23. FINANCIAL ANALYSIS

23.1 Purpose

1. The purpose of the financial analysis is to examine the viability of the project itself and the financial soundness of the project during the project life.

23.2 Methodology of the Financial Analysis

1. Figure 23-2-1 shows a flowchart of the financial analysis.

23.2.1 Viability of the Project

2. The viability of the project is analyzed using the Financial Internal Rate of Return (FIRR) by means of the Discounted Cash Flow Method. The FIRR is a discount rate in which net present values of costs and the revenue during the project life are considered equal. It is obtained from the following formula:

$$\sum_{i=1}^{n} \frac{Bi - Ci}{(1+r)^{i-1}} = 0$$

where, n: Period of financial calculation (project life)

Bi : Revenue in i-th year Ci : Costs in i-th year r : Discount rate

3. Revenue and the cost in this analysis cover the following items

Revenue: Operating revenues by the project

Costs : Investments for the project

Maintenance, repair, personnel and administration costs

23.2.2 Financial Soundness of the Project

4. The financial soundness of the project is appraised using the following indices calculated based on the projected financial statements in order to examine the project's profitability, creditworthiness and efficiency.

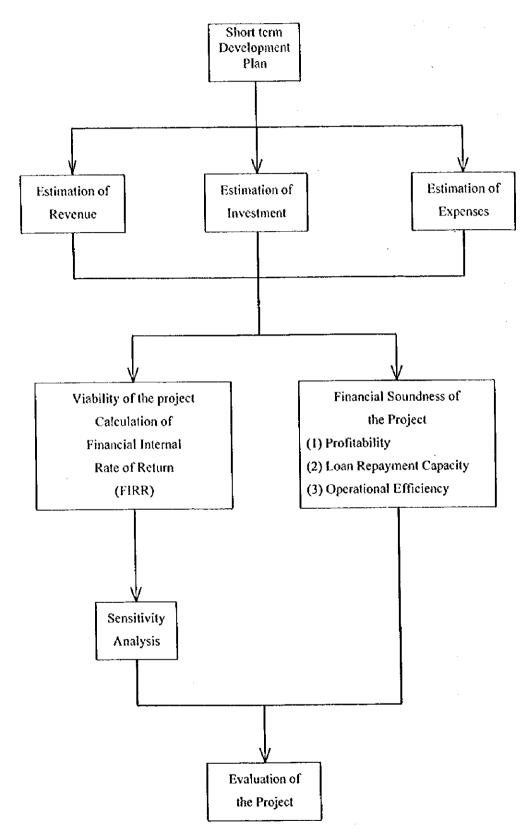


Figure 23-2-1 Flowchart of the Financial Analysis

(1) Profitability	
5. Rate of Return on Net Fixed Assets	
Net Operating Income =	
Net Fixed Assets	
6. This indicator shows the profitability of the investments, whare presented as net total fixed assets. It is necessary to keep the rate about the average interest rate of the funds for investments.	
(2) Loan Repayment Capacity	
7. Debt Service Coverage Ratio (times)	
Net Operating Income + Depreciation Cost	
Repayment Amount of Principal and Interest for Long-term loans	
8. This indicator shows whether the operating income can cover repayment and the interest on the long-term loans. The ratio must be highly than 1.0.	
(3) Operation Efficiency	
Operating Ratio (%)	
Operating Expenses	
= X 100 Operating Revenues	
Working Ratio (%)	
Operating Expenses - Depreciation Costs =	
Operating Revenues	

9. The operation ratio shows the percentage of port revenue that is consumed by operating expenses. It must be less than $70\sim75\%$. Working ratio shows the efficiency of the routine operations of the port. It must be less than $50\sim60\%$.

23.3 Prerequisites of Analysis

23.3.1 Scope of the Analysis

1. The financial analysis is implemented from the viewpoint of the port management body, according to the short-term development plan. Based on the examination of the cargo handling forecast.

23.3.2 Fund Raising

2. For the port facilities developed by the public sector, all the initial investment costs are assumed to be raised by foreign funds. However, it is important to invest the internal resource of CEPA as much as possible which is made from international airport sector and port of Acajutla sector, to reduce the debt of foreign loan. Reinvestment costs and any cash shortage will be covered by the internal resources of the CEPA. Cash excess will be deposited in a domestic bank with an annual interest rate of 10%.

(1) Foreign funds

Covered range: 75% of the initial investment costs of the project

Loan Period : 25 years including a grace period of 7 years

Interest rate : 2.2% per annum

Repayment: Fixed amount repayment of principal (Note) These conditions are quoted from those of the OECF (Japan)

(2) Other foreign funds

Covered range: 25% of the initial investment costs of the project

Loan period : 12 years including a grace period of 3 years

Interest rate : 7.5% per annum

Repayment : Fixed amount repayment of principal

(Note) These conditions are quoted from those of the BCIE

3 year grace period is assumed by study team

(3) Weighted average interest rate

3.525% (2.2% *0.75 +7.5% * 0.25)

23.3.3 Project Life and Base Year

(1) Project life

3. Taking account the conditions of the long-term loans and service lives of the port facilities, the project life for the financial analysis is determined as 35 years: 5 years of construction and 30 years of management and operation.

