Chapter 5

Design Standard

CHAPTER 5 DESIGN STANDARD

5.1 **Design Policy**

The applicable criteria and elements of design of the roads have been decided based on the Bina Marga, AASHTO and Japanese design standards.

(1) Road Function and Design Speed

The future inter-regional road network consists of the four categories of road which currently function as road classifications i.e., arterial road and three categories of collector roads. The basic factors of road development for applying geometric design criteria are future traffic volume, road function, and terrain conditions. Of these, the most fundamental is future traffic volume and the role of road to accommodate traffic flows through roadway width, alignment, and other standards.

Standard road development should also follow the function of the road. Roads are classified into four categories. The geometric standard in road development needs to meet the functional requirement. The governmental regulation for road (No.26, 1986) mentions minimum design speeds and minimum roadbed width according to road function; design speed of 60km/h and 8m wide for arterial roads, 40km/h for collector roads. Applying design criteria to road development, it should be considered that terrain conditions have considerable influence on construction cost. Where topography becomes steeper, some reduction of the level of geometric design criteria should be acceptable. The standard for mountainous terrain has the same lane width and one rank of design speed lower than those for flat and rolling terrain. Table 5-1-1 shows the design speed of road to be used in the feasibility study by each road function.

Traffic volume (pcu/day)	3000 to	3000 to 20000		in 3000	
Terrain			Flat and rolling	Mountainous	
Pavement width (m)	6.0	6.0	4.5	4.5	
Design Speed (Km/h)					
Arterial Road	60	40	50	30	
Collector I	50	30	50	30(20)	
Collector 2	50	30 (20)	40	30(20)	
Collector 3	50	30 (20)	40	20	
Note: (): special case		k		Source: Study Tear	

Table 5-1-1 Design Speed According to Road Function

Note: (): special case

(2) Road Traffic

Study result of traffic demand forecast for feasibility study routes are as shown in Table 5-1-2. These values were reflected in the determination of pavement structure and road width.

Link No.		k 16 /day)		k 22 /day)		k 32 /day)		k 33 /day)
Vehicle Type	2003	2018	2003	2018	2003	2018	2003	2018
Motorcycles	366	656	344	577	450	710	344	588
Passenger Cars	216	373	180	293	205	312	180	300
Buses	393	503	372	453	502	545	372	460
Trucks	643	1067	600	981	682	1013	600	1005
Total	1618	2597	1496	2304	1839	2580	1496	2353

Table 5-1-2 Future Traffic Volumes of F/S Routes

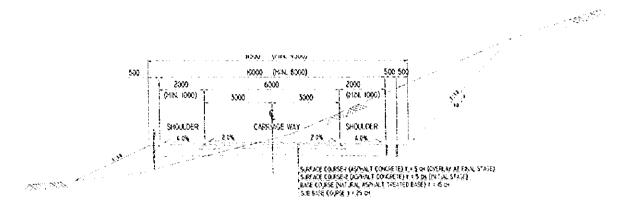
Source: Study Team

5.2 Geometric Design Standard

Based on the above study, geometric design standards have been established for the feasibility study routes as shown in Table 5-2-1.

Terrain	Unit	Flat, Rolling	Mountain	Mountain
Design Speed	Km/h	60	40	30
Lane Width	M	3.00 x 2	3.00 x 2	3.00 x 2
Shoulder Width	M	2.0 (1.0)	2.0 (1.0)	2.0 (1.0)
Crossfall of Pavement	%	2	2	2
Crossfall of Shoulder	%	4	4	4
Max. Superelevation	%	10	10	8
Min. Radius Curve	M	115	50	30
Min. Curve Length	M	100	70	50
Max. Gradient	%	5	7	8
Abs. Max. Gradient	%	9	11	12

 Table 5-2-1 Geometric Design Standard


() showing the minimum width of shoulder

Source: Study Team

5.3 Typical Cross Section of Road

In general, a pavement width of 4.5 m, shoulder width of 1.75 m, and total width at more than 8.0 m has a capacity of 3,000 PCU/day or less. In case of future daily traffic volume of 3,000 to 20,000 PCU, total width of 10.0 m with a carriage-way of 3.0 m x 2 and shoulders of 2.0 m x 2 is needed. For the feasibility study routes, two-lane carriageways are applicable in terms of traffic volume as mentioned before.

Typical cross section of the feasibility study routes is shown in Figure 5-3-1.

Source: Study Team

Figure 5-3-1 Typical Cross Section of Road

5.4 Pavement Design Standard

For the pavement design, the following conditions should be considered:

- There are two types of design: that of flexible pavement and rigid (concrete) pavement;
- Two categories of road construction are involved in the project: widening or overlay of existing pavement, and new construction of bypass road;
- In the section of pavement type, investment efficiency sometimes should be considered in addition to the construction cost; and
- Construction aspects and local conditions sometimes govern the selection of pavement types when the reconstruction/adjustment of related roads is necessary.

(1) Method of Design

The guide for design of pavement structure by AASHTO and Japanese pavement design standard by the Japan Road Association were used for this design.

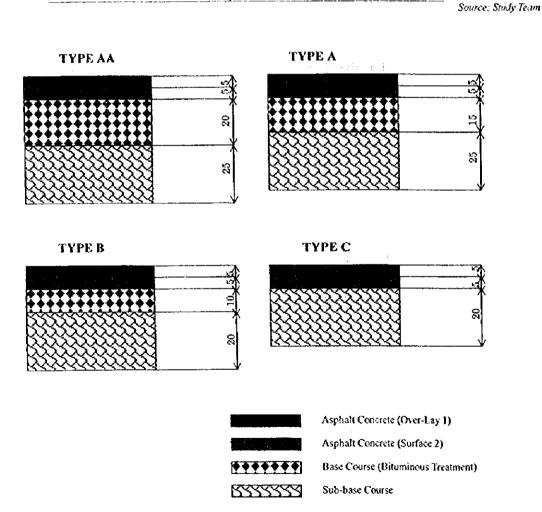
(2) Design CBR

Design CBR of 5% to 6% was used based on the results of the CBR test for this study.

(3) Design Life Period

The design life period is to be 20 years.

(4) Design Traffic Volume for the Pavement


Design traffic volume for the pavement design is to be for a period of 20 years.

. 5 - 3

For the pavement structure, four types shown in Table 5-4-1 are proposed on the basis of the traffic volumes of heavy vehicles (buses and trucks) in the year 2018. The pavement surface is to be in two layers by considering the overlay to be provided in the future while using an asphalt surface course for the surface. Namely, the base course is treated with asphalt while the subbase consist of mechanical stabilized crushed stone.

Pavement TypeTraffic Volume (Vehicles/Day)AAMore than 3000A1000 - 3000B250 - 1000CLess than 250

Table 5-4-1 Pavement Types by Traffic Volumes of Heavy Vehicle

Source: Study Team

Figure 5-4-1 Pavement Structure by Type

5.5 Bridge Design Standard

(1) General

The design work of the proposed bridge structures will basically be carried out in accordance with the "Bridge Design Code (Bina Marga, Indonesia)" (hereinafter referred to as "Indonesian Bridge Design Code (IBDC)") as the prime design standards. Although the principal design work was accomplished in accordance with the Indonesian Design Code, a bridge specification established by the American Association of State Highway and Transportation Officials (hereinafter referred to as "AASHTO") and a specification issued by the Japan Road Association as listed in (2) below were applied as the need arises.

According to IDBC, the limit state design, which consists of the ultimate limit states and the serviceability limit states, is provided as a prime design method. However, the working stress design is also prescribed as an alternative method.

Engineering design in this study is not to determine structural details. The working stress design is helpful in calculating rough configuration of bridges. In addition, Standard Design of Bridges by Bina Marga and previous construction data are also useful for the preliminary engineering design of the feasibility study.

(2) Bridge Design Standard

1) Authorized Design Standards to be applied

The following standards were applied for this study.

[The Republic of Indonesia]

- Bridge Design Code
 - Volume I (December, 1992)
 - Volume II (December, 1992)
- Standard Design of Bridge Superstructure (1993)

(Reinforced concrete girder, prestressed concrete girder, composite girder)

Standard Design of Box Culvert (1993)

[U.S.A]

[American Association of State Highway and Transportation Officials] • Standard Specifications for Highway Bridges (Fifteenth Edition, 1992)

[American Concrete Institute] (hereinafter referred to as "ACI") • Building Code Requirements for Reinforced Concrete (ACI 318-83)

[Japan]

[Japan Road Association]

• Specifications for Highway Bridges (February, 1996)

- Part I, Part II, Part III, Part IV, Part V

[Japan Highway Public Corporation]

• Design Standard for Highway and Bridges (February, 1994)

5 - 5

2) Design Manuals

[The Republic of Indonesia] [Directorate General of Highways] • Bridge Design Manual

[Japan]

[Japan Road Association]

- Design Guideline for Concrete Highway Bridges (February, 1994)
- Construction Guideline for Concrete Highway Bridges (February, 1994)

(3) Loading Specifications

1) Bridge Loading Classification

Bridge design loadings to be applied are listed in Table 5-5-1 in accordance with the IDBC. Design loadings in the code are grouped according to their origin into three groups and also classified by duration into two categories. In addition, an overstress is permitted in the basic working stress for some load combinations since these combinations have a low probability of occurrence and a short duration. These load combinations for working stress design are listed in Table 5-5-2 and the permitted overstresses is also given in Table 5-5-2 as a percentage of the allowable working stress.

Detailed application is referred to the IDBC.

2) Application of Traffic Loads

Present traffic loads for design of road bridges consist of the "D" lane loading and the "T" truck loading. The "D" lane loading is applied across the full width of the bridge roadway and produces effects in the bridge equivalent to a queue of real of vehicles. The total amount of "D" lane loading applied depends upon the width of the bridge roadway.

The "T" truck loading is a single heavy vehicle with three axles which is applied in any position in a design truck lane. Each axis comprised of two patch loadings which are intended to simulate the effects of the wheels of heavy vehicles. Only one "T" truck may be applied per design traffic lane.

Design Traffic Lanes

Unit design traffic lane is to be 2.75m wide. The maximum number of design traffic lanes to be used for various bridge widths is shown in Table 5-5-3.

Design load		Duration	Group	
Name	Symbol		Group	
Self Weight	P _{MS}	Permanent	Permanent action	
Superimposed dead load	P _{MA}	Permanent	Permanent action	
Shrinkage & creep	P _{SR}	Permanent	Permanent action	
Prestress	P _{PR}	Permanent	Permanent action	
Earth pressure	PTA	Permanent	Permanent action	
Permanent construction	P _{PL}	Permanent	Permanent action	
'D' lane load	T _{1D}	Transient	Traffic load	
'T' truck load	T _{II}	Transient	Traffic load	
Breaking force	T _{IB}	Transient	Traffic load	
Centrifugal force	T _{IR}	Transient	Traffic load	
Pedestrian load	T _{TP}	Transient	Traffic load	
Collision load	T _{IC}	Transient	Traffic load	
Settlement	P _{ES}	Permanent	Environmental action	
Temperature	T _{ET}	Transient	Environmental action	
Stream/Debris	T _{EF}	Transient	Environmental action	
Hydro/Buoyancy	T _{EU}	Transient	Environmental action	
Wind	T _{EW}	Transient	Environmental action	
Earthquake	T _{EO}	Transient	Environmental action	
Bearing friction	T _{BF}	Transient	Other action	
Vibration	T _{v1}	Transient	Other action	
Construction	T _{cl}	Transient	Other action	

Table 5-5-1 Summary of Design Actions

Source: IDBC

Table 5-5-2 Load Combinations for Working Stress Design

Load combination	Combination No.						
Load combination	1	2	3	4	5	6	7
Permanent actions	0	0	0	0	0	0	0
Traffic loads	0	0	0	0			
Temperature effects		0					
Stream/Debris/Hydro/Buoyancy	0	0	0	0	0		
Wind load			0	0			
Earthquake effects					0		
Collision loads							0
Construction loads		1				0	
Permitted overstress	0%	25%	25%	40%	50%	30%	50%
	·······		-	-	•		Source: IDI

Table 5-5-3 Number of Design Traffic Lanes

Bridge type	Bridge roadway width (m)	No. of design traffic lanes
Single lane	4.00 - 5.00	<u>l</u>
· · · · · · · · · · · · · · · · · · ·	5.50 - 8.25	2
Two-way, no median	11.30 - 15.00	4
	8.25 - 11.25	3
	11.30 - 15.00	4
Multiple-roadway	15.10 - 18.75	5
	18.80 22.50	6

Source: IDBC

(a) "D" Lane Loading

The "D" lane loading consists of a uniformly distributed load (UDL) combined with a knifeedge load (KEL) as shown in Figure 5-5-1.

Uniformly distributed Load: the UDL has an intensity q kPa, where the value of q depends on the total length L as follows:

 $q = 8.0 \ kPa$ $L \leq 30 m$. $q = 8.0 \left(0.5 + \frac{15}{L} \right) k P a$ $L>30\ m$.

- Knife-edge load: a single KEL of p kN/m will be placed in any position along the bridge. The KEL shall be applied perpendicular to the direction of traffic on the bridge. The value of p shall be 44.0 kN/m.
- The "D" lane loading will be arranged laterally in such a way as to produce the maximum effect. The lateral arrangements of UDL and KEL components of the "D" lane loading are to be the same. The concept of lateral distribution of "D" lane loading is shown in Figure 5-5-2.

(b) "T" Truck Loading

The "T" truck loading consists of a tractor truck and semi-trailer with axle weights and configuration as shown in Figure 5-5-3. The weight from each axle is to be distributed equally between two uniformly loaded patches which represent the constant areas of the wheels. The spacing between the two heavy axles may vary from 4.0 m to 9.0 m in order to produce the maximum longitudinal effect.

(4) Seismic Design

Although a full dynamic analysis will be required for large, complex and important bridges, equivalent static analysis is appropriate for proposed bridges in this study area. Equivalent static horizontal load for a bridge is calculated by following formula,

$$T_{EO} = Kh * I * W_{T}$$

where:

$$Kh = C * S$$

and:

$$T_{ro}$$
 : total base shear force in the direction being considered (kN);

- : coefficient of horizontal seismic loading; Kh
- : basis shear coefficient for the appropriate zone, period and site conditions; С
- : importance factor; ł
- S : structural type factor;
- : total nominal weight of structure subject to seismic acceleration (kN). W_T

According to IBDC, each coefficient in this Study is defined as follows;

a. Zone ----- This study area is in the zone 4 as shown in Figure 5-5-4.

b. Basic shear coefficient (C)	Basic shear coefficient of bridge structure in the zone 4 ranges from 0.10 to 0.15 by Figure 5-5-6. Although the basic shear coefficient varies on structural period and site soil condition, the maximum value, 0.15, is appropriate for the feasibility study from the engineering judgement.
c. Importance factor (1)	Importance factor of bridges for this study is defined as 1.2 in consideration of no alternative route. (Refer to Table 2.13, Sec
	2.4.7 IBDC)
d. Structural type factor (S)	Structural type factor will be different by bridges. (Refer to Table 2.14, Sec 2.4.7 IBDC)

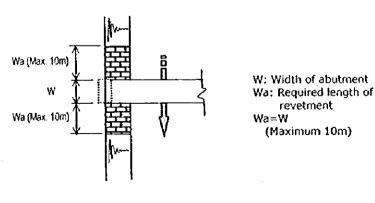
Kh=0.15 is, therefore, adopted as the value of coefficient of horizontal seismic loading.

K_h*I=0.15*1.2=0.18

Equivalent static horizontal load is finally calculated in using the following fomula for this study.

$T_{E0} = 0.18 * W_T$

(5) Design for Scour


- Foundation depth to prevent undermining by scour

	Spread foundation	Pile foundation
Piers	Spread footings will be avoided, unless the base can be socked into firm rock.	Piles are generally founded much deeper than the design scour depth, however the
Abutments	 The bearing depth of abutments placed on stable banks of minor streams on non-erodible material will be the greatest depth below the natural bank of: The lesser of 2m or depth to firm rock The design degradation depth at the abutment + twice the total design scour depth at the abutment. 	 following points will also be considered in the design: The structural capacity of the unsupported length of scoured piles. Backfilling of scoured piles at the abutments during maintenance will cause active earth pressures on the piles, over an effective width of twice the pile width. Scored piles in stream flow may be subject to hydronamic and debris loads.

