APPENDIX D WATER SUPPLY

TABLE OF CONTENTS

			Page
1.	. Ser	vice Population	D-1
2.	. Wa	ater Demand	D-3
,	2.1	Plan of Water Source and Transmission Pipelines	D-6
:	2.2	Hydraulic Calculation of Transmission Pipeline	D-7
	2.3	Capacity of Pump Pit	D-12
	2.4	Capacity of Reservoir	.D-13
	2.5	Plan of Distribution Pipeline (2005)	.D-15
	2.6	Plan of Distribution Pipeline (2010)	.D-19
	2.7	Plan of Distribution Pipeline (2015)	D-23
	2.20	Location of Proposed Communal Water Point	. D-28
	2.21	Plan of Water Source and Transmission Pipeline (2005)	. D-29
	2 22	Target Years for Pipeline	.D-34

1. Service Population

No.1

Debarwa										
Year	1997	[2005			2010			2015	
Zone,Village		Total Pop.	%	Supplied	Total Pop.	%	Supplied	Total Pop.	%	Supplied
Zone 1	1,884	3,701	0.90	3,331	5,078	1.00	5,078	6,719	1.00	6,719
Zone 2	1,551	3,047	0.90	2,742	4,180	1.00	4,180	5,532	1.00	5,532
Geza Lamza	1,396		0.70	1,920	3,762	0.85	3,198	4,979	1.00	
Total	4,831	9,490	0.84	7,993	13,020	0.96	12,456	17,230	1.00	17,230
Projected Pop.		9,490			13,020			17,230		

Mendefera	٠									
Year	1997		2005			2010			2015	····
Zone,Village		Total Pop.	%	Supplied	Total Pop.	%	Supplied	Total Pop	%	Supplied
Western zone		ł								
5	1,398	2,227	0.60	1,336	2,857	0.80			1.00	3,629
6	2,005	3,194	0.70	2,236	4,097	0.85	3,483		1.00	5,204
7	4,089	6,513	0.80	5,211	8,356	0.90	7,520	10,614	1.00	10,614
8	2,275	3,624	0.70	2,537	4,650	0.80	3,720	5,906	1.00	5,906
Eastern zone									_	· -
1	2,743	4,370	0.70	3,059	5,606	0.85	4,765	7,121	1.00	
2	2,934	4,674	0.70	3,272	5,996	0.85	5,096	7,616	1.00	
4	2,192	3,491	0.60	2,095	4,479	0.75	3,359	5,689	1.00	5,689
Adi Bari	1,488		0.00	0	3,041	1.00	3,041	3,863	1.00	3,863
Adi Wegri	708	1,128	0.00	0	1,447	0.00	0	1,838	1.00	1,838
Adi Hare	539	859	0.00	. 0	1,101	0.00	0	1,399	1.00	1,399
Total	20,371	32,450	0.61	19,745	41,630	0.80	33,270	52,880	1.00	52,880
Projected Pop.		32,450			41,630			52,880		

Year	1997		2005			2010			2015	
Zone,Village		Total Pop.	%	Supplied	Total Pop.	%	Supplied	Total Pop	%	Supplied
Adiquala										
Zone 1	1,475	2,399	1.00	2,399	3,004	1.00	3,004	3,685	1.00	
Zone 2	1,818	2,956	1.00	2,956	3,701	1.00	3,701	4,541	1.00	
Zone 3	1,857	3,020	1.00	3,020	3,782	1.00	3,782	4,639	1.00	
Zone 4	2,075	3,374	1.00	3,374	4,224	1.00	4,224	5,182	1.00	
Geza Gebrai	335	545	0.00	0	682	1.00	682	837	1.00	
Geza Azazi	334	543	0.00	0	680	1.00	680	834	1.00	
Adi Arbaa	625	1,016	0.00	0	1,273	0.00	0	1,561	1.00	
Geza Atat	87	141	0.00	0	177	1.00	177	217	1.00	
Tekerakari	117	190	0.00	0	238	1.00	238	292	1.00	
Adi Hihi	306	498	0.00	0	623	0.00	0	764	1.00	
Adi Mini	201	327	0.00	0	409	0.00	0	502	1.00	
Adi Shinfio	258	420	0.00	0	525	0.00	0	644	1.00	
Total	9,488	15,430	0.76	11,750	19,320	0.85	16,490	23,700	1.00	23,70
Projected Pop.		15,430			19,320			23,700		

Dekemhare 2015 2010 2005 1997 Year Supplied Total Pop. % Supplied Total Pop. % Supplied Zone, Village Total Pop. % Zone 1 0.80 5,140 8,155 1.00 8,155 6.425 3,009 3.163 5.016 0.60 1.00 1.00 6,436 8,168 8,168 6.436 2 3,168 5.024 0.90 4.522 4,501 1.00 4,501 3,015 3 1,746 2,768 0.70 1.938 3.546 0.85 2,639 1.00 2,639 4 1,024 1,623 0.90 1,461 2.080 1.00 2,080 2,000 1,230 1,230 1,576 1.00 1,576 1.00 2,000 5 776 1.00 Zone 2 1.00 5,314 6,744 1.00 6,744 4,148 5,314 6 1.00 2,616 4,148 5,302 1.00 5,302 3,261 4,178 1.00 4,178 3,261 1.00 2,057 4,278 5,429 5,429 4.278 1.00 1.00 3,339 8 2,106 1.00 3,339 7,529 7,529 5,932 1.00 2,920 4,631 0.80 3,705 5,932 1.00 3,073 1,192 0.00 3.073 1.00 1,890 2,421 0.00 0 Hadamu 810 0 638 0.00 0 810 1.00 314 498 0.00 Metsalu 0.00 1,205 0.00 0 1,529 1.00 1,529 593 940 0 Amhare

No.2

Segeneiti									<u> </u>	
Year	1997		2005			2010		·	2015	
Zone,Village		Total Pop.	%	Supplied	Total Pop.	%	Supplied	Total Pop	%	Supplied
1	2,477	4,304	0.80	3,443	5,513	0.90	4,962	6,851	1.00	6,851
2	3,669	6,376	0.60	3,826	8,167	0.80	6,534	10,149	1.00	10,149
Total	6,146	10,680	0.68	7,269	13,680	0.84	11,495	17,000	1.00	17,000
Projected Pop.	· · · · · · · · · · · · · · · · · · ·	10,680			13,680			17,000		

44,030

44,030

0.86

26,614

21,675

Total

Projected Pop.

34,370

34,370

0.77

37,949

55,880

55,880

1.00

55,880

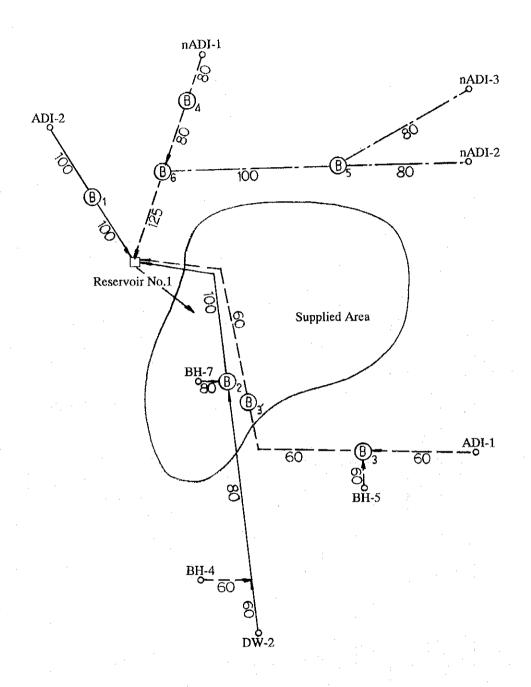
Adi Keyih										100
Year	1997		2005			2010			2015	
Zone Village		Total Pop.	%	Supplied	Total Pop.	%	Supplied	Total Pop.	%	Supplied
Zone 1	7,837	12,212	0.70	8,548	15,057	0.85	12,798	18,293	1.00	18,293
Zone 2	6,378	9,938	0.80	7,951	12,253	1.00	12,253	14,887	1.00	14,887
Total	14,215	22,150	0.74	16,499	27,310	0.92	25,052	33,180	1.00	33,180
Projected Pop.		22,150			27,310			33,180		

Senafe							100	· · · · · · · · · · · · · · · · · · ·		
Year	1997		2005			2010			2015	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Zone,Village		Total Pop.	9⁄6	Supplied	Total Pop.	%	Supplied	Total Pop.	%	Supplied
Zone 1								<i>*</i>		
1	730	1,147	0.90	1,033	1,419	1.00	1,419	1,728	1.00	
2	1,022	1,606	0.80	1,285	1,986	1.00	1,986	2,419	1.00	
3	876	1,377	0.80	1,102	1,703	1.00	1,703	2,073	1.00	2,073
Zone 2					}				·	
4	3,549	5,578	0.70	3,905	6,898	0.90	6,208	8,398	1.00	
5	1,971	3,099	1.00	3,099	3,832	1.00	3,832	4,666	1.00	4,666
6	2,366	3,719	1.00	3,719	4,598	1.00	4,598	5,599	1.00	5,599
Metera	1,178	1,852	0.80	1,481	2,290	0.90	2,061	2,788	1.00	2,788
Awle	590	927	0.00	0	1,147	0.00	0	1,396	1.00	1,396
Hahahile	0	0	0.00	0	0	0.00	0	0	1.00	
Tisha	652	1,025	0.00	0	1,267	0.00	0	1,543	1.00	1,543
Afema	0	. 0	0.00	0	0	0.00	0	0	1.00	0
Total	12,934	20,330	0.77	15,623	25,140	0.87	21,807	30,610	1.00	30,610
Projected Pop.		20,330			25,140			30,610		

	Total										
I	Target Year	1997		2005			2010		1.00	2015	
I			Total Pop.	%	Supplied	Total Pop.	%	Supplied	Total Pop.	%	Supplied
I	Grand Tatal	89,660	144,900	0.73	105,491	184,130	0.86	158,518	230,480	1.00	230,480

