatin         Line fail         Burrier fail                                                                                                                                                                                                              | 0.324         |          | -                  | E            |          | - 109            | 125              | 1 1              |                  |               |                  |                  | ~ + ¦                      |                     |                  |             |                   |                  | **[**   | 124              |
| Burrier krass         Langth         Automatin         Line fail         Burrier fail                                                                                                                                                                                                              | low :         |          | Level              | ×            |          | 511272<br>510477 | 511140<br>513110 | 511463<br>495869 | 495147<br>495007 |               | 499625<br>495569 | 493215<br>493717 | <br> -<br> -<br> <br> <br> | 520889<br>512122    | 506922<br>496911 |             | 502259<br>487/959 | 495382<br>495032 |         | 498399<br>494999 |
| Survice Area         Length         T         Survice Area         Line         Line <thline< th="">         Line         <thline< th=""> <thli< td=""><td>age F</td><td></td><td></td><td>×</td><td></td><td></td><td></td><td>51422</td><td></td><td></td><td>50100</td><td></td><td></td><td></td><td>51337<br/>49913</td><td></td><td>50444<br/>49313 -</td><td>49639</td><td></td><td>49981</td></thli<></thline<></thline<>                                                       | age F         |          |                    | ×            |          |                  |                  | 51422            |                  |               | 50100            |                  |                            |                     | 51337<br>49913   |             | 50444<br>49313 -  | 49639            |         | 49981            |
| Survice Area         Length         T         Survice Area         Line         Line <thline< th="">         Line         <thline< th=""> <thli< td=""><td>iit Ser</td><td>cn Sevel</td><td>low</td><td><b>a</b>3/s</td><td> i<br/> </td><td></td><td></td><td>1,</td><td>·</td><td>i</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>00178</td></thli<></thline<></thline<>                                                                   | iit Ser       | cn Sevel | low                | <b>a</b> 3/s | i<br>    |                  |                  | 1,               | ·                | i             |                  |                  |                            |                     |                  |             |                   |                  |         | 00178            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n%            | Desig    | · · ·              | <u> </u>     |          | 1                |                  |                  |                  |               |                  |                  |                            |                     |                  |             |                   |                  |         | 1002 0           |
| Service Area         Length         T         Service Area         Run-off         Service Area         Service Area         Service Area         Service Area         Distribution         Distributio         Distribution         Distribution <td></td> <td></td> <td>lope</td> <td><u> </u></td> <td></td> <td></td> <td> 1</td> <td></td> <td>1360</td> |               |          | lope               | <u> </u>     |          |                  | 1                |                  |                  |               |                  |                  |                            |                     |                  |             |                   |                  |         | 1360             |
| Service Area         Length         T         Service Area         Run-off         Service Area                                                                                                                                                                                                                                                                                                                                                                  |               | ļ        |                    | 8            |          | 225              | 100              | 150              | 675              |               | 150              | 675              |                            | 225                 | 300              |             |                   | 300              |         | 150              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          |                    | 3/s          |          | )039 ø           |                  |                  |                  |               |                  |                  |                            |                     |                  |             |                   |                  |         | ¢<br>0002 ¢      |
| Service Area         Length         T         Storn Run-off         Other           ha         ha         a         a         a         a         a         a         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b <td< td=""><td></td><td>ž</td><td></td><td>_</td><td></td><td>8</td><td></td><td>8-</td><td></td><td>~~</td><td>8</td><td></td><td></td><td>-<u>-</u>-8-</td><td>8</td><td></td><td>8</td><td>8-</td><td></td><td>8<br/></td></td<>                                                                                                                                                                                                                  |               | ž        |                    | _            |          | 8                |                  | 8-               |                  | ~~            | 8                |                  |                            | - <u>-</u> -8-      | 8                |             | 8                 | 8-               |         | 8<br>            |
| Service Area         Length         T         Storn Arm-off         Sense flow           Service Area         Length         T         Service Area         Run-off         Sense flow           Sec.         Accuar         Sec.         Accuar         Run-off         Service Area         Rlow           Sec.         Accuar         Re.         Accuar         Run-off         Sec.         Accuar         Rlow           Sec.         Accuar         Re.         Accuar         Run-off         Rlow         Pop/0                                                                                                                                                                                                                                                                                                                                                                                                           |               | ther Fl  |                    |              |          |                  |                  |                  | 8                | • • • • • • • | · ·              | ö                |                            |                     |                  |             |                   |                  |         |                  |
| Service Area         Length         T         Store Auroit         Store Auroit         Service Area                                                                                                                                                                                                     |               | ~<br>    |                    | +            |          | 139              | <br>2            | 178              | 81               | - <b></b>     |                  | 33               |                            |                     | 32<br>25         |             | 25                | 83               |         | <br>8            |
| Service Area         Length         T         Storm Run-off         Service Area         Run-off         Service Area         R.O.         Service Area                                                                                                                                                                                            |               | ð        |                    |              | <br>     |                  |                  |                  |                  |               |                  |                  |                            |                     |                  |             |                   |                  |         | 49 C0002         |
| Service Area         Length         T         Run-off           Service Area         Length         T         Rainfall         Corr         Pop/D           Service Area         Sec.         Accua.         Sec.         Accua.         R.O.         Pop/D           Service Area         a         a         ain all         corr         Corr         Run-off           Sec.         Accua.         Sec.         Accua.         R.O.         Pop/D           Sis         336         500         500         500         Pac         Accua.         R.O.           79         880         289         289         289         289         70         2394         Pac         Accua.         R.O.         Pop/D           79         880         289         289         289         289         70         2394         Pac         Accua.         R.O.         Pop/D           110         110         2394         Pac         Pac         Pac         Accua.         R.O.         Pop/D           384         510         550         748         Pac         Pac         Pac         Pac         Pac         Pac           384         510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | age fi   | pulati:<br>, Acc   |              | · · · ·  |                  | *                |                  |                  | -             | l .              | ,                |                            |                     |                  |             |                   |                  |         | - 67             |
| Service Årea         Length         T         Storm Run-off           Service Årea         Length         T         Rainfall         Service Årea         R.0.           Sec.         Accua.         Sec.         Accua.         R.1.         R.1.         R.0.           ha         ha         a         a         a         a         ha         ha         R.0.           ha         ha         a         a         a         a         a         a         ber         A.0.           rg         36         500         500         500         500         ber         a         ha         ha         a         a           rg         sgin         a3/s-hs         ha         a3/s         ha         a3/s           rg         sgin         a3/s-hs         ha         a3/s         ha         a3/s           rg         sgin         a3/s-hs         ha         a3/s         ha         a3/s           rg         sgin         a3/s-hs         ha         ab         ba         a         ha           rg         sgin         a3/s-hs         ha         ab         ba         a         a         a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | Se       | pp/D Po<br>See     |              |          |                  |                  | \$               |                  |               |                  |                  |                            | 58                  | 23               |             | 220               |                  |         |                  |
| Service Area         Length         T         Rainfall         Stors Run-off           Sec.         Accua.         Sec.         Accua.         Sec.         Accua.           Iba         ha         a         a         ain         ain         Sec.           1ba         ha         a         ain         min         min         Min         Iba           1ba         ha         a         ain         min         Min         Iba         ha         ha           1ba         ha         a         a         ain         min         Min         Iba         ha         ha           1ba         ha         a         ain         min         Min         Iba         ha           1ba         bbi         min         min         min         min         min         Min           1ba         bbi         min         min         min         min         min         ha         ha           1ba         bbi         min         min         min         min         min         min           10         110         250         260         260         100         260         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |          |                    |              |          |                  |                  |                  |                  | •             |                  |                  |                            |                     |                  |             |                   |                  |         |                  |
| Service Area         Length         T         Rainfail         Store Run.           See.         Accua.         Sec.         Accua.         Sec.         Accua.         Sec.           ha         na         a         ain         m3/s-ba         ha         ha           ha         na         a         ain         m3/s-ba         ha         ha           rs         sol         500         500         500         500         Sec.         ha           rs         sol         550         1900         500         500         ha         ha           rs         sol         550         2169         ha         ha         ha           rs         sol         550         2169         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580         580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |          |                    |              |          |                  |                  |                  |                  | <br>          |                  |                  |                            |                     |                  |             |                   |                  |         |                  |
| Service Area         Length         T         Rainfall         Stors           See.         Accum.         See. Accum.         See. Accum.         Stors         Stors           ha         ha         a         a         ain         may/s-ths         I           ha         ha         a         ain         may/s-ths         I         I           ha         ha         a         ain         may/s-ths         I         I           site         500         500         500         I         I         I           rgs         880         269         2169         I         I         I           rgs         880         269         2169         I         I         I           rgs         126         190         580         580         I         I           rgs         2354         100         2354         I         I         I           rgs         126         198         198         I         I         I           rgs         126         198         198         I         I         I           rgs         3353         250         250         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | n-off    | vice Ar            |              | <u> </u> |                  |                  | . <u>.</u>       |                  |               |                  |                  |                            | <br>  · ··· , _ · · |                  |             |                   |                  |         |                  |
| Service Area         Length         T         Rainfail           Seevice Area         Length         T         Rainfail           See.         Accum.         Sec. Accum.         Ber           ha         na         min         m3/s-bs           ha         na         a         min         m3/s-bs           ha         na         a         min         m3/s-bs           rs         sig         500         500         500           sig         500         500         500         per           rs         sig         500         500         500           rs         sig         500         500         500           rs         sig         50         1900         580           rs         sig         580         269         2169           rs         rs         sig         sig         sig           rs         sig         580         283         rs           rs         sig         sig         sig         sig           rs         sig         190         284         sig           rs         sig         550         748         sig <td></td> <td>ors Ru</td> <td><b>]!</b></td> <td>े हिं<br/></td> <td></td> <td>· · · ·</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                   |               | ors Ru   | <b>]!</b>          | े हिं<br>    |          |                  |                  |                  |                  |               |                  |                  |                            |                     |                  |             |                   | · · · ·          |         |                  |
| Service Area         Length         T           Sec.         Accum.         Sec.         Accum.           ha         ha         m         m         min           ha         ha         m         m         m         min           ha         ha         m         m         m         m         min           ha         ha         m         m         m         m         m         min           336         336         500         500         500         500         500         500           q9         2657         100         289         2169         188         188           110         110         250         530         548         188         188         126         198         198         126         198         138         126         126         198         138         138         138         138         138         135         100         848         148         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 5        |                    | 1            |          |                  |                  |                  |                  |               | <br>             |                  |                            |                     |                  | · · · · · · |                   |                  | <b></b> |                  |
| Service Area         Length           Seevice Area         Length           ha         ha         a           go         360         500         500           go         260         259         2169           go         260         260         580           life         510         550         748           384         510         550         748           sis         315         250         250           jif         842         100         848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |          | Rainf<br>per<br>ha | 3/3          |          |                  |                  |                  |                  |               |                  |                  |                            |                     | ·                |             |                   |                  |         |                  |
| Service Area         Lengti           Sec.         Accum.         Sec.         Acc           ha         ha         a         b           ha         ha         a         b           radie         500         336         500           radie         500         253         2           radie         860         259         2           radie         860         259         2           radie         860         253         70         2           radie         1100         259         2         126           radie         510         550         2         2550           radie         510         550         2         2           radie         510         550         2         2           radie         510         550         2         2           radie         550         550         2         2           radie         5         100         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |          |                    | ain          | ļ        |                  |                  |                  |                  |               |                  |                  |                            |                     |                  |             |                   |                  |         |                  |
| Service Area<br>See. Accum.<br>ha ha<br>ha ha<br>ha<br>ha<br>ha<br>ha<br>ha<br>ha<br>ha<br>ha<br>ha<br>ha<br>ha<br>ha<br>h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | ngth     | Accum              | BR           | -        | 1.               | 1                |                  |                  |               |                  |                  | L                          | 1                   |                  |             | <b>.</b>          | 1                |         | 250              |
| Service<br>133-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Le<br>Le | Į                  | <b>a</b>     |          | <u> </u>         | 22               | 59<br>73         | <u>5</u>         |               | 28               | 3                | · .                        | <u> </u>            | 550              |             | 250               | 100              |         | 250              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | e Area   | Accum.             | ha           |          | 336              | 108              |                  | 2637             |               | - 91             | 2753             | <br>                       | 126                 | 510              |             | 315               |                  |         | 12               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Servic   | Sec.               | ्म           |          |                  |                  | g                |                  | <br>          |                  | 8                | <br>                       | 8                   | 384              |             | 315               | 5                |         | छ                |
| 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |          | Down<br>stream     | • <b>!</b>   |          |                  |                  |                  |                  | +             |                  | 45               |                            |                     | 42               |             |                   | 44               |         | +                |
| 42         44         45         33         33         33         33         34         35         56         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |          | ¥6.                |              |          |                  | 34               | 35               | ĸ                | •<br>•        | 37               | 38               | <br>                       | 33                  | 94               |             | 14                | 42               |         | 43               |