Source: Bridge Design Manual by Bina Marga

- Revetment

The required length of revetment for bridge construction is prescribed as follows:

Source: Study Team

5 - 9

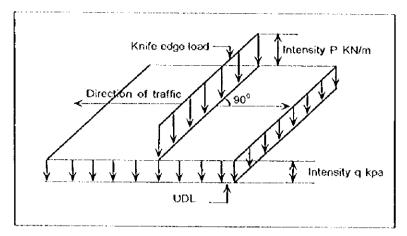


Figure 5-5-1 "D" Lane Loading

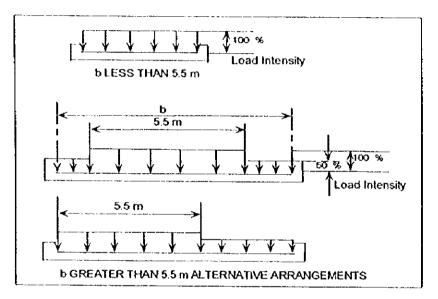


Figure 5-5-2 Lateral Distribution of "D" Lane Loading

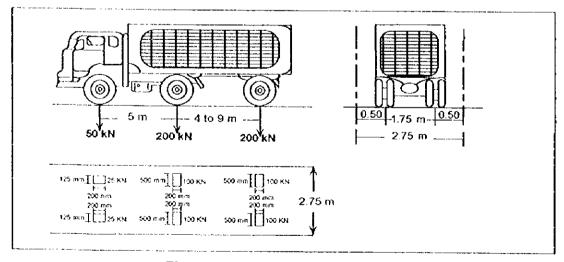
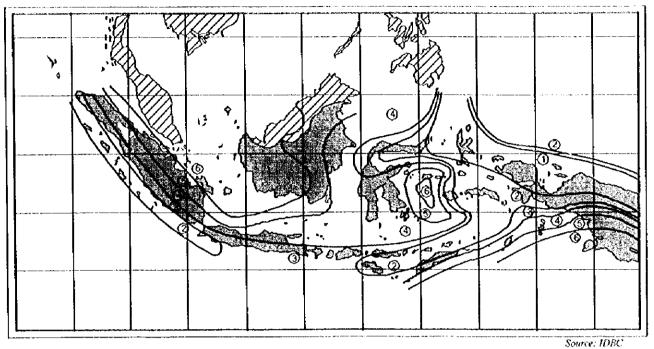
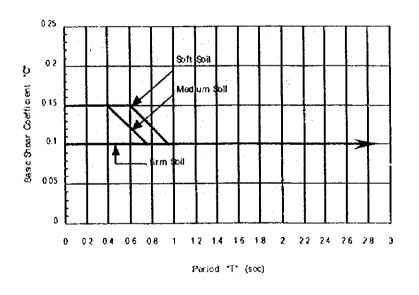
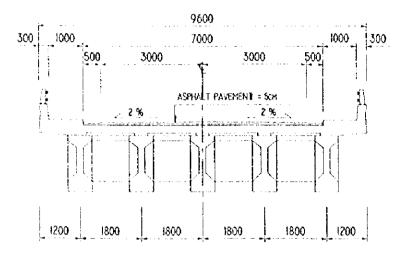


Figure 5-5-3 "T" Truck Loading


Figure 5-5-4 Zones for Basic Shear Coefficient in Indonesia

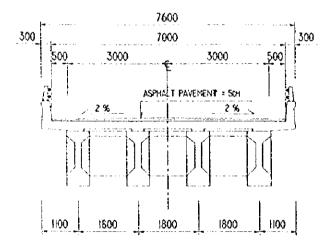

Source: IDBC

Figure 5-5-5 Basic Shear Coefficients in Zone 4

(6) Typical Cross Section of Bridge

(a) Type A: With Sidewalk

(b) Type B: Without Sidewalk

Source: Study Team

Figure 5-5-6 Typical Cross Sections of Bridge

Above two types of bridge width were considered for this Study. Application of these types of bridge width was provided as follow:

- When the bridge is located in the village area, the type A bridge, which is with sidewalk, was adopted in consideration of ensuring pedestrians' safety.
- The type B bridge, which is without sidewalk was applied to bridges which is located in the non-village area.

5.6 Tunnel Design Standard

(1) General

Use of tunnels is an effective means of preventing slope failures and landslides, protecting present environmental conditions, and securing proper road alignment within the mountain range. However, there are some disadvantages to be considered such as:

- Construction cost is higher than that of roads and bridges
- Maintenance cost for ventilation system
- Psychological problem due to closed space
- Potential of secondary disaster following traffic accidents

At present, there is no design standard for road tunnels in Indonesia. For this study, there is a need to establish tunnel design standards for a two-lane traffic tunnel. "Specifikasi Standar Untuk Perencan Geometric Jalan Luar Kota" and "Bridge Design Code" by Bina Marga, and "Design standard for road tunnel" and "Standard specification for tunnel" by the Japan Road Association will be employed for the establishment of tunnel design standard for the study.

(2) Interior Section and Construction Clearance of Tunnel

The shape and dimensions of a tunnel should be determined based on the facilities required for the tunnel's interior and its structural stability.

Construction clearance for tunnel is not mentioned in the "Specifikasi Standar Untuk Perencan Geometric Jalan Luar Kota", but, concerning roads, it is mentioned that the roadway should be at least 5.0 m in width. Also, concerning vertical clearance at Bridge Design Code mentions that parts of the superstructure or substructure of bridge crossing over a road or a railway should be at least 100 mm greater than the operation vertical clearance to allow for settlement and road resurfacing. Considering the above two items, a construction clearance of 5.0 m for tunnels is applicable.

Shoulder width was selected to be 0.75 m, considering the Classes 3 to 4 of Bina Marga standards.

Shoulder height of tunnel is decided based on "A policy of geometric design of highway and streets 1994". In this material, a trailer height of 4.1 m plus 0.1 m freeway is the minimum construction clearnce for shoulder space. Therefore 4.2 m is applicable for shoulder height.

Also, a inspection way with a width of 0.75 m should be provided on both sides of the traffic lanes.

Lighting and ventilation facility should be provided between construction clearance and interior area of tunnel.

(3) Horizontal Alignment

Alignment standards should follow road alignment standard as the tunnel is a part of the road. Since traffic accidents are prone to occur at the entrance of the tunnel, an application of higher standards for the tunnel entrances is desirable.

Curves with small radii were not applicable for this tunnel, as wider section needs to be designed in order to accommodate minimum sight distance, thereby increasing construction cost. Necessary considerations for design of tunnel are as mentioned below:

- Tunnel should be straight since drivers in Indonesia are unaccustomed to tunnels.
- Relation between design speed and minimum radius are shown below:

Design Speed	40 km/h	R=800 m
Design Speed	30 km/h	R=500 m
Design Speed	20 km/h	R=300 m

(4) Vertical Alignment

Tunnel gradient should be minimized for the following reasons:

- In consideration of the use of rail haulage during excavation, a tunnel gradient of less than 2 % is preferable.
- As vehicle exhaust density will rise in proportion to tunnel gradient, it should be less than 3 %.
- A steep grade will cause excess driving speed as well as dangerous passing manoeuvres.

In consideration of the above, the following standards are established;

- 4 % gradient is applicable (the maximum grade that a truck can drive at half of design speed)
- Minimum gradient of tunnel is 0.3 % for drainage purpose.

(5) Tunnel Cross Section

Tunnel cross-section should be decided based on soil conditions, excavation method, width of traffic lane and type of tunnel support. Tunnel supports are a vital part of a tunnel structure, protecting the overall tunnel structure from failure of rock mass and earth pressure which constantly bears upon it. These tunnel supports will function to stabilize the excavated section.

A tunnel cross section was decided as shown in Figure 5-6-1.

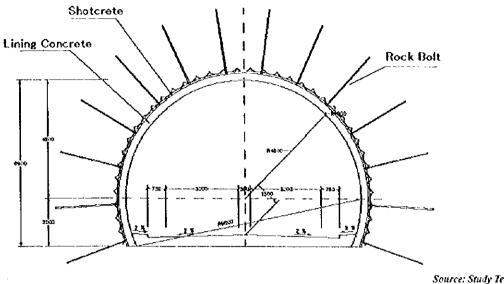


Figure 5-6-1 Typical Cross Section of Tunnel

Source: Study Team

5.7 Design Concept of Disaster Prevention Work

(1) Type of Slope Protection

The main purpose of the slope protection works is to prevent weathering and erosion, therefore the design should be selected based on geological and topographical conditions. The study team recommended the types as shown in Table 5-7-1, for selection of type of slope protection works.

Kind of Work	Purposes and Features
Shotcrete Stone pitching Block pitching	For preventing weathering and erosion
Concrete block cribworks	For preventing crosion when filled up with sediment or gravel
Concrete pitching Sprayed concrete cribworks Slope anchor works	For preventing collapse of surface fayer of slope, preventing separation of bedrock, and retaining earth where there is earth pressure.
Wicker works Slope gabion works	For controlling erosion of surface layer of slope and outflow of surface layer due to spring water
Rockfall prevention nets Rockfall prevention fences Rockfall shed	For prevention of rockfall

Table 5-7-1 Types of Slope Protection Works and their Purposes

Source: Study Team

(2) Concept of Application for Slope Protection Works

Countermeasures were required in areas of steep terrain where slope failure is prone to occur for the following reasons:

- Incremental quantity of cut volume will be required when the cutting slope is not at a safe gradient.
- In case of insufficient drainage facilities, slope failure will occur even if the required cut is conducted according to safe gradients.
- Due to geological conditions, quick erosion is to be expected.
- Slope failures will have serious impact on society, the economy and the environment.

Countermeasure works were applied based on the following concepts;


- Countermeasure works should adopt semi-permanent materials for durability for all road classes of the roads concerned,
- When combining prevention countermeasures for works and surface drainage, run-off rain will not penetrate surface structures, therefore, durability of slope protection works will be long-lasting.
- Countermeasure works should use semi-permanent structures of the most economic type.

Chapter 6

•

Preliminary Engineering Design

MAP OF ROAD LINKS FOR FEASIBILITY STUDY

LOCATION MAP

MAP OF ROAD LINKS FOR FEASIBILITY STUDY

LOCATION MAP

CHAPTER 6 PRELIMINARY ENGINEERING DESIGN

6.1 General

Feasibility study route (link Nos. 15, 16, 22, 32 and 33) of Trans-Sulawesi East Road is located from the top of east Sulawesi peninsula to the east coast of lower east Sulawesi peninsula. In addition to the priority links of the recommended 300 km of the pre-feasibility study, link No. 15 of 114 km from Uckuli to Tompira was added to the feasibility study after considering its high priority and importance to support regional development in the eastern part of the region (strategic area of Luwuk).

Characteristic of these links can be divided into mountainous terrain and coastal flat terrain. A mountain range is located from Uckuli to Kolonadale. Kolonadale to Sandangpangan via Tompira, Umpanga, Bungku, Provincial border and Asera is located on the cast coast of lower east Sulawesi peninsula. Most of the routes are located along the coastal area, but some parts have to cross the mountain ranges.

Most of the road sections follow the existing route locations, but the following two locations of proposed sections were newly selected by the study team.

- Section between Tondoyondo and Kolonadale (no existing road), link No. 15
- Section between Linomoiyo and Lamonae, link No. 33.

Regarding the sections between Betebete and Tangofa (link No. 22), a alternative study by route section was conducted for a peninsula crossing and peninsula coastal route.

A topographic map of 1:5,000 in scale was employed for the preliminary design of link Nos. 16, 22, 33, and 32, but an available topographic map of 1:50,000 in scale was used for link No. 15.

6.2 Umpanga - Bungku (35.8 km): Link No. 16

6.2.1 Selection and Description of Route Location (Link No. 16)

(1) Location of Existing Road

The road is located on an alluvial plain formed by many small rivers originating in the mountain ridges. The beginning point of this link is at station 0 km and the end point is at station 35.8 km.

(2) Existing Road Conditions

Of the total length of the road, a 30.8 km section is paved with asphalt of 3.5m wide. The remaining 5.0 km section is gravel road. Most of bridges are made from wood. For Ipi, there is no existing bridge to cross over the river which is a width of 30 m. The road alignment is satisfactory because the land is flat.

(3) Land Use

The land within 2 to 3 km from the shoreline is flat and arable. Most of the land is used for paddy fields and for cultivation of cotton and copra.

(4) Possibility of Development

The land is flat, has many medium and small rivers and is arable. It is expected that agricultural development will be promoted in the wide area of uncultivated land.

(5) Components of Construction Work

A proposed road alignment is shown in Appendix A-6.1 and the following major works are needed for the construction.

- Widening of carriage-way;
- Pavement;
- Bridges; and
- Drainage.

6.2.2 Preliminary Engineering Design (Link No. 16)

(1) Preliminary Engineering of Bridges

Adopted types for each structural part of bridge are summarized in Table 6-2-1.

There are following three kinds of standard bridge by Bina Marga.

- Reinforced Concrete T-Girder (RC T-girder)
- Prestressed Concrete I-Girder (PC I-girder)
- Composite Girder, which consists of steel girder and concrete slab

And recently a steel truss is also available for superstructure as a semi-standard bridge. In this bridge planning, application of superstructure types basically follows the Bina Marga's standard design. However, new construction of composite girder is not recommendable in this study because the cost of composite girder is costly and transportation of steel girder is difficult. The cost of steel truss bridge is also costly but in case of 60m span, reinforced concrete girder is not applicable to be constructed and only prestressed concrete box-girder, which is not I-girder and constructed by cast-in-place, is available. In this case, the cost of concrete girder becomes expensive and difficulty of quality control will arise so that steel truss was applied to 60m bridge span.

For pite foundations, reinforced concrete piles was recommended. Prestressed concrete pile (PC piles) are pre-cast in factories which in Sulawesi Island are only in Ujung Pandang and Poso. There is about 200 km to a nearest bridge site from the factory. It is, therefore, difficult to transport the pre-cast PC piles to bridge sites from the factory in consideration of road conditions, their weight and length. On the other hand, reinforced concrete piles (RC piles) is available for cast-in-place so that pile works could be done by transporting materials of pile and construction equipment.

	Span Length	Applied Types
	10m, 15m, 20m	Reinforced Concrete T-Girder
Superstructure	25m, 30m, 40m	Prestressed Concrete I-Girder
	60m	Steel Truss
	Abutments	Cantilever Wall Abutment
Substructure	Piers	Wall Pier with Top Beam
		Spread Footing
Foundation	depending on soil condition at site	Pile Foundation (Reinforced concrete rectangular pile 40cm x 40cm)

Table 6-2-1 Application of Bridge Types for New Construction

Source: Study Team

Standard design of superstructures and substructures with foundation in this study are shown in Volume VI, drawings of this study report.

All bridges on link No.16 require pile foundations based on the result of soil investigation. Moreover, bearing layer for the bridge foundation is relatively deep and the length of piles is more than 20m at most bridge sites.

Most existing bridges are wooden bridges or there is no existing bridge at many locations. Therefore, bridges except six existing bridges are to be newly constructed. For bridges to be retained, BR16-7 (Sta.6+100) and BR16-14 (Sta.15+475) have recently replaced with 8m wide, and BR16-8 (Sta.7+000), BR16-15 (Sta.16+000), BR16-19 (Sta.20+530) and BR16-24 (Sta.29+525) has only 6m wide without sidewalk but have enough durability. The width of 6m is available for two lane traffic.

Summarized quantities of bridge improvement on link No. 16 are shown in Table 6-2-2. Proposed bridge list of link No. 16 is shown in Table 6-2-3

Cla	ssification	The Number of Bridges	Bridge Area (m ²)
	Bridge length ≦50m	20	4,224
New Construction	Bridge length >50m	0	0
	Total	20	4 224

Table 6-2-2 Summary of Bridge Improvement Quantities of Link No.16

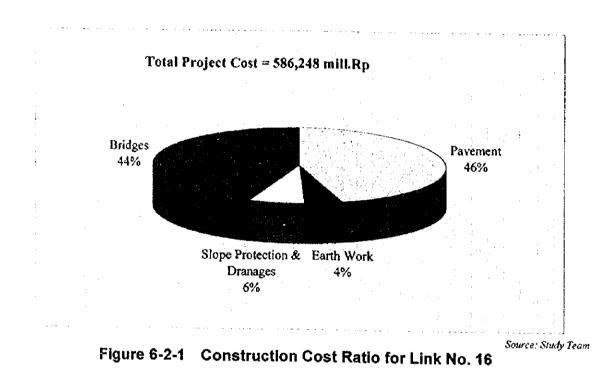
Source: Study Team

1.590

(2) Cost Estimates

1) Estimated Project Cost

Existing to be used as it is


Cost items consist of preparation works, pavement, earth work, drainage, bridge, slope protection and safety facilities works. The cost for engineering service was estimated at 20% of the total construction cost consisting of direct and indirect cost. A contingency has been included in 10 % of the total of construction and engineering cost. The ratio of major item costs to the total cost is shown in Figure 6-2-1 and Table 6-2-4 shows estimated cost.