2. Water Demand

Water Demand	pu					141	-		(h) 6m)	Daily May	Hourk
Name of	Year		Population			Average w	Average water Demand	<u></u>	2	Cally Max.	(1)
		Whole	Supply area	%	Domestic	Industry	Others	Loss	Total	(m3/a)	(m3/n)
- Cower	2005	O A A	7.0	84.2	150		141	51	342	411	25.7
Deparwa	2000	12 020	19.4	95.7	247	81	206	94	629	754	47.2
	20102	17 920	17.0	1000	390	271	272	165	1,098	1,318	82.3
	2000	22,450	101	609	456		253	125	834	1,001	62.6
Mendetera	2007	32,430	22.0	6 62	979	314	324	285	1,902	2,283	142.7
	2015	52 880		100.0	1,840	413	412	470	3,134	3,761	235.1
ole, est	2005	15 430	=	76.2	241		136	99	443	532	33.2
Authoria	2010	19 320	16.	85.4	389		170	66	658	789	49.3
	2015	23,700	23	100.0	728		208	165	1,102	1,322	82.6
Dolombara	2005	34 370	26.6	77.4	615		320	165	1,100		82.5
Devellina	2010	44 030		86.2	1,117	210	410	307	2,044		153.3
	2015	55 880	55.8	100.0	1,945	1,050	520	620	4,135	4,962	310.1
1	2005	10,680	2	68.1			107	43	287	344	21.5
Segener	2010	13,680	11 500	84.1	228		138	65	431	517	32.3
	2010	17,000	17	1000			171	86	654	785	49.0
7	2013	22 150	18	745			220	106	707	849	53.0
Adi Neyin	2010	22,130		91.7			271	178	1,186		89.0
	2015	33 180	33	100.0	1,		329	262	1,746	2	130.9
. J	2005	20,330	15.6	76.8	321		174	87	582	698	43.6
Senare	2010	25,330	21	86.8			215	129	859	•	64.4
	2015	30,610	30	100.0	940		261	212	1,414		106.0
	2005	144 900	105	72.8	2,301		1,350	644	4,295		322.1
i otai	2010	184 130	158	86.1		909	1,733	1,156	7,708		578.1
	2015	230 480	230	100.0	7,383	1,734	2,173	1,992	13,283	15,939	996.2
	2012	201,120									


(1) Population								-			-		C	
	Debarwa	rwa	Mendefera	efera	Adiquala	uala	Deke	Dekemhare	Segeneiti	nerti	Ad	Adı Keyin	o O	Senare
Water consumpution	%	1/c/d	%	1/c/d	%	b/o/l	96	D/0/1	%	1/c/d	%	1/c/d	%	1/c/d
1997 H.C.	1 25	25	10.94	24.11	13.86	20.45	5.67	25.59	က	28.73	4.95	11.66	7.78	10.3
			6.56	14.95	6.14	12.07	8.67	15.67	5	12.64	10.64	5.94	6.62	6.8
O W D	41.7	8.56	29.2	10.13	63.6	14.31			90.5	16.45	13.94	8.79	83.8	8.04
Average		9.0		14.1		15.2		19.6		16.6		8.2		8.1
Population		4.831		20,371		9,488		21,675		6,146		14,215		12,934
Water Demand		44		287		144		425		102		117		105
2005 H.C.	121	28	29	35	23	29	29	35	17	28	29	32	23	59
	22	22	33	22	33	22	33	22	22	22	33	22	33	22
CWP	9	15	38	15	44	15	38	15	61	15	38	15	44	15
Average		18.8		23.1		20.5		23.1		18.8		23.1		20.5
Population		7.990		19,750		11,750		26,610		7,270		16,500		15,620
Water Demand		150		456		241		615		136		381		321
2010 HC	19	30	34	40	27	34	34	40	19	30	34	9	27	34
	24	24	99	24	37	24	99	24	24	24	99	24	37	24
CWP		15	0	15	37	15	0	15	99	15	0	15	37	2
Average		19.9		29.4		236	-	29.4		19.9		29.4		23.6
Population		12.460		33,270		16,490		37,950		11,500		25,050		21,810
Water Demand		247		979		389		1,117		228		737		515
2015 H.C.	22	35	39	47	31	39	39	47	22	35	39	47	31	39
ΛC		27	61	27	69	27	.01	27	27	27	911	27	69	27
CWD		15	0	15	0	15	0	15	21	15	0	15	ᅙ	15
Average		22.6		34.8		30.7		34.8		22.6		34.8		30.7
Population		17.230		52,880		23,700		55,880		17,000		33,180		30,610
Water Demand		390		1,840		728		1,945		385		1,155		940

(2) Industry									,
()	unit	Water	Debarwa	Mendefera		Adiquala Dekemhare	Segeneiti	Adi Keyih	Senafe
		consum.							
Industry	ha	15,000	18.09			70			
light Indus.		5,500		57					
0				75	:	-			
			18 09			70.00			
בסום									
		3006							
Water Demand		2007		***		010			
		2010		314		017			
		2015	271	413		1,050			

(3) Number of Institutions	Institut	lons							
	unit	Water	Debarwa	Mendefera	Adiquala	Dekemhare	Segeneiti	Adi Keyih	Senate
		consum.							0,00
School	iana	5	3,228	15,120	5,901	7,905	3,111	6,233	3,049
Hospital	peq	100	20	30	20	20	35	40	35
Olinic	peq	100	5	5		5	5	5	2
Hotel	shop	_	5	13	7	13	5		13
Bar Tea shop	ahod	210	89	6/	20	103	16		63
Restaurant	aous	L	85	75	09	61	20		80
Chirch	Visiter		450	1,430	790	2,020	580		830
Moseus	Vicitor.	L	09	1.220	320	300	70	480	930
Mosdae	2000		570		1.005	1,812	069	066	738
Oilice L	Del Sol	2001	19		23	102	27	64	43
ractory	2) (2)	200	2						
		1007	92	159	83	202	62	141	110
water Demand		1000	-		136		107	220	174
(Others)		C007			001		100+		915
		2010	206	324	1/0	410	130		217
		2015	272	412	208	520	171	329	261
				W					

2.1 Plan of Water Source and Transmission Pipelines

Adi Keyih

Target Year 2005
Target Year 2010
Target Year 2015

Adi Keyhi	Target Y	ear		2005			
	Well No		ADI-2	DW-2	BH-7		
Condition	Symbol	Unit	24hr ope.	24hr ope.	24hr ope.		
Elevation of Intake	ELI	m	2219.71	2279.30	2359.00		
Ground water level		m	9.40	10.00	10.00		
Elevation of Reservoir	EL2	m	2398.00	2398.00	2398.00		
Water level		m	3.00	3.00	3.00		
Discharge	Q	m3/d	434	138			
Discharge	Q1	m3/s	0.0050	0.0016			
Pipe Diameter	D	mm	100	60			
Velocity	V	m/s	0.64	0.57			
Velocity Coefficient	С		110	110			
Pipe Length	L	m	2159	343			-
Loss Head	h2	m	15.94	3.66			
Discharge	Q	m3/d		138			
Discharge	Q1	m3/s		0.0016	0.0032		
Pipe Diameter	D	mm		80	80		
Velocity	V	m/s		0.32	0.64		
Velocity Coefficient	C			110	110		
Pipe Length	L	m		1762	10		
Loss Head	h2	m		4.63	0.10		
			_				
Actual Head	h1	m	86,69	92.70	13.00		
Total Head	H	m	102.63	100.99	13.10		
Booster Pump			(BP No.1)	(BP No.2)			
Elevation of Booster P		m	2294.0	2359.0			
Discharge	Q	m3/d	434	415			
Discharge	Q1	m3/s	0.0050	0.0048			
Pipe Diameter	D	mm	100		}		
Velocity	V	m/s	0.64	0.61			
Velocity Coefficient	C		110				
Pipe Length	L	m	694				
Loss Head	h2	m	5.12	6.24	<u> </u>	<u> </u>	
Actual Head	h1	m	107.00	42.00			
Total Head	H	m	112.12	48.24			<u></u>

⁻ Pumps are operated 24 hours per day.

Adi Keyhi	Target Y	ear [2010	(1)		
·	Well No).	ADI-2	DW-2	BH-4	BH-7	
Condition	Symbol	Unit	24hr ope.	24hr ope.	24hr ope.	24hr ope.	
Elevation of Intake	EL1	m	2219.71	2279.30	2280.50	2359.00	
Ground water level		m	9.40	10.00	10.00	10.00	
Elevation of Reservoir	EL2	m	2398.00	2398.00	2398.00	2398.00	
Water level		m	3.00	3.00	3.00	3.00	
	Ì						
Discharge	Q	m3/d	553	138	138		
Discharge	Q1	m3/s	0.0064	0.0016	0.0016		
Pipe Diameter	- D	mm	100	60	60		
Velocity	V	m/s	0.82	0.57	0.57		
Velocity Coefficient	C		110	110	110		
Pipe Length	L	m	2159	343	50		
Loss Head	h2	m	24.96	3.66	0.53		
Discharge	Q	m3/d		276		277	
Discharge	Q1	m3/s		0.0032	·	0.0032	
Pipe Diameter	D	mm		80		80	
Velocity	V	m/s		0.64		0.64	
Velocity Coefficient	C			110		110	
Pipe Length	L	m		1762		10	
Loss Head	h2	m		16.69		0.10	
	<u> </u>				0.55	1.00	
Actual Head	h1	m	86.69	92.70	91.50	13.00	
Total Head	Н	m	111.65	113.05	108.73	13.10	
Booster Pump	 	 	(BP No.1)	(BP No.2)			
Elevation of Booster P	+	m	2294.0	2359.0			
Discharge	Q	m3/d					
Discharge	Q1	m3/s	0.0064	0.0064			
Pipe Diameter	$\frac{1}{D}$	mm	100				
Velocity	V	m/s	0.82	0.82			
Velocity Coefficient	C		110	110			
Pipe Length	L	m	694	918			
Loss Head	h2	m	8.02	10.61			
Actual Head	h1	m	107.00	42.00			,
Total Head	H	m	115.02	52.61		<u></u>	<u> </u>

⁻ Pumps are operated 24 hours per day.

Adi Keyhi	Target Y	ear		2010	(2)
	Well No.		ADI-1	BH-5	nADI-1
Condition	Symbol	Unit	24hr ope.	24hr ope.	24hr ope.
Elevation of Intake	EL1	m	2255.80	2280.50	2150
Ground water level		m	3.10	10.00	10.00
Elevation of Reservoir	EL2	m	2398.00	2398.00	2398.00
Water level		m	3.00	3.00	3.00
Discharge	Q	m3/d	86	86	207
Discharge	Q1	m3/s	0.0010	0.0010	0.0024
Pipe Diameter	D	mm	60	60	80
Velocity	V	m/s	0.35	0.35	0.48
Velocity Coefficient	C		110	110	110
Pipe Length	L	m	498	250	4900
Loss Head	h2	m	2.21	1.11	27.26
Actual Head	h1	m	35.30	17.50	163.00
Total Head	H	m	37.51	18.61	190.26
					*
Booster Pump			(BP No.3)		(BP No.4)
Elevation of Booster P		m	2285.0		2300.0
Discharge	Q	m3/d			207
Discharge	Q1	m3/s	0.0020		0.0024
Pipe Diameter	D _	mm	60		80
Velocity	V	m/s	0.70		0.48
Velocity Coefficient	. C		110	·	110
Pipe Length	L	m	3162		800
Loss Head	h2	m	50.70		4.45
				<u> </u>	
Discharge	Q	m3/d			
Discharge	Q1	m3/s			<u> </u>
Pipe Diameter	D	mm		<u> </u>	
Velocity	. V	m/s		·	
Velocity Coefficient	C				<u> </u>
Pipe Length	L	m			<u> </u>
Loss Head	h2	m			<u> </u>
Actual Head	h1	m	116.00		101.00
Total Head	Н	m	166.70		105.45

⁻ Pumps are operated 24 hours per day.
- "*" means that booster pumps shall be installed in the line.