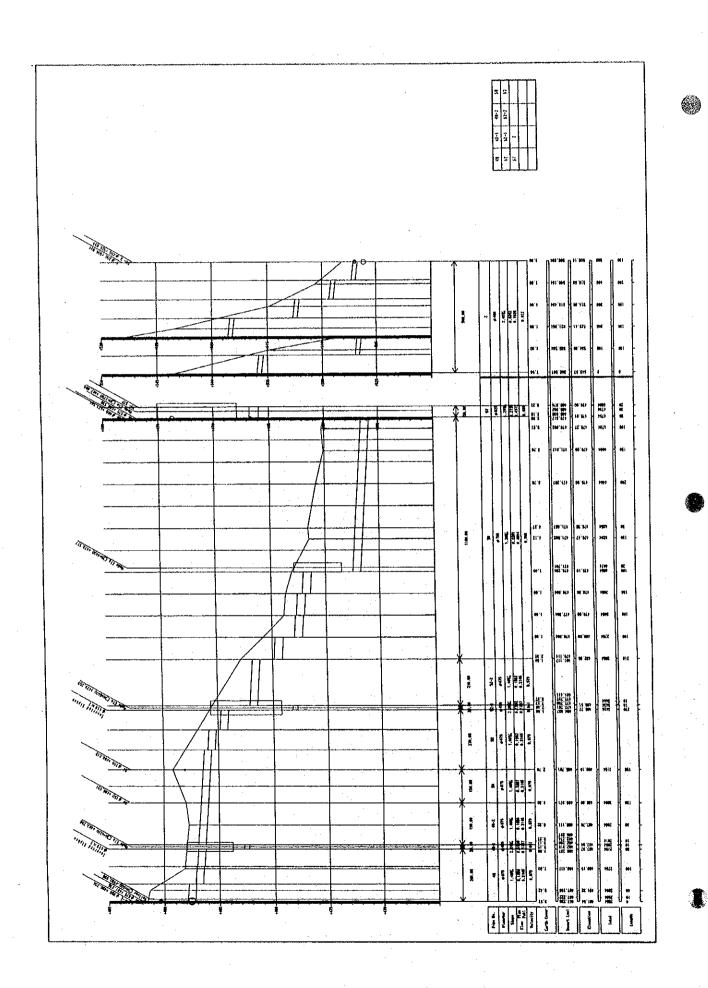
A-13.1-5

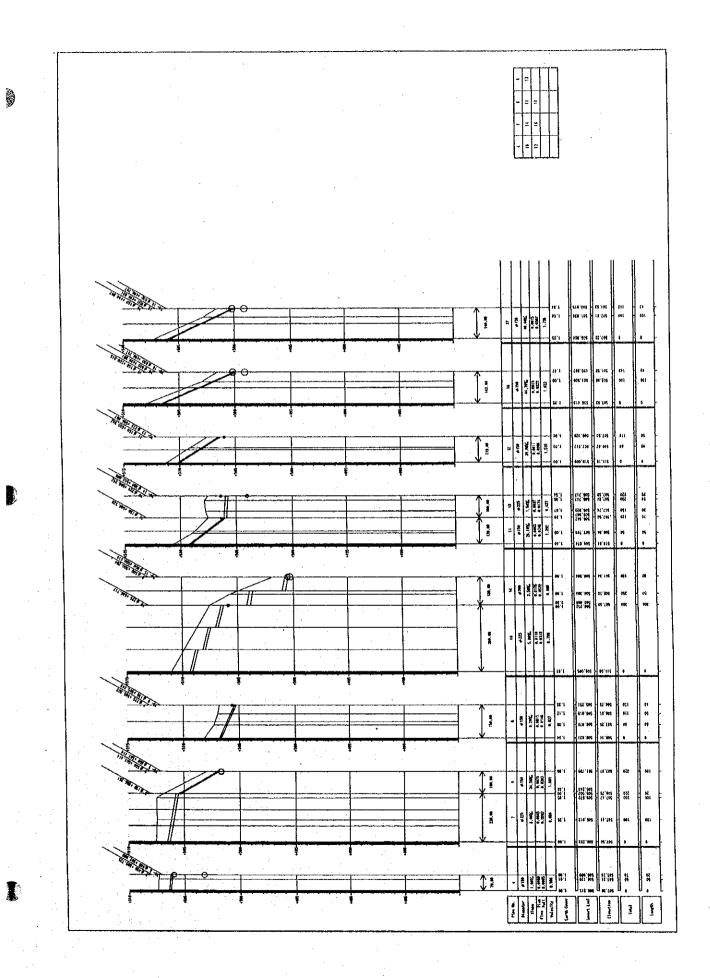
|              |              | Se             | Sewage       | Ē            | Flow        | Ca  | Calculation | ati      | F             | able         | (Kandy) | ndy      |       |             | . 1       |                |              |                  |            |             |        |                         |                |                   | ٩.          | 9                 |   |
|--------------|--------------|----------------|--------------|--------------|-------------|-----|-------------|----------|---------------|--------------|---------|----------|-------|-------------|-----------|----------------|--------------|------------------|------------|-------------|--------|-------------------------|----------------|-------------------|-------------|-------------------|---|
|              |              |                |              |              |             |     |             |          |               |              |         |          |       |             |           |                |              |                  |            |             | n*     | <pre>%Unit Sewage</pre> | rage F]        | Flow.: 0          | 324m3/      | .324m3/capita.day | Г |
|              |              | Servi          | Service Area | Len          | Length      |     |             | 12       | Storm Run-off | -off         |         |          | Sewag | Sewage Flow |           | Other          | Flow         |                  |            |             | Desi   | Design Sewer            |                |                   |             |                   |   |
|              | ·            |                |              |              |             | F   | Rainfal     | =        | Serv          | Service Area |         | Pop/B    | Popul | Popuiation  | 10        | na?            | million      | Accum.           | Dia.       | Slope       |        | Flow                    | G.L.           | Level             |             | Remarks           |   |
| Pipe No.     | stream       | Sec.           | Acctum.      |              | Sec. Accum. |     | ह्यू ह      | <u>ب</u> |               | Accum.       | K.0.    |          | Sec.  | Accum.      | 4011      |                | - VICTOR     |                  |            |             |        |                         |                |                   | ,           |                   |   |
|              | ~d           | <b>.</b>       | ta<br>ta     | =            | 5           | min | Ed∙s/6∎     |          | ध             | ,g           | m3/5    | P/ha     | Ω.    | ۵,          | æ3∕ ≊     | m3/s           | <b>m</b> 3/s | m3/s             | Ē          | <b>}</b> \$ | s/m    | ra3/s                   |                | ×:                | E .         | Ĩ                 |   |
| 4            |              |                |              |              | 1           |     |             | ţ        |               |              |         |          | 90    | 7617        | 00286     |                |              | 00286            | ¢ 300      | 350         | d809   | do572                   | 49545          | 487891            | 122         |                   |   |
|              |              | в              | 808<br>      | 2            | 976         |     |             |          |               |              |         |          |       |             |           |                |              |                  | 242        |             | 1870   | 14:45                   | 49545          | 487516<br>4877216 | 357         |                   |   |
| <del>3</del> | <del>8</del> | -8             | 3621         | 200          | 2554        | _   |             |          |               |              |         |          | 03    | 16564       | 12900     |                | 110431       | C0070            | 20         |             |        |                         |                |                   |             |                   | Γ |
|              |              |                |              |              |             |     |             |          |               |              |         |          | ····· | -           |           |                |              |                  |            |             |        | i                       | <br>           |                   |             |                   |   |
| ų            |              |                |              |              |             |     |             |          | . <b> </b>    |              |         |          |       |             | •         | Q              | 00000        | 0                | A 725      | 6           | 0799   | 00318                   | 59327<br>52780 | 586529<br>526552  | 100         |                   |   |
| ₽            |              | 255            | 255          | 1022         | 1022        |     |             |          | -             |              |         |          | 20.52 | 2402        | 0500      |                | 764-000      | 3                |            | 1           |        | _                       |                | 522874            | 459         |                   |   |
| 47           | 47-2         | 8              |              | 000          | 8 Y 1       |     |             |          |               | ·            |         |          | 834   | 3236        | 00121     | ·<br>· • • • • | 000492       | 00170            | ¢ 300      | 350         | q809   | 00572                   | 49274          | 491404            | 12          |                   |   |
|              |              | <b>G</b>       | 316          | 82           | 222         |     |             |          |               |              |         |          |       |             |           |                |              |                  |            |             |        | <u>}_</u>               |                |                   |             |                   |   |
|              |              |                |              |              |             |     |             |          |               |              |         |          |       |             |           |                |              |                  |            |             |        |                         |                | 496482            | 153         |                   | T |
| 47-1         |              | - <del>-</del> |              |              |             |     |             |          |               |              |         |          | 2     |             | 0000      |                |              | 0000             | ø 150      | 4180        | 1762   | 00311                   | 19274          | 190765            | 18          |                   |   |
|              |              | 3              | 3            | 130          |             |     |             |          |               | -   -        |         |          | 3     | 3           |           |                |              |                  |            | 1           |        |                         | 49274          | 490449            | 19E         |                   |   |
| 47-2         |              | 8              |              | Ę            | 1900        |     |             | p.       |               |              |         |          | 53    | 3312        | 00124     |                | 000492       | 00173            | \$ 300     | 350         | 0809   | 00572                   | 49154          | 490204            | 8           |                   | T |
| ą            |              | 3              |              | 2            | 1.1         |     |             |          | <br>          |              |         | ļ        |       | I '         |           |                |              | 01850            | 675<br>675 | 2           | 5730   | 03145                   | 49154          | 487236            | S Q         |                   |   |
| 2            |              | <b>\$</b>      | 3997         | 540          | 2794        |     |             |          |               |              |         |          | 27    | TETO3       |           |                |              |                  |            |             |        |                         | 48797          | 482318            | \$15        |                   | [ |
| 48-1         |              |                | 1000         | č            | ¥186        |     |             | 4        |               |              |         | ,        |       | 20191       | 00757     |                | 010929       | 01850            | ø 450      | 220         | q841   | 01337                   | 48794          | 482274            | <b>Ş</b> 17 |                   |   |
| 48-3         | US           |                |              | 3            |             |     |             |          | <br>          |              |         | <u> </u> |       | 10.00       | APPRE 1   |                | 04004        | 1<br>1<br>11 850 | d 675      | 140         | 10,279 |                         | 48794          | 486237            | 130         |                   |   |
|              | 3            |                | 3997         | 9 <u>6</u> 1 | 300         |     |             |          |               |              |         |          |       | 16107       |           | -              |              |                  |            |             | +      |                         |                |                   | <br>        |                   | [ |
|              |              |                |              | .*           | • .         |     |             |          |               |              |         |          |       |             |           |                |              |                  |            |             |        |                         |                |                   |             |                   |   |
| 1            |              | -              |              |              |             |     |             |          |               |              |         | <br>     |       |             |           |                |              |                  |            |             |        | i                       |                | 495025            | 5           |                   |   |
| 57           |              | 8              | 25           | 294          | 294         |     |             | -,       |               |              |         |          | 193   | 193         | 00001     |                |              | 20000            | ø 150      | 2850        | 52     | 00257                   |                | 1000              | 8           |                   | T |
| 20           | 52           |                |              |              |             |     |             | 1        |               |              |         |          | 5     | 20475       | 00768     |                | 010929       | 01861            | ¢ 675      | ¥           | 6790   | 03145                   | 48800          | 485761            | 270         |                   | , |
|              |              | z              | 0.04<br>4030 | De1          | Fere        |     |             |          |               |              |         | ļ        |       | 1           |           | <u> </u>       |              |                  |            | •           |        |                         | • •            |                   |             |                   |   |
|              |              |                |              |              |             |     | :<br>       |          |               |              | • • • • |          |       |             |           |                |              |                  |            |             |        |                         | 49218          | 600267            |             |                   |   |
| 51           |              | 13             | 12           | 350          | 350         |     |             |          |               |              |         |          | 483   |             | 489 00018 |                |              | 00018<br>00018   | ø 150      | 2560        | 1379   | q0244                   | 48919          | 488019            | too         |                   | ] |
|              | -            | -<br>};        | 1            |              |             | ]   |             |          |               |              |         |          |       |             | ī         |                |              |                  |            |             |        |                         |                |                   |             |                   |   |

| 9                  |                      |               |                                |              |                                         | [                |                  |                            |          |                  | T              |          |              |                         |          | T    |       |          |       |          |
|--------------------|----------------------|---------------|--------------------------------|--------------|-----------------------------------------|------------------|------------------|----------------------------|----------|------------------|----------------|----------|--------------|-------------------------|----------|------|-------|----------|-------|----------|
|                    | : 0.324m3/capita-day |               | Remarks                        |              |                                         |                  |                  |                            |          |                  |                |          | Į            | 215                     |          |      |       |          |       |          |
|                    | 3/cap                |               | a                              |              |                                         |                  |                  |                            |          |                  |                |          | ľ            | kandy                   |          |      |       |          |       |          |
| o.,]               | 0.3241               |               | •                              |              | 210<br>200                              |                  |                  |                            |          | 289<br>254       | 264<br>100     |          | នុន្ត        | 818 To Kancy Mr.<br>823 |          |      |       |          | ¦     |          |
|                    | low :                |               | Level                          | ×            | 485761                                  | 477781<br>477773 | 481A11<br>481A17 | 475114                     |          | 501109<br>484584 | 484584         | u . I    | 473752       | 465338                  |          |      |       |          |       |          |
|                    | WUnit Sewage Flow    |               | G.L.                           | ×            | 48919                                   | 48177            | 48551            | 58<br>10<br>10<br>10<br>10 |          | 50444<br>48777   | 48777<br>47501 |          | 47501        | 47501                   |          |      |       |          |       |          |
|                    | uit Ser              | Design Sever  | Flow                           | <b>1</b> 3/S | d3145                                   | 01337            | 03145            | 04014                      | i        | d1020            | 01020          |          | 00318        | 22680                   | i <br>   | i    |       |          |       | i        |
|                    | лж<br>Т              | Desi          | 7                              | <b>m/</b> 3  | derr9                                   | 178              | 6229             | 0308                       |          | d812             | d812           |          | 6520         | 0230                    |          |      |       |          |       |          |
|                    |                      | -             | Slope                          | *            | 140                                     | 22               |                  | <u>8</u>                   |          | 240              | <u>340</u>     | •        | 200          | ស្ព                     |          |      |       |          |       |          |
|                    |                      |               | Dia.                           | I            | 6775                                    | 450              | 675              | 750                        |          | 400              | 400<br>00      |          | 225          | 825                     |          |      |       |          |       |          |
|                    |                      | 1             | Accum.                         | <b>m</b> 3/3 | d 2382                                  | 01982 Ø          | 6<br>01982<br>6  | 02201                      |          | 00318<br>00318   | 00418<br>¢     |          | 00115 ¢      | 02733 Ø                 |          |      |       |          |       |          |
|                    |                      | 1ox           | Accum.                         | a3/3         | 010929                                  |                  | 010929           | 010929 (                   |          |                  |                |          |              | 010929 (                |          |      |       |          |       |          |
|                    | 1                    | Other Flow    | Sec. A                         | #3/S         |                                         |                  |                  |                            |          |                  |                |          |              |                         |          |      |       |          |       |          |
|                    |                      |               | Flow                           | ∎3/s =       | 68800                                   | 00889            | 0883             | 01108                      |          | 00318            | 00418          |          | 00115        | 01640                   |          |      |       |          |       |          |
|                    |                      | Flow          |                                | а.           | 23718 0                                 |                  | 23718 0          | 29534 0                    |          | 8473             |                |          | 3054_0       |                         |          |      |       |          |       |          |
|                    |                      | Semage Flow   | Pop/D Population<br>Sec. Accum | ۵.           | 2754 2                                  | 1                |                  | 5816 2                     |          | 8473             | 1              |          | 3054         |                         |          |      |       |          |       |          |
| ndy                |                      |               | Pop/D                          | P/ha         |                                         |                  |                  |                            |          |                  |                |          |              |                         |          |      |       |          |       |          |
| (Ka                |                      |               | R.C.                           | <b>3/5</b>   |                                         |                  |                  |                            |          | +                |                |          |              |                         |          |      |       |          |       |          |
| able (Kandy)       |                      |               | e Årea.<br>Accum.              | æ            |                                         |                  |                  |                            |          |                  |                |          |              |                         |          |      |       |          |       |          |
|                    |                      | Storm Run-off | Service Area<br>Sec. Accum.    | 멸            |                                         |                  |                  |                            |          |                  |                |          |              |                         |          |      |       |          |       |          |
| ion                |                      | Storm         | ິ<br>ບ                         |              |                                         | · · · · · · ·    |                  |                            |          |                  |                | <br>     | <br>         |                         |          |      | <br>  |          |       |          |
| Flow Calculation T | -<br>-               |               | Rainfall<br>per<br>ha          | ad-s/Ca      |                                         | <u> </u>         | <u> </u>         |                            |          |                  | <u> </u>       |          |              |                         | ·<br>    |      |       |          |       |          |
| Calc               |                      |               | н<br>В                         | i.           |                                         |                  |                  |                            |          |                  |                | <u> </u> |              | <u> </u>                |          |      |       |          |       |          |
|                    |                      |               |                                |              | 4645                                    | 344              | 3654             | 4754                       |          |                  | 2150           |          | 450          | 4804                    |          |      |       |          |       |          |
|                    |                      | Length        | Sec. Accum.                    | •            | c.e                                     | ្តុន្ត           | 210              | 1100                       |          | 1500             | 650            |          | 450          |                         |          |      |       | <u> </u> | · · · |          |
| Sewage             |                      | Area          | Accum.                         | a d          |                                         | 55               |                  | 4739                       |          |                  | 1634           |          | +12<br>· · · | 6785                    |          |      |       |          |       | <b> </b> |
| Sew                |                      | Service Area  | Sec.                           | E            |                                         |                  |                  | 85                         |          |                  |                |          | 8            |                         | ·        | <br> |       |          | · ·   |          |
|                    | •                    |               | Down Se                        |              |                                         | a<br>            |                  | 57 33                      |          |                  | +              |          |              |                         |          |      |       | <u> </u> |       |          |
|                    | •                    | -             | Pipe No. Do.                   |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                  | Ņ                |                            | <u> </u> |                  | 5 57           | <u> </u> |              |                         |          |      | .<br> |          |       |          |
| ente<br>Li se      |                      |               | <u> </u>                       |              | 53                                      | 52-1             | 52-2             | ß                          | <u> </u> | -25              | \$5            | <u> </u> | 56           | 57                      | <u> </u> |      |       |          |       |          |

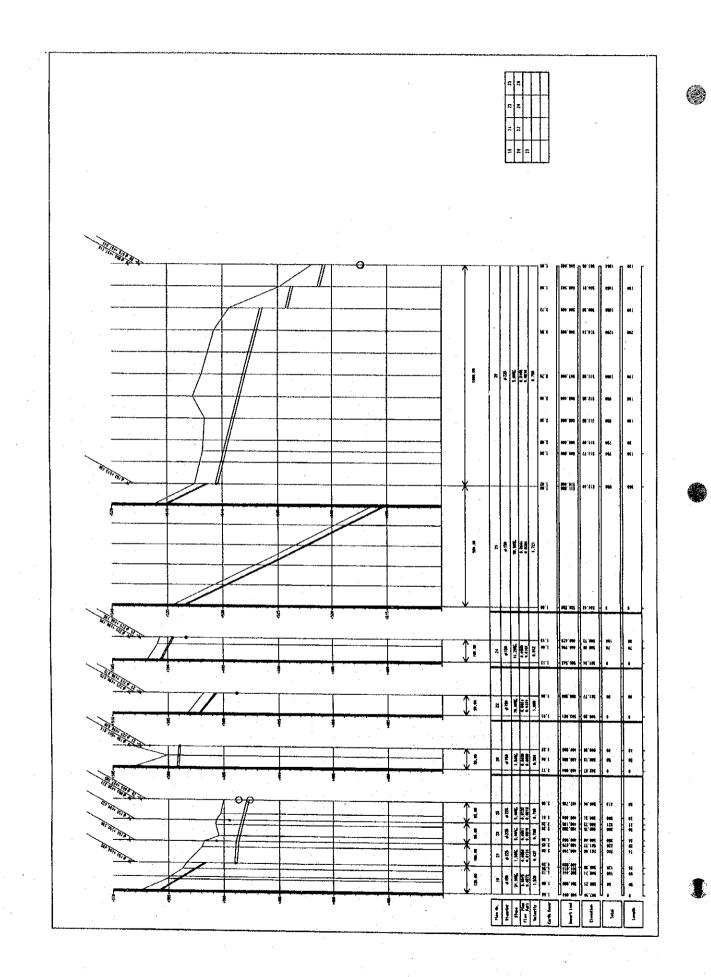

. . .