	Borino	Data			58,59	58,59	58,59	26,55	20,20	20,00	AC'20	58,59	58.59	58,59	58,59	56,57	56,57	55,25	54,55	54.55	57.52	24,30	26,25	10,00	50.51	50,51	48,49	46,47	46,47	46,47	46,47										
			1 pier	Nos.	•	•	•	•	•	•		Ĩ	•			•	,					•	•		•	•	•			,	•										
		X	Pile/1	(m) Lp(• • • •		1		•	•••	ľ		-+• 	•	•	1					•	••+• ' i	,	ŀ	• • •			•••• •		•	, ,										
		MOVE+FIX	Į,			•	-		-						i	•			$\left \right $: 	•	- <u> </u> 		ŀ	- 		 	•		•										
			· ···	i. Sov	-		•	•	-		l			•	•	•	•			-	<u> </u> 	•	-	F	•		•														
	Piers			Nos.			-	•					•	•			 								•	•															
			Pile/1 pier	Lp(m) N											 			•		ŀ																					
		XitrXit		L																			_	}					G												
				s. np(m)	•	1	1 	۲ 		•	RETAIN EXISTING	UNILSIV	-	1				SNITS	RETAIN EXISTING		-	' 	' 	EXISTING	'		'		EX:STING	•											
ctures		-		So.	- 0	•	•	• •		' ന	TAIN E)	RETAIN EXISTING		•	·	· ~	' (0	TAINE	TAINE		• •	<u>ا '</u> ا ص	<u>'</u>	<u>S</u>	' 0	16 -	- 2	- 	RETAIN 8	- 18	18										
Sub-structures			9	m) Nos.	4 ; 18	4 16	4 20		¦	18	3	R	\$ 20 4	4 20	4 20	2	4 16		ľ	[•			α.	26 20			12 12	α.	12 1	12										
Ő		MOVE	Pile	17	24	24	24			54			24	<u> </u> 	<u> </u> 	 	<u> </u> 	$\left\{ \right.$			 		- 78 	-		26	9	 													
	s			Nos. ha(m)	ശ	ى ا	မ	9	9	9 I			9	<u>ه</u>	0	0 	° I					۵ –	و 		G	9 U	9	ω I		9	9										
	Abutments	╞		Nos Nos Sor	18	16	8	18	ະ ຂ	80	والمتعادية	-										$\left\{ \right.$	18	30		22	16				4	<u>ې</u>	20] 1		8	16	າ ເ	8		18	18
}	A		alid	╧	24	2	<u> </u>	24	24	24											24		+	24		-	l	ŀ			26		L	8	 	2		12	12		
		Хi		ha(m) La		6		<u> </u> 	9	9									9	 	1	1	+	-			9		9		9	9	6		-		- 6				
	1			Nos. ha				-		-																_ _	-	-			-			L							
	\vdash				╞		- 	`				<u> </u> 		1				 		<u>-</u> [<u>i</u> 										
		Tunac	Foundations		<u>Pile</u>	9 Pid	Dile.	Pile	Pile	Pile	əlid.	<u>Pie</u>	<u>e</u>	did	10	4 1 1 1	a a			E E	9 8 9	Pile	B e	9 B B	Pile	- Dile	Pile	Pile	Pile	Pile	Pile										
	Tunes of		structures		RC-T	RC.T	ار م	RC-T	12 Z	RC-T	RCT	Steel Truss	RC-T						2	Steel I uss	RC-T	RC-T	ц Ч	Steel Truss	ې ۲	RCT	RcT	RCT	Steel Truss	RC-T	RC-T										
┢	orbin		E E	(m)	9.6	80	9.6	9.6	9.6	9.6	9.6	1	Ť	0 e		0 E			8.0	1	9.6	9.6	9.6	†	9.6	9.6	9.6	9.6	† T	9.6	9.6										
	<u> </u>				20.0	Ļ	. ļ	10.02 50.0		20.0	<u> </u>	<u>.</u>		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-			<u> </u>	2.6		20.0	<u> </u>		<u> </u>	25.0	<u> </u>	30.0	<u>_</u>	<u> </u>	20.0	20.0										
		Span	Arrangement		- -			90		1 @ 2) ()) -	• • • •	3)) -	6	- 0	6) () ()	1 @ 15.0	0	@ @	0	0		0) @ -)@ -) () ()										
┢		202. 202.	5, 2		┥╌					-			- -	- •	- -	- -		- .		 	-									·											
ſ		່ມຄືເອງ		Ê	20.0		25.0	20.0	25.0	20.0	25.0	75.0	2000		0.020	2000	2.20	2.01	0.62	40.0	20.0	15.0	25.0	55.0	25.0	15.0	30.05	30.0	45.0	20.00	20.0										
ľ			T	E	412	1		3 8		8					} } }	20/	1		475	0	490	620	<u>6</u>	530	200	830	+	•	5.55												
				ŧ		í	ו א כי רי			+ 	+ 		1		+ +		+ 2 :	* = :	15 +	16 +	+ 16	+	+ 8	1	+ 22	1 2	36	+ 3		3 2	1										
ľ		je Je			 -	- 6	4 9		- - -			- 0			2 :	- (2	4	दे	- 16	- 17	<u>@</u>	<u>_</u>	200	3	18	3 8	3	5 X	3 8										
		Brid	No.		00 16			ς α ≥ ∉	BR 16	8P 16	2 4 4 4						E S	e Ha	BR 16	R 16	BR 16	BR 16	BR 16	15 15	2 4 9 1 9 1	2 4 4	2 4 2 4	5 4 6 4													

Table 6-2-3 Proposed Bridge List of Link No.16

2) Implementation Plan

As shown in Figure 6-2-2, the construction period is 5 years consisting of one year for preparation of project for fund raising plan, 1.5 years for detailed design of the roads and 2.5 years for construction. Also, the investment plan was set in accordance with the construction plan.

(3) Economic Analysis

1) Economic Project Costs

The economic investment costs were estimated in constant 1998 prices. The financial investment costs in terms of market price include the component of taxes. The economic costs for economic analysis were obtained by subtracting the portion of transfer payment such as taxes from financial costs. Implementation is scheduled over four years from 2000 to 2003. The phased financial and economic investment costs (initial investment) are summarized in Table 6-2-5.

1185 = 10600 Rp = 140 VeTable 6-2-4 Total Construction Cost For Umpanga - Bungku Road (Link No.16)

	ļ						Tatel Deise		
			ł	2		(104)	Local Electronial (BA)	erri feenemic (Ro)	Financial Total (Mili Ru)
ltern	5	Quantity	Foreign (USN)	rimandial (Kp/ Fr	Economic relia				
1. Preparation Works Clearing and Grobbing	Ę	193,185	0.23	498'1	2,099	44,433	360,676,395	405,495,315	× × × ×
2.Pavement V0 and Annihilt Connesse + Suith Base (Tune A)	6	.0	39,50	436,896	392,152	0	0	0	
Withminy Road Aschalt Concrete + Sub base (Type A)	E	35.775		234,564	211,846]	750,917	8,391,527,100	7, 578, 790, 650	16.351
Transport for Pavement Material (L-9km) Sub-2		28,620		8.404	9,804	32,252 783,169	240,509,529 8,612,036,629	7,859,385,101	16,914
J.Larth Work		,							ΔL2
Excavation (Common)	ŝ	30.752		7,407	8,213	28.292	227 780,004	0/1'000'707	0
Excavation (Sound Rock)	Ê	0		33,605	36 492	0	×7 175 658	101.989.008	216
Disposal soil (L=Skm). Sub-3	E .	10,148	1 20	× 010	nčn nr	40,470	315,155,722	154,555,184	44 44
4.Druinage						and a second			·····
ert (D=100cm)	E	380	44.35	634,758	554,426	16,853	241 208 040	000,160,012	
Pipe Culven (D=60cm)	ε			202,787	184.640	10,913	145,044,0551	074,401,461	
Box Culvert (B=2.0m, H=2.0m)		120	32	3.064.762	2.510,600		-000 057 YCY	000 X21 2X 000	552
U-ditch (U=50cm)	ε	×	2.85	068,90	01.200	92.372	1.378.532.579	1, 191, 192, 520	2,358
S.Slope Protection									
Sprayed Concrete Cribwork				197	28, 284				0
Shotcrete Work	2	- -	2011	116.286	109.711	, o	ò	0	0
	1			77 534	61 3741	•	0	0	0
Sodding	Ê	0		3.238	2,851	0	0	•	
Sub-5	ŝ					0	0		
6.Tunnel	٤	0	3,500.00	22,400,000	17,920,000	0	0	•	
7.Bridges	2	02				869,966	7,774,848,307	6,232,039,661	16,996
8.Sefty Facilities Works								0	
Guard Railing	¢.			103,012	143,040	722 1	\$0 KM5 X49	44.511.136	;
Traffic Sign	cach	;	27.72	010071	3 618	15.026	151 364 025	125,856,450	F
Line Marking. Sub-8	E .	0.70			1	18,362	202,229,874	170.367.586	:
9 Mahilisanian & Tamanadh Works (2004 of Total Core)						360,948	3.826,045,659	3,328,659,723	7,652
- Among and a road on the roder 3 - A souther the									:
10.Sub-Total	Ļ	· · ·				2,209,719	22,489,525,164	060'569'175'61	516 ³ 5 ⁴
11.1.Jund Acquisition	Ê	30'00		20,000	20,000	.0	600,000,000	600,000,000	\$00 135
12.Compensation	houses	•	.00.0	000'000'CI					:
13.Engineering Cost (20% of 10+11+12)	:	· · ·	•••••			\$28.085 273.7%0	3,731,803,832	2,985,443,066 2,326,213,816	
14.Contingency (10%, of 10+11+12+13)						3.011.585	29.651.961,896	25, 588, 351, 971	61,575

Lioject C.					
y ga					
E E					
E E					
Ê					
Slope Protection					
Tunnel m 0.0					
Bridges 20					
Pavement 35.78					
	145 223	399.509	988,609	1,478,243	3,011,585
Koreign (USS)	1.430.496.054	4,161,652,062	9,062,213,452	14,997,600,328	29,651,961,896
Local Financial Cost (Rp)	1.225.246.843	3.741.961.492	7,461,829.064	13,159,314,573	25,588,351,971
Lucial Economic Constract)	2,970	8.396	19.541	30,667	61,575
Тога Есотопніс Сохі (Mill, Rp)	2.765	7,977	17,941	28,829	57,511

		(Million Rp.)
Year	Financial Prices	Economic Prices
2000	2,970	2,765
2001	8,396	7,977
2002	19,541	17,941
2003	30,667	28,829
Total	61,575	57,511

Table 6-2-5Phased Initial Investment Costs in 1998 Prices(F/S - Link No. 16)

Source: Study Team

The maintenance cost of the proposed road follows the engineering study results of the cost estimates. Besides, the maintenance cost of the proposed road in the case of "without the improvement of the proposed road" was treated as a negative cost.

2) Economic Benefits

Benefits are classified into two types, one is the direct benefit and the other is the indirect benefit or intangible benefit.

The direct benefits which would be realized from the implementation of the Project are defined as the savings in travel costs, composed of the vehicle operating cost and vehicle time cost when comparing the "with" and "without" project conditions.

The benefit of vehicle operating costs was estimated as a difference of vehicle operating costs between "with" Project" case and "without" Project" case. The vehicle operating cost was derived from the obtained daily vehicle-kilometers and the unit vehicle operating cost by vehicle type. In addition, a promotion of traffic safety and a saving in accident costs were anticipated.

In this economic analysis, the above-mentioned direct benefits, e.g. the saving in vehicle operating cost was computed as a quantified benefit. The calculation of direct benefits were made for the planning year of 2003 and 2018.

As a result, the saving in vehicle operating cost is summarized as shown in Table 6-2-6.

6 - 9

Table 6-2-6	(F/S - Link No. 16) (Million Rp. at 1998 price)
Year	Benefit of Saving in VOC
2004	24,954
2018	56,433

Source: Study Team

3) Economic Cost-Benefit Analysis

The analysis follows the conventional discounted cash flow method in determining the economic internal rate of return (EJRR), the net present value (NPV) and the benefit cost ratio (B/C). (NPV and B/C are calculated at a discount rate of 15 percent.) The project life is assumed to be 20 years after the completion of the construction.

The benefits in the intermediate years were interpolated and those beyond 2018 were assumed to be fixed. The total economic project costs and benefits streams are presented in Table 6-2-7. The efficiency measures were calculated and the results are as follows:

Efficiency Measures	F/S - Link No. 16
EIRR	40.9%
NPV (Million Rp.)	84,660
B/C	3.89

Source: Study Team.

These results indicate that implementation of the project (road improvement of link No. 16) is economically feasible.

Net				Costs		Benefits		- 1
Cash	Maint.	Total	Maint.	Invest.	Total	VOC	Year	
Flow	Cost		Cost	Costs		Saving	1.7.00	
	(Without)		(With)			JULIE		ļ
(0	0	0	0			1999	i
-2,763	65	2,830	65	2,765	1		2000	2
-7,97	65	8,042	65	7,971			2001	3
-17,94	65	18,006	65	17,941	1 1		2002	4
-28,82	65	28,891	65	28,829	0	0	2003	5
29,38	4,499	65	65	0	24,954	24,954	2004	6
27,20	65	65	65	0	27,203	27,203	2005	7
29,45	65	65	65	0	29,451	29,451	2006	8
31,70	65	65	65	0	31,700	31,700	2007	9
33,94	65	65	65	0	33,948	33,948	2003	10
40,63	4,499	65	65	0	36,197	36,197	2009	11
31,77	65	6,736	6,736	0	38,445	38,445	2010	12
40,69	65	65	65	0	40,694	40,694	2011	13
47,37	4,499	65	65	0	42,942	42,942	2012	14
45,19	65	65	65	0	45,191	45,191	2013	15
47,43	65	65	65	0	47,439	47,439	2014	16
54,12	4,499	65	65	0	49,688	49,688	2015	17
51,93	65	65	65	0	51,936	51,936	2016	18
47,51		6,736	6,736	0	54,185	54,185	2017	19
60,86		65	65	0	56,433	56,433	2018	20
56,43	65	65	65	0	56,433	56,433	2019	21
56,43		65	65	0	56,433	56,433	2020	22
60,86		65	65	0	56,433	56,433	2021	23
56,43		65	65	0	55,433	56,433	2022	24
56,43	65	65	65	0	56,433	56,433	2023	25
	28,164	72,414	14,902	57,512				

Table 6-2-7 Economic Analysis for F/S of Link No. 16

Source: Study Team

Assuming that the benefits and cost stream might alter $\pm 10\%$, $\pm 20\%$, the effect on the EIRR was tested and the results are summarized in Table 6-2-8. In the most severe case of - 20% benefit and + 20% cost, the value of EIRR is 31.0%.

Cost		Benefit	
	Base	-10%	-20%
Base	40.9%	38.1%	35.1%
+10%	38.3%	35.7%	32.9%
+20%	36.1%	33.6%	31.0%

Source: Study Team.

6.3 Bungku - Border of Province (110.7 km): Link No. 22

6.3.1 Selection and Description of Route Location (Link No. 22)

(1) Bungku - Oresa (17.9 km)

1) Location of Existing Road

Ridges originating in the mountains run to the shoreline. Portions projecting into the sea make up a steep limestone topography, with terraces formed by the upheaval of coral reefs in the coastal area. The road winds along the base of steep limestone mountains.

2) Existing Road Conditions

A very low-level standard has been employed for road sections in the steep topography, with the road width being less than 3 m in certain locations. Collapse of the surface of slopes was also observed in a few places. The road was with gravel pavement and wooden bridges crossing small rivers.

3) Land Use

The topography is steep with a few flatlands. Cultivation of copra is common. Villages are distributed in the few flatland areas.

4) Possibility of Development

This section is the most difficult terrain to construct a paved road connecting Bungku and the southern border of province, which is positioned as a key for development of the Southern district. This district contains a wide agricultural production area and nickel deposits which are currently under development.

5) Components of Construction Work

A proposed road alignment is shown in Appendix A-6.1 and the following major works are needed for the construction;

- Improvement of road alignment;
- Widening of road way;
- Pavement;
- Bridges;
- Drainage; and
- Slope protection.

(2) Oresa - Betebete (45.8 km)

1) Location of Existing Road

The road is located in a relatively rolling area and in an alluvial plain formed by small rivers. The flatland contains 4 to 5 km of arable land. The coastal area from Sta.61.5 km to Betebete at Sta.99.5 km has terraces formed by the upheaval of coral reefs.

2) Existing road conditions

Most of the road sections are gravel road, with satisfactory road alignment except for a 3 km section between Dampala (Sta.65.2 km) and Lalampu (Sta.72.2 km). This 3 km section of the

6 - 12

road has lots of problems in terms of road alignment and slope protections.

3) Land Use

The flatland, which exists 4 to 5 km from the shoreline, consists of a wide expanse of uncultivated, though arable land.

4) Possibility of Development

The land along the road is flat and has many medium and small rivers, and it is arable, but the uncultivated area is spreading. A development project through migration is in progress, and agricultural production can be expected in the future.

5) Components of Construction Work

A proposed road alignment is shown in Appendix A-6.1 and the following major works are needed for the construction;

- Improvement of road alignment;
- Widening of road;
- Pavement;
- Bridges; and
- Drainage.

(3) Betebete - Border of Province (47.0 km)

1) Location of Existing Road

The Betebete - Tangofa section is located along steep slopes and virgin forest, running through the peninsula. The Tangofa - Buleleng section is located in a hilly area. The width of flatland is less than 1 km, with only a small area of arable land. The coastal portion of the hilly area has terraces formed by upheaval of coral reefs. The Buleleng - provincial border section runs through steep mountainous topography.

2) Existing Road Conditions

The entire road is dirt road without any drainage facilities or measures to protect the surface of slopes. The alignment of the trans-peninsula road is based on a low standard, and only vehicles with four-wheel drive or above can travel the road even during the dry season. No drainage ditches are provided, and the road surface is damaged in many locations. The road alignment of the Tangofa - Buleleng section is satisfactory thanks to the relatively flat land. The road alignment of the Buleleng - provincial boundary section is based on a low standard. No drainage facilities are provided, and the road surface is damaged in many locations.

3) Land Use

The mountainous area along the trans-peninsula road is designated as limited production forest. The flatland portion is a cultivated area with slash-and-burn agriculture.