Adi Keyhi	Target Y	car		2015	(1)		
	Well No		ADI-2	DW-2	BH-4	BH-7	
Condition	Symbol	Unit	24hr ope.	24hr ope.	24hr ope.	24hr ope.	
Elevation of Intake	EL1	m	2219.71	2279.30	2280.50	2359.00	
Ground water level		m	9.40	10.00	10.00	10.00	
Elevation of Reservoir	EL2	m	2398.00	2398.00	2398.00	2398.00	
Water level	1	m	3.00	3.00	3.00	3.00	

Discharge	Q	m3/d	553	138	138		
Discharge	Q1	m3/s	0.0064	0.0016	0.0016		
Pipe Diameter	D	mm	100	60	60		
Velocity	V	m/s	0.82	0.57	0.57		
Velocity Coefficient	С		110	110	110		
Pipe Length	L	m	2159	343	50		
Loss Head	h2	m	24.96	3.66	0.53		
	1						
Discharge	Q	m3/d		276		277	
Discharge	Q1	m3/s	-	0.0032		0.0032	
Pipe Diameter	D	mm		-80		80	
Velocity	V	m/s		0.64		0.64	
Velocity Coefficient	C			110		110	
Pipe Length	L	· m		1762		10	
Loss Head	h2	m		16.69		0.10	
Actual Head	h1	m	86.69	92.70	91.50	13.00	
Total Head	H	m	111.65	113.05	108.73	13.10	
	<u> </u>						-
Booster Pump			(BP No.1)	(BP No.2)			
Elevation of Booster P		m	2294.0	2359.0			
Discharge	Q	m3/d	553				
Discharge	Q1	m3/s	0.0064	0.0064			
Pipe Diameter	D.	mm	100		<u> </u>		
Velocity	V	m/s	0.82	0.82	<u> </u>		
Velocity Coefficient	C	<u> </u>	110				
Pipe Length	L	m	694				
Loss Head	h2	m	8.02	10.61	<u> </u>		
	ļ	<u> </u>		<u> </u>		<u> </u>	
Actual Head	h1	m	107.00	42.00		ļ	
Total Head	Н	m	115.02	52.61		<u> </u>	

⁻ Pumps are operated 24 hours per day.

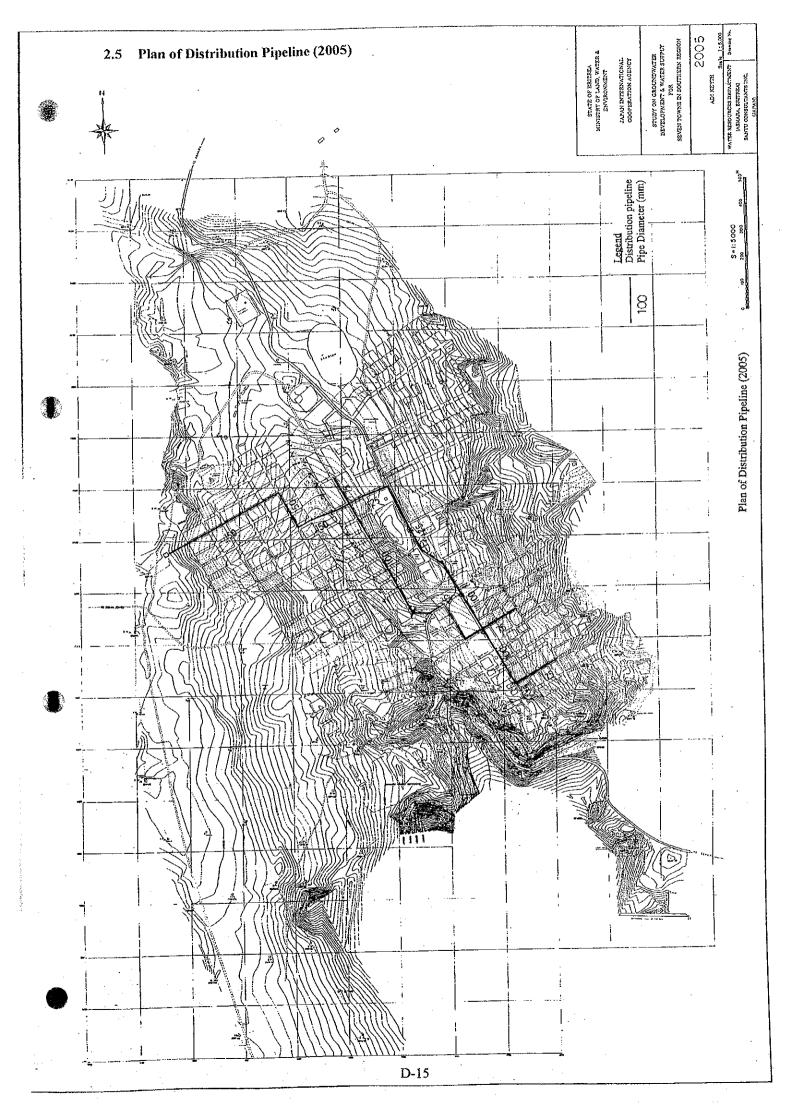
Adi Keyhi	Target Ye	ear				(2)	
,	Well No.		ADI-1	BH-5	nADI-3	nADI-2	nADI-1
Condition	Symbol	Unit	24hr ope.	24hr ope.	24hr ope.	24hr ope.	24hr ope.
Elevation of Intake	EL1	m	2255.80	2280.50	2210	2165	2150
Ground water level		m	3.10	10.00	10.00	10.00	10.00
Elevation of Reservoir	EL2	m	2398.00	2398.00	2398.00	2398.00	2398.00
Water level		m	3.00	3.00	3.00	3.00	3.00
Discharge	Q	m3/d	86	86	277	355	
Discharge	Q1	m3/s	0.0010	0.0010	0.0032	0.0041	
Pipe Diameter	D	mm	60	60	80	80	
Velocity	V	m/s	0.35	0.35	0.64	0.82	
Velocity Coefficient	С		110	110	110	110	
Pipe Length	L	m	498	250	1700	600	
Loss Head	h2	m	2.21	1.11	16.21	9.06	
						12.00	
Actual Head	h1	m	35.30	17.50	23.00	68.00	
Total Head	H	m	37.51	18.61	39.21	77.06	
							<u> </u>
Booster Pump			(BP No.3)		(BP No.5)		
Elevation of Booster P		m	2285.0		2220.0		200
Discharge	Q	m3/d			632	ļ <u>.</u>	207
Discharge	Q1	m3/s	0.0020		0.0073		0.0024
Pipe Diameter	D	mm	60		100		80
Velocity	V	m/s	0.70		0.93		0.48
Velocity Coefficient	C		110		110	<u> </u>	110
Pipe Length	L	m	3162		2700	<u> </u>	4900
Loss Head	h2	m	50.70		39.95	<u> </u>	27.26
	<u> </u>		<u> </u>	<u> </u>	92.00		163.00
Actual Head	h1_	m	<u> </u>	 	83.00 122.95		190.26
Total Head	Н	m	<u> </u>		122,93	 	*
	1		<u> </u>		(DD No. 6)		
Booster Pump	<u> </u>			ļ	(BP No.6)		
Elevation of Booster I		m	-		2300.0		-
Discharge	Q	m3/c		-	839		
Discharge	Q1	m3/s			0.0097		1
Pipe Diameter	D	mm			0.79		+
Velocity	V	m/s	 	 	110		
Velocity Coefficient	C						
Pipe Length	L	m		 	800		-
Loss Head	h2	m	1	+	6.74	!	
			116.00	+	101.00	, 	+
Actual Head	<u>h1</u>	m	116.00		107.74		
Total Head	Н	m	166.70 *	<u> </u>	107.7	<u> </u>	

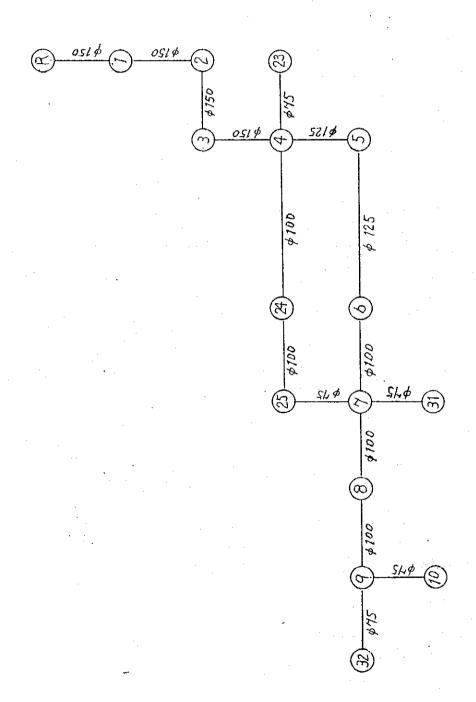
⁻ Pumps are operated 24 hours per day.
- "*" means that booster pumps shall be installed in the line.