A-13.1-7

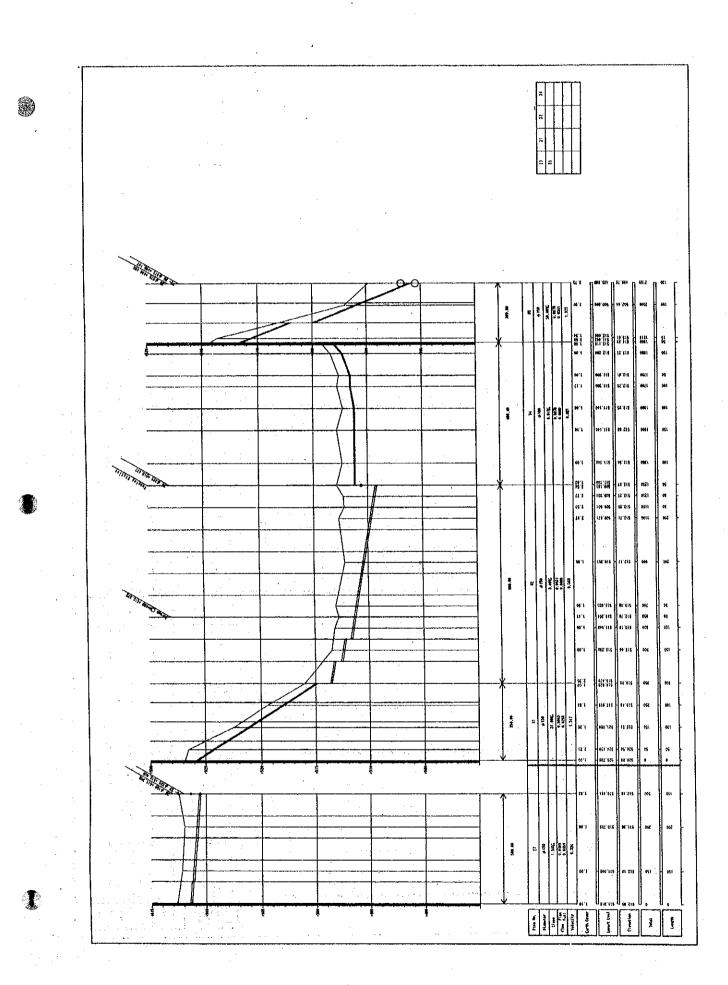

(Line)

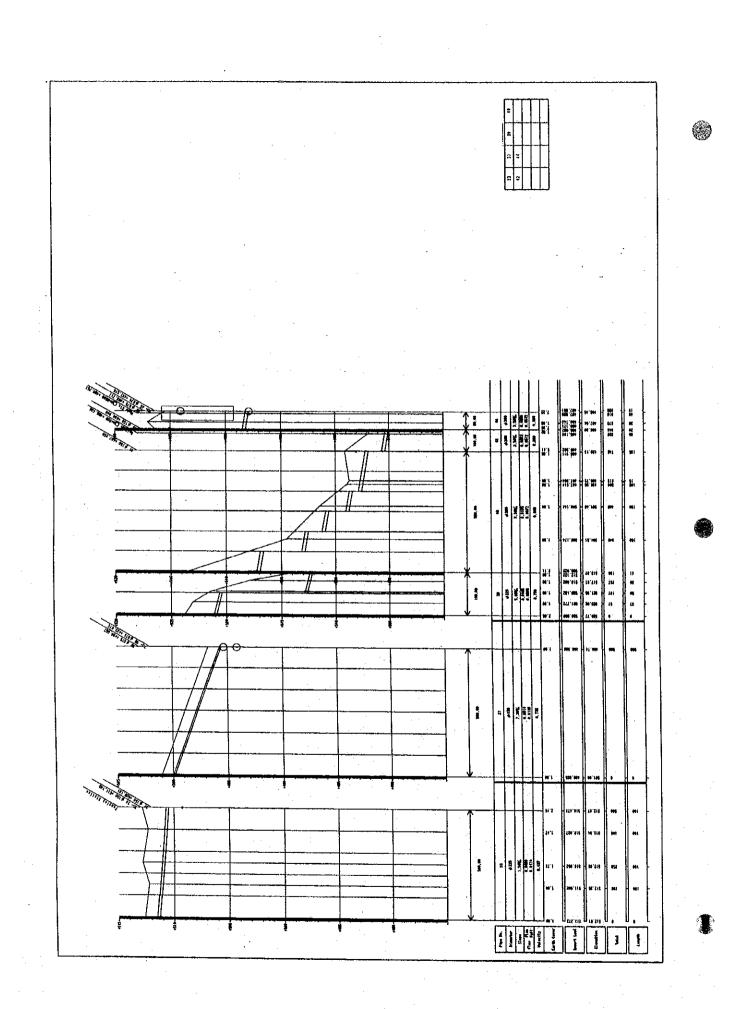

|          | .  -         |            |          | -             |         |          |                          |                         | 1    |       |          |             |              |                  |              | -     |         |             | *        | (Unit        | Sevage | Flow :                        | 0.324           | WUnit Sewage Flow : 0.324m3/capita-day |
|----------|--------------|------------|----------|---------------|---------|----------|--------------------------|-------------------------|------|-------|----------|-------------|--------------|------------------|--------------|-------|---------|-------------|----------|--------------|--------|-------------------------------|-----------------|----------------------------------------|
| 2        | Service Area | Length     |          | <u>م</u><br>۲ | ainfall | 1        | Storm Run-off<br>Service | Run-off<br>Service Area |      |       | Sewag    | Sewage Flow |              | oth              | Other Flow   |       |         | ļ           |          | Design Sewer | wer.   |                               |                 |                                        |
| ŶĊ       | Accum. S     | Sec. Accum | cum.     |               | ia a    | <u>ں</u> | Sec.                     | Accum.                  | R.O. | rop/t | Sec      | Accu.       | FLOW         | Sec.             | Accur.       |       | Dia.    | Slope       | >        | Flow         | e.L.   | Level                         | ß               | Remarks                                |
| <u>م</u> | ्रम्         |            |          | nim           | m3/s-ha |          | ha                       | μ                       | a/S∎ | P/ha  |          | ď           | <b>m</b> 3/s | s/6at            | <b>m</b> 3/s | m3/s  | ä       | <b>3</b> 48 | 篇/S      | m3/s         | ×      | ×                             | 6               |                                        |
| "        | IE           | 620        | 620      | <br>  -       | <br>    |          |                          |                         |      |       | 5260     | 5260        | 00197        | ·<br>· · · · · · |              | 00197 | 6       | 300 350     | 0809     | 00572        | 47595  | 474614                        | 317             | .*                                     |
| 1        |              |            |          |               |         |          |                          |                         |      |       |          |             |              |                  |              |       |         |             |          |              |        |                               | 1 1             |                                        |
|          |              | +          |          |               |         |          |                          |                         |      |       |          |             |              |                  |              |       |         | <br>        |          | <u> </u>     |        |                               |                 |                                        |
|          |              | +          | +        |               |         |          |                          |                         |      |       |          |             |              |                  |              |       |         |             |          |              |        |                               |                 |                                        |
| 1        |              |            |          | · ·           |         |          |                          |                         |      |       |          |             |              |                  | -            |       |         |             |          |              |        |                               | ·· <del>·</del> |                                        |
| l        |              | ·<br>      | -        |               |         |          |                          |                         |      |       |          |             |              |                  |              | -     |         |             | +        |              |        |                               |                 |                                        |
| · ·      |              |            | <u> </u> | · · ·         |         |          |                          |                         |      |       |          |             |              |                  |              |       |         |             |          |              |        |                               | ·               |                                        |
| 1.       |              |            |          |               |         |          |                          |                         |      | · .   | <u> </u> | ·           |              |                  |              |       | .<br>   | +           |          |              |        |                               |                 |                                        |
|          |              |            |          | <u> </u>      |         |          | +                        |                         |      |       |          |             |              |                  |              |       | · · · · |             |          |              |        |                               |                 |                                        |
|          |              |            | 1        | <u> </u>      | · ·     |          |                          |                         |      |       |          |             |              |                  |              |       |         | •••••       |          |              |        |                               |                 |                                        |
|          |              |            | <u> </u> |               |         |          |                          | •                       |      |       | <u> </u> |             |              |                  |              |       |         |             |          | ·            |        |                               |                 |                                        |
|          |              |            | <u> </u> |               |         |          |                          | <br>                    |      |       |          |             | <b>-</b>     |                  |              |       |         |             | <u> </u> |              |        |                               |                 |                                        |
|          |              | <b> -</b>  | <u>.</u> |               |         |          | <br>                     |                         |      |       |          |             |              |                  |              |       |         |             |          |              |        |                               |                 |                                        |
|          | :            |            |          |               |         |          |                          |                         |      |       |          |             |              |                  |              |       |         |             |          |              |        |                               |                 |                                        |
|          |              | i          |          |               |         |          |                          |                         |      |       |          |             |              |                  |              |       |         |             |          |              |        | <br> <br> <br> <br> <br> <br> |                 |                                        |
| 1        |              |            | ļ        |               |         |          | <br>                     |                         |      | -     |          |             |              |                  |              |       |         |             | <u> </u> |              |        |                               |                 |                                        |

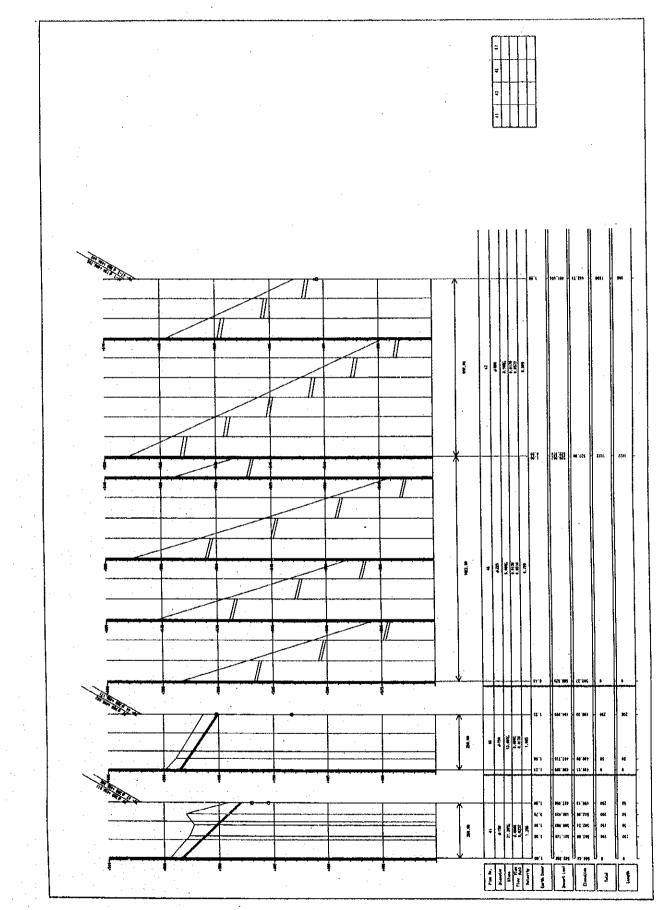
A-13.1-8




þ

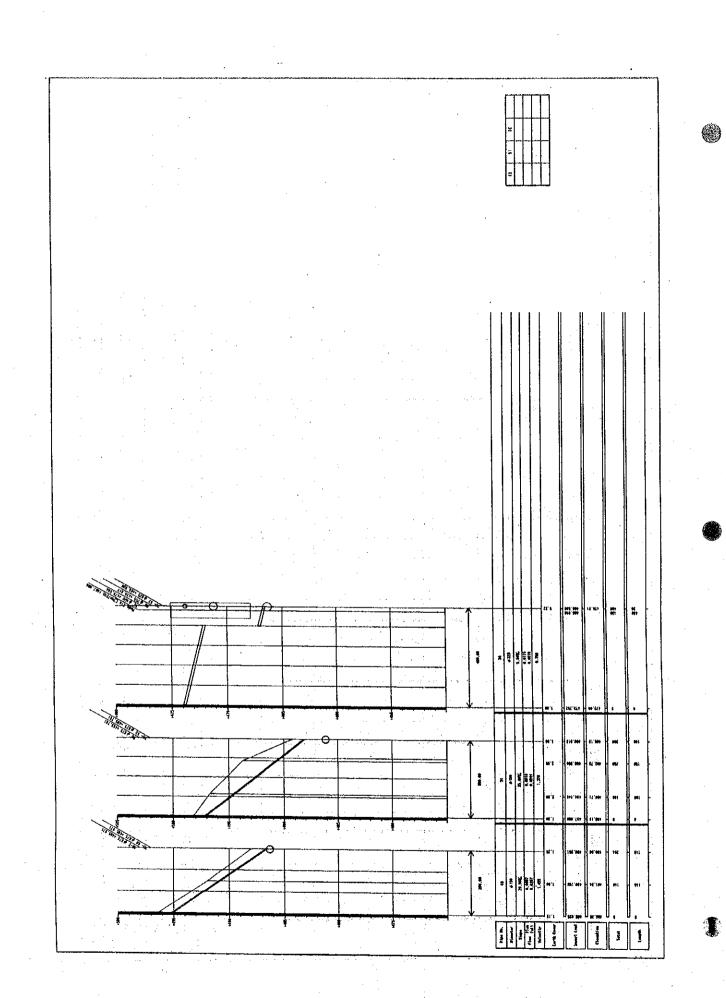


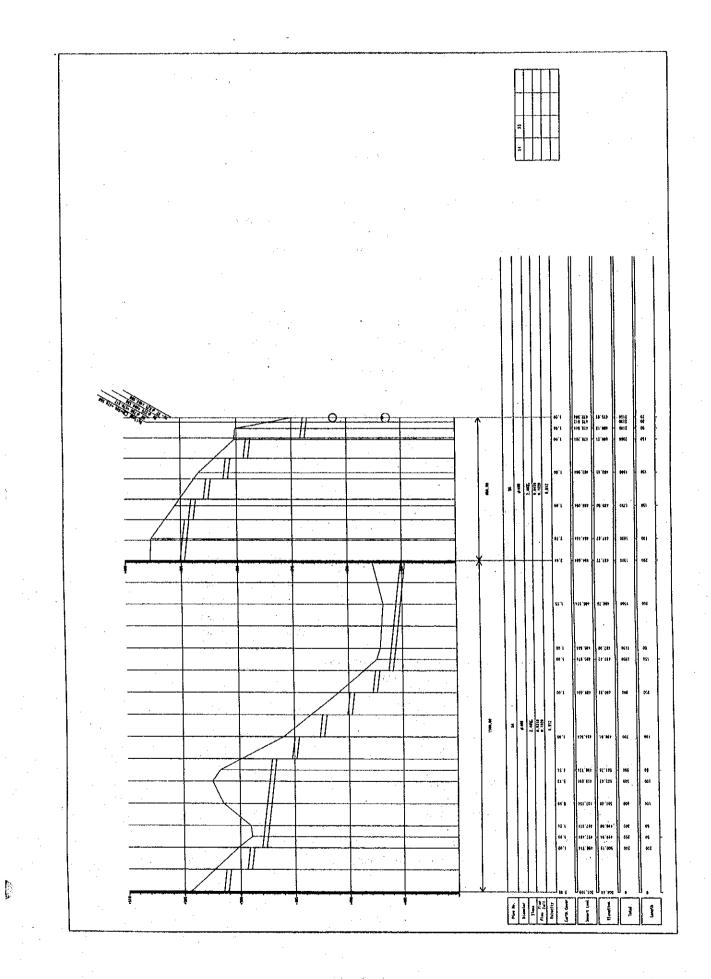





A-13.2-3



A-13.2-4






41.5474

.





# Appendix 13.3 Pumping Equipment-Capacity Caluculation Kandy

| Total Capacity   | .2 (Kandy Lake)        | 605 m3         | 8/day=      |         | 0.42    | m3/n         | nin |
|------------------|------------------------|----------------|-------------|---------|---------|--------------|-----|
| Quantity of pump | 1                      |                |             | t for s | tand-by |              |     |
| Pump Capacity    |                        | 605 m3         |             |         | una oj  |              |     |
| rump capaeny     | Q =                    | 0.420 m3       |             |         |         |              |     |
|                  |                        | 0.0070 m3      |             |         |         |              |     |
|                  | <b>q</b> =             | 0.0070 III.    | <i>Jscc</i> |         |         |              |     |
| Diameter         | Diameter = 146*        | *(Q/v)^(1/2)   |             |         |         |              |     |
|                  |                        | 77 m           |             |         | 55      | mm           |     |
|                  | =                      | 65 m           | n           |         |         |              |     |
|                  | where,v=               | 1.50           | to          |         | 3.00    |              |     |
| Total Head       | Total Head H=h         | 1.1.67.1.62    |             |         | 12.3    | <b>F</b> (1) |     |
| 1 otal meau      | Total Head H-B         | 17127110-      | 14          | 0 m     | 1.4.1.2 | 511          |     |
|                  |                        |                | 14.         | o m     | 4.45    | ***          |     |
|                  | actual head h1 =       |                |             |         | 508.66  |              |     |
|                  |                        | tion level hs  |             |         |         |              |     |
|                  |                        | ivery level h  |             |         | 513.11  | m            |     |
|                  | friction loss (Ha      |                |             |         | pe      |              |     |
|                  | $h2 = 10.666 * c^{-1}$ | -1.85*D^-4.8   | 37*q^1.3    | 85*L    |         |              |     |
|                  | =                      | 6.51 m         |             |         |         |              |     |
|                  | where, c=              | 130            |             |         |         |              |     |
|                  | D=                     |                | m dia /1    | 000     |         |              |     |
|                  | L =                    | 650 m          |             |         |         |              |     |
|                  |                        | 0.892 m        |             |         |         |              |     |
|                  |                        |                | (acc)       |         |         |              |     |
|                  | friction loss : fit    |                |             |         |         |              |     |
|                  | $h3 = f * (v^2)$       |                |             |         |         |              |     |
| · ·              | . =                    | 1.34 m         |             |         |         |              |     |
|                  | where, $v =$           | 2.11 m         |             |         |         |              | c   |
|                  | where,                 |                | Q'ty        |         | f/pc    |              | f   |
|                  | check valve            |                |             | 1       | 1.50    |              | 1.5 |
|                  | sluice valve           |                |             | 2       | 0.10    |              | 0.2 |
|                  | increase               |                |             | 0       | 0.15    |              | 0.0 |
|                  | 90deg                  |                |             | 5       | 0.18    |              | 0.9 |
|                  | tee                    |                |             | 2       | 1.15    |              | 2.3 |
|                  | outlet                 |                |             | 1       | 1.00    |              | 1.0 |
|                  |                        | 1              |             |         | total   |              | 5.9 |
| · · · ·          |                        | •              |             |         |         |              |     |
| Motor Output     | Motor Output =         |                |             | 1+a)    |         |              |     |
|                  | <b>—</b>               | 1.8 k          |             |         |         |              |     |
|                  | =                      | 2.2 k          | W 💠         |         |         |              |     |
|                  | where,r=               | 1.00           |             |         |         |              |     |
|                  | e≖                     | 0.60           |             |         |         |              |     |
|                  | a=                     | 0.15           |             |         | 5. S    |              |     |
| Specification    |                        |                |             |         | ·       |              |     |
| Туре             | Submersible Se         |                |             |         |         |              |     |
|                  | 65 m                   |                |             |         |         |              |     |
| Diameter         |                        |                |             |         |         |              |     |
| Capacity         | 0.42 m                 |                |             |         |         | •            |     |
| Head             | 14.0 m                 |                |             |         |         |              |     |
| Motor Outpu      |                        |                |             |         |         |              |     |
| Quantity         | 1 se                   | ts + 1 set for | standby     | y       |         |              |     |