There are two protected forests (HL) near the border and the area from Buleleng towards the border.

4) Possibility of Development

The area ,where the flatland portion is narrow, along the trans-peninsula road is covered by virgin forest whose development is restricted. The Buleleng valley is suitable for paddy fields,

6 - 13

and development of the arable land is expected. The mountainous area to the south of Buteleng is covered by virgin forests, in which lumbering is restricted. This section is a bottleneck on the road connecting Southeast and Central Sulawesi. Connecting these provinces by road will offer considerable economic benefits.

5) Route Alternative

The two proposed routes described below were compared as route alternatives for the section between Betebete (Sta.99.5 km) and Tongofa (Sta.115.8 km).

Alternative 1. Peninsula Coastal Route

The existing road of 20 km is a peninsula route which vehicles can not enter.

The route is along the coast circling the main ridges in the middle of the peninsula. Geologically, ridges branched off from the main ridges connect directly to the coral reef coast, forming the cliff of rock in many places. Between branch ridges, there are steep valleys extending to the cove. Cliffs are made from limestone, rising to a height of tens of meters and directly rising out of the sea. Because of the precipitous terrain, the roadside area is covered with natural forests and there are almost no houses. Road construction must be appropriate for the geological conditions. Bridges should be constructed over sharp inlets and tunnels should be constructed in sections crossing limestone precipitous terrain.

Alternative 2. Trans-Peninsula Route

The existing route is entirely a six-meter-wide gravel road though there are steep slopes exceeding 20%. 4WD vehicles can pass through in the dry season. The route crosses the main ridges at 500 m above sea level which makes up the peninsula, with the roadside covered by natural forest. The existing road includes steep slopes exceeding 20% in many locations. Improvement of the vertical road alignment is needed to maintain its functions. Since the route crosses the central main ridges of the peninsula as described above, an appropriate improvement of the gradient is required to keep a design speed of 30 km/h. If the steepest grade of 12% or less is employed on the basis of the design speed of 30 km/h for the mountainous section, it is difficult to use a horizontal alignment for the existing road for most of the sections concerned. It was proposed to use the existing road as a construction road and to improve to the road with steepest gradient of 12% or less.

	Alternative 1	Alternative 2
Characteristic	Peninsula coastal route	Trans-peninsula route
Road length	20 km	16 km
Roadside	Natural forest	Natural forest
Route	Coast	Mountain
Condition of existing road	Not Passable to vehicles	Passable to vehicles in dry season
Engineering problems	Tunnel is needed due to precipitous coastal terrain	Improvement of steep slope section
Major construction work	Road, bridge, tunnel	Road
Environmental problems	Protection of coral reef and landscape	Measures to protect the natural forest
Construction cost	90.9 Billion Rp.	74.5 Billion Rp.
Rating	Δ	

Table 6-3-1 Comparison of Alternative Routes

Source: Study Team

The peninsula crossing route was selected after consideration of road length, workability, and construction costs.

6) Components of Construction Work

A proposed road alignment is shown in Appendix A-6.1 and the following major works are needed for the construction.

- Improvement of road way;
- Widening of road;
- Pavement;
- Bridges;
- Drainage; and
- Stope protection.

.

6.3.2 Preliminary Engineering Design (Link No.22)

(1) Preliminary Engineering of Bridges

Application of types of bridge superstructures of link No. 22 is the same as description in clause 6.2.2 (1) before.

Most bridges of link No.22 are wooden bridges and there is no bridge at some locations. Moreover, bridges are seriously damaged even though they are of concrete. As a result, replacement of all bridges on link No.22 is recommended.

For a bridge which requires long length between abutments, bridge alternatives for different span arrangement are to be compared.

BR22-29 of 120m long bridge was studied in above mentioned way and a bridge of four spans of PC 1-girder is adopted. Details of this comparison is described in section 6.7.3 as a typical comparison of this study. General view of proposed BR22-29 is shown in Figure 6-3-1.

For bridge foundations, bridges on this link until Buleleng (Sta.127+500) require pile foundations with about 15m-long-pile based on the soil investigation. However, locations of bearing layer for the bridge foundation are shallow on this route from Buleleng until the border of province. The type of spread footing is adopted for the bridge foundation in this area. To put it concretely, spread footing is recommended for bridges numbered from BR22-101 (Sta.131+450) until BR22-105 (Sta. 139+340) on this route.

Actually, depth of bearing layer based on boring data of bore-hole No.32 and 33 is 4m from the ground surface. In case that a pile structure is applied to this depth, pile length becomes very short and the bridge foundation being undesirable structure. Therefore, spread footing is suitable though the height of substructure becomes higher.

Quantities of bridge improvement on link No. 16 are summarized as shown in Table 6-3-2. And proposed bridge list of link No. 22 is shown in Tables 6-3-3 (1) to 6-3-3 (4).

Table 6-3-2	Summary of Brid	ge Improvement	Quantities	of Link No. 22
-------------	-----------------	----------------	------------	----------------

Cla	ssification	The Number of Bridges	Bridge Area (m ²)
······································	Bridge length ≦50m	93	19,276
New Construction	Bridge length >50m	12	7,524
	Total	105	26,800
Existing to be used a	s it is	0	0

Source: Study Team

	Daina C	Data	}		46,47	46,47	46,47	40,47	46,47	46,47	40,47	75,67	/5/05	/ 2 0 7	46,47	46,47	46,47	46,47	46,47	40,47	46,47	46.47	46,47	46.47	40,47	1404	404 14		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1404	2 1	17,72	15	54,45	44,45	44,45	44,45
Ē			Dier Dier	Nos	, :		• :	•	, ;	•	•	1,	•	•	•	• •	•	• ;	•	0 <u>0</u>	•		 	• • • • • • • • • • • • • • • • • • •	ξΩ	•	•	•	•	•	• :		ន	,	•	•	
		±FIX	Pie/1		•	•	····		,		•	•	• • •	•	بد ج م ا	الله م الله ال	•	•••	•	2	••••	• • •	•	• • •	2 2	• • •	•	• •	• •	•	• • •	• ;	ន	· · · ·	• • •	•	• •
		MOVE+FIX		<u> </u>	•	•	•	<u>ند ۔ .</u> ز ا	•		•	•	•	1	•	•	•	•	•	5	•	•	•	•	2	,		•	•	•	•	•	5	•	••		•
	ş		<u> </u>	Nos.	•	•	•	•	•	•	•	•	•		,	•	•		,	-	·	•	•	•	~	,	•	,		•	•	•		,	•	•	•
ł	Piers		Dier		•		ន	•	•	•	ន	,	•	•	•		•	•	•	8	•	•	•	•	ន	ន	•	•	•	•	•	1	ន			မ္	,
		X	Pile/1	اسل ۱	•	•••	2	,	•	·	5	• • •	•	•		• • •	• - •	••••	• • •	5		'			2	5	•••	•	•••			••••	ম	•	•••-	33	• • •
		Xid+Xid	┢	hp(m) [-		1 2	•	-	1	12	•	•	•	•	•	•		•	5	•	•		•	2	6 	•	•		•		-	5	•	,	œ	•
			╞	Nos. h	•	•		•	•	•	-		•	•	•			•		۳-	•	•	•	•	- -	•	•	•	•	•		•	 -	1	٠	•	,
Sub-structures		-	┢	Nos.	22	2 9	18	16	ő	8	<u>ي</u>	<u>6</u>	8	1 8	÷	₽	18	8	<u>8</u>	<u>ço</u>	2	<u>80</u>	œ		<u>ço</u>	<u>2</u>		₽	<u>8</u>	ê	44	8	22	ଝ	4	7	4
Sub-st		ų	010	┼╤	12	알	12	5	얻	12	2	2	2	2	2	2	2	2	<u>5</u>	2	₽ P	3	5	5	12	2	22	12	<u>6</u>	2	ន	ន	ន	ន	ន	ສ	ន
		MOVE	ŀ	ha(m)	9	ۍ ا	G	9	6	2	œ	8	ω.	ဖ	ω	60	Q	g	9	÷	9	6	တ	ە	5	თ	6	Q	e	9	9	9	6	G	و	G	. 9
	ents		-	Nos.			2				2	-	-	-	-	-	۲-	v		2	-	-		-	7	2		-		v -	~	-	~	-	-	2	-
	Abutments			Nos.	22	₽		16	18	18	•	18	18	16	18	18	18	÷	₽	•	8	18	6	25	•	٠	16	\$	18	8	4	8	•	8	14	1	4
		×	l	e (e	12	4	••••	12	2	12	•	5	2	ų	6	12	12	2	12		2	5	5	2		•	ŝi	5	5	5	ន	ຊ) '	ន	ន	•	23
		ЯI	- -	ra(m) ⊢	9	9	.	9	6	2	1	ω	~	و	9	9	9	9	9	•	G	ω	-00	G	•	•	۵	ω	ę	6	Q	ω		ω	G	.	G
			ŀ	Nos.	F	-		-		-			-	-		 ▼	~~	-	-	,		-	-		•	•	-	-	-	-	-	-	•	-		•	-
		Type of	Toursdation	-oundation	Pite	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pile	Pie	Pile	4
_	T Turbe of	Super-			ۍ ۲	RC-T	RC-T	RC-T	RC-T	RC-T	RC-T	RC-T	RC-T	RC-1	RC-T	RC-T	RC-T	RC-T	RC-1	RC-T	RC-T	RC-T	RC-T	PC:I	RC-1	RC-T	RC-T	RC-T	RC-T	RC-T	RC-1	PCI	PC-	<mark>م</mark>	RC-T	RC-T	L Ca
		oluge Width			9.6	9.6	9.6	9.6	7.6	7.6	7.6	2.6	7.6	9.6	9.6	9.6	7.6	9.6	9.6	9.6	2.6	7.6	7.6	7.6	9.6	9.6	9.6	9.6	7.6	7.6	9.6	9.6	9.6	9.6	9.6	9.6	4 O
-			Arrangement		1 @ 30.0	1 @ 20.0	2 @ 200)¦@	20.0	1 @ 20.0	2 @ 20.0	0	1 @ 20.0	1 @ 15.0	1 @ 20.0	1 @ 20.0	1 @ 20.0	1 @ 20.0	1 @ 20.0	3 @ 20.0	1 @ 20.0	1 @ 20.0	0.00	0.04)¦@	2 @ 20.0	0	1 @ 20.0	1 @ 20.0	1 @ 20.0	1 @ 20.0	1 @ 30.0	3 @ 40.0	, 0 00 0 0	0.00	2 @ 20.0	
	50	Š, ž		Span	†		· ~	 		-	~		-	-	-					 m	, -	• •			ი ო	2	-		; ;	-			- [-	~) : •
ľ		רבוימיו	Ţ	Ê	30.0	000	40.0	15.0	20.0	20.0	40.0	20.0	20.0	15.0	20.0	20.02	200	20.0	20.0	80.0	2000	20.02	200	40.0	60.0	40.0	15.0	20.0	20.0	20.0	20.01	30.0	120.0	40.0	20.0	40.04	0.00
				e +		ł	37 + 20	+	+	• •	; +	÷	ł	+			43 + 770	ł	+	÷+	+	• •	48 + 370	ŧ	+	+	ŧ	+	1 1	+	• •	: 1	ł	- +	្	59 + 760	
		Bridge	N N		2 - 1	3			3 . 5	2 4	2 · ·	20 - 8	50 6	» - 10		' i '	18		8		3 8	1 8			BR 22 21			BR 22 - 24	BR 22 - 25	BR 22 - 26	BR 22 27	2 · 0 48		2 8 2 8 2 8	BR 23 31		

Table 6-3-3 (1) Propoed Bridge List of Link No.22 (1 of 4)

		Data Data			42,43	42,43	42.43	42,43	42.43	42,43	42,43	40.41	40,41	40,41	12'07	20,41	17'07	40,4	40,41	1404	40,41	40,41	4041	40,4	40,41	40,41	404	404	40,41	17:07	40.41	38,39	38,39	38,39	38,39	38.39	38,39
			Dier	Nos	•	•	•	•	•	•	•	1	•			•	•	•		•	• :	1	•		•	, : ;	• :	•	•	•	•	1	•	• .		•	<u></u>
		Xit	Pile/	(m) LD(m)	•	, ,	'۔۔۔ ، ،	 ,	•	· · ·	÷	••••	•	• • •	• • •	, ,	•	•	•••	 '	•		•	,	••	• • •	•	⊫ِ ¦	•	•••	• •	••••	•	• • •	• • •	•	·,
		NOVENEIX			· · ·	• ;	•		· •		<u> </u>	•		•	•	-	•	•	•	•	•	-	•	•	•	-	,	•	•	•	•	•	,	•	•	•	•
	S			Nos.	•	•		1			 •	,	•		•	•	•		•	•	•	•		•	-	•		,	-	•	•	,	•	•	•	•	•
	Piers		pier		,	•	38		; ; ; ;	1		•	g	•		ន	•	•	•	•	•	,	•			•	•	•	•	•	•		,	•		ន	•
		X	Pile/1	Lp(m)	• •	•			•	•			16	• • • •	•••	9 9	• • •		••••	 -	·		 	} 	 	• • •		ן-הי ן ו ו	· ·	• •	•••	 -	•	·	•	ų2	
		XideXid		рр(m) Т	ł	•	ŝ	 : ; '		 ,	<u>.</u>	•	ø		•	~	•	1	,	•	,		•	•			1	•	•	•			•		•	80	
			┣—	Nos. hp								•	-	•	,		F			1	•	•		•	-	•	•	1	•	•	1	1	•		•	-	
notures	┝─	-		Nos. N	16	15	2	16	16	∞	8	24	24	18	24	24	ខ្ល	ຊ	18	2 20	<u>8</u>	24	30	20	<u>6</u>	8	50	8	6	24	18	8	16	16	5	38	<u>8</u>
Sub-structures			ejie -		4	14	4	4	12	4	4	16	9	<u>φ</u>	16 16	9 9	16	<u>9</u>	9	16	0	<u>ب</u>	9 10	16	<u>မ</u>	16	 	 19		16	16	15 	15 15	15	5	5	5
ł		MOVE	-	l (m)eq	 ن	0	9	9			6	9	٥	9	9	9	G	9	9	و	с С	9	9		ۍ و	G	9	ۍ و	<u>ه</u>	ശ	9	و	9	ц ц	ശ	9	9
	nts		-	Nos.		-	2		1			-	2	-		2	*	-	. -		<u>م</u>	 -	v-	. -	.			-	•	•	-	-	-		-	2	
	Abutments		ł	No.	<u>9</u>	40	•	9	. <u>e</u>	• @	28	24	•	÷	24	.	2	20	8	<u>8</u>	18	な	8	ম	≎	ম্ব	ខ	8	18	27	ŝ	8	16	9	9	•	œ ₽
			Dite		+••	14	 •	4	2		4	16	 •	9	16	<u>.</u>	16	16	16	9	16	16	16	9	19	16	16	<u>16</u>	16	16	1 6	15	15	15	5	•••-	5
		Ϋ́Ϊ́́	-	ha(m) ha(m)		9	•	4) 2	<u>א</u> ני) 9 9	9		6	9		9	9	9	9	9	9 B	9	ഹ	6	9	6	9	9	9	9	9	9	9	9	•	9
			$\left \right $	Nos. h		 		<u>.</u>		• •	-		•	-	-		-		-	-	-		~	-	-		x		. -			-		-	-		
	F	Type of	Foundation		•	e	a d			Did		b id	Pile	Pile	Pile	Pile	Pile	Pile	Dile	Pile	Pile	Pile	<u>Pile</u>	Pile	Pile	Pile	Pile	Pile	<u>e</u>	Pie	Pile	Pie	Pile	Pile	Pile	Pile	Pile
						0	. <u>a</u>	Ŏ	. 0		- a	. <u>a</u>			ă.			ä.	a.	а. —	<u>م</u>		đ	٩			٩		d.	•		۵. ا	a		a.	٩	a
	Tunne of	Super-	christines		RC-T	RC-T							-0 -0	RC-T	5 2	- C d	RC-T	RC-T	RC-T	RC-T	RC-T	2 Z	RC-T	RC-T	RC-T	RC-T	RC-T	RC-T	RC-T	<u>s</u>	RCT	і d	RC-T	RC-1	RC-T	PC-T	RC-T
	Deldo.	Width			9.6	9	2 G	140	0 0	0 9	0 0	200	90	96	96	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	1.6	7.6	7.6	7.6	7.6	7.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
				<u>.</u>	15.0	C C	200							15.0	000	30.05	20.0	20.0	15.0	15.0	15.0	0.0	15.0	20.0	15.0	20.0	20.0	20.0	15.0	30.0	15.0	30.0	15.0	15.0	15.0	20.0	20.0
		Span	Arrangement		1) (C	» «	3) (1 -	ම) (- ,	e) (e	3) @) () - -) (C	ၜ႞ၜ	9 @) @	0	0)@ -	00) @ -	0	0) @	0) @ -	0	0	0	@) 	00))@) @ -	6) @ -
		NOS.			-		-4 - [0	v ,			- -		- ~	 1			 	ļ				-			 		-	-		+	 		-			~	
		rengui	Ì	έ	15.0	14.0			0.2	0.61	2 2			15.0	30.0	80.0	20.0	2002	15.0	15.0	15.0	30.0	15.0	20.0	15.0	20.0	20.0	20.0	15.0	30.0	15.0	30.0	15.0	15.0	15.0	40.0	20.0
		5 5	Ţ	E				2	8		0.00 +					A C	920								0/9						8		8	80	220 52	200	- 490
	-	Location	╞	+ Ę		3 3			+ : 8 :	•			+ + t K				1		+ 3 &	1.1		1		+ 8 8 8		85 +	1	+ 48	+ 18	+ %	1	+ 8 8		+	+ 5	- 76 - 75	92
		 e			77	<u>្រុ</u>	8.8	8 8	5	81	<u>स</u> ु	<u>}</u> ;₹	<u>5</u>	4 S	2	45	2		49	2	2.9	2	<u>ې</u>	12	8 3	S	8	57	89 19	50	3 8	5	\$	នេ	3	38	99
		Bridg	Š		2	3 8	4 8	3 3	N ¹	N ⁱ s	ខាន់	3 ¹ 8	ป่ร	3 8	3 8	1/2	3.1	12	3 2	3	12	18	18	68	12	ีเส		ีเม	្តែ	12	12	18	ľς	18	BR 22	เมื่อ	BR 22 ·