2.3 Capacity of Pump Pit

<u>Pi</u>
Pump
ty of I
Capaci

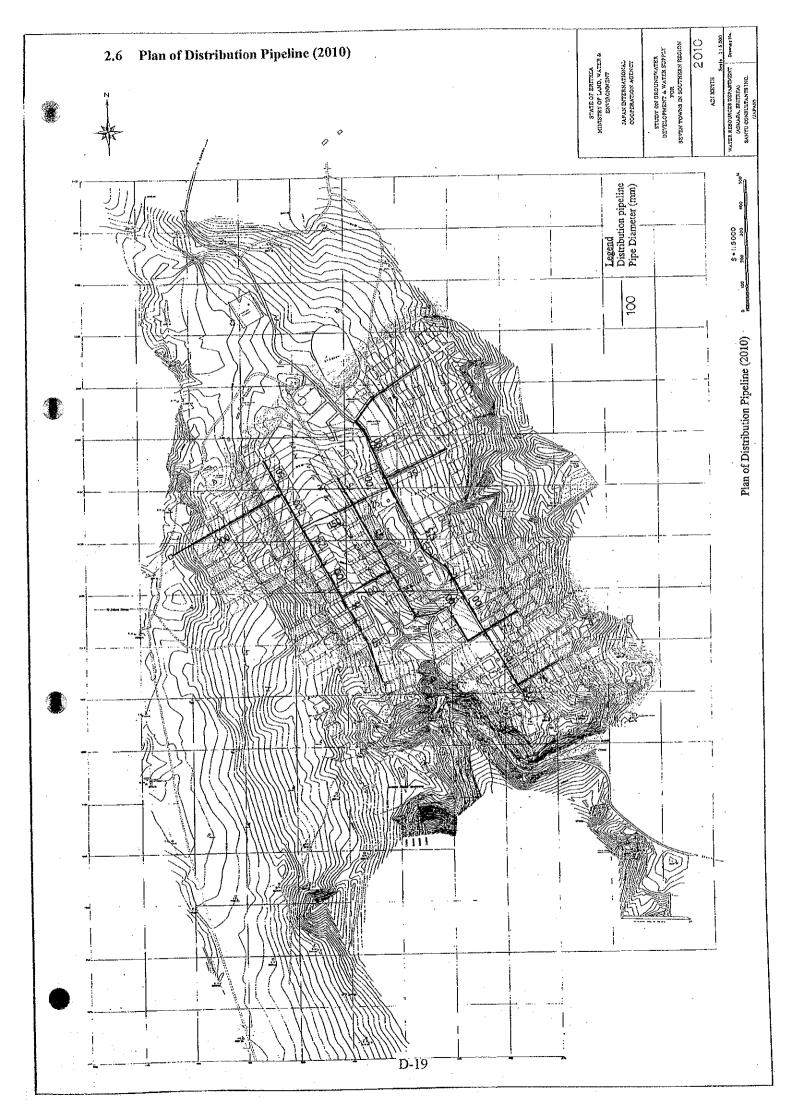
Remarks																															
	Actual	(m3)					- 1	CT ,	2 6	30	CT																				
	High	(E)							2.0	G	7.0																				
Pump Pi	Width	(E)						,	2.5		C.7.																				
Additional Pump Pit	Length	(E)							1.0	·	3.0																				
,		(m3)							5		15			0			0		0		0		0						-	0	
ļ ,	Actual	(m3)	15	15	25	30	35	15	8	99	45	26	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	20	15	15.	15
Pump Pi	High	(m)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Dimension of Pump Pit	Width	(m)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	3.0	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Din	Length	(E)	3.0	3.0	5.0	0.9	7.0	3.0	4.0	0.9	9.0	7.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.0	3.0	3.0	3.0
ity	esign	(m3)	15	15	25	30	35	15	20	30	45	55	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	22	15	15	15
. Pit Capacity	ecessary	(m3)	7.2	7.2	21.6	27.0	30.8	5.8	16.6	27.5	43.4	52.4	7.2	7.9	8.3	10.8	13.0	2.9	4.7	9.0	11.5	8.6	11.5	3.6	4.3	4.3	13.1	17.5	9.8	14.4	6.1
Max Daily	Consumption Necessary	(m3/s)	0.0040	0.0040	0.0120	0.0150	0.0171	0.0032	0.0092	0.0153	0.0241	0.0291	0.0040	0.0044	0.0046	0900.0	0.0072	0.0016	0.0026	0.0050	0.0064	0.0048	0.0064	0.0020	0.0024	0.0024	0.0073	0.0097	0.0048	0.0080	0.0034
Taroet			2005	2005	2010	2010	2015	2010	2015	2005	2010	2015	2005	2010	2015	2010	2015	2010	2015	2005	2010	2005	2010	2010	2010	2010	2015	2015	2010	2015	2015
d a		}	IRP-1	RP-2	RP-3	BP-4	BP-5	BP-1	BP-1	BP-1	BP-1	BP-2	BP-1	BP-1	RP-1	BP-1	RP-1	RP-2	RP-7	RP-1		RP-7	BP-2	BP-3	RP-4'	BP-4	RP-5	RP-6	ПР.1	BP-1	BP-2
Name of	Town	:	Mendefera					Adionala	5	Dekemhare			Seveneiti							Aadi Kevih	Carr tank								Sanafa	o Tana	

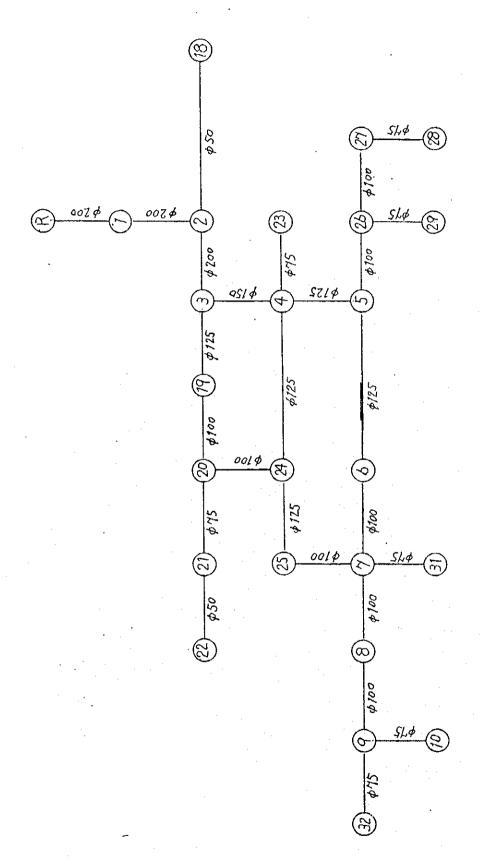

2.4 Capacity of Reservoir


i.	
Pr	
Res	
č	,
rity	
gus	

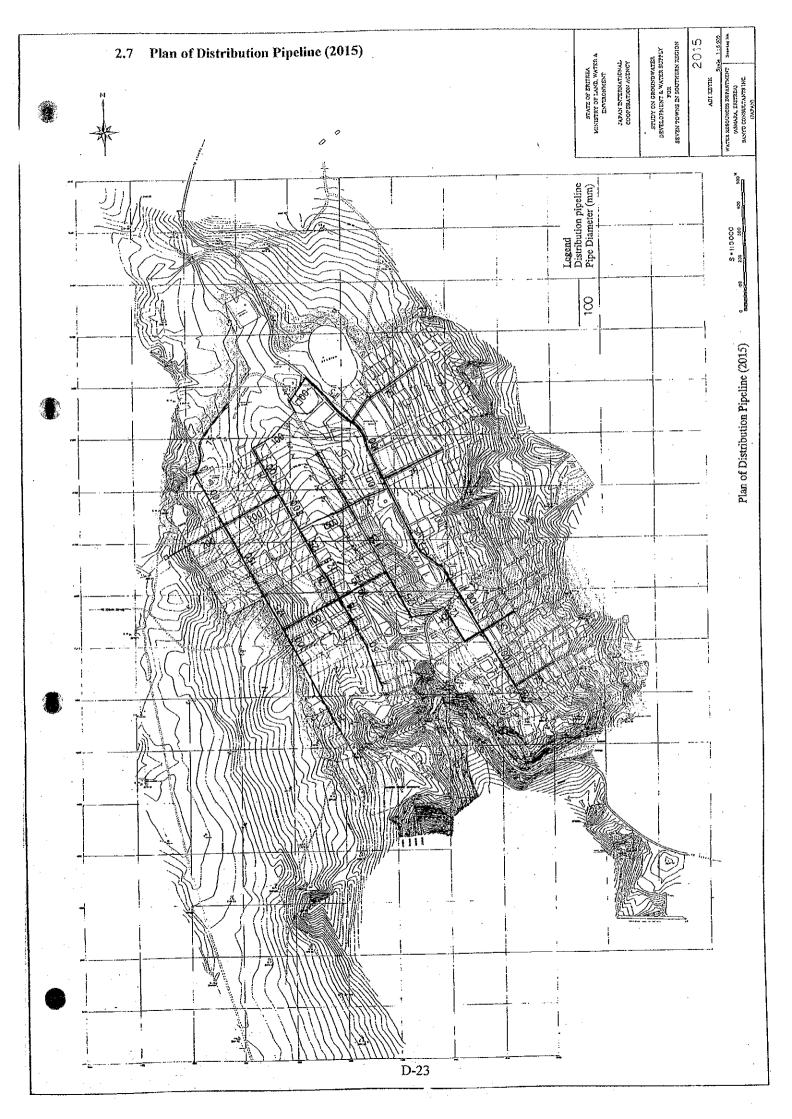
No.1	Remarks									:	(Adı Wegri)	(Adi Hare)			- 1	H=13m, Q=1hr	H=13m, Q=1hr	H=13m, Q=1hr	H=13m	H=13m	Mini & Shinfio				- 1	H=12m, Q=1hr	H=12m, O=1hr	H=12m, Q=1hr	Hadamu	Metsalu	Amhare
~		Actual	(m3)	147	116	189	350	438	245			_	180	48		26		∞		91			446	394		12					
	_	High	E		3.0	3.0	1	3.5	3.5					3.0	3.0		2.0	2.0		3.0				3.5	3.5						
	Reservoi	Width	E		7.0	7.0		10.0	0.01					4:0	5.0		2.0	2.0		5.5				15.0	15.0						
	Additional Reservoir	Length	Œ		5.5	9.0		. 12.5	7.0					4.0	4.5		2.0	2.0		5.5				7.5	14.0						
	7		(m3)		120	180		430	240					40	70		5	5		06				380	720						
	oir		(m3)	147	259	450	350	788	1012	181	51	40	180	222	300	26	31	40	54	147	31		446	840	1575	12	18	18	51	31	51
	of Reserv	High	(m)	3.0	3.0	3.0	3.5	3.5	3.5	2.5	2.5	2.5	3.0	3.0	3.0	2.5	2.5	2.5	3.0	3.0	2.5		3.5	3.5	3.5	2.0	2.0	2.0	2.5	2.5	2.5
	Dimension of Reservoir	Width	(m)	7.0	9.0	12.0	10.0	15.0	17.0	8.5	4.5	4.0	8.0	9.8	10.0	3.0	3.5	4.0	4.5	7.0	3.5		15.0	15.0	15.0	3.0	3.0	3.0	4.5	3.5	4.5
	Ď	Length	(m)	7.0	9.6	12.5	10.0	15.0	17.0	8.5	4.5	4.0	7.5	8.6	10.0	3.5	3.5	4.0	4.0	7.0	3.5		8.5	16.0	30.0	2.0	3.0	3.0	4.5	3.5	4.5
	Capacity	-	(m3)	140	260	440	340	770	1010	180	50	40	180	220	290	25	30	35	20	140	30		440	820	1540	10	15	15	50	30	50
	Reservoir C	Necessary	(m3)	137	251	439	334	761	1003	172	43	36	177	213	281	22	27	35	50	134	25		440	817	1533	6	11	12	48	30	43
	Max. Daily	Έ	(m3/d)	411	754	1,318	1,001	2,283	3,009	515	128	109	532	639	843	532	639	843	150	403	75		1,320	2,452	4,600	209	275	298	144	68	129
	Target			2005	2010	2015	2005	2010	2015	2015	2015	2015	2005	2010	2015	2005	1_			2015	2015		2005	2010	2015	2005	2010	2015	2015	2015	2015
•	Rev			DB-1	DB-1	DB-1	MD-1	MD-1	MD-1		MD-3	MD-4	A0-1	(81.0) AO-1	A0-1	AO-11	AO-1'	AO-1-1	A0-2	A0-2			DK-1	DK-1		DK-1	DK-1	DK-1	DK-2	DK-3	DK4
	Name of	Town		Debarwa			Mendefera		(80.0)	(13.7)	(3.4)	(5.9)	Adionala	(81.0)	(63.8)	()			(19.0)	(30.5)	(5.7)	Dekembare	(84.2+15.8)	(88.8+11.2)	(86.7±6.0)	(75.00)	(213)	(0.9)	(60)	8	(2.6)