A-13.3-1

| 2. Sewage Treatment P | lant (Large)       |              |        |           |         |        |                                               |      |
|-----------------------|--------------------|--------------|--------|-----------|---------|--------|-----------------------------------------------|------|
| Total Capacity        |                    | 23,613       | m3/d   | lay≕      |         | 16.40  | m3/m                                          | in   |
| Quantity of pump      |                    | 2            | sets - | + 1 set 1 | for sta | and-by |                                               |      |
| Pump Capacity         |                    | 11,807       | m3/d   | lay       |         |        |                                               |      |
|                       | Q =                | 8,199        |        |           |         |        |                                               |      |
|                       | q ≕                | 0.1366       |        |           |         |        |                                               |      |
|                       | 1                  |              |        |           |         |        |                                               |      |
| Diameter              | Diameter = 14      |              |        |           |         | ~ ~ ~  | н., с. |      |
|                       | =                  |              |        | to        |         | 241    | mm                                            |      |
|                       |                    |              | mm     |           |         |        |                                               |      |
|                       | where,v=           | 1.50         |        | to        |         | 3.00   |                                               |      |
| Total Head            | Total Head H       | =h1+h2+h3    | =      |           |         | 12.2   | m                                             |      |
| Totut Hous            |                    |              |        | 14.0      | m       |        |                                               |      |
|                       | actual head hi     | l = hd - hs  | =      |           |         | 9.62   | m                                             |      |
|                       |                    | uction leve  |        |           |         | 465.38 | m                                             |      |
|                       |                    | lelivery lev |        | :         |         | 475.00 |                                               |      |
|                       | friction loss (I   |              |        |           | ht viv  |        |                                               |      |
| ,                     | h2 = 10.666*c      |              |        |           |         | -      |                                               |      |
|                       |                    | 0.29         |        | ų 1.0-    |         |        |                                               |      |
|                       | =                  |              |        |           |         |        |                                               |      |
|                       | where, c=          | 130          |        | 1. 110    | ^^      |        |                                               |      |
|                       | D =                |              |        | dia /10   | 00      |        |                                               |      |
| · ·                   | L =                |              | ) m    |           |         |        |                                               |      |
|                       | (v=                |              | m/se   | ec)       |         |        |                                               |      |
|                       | friction loss :    |              |        |           |         |        |                                               |      |
|                       | $h3 = f * (v ^{)}$ |              |        |           |         | 1      |                                               |      |
|                       | =                  | 2.33         |        |           |         |        |                                               |      |
|                       | where, $v =$       | 2.78         | m/se   |           |         |        |                                               | c    |
|                       | where,             |              |        | Q'ty      |         | f/pc   |                                               | f    |
|                       | check valve        |              |        |           | 1.      | 1.50   |                                               | 1.50 |
|                       | sluice valve       |              |        |           | 2       | 0.10   |                                               | 0.20 |
|                       | increase           |              |        |           | 0       | 0.15   |                                               | 0.00 |
|                       | 90deg              |              |        |           | 5       | 0.18   |                                               | 0.90 |
|                       | tee                |              |        |           | 2       | 1.15   |                                               | 2.30 |
|                       | outlet             |              |        |           | 1.      | 1.00   |                                               | 1.00 |
|                       |                    |              |        |           |         | total  |                                               | 5.90 |
| Motor Output          | Motor Output       | ı – ∕0 163*  | •*\\*I | J/e\*/1.  | ( هـ    |        |                                               |      |
| Motor Output          |                    |              | 9 kW   | .40) (I   | )       |        |                                               |      |
|                       | · · · · · ·        |              | kW     |           |         |        |                                               |      |
|                       | where,r=           | 1.00         |        |           |         |        |                                               |      |
|                       |                    | 0.60         |        |           |         |        |                                               |      |
|                       | e=                 | 0.00         |        |           |         |        |                                               |      |
| •                     | a=                 | 0.15         | ,      |           |         |        |                                               |      |
| Specification         |                    |              |        |           |         |        |                                               |      |
| Туре                  | Submersible        | Sewage Pu    | mp     |           |         |        |                                               |      |
| Diameter              | 250                |              | -      |           |         | ÷ .    |                                               |      |
| Capacity              | 8.2                | m3/min       |        |           |         |        |                                               | · .  |
| Head                  | 14.0               |              |        |           |         |        |                                               |      |
| Motor Output          |                    | kW           |        |           |         |        |                                               |      |
| Quantity              |                    | sets + 1 set | for st | andby     |         |        |                                               |      |
|                       |                    |              |        |           |         |        |                                               |      |
|                       |                    |              |        |           |         |        |                                               |      |

۲

| 3. Sewage Treatment P | lant (Small)      |               |               |        |           |          |            |
|-----------------------|-------------------|---------------|---------------|--------|-----------|----------|------------|
| Total Capacity        |                   | 23 613        | m3/day≈       |        | 16 Å0     | m3/min   |            |
| Quantity of pump      |                   |               |               |        |           | нэ/шн    |            |
|                       |                   |               | sets $+1$ set |        | stand-by  |          |            |
| Pump Capacity         | 0                 |               | m3/day        |        |           |          |            |
|                       | Q =               |               | m3/min        |        |           |          |            |
|                       | <b>q</b> =        | 0,0683        | m3/sec        |        |           |          |            |
| Diameter              | Diameter = 14     | 6*(Q/v)^(1    | /2)           |        |           |          | <b>.</b> . |
|                       | =                 |               | mm to         |        | 171       | mm       |            |
|                       | =                 |               | mm            |        |           |          |            |
|                       | where,v=          | 1.50          | to            |        | 3.00      |          |            |
| 70 4 1 77. 1          |                   | 11.10.10      |               |        |           |          |            |
| Total Head            | Total Head H=     | n1+n2+n3      |               | ~      | 11.3      | m        |            |
|                       |                   | =             |               | .0 m   |           |          |            |
|                       | actual head h1    |               |               |        | 9.62      |          |            |
|                       |                   | ection level  |               |        | 465.38    |          |            |
|                       |                   | elivery leve  |               |        | 475.00    | m        |            |
|                       | friction loss (H  | lazen Willi   | ams) :strai   | ght pi | pe        |          | •          |
|                       | h2 = 10.666*c     |               |               |        |           |          |            |
|                       | =                 | 0.29          | -             |        |           |          |            |
|                       | where, c=         | 130           |               |        |           |          |            |
|                       | D =               |               | mm dia /1     | 1000   |           |          |            |
|                       | L=                |               | m             |        |           |          |            |
|                       | (v=               |               | m/sec)        |        | 1.1.1     |          |            |
|                       | friction loss : f |               | m/sec}        |        | s.        |          | . •        |
|                       |                   | -             |               |        |           |          |            |
|                       | $h3 = f * (v^2)$  |               |               |        | •.        |          |            |
|                       |                   | 1.42          |               | . ,    |           |          |            |
|                       | where, $v =$      | 2.17          | m/sec         |        |           | _        |            |
|                       | where,            |               | Q'ty          | · .    | f/pc      | f        |            |
|                       | check valve       |               |               | 1      | 1.50      |          | 50         |
|                       | sluice valve      |               |               | 2      | 0.10      |          | 20         |
|                       | increase          |               |               | 0      | 0.15      | 0.       | 00         |
|                       | 90deg             |               |               | 5 -    | 0.18      | 0.       | 90         |
|                       | tee               |               |               | 2      | 1.15      | 2.       | 30 🦾       |
|                       | outlet            |               |               | 1      | 1.00      | 1.       | 00         |
|                       |                   |               |               |        | total     | 5.       | 90         |
| Matur Output          | Martin Ordenad    | (0.1/0.*      | *****         |        |           |          | ta ta a    |
| Motor Output          | Motor Output      | •             |               | т+а)   |           |          | . *        |
|                       |                   | 17.9          |               |        |           |          |            |
|                       | =                 | 18.5          | K₩ .          |        |           |          |            |
|                       | where,r=          | 1.00          |               |        | · · ·     |          | 8 - M.S.A. |
|                       | e=                | 0.60          |               |        |           |          |            |
|                       | a=                | 0.15          |               |        | ÷         |          | -          |
| Specification         |                   |               |               |        |           |          |            |
| Туре                  | Submersible S     | awa ao Du-    |               |        | the state | t i s    | 1.1.1 I.   |
| Diameter              |                   |               | ıh            |        |           | e i seco |            |
|                       | 200 n             |               |               |        |           |          | •          |
| Capacity              |                   | 13/min        |               |        |           |          | ·          |
| Head                  | 14.0 n            |               |               |        |           |          |            |
| Motor Output          | 18.5 k            |               |               | -      |           |          |            |
| Quantity              | 4 s               | ets + 1 set : | for standby   | 7      | · · · ·   |          |            |
|                       |                   |               |               |        |           |          |            |

A-13.3-3

3

 $\phi^{i}(p)$  as

# Appendix 13.4 Sewage Treatment Plant - Capacity Calculation CAPACITY CALCULATION OF FACILITIES (Uxidation Ditcn)

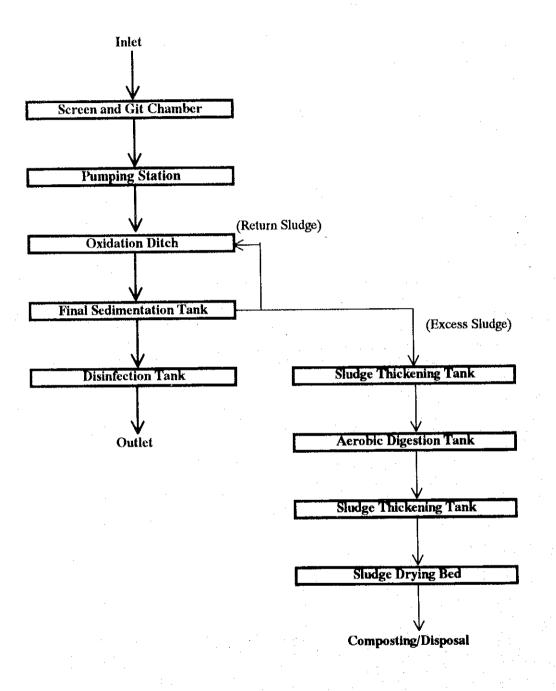
#### **1** BASIC CONDITIONS

#### 1-1 BASIC ITEMS

- (1) Name : Kandy Sewage Treatment Plant
- (2) Land Area: Approximately1.00 ha(3) Elevation: 474.000 m
- (4) Inlet Pipe Level : 465.883 m
- (5) Pipe Diameter : 600 m
- (6) Land Use : Paddy Field
- (7) Collection System : Seperate Type
- (8) Treatment Method : Sewage Treatment : Oxidation Ditch Method Sludge Treatment : Sludge Digestion and Drying Bed
- (9) Effluent Point : Mada Ela River
- (10) Effluent Point Water Level : 470.640 m
  (11) Target Year : Year 2005 (Phase 1)
- (12) Lowest Monthly Average Temperature 23.6 °C (January)
  - کر ان ہے کہ ڈی جانوع کر ڈیل ہوں۔ ایک ان میں میں ان میں ان میں ان ہوتا ہے کہ ان میں ان میں ان ان ان ان ان میں ا

#### 1-2 Design Population

Design Population : 19,260 Persons (Total)


#### 1-3 Design Sewage Flow

| ITEM           | m3/day | m3/hr | m3/min | m3/sec |
|----------------|--------|-------|--------|--------|
| Daily Average  | 6,950  | 289.6 | 4.83   | 0.080  |
| Daily Maximum  | 8,500  | 354.2 | 5.90   | 0.098  |
| Hourly Maximum | 11,550 | 481.3 | 8.02   | 0.134  |

#### 1-4 Design Sewage Quality

|   | ITEM | INFLUENT<br>(mg/L) | EFFLUENT<br>(mg/L) | REMOVAL<br>RATIO (%) | REMARKS |
|---|------|--------------------|--------------------|----------------------|---------|
| Γ | BOD  | 240                | 30                 | 88                   |         |
| Γ | SS   | 250                | 50                 | 80                   |         |

#### 1-5 Flow Chart (Oxidation Ditch)



A-13.4-2

# 1-6 Design Criteria for Oxidation Ditch

| <b>Г</b>                                                                                        | TTEMS                                                        | UNIT                                                          | Formula or Value                                                                                                                     | Application                                                                                 |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1-6-1 Oxidatio                                                                                  | n Ditch                                                      |                                                               |                                                                                                                                      |                                                                                             |
| <ul> <li>(3) Return S</li> <li>(4) Water D</li> <li>(5) Width</li> <li>(6) Retention</li> </ul> | oncentration<br>ludge Ratio<br>epth<br>n Time<br>Requirement | kg/kg/day<br>mg/i<br>%<br>m<br>m<br>hour<br>kgO2/kgBOD<br>day | $\begin{array}{c} 0.03 - 0.05 \\ 3,000 - 4,000 \\ 100 - 200 \\ 1.0 - 3.0 \\ 2.0 - 6.0 \\ 24 - 48 \\ 1.4 - 2.2 \\ 8 - 50 \end{array}$ | 0.05<br>4,000<br>150<br>Same as Left<br>Same as Left<br>Same as Left<br>2.0<br>Same as Left |
| 1-6-2 Final Se                                                                                  | dimentation Tank                                             |                                                               |                                                                                                                                      |                                                                                             |
| <ol> <li>Water S</li> <li>Retentio</li> <li>Water D</li> </ol>                                  |                                                              | m3/m2/day<br>hour<br>m                                        | 8 - 12<br>6.0 - 12.0<br>3.0 - 4.0                                                                                                    | 8 - 12<br>Same as Left<br>3.0                                                               |
| 1-6-3 Disinfec                                                                                  | tion Tank                                                    |                                                               |                                                                                                                                      |                                                                                             |
| <ol> <li>(1) Retention</li> <li>(2) Dosage</li> </ol>                                           | n Time                                                       | min.<br>mg/l                                                  | > 15<br>2.0 - 4.0                                                                                                                    | 15<br>3.0                                                                                   |
| 1-6-4 Sludge                                                                                    | Thickening Tank                                              |                                                               |                                                                                                                                      |                                                                                             |
| <ul><li>(1) Solid M</li><li>(2) Water I</li></ul>                                               | atter Load<br>Depth                                          | kg/m2/day<br>m                                                | 60 - 90<br>Approximately 4.0                                                                                                         | 70<br>4.0                                                                                   |
| 1-6-5 Aerobic                                                                                   | Digestion Tank                                               |                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                |                                                                                             |
| <ul><li>(1) Retention</li><li>(2) Solid M</li></ul>                                             | on Time<br>atter Load                                        | day<br>kg/m2/day                                              | 10.0 - 15.0<br>1.60 - 4.81                                                                                                           | Same as Left<br>Same as Left                                                                |
| 1-6-6 Sludge                                                                                    | Drying Bed                                                   |                                                               | 1                                                                                                                                    |                                                                                             |
| <ul><li>(1) Drying</li><li>(2) Depth of</li></ul>                                               |                                                              | day<br>m                                                      | 15 - 30<br>0.3 - 1.0                                                                                                                 | 20<br>0.3                                                                                   |