Table 6-3-3 (2) Propoed Bridge List of Link No.22 (2 of 4)

	Suloa	Data			38,39	8.8	38,39	38,39	38,39	36.39	36.27	25.27	10.00	0,00 10,00 10,00	10.00	12.02	10,00	30,5/ 00.01	12,05	12,05	36.37	3	30,3/	36,37	35,37	30.37	30,37	36,37	10,00	50,57	35,37	30.37	36,37	35.37	35,37	36.37	34,35	34,35
1	Γ		ğ	Nos.	•	•	•	•	 	•	- -	•	•	•	•	•	•	•	:	•	•	•	•	•	:	R	3	1	•	,	1	1	1	• :	•	•	22	သို့
	×	414	Pile/	Ê G	4	•••	•••	,			• • • •	•	• • •	•	•	' ;	•	•	•••	•	, , ,	• • • • • : :	•	4	• • •	<u>5</u>	• - • • •	1	•	, :	, .	• • •		1	•	····	53	ស៊
	XILTUNOW	NON-	ho(m) H		•	•	•	•	•	•			•	•	•	• ;	•	•	•	•	,	•	•	. :	•	ទ	•	• [•	•	•	• {	•	•	•	•	ω	0)
2		ł	Nos		•	•		•	<u>.</u> •		-+- '	•	-	'	•	•		++	+ 	•	•	•	1	•	•		•	,	•	•	•	•		•	•	•	x ~	است. ج- ب
Piers			pier	Nos.	•	•	•	ผ		1	,	•	•	•	•	•	•	•	•	١	•]	•	'	•	'	8	•	•••••••••••••••••••••••••••••••••••••••	•	•	•	•	•	,	,	•	8	ឌ
ļ	2		۳ļ	(m)	• • •		•	15			-†-	•	•••	† -		• • •	•	•	•4	••••	• • •	• •	•-•	 ! !	,	15	•	•	,	•••	•	• • •	•	•		• • •	15	5
		× + × -+				•	•			•		•	-+	•	•	·	•		 ,		1	•	•		•	2		1		•	•	1		•		·	÷	ŝ
			Noc 1		,	•	•	-	1		-	•	•	•	•	•	•	•	•				•	•		x-	•	•	•	•	•	•	•	•	•		-	• -
	╉	-		Nos.	18	ম্ন		, 8	ļφ	2 0	2 3	2	<u>, </u>	2	<u>ه</u>	₽ 22	ន	ន	ន	8	8	18	<u>م</u>	38	ន	ខ	ន	8	<u>م</u>	<u>م</u>	ឌ	ន	ន	ន	2 9	8	8	<u>80</u>
	Ļ	ψ	Pile	ra(m)	15	5	5	5	 2 ¥	24	2	2	<u>ک</u> ا	<u>.</u> 2	5	မ္ မ	5	1 5	15	5	55	5	5	ភ្	5	15	5	5	5	ίΩ Γ	5	ξ	15	5	5	15	15	5
	Ċ	MOVE	- (w/		و	6	9	4			- ⊇ !	₽	6	5	9	<u>e</u>	9	5	0	5	<u>9</u>	ശ	8	ഹ	80	<u>e</u>	õ	ŝ	9	G	<u>ں</u>	ę	ŝ		ω	ω	6	ഗ
et e	21				۲.	-		6	+ + +	- ,			-	-				-،	-	-		•	.	. -	•	~	. -	~	,	¥	. -	.	-	-	-		2	2
A humante				SS SS	<u>8</u>	ន	<u>∞</u>	Ţ.		2	2	<u>∞</u>	∞	<u>2</u>	₩ 200	18	ន	8	R	22	ន	ę	<u>80</u>	<u></u>	22		ສ	ន	õ	<u>00</u>	ន	ส	ន	ន	8	₽	•	•
			Pile		5	15	15			<u>₽</u>	2	ත 	15	15	1 5	5	5	ξ	5	15	15	5	15	15	15	· •	ក	15	τΩ Γ	<u>ب</u>	ŝ	15	5	5	5	15	 ,	•
		ž	<u> </u>	<u>га</u> (т) (т)	9	9	9	, , ,		0	2	<u>e</u>	9 9	9	9	5	G	6: 0	5	5	00	G	9	9	~	 	9	9	ю	9	9	P	6	ø	8	8		. 1
			⊢	Nos.			-		•			-	- -	x	.		~		.	-			• 	<u> </u>	-			-	~	 	-	-	: 	-	<u>i</u> 	-	-	•
┢		e of	Foundation		 		2 <u>e</u>		2	9	e	e	ę	e.	le	Pile	lle	lle	e e	e	Pile	Pile	e le	Pile	Pile	Pile	<u>e</u>	oile 0	Pile	Die Die	Dile	Pile	alle	elie	-lle	Pile	9 e	Pile
		طر عرب					a a			2 i	•	o .	<u>с</u> .	a	a	D	<u>а</u>	μα. 	a	a.	a .									. u .		<u>–</u>	<u>р</u>		<u> </u> u.		- -	
ì	Types of	Super-	structures		RC-T	- Ca	- L'Ca			L 22 1	RC-T	R0-1	Ro-T	RC-T	RC-T	RC-T	집	2 2	ц Ч	i V V	а З	RC-T	Ro-T	RC-T	<u>15</u>	PCI	रू टू	ស្ដី	RC-1	RC-T	ģ	ಸ್	2 2	۲. م	RC-1	RC-1	ğ	RC-1
	Sridge	Width	Ê		9.6	30	20		2.0	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	90
					0.0		200		2.0	0.0	20.0	0.0	0.0	0.0	0.0	20.02	30.0	0.0	30.0	30.0	30.0	20.0	20.0	20.0	30.0	30.0	30.0	@ 30.0	20.0 20	20.0	30.0	30.0	30.0	30.0	20.0	20.02	30.0	200
	2002	updo	Arrangement		6		3) @ - •		9) 7	@ 	@ -	@) 	9	9	0	0	0	0	0 @	0	0	0	0	0) @ 	00)@) @	0	0) @ •	0) @) @ -) @	0.0) @ ~) @
	Nos.	ō			╂╸				~			•				• 	-				L	<u> </u>				- 				-	-	i	j.			•	- 60	•
	Length	_	Т	Ē	- - - - - - - - - - - - - - - - - - -	2000			40.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	30.0	30.0	30.0	30.0	30.0	20.0	20.0	20.0	30.0	000	30.0	30.0	20.0	20.0	30.0	30.0	30.05	30.0	20.00	20.02	008	50 03 10 03
			+	ε	760	34	3 2	20	850	40	22	840	270	450	860	150	685	4	360	75	535	10/9	720	13	515	685	835	380	280	009	240	030	ž		280	ç	200	210
	Location			+	1	F È H	ŧ 🗄	+	+	+	+	ŧ	, t	+	{ +	+	+	+	<u>í</u> +	+	+	+	÷+	+	+ 190	+	ł	∔	+ 8,1	+	+	+ 2 +	+	े ।	- +	• •	1 <u>5</u> +	2 4
		0	i		12	5 8	Bis	B	2	7	22	73	74	75	76	1	20	2	2		, &	8	2	. 8	: :8	6	. 8	3.88	6	5	074	3 8	8	3 3	5 8	3 8	5 6	5
	¢	Bridge	Š		00 00		- 77 Xa		BR 22 -	BR 22 -	9R 22 -	BR 22 -	BR 22 -	9R 22 .	R 20 -	BR 22 .	BR 20		RP 20 -		5 H 1 S 1 S			BR 23		2 H 2 H 2 H	1 S 44	88 22 -	BR 23	25 25 -	2 02 02 2 02	2 G 2 C						3 6 00

Table 6-3-3 (3) Propoed Bridge List of Link No.22 (3 of 4)

Boring Data 34,35 32,33 32,33 32,33 32,33 D(m) Nos. ထ္ Pile/1 pier ï **NOVE+FIX** 2 hp(m) 1. ∞ ī · ? Ś. . ۲-•] • [٠ + +-Piers Nos. De ន . чÌ . . Pile/ (m)dl 5 FIX-FIX (m)qr ω $|\Omega|$ <u>2</u> Nos. Sub-structures Nos. **₽** |∞ La(m) 15 25 25 25 <u>В</u> ដ Ϋ́ MOVE ha(m) ω **က** လ လ φ യിയ Nos. Abutments in ----2 Nos. ī . . 1 (m)el <u>Di</u>e ம ī , . ž ha(m) ထတ ഗ • œ Nos. Type of Foundation Spread Spread Spread Spread Spread structures Types of Super-RCT RCT Bridge Wicth Ē 9.6 7.6 7.5 7.6 7.6 7.6 3 0 200 3 0 200 3 0 200 3 0 200 3 0 200 3 0 200 3 0 200 3 200 3 200 3 200 Arrangement, Span 20.0 1 60.0 3 20.0 1 20.0 1 20.0 1 20.0 1 Nos. Span ო Length 60.0 Ê ε Location t E - 99 - 101 - 102 - 104 - 105 Bridge No. BR 22 BR 22

Table 6-3-3 (4) Propoed Bridge List of Link No.22 (4 of 4)

100 22 1.-21. -2 40800 40800 (PCI-CIROER) 4%.3 27.5 Figure 6-3-1 General View of BR 22-29 GENERAL VIEW OF BR 22-29 (STA. 56+530) and a second × 122400 - 122400 (PC1-CHOCH) 306.2 1974 1 R, 4000 4000 (PCI-GROER) N.H. Sarra

(2) Pretiminary Engineering of Slope Protection Works

.

Slope protection works are constructed to protect the slopes from erosion or weathering by covering them with vegetation or structures and also to stabilize the slopes by means of drainage works or retaining structures. The following types of slope protection works were adopted for the feasibility route considering the terrain and geology, as shown in Table 6-3-4 and Table 6-3-5.

Required height of slope protection works for each link is shown in Figure 6-3-2.

Station(km)	Geology	Slope Protection Type
36.4-41.4	Allovium	Sprayed Concrete Cribwork
41.4-56.9	Tokala Formation	Shotcrete
56.9-66.4	Alluvium	Sprayed Concrete Cribwork
66.4-72.9	Allovium	Sprayed Concrete Cribwork
72.9-75.4	Ultra Basic Rock	Shotcrete
75.4-78.9	Alluvium	Sprayed Concrete Cribwork
78.9-82.9	Diluvium	Sprayed Concrete Cribwork
82.9-87.9	Allvium	Sprayed Concrete Cribwork
87.9-89.9	Tomata Formation	Shotcrete
89.9104.9	Allaviam	Sprayed Concrete Cribwork
104.9-122.4	Tokala Formation	Shotcrete
122.4-126.9	Alluvium	Sprayed Concrete Cribwork
126.9-127.9	Tokala Formation	Shotcrete
127.9-128.4	Alluvium	Sprayed Concrete Cribwork
128.4-129.9	Diluvium	Sprayed Concrete Cribwork
129.9-130.4	Tokala Formation	Shotcrete
130.4-135.9	Alluvium	Sprayed Concrete Cribwork
135.9-140.9	Ultra Basic Rock	Shotcrete
140.9-146.5	Matano Formation	Shotcrete

Table 6-3-4 Adopted Slope Protection Type (Cutting Slope)

Source: Study Team

Table 6-3-5	Quantities	of Slope	Protection
-------------	------------	----------	------------

	Cut		Fill
	Sprayed Concrete Cribwork (m ²)	Shotcrete (m ²)	Mat Gabion (m ²)
Quantity	3,360	36,593	83,289

Source: Study Team

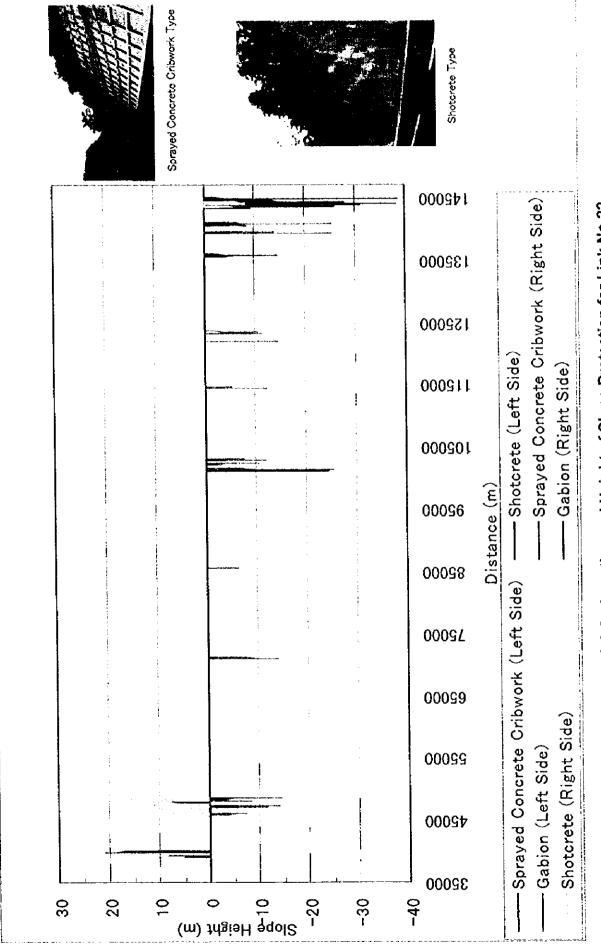


Figure 6-3-2 Location and Height of Slope Protection for Link No.22

(3) Cost Estimates

1) Estimated Project Cost

Cost items consist of preparation works, pavement, earth work, drainage, bridge, slope protection and safety facilities works. The cost for engineering service was estimated at 20% of the total construction cost consisting of direct and indirect cost. A contingency has been included in 10 % of the total of construction and engineering cost. The ratio of major item costs to the total cost is shown in Figure 6-3-3 and Table 6-3-6 shows estimated cost.

2) Implementation Plan

As shown in Figure 6-3-4, the construction period is 5 years consisting of one year for preparation of project for fund raising plan, 1.5 years for detailed design of the roads and 2.5 years for construction. Also, the investment plan was set in accordance with the construction plan.

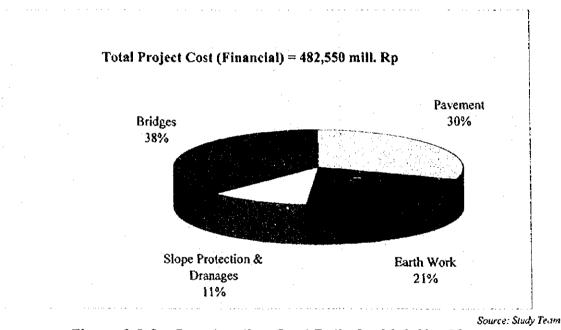


Figure 6-3-3 Construction Cost Ratio for Link No. 22

(4) Economic Analysis

1) Economic Project Costs

The economic investment costs were estimated in constant 1998 prices. The financial investment costs in terms of market price include the component of taxes. The economic costs for economic analysis were obtained by subtracting the portion of transfer payment such as taxes from financial costs. Implementation is scheduled over four years from 2000 to 2003. The phased financial and economic investment costs (initial investment) are summarized in Table 6-3-7.