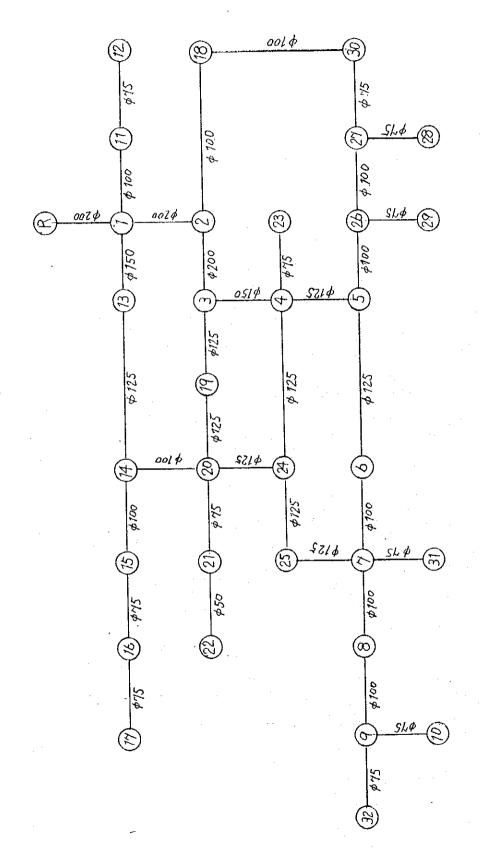
Capacity of Reservoir


Name of	Rsv.	Target	Max. Daily	Reservoir Capacity	Capacity		Dimension of Reservoir	of Reserv	voir		Additiona	Additional Reservoir	ir		Remarks
Town	Zo.	Year	Consumption Necessary	Necessary	Design	Length	Width	High	Actual	Capacity Length	Length	Width	High	Actual	
			(m3/d)	(m3)	(m3)	(II)	(m)	(E)	(m3)	(m3)	(m)	(m)	(m)	(m3)	
Segeneiti	SG-1	2005	344	115	120	7.0	7.0	2.5	123					123	
(74.0)	74.0) SG-1	2010	383	128	130	7.2	7.2	2.5	130	10	2.0	2.0	2.5	10	
(50.9)	50.9) SG-1	2015	400	133	140	7.5	7.5	2.5	141	10	2.0	2.0	2.5	10	
(26.0)	26.0) SG-2	2010	134	45	50	4.5	4.5	2.5	51					51	51 H=12.5m
(49.1)	SG-2	2015	385	128	130	7.2	7.2	2.5	130	08	6.0	0.9	2.5	90	90 H=12.5m
Aadi Kevih	AD-1	2005	849	283	290	10.0	10.0	3.0	300					300	300 H=5.5m
	AD-1	2010	1,424	475	480	12.5	13.0	3.0	488	190	6.5	10.0	3.0	195	195 H=5.5m
	AD-1	2015	2,095	869	700	15.5	15.5	3.0	721	220	7.5	10.0	3.0	225	225 H=5.5m
Senafe	SN-1	2005	869	233	240				009						Existing
	SN-1	2010	1,030	343	350				009						
(81.4)	(81.4) SN-1	2015	1,381	460	470				009						
(18.6)	18.6) SN-2	2015	316	105	110	6.5	6.5	2.6	110						Afema
(0.01)	7.7	(Y				



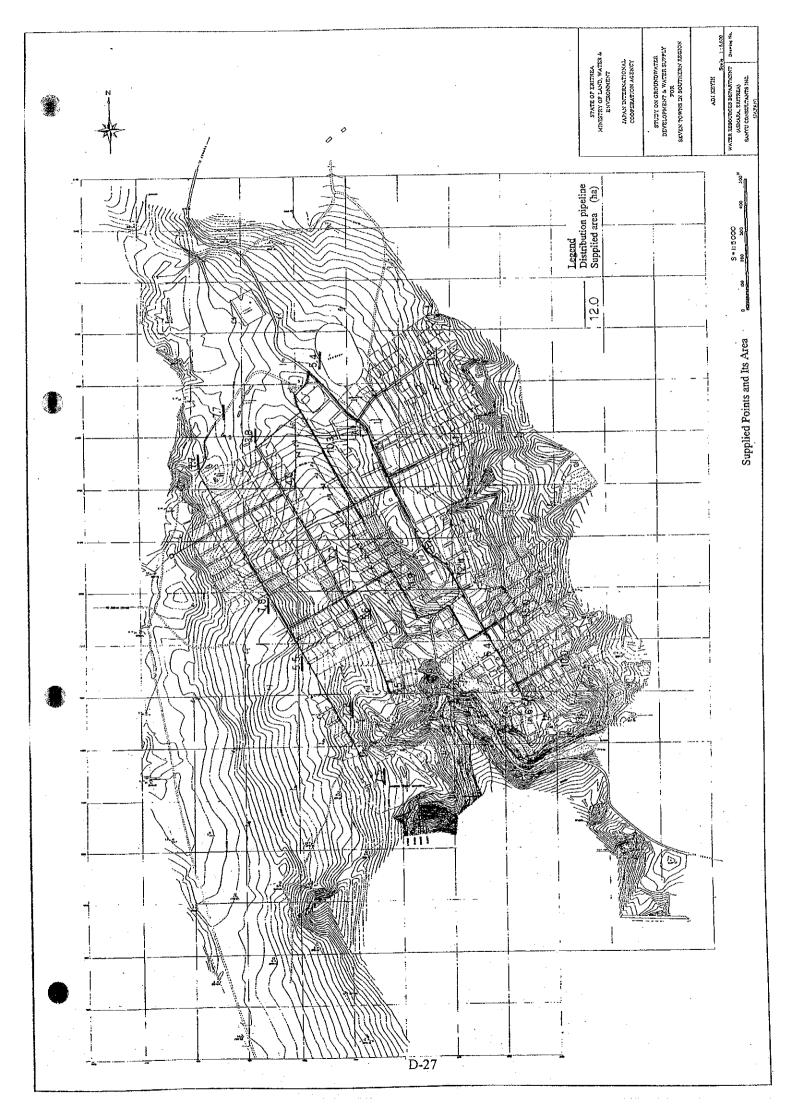
Outflow Quantitiy (L/sec)		00.0	٥.	٥.	٥	Š	٥.	W, I	•	ې.	?	0	7	٠	۲	•
Area (ha)	-72.50		00.0	•	•	•	•	07.9	٠	•		•	11.90	*		•
Effective Head (m)	5.50	17.550	0 1	30.03	4.26	6.01	2.76	3.54	5.03	6.26	7.74	4.69	9.00	5.63		0,0
Ground Elevation (EL.m)	592.5	2378.600	N	0 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6	440			362.1	360.1	367.4	372.6	365.2	4.00.5	. K) () () (359.5
Dynamic (WL.m)	598.00	2396-158	394.56	575.60	70.100	0 F C C C C C C C C C C C C C C C C C C	40.00	200	385.13	383.66	360.34	000		700.00	000	385.00
Node No.	0	ਜ	NI I	·n ·	4 L	n 4	0 1	- α	0	10	, ,	1 0	† U	1 0		32