à

10

# 2 CAPACITY CALCULATION 2-1 Oxidation Ditch (Daily Maximum)

| ITEM                  | SIGN       | UNIT      | CALCULATION                                                                                                      | RESULT  |
|-----------------------|------------|-----------|------------------------------------------------------------------------------------------------------------------|---------|
| Туре                  |            | -         | Re-circulation Flow Type                                                                                         |         |
| Design Flow           | Q1         | m3/day    | -                                                                                                                | 8,500   |
|                       | Q2         | m3/hr     | <b>1</b>                                                                                                         | 354.2   |
| Basin Number          | BN         | Basin     | -                                                                                                                | 3       |
| Inlet BOD Quality     | С          | mg/L      | -                                                                                                                | 240     |
| Inlet SS Quality      | - S        | mg/L      |                                                                                                                  | 250     |
| Inlet BOD Matter      | М          | kg/day    | Q1*C*10^-3                                                                                                       | 2,040   |
| BOD-SS Load           | BS         | kg/kg/day | • · · · · · · · · · · · · · · · · · · ·                                                                          | 0.05    |
| MLSS Concentration    | SS         | mg/L      |                                                                                                                  | 4,000   |
| Required Volume       | V1         | m3        | M/(SS*BS*10^-3)                                                                                                  | 10,200  |
| Therefore             | V2         | m3        | and the second | 10,200  |
| Retention Time        | T          | hr        | (V2/Q1)*24                                                                                                       | 28.8    |
| Return Sludge Ratio   | R1         | %         | _                                                                                                                | 150     |
|                       | R2         | -<br>-    | R1/100                                                                                                           | 1.5     |
| Return Sludge Quality | RS1        | mg/L      | (SS*(1+R2)-C)/R2                                                                                                 | 6,507   |
| Therefore             | RS2        | mg/L      | -                                                                                                                | 6,510   |
| Sludge Age            | SA         | day       | SS*V2/(Q1*S)                                                                                                     | 19.2    |
| Width                 | W          | m         | -                                                                                                                | 6.0     |
| Water Depth           | H          | m         | n 🕳 ser en                                                                   | 3.0     |
| Length                | L1         | m         | (V2/BN)/(W*H)                                                                                                    | 188.9   |
| Therefore             |            | m         | ••                                                                                                               | 190.0   |
| Dimension (Width)     | W          | m         | W                                                                                                                | 6.0     |
| (Depth                | ) H        | m         | Н                                                                                                                | 3.0     |
| (Length               | ) <u>L</u> | m         | L2                                                                                                               | 190.0   |
| (Basin Number         | ) -        | basin     | BN                                                                                                               | 3       |
| Required Oxygen       | O2-day     | kgO2/day  | Q1*C*10^-3*2.0                                                                                                   | 4,080.0 |
|                       | O2-hr      | kgO2/hr   | (O2-day)/24                                                                                                      | 170.0   |
| Aerator Motor Output  |            | kW        | O2-hr/1.9                                                                                                        | 89.5    |
|                       |            | kW        |                                                                                                                  | 90.0    |
| Aerator Type          |            | -         | Slanting Shaft Screw Aerator                                                                                     |         |
| Check                 |            | UNIT      | APPLICATION                                                                                                      | RESULT  |
| Retention Time        |            | hour      | 24 -48                                                                                                           | 29.0    |
| Oxygen Supply         |            | kgO2/kg   | 1.4 - 2.2                                                                                                        | 2.0     |
| Sludge Age            |            | day       | 8 - 50                                                                                                           | 19.2    |

A-13.4-4

# 2-2 Final Scdimentation Tank (Daily Maximum)

| THEM                  |                      | SIGN       | UNIT      | CALCULATION               | RESULT |
|-----------------------|----------------------|------------|-----------|---------------------------|--------|
| Туре                  |                      | · _        | -         | Radial Flow Circular Type |        |
| Design Flow           |                      | Q1         | m3/day    | _                         | 8,500  |
| 0                     | ľ                    | Q2         | m3/sec    |                           | 354.17 |
| Basin Number          | Ì                    | BN         | Basin     | ~                         | 3      |
| Water Surface Load    | -                    | L.         | m3/m2/day | 4.14*10^4*T^0.95*SS^-1.35 | 11.4   |
| T                     | erefore              | L          | m3/m2/day |                           | 12.0   |
| Required Surface Area | 1                    | A1         | m2        | Q1/L                      | 708.3  |
| 1                     | [                    | A2         | m2/Basin  | A1/BN                     | 236.1  |
| Water Depth           |                      | H          | m         |                           | 3.0    |
| Diameter              |                      | D1         | m         | (A2/3.14)^0.5*2           | 17.3   |
| T                     | nerefore             | D2         | m         |                           | 16.0   |
| Dimension             | (Diam                | D          | m         | D2                        | 16.0   |
|                       | (Depth)              | H          | m         | Н                         | 3.0    |
| (Basin N              | lumber)              | <b>-</b> . | Basin     | BN                        |        |
| Sludge Collector Type |                      | -          | ~         | Central Drive Type        |        |
| Check                 | الأغنية منطقي بهديها |            | UNIT      | APPLICATION               | RESULT |
| Water Surface Load    |                      |            | m3/m2/day |                           | 14.1   |
| Retention Time        |                      |            | hour      | 6.0 - 12.0                | 3.4    |

2-3 Disinfection Tank (Daily Maximum)

| ITEM              |           | SIGN         | UNIT   | CALCULATION              | RESULT |
|-------------------|-----------|--------------|--------|--------------------------|--------|
| Chemical Type     |           | <del>.</del> | -      | Chlorination Type        |        |
| Design Flow       |           | Q1           | m3/day | -                        | 8,500  |
| •                 | F         | Q2           | m3/min | -                        | 5.90   |
| Retention Time    |           | T            | min.   | -                        | 15.0   |
| Basin Number      |           | BN           | basin  | -                        | 1      |
| Required Volume   |           | V            | m3     | Q2*T                     | 89     |
| Width             |           | W            | m      | -                        | 3.00   |
| Water Depth       |           | Н            | m      |                          | 1.50   |
| Length            |           | L1           | m      | V/(W*H)                  | 19.676 |
| Ŭ                 | therefore | L2           | m      | -                        | 20.00  |
| Dosage            |           | D            | mg/L   |                          | 2.0    |
| Required Chemical |           | RC1          | kg/day | Q1*D*10^-3/C             | 17.00  |
|                   | Therefore | RC2          | kg/hr  | RC1/24                   | 0.71   |
| Dimension         | (Wi       | W            | m      | W                        | 3.(    |
|                   | (Length)  | L            | m      | L2                       | 20.0   |
|                   | (Depth)   | Н            | m      | Н                        | 1.5    |
|                   | (Basin)   | BN           | basin  |                          |        |
| Chlorine Feeder   |           | -            | unit   | including 1 for stand-by |        |
| Check             | ****      |              | UNIT   | APPLICATION              | RESULT |
| Retention Time    | T         |              | min.   | 15                       | 15.    |

| ПЕМ                     | SIGN       | UNIT      | CALCULATION               | RESULT |
|-------------------------|------------|-----------|---------------------------|--------|
| Турс                    | - '        | -         | Radial Flow Circular Type |        |
| Design Flow             | Q1         | m3/day    | -                         | 8,500  |
|                         | Q2         | m3/hr     | -                         | 289.6  |
| Basin Number            | BN         | Basin     | -                         |        |
| Inlet SS Quality        | С          | mg/L      | -                         | 250    |
| Removal Ratio           | <b>R</b> 1 | %         |                           | 80     |
|                         | R2         | **        | R1/100                    | 0.80   |
| Sludge Generation Ratio | SG1        | %         | -                         | 75     |
| (Oxidation Ditch)       | SG2        |           | SG1/100                   | 0.75   |
| Inlet SS Matter         | М          | kg/day    | Q1*C*R2*SG2*10^-3         | 1,275  |
| Solid Matter Load       | L          | kg/m2/day | -                         | 70.0   |
| Required Surface Area   | A1         | m2        | M/L                       | 18.2   |
|                         | A2         | m2/Basin  | A1/BN                     | 18.2   |
| Water Depth             | H .        | m         | -                         | 4.0    |
| Diameter                | D1         | m         | (A2/3.14)^0.5*2           | 4.8    |
| Therefore               | D2         | m         | -                         | 5.0    |
| Dimension (             | D          | m         | D2                        | 5.0    |
| (Depth)                 | H          | m         | Н                         | 4.(    |
| (Basin)                 | Basin      | Basin     | BN                        | 1      |
| Check                   |            | UNIT      | APPLICATION               | RESULT |
| Solid Matter Load       |            | kg/m2/day | 70                        | 65.0   |

## 2-4 Sludge Thickening Tank (Daily Maximum)

# 2-5 Aerobic Sludge Digestion Tank (Daily Maximum)

| ITEM                         | SIGN  | UNIT      | CALCULATION                | RESULT  |
|------------------------------|-------|-----------|----------------------------|---------|
| Туре                         | - [   | -         | Circular Type              |         |
| Basin Number                 | BN    | Basin     | -                          | 1       |
| Design Flow                  | Q1    | m3/day    | -                          | 8,500   |
| Inlet SS Matter              | М     | kg/day    |                            | 1,275   |
| Moisture Content             | G     | %         | -                          | 97,5    |
| Sludge Volume                | V1    | m3/day    | M*100/(100-G)              | . 51.0  |
| Temperature - Summer         | TS    | °C        | -                          | 26.5    |
| - Winter                     | TW    | °C        | -                          | 23.6    |
| Temperature - Sludge Age     | TSA   | day-°C    | VolatileSolidReduction=40% | 470     |
| Sludge Age                   | SA    | day       | TSA/TS                     | 19.9    |
| Total Mass of VSS            | VSS   | kg/day    | 0.8*M                      | 1,020   |
| VSS Reduction - Summer (41%) | VRS   | kg/day    | VSS*0.4                    | 408.0   |
| - Winter (40%)               | VRW   | kg/day    | VSS*0.41                   | 418.2   |
| Required Volume              | V     | m3        | V1/0.7/(0.125*0.8+1/SA)    | 485     |
| Water Depth                  | H -   | m         |                            | 4.0     |
| Diameter                     | D1    | m         | (A2/3.14)^0.5*2            | 12.4    |
| Therefore                    | D2    | m         | -                          | 13.0    |
| Dimension (                  | D     | m         | D2                         | 13.0    |
| (Depth)                      | H     | m         | H                          | 4.0     |
| (Basin)                      | Basin | Basin     | BN                         | 1       |
| Required Oxygen              | RO    | kgO2/day  | 2.3*VRS                    | 938.4   |
| Required Air                 | RA    | kg-Air/hr | RO/(0.1*0.233*1.293)/1440  | 1,297.8 |
| Check                        |       | UNIT      | APPLICATION                | RESULT  |
| Retention Time               |       | day       | 10.0 - 15.0                | 10.4    |
| Solid Matter Load            |       | kg/m3/day | 1.60 - 4.81                | 2.4     |

A-13.4-6

### 2-6 Sludge Thickening Tank (Daily Maximum)

| TEM                          | SIGN       | UNIT      | CALCULATION               | RESULT |
|------------------------------|------------|-----------|---------------------------|--------|
| Туре                         | *          | -         | Radial Flow Circular Type |        |
| Basin Number                 | BN         | Basin     |                           | 1      |
| Inlet SS Matter to Digestion | M1         | kg/day    | -                         | 1,275  |
| Removal Ratio at Digestion   | <b>R</b> 1 | %         | -                         | 40%    |
| Inlet SS Matter              | M2         | kg/day    | M1*(1-R1)                 | 765    |
| Moisture Content             | G          | %         | -                         | 99.0   |
| Sludge Volume                | V1         | m3/day    | M2*100/(100-G)            | 76.5   |
| Solid Matter Load            | L          | kg/m2/day | -                         | 70.0   |
| Required Surface Area        | A1         | m2        | M/L                       | 10.9   |
| <b>1</b>                     | A2         | m2/Basin  | A1/BN                     | 10.9   |
| Water Depth                  | Н          | m         | -                         | 4.0    |
| Diameter                     | D1         | m         | (A2/3.14)^0.5*2           | 3.7    |
| Therefore                    | D2         | m         | -                         | 5.0    |
| Dimension (                  | D          | m         | D2                        | 5.0    |
| (Depth)                      | Н          | m         | Н                         | 4.0    |
| (Basin)                      | Basin      | Basin     | BN                        | 1      |
| Check                        |            | UNIT      | APPLICATION               | RESULT |
| Solid Matter Load            | i .        | kg/m2/day | 70                        | 39.0   |

2-7 Sludge Drying Bed (Daily Maxmum)

| ITEM             |           | SIGN  | UNIT   | CALCULATION    | RESULT |
|------------------|-----------|-------|--------|----------------|--------|
| Design Flow      |           | Q1    | m3/day |                | 8,500  |
| Inlet SS Matter  |           | M1    | kg/day | Q1*C*R2*10^-3  | 765    |
|                  |           | M2    | t/day  | M1/1000        | 0.765  |
| Moisture Content |           | G     | %      | -              | 97.0   |
| Sludge Volume    |           | V1    | m3/day | M2*100/(100-G) | 25.5   |
| Drying Period    |           | P     | day    | -              | 10     |
| Required Volume  |           | V2    | m3/day | V1*P           | 255.0  |
| Depth of Bed     |           | H     | m      |                | 0.3    |
| Required Area    |           | A     | m2     | V2/H           | 850    |
| Unit Number      |           | UN    | Unit   | -              | 10     |
| Width per Unit   |           | W     | m      | -              | 6.0    |
| Length per Unit  |           | L1    | m      | A/(UN*W)       | 14.2   |
| · · ·            | Therefore | L2    | m      | -              | 14,5   |
| Dimension        | (Width)   | W     | m      | W              | 6.0    |
|                  | (Length)  | L     | m      | 1.2            | 14.5   |
|                  | (Depth)   | Н     | m      | Н              | 0.3    |
|                  | (Basin)   | Basin | Basin  | BN             | 10.0   |
| Check            |           |       | UNIT   | APPLICATION    | RESULT |
| Drying Period    |           |       | day    | 20             | 10.2   |

£

્રા

# Appendix 13.5 Hydraulic Calculation

### 1. Design Condition

1.1 Design Wastewater Quantity

| Flow           |        | m <sup>3</sup> /day | m <sup>3</sup> /hour | m <sup>3</sup> /min | m <sup>3</sup> /sec |
|----------------|--------|---------------------|----------------------|---------------------|---------------------|
| Daily Average  | Qd-ave | 6,950               | 289.6                | 4.826               | 0.080               |
| Daily Maxmum   | Qd-max | 8,500               | 354.2                | 5.903               | 0.098               |
| Hourly Maximum | Qh-max | 11,550              | 481.3                | 8.021               | 0.134               |

1.2 Unit and Capacity of Treatment Facilities

| Facilities          | Total | Duty | Stand-by | Capacity |
|---------------------|-------|------|----------|----------|
| Grit Chamber/Screen | 2     | 2    | 1        | Qhw-max  |
| Oxydation Ditch     | 3     | 3    | 0        | Qd-ave   |
| Sedimentation Tank  | 3     | . 3  | 0        | Qd-ave   |
| Disinfection Tank   | 1     | 1    | 0        | Qd-ave   |

1.3 Discharge

| Discharge Point | Meda Ela |
|-----------------|----------|
| HWL             | 470.64 m |

1.4 Formula for Hydraulic Calculation

a. Friction loss for streight pipe

Head Loss

Darcy-Weisbach

Head Loss 
$$h = f * V^2 / (2 * g)$$

where, f1 = (0.02 + 1 / (2000 \* D)) \* (L / D)

b. Friction loss for fittings

 $h = f * V^{2} / (2 * g)$ where, f2 = 1.00 (Inlet)

f3 = 0.50 (Outet)

# 2. Hydraulic Calculation

| 2.1 Water Level of Disinfection Tank Effluent Cha | amber (WL1) |
|---------------------------------------------------|-------------|
|---------------------------------------------------|-------------|