Table 6-3-6 Total Construction Cost For Bungku - Border of Province Road (Link No.22)

Menument (40) Farence (33) 66' 392,133 50 32<		Ī			The Party of the second						
Item Control Control <thcontrol< th=""> <thcontrol< th=""> <thcont< th=""><th></th><th></th><th></th><th>ŀ</th><th></th><th></th><th></th><th>beat Financial (Ro)</th><th>Local Economia (Rp)</th><th>Financial Total (K</th><th>(Mill Rp)</th></thcont<></thcontrol<></thcontrol<>				ŀ				beat Financial (Ro)	Local Economia (Rp)	Financial Total (K	(Mill Rp)
W No. 1.2.00,177 0.23 1.106 2.009 Semene - Mak base (Type A) m 9,300 9,90 20,90 9,113 Semene - Mak base (Type A) m 9,300 20,90 20,90 20,00 20,100 Max Lower (Constrained) m 9,300 20,900 20,000 20,100 1 1 Max Lower (Constrained) m 7,20,070 0.02 20,000 20,000 1	ltem	Jack I	GUANTITY	•							
Angle Conversion State State	paration Works anng and Grubbing	c,	1,268,127	0.23	1,×67	2.099	291,669.	2,367,593,109	2,661,798,575		5,459
Anybrail Converse - Sub base (Type A). m 53,300 99,40 23,450 29,132 1.1 er Systement, Marcrini ((r.2.Robin) (Type A). m 1,30,794 3,46 20,99 23,450 20,134 1.1 er Systement, Marcrini ((r.2.Robin) (Type A). m3 1,30,054 41,35 20,005 23,450 3,440 1.1											
Mathematical Constraints Mathema	(anent	. 1	100	10 505	436 896	302.152	2,101,400	23,242,867,200	20, 862, 486, 400		41.5.44
Province Arrier 1.2.200.000 2.4.0 20.000 2	w Road Asphalt Concrete + Sub base (1ype A)	E	20,402	20.00	234.564	211,846	1,207,030	13,488,602,820	12,182,204,230		26.283
Common Common<	se (i kbe v/	= [170 704	3.49	26,005	30,339	452,619	3,375,241,636	3,937,781,909		8 173
Demonsion mail 1230005 0.22 0.005 0.22 0.005 0.21 0.005 0.21 0.005 0.21 0.005 0.21 0.005 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 0.0050 0.01 <th0.01< th=""> <th0.01<< td=""><td>Sub-2</td><td></td><td></td><td></td><td></td><td></td><td>3,761,049</td><td>40,106,711,656</td><td>36,982,472,539</td><td></td><td>116.61</td></th0.01<<></th0.01<>	Sub-2						3,761,049	40,106,711,656	36,982,472,539		116.61
mod) 1.200 0.92 1.200 0.92 1.200 0.92 1.200 0.92 1.200 0.92 1.200 0.92 1.200 0.920 1.211 1.200 <th1.200< th=""> <th1.200< th=""> <th1.200< td="" th<=""><td>th Work</td><td></td><td></td><td></td><td></td><td></td><td></td><td>9.481 663 665</td><td>10 513.420.235</td><td></td><td></td></th1.200<></th1.200<></th1.200<>	th Work							9.481 663 665	10 513.420.235		
Gloch m3 770,027 1.20 8.600 100,000 Mond m3 720,027 1.20 8.600 100,000 Mond m 2.120 14,35 6.41,758 554,650 Mond m 2.120 14,35 6.41,758 554,650 Mond m 2.120 14,35 6.41,758 554,650 Mond m 2.00 2.533 2.00,752 2.100 9.00 Mond m 2.00 2.534 2.00,752 2.00 9.1,200 Mond m 2.00 2.545 9.00 9.1,200 9.1,200 Mond m 2.00 9.00 2.545 9.1,200 9.1,200 Mond m2 2.00 9.00 2.546 10,300 9.1,314 Mond m2 2.00 9.00 2.546 10,314 Mond m2 2.00 9.2 2.54 10.3 Mond m2 2.00	(avation (Common)	Ē	1 280,095	0.92	7,407	C17 0	X1X 911	0 109 X7X 635	9,892,506,804		20,949
Nutbal m 2.13 44.35 6.44.35 554.456 3 000m) m 2.14 15.38 3.06.752 5.10.606 1.3.36 001 m 2.13 3.06.752 2.10.606 1.0.200 1.1.206 001 m 2.00 3.259 3.06.752 2.10.606 1.1.206 01 m2 3.00 1.4.48 1.7.197 48.394 1.1.206 01 m2 7.05 9.0 1.1.6.266 10.7.117 1.1 m2 7.05 2.13 1.1.6.266 1.1.7 2.3.1 1.1 m2 7.05 9.0 0.0 1.1 1.0 1.1 1.1 m2 7.05 9.0 1.1	cavation (Nound Rock)	e e	5.2	4.12	010,52	10,050	864,752	6,204,598,901	7,242,301,853		145,31
Othern) m 2,120 44,435 554,456 554,456 0,0,11 0,0,175 354,456 306,156 21,000 134,466							3,159,318	24,796,141,201	27,648,228,892		
(0000) m 2.14 15.24 15.					ANC NEX	907 735	94.022	1.345,686,960	1,175,383,120		2,342
Diam m 200 35.80 306, 752 210,000 00n, H=20m) m 200 25.80 69,800 61,200 01 m 200 14.66 177,197 83,964 m m 20,00 25.80 69,800 61,774 m m 20,00 25.40 00,114 m m 20,00 25.40 00,114 m m 20,00 25.40 00,114 m m m 0.00 0.00 17,254 m m m 3,500.00 22,400.000 17,723 m m m 10,00 20,00 23,513 1 m m 10,00 27,93 23,51 1 1 m m 10,00 27,93 20,000 17,200 1 1 m m 10,00 0.42 4,20 3,518 1 1 1 each </td <td></td> <td>£</td> <td>2</td> <td></td> <td></td> <td>145 240</td> <td>118 22</td> <td>448,990,697</td> <td>408,811,424</td> <td></td> <td>808</td>		£	2			145 240	118 22	448,990,697	408,811,424		808
Dimension m System 1.200 2.85 66,8590 01,200 Cribwork m2 3,300 2.85 69,8590 01,201 m2 m2 3,500 14.68 127,1197 63,956 m2 m2 3,500 2.83 01,390 67,157 m2 m2 3,500 0.008 3,238 013,311 m2 m2 87,239 9.20 12,344 013,311 m2 m2 87,239 9.20 12,344 013,311 m3 m3 3,3700 0.008 3,238 013,311 other m3 3,500.00 22,390 0.003 0.33,339 013,314 other m3 3,373,299 0.423 3,333,299 0.423 23,518 013,002 0.500,000 0.433 3,333,299 0.433 0.433 0.433 0.433 0.433 0.433 0.433 0.443 0.443 0.443 0.443 0.443 0.443 0.443	se Culvert (D=60cm)	ε	417.7	07.01	3 064 262	2.510.606	84,731	796, 838, 120	652,757,560	0	1,695
0 Nulbed m2 3.00 14.68 17.1197 88.984 Cribwork m2 3.00 1.8.2 0.01.300 67.157 m2 m2 3.0.933 1.8.2 0.0371 9.20 m2 m2 0.03 3.533 2.873 m2 m2 0.03 3.533 2.873 m2 m2 0.03 3.533 2.873 m3 0.03 3.533 2.873 m3 3.7300 11.52 10.526 m3 0.03 3.533 2.873 m3 3.7300 11.526 107.253 m4 110.205 0.042 147.025 m4 110.205 0.422 3.77.93 m4 110.205 0.422 3.77.93 cmportally Works (20% of Total Cust) 113.00 0.422 m4 110.205 0.00 15.000.000 m4 0.00 15.000.000 15.000.000	x Culver (B=2.0m, H=2.0m)	E	000		AG 850	1 200	150.908	3,698,557,500	3,240,540,000	0	\$ 298
Cribboork m2 3,600 14.6K 177,197 55,354 m2 30,995 11.62 101,390 6,113 m2 30,395 0.05 11.62 101,390 m2 83,239 0.00 23,300 6,171 m2 83,239 0.00 23,333 2,814 m3 8 0 0.08 2,134 m3 8 0 0.08 2,134 m3 3,300.00 22,400,000 17,920,000 m3 3,313 2,84 m3 3,313 2,84 m3 3,313 3,313 m3 3,313 3,313 m3 3,313 3,313 m3 3,133 3,313 m3 3,133 3,313 m3 110,205 0,42 m3 3,133 3,313 m4 110,205 0,42 m4 110,205 0,42 m4 113,134 113,135 m4 113,134 113,135 m4 113,134 113,135 m4 113,134 113,135	P-Q-RS						363,492	6,290,073,277	5 477,492,104	4	10, 143
model	pe Protection					2X 0X4	40.325	427,381,920	298,986,240	0	056
m2 m2 m2 m3 <	rayed Concrete Cribwork	Ĕ			1 200	67 157	412 529	3,710,164,270	2,457,476,101		X,295
m2 x3.239 9.20 77,344 61,374 m2 m2 0.08 3.533 2.851 m2 n2 0 3.500.00 17,920.000 m 0 3.500.00 22,400,000 17,920.000 m 0 105 0.06 3.500.000 17,920.000 m x33.700 11.30 168.012 1343.025 m 3.69 2.738 4.26.548 377.259 m 100.705 0.42 4.231 3.518 m 100.705 0.42 4.231 3.518 m 100.705 0.42 4.231 3.518 m 10.705 0.42 4.231 3.518 m2 173.120 0.42 4.231 3.518 m2 173.120 0.42 2.000 0.000 m2 173.120 0.42 2.000 0.000 m2 173.120 0.42 0.000 15.000000 m2	· · · · · · · · · · · · · · · · · · ·	e e	0	6 9I	116.286	112,901	.0	0	-	0	0
Nubes m2 0 0.06 3.238 2.851 m 0 3.500.000 17,920.000 17,920.000 m No 105 3.500.000 22,400,000 17,920.000 m 3.3,700 105 3.500.000 22,400,000 17,920,000 m 3.3,7700 105 27,38 426,548 377,259 casch 100,705 0.42 4.231 3,518 xubes m 110,705 0.42 4.231 3,518 m 110,705 0.42 4.231 3,518 1 m 110,705 0.42 20,000 15,000,000 15,000,000 1 m 110,705 0.42 0.00 1,5,000,000 15,000,000 1 1 1 m 173,120 0.42 0.42 4.231 3,518 1 1 1 m 10,705 0.42 0.00 1,5,000,000 1,5,000,000 1,5,000,000 1,6,000		i de	83 289		72, 584.	61 374	766.259	6,045 448.776	5 111,779,086	•	14,168
Nubes Nubes n 0 3.500.000 17.920,548 37.72159 17.920,548 37.72159 17.920,548 37.72159 17.920,548 37.72159 17.920,548 37.72159 17.920,548 37.72159 17.920,548 37.72159 17.920,548 17.920,548 37.72159 17.920,548 17.920,500 17.920,500 17.920,500 17.920,500 17.920,500 17.920,500 12.000,000 15.000,000 15.000,000 15.000,000 15.000,000 15.000,000 15.000,000 15.000,000 15.000,000 15.000,000 15.000,000 17.020,000 17.020,000 17.020,000 17.020,000 17.020,000 17.020,000 15.000,000 15.000,000 15.000,000 17.020,000 17.020,000 17.020,000 17.020,000 15.000,000 15.000,000	· · · ·	É	•		3.238	2 851	0	0.	0 7 C 2 L 1 C 6 VA C		23,413 23,413
m 0 3.600.000 22,400,000 17,920,000 No 105 3.600.001 27,920,000 17,920,000 m 3.3,700 11.30 168,012 3.47,025 m 3.3,700 11.30 168,012 3.47,025 m 3.0,005 0.423 3.37,329 m 110,705 0.423 3.518 m 173,170 0.423 2.2000000 m 173,170 0.000 15,000000 m 1.73,170 0.000 15,0000000 m 0.000		:					1,245,115	004 +44 701 01	1 1 LT 000'1		
No 105 105 105 m 33,700 11,30 168,012 143,025 m 369 27,98 426,548 373,259 cath 100,005 0.42 4,231 3,518 Nub-8 m 110,005 0.42 4,231 3,518 m 110,005 0.42 4,231 3,518 m 110,005 0.42 20,000 20,000 m 173,120 0.00 20,000 20,000 m 173,120 0.00 15,000,000 15,000,000	und	Ē	-	3,500.00	22,400,000	17,920,000	0	0		;	-
m 33,700 11,30 168,012 143,025 5 m 33,700 11,30 168,012 143,025 5 m 509 27,38 4,231 3,518 4 m 110,705 0.42 4,231 3,518 4 m 110,705 0.42 4,231 3,518 173 m 110,705 0.42 4,231 3,518 173 m 110,705 0.42 4,231 3,518 4 m 110,705 0.42 20,000 173 m 173,120 0.00 20,000,000 15,000,000 houses 24 0.00 15,000,000 15,000,000		2	105				5,818,563	\$1,494,060,501	41, 144,674,275		171,611
m 33,700 11,30 168,012 13,025 each 36 27,98 426,548 373,159 m 110,305 0.42 4,231 3,518 Sub-8 110,305 0.42 4,231 3,518 m 110,305 0.42 4,331 2,8 m 113,800,000 178,120 0.00 17,9 m 17,8,120 0.00 15,000,000 15,000,000	ty Facilities Works								VV9 (10 014 1	÷	024.0
m 110,705 27,38 4,231 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 3,518 4,531 2,18 2,18 2,18 2,18 2,173 <th2,173< th=""> 2,173 <th2,173< <="" td=""><td>lard Railing.</td><td>E</td><td></td><td></td><td>168,012</td><td>143,025</td><td>012.020</td><td>2,002,004,400 157 AD1 321</td><td>2017251151</td><td>5 61</td><td>52</td></th2,173<></th2,173<>	lard Railing.	E			168,012	143,025	012.020	2,002,004,400 157 AD1 321	2017251151	5 61	52
Sub-5 m 110,000 % of Total Cost) 0.00 0.00 mm2 173,120 0.00 15,000,000 houses 24 0.00 15,000,000	aftic Sign	cach	369		245 074	407 C/S	464.04	468 392 855	389,460,190	, , o	3
V. of Total Cost) m2 173,120 0.00 20,000 22,000 houses 24 0.00 15,000,000		i.	CO2'011	5			437.631	6,287,800,576	5,347,141,482	5	10,927
m2 17%,120 0.00 22,0000 houses 15,000,000 15,000,000	······································						2,843,129	30,137,363,121	26,219,331,915		60.274
m2 173,120 0.00 20,000 20,000 houses	DOUNTRATION AS A COMPANY VERSE (40 /4 01 10/01 20/01			•••			17,922,964	171,662,538,407	153,44,281,207		361.646
houses 24 0.000 15,000,000 15,000,000		1			20.0001	20,000	0	3,562,400,000	3,562,400,000		3,562
	and Acquisition ompensation	houses	€ : - 		15,000,000	15.000,000	0	360,000,000	360,000,000	0	360
	neinerring Cost (20% of 10+11+12)						4,138,510	29,245,468,596	23.396.374.877		73,114
14. Contingency (10%, of 10+11+12+13)	ontingency (10% of 10+11+12+13)						2,206,147	20,483,040,700	107 100 111 101		1.2

			6661	2000	2001	2002	2003	Total
ltem	Unit	Ouantity						
1. Preparation of Project								
2. Survey and Design	ka 	110.71						
3. Construction								
Earth Work	Ê	1,551,182						
Slope Protection	겯	•						
Tunnel	£	0						
Bridges	Ž	105						
Pavement	Ę	110.71						
Foreign (USS)	-			1,138,090	4,438,953	9,300.345	9,390,233	24,267,621
Local Financial Cost (Rp)				10,199,823,864	40,951,887,391	81,420,055,647	92.741.680.802	225,313,447,703
Local Economic Cost (Rp)				8,591,323,091	39,352,203,105	70,209,709.522	80.581.735.974	198,734,971,692
Total Financial Cost (Mill, Rp)				22,264	88,005	180,004	192,278	482,550
Total Ecomomic Cost (Mill. Rp)				20.655	86.405	168.793	180.118	455,972

Figure 6-3-4 Implementation Schedule For Bungku - Border of Province Road (Link No.22)

		(Million Rp.)
Year	Financial Prices	Economic Prices
2000	22,264	20,655
2001	88,005	86,405
2002	180,004	168,793
2003	192,278	180,118
Total	482,550	455,972

Table 6-3-7Phased initial Investment Costs in 1998 Prices
(F/S - Link No. 22)

Source: Study Team

The maintenance cost of the proposed road follows the engineering study results of the cost estimates. Besides, the maintenance cost of the proposed road in the case of "without the improvement of the proposed road" was treated as a negative cost.

2) Economic Benefits

Benefits are classified into two types, one is the direct benefit and the other is the indirect benefit or intangible benefit.

The direct benefits which would be realized from the implementation of the Project are defined as the savings in travel costs, composed of the vehicle operating cost and vehicle time cost when comparing the "with" and "without" project conditions.

The benefit of vehicle operating costs was estimated as a difference of vehicle operating costs between "with" Project" case and "without" Project" case. The vehicle operating cost was derived from the obtained daily vehicle-kilometers and the unit vehicle operating cost by vehicle type. In addition, a promotion of traffic safety and a saving in accident costs were anticipated.

In this economic analysis, the above-mentioned direct benefits, e.g. the saving in vehicle operating cost was computed as a quantified benefit. The calculation of direct benefits were made for the planning year of 2003 and 2018.

As a result, the saving in vehicle operating cost is summarized as shown in Table 6-3-8.

Table 6-3-8Estimated Economic Benefits
(F/S - Link No. 22)

	(Million Rp. at 1998 price)
Year	Benefit of Saving in VOC
2004	71,585
2018	165,960

Source: Study Team.

3) Economic Cost-Benefit Analysis

The analysis follows the conventional discounted cash flow method in determining the economic internal rate of return (EIRR), the net present value (NPV) and the benefit cost ratio (B/C). (NPV and B/C are calculated at a discount rate of 15 percent.) The project life is assumed to be 20 years after the completion of the construction.