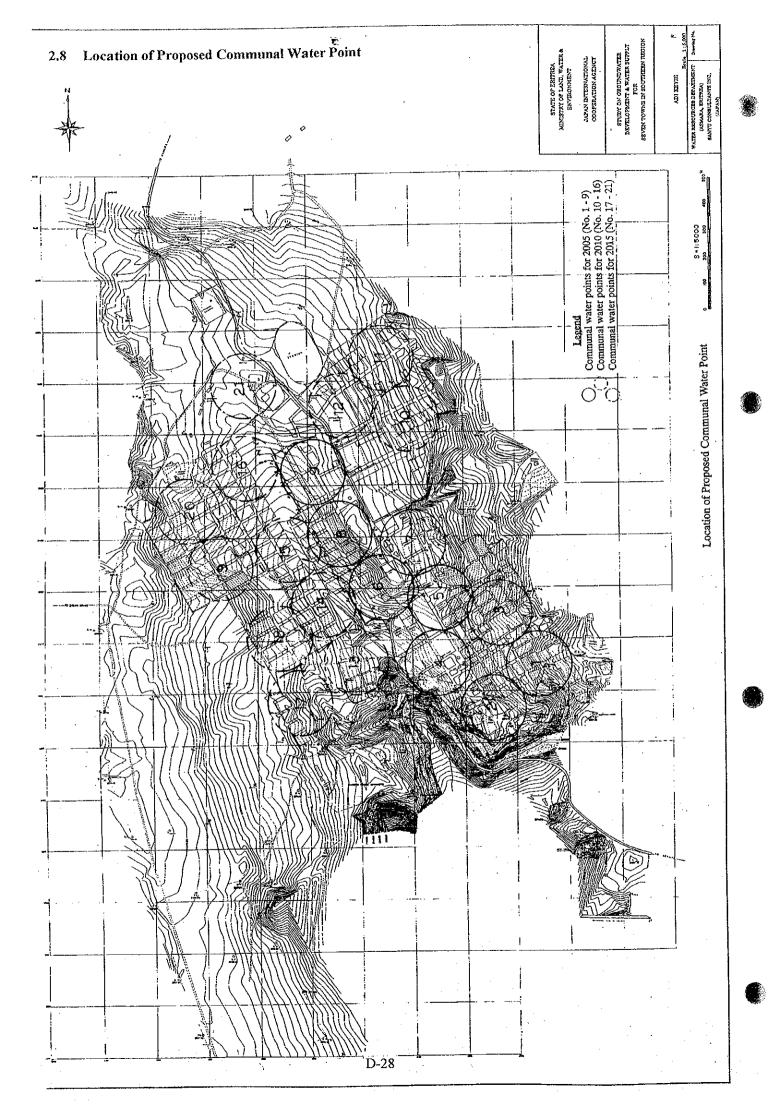

Pipe Material	* !																			* ! ! ! ! ! !	
Design Pressure	(kg/sq.cm)	50.4	5.58	6.49	67.9	, Y) (V 1	2.57	5.41	5.61	5.61	6.03	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 .	0	2.66	6.82	7.4	1 1 1	
Hydrostatic Water Hummer Head Head	1 1 1 1 8 8	0	2,79	3.25	M (2)	000	91	5-65	1.75	1.75	1.75	1 75	, K	4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	910	1.75	1.75	7.75	1 7		
Hydrostatic N Head	1 - 	60	7.0	, (v	1 (V	100	20.0	2.65	3.52	3.66	98	× × ×) (1 (0 .	3.93	3.91	7		1 4 4 5	
Head Loss Coefficient		70.140	1000	20.00	20.00	11111	1 1 1 1 1 1	0.03340	0.03432	0.03514	0.03689	04000	0 40	31010	0.03541	0.03518	0.03776	70770	00000	18040.0	: : : : :
Hydraulic Gradient	(m/1000m)	0	4004	7 . 4) * C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	70/.4	5.77	8.490	6,335	977 k) U	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00.0	6.162	6.232	6,556	100	/60-11	2.482	
Loss of Head	(m)	6	1000	* C C	* U O O	1.000	0.922	2.447	2.055	0.615	100	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	+ (· · · · · · · · · · · · · · · · · ·	1.046	1.787	1.290	7.347	- N	4.023	0.134	
velocity	(m/sec)	1	0000	20.00	0.831	0.831	0.650	0.651	0.696	705	100	9 6	0 0	7/7-0	0.586	0.589	100	3 (0.689	0.299	
Flow	(L/sec)	 	14.7	14.7	14.7	14.7	٥ .	0.83	יט	, ,	; ·	4	2.0	2.1	4.6	7	r		0°8	1.3	1 1 1 1 1 1 1 1 1
Flow Coefficient			110	7.70	110	110	110	0,7		9 6) (110	110	110	110	7	1 4	277	110	110	
Length	(m)	 		244.00		216.00	160.00	424.00	000	1000	00-76	147.00	267.00	230.00	290.00	207		228.00	225.00	24.00	1111111
Dia.	(mm)	1 	150	150	150	150	125	10	1 6	0 0	100	100	7	7.5	100		2 1	ņ	75	25	11111
Node No.	g 2	i i i	ς-	N	'n	4	L	1 ×	1 C	٠ (x 0	ው	10	2	7 6	10	n 1			32	11111
	From	i i 1	0	7	N	M	7	u	١,	0 1	_	a)	0.	4	4	ć	\$ I	Ŋ	^	٥٠	
Pipe line	Š	 	-	N	M	. 4	U	١,	0 1	•	00	ņ	10	1,1	,) h	1	4	S	7	1



Outflow Quantitiy (L/sec)	4000400000000000000000000000000000000	
Area (ha)	11.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
Effective Head (m)	118.7. 118.7. 128.333333333333333333333333333333333333	
Ground Elevation (EL.m)	2392.500 2378.600 2378.900 2356.300 2356.300 2356.300 2356.300 2376.300 2377.000 2377.000 2377.000 2377.000 2377.000 2377.000 2377.000 2377.000 2377.000 2377.000	
Dynamic (WL.m)	2398.000 2395.650 2395.650 2395.650 2395.650 2397.288 2397.479 2389.241 2388.100 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276 2391.276	
Node No.	040000 04 04 00 04 04 04 04 04 04 04 04	
		٠.,
	D-21	

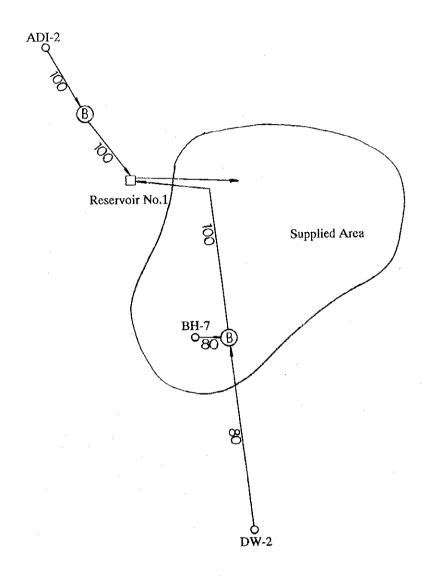
Hydrostatic Water Hummer Design Pipe Head Head Pressure Material	(kg/sq.cm)
Hydrostatic W Head	·
Head Loss Coefficient	
Hydraulic Gradient	(m/1000m)
Loss of Head	(m)
velocity	(m/sec)
Flow	(T/sec)
Flow Coefficient	
Length	Œ
Dia.	(mm)
Node No.	From To
Pipe 1	No.

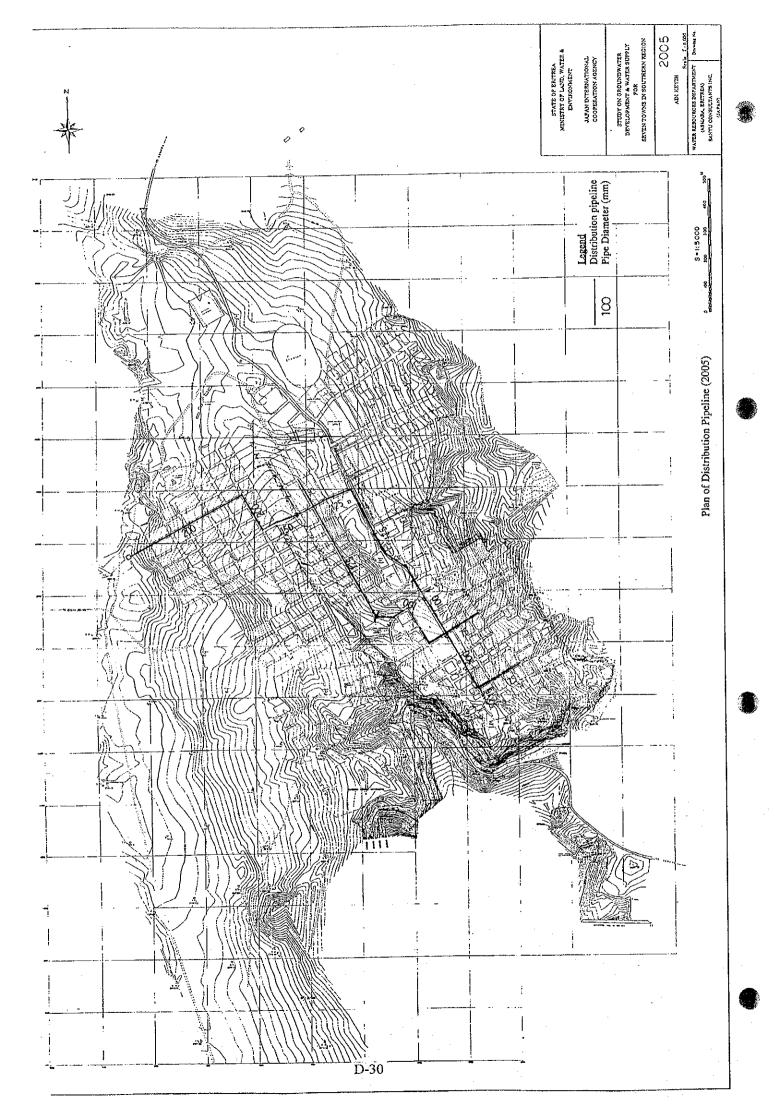


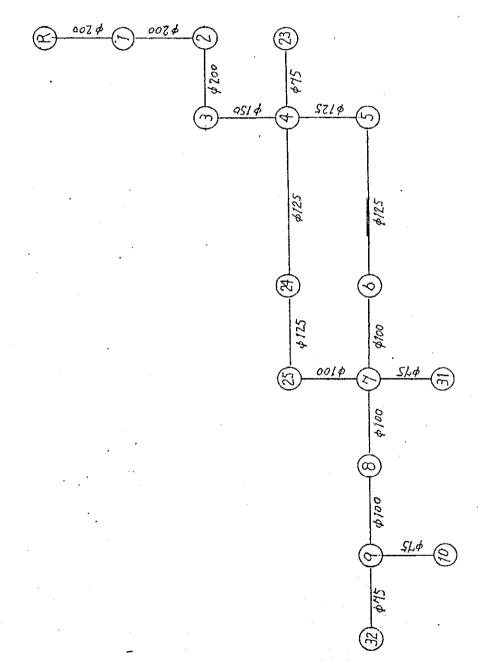


Node No.	5 3	Ground Elevation (EL.m)	Effective Head (m)	Area (ba)	Quantitiy (L/sec)
1011	98.00	2392.50	5.500		-36.36
, 4	2395.583	2378-6	8	000) C
	94.48	2370.90	.58	•) (
1 PC	94.02	2366.30	.72	91	> (
`	02.70	2368.60	7	٩	> (
ľ	91.68	2376.50	£.	0	٠ د
۰.0	2390.65	2372.30	W.	4 (0 0
, r	2390.20	2363.50	70	9.) ŀ
- α	2189.55	2362 10	. 45	4	ባ
0	2389 01	2360.10	.93	0	٠ د
	747 787 6	2367-40	.0	٠.	٠,
7	0 × 0 × 0	2384.30	Š	`.	٥٠
- C 	, KOKO	2380.40	4	,	Ö٠
4 6	2404.65	2379.00	9	w	9 0
1 4	2303.89	2378.00	8	٧.	
7 -	2393.09	2371.1(Š		٠,
. ~	2389.6	2365.30	'n	•	ì
7 6	2188 7	2362.5	2	٠.	٠.
α,	2393.57	2375.5	0		# F
9 0	2403.44	2360.9	š		0.4
	2393.13	2360.0	5.1	۲.	? *
5	2392.3	2360-7	Š	٦.	•
10	2388.6	2359.2	7.	S.	: •
. U	2391.28	2372.6	.6		1.
70	2302 4	2365.2	Ň		, ,
100	2401	2359.6	٠.	٠,	•
	1040	2477.0	'n	٦,	•
9 10	0000	2376.6	9	•	٦.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1000	8 7780	0	٠	
0 1	0010	2469 7	7	•	٦,
29	2390.0	10010			٠.
90	2392.4	25//-/	· `	, ,	`.
31	2387 - 4	2348.0	; t	, ,	
1	S SEEC	2359	?	٠	:

Section 2


Pipe Material	¥ ! !																																				* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Design Pressure	(kg/sq.cm)	0	v	'n	*	0	Ŋ	vi	4	ø	·	4.03	•	9	٠,	u,	v.			. נח		Ÿ	``	יונ	•	• `			•	٠,	•	~`	•	•	Ϋ,	``	. i	
ater Hummer Head	 	0	^	N	N	0	٠,	۲.	^	۲.	۲.	2.01	œ,	0	٥.	~	וא	^	^	٠.		١٠,			•	`	•	•	``	٠,		۱ , ۱	` '	`.'	`;'	`;'	•	:
Hydrostatic Water Hummer Head Head	! ! ! ! !	0	^	N	N	. 0	v	v.	Ÿ	œ	ω.	2.01	a.	9	٠.	~		٧.	۲.	۲,	w.	w	ς.	٠,		ς,	•	•	:	٧.	٠,	٧.	•	~		~		
Head Loss Coefficient	- I	0 0 0	0301	0311	7150	033	0357	.0387	.0349	.0367	.0381	0.03715	.0396	.0335	.0337	.0356	.0359	.0397	.0352	.0346	.0362	,0375	.0395	.0379	.0393	.0333	.036	.0398	.0374	0400	.0388	.0358	070	.0378	.037	.0352	.035	
Hydraulic Gradient	(m/1000m)	0 4 4 0	·	١.			1	ω.		v	Ε,	3.152	٧.	٠.	٥,	ry.	Υ,	3.4	٧	Ÿ	۲,	٦.	٧,		-	۳,	٠:	٠,	٠,	۲:	4.4	`	ĭ	۲.		۳.	٠,	,
Loss of Head	(m)	,	0	7 4	, (10) M	7		2	S		0	6	7.6	8	77	8	6	Į,	3	7	2.	4.	2	2	17	'n	4,	79.	2	7	17	7	.17	9	ŏ	1 1 1 1 1 1 1 1 1 1
velocity	(m/sec)	v		. 4	0 1		9 4	1 10	, ,	. 7	7.7	0.408	۲	1 10	, 4	, M	, 0	M	י יי	150	8	ייי	100	4.	.21	.65	4	2	12		7	7	'n,	7 7 .	М	77.	•	1 - 1 - 1 - 1 - 1
Flow	(T/sec)	!	0 •) t	١ ('n	•	•	•	•	•	, N	•	•	•	•	•	1 1	•	Y (•			. •			•		•	• . '		•	•	•	•	0.0	1 1 1 1 1 1 1 1
Flow Coefficient				٠,	ы.	┙.	-1 -	٠.	4 .	٠.	4 و	4 ተ	1 e	4 <	4 .	4 e	4 4	٠,	4 7	4 6	4 6	- ۲	1 6	• ~	٠,		•	. ~	•	• •	4 7	4 ←	٠,	٠,	٠,٠	•	110	
Length	(m)]]] [20.0	0 7 7	0 67	9	0.09	24.0	7	1 .	, t		100		י י י	200) (200	9 (200	,,,	,,,	, ,	9 6	000	0.00		7 7 1		, c			, ,	, C	7.0		358.00	
Dia.	(mm)	1	o	0	¢	150	N (N	> (0	> 1	٠ () i	v u	U (7 7	וכ	1 /	٠ (100	٧ſ	7 r	0	7 N	٠.	1 .	JC) C) P	0 1		() ()	· N	٠ () (אנ	121	
Node No.	om To	1									•	-1 -	 	# *	# • # 1	ri (9 I	л ·	0 (9 (N (v (u c	4 C	\$ ·			10		01	4 C	אני	, . , .	4 V) C) In	
Pipe line	No. From	! ! ! ! !	ч	2	m	4	ហ	vo i	<u> </u>	x (> 4) t		77	Α.	71.	Λ,	16		20 (1		20 7	-1 1	N N	a c) 10 10 10 10 10 10 10 10 10 10 10 10 10) V	10		82	.		101	V I	^ •	.	0 Y	





2.9 Plan of Water Source and Transmission Pipeline (2005)

Adi Keyih

Outflow Ouantitiy (L/sec)	1 4000000000000000000000000000000000000	•
Area (ha)	12000000000000000000000000000000000000	٠
Effective Head (m)	10000000000000000000000000000000000000	70.1
Ground Elevation (EL.m)	22342 22342 223478 223478 223478 223478 223478 223478 223478 223478 2247	224.20
Dynamic (WL.m)	2398 23997 23977 23977 23977 23977 23977 23977 23977 23977 23977 23977 23977 23977 23977 23977 2	380.52
Node No.		

Pipe Material	* 																				* i ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !					
Design Pressure	(kg/sq.cm)	70.04	n. O.	ŀ	2	,	٥.	5.29	5.27		* • • • • • • • • • • • • • • • • • • •	7.01	٠	6.03	6.71	•	0.0		6.82	5.67	1					
Hydrostatic Water Hummer Head Head		20.0	•	. 0		3.25	3.02	2.65	1.75	101	n (1.75	1.75	3.01	, k) i	1.75	1.75	1.75	1.75	1					
Hydrostatic \ Head	 		7 0	,	r	,	•	•	•	•	•	3,86	φ.	0) M	•	Ġ.	٥.	5.07		1					
Head Loss Coefficient	- I	776	0.0004	0.00240	0.03239	0.03119	0.03445	97720 0	2440		0.03509	0.03684	0.03824	A0850 0) · · · · · · · · · · · · · · · · · · ·	10400.0	0.03462	0.03618	0.03601	47070	0.040.10					
Hydraulic Gradient	(m/1000m)	,		71815	1.845	7.521	3.923	(C)	0 1 1 1 1	0 * 4 0 10	6-431	3.499	5.595	0 0	\	3.703	3.694	4.390	11 842) f	1 I			٠		•
Loss of Head	(m)	1	0.452	0.442	0.275	1.625	804) () () (700	1-122	0.624	0.514	707 1	† * * * * * * * * * * * * * * * * * * *	7.300	•			10	٠.	0.136					
velocity	(m/sec)		0.467	0.468	0.473	242		3 6	0.528	0.502	0.599	1 V	177	1 (0.4/2	0.512	0.511	10	1 .	0.030	0.302	1111111				
Flow	(L/sec)		14.7	14.7	4	0	٠,	0	6.5	٥ <u>.</u>	4-7	· *			2.1	6.3	, Y	10	0 i	3.1	M, H	1111111				
Flow Coefficient		 	러	~		4 4	ч :	-	~	↢		4 5	٠,	_	~	~	' '	ч ,) H H	~	₩.				-	
Length	(m)	1 	W1			7 1	210.00	160.00	424.00	242.00	000		147.00	267.00	230.00	200	100	20.	358.00	225.00	24.00	1 1 1 1 1 1 1	3560.00	٠		
Dia.	(mm)	1	200	000	0 0		150	125	125	100	0 0		100	7.50	7	10.) (100	75	75	1				
Node No.	13	!	•	יני	J 1	η.	4	Ŋ	۰	٨	- 0	ο († (7		3	 				
	From	1	C	· -	4 (N I	M	4	ın	•	1 0	<u> </u>	Ø	φ.	4	• •	†	54	2	^	0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:		
Pipe line	ģ	i i 1	~	4 0	V !	M	4	Ŋ	•	1	- 1	00	o	9	,	1 1) i	13	14	5	10	: 1	⟨I			

2.10 Target Years for Pipeline

The pipe diameters of the transmission line and main distribution line are enlarged to meet the water demand in the target year. The diameter of the various case and target year calculated and shown in this tables and figures.

1) Transmission Pipeline

The table A was estimated the following conditions.

- (a) Pipelines shown in the table are adopted that wells connected this pipelines have enough capacity to cover the future water demand or additional wells are planned to be connected to this pipelines.
- (b) Pipe diameter is determined according to the pump operation hour and the water demand of each target year.
- (c) Pipe diameter is also selected to consider the minimum velocity and the future water demand.
- (d) Life times are 50 years in pipeline and 15 years in pump.
- (e) The sum per year consists of the pipeline construction cost, pump installation cost and these operation and maintenance cost.

- Debarwa

The case of pipe diameter of 100mm and 24hr pump operation of the target year 2005 is not cheapest in the target year 2005, but it is the same diameter of the target year 2010 and is economical in the target year 2010. This case must be planned a new pipe at the target year 2015 because the pipe diameter of 100mm can not be enough to cover the water demand of the target year 2015.

- Adiquala

The case of All Ex. & Intake that is pipe diameter of 100mm and 24hr pump operation of the target year 2005 is economical in the target year 2005, and it is the same diameter of the target year 2010 and 2015. The reason is that this case is not necessary of the booster pump.

The case of nADQ-1 that is pipe diameter of 125mm and 24hr pump operation in the target year 2010 is the same mentioned above.

- Dekemhare

Case-II of the target year 2005 is economical in the target year 2005, and it is the same diameter of the target year 2010 and 2015. The difference is only the booster pumps.

- Segeneiti

The case of pipe diameter of 100mm and 24hr pump operation of the target year 2005 is economical in the target year 2005, and it is the same diameter of the target year 2010 and 2015. The difference is only the booster pumps.

- Adi Keyih

The case of ADI-2 that is pipe diameter of 100mm of the target year 2005 is can be used the water demand of the target year 2010 and 2015.

Case II of DW-2 and BH-7 of the target year 2005 is not economical in the target year 2005, but it is the same diameter of the target year 2010 and 2015.

As mentioned above, the diameters of the transmission pipeline planned for the water demand of the target year 2010 are economical to use the water demand of the target year 2005 totally.

2) Main Distribution Pipeline

The table B was estimated the following conditions.

- (f) Pipe diameter is determined according to the water demand of each target year.
- (g) Pipe length is restricted within the are of the target year of 2005.

This table shows that the pipe diameters are enlarged according to the water demand, and its cost is also increased 22.2% in 2010 and 43.5% in 2015 against the target year 2005 on the average.

Therefore, the diameters of the transmission pipeline and main distribution pipeline are planned for the water demand in the target year 2010 under the project. The transmission pipeline and main distribution pipeline in the target year 2015 will be equipped with another one line to meet the water demand in the target year 2015. The reasons to employ these diameters are a) it is difficult to expand the facilities to meet the water demand, b) the facilities covering the water demand in the target year 2010 is nearly 20 % increase from those in 2005, and is cheaper than construction of another one line (refer to Appendix D), c) the facilities covering water demand in the final target year 2015 are nearly 40 % increase from those in 2005, and the final future plan is still unclear at present.