| Det                                        | •                                                |                       |                                                                                        |                                                                                                   |                                                                            |                            |
|--------------------------------------------|--------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------|
| n. ·                                       |                                                  |                       | Qd-ave                                                                                 | Qd-max                                                                                            | Qh-max                                                                     | (Unit)                     |
| Design l                                   | Flow                                             | Q                     | 6,950                                                                                  | 8,500                                                                                             | 11,550                                                                     | m <sup>3</sup> /day        |
|                                            |                                                  | q                     | 0.080                                                                                  | 0,098                                                                                             | 0,134                                                                      | m <sup>3</sup> /sec        |
| Pipe Dia                                   | ameter                                           |                       | 300                                                                                    | mm                                                                                                |                                                                            |                            |
| Pipe Lei                                   | ngth                                             |                       | 50.0                                                                                   | m                                                                                                 |                                                                            |                            |
| No. of P                                   | Pipe                                             |                       | 1                                                                                      | set                                                                                               |                                                                            |                            |
| Velocity                                   | 1                                                | V =                   | 1.14                                                                                   | 1.39                                                                                              | 1.89                                                                       | m/sec                      |
| Hydraul                                    | lic Loss                                         | h =                   | f * V ^ 2 / ( 2                                                                        | ι*g)                                                                                              |                                                                            |                            |
|                                            |                                                  | where,                | f1 =                                                                                   | (0.02 + 1/(                                                                                       | 2000 * D)) *                                                               | (L/D)                      |
|                                            |                                                  |                       |                                                                                        | 3.6111E-06                                                                                        | (Straight Pipe)                                                            | )                          |
|                                            |                                                  |                       | f2 =                                                                                   | 1.00                                                                                              | (Inlet)                                                                    |                            |
|                                            |                                                  |                       | f3 =                                                                                   | 0.50                                                                                              | (Outet)                                                                    |                            |
| Hydrau                                     | lic Loss                                         | h1 =                  | 0.099                                                                                  | 0.148                                                                                             | 0.274 r                                                                    | n                          |
|                                            | WL1 =                                            | 470.640               | + h1 =                                                                                 | 470.788                                                                                           | 470.914 r                                                                  | n                          |
|                                            |                                                  |                       | say,                                                                                   | 470.79                                                                                            | 470.92 r                                                                   | n                          |
|                                            |                                                  |                       | · · · · ·                                                                              | (Qd-max)                                                                                          | (Qh-max)                                                                   |                            |
|                                            |                                                  |                       |                                                                                        | <b>``</b>                                                                                         |                                                                            |                            |
| iter Level                                 | of Disinf                                        | ection Tank (V        | WL2)                                                                                   |                                                                                                   |                                                                            |                            |
| Weir W                                     |                                                  | <b>W</b> =            | ,                                                                                      | m                                                                                                 |                                                                            |                            |
| No. of V                                   | Weir                                             | -<br>-                | . 1                                                                                    | set                                                                                               |                                                                            |                            |
| Weir lev                                   | 1 A A A A A                                      | hw =                  | 473.10                                                                                 | m                                                                                                 |                                                                            |                            |
|                                            | w height                                         | h=                    | (Q/(1.84 *                                                                             | W))^(2/3)                                                                                         |                                                                            |                            |
|                                            |                                                  | h2 =                  | 0.124                                                                                  | 0.142                                                                                             | 0.174 r                                                                    | n                          |
|                                            |                                                  |                       | hw + h2 =                                                                              | 473.242                                                                                           | 473.274 r                                                                  | n                          |
|                                            | WL2 =                                            |                       |                                                                                        |                                                                                                   |                                                                            |                            |
|                                            | WL2 =                                            |                       | say,                                                                                   | 473.25                                                                                            | 473.28 r                                                                   |                            |
|                                            | WL2 =                                            |                       |                                                                                        |                                                                                                   | 1                                                                          |                            |
|                                            | WL2 =                                            |                       |                                                                                        | 473.25<br>(Qd-max)                                                                                | 1                                                                          |                            |
| iter Level                                 |                                                  | l Water Efflue        | say,                                                                                   | (Qd-max)                                                                                          | 1                                                                          |                            |
| 1                                          | of Settlec                                       | l Water Efflue        | say,<br>ent Chamber (                                                                  | (Qd-max)<br>WL3)                                                                                  | 1                                                                          |                            |
| Pipe Di                                    | of Settlec<br>ameter                             | l Water Efflue        | say,<br>ent Chamber (<br>200                                                           | (Qd-max)<br>WL3)<br>mm                                                                            | 1                                                                          |                            |
| Pipe Di<br>Pipe Le                         | of Settlec<br>ameter<br>ngth                     | l Water Efflue        | say,<br>ent Chamber (<br>200<br>50.0                                                   | (Qd-max)<br>WL3)<br>mm<br>m                                                                       | 1                                                                          |                            |
| Pipe Di<br>Pipe Le<br>No. of I             | of Settlec<br>ameter<br>ngth<br>Pipe             | l Water Efflue<br>V = | say,<br>ent Chamber (<br>200<br>50.0<br>3                                              | (Qd-max)<br>WL3)<br>mm<br>m<br>sets                                                               | (Qh-max)                                                                   | n                          |
| Pipe Di<br>Pipe Le<br>No. of I<br>Velocity | of Settlec<br>ameter<br>ngth<br>Pipe             | V =                   | say,<br>ent Chamber (<br>200<br>50.0<br>3<br>0.85                                      | (Qd-max)<br>WL3)<br>mm<br>m<br>sets<br>1.04                                                       | (Qh-max)                                                                   |                            |
| Pipe Di<br>Pipe Le<br>No. of I<br>Velocity | of Settlec<br>ameter<br>ngth<br>Pipe             | <u>V =</u><br>h =     | say,<br>ent Chamber (<br>200<br>50.0<br>3<br>0.85<br>f * V ^ 2 / (2                    | (Qd-max)<br>WL3)<br>mm<br>sets<br>1.04<br>2 * g )                                                 | (Qh-max)                                                                   | n<br>m/sec                 |
| Pipe Di<br>Pipe Le<br>No. of I<br>Velocity | of Settlec<br>ameter<br>ngth<br>Pipe             | V =                   | say,<br>ent Chamber (<br>200<br>50.0<br>3<br>0.85<br>f * V ^ 2 / (2<br>f1 =            | (Qd-max)<br>WL3)<br>mm<br>m<br>sets<br>1.04<br>2 * g )<br>( 0.02 + 1 / (                          | (Qh-max)<br>1.42<br>2000 * D ) ) *                                         | n<br><u>m/sec</u><br>(L/D) |
| Pipe Di<br>Pipe Le<br>No. of I<br>Velocity | of Settlec<br>ameter<br>ngth<br>Pipe             | <u>V =</u><br>h =     | say,<br>ent Chamber (<br>200<br>50.0<br>3<br>0.85<br>f * V ^ 2 / (2<br>f1 =<br>=       | (Qd-max)<br>WL3)<br>mm<br>m<br>sets<br>1.04<br>2*g)<br>(0.02 + 1 / (<br>5.625E-06                 | (Qh-max)<br>1.42<br>2000 * D ) ) *<br>(Straight Pipe                       | n<br><u>m/sec</u><br>(L/D) |
| Pipe Di<br>Pipe Le<br>No. of I<br>Velocity | of Settlec<br>ameter<br>ngth<br>Pipe             | <u>V =</u><br>h =     | say,<br>ent Chamber (<br>200<br>50.0<br>3<br>0.85<br>$f * V ^ 2 / (2)$<br>f1 =<br>f2 = | (Qd-max)<br>WL3)<br>mm<br>sets<br>2 * g )<br>(0.02 + 1 / (<br>5.625E-06<br>1.00                   | (Qh-max)<br><u>1.42</u><br>2000 * D ) ) *<br>(Straight Pipe<br>(Inlet)     | n<br><u>m/sec</u><br>(L/D) |
| Pipe Di<br>Pipe Le<br>No. of I<br>Velocity | of Settlec<br>ameter<br>ngth<br>Pipe<br>Jic Loss | <u>V =</u><br>h =     | say,<br>ent Chamber (<br>200<br>50.0<br>3<br>0.85<br>f * V ^ 2 / (2<br>f1 =<br>=       | (Qd-max)<br>WL3)<br>mm<br>m<br>sets<br>1.04<br>2*g)<br>(0.02 + 1 / (<br>5.625E-06<br>1.00<br>0.50 | (Qh-max)<br>1.42<br>2000 * D ) ) *<br>(Straight Pipe<br>(Inlet)<br>(Outet) | n<br><u>m/sec</u><br>(L/D) |

(Qd-max) (Qh-max)

473.34

473.44 m

A-13.5-2

say,

| 2.4 Water Level of Scalimentation Tank Trough (W | L4) |
|--------------------------------------------------|-----|
|--------------------------------------------------|-----|

| No. of Sedimentation | Tank       | 3 ta       | inks     |           |   |
|----------------------|------------|------------|----------|-----------|---|
| Tank Diameter        | <b>D</b> = | 16.0 n     | 1        |           |   |
| Trough Length        | L =        | 25.1 n     | 1        |           |   |
| Trough Width         | B =        | 0.3 m      | 1 1      | free fall |   |
| Trough Level         | hw =       | 473.50 n   | n        |           |   |
| Critical Water Level | hcl = (    | (Q^2)/(g   | *B^2))^  | (1/3)     |   |
| · · ·                | hcl =      | 0.093      | 0.107    | 0.131     | m |
| Hydraulic Loss       | h4 = ( 3   | 3)^(1/2)*1 | ncl      |           |   |
|                      | h =        | 0.162      | 0.185    | 0.227     | m |
| WL4 =                | hw +       | h4 =       | 473.685  | 473.727   | m |
|                      |            | say,       | 473.69   | 473.73    | m |
|                      |            |            | (Od-max) | (Oh-max)  |   |

2.5 Water Level of Sedimentation Tank (WL5)

| No. of Sedimenta | ation Tank | 3         | tanks   |        |          |                   |     |
|------------------|------------|-----------|---------|--------|----------|-------------------|-----|
| Tank Diameter    | a ta       | 16.0      | m       |        |          |                   |     |
| No. of Notches   | (8 nos/m)  | 402       | nos     |        |          |                   |     |
| Weir level       | hw =       | 473.98    | m       | ,      |          |                   | 1.1 |
| Hydraulic Loss   | h5 =       | ((Q/n)/1  | .42 ) ^ | (2/5)  |          |                   | 1   |
| [                | <u>h =</u> | 0.019     |         | 0.020  | 0.023    | m :               |     |
| WL5 =            | •          | hw + h5 = | 4       | 74.000 | 474.003  | m                 |     |
|                  |            | say,      |         | 474.00 | 474.01   | m <sup>·</sup> ·· |     |
|                  | :          |           | (Q      | d-max) | (Qh-max) |                   |     |

2.6 Water Level of Oxidation Ditch Effluent Chamber (WL6)

| Pipe Diameter  |           | 200 mi      | n           |              | •      |
|----------------|-----------|-------------|-------------|--------------|--------|
| Pipe Length    |           | 50.0 m      |             |              |        |
| No. of Pipe    |           | 3 set       | is .        |              | 1.1.1  |
| Velocity       | V =       | 0.85        | 1.04        | 1.42         | m/sec  |
| Hydraulic Loss | h = f * T | V^2/(2*     | g)          |              |        |
|                | where,    | f1 = (0     | 0.02 + 1/(2 | 2000 * D))   | *(L/D) |
| · · · ·        | · ·       | =           | 5.625E-06 ( | Straight Pip | e)     |
|                |           | f2 =        | 1.00 (      | Inlet)       |        |
| · · · · ·      |           | <u>f3 =</u> | 0.50 (      | Outet)       | * • •  |
| Hydraulic Loss | h6 =      | 0.056       | 0.083       | 0.154        | m      |
| WL6 =          | WL5 + +   | h6 =        | 474.083     | 474.164      | m      |
|                |           | say,        | 474.09      | 474.17       | m      |
|                | · · · · · | · .         | (Qd-max)    | (Qh-max)     |        |
|                |           |             |             |              |        |

| 2.7 Water Level of Oxidation Ditch (WL7) |             |            |          |          |   |  |
|------------------------------------------|-------------|------------|----------|----------|---|--|
| No. of Sedimentation Tan                 | k           | 3 tank     | S        |          |   |  |
| Weir Width                               | W =         | 1.0 m      |          |          |   |  |
| No. of Weir                              |             | 1 set      |          |          |   |  |
| Weir level                               | hw = 4      | 74.33 m    |          |          |   |  |
| Overflow height                          | h = (Q/(1)) | .84 * W )) | ^( 2/3 ) |          |   |  |
|                                          | h2 =        | 0.060      | 0.068    | 0.084    | m |  |
| WL7 =                                    | hw +        | h7 =       | 174.398  | 474.414  | m |  |
|                                          |             | say,       | 474.40   | 474.42   | m |  |
|                                          |             | (          | Qd-max)  | (Qh-max) |   |  |

2.8 Water Level of Distribution Chamber - Effluent (WL8)

٩

Ľ.

| Pipe Diameter  |         | 200           | mm           |                |        |  |
|----------------|---------|---------------|--------------|----------------|--------|--|
| Pipe Length    | 50.0 m  |               |              |                |        |  |
| No. of Pipe    |         | 3             | sets         |                |        |  |
| Velocity       | • V =   | 0.85          | 1.04         | 1.42           | m/sec  |  |
| Hydraulic Loss | h = f ' | * V ^ 2 / ( 2 | *g)          |                |        |  |
|                | where,  | f1 =          | (0.02 + 1)/( | 2000 * D))*    | *(L/D) |  |
|                |         | =             | 5.625E-06    | (Straight Pipe | *)     |  |
|                |         | f2 =          | 1.00         | (Inlet)        |        |  |
| · .            |         | f3 =          | 0.50         | (Outet)        |        |  |
| Hydraulic Loss | h6 =    | 0.056         | 0.083        | 0.154          | m      |  |
| WL8 =          | WL7 +   | + h8 =        | 474.483      | 474.574        | m      |  |
|                |         | say,          | 474.49       | 474.58         | m      |  |
|                |         |               | (Qd-max)     | (Qh-max)       |        |  |
|                |         |               |              |                |        |  |

2.9 Water Level of Distribution Influent (WL9)

| No. of Sedimentation | Tank        | 3           | sets      |          |   |
|----------------------|-------------|-------------|-----------|----------|---|
| Weir Width           | <b>W</b> =  | 1.0         | m         |          |   |
| No. of Weir          |             | 1           | set       |          |   |
| Weir level           | hw =        | 474.70      | m .       |          |   |
| Overflow height      | <u>h= (</u> | Q / (1.84 * | W))^(2/3) |          |   |
|                      | h2 =        | 0.060       | 0.068     | 0.084    | m |
| WL9 =                | ł           | 1w + h9 =   | 474.768   | 474.784  | m |
|                      |             | say,        | 474.77    | 474.79   | m |
|                      |             |             | (Qd-max)  | (Qh-max) |   |

2.10 Water Level of Grit Chamber Effluent Chamber (WL10)

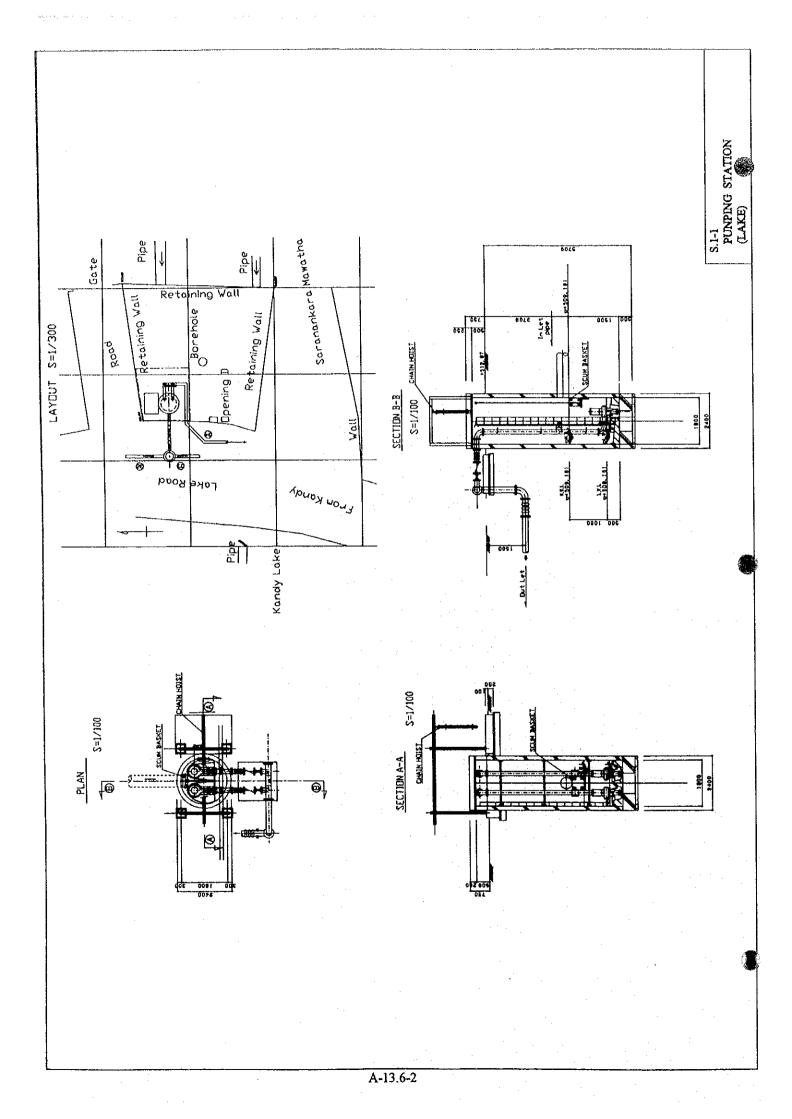
| Pipe Diameter  | · ·     | 400 mm   | l                                     |      |       |
|----------------|---------|----------|---------------------------------------|------|-------|
| Pipe Length    |         | 50.0 m   |                                       |      |       |
| No. of Pipe    |         | 1 set    | · · · · · · · · · · · · · · · · · · · |      |       |
| Velocity       | V =     | 0.64     | 0.78                                  | 1.06 | m/sec |
| Hydraulie Loss | h = f * | V^2/(2*g | ; )                                   |      |       |