(2) Base year

4. In principal, all costs and revenues are indicated in prices as of December 1997 (US\$1.00 = 130Y = 8.75colon). Neither price inflation nor increases in nominal wage are considered during the project life.

23.3.4 Revenue

5. Revenues from port activities are calculated mainly based on the present tariff of Acajutla port. However, some revisions to the present tariff of container cargo will be incorporated to ensure competitiveness with some surrounding ports. La Union new port container cargo tariff is shown in Table 23-3-1. The revenues/year during the project life are shown in Financial Statement Table 23-4-6 and 23-4-7.

23.3.5 Expenditure

(1) Investment

6. Initial investment costs for the infrastructure development for B-3 and C-3 are shown in Table 23-3-2 and 23-3-3. The depreciable facilities will be renewed by public sector based on their service lives, the reinvestment cost is included in the investment.

(2) Personnel cost

7. Annual personnel costs are estimated based on the required

Table 23-3-1 La Union New Port Container Cargo Service Tariff

	Service	: .	unit rate (US\$)	unit
	Loading / unloading	FCL	21.55 *	/container
	_	LCL	21.55 *	/container
		Empty	21.55 *	/ container
Handling	Assignable to consignee or shippe	FCL	4.31 *	/ MT
		LCL	4.31 *	/ MT
	Assignable to shipping company	FCL	12.79	/ container
		LCL	12.79	/ container
	Empty box handling		19.40	/ container
	Filling		3.60	/ MT
Terminal	Emptying		3.60	/ MT
	Loading / Unloading		16.43	/ container
	Dry Container	ļ	1.20	/TEU/day
Storage	Reefer Container		20.10	/TEU/day

Note: * Tariff of Quetzal Port

Table 23-3-2 Project Cost of the La Union New Port B-3

Unit: 000US\$ Depr. Depr. Initial Investment Costs by Facilities Mainte. Initial Investment Period /Year Cost Total **Direct Cost** P.Cont. Eng. 3,398 1,257 100,664 6,437 7,081 87,147 Short Term Development 7,072 0 585 5,845 643 Mobilization Container Berth 463 383 42 38 Dredging 81 30 465 1,153 13,955 1,269 11,533 Container Wharf 53 16.0204 30 1,602 146 132 1,324 West Revetment 30 262 7,850 714 619 6,488 Reclamation 130 39.0346 30 355 323 3,903 3,226 **Pavement** 30 24 726 7.26 60 600 66 Building 48 30 14.2538 1.425 130 118 1.178 Utilities 982 29,926 157.569 2,473 2,721 24,732 total Bulk Berth 70 847 77 700 Dredging 13 3.8236 30 382 35 32 316 East Revelment 407 30 1,009'12,206 1,110 10,088 Main Wharf 2,655 3,213 292 266 Reclamation 30 113 33.8316 308 280 3,383 2,796 Pavement 27 819 8.1917 30 74 68 677 **Building Works** 10.6722 30 36 1,067 88 97 882 Utilities 595 119.519 21,918 18,114 1,993 1,811 total Channel 580 7,020 638 5,802 **Channel Dredging** 5,120 4,231 465 423 Turning basin, Berth Pocket 10 112 1,117 11.1683 92 923 102 **Navigation Aids** 11.1683 112 1,096 13,257 10,956 1,205 total Road 301 190 519 472 5,714 57.1362 4,722 Access Road 15 1,262 18.932 757.28 18,932 Loading Equipment 15 256 153.84 3,846 3,846 Tug Boat 100,664 7,081 6,437 87,147 Grand Total (Initial Investment)

Table 23-3-3 Project Cost of the La Union New Port C-3

Unit:'000US\$ Initial Investment Costs by Facilities Initial Investment Depr. Depr. Mainte. Direct Cost P.Cont. Eng. Total Period Cost /Year Short Term Development 78,062 6,504 5,913 90,479 1,267 3,238 Mobilization 5,375 591 538 6,504 0 Container Berth Dredging 368 40 37 445 Container Wharf 12,264 1,349 14,839 1.226^{3} 110 30 495 Reclamation 5,821 640 582 7,043 30 235 Pavement 3,226 355 323 3,903 39.0346 30 130 Building 600 66 60 726 7.26 30 24 Utilities 1,114 123 13.4794 111 1,348 30 45 total 23,393 28,306 2,573 2,339 169.774 929 **Bulk Berth** Dredging 659 72 66 797 Main Wharf 8,718 959 872 10,549 77 30 352 Reclamation 5,206 573 521 6,299 Pavement 2,796 308 280 3,383 33.8316 30 113 **Building Works** 677 74 68 819 8.1917 30 27 Utilities 903 99 90 1,093 10.9263 30 36 total 18,959 2,085 1,896 22,940 129.95 528 Channel **Channel Dredging** 5,923 652 592 7,167 Turning basin, Berth Pocket 822 90 82 995 Navigation Aids 923 102 92 1,117 11.1683 10 112 total 7,668 843 767 9,278 11.1683 112 Road Access Road 3,735 411 374 4,519 45.1935 30 151 Loading Equipment 18,932 18,932 757.28 15 1,262 Tug Boat 3,846 3,846 153.84 15 256 Grand Total (Initial Investment) 81,908 6,504 5.913 94,325

number of employees in Chapter 21 to manage and operate the future cargo handling volume and port facilities. Unit personnel costs are assumed based on the actual unit cost of Acajutla port in recent years.