Transmission Pipeline

Table A

		8	4000	101	0.00	1363	1086	000	1 4 4 4	10/0	203.3	286.0	T	000	0.00	72.0	9	72.0	72.0	100.0	79.0	137.8	154.6			1000	89.0	1218	121.8	2.1		100.0	85.5	126.3	118.7	128.3			100.0	100.2	100.2	100.0	103.8	131.8	131.8	
Total Cost		(NK-)	5.0 F.2 F.	782.72	57.465	75 050	112268	110 807	12,327	200	026.47	162.791		1000	42,438	102,518	166.215	102,618	102,618	323,411	255,568	445,706	499,878			324 787	289 218	205 561	305 561	.000		203,441	173,949	257,020	237,465	260,931		900 100	87.486	188,407	188,407	104.144	108,075	137,245	137,245	
7		(NKD)	1001.00	004.00	30,420	27 27 27 2	0,0,0	0,000	0,0,0	78,640	/B.84U	118,260		1400	97.230	57,816	115,632	57,816	57,816	239,148	165.564	354,780	396 828	-		187 639	138 758	227 571	937 571	1,0,102		126,144	97,236	173,448	155,052]	176,076		100000	136,656	136,656	136,656	56,239	56.239	85,147	85.147	-
	L	(NKf)	0.00	200	0.000	10000	10,000	3.02	19.204	11,789	19,982	28,326		20, 3,	2,453	11.523	17,305	11,523	11,523	31,032	30,598	37,695	37.414	-	7	38 340	32 988	40 510	40.5.0	0,0,0		22,470	16,737	23,596	22,437	24,879		0000	18.028	18,449	18,449	19,593	19,590	19,853	19,853	-
	m	(Kw)	-	+	+		$\frac{1}{1}$	\dagger	1	+		-			O		0.		-	44.0	30.0	0.09	740			18.5	150	200	200	2.00		16.5	110	22.0	18.5	22.5			150	15.0	15.0	5.5	5.5	11.0	1,0	+
Pumps	Booster Pump	st (Nkf)		+	+	+	+	1		1	1	+	-	10000	82,104	-	108,380			364,566	358,053	420.797	460,302	-		177 085	124 518	04.21.0	070717	670'/ 7		177,138	91.142	186,651	184,467	196,341		00,000	103,123	103,883	103,883	82,104	82,104	85,997	85.997	+
	Pump	$\overline{}$	7 2 5	ر. د	0,1	5 6	2 9		0.5.	2:0	15.0	22.5	1	1	7.5	1.0	11.0	11.0	11.0	1.5	1.5	7.5	2	-	-	17.9	1 7	t. U	13.2	3.6		7.5	7.5	1.0	11.0	0.1		,	0.	11.0	11.0	5.2	5,2	5.2	5.2	+
	Well P	Cost (Nkf)	000 000	148,086	140,090	148,004	101,193	200,304	702,682	176,838	299.728	433,885			149,864	172,851	151,193	172,851	172,851	100,913	100.913	144 628	100 913			1114 700	260.207	200,496	380,133	300,130	1.	159 909	159 909	167,297	152,095	176,838			167,297	172,851	172,851	211.795	211.748	211,795	211.795	,
	Cost/Year	(NKP)	000 5	7.202	8.034	0.000	8,034	4,404	14.404	8,914	16,108	21,605			29,757	33,279	33,279	33,279	33.279	53.231	59.407	53 231	65.636			00000	117 479	2/4//	2/4/5	7/6//1		54.828	59 976	59,976	59,976	59,976			33,302	33,302	33,302	28,311	32,245	32,245	32 245	, , , , ,
	Cost	(NKf)		360,030	402,705	402,703	402,705	180,027	720,181	445,685	805,409	1,080,271			1,487,851	1.663.929	1,663,929	1,663,929	1 663.929	2 661 537	2 970,337	2 661 537	1 281 787	,,,,,	-	1040404	1040464	2013,024	5,8/3,524	5,8/3,524		2 741 383	9 998 799	2,998,799	2,998,799	2,998,799			1,665,096	1,665,096	1,665,096	1,415,568	1,612,273	1.612.273	1 612 273	7 417 171
	Total	Length	(E)	280	280	280	260	3	8	<u>6</u>	.380	2.070	-		2,851	2,851	2,851	2.851	2.851	5 100	1	.i	1	1		7 707	-	4	_	/./6/		5 253	ı	5253	5.253	5.253			2,853	2.853	2,853	3 033	3.033	3.033	3033	3
	200	ដូ		1	$\frac{1}{1}$	1	+	1				1							-			1			1	 	5	5 6	6,191	6,191		l		+					_			-		ŀ	T	+
	150	661.27		1	+		1		1			1	-											†	1	1,00	7,00	1	0	0												\dagger	+		\dagger	-
Dinelines	125	22	Ī	5	5 0	5	5	5	5	960	0	0	-							+	 -	1	000	3	-	0100	0077	-	0	0	-	-	+	+	+	-				-		\mid	\dagger	+	-	
ä	100	83		0	089	250	200	0	0	0	1,380	٥				2,851	2.851	2 851	2 851	3	5,000	333				9,0	840	948	948	948	1	-	4 1 69	4, 6	4 168	4 168			2,853	2,853	2 853	-	018	010	2 6	9101
	80	12		069	o .	5	0	88	1,380	0	0	2,070	_		2,851	-	-		l	5 100	3 5	200	200	3	-		979	629	628	628		5 953	100	- 1000 - 1000 - 1000	1085	1 085	-			-	+	866	1772	2/11	67.	7.7
	909	1		0	0	5	0	5	0	6	0	0				-		l	\dagger	\dagger	+	\dagger	+	+		-	+			+		-	1	+	ē	6	+			-	\mid	2 105	343	26.6	2 6	245
	Dismeter			24 ope.	24 ope.	18 ope.	Single	Addition	Double	Single	Addition	Double			24 ope.	24 ope.	18 one.	24 one	24 000	24 000.	24 ope.	24 ope,	obe.	24 ope.			Case-1	Case-2				7.0	24 ope.	24 ope.	24 ope.	Single	200			24 000	24 000	24 000	Case	Case_z	+	_
	Well No			7EB-1	DEB-1	DEB-1	DE8-1	7EB-1)EB-1)EB-1)EB-1	DEB-1			\@ Ex	All Ex	All Ev		, i	EX.	COLONA TO	יייטקאי.	NADG-1	2015 nAUG-1		e,	2005 BH-14, DEK-1, DEK-2	BH-14,DEK-1,DEK-2	2010 BH-14,DEK-1,DEK-2	2015 BH-14.DEK-1.DEK-2		1	250-2	SEG-2	2-0-5 -0-0-1	2-27	טבט א		101-9	612	יייויי	2013 AUI=2	JW-Z,507-7	* DC 2 ***	2010 DW-Z.BH-/	JW-2.BH-7
	Name of		Debarwa	_		ن	2010	ں	<u>in</u>	2015 0	, ,			Adiquals	2005 All Ex	1⊴	<u>.1⊲</u>	2010 010	2010 7	70107	E 0107	<u>=1</u>	2	2012		Dekemhare	2005 F		2010 E	2015 E	_	Segeneiti	2002	2316	0,000	2-010 0102	10102	Adi Kevih	2005 ADI-2	2010 000	2010 401-2	1000	11 cooz	10,000	20101	2015IL

Table B Distribution Pipeline

		/ \\ \		75	100	125	150	200	250	300	Total	
Pipe Dia		(mm)	50	75 183.28	229.77	274.61	365.34	625.80	926.50	1,119.32	(Nkf)	(%)
Unit Pric		(Nkf)	133.75	183,281	223.11	214.01	000.011	020.001				
Debarwa				200	2005						4,879	
2005	Length	(m)	3,531	983	365		0	0	0	0	736,302	100.0
	Cost	(Nkf)	472,271	180,164	83,866	0		·		-	4,879	
2010	Length	(m)	3,001	1,513		365			- 0	0	778,919	105.8
[Cost	(Nkf)	401,384	277,303	0	100,233	0			-	4,879	100.0
2015	Length	(m)	1,696	1,258	582	978	365				993,050	134.9
	Cost	(Nkf)	226,840	230,566	133,726	268,569	133,349	0	0	0	550,000	134.5
					<u> </u>			_ _ L	L		L	
Mendefe	ra											
	Length	(m)	1,510	2,417	510	419	883				5,739	
1,000	Cost	(Nkf)	201,963	442,988	117,183	115,062	322,595	0	0	0	1,199,790	100.0
2010	Length	(m)	389	1,114	454	1,970	832	980			5,739	
2010	_	(Nkf)	52.029	204,174	104,316	540,982	303,963	613,284	0	0	1,818,747	151.6
2015	Cost	-	291	1,212	172	2,252	832	97	883	1	5.739	
2015	Length	(m)			39,520	618,422	303,963	60,703	818,100	0	2,101,764	175.2
ļ:	Cost	(Nkf)	38,921	222,135	39,320	010,4221	000,000	00,700				
				1.				_ 				
Adiqual											2,747	
2005	Length	(m)	1,194	1,326	212	15	 -		0	0	455,557	100.0
	Cost	(Nkf)	159,698	243,029	48,711	4,119	0	0	- 0			100.0
2010	Length	(m)	1,194	1,326	212	15					2,747	100.0
	Cost	(Nkf)	159,698	243,029	48,711	4,119	0	이	0	0	455,557	100.0
2015	Length	(m)	1,194	1,326	212	0	15				2,747	
2013	Cost	(Nkf)	159,698	243,029	48,711	ol	5,480	0	0	0	456,918	100.3
	Gost	(IAVI)	133,0301	240,020								
<u> </u>	<u> </u>	لــــــــــــــــــــــــــــــــــــــ		L								
Dekem		1 , 		2001	0.100	630	205	133			7,487	
2005	Length	(m)	1,485	2,901	2,133		74.895	83,231	0	0	1,551,544	100.0
	Cost	(Nkf)	198,619	531,695	490,099	173,004			133		7,487	
2010	Length	(m)	849	1,275	2,599	1,486	940	205		0	1,947,412	125.5
	Cost	(Nkf)	113,554	233,682	597,172	408,070	343,420	128,289	123,225			120.0
2015	Length	(m)	647	1,191	1,447	774	1,884	1,206	134	204	7,487	470.5
	Cost	(Nkf)	86,536	218,286	332,477	212,548	688,301	754,715	124,151	228,341	2,645,356	170.5
	10000	+,,,,,,						. 1			L	
0												
Segene		17-3	2.008	1,186		531					3,725	
2003	Length	(m)		217,370		145,818	0	0	0	0	631,758	100.0
	Cost	(Nkf)	268,570		232	531		<u>-</u>			3,725	
2010	Length	(m)	2,008	954			0	0	0	- 0	642,544	101.7
	Cost	(Nkf)	268,570	174,849	53,307	145,818					3,725	
201	5 Length	(m)	2,008	954	232	531				0	642,544	101.7
	Cost	(Nkf)	268,570	174,849	53,307	145,818	0	. 0	0		042,344	101.7
		T					l				<u> </u>	
Adi Ke	vih											
	5 Length	(m)	T -	1,134	983	584	859				3,560	
1 200	Cost	(Nkf)	Ö		225,864	160,372	313,827	0	0	0		100.0
001			0	776	844	1,081	216	643			3,560	
201	0 Length				193,926	296,853	78,913	402,389	0	0		122.
	Cost	(Nkf)	1 0			1,439	216	643			3,560	
201	5 Length		<u>`</u>				78,913	402,389	0	0		124.
	Cost	(Nkf)	0	142,225	111,668	393,104	10,513	702,003	 	t ———	1	
	<u> </u>	1	1						L	<u> </u>	<u>. </u>	·
Senaf	e							r		1	3,522	
200	5 Length	1 (m)	1,216			198	120		ļ <u> —</u>	1		
1	Cost	(Nkf)	162,640	248,528	145,215		43,841	0	<u> </u>			 -
201	0 Lengti	n (m)	906	174	1,270	254	318			ļ	3,522	
	Cost	(Nkf)				69,751	116,178	0		<u> </u>	740,773	
201	5 Lengti						348	120	· i	<u>i</u>	3,522	
201	_	_+						75,096		1	836,352	127
	Cost	(Nkf	02,030	130,310	230,000	100,02						L :
ļ		. 	1	1 00 400	14 000	14 520	8,033	4,02	1,150	204	94,977	1
To	tal Leng	th (m)	25,743	26,499	14,682	14,639	0,033	7,027	1,13	+	1	1
						ļ		 	 	 	6,137,449	100
Tata	0 200	5 (Nkf) [<u> </u>	<u> </u>	<u> </u>			 	 	7,498,259	
				1	1	i	i	1	1	1	7,455,∠35	144
Cos	t 20`	0 (Nkf	7 E		<u> </u>						8,806,343	143