The benefits in the intermediate years were interpolated and those beyond 2018 were assumed to be fixed. The total economic project costs and benefits streams are presented in Table 6-3-9. The efficiency measures were calculated and the results are as follows:

Efficiency Measures	F/S - Link No. 22
EIRR	19.5%
NPV (Million Rp.)	89,869
B/C	1.37

Source: Study Team.

These results indicate that implementation of the project (road improvement of link No. 22) is economically feasible.

Addion Rp	(N							
Net				Costs		Benefits	-	
Cash	Maint.	Total	Maint	Invest	Total	VOC	Year	
Flow	Cost		Cost	Costs		Saving		
	(Without)		(Wah)	·				
	-	0	0	0			1999	1
-6,93	-	20,856	201	20,655			2000	2
-86,40		85,606	201	86,405			2001	3
-168,79	201	168,994	201	168,793	1 1		2002	4
-180,11	201	180,319	201	180,118	0	0	2003	5
71,58	201	201	201	0	71,585	71,585	2004	6
92,04	13,922	201	201	0	78,326	78,326	2005	7
85,06	201	201	201	0	85,067	85,067	2006	8
91,80	201	201	201	0	91,808	91,808	2007	9
98,54	201	201	201	0	98,549	98,549	2008	10
105,29		201	201	0	105,291	105,291	2009	-n
105,1(20,815	20,846	0	112,032	112,032	2010	12
118,7		201	201]	0	118,773	118,773	2011	13
125,5		201	201	0	125,514	125,514	2012	14
145,9		201	201	0	132,255	132,255	2013	15
138,99		201	201	0	138,996	138,996	2014	16
145,7		201	201	0	145,737	145,737	2015	17
166,19		201	201	0	152,478	152,478	2016	18
138,5		20,846	20,846	0	159,219	159,219	2017	19
165,9		201	201	0	165,960	165,960	2018	20
179,6		201	201	0	165,960	165,960	2019	21
165,9		201	201	0	165,960	165,960	2020	22
165,9		201	201	0	165,960	165,960	2021	23
179.6		201	201	0	165,960	165,960	2022	24
165,9	201	201	201	0	165,960	165,960	2023	25
	100,879	502,085	46,114	455,971				

Table 6-3-9 Economic Analysis for F/S of Link No. 22

Source: Study Team

Assuming that the benefits and cost stream might alter $\pm 10\%$, $\pm 20\%$, the effect on the EIRR was tested and the results are summarized in Table 6-3-10. In the most severe case of - 20% benefit and + 20% cost, the value of EIRR is 13.9%.

Table 6-3-10	EIRR by Altered Benefit and Cost
	(F/S - Link No. 22)

Cost		Benefit	
	Base	-10%	-20%
Base	19.5%	17.9%	16.2%
+10%	18.1%	16.6%	15.0%
+20%	16.8%	15.4%	13.9%

Source: Study Team.

6.4 Border of Province - Asera (55.5 km): Link No. 33

6.4.1 Selection and Description of Route Location (Link No. 33)

(1) Border of Province - Lamonae (20.5 km)

1) Location of Existing Road

From Sta.156 km to the border of province (Sta.146.48 km), the road runs through the hilly area along the Lindu Valley. It continues to run along the lower area of the Lindu Valley and reach the Landawe River (Sta.156 km). The road from Lamonae (Sta.166 km) to Sta.200 km is in flat and gentle hilly areas. The road crosses the Lasolo River and then arrive at Asera.

2) Existing Road Conditions

The entire road is gravel or dirt road without any drainage facilities or measures to protect the surface of slopes. The alignment of the road sections in hilly areas is almost satisfactory. The section in the mountainous area is steep, and only vehicles with four-wheel drive can pass through even during the dry season.

3) Land Use

In the hilly area, deforestation is already completed, followed by the gradually increasing raising of mango, banana, copra, and palm oil. The mountainous area is covered with virgin forests up to the boundary of province.

4) Possibility of Development

The land is suitable for raising of mango, banana, copra, and palm oil, and their production is expected to grow.

5) Components of Construction Work

A proposed road alignment is shown in Appendix A-6.1 and the following major works are needed for the construction;

- Improvement of road alignment:
- Widening of roadway;
- Pavement;
- Bridges;
- Drainage; and
- Slope protection.

(2) Lamonae - Linomoiyo (18.0 km: 40.4 km along the existing road)

1) Location of Existing Road

The road crosses the Lindu River at Bolosu (Sta.205 km) and climbs a hilly area along the Lindu River and a branch (the Landawe River). The crossing point of the Landawe River is on the downstream side of the confluence of this river and a branch, the Langgikima River. After crossing the Landawe River, the road section runs across terrace-like developed areas positioned between the Landawe and Lindu Rivers, then reaching Lamonae by passing through hilly areas and the valley along the Lindu River. Except for the 2.5 km alluvial plain from Linomoiyo to Bolosu or the crossing point of the Lindu River, the entire section is located in hilly areas. The road section is located mainly in developed areas, and, except for the hilly area of Sta.212km to 197km, runs on a flat alluvial layer formed by the Lindu River and its tributaries.

2) Existing Road Conditions

The entire road is gravel or dirt road without any drainage facilities or measures to protect the face of slopes. The road alignment is generally satisfactory.

3) Land Use

The alluvial plain extending 2.5 km from Linomoiyo to Bolosu or the crossing point of the Lindu River is being developed for paddy fields. Except for the migration areas of Sta.191 km to 188 km and Sta.177.5 km to 172.5 km, most of the hilly areas along the road are covered with virgin forests. Settlers in hilly areas, raise cacao, banana, copra, and palm oil.

4) Possibility of Development

The land is suitable for the raising of mango, banana, cacao, and copra.

5) Route Alternatives

The existing 35.2 km of road takes a roundabout way between Linomoiyo and Lamonae to connect to the migration area. There are two alternatives: alternative A, using the existing road; and the alternative B, new road construction to connect Linomoiyo and Lamonae directly.

According to alternative B, a new road runs on the west side of the hill left in the valley, reaching Lamonae directly. The rating table below shows a comparison of these alternatives, indicating that the road length of the alternative B is 12.8 km, 22.4 km shorter than the length of the alternative A.

	Alternative A	Alternative B
Characteristics	Improvement of existing road	New road construction
Road length	35.2 km	12.8 km
Roadside	Lumber	Paddy fields development
Road construction	19 million Rp.	18 million Rp.
Major works of construction	Pavement	Embankments, bridge and pavement

The alternative B crosses large rivers at two locations. The alternative B is slightly advantageous in terms of construction cost. Besides, this alternative can reduce the distance between the area north of Lamonae and the provincial capital of Kendari by more than 10%. This road is, therefore, appropriate as the Sulawesi eastern coastal route. Since land is suitable for paddy fields, the construction of the new route promotes regional development for the use of roadside land.

In view of the above reasons, alternative B, or construction of a new road has been chosen.

6) Components of Construction Work

A proposed road alignment is shown in Appendix A-6.1 and the following major works are needed for the construction;

- New road construction for shortcut route;
- Widening of road way;
- Pavement;
- Bridges; and
- Drainage.

(3) Linomoiyo - Asera (17.0km)

1) Location of Existing Road

The road is located in the developed area in the valley along the Lindu River. The entire section, excluding the hilly area of Sta.197 km to 201 km, runs along a flat alluvial layer formed by the Lindu River and its tributaries.

2) Existing Road Conditions

The entire road section is gravel or dirt road without any drainage facilities or slope protection. The alignment of the road is satisfactory except for the section in the hilly area. The ferry facility to cross the Lasolo River because the bridge was washed away due to a flood. A new bridge is under construction at present.

3) Land Use

Along the road, development projects, mainly of paddy fields, are in progress.

4) Possibility of Development

There is a high possibility for large-scale development of paddy fields. Land suitable for cultivating mango, banana, cacao, and copra is spreading, and an increase in the production of these products is expected.

5) Components of Construction Work

A proposed road alignment is shown in Appendix A-6.1 and the following major works are needed for the construction.

- Improvement of road alignment;
- Widening of road;
- Pavement;
- Bridges; and

• Drainage.

6.4.2 Preliminary Engineering Design (Link No. 33)

(1) Preliminary Engineering of Bridges

Application of types of bridge superstructures of link No. 33 is the same as description in section 6.2.2 (1) before.

Most bridges of link No. 32 are wooden bridges and there is no bridge at some locations. Moreover, bridges are seriously damaged even though they are of concrete. As a result, replacement of bridges except only one bridge on link No. 33 was recommended.

BR33-27 (Sta.201+800) to be retained is now under construction and the type of structure is steel truss bridge which consists of 60m/span times two spans.

Two long span bridges to cross over the river were required for new road construction. There are two existing bridges, which cross the river, on existing route and both of bridges consists of 60m/span times two spans of steel truss bridge.

For a bridge which requires long distance between abutments due to crossing condition, alternative bridge study for different span arrangement was conducted as described in section 6.7.3. However, arrangement of substructure is restricted by topographical condition for these two bridges.

- BR33-6 (Sta.173+600)

River width at BR33-6 is narrower than that at existing Lindu Bridge since BR33-6 is located at upper stream of Lindu River from the existing Lindu Bridge. Therefore, span length of 60 m is enough to pass over the river at this site. However, this area is a flood area of Lindu River so that additional side span is required. As a result, steel truss was recommended for the main span of this bridge and PC I-girder was recommended for both side spans.

- BR33-10 (Sta.183+600)

Landewe River is about 80 m in width and its river bed is very deep. Therefore, it is difficult to build up high piers and to erect the concrete girder. A steel truss bridge with two spans of 60 m/span was recommended.

General views of proposed BR33-6 (Sta.173+600) and BR33-10 (Sta.183+060) are shown in Figure 6-4-1 and Figure 6-4-2 respectively.

For bridge foundations, spread footing is recommended for bridges in mountainous area near the Border of province based on the results of soil investigation. In addition, spread footings are applicable to bridges in mountainous area near the end of link No. 33.

Depth of bearing layer based on boring data is about 4m from the ground surface. Spread footing is suitable though the height of substructure becomes higher in the same manner as link No. 22. In other areas of this link, bridges require pile foundations with piles of 13 m to 20 m long based on the soil conditions.

Quantities of bridge improvement on link No. 33 are summarized as shown in Table 6-4-2. And proposed bridge list of link No. 33 is shown in Table 6-4-3

Cla	assification	The Number of Bridges	Bridge Area (m ²)
	Bridge length ≦50m	22	5,012
New Construction	Bridge length >50m	4	3,336
	Total	26	8,348
Retain Existing		1	720

Source: Study Team

(2) Preliminary Engineering of Slope Protection Works

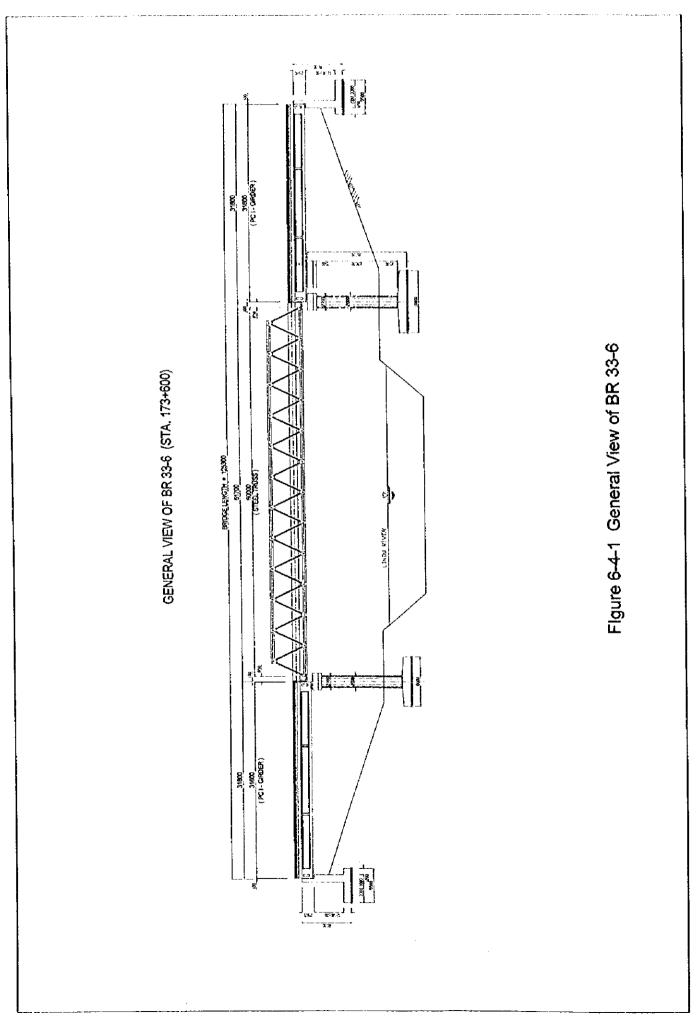
Slope protection works are constructed to protect the slopes from erosion or weathering by covering them with vegetation or structures and also to stabilize the slopes by means of drainage works or retaining structures. The following types of slope protection works are adopted for the feasibility route considering the terrain and geology, as shown in Table 6-4-4 and Table 6-4-5.

Required height of slope protection works for each link is Figure 6-4-3.

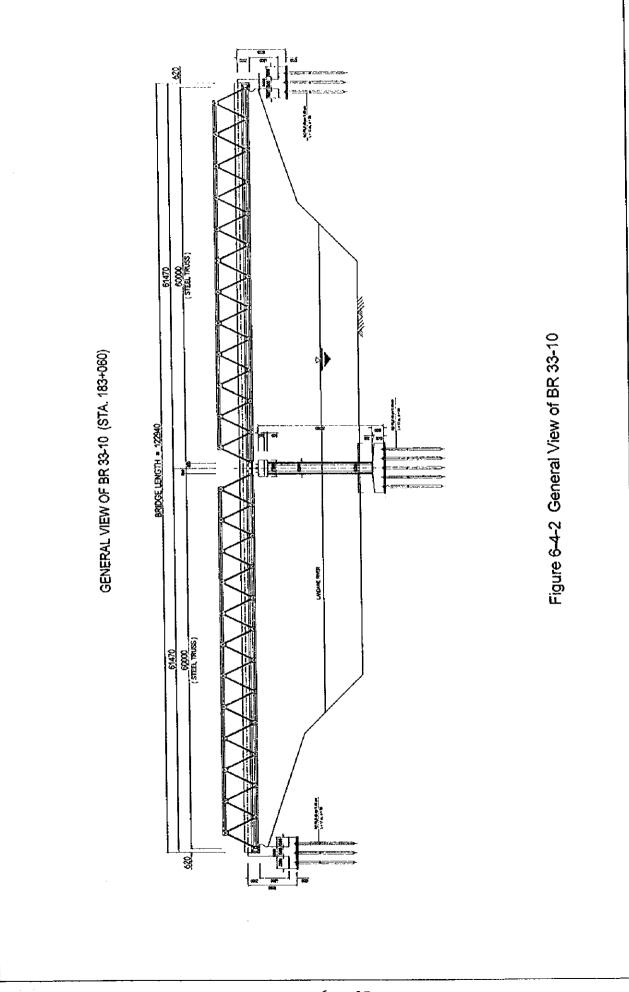
Table 6-4-4 Adopted Slope Protection Type (Fill Slope)

Station(km)GeologySlope Protection Type196.2 - 197.5AllviumMat Gabion			
196.2 - 197.5 Allvium Mat Gabion	otation(Kin)	Geology	Slope Protection Type
	196.2 - 197.5		Mat Gabian

Source: Study Team


Table 6-4-5 Quantities of Slope Protection

	Cut		Fill
	Sprayed Concrete Cribwork(m ²)	Shotcrete (m ²)	Mat Gabion (m ²)
Quantity	0	0	559