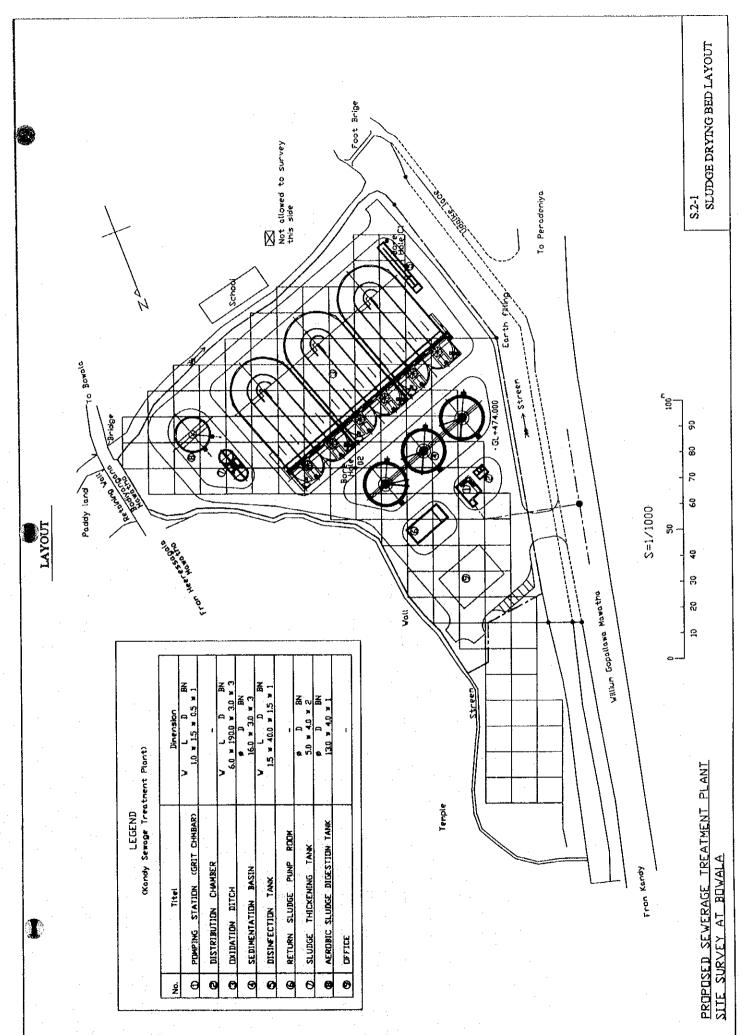
|                | where, $fi = (0.02 + 1 / (2000 * D)) * (L / D)$ |                              |          |          |   |  |
|----------------|-------------------------------------------------|------------------------------|----------|----------|---|--|
|                |                                                 | = 2.6563E-06 (Straight Pipe) |          |          |   |  |
|                |                                                 | f2 =                         | 1.00     | (Inlet)  |   |  |
|                |                                                 | f3 =                         | 0.50     | (Outet)  |   |  |
| Hydraulic Loss | h6 =                                            | 0.031                        | 0.047    | 0.087    | m |  |
| WL10 =         | WL9 + +                                         | h10 =                        | 474.817  | 474.877  | m |  |
|                |                                                 | say,                         | 474.82   | 474.88   | m |  |
|                | 1                                               |                              | (Qd-max) | (Qh-max) |   |  |

2.11 Water Level of Grit Chamber Influent Chamber (WL15)

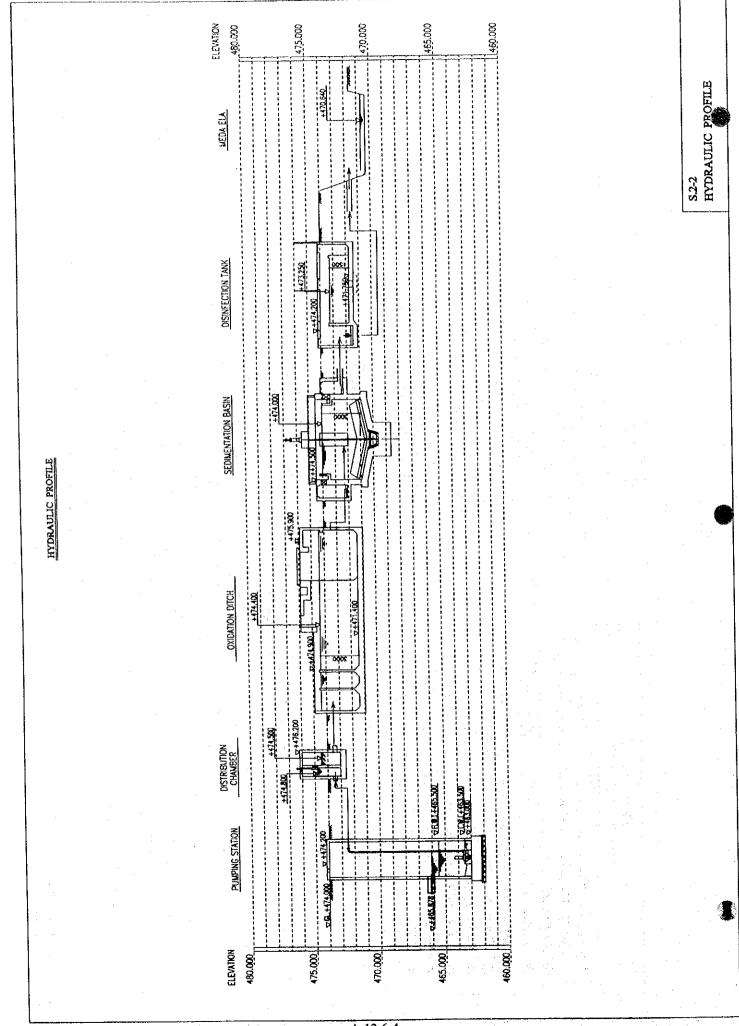
|        | 3 sets including 1 for standby |                                 |                                      |  |  |
|--------|--------------------------------|---------------------------------|--------------------------------------|--|--|
| h11 =  | 0.10 m                         | ·                               |                                      |  |  |
| WL10 + | h11 =                          | 474.920                         | 474.980 m                            |  |  |
|        | say,                           | 474.92                          | 474.98 m                             |  |  |
|        |                                | (Od-max)                        | (Qh-max)                             |  |  |
|        |                                | h11 = 0.10  m<br>WL10 + $h11 =$ | h11 = 0.10  m $WL10 + h11 = 474.920$ |  |  |

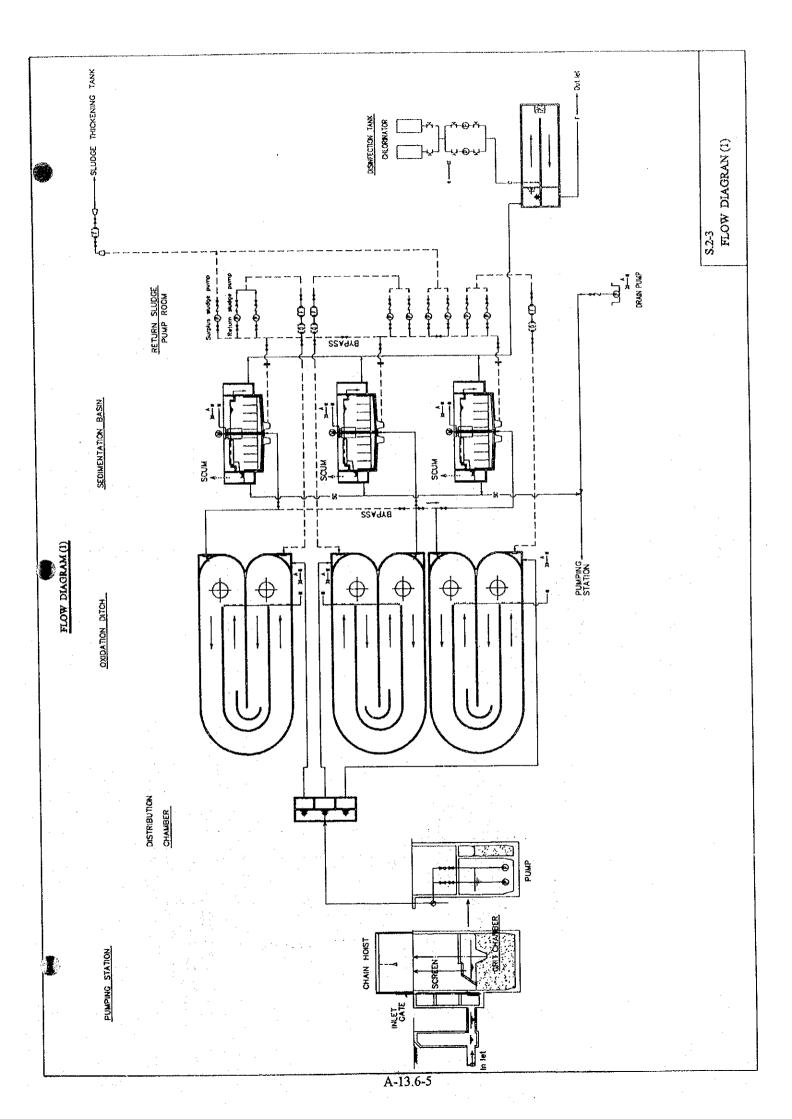
# Appendix 13.6 DRAWING

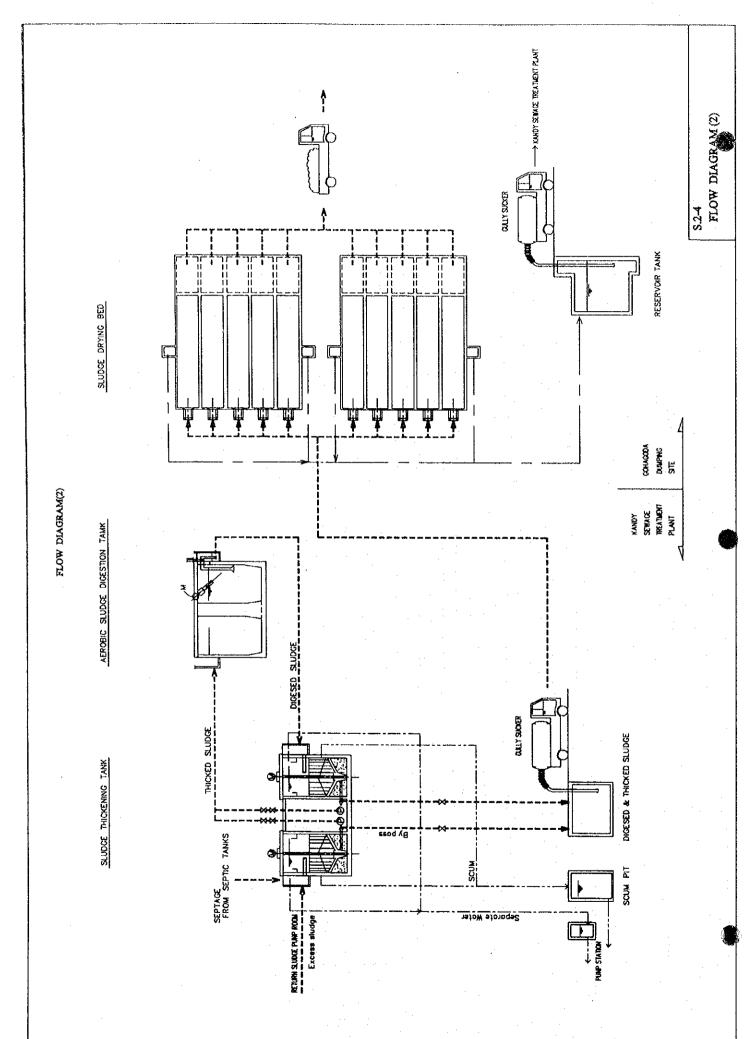

| No.    | DRAWING NAME                  |
|--------|-------------------------------|
| S.1-1  | PUMP STATION (LAKE)           |
| S.2-1  | SEWAGE TREATMENT PLANT LAYOUT |
| S.2-2  | HYDRAULIC PROFILE             |
| S.2-3  | FLOW DIAGRAM (1)              |
| S.2-4  | FLOW DIAGRAM (2)              |
| S.2-5  | PUMPING STATION (1)           |
| S.2-6  | PUMPING STATION (2)           |
| S.2-7  | OXIDATION DITCH               |
| S.2-8  | SEDIMENTATION BASIN           |
| S.2-9  | DISINFECTION TANK             |
| S.2-10 | RETURN SLUDGE PUMP ROOM       |
| S.2-11 | SLUDGE THICKENING TANK        |
| S.2-12 | AEROBIC SLUDGE DIGESTION TANK |
| S.2-13 | SLUDGE DRYING BED LAYOUT      |
| S.2-14 | SLUDGE DRYING BED             |


# DRAWING LIST

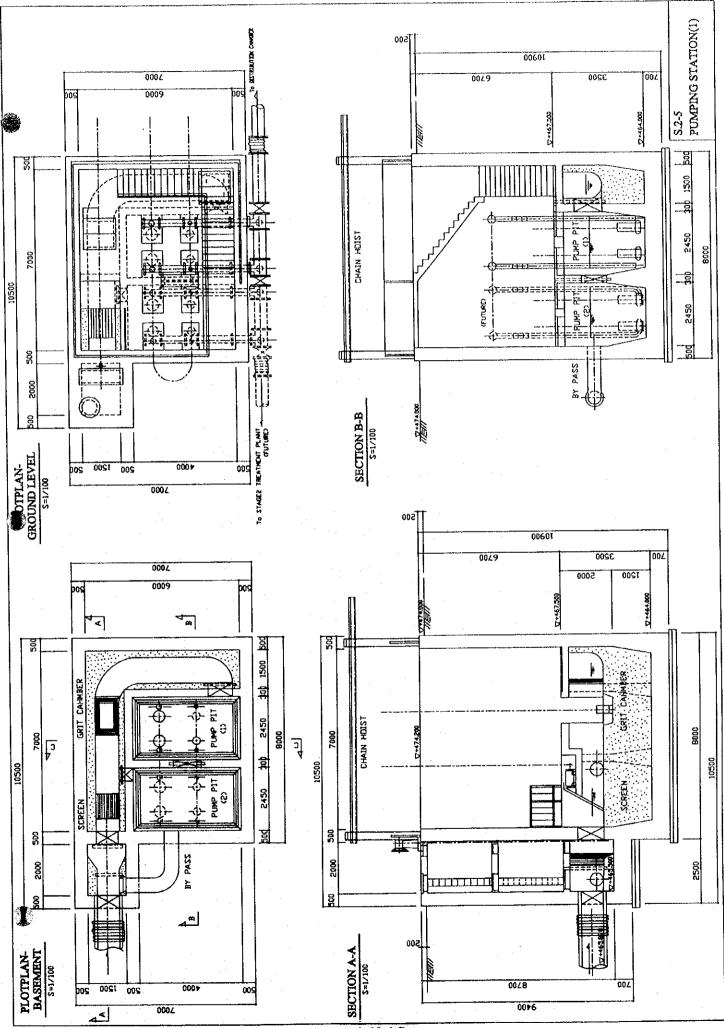
Asia


0

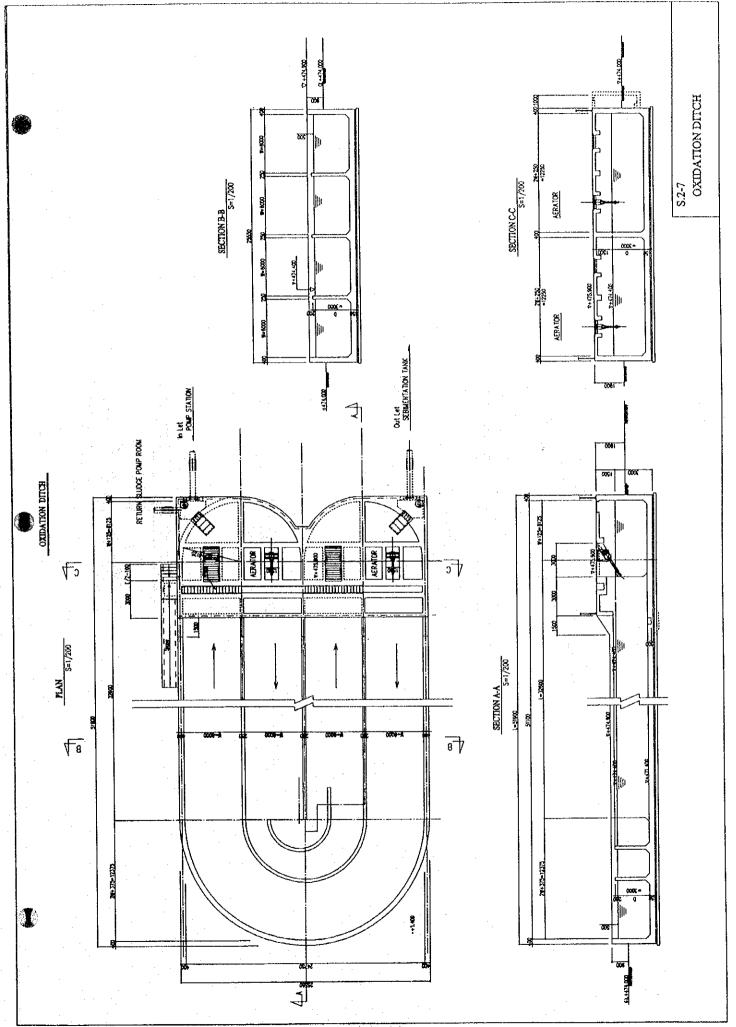

A-13.6-1

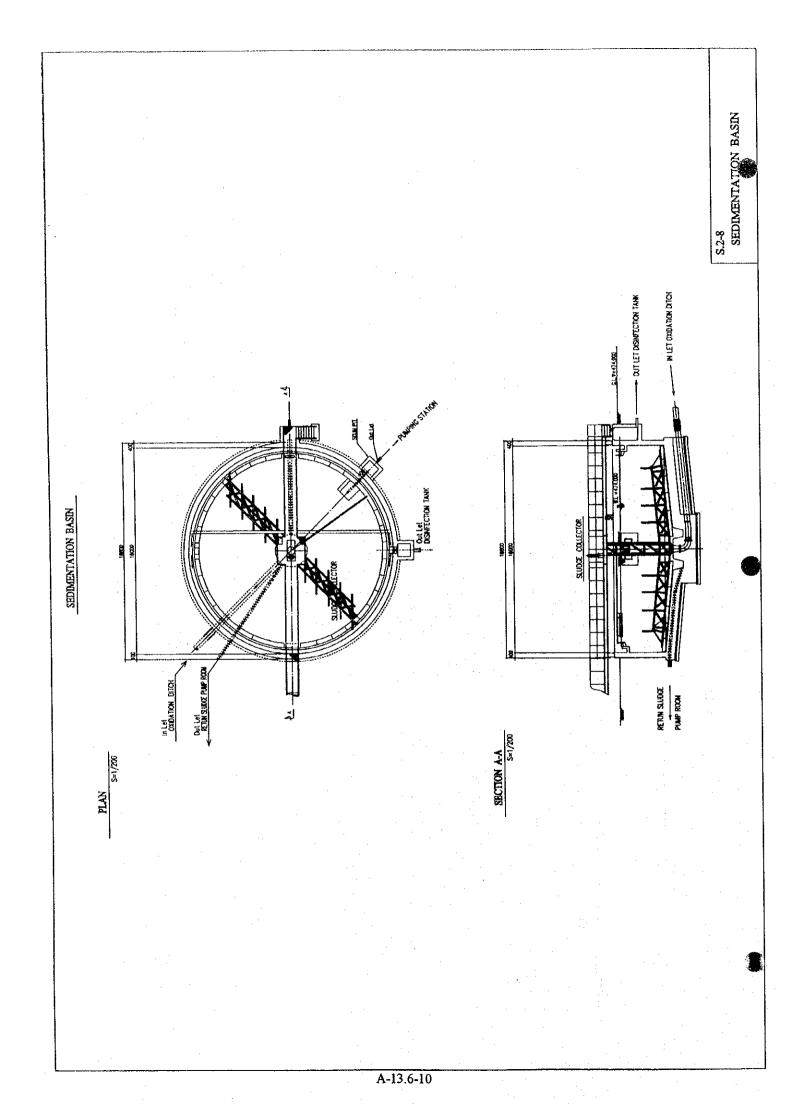


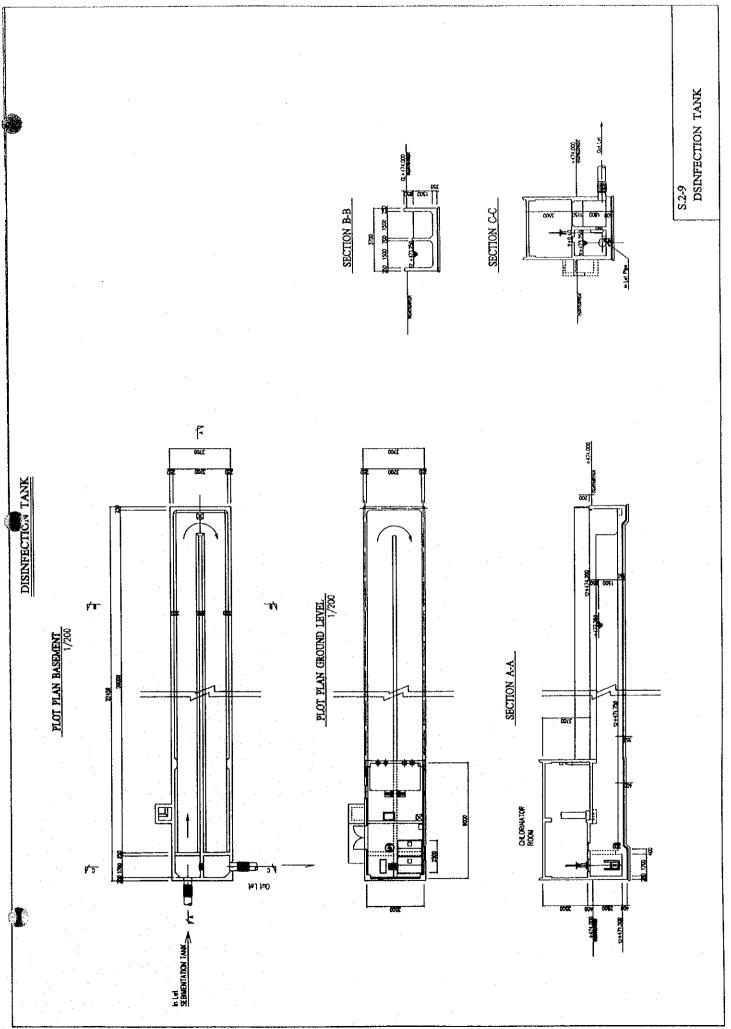




.





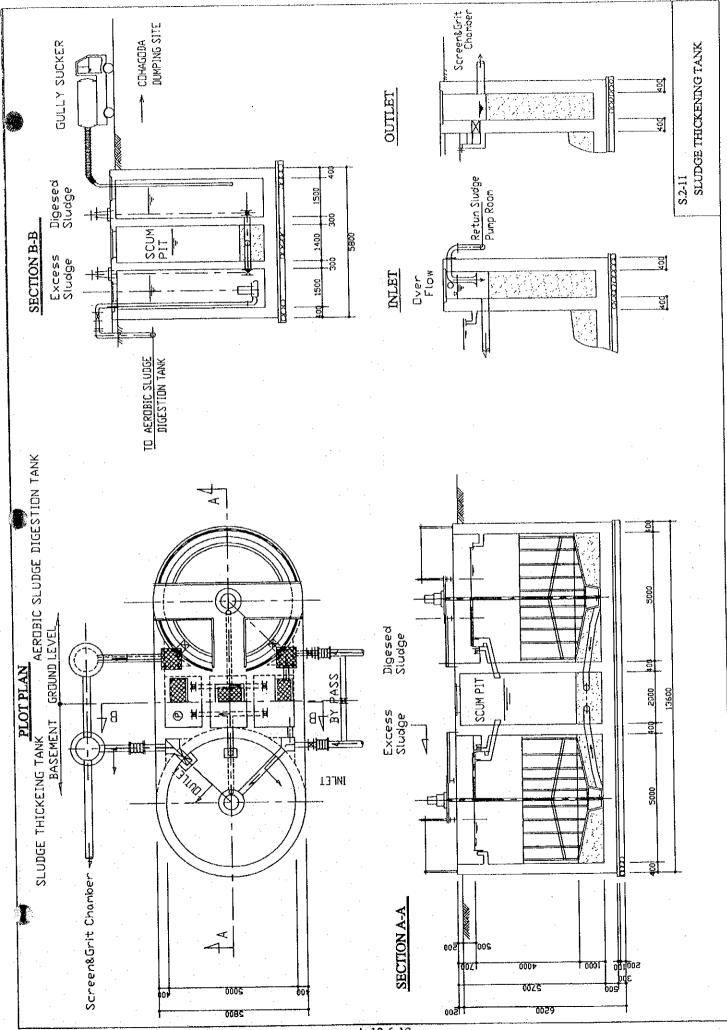





------

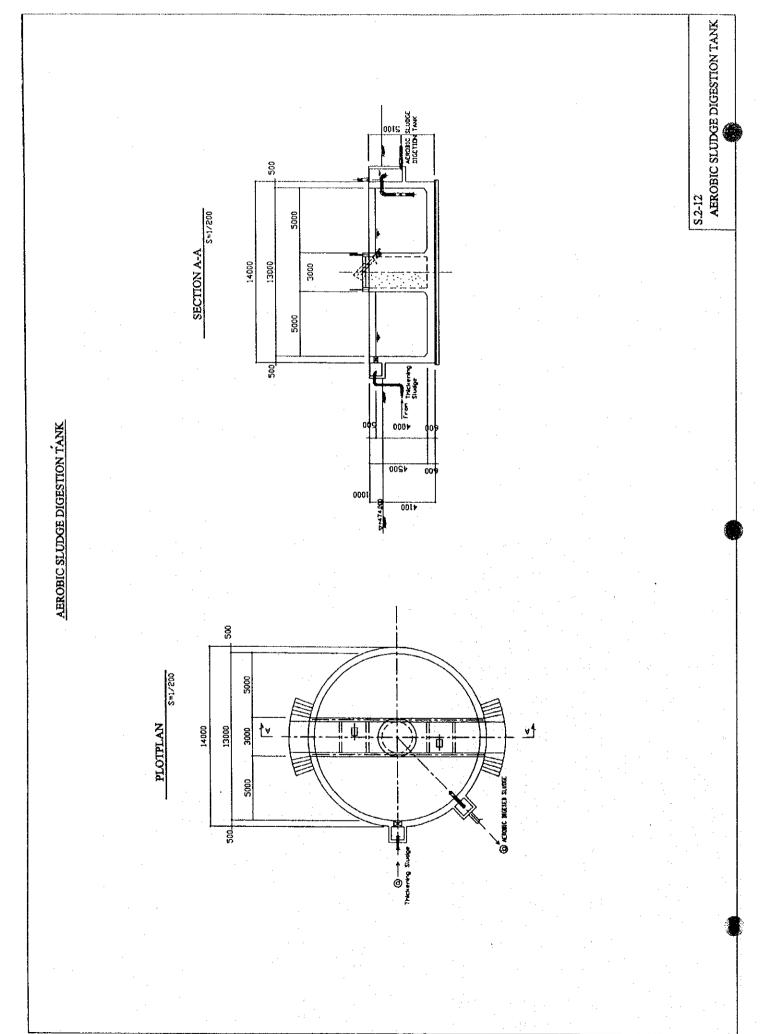




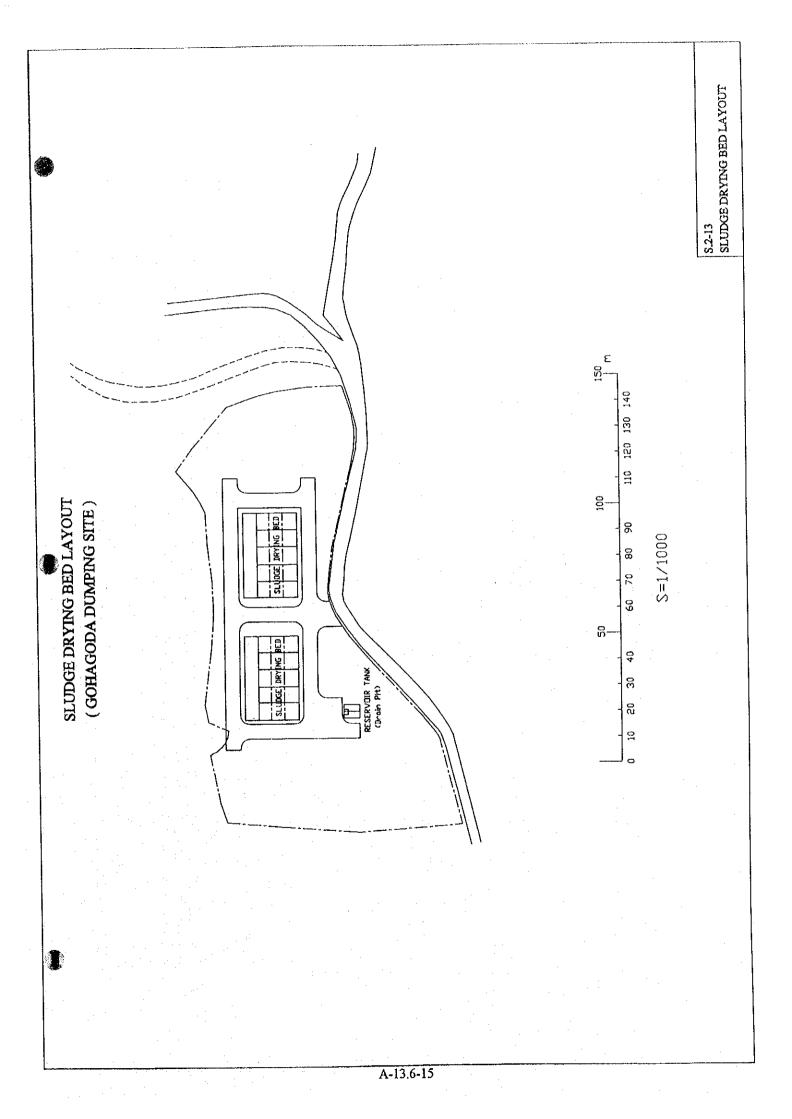


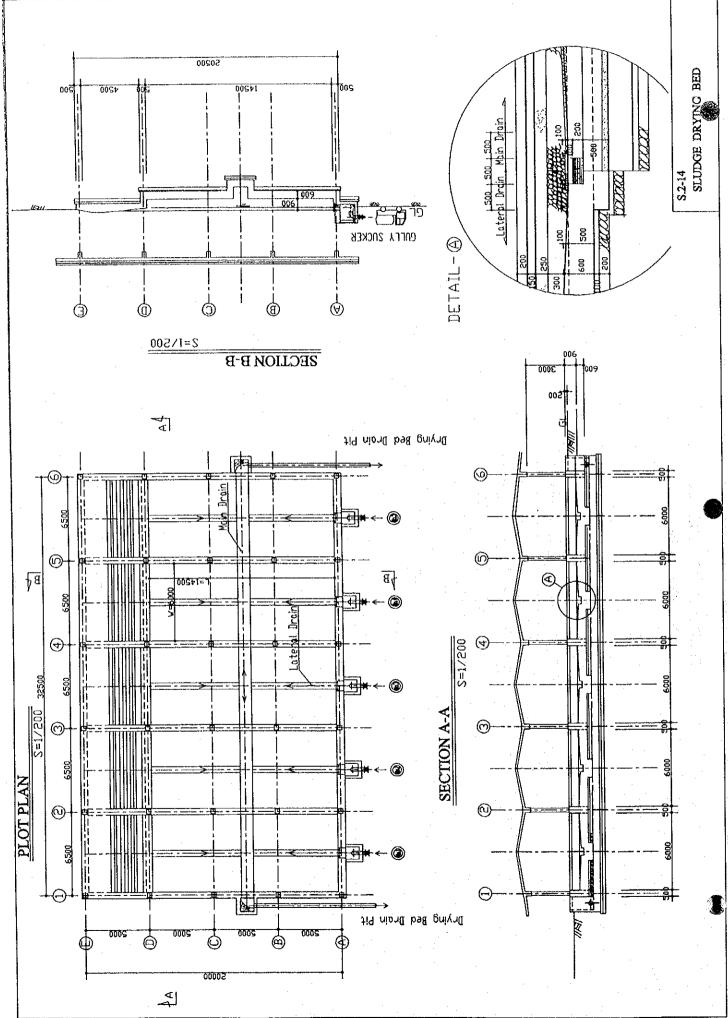






.

S.2-10 RETURN SLUDGE PUNP ROOM 0005 0005 53 PLOT PLAN GROUND LEVEL SECTION B-B Æ 101121 00 88 | RETURN SLUDGE PUMP ROOM Surptus Sudge Pump telura Sudge Pump Relum Sudge Pump Surplus Sudge Pump 9 00 SEDMENTATION BASIN ¢C PLOT PLAN BASEMENT S=1/200 \_\_\_\_ SECTION A-A S=1/200 30 Э 71 8 0 3 8 mm CKIDATION DITCH ł


A-13.6-12




A-13.6-13



.....





#### Appendix 13.7 Storage Capacity of Sewer (Kandy)

Phase 1 (2005)

**1** Pumping Station in Kandy STP

(1) Sewage Flow

 $Q_{HM} = 12,200 \text{ m}^3/\text{day} = 508 \text{ m}^3/\text{hour}$  (Hourly Maximum Sewage Flow to STP)

(2) Sewer to be used for Sewage

Since Pumping Station is located at GL+474m, sewers with invert level of +473m is considered to use for sewer storage. Length and Pipe Nos. of these sewers are as follows;

No. 57  $\phi$  825. L= 50m (Allowance 50%)

No. 53  $\phi$  750. L= 750m (Allowance 50%)

(3) Manhole

Nos. of Manhole  $\frac{50+750}{50} = 16$  (50m pitch) Manhole Depth 475.01-470.817 = 4.2m (up to No.53)

- (4) Calculation of Storage Capacity
  - a) Sewer

$$\left[\frac{0.825^2 \times 3.14}{4} \times 50 + \frac{0.75^2 \times 3.14}{4} \times 750\right] \times (1 - \frac{1}{1.5}) = 119.3 \text{ m}^3$$

b) Manhole

$$\frac{1.2^2 \times 3.14}{4} \times (4.2 - 0.825) \times 16 \qquad \qquad \frac{= 61.0 \text{m}^3}{\text{Total} \quad 180.3 \text{m}^3}$$

(5) Storage Time

 $\frac{180.3\text{m}^3}{508\text{m}^3/\text{hour}} = 0.35 \text{ hour } = 20.9 \text{ min}$ 

#### 2. Kandy Lake Pumping Station

(1) Sewage Flow

 $Q_{HM} = 0.0031 \text{ m}^3/\text{sec} = 11.16 \text{ m}^3/\text{hour}$ 

(Hourly Maximum Sewage Flow to Kandy Lake PS)

(2) Sewer to be used for Sewage

Since Pumping Station is located at GL+512.87m, sewers with invert level of +512.5m is considered to use for sewer storage. Length and Pipe Nos. of these sewers are as follows;

No.32.  $\phi$  150 L = 750m (Allowance 50%)

(3) Manhole

T

Nos. of Manhole  $\frac{750}{50} = 15$  (50m pitch) Manhole Depth 512.17-510.351 = 1.8 (Center of No. 32)

- (4) Calculation of Storage Capacity
  - a) Sewer

$$\frac{0.15^2 \times 3.14}{4} \times 750 \times (1 - \frac{1}{2.0}) = 6.6 \text{m}^3$$

b) Manhole

$$\frac{0.9^2 \times 3.14}{4} \times (1.8 \times 0.15) \times 15 = 15.7 \text{m}^3$$

Total 22.3m<sup>3</sup>

(5) Storage Time

 $\frac{22.3 \text{ m}^3}{11.16 \text{ m}^3/\text{hour}} = 2.0 \text{ hour } = \underline{120.0 \text{ min}}$