Source: Study Team

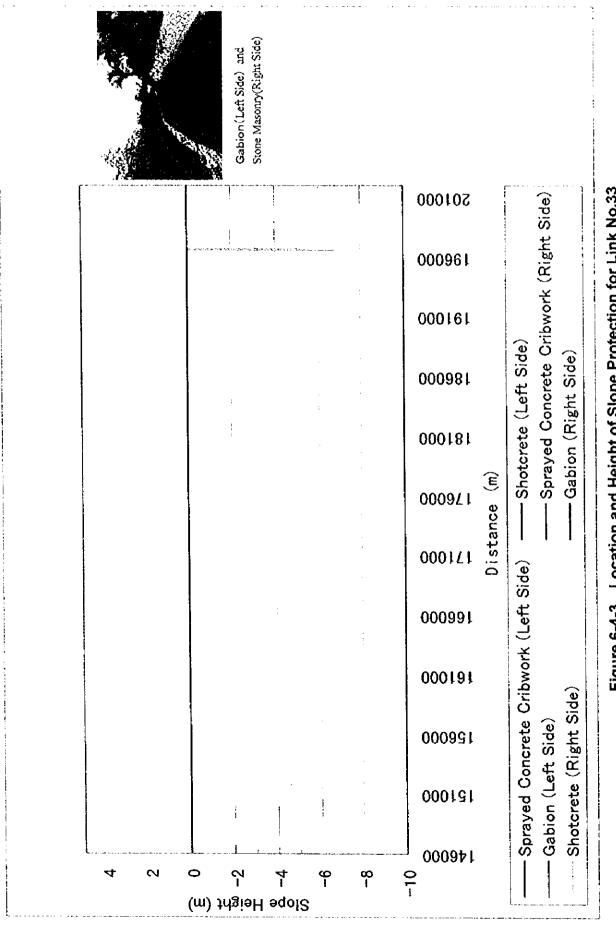

	Porine	Data			32,33	30,31	30,31	12.05	8	2/2	273	278	278	208	203	208	20B	19.20	19.20	စ္	19,17	ς.	2	2	<u>+</u>	ដ	က္	τ <u>η</u>	<u>က</u>	ς. 	ا ت	
			ĕ	Nos.		•	<u>للہ م</u>	•		• :	•	•	•	•	 '	•	, :	•	•	•	•		• ;	•	 ,	• •	•	•	· · ·	• •	-	
		ž	-	ີ ເຊິ່		•	•-•	•	• • •	•••		• • •		••••	•••		••••		• • •	• • •	••••		•••		• .	•	• • •	••••	• • • •	• • • •		
		MOVE-FIX	لے۔۔۔ ہو(ش)		;	ω					9			+													i	<u>ن</u>				
		~	Nos.			2							_												: 					: 		
	Piers			Nos.											8																	
			Pile/1 pier	_{											• • • •																	
		FIX+FIX		(ii) , rb(ii)	•			•	•	1	•	-			17		•		-			•	•		-		•					
			/m/u4	_	2	2	•	•	2	2	9	1	•	•	8		•	•		•	•		•		•	•	•	9	•	••••	1	RETAIN EXISTING
S		 	No.	3	•		1	•			-	• 	-	•		ŀ	•	•				•	• .	•		•	•	.	•	•	•	LAIN E
Sub-structures			Ц	Nos.	• • •		•	•	•	•	,	•		<u>မ</u>	8	φ 	15	9	5	<u>မ</u>	<u>မ</u> 	9	•		•••	، 	•	,	•	•	•	н Ш
Sub-		MOVE	Pije	La(m)	1	•	•	•	•	•	•	•	•	4	5	-	17	ξ	5	5	ន	20	'		•	•	•	•	٠	•	•	
1		Ž	(m)c4	111)011	∞	ŵ	¢	80	∞	ω	9	ω	8	9	ى	9	ю	ю	6	9	ø	9	∞	<u>e</u>	က	œ	9	5	6	9	<u>0</u>	
	Abutments		Nine		2	2		₹	2	2	2	-	-	-	2	-	-		-	-	-		-	-	- -	-	-	2	-	.	-	
	Abut			Nos.		٠	.	•	•		•	•	•	16	•	15	16	9	19	16	16	16		۱	•	•	 . 	•	•		•	
		×	Pije	(m) La(m)		,						•	1	4	'	4	4	ت	₽ 12	5	ន	ຊ	•	•	•		,		•		 	
		FIX	1		•		00	eo		 •	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	æ	9	╊╌╾ ╎╹	9	9	9	9	9	8	9	ω	ç	æ	8	10		8	ę	6	
				Nos.	 .	•			•		•				.		-	 -	-			-	-	-	-	-			-	<u>.</u> 	<u> </u>	
		Types of	5		read	read	read	read	read	read	read	read	read	ile	le	9	le	e	e	e	le	lle	read	fead	read	read	read	read	read	oread	read	e Ie
		1	Found		ŝ	ß	8	So	S	Sp	ŝ	ß	Spread	ο.		. a.	ſ.		a 	<u>a</u>	: n .		ે ક	ઝ	ß	S	ß	တိ	ß	မှ	Ъ.	u.
	Types of	Super-	structures		RC-T	RC-T	RC-T	RC-T	RC-T	Rc.T	PC-ST-PC	RC-T	RC-T	RC-T	Steel Truss	RC-T	RC-T	RC-1	RC-T	RC-T	RC-1	RC-T	RC-T	ş	RC-T	RC-1	Rot	RC-T	RC-T	80-T	Ģ	Steet Truss
	Ridop	Width	Ē		7.6	7.6	7.6	7.6	9.6	9.6	9.6	7.6	7.6	7.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	7.6	7.6	7.6	9.6	9.6	9.6	9.0 9.0	9.6	6.0
	·•				20.0	20.0	20.0	30.0	20.0	20.0	0+30	20.0	20.0	20.0	60.0	20.0	20 0	20.0	20.0	200	20.0	20.0	20.0	30.0	30.0	20.0		20.0	20.0		30.0	60.0
		Span	Arrangement			0) @	4	@ (0) @) $\tilde{\phi}$	6	0 0) @ ~) @ ෆ) @ -) @ -	0	2 @
	Noc	of §	С		~	10			2	2				-		• ~	•		•	~		• • • • •	-				-	3			-	2
			Т	ε Ξ	40.0	60.0	20.0	30.0	40.0	40.0	120.0	20.0	20.0	20.0	120.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	30.0	30.0	20.0	20.0	60.0	20.0	30.0	30.0	120.0
	ų s	5		ε	50	40 80 80 80 80	710	. 750	8	280	009	00	370	710	18	20	160	790	510	ŝ	667 1	- 170	- 350	- 760	\$35	620	1 360	. 520	98 1	+ 35	• 33	+ 800
		124		Ę	167	5	158	159	165	173	173	175	1	+ 80 180		3	18	185	187	189	161	192	194	195	- <u>1</u>	197	198	8		500	200	201
╞			L .		† -	- <u>`</u> ~		6	4	- - -	o co		- ac	σ	, ç		5	<u>ا</u> د	2 4	<u>ب</u>	9	<u>}</u>	ě	<u>.</u> 6	8	3	3	្រុះ	2	2	28	27
		Bridge	Š		33		3			3	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3	3 8					इ.स.	: : : : : :		33	8	23 -	3	33 33	3 8	8	8	33	8
L					L _H				i ac) a	ä	6	5 8	â		2 8		ĝ	5 8		្ព័ដ្ឋ	H H	6	Ж	8		S a	6		<u> </u>	Щ	Щ.

Table 6-4-3 Proposed Bridge List of Link No.33

•

(3) Cost Estimates

1) Estimated Project Cost

Cost items consist of preparation works, pavement, earth work, drainage, bridge, slope protection and safety facilities works. The cost for engineering service was estimated at 20% of the total construction cost consisting of direct and indirect cost. A contingency has been included in 10 % of the total of construction and engineering cost. The ratio of major item costs to the total cost is shown in Figure 6-4-4 and Table 6-4-6 shows estimated cost.

2) Implementation Plan

As shown in Figure 6-4-5, the construction period is 5 years consisting of one year for preparation of project for fund raising plan, 1.5 years for detailed design of the roads and 2.5 years for construction. Also, the investment plan was set in accordance with the construction plan.

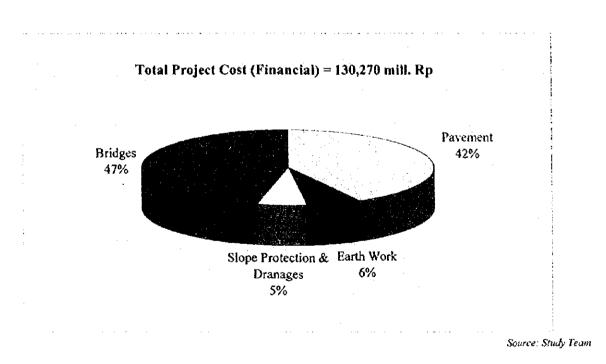


Figure 6-4-4 Construction Cost Ratio for Link No. 33

			i l				I otal Proceeding	locat Fromming (Ra) (Ficeno	(Financial Total (Niit.Rp)
ltem	Unit	Quantity	Foreign (USS) 1 F	1 Financiał (Rp) - B	Ferriconi e (Rp)	Foreign (USS)			
1. Presparation Works Clearing and Grubbing	Ę	477,144	0,23	1,8671	2,099	109,743	890,827,848	1,001,525,256	2.054
2. Pavement	8	14 100	39.50	436.896	392,152	556,950	6,160,233,600	5,529,343,200	12,064
New Road Asphalt Concrete + Sub base (1ype A)		41 360	20.991	234 564	211,846	868,146	9,701,567,040	8,761,930,500	104'01
Widning Koad Asphall Concrete Tour date (17/27)		55.2%	1.75	13,028	15,199	\$6,601	720,365,112	POK'CZP'04X	
	11					1,521,697	767,601,286,01		
3 R44 UV-45								227 620 646	050 :
J.Lartin Work	E	113,665	0.92	7,4071	8,213	104,5721	CC0'016'198	200000000	89
CXCHYBIOUL (VALIMAN)	Ê	883	4.12	33,605	36,492	3,638	C17'5/0'67	202 12L 202	108
Contraction (Sound Access)	Ê	38,481	1.20	8,610	10,050	46.177	807 KIS 166	012122 000	2 839
Visitional and Visition and Vis			-			154,387	e71'406'707'!		· · · · · · · · · · · · · · · · · · ·
4.Drainage							700 795 080	698.576.760	1,392
Pipe Culvert (D=100cm)	E	1,260	44.35	634,758	- 074 420	16.940	224,931,340	204,802,688	405
Pipe Culverr (D=60cm)	ε	1,109	15.28	207,787		45,625	429.066.680	351,484,840	513
Box Cuiven (B-2.0m, H-2.0m)	E	140	325,891	3,004,702	000 17	44.745	1.096.645.000	960,840,000	172,1
	F	002.61		A-0.40		163,199	2,550,438,100	2,215,704,288	4.280
8-000									
6 Show Protection								0	0
Consumed Concrete Chibwork	ä	0	14.68	127,197	88.984	5		, c	0
Shotcrete Work	m2	0	11.82	101,390+	67,157			0	0
Stone Masonry	۲ ۲	0	6,91	110,280	11/201	5143	40 574 456	34.308.066	55
Mat Cabion	ž	559	9.20	40C'71	120 5		0	0	0
Sodding	Ê		0.081	00710	12017	5.143	40,574,456	34,308,066	ድ
SubS	- -								
	٤ 1		3,500.00	22,400,000	17,920,000	0	0	0	•
6.Turnel		, , ,							
7.Bridges	°Z	23				2,054,381	16,037,591,538	12,727,447,101	10/10
8 Cates Partitions Works								VVV 180 276	<u>000</u>
Cuard Rathing	E	2,440	11.30	168,012	143,025	27,572	407,747,200	V0.001 147	76
Traffic Sign	cach	185	27,981	426,548	373,259	5,173	102,408,81	195 108 280	482
	ε	55.460	0.42	4,231	215,5	310 92	723,455,047	613.092.427	1.317
Sub-8									
9 Mohilization & Temporally Works (20% of Total Cost)						765,213	8,111,259,054	7.056,795,377	277,01
						4 270 901	46,130.220.923	40.165.376.919	S0276
10.Sub-Total						1001/4046			
	1	002.03	100.0	20.000	20.000	0	1,054,000,000	1,054,000,000	1,054
11.Land Acquisition	and a start	20	0.00	15,000,000	15,000,000	0	300,000,000	300,000,000	8
12.Compensation								X 215 101 054	19.738
13.Eneineering Cost (20% of 10+11+12)						1,117,235	760'871'662'2	4 783 547 987	578-11
14.Contingency (10% of 10+11+12+13)						594,704	20 077 194 5771	4,100,041,001,001 57,619,027,861	130.270

e 6-4-6 Total Construction Cost For Border of Province - Asera Road (Link No.33)

	-		6661	2000	2001	2002	2003	10.01
Item	Unit	Quantity						
1. Preparation of Project								
2. Survey and Design	Ř	55.46						
3. Construction								
Earth Work	Û.	114,548						
Slope Protection	Ë	•						
Tanncl	8	0.0						
Bridges	°Z	23						
Pavement	Ę	55.46						
Forcien (USS)				307,240	883,207	2.272,807	3,078,485	6,541,740
Local Financial Cost (Rp)				2.915,860,390	8,934,240,318 0 133 301 621	19.000,284,748	50,076,799,121 26,334,866,901	52.619.027.861
Local Economic Cost (Rp)	_			710,040,104,2	10010010	51.007	60 700	130.270
Total Financial Cost (Mill, Rp)	•			5.738	17,495	39.761	58.967	121.961

Figure 6-4-5 Implementation Schedule For Border of Province - Asera Road (Link No.33)

(4) Economic Analysis

1) Economic Project Costs

The economic investment costs were estimated in constant 1998 prices. The financial investment costs in terms of market price include the component of taxes. The economic costs for economic analysis were obtained by subtracting the portion of transfer payment such as taxes from financial costs. Implementation is scheduled over four years from 2000 to 2003. The phased financial and economic investment costs (initial investment) are summarized in Table 6-4-7.

		(Million Rp.
Year	Financial Prices	Economic Prices
2000	6,173	5,738
2001	18,296	17,495
2002	43,092	39,761
2003	62,709	58,967
Total	130,270	121,961

Table 6-4-7	Phased Initial Investment Costs in 1998 Prices
	(F/S - Link No. 33)

Source: Study Team

The maintenance cost of the proposed road follows the engineering study results of the cost estimates. Besides, the maintenance cost of the proposed road in the case of "without the improvement of the proposed road" was treated as a negative cost.

2) Economic Benefits

Benefits are classified into two types, one is the direct benefit and the other is the indirect benefit or intangible benefit.

The direct benefits which would be realized from the implementation of the Project are defined as the savings in travel costs, composed of the vehicle operating cost and vehicle time cost when comparing the "with" and "without" project conditions.

The benefit of vehicle operating costs was estimated as a difference of vehicle operating costs between "with" Project" case and "without" Project" case. The vehicle operating cost was derived from the obtained daily vehicle-kilometers and the unit vehicle operating cost by vehicle type. In addition, a promotion of traffic safety and a saving in accident costs were anticipated.

In this economic analysis, the above-mentioned direct benefits, e.g. the saving in vehicle operating cost was computed as a quantified benefit. The calculation of direct benefits were made for the planning year of 2003 and 2018.

As a result, the saving in vehicle operating cost is summarized as shown in Table 6-4-8.

	(F/S - Link No. 33) (Million Rp. at 1998 price)
Year	Benefit of Saving in VOC
2004	35,890
2018	83,205

Source: Study Team

3) Economic Cost-Benefit Analysis

.

Table 6-4-8

The analysis follows the conventional discounted cash flow method in determining the economic internal rate of return (EIRR), the net present value (NPV) and the benefit cost ratio (B/C). (NPV and B/C are calculated at a discount rate of 15 percent.) The project life is assumed to be 20 years after the completion of the construction.

Estimated Economic Benefits

The benefits in the intermediate years were interpolated and those beyond 2018 were assumed to be fixed. The total economic project costs and benefits streams are presented in Table 6-4-9. The efficiency measures were calculated and the results are as follows:

Efficiency Measures	F/S - Link No. 33
EIRR	33.4%
NPV (Million Rp.)	106,586
B/C	2.79

Source: Study Team

These results indicate that implementation of the project (road improvement of link No. 33) is economically feasible.

					·		(N	fillion Rp.
		Benefits		Costs		I		Net
	Year	VOC	Total	Invest.	Maint	Total	Maint.	Cash Flow
		Saving		Costs	Cost		Cost	TRW
					(With)		(Without) 0	
1	1999			0	0	0	6,975	1,13
2	2000			5,738	101	5,839	101	-17,49
3	2001			17,495	101	17,596	101	-17,49
4	2002			39,761	101	39,862		-
5	2003	0	0	58,967	101	59,068	101	-58,95
6	2004	35,890	35,890	0	101	101	101	35,89
7	2005	39,269	39,269	0	101	101	6,975	46,14
8	2006	42,649	42,649	0	101	101	101	42,64
9	2007	46.029	46,029	0	101	101	101	46,02
10	2008	49,408	49,408	0	101	101	101	49,40
n	2009	52,788	52,788	0	101	101		52,7
12	2010	56,168	56,168	0	10,443	10,443		52,7
13	2011	59,547	59,547	0	101	101		59,5
14	2012	62,927	62,927	0	101	101		62,9
15	2013	66,307	66,307	0	101	101		73,1
16	2014	69,686	69,635		101	101		69,6
17	2015	73,066	73,066		101	101		73.0
18	2016	76,446	76,446	0	101	101		83,3
19	2017	79,825	79,825	0	10,443	10,443		69,4
20	2018	83,205	83,205	0	101	101		83,2
21	2019	83,205	83,205	0	101	101		90.0
22	2020	83,205	83,205		101	101	•	83,2
23	2021	83,205	83,205	0	3,515	3,515		82,0
24	2022	83,205	83,205		101	101		86.6
25	2023	83,205	83,205	0	101	101	101	83,2
				<u> </u>				
				121,961	26,522	148,48	49,396	L

Table 6-4-9 Economic Analysis for F/S of Link No. 33

Source: Study Team

Assuming that the benefits and cost stream might alter $\pm 10\%$, $\pm 20\%$, the effect on the EIRR was tested and the results are summarized in Table 6-4-9. In the most severe case of - 20% benefit and + 20% cost, the value of EIRR is 24.8%.

Table 6-4-9	EIRR by Altered Benefit and Cost
	(F/S - Link No 33)

Cost		Benefit	
	Base	-10%	-20%
Base	33.4%	30.9%	28.4%
+10%	31.1%	28.8%	26.4%
+20%	29.2%	27.0%	24.8%

Source: Study Team