(3) Administration cost

8. Annual administration costs are assumed as 30% of the total annual personnel costs based on the actual data of Acajutla port between 1991 and 1995.

(4) Maintenance and repair cost

9. Annual maintenance and repair costs for the infrastructure facilities are calculated as 1% of construction costs. On the other hand, machinery maintenance and repair costs are calculated as 4% of initial installation costs. The costs/year during the project life are shown in Table 23-4-6 and 23-4-7.

(5) Depreciation cost

10. Annual depreciation costs for the infrastructure facilities and cargo handling equipment are calculated by the straight line method, based on their services lives. Residual value after all depreciation is estimated as zero. The costs/year during the project life are shown in Table 23-4-6 and 23-4-7.

(6) Tax

11. A 25% income tax is levied on the profit, and then a further 25% government contribution tax is levied on the balance.

23.4 Appraisal of the Project

23.4.1 Viability of the project

- 1. The result of the FIRR calculation are summarized in Table 23-4-1 and its details are shown in Table 23-4-2, 23-4-3, 23-4-4 and 23-4-5.
- 2. Sensitivity analysis is conducted to measure the impact of

changing conditions on the financial status of the project. The following cases are envisioned.

Sensitivity A: The cost increased by 10%

Sensitivity B: The revenue decreased by 10%

Sensitivity C: The cost increased by 10% and the revenue decreased by 10%

3. Weighted average interest rate of the funds is 3.525% in this study. Since all the cases, FIRR exceeds the weighted average interest rate in all cases, this projects can be judged to be financially viable.

Table 23-4-1 Summary of FIRR Calculation

	В	-3	C-3		
ļ	Case 1	Case 2	Case1	Case 2	
Base Case	8.7%	8.2%	9.3%	8.7%	
Sensitivity A	7.6%	7.1%	8.1%	7.6%	
Sensitivity B	7.5%	6.9%	8.0%	7.5%	
Sensitivity C	6.3%	5.9%	6.9%	6.3%	

Note Cargo Projection Socio-economic Frame

GDP Growth (Case 1) 5.0%/year till 2015

(Case 2) 5.0%/year till 2005,

3.5%/year till 2015 (the average growth in the past)

23.4.2 Financial Soundness of the Project

4. To be on the safe side, Case 2, in which the cargo volume was forecast based on a conservative rate of GDP growth is adopted for the financial soundness analysis. Projected financial statements and financial indicators for the project is shown in Table 23-4-6 and 23-4-7.

1) Profitability

5. The rate of return on net fixed assets exceeds the average interest rate of the funds from 2007.

2) Loan Repayment Capacity

6. The debt service coverage ratio exceeds 1.0 except for the term of construction period and 2004. This temporary cash shortage can be covered by the internal resources of the management body.

3) Operational Efficiency

7. The working ratio keeps below 50% after 2005 and the operation ratio keeps below 70% after 2006. This means that the operation will be efficient.

4) Appraisal

8. Based on the above indicators, it can be judged that financial soundness of the project can be secured.

23.5 Conclusion

- 1. Judging from the above analysis, the project is regarded as financially feasible. However, attention should be paid to the following issues.
- 1) Public sector has to make efforts to heighten the quality of the service, improve cargo handling efficiency to secure forecast cargo volume and to constantly minimize operating expenses. And, public sector should select the most appropriate funding scheme for investment as far as possible.
- 2) The Government has to set the Contribution tax at a level which allows public sector saving internal resource to cover the cash shortage in the beginning phase of project and reinvestment costs.

Table 23-4-2 FIRR Calculation Short Term B-3 Case 1

Base Case	8.7%
Sensitivity Analysis A	7.6% Cost 10% increase
Sensitivity Analysis B	7.5% Revenue 10% decrease
Sensitivity Analysis C	6.3% Cost 10% increase, Benefit 10% decrease

					<u>-</u>	Cost	Revenue	T	Net Pr	esent Value (N	PV)
ı	year	Initial	Renewal	Mainte	Operation	Totał	Tota!	Revenue	Revenue	Cost	Revenue
ı	´	cost	cost	cost	cost]		- Cost	<u> </u>		- Cost
\neg									1		
1	1999	1,210,000	j	ľ	114,000	1,324,000	0	-1,324,000	0	1,324,000	-1,324,000
2	2000	2,090,000			114,000	2,204,000	c	-2,204,000	0	2,027,413	-2,027,413
3	2001	8,913,904	ŀ		114,000	9,027,904	. 0	-9,027,904	0]	7,639,204	-7,639,201
4	2002	24,413,011		l	114,000	24,527,011	0]	-24,527,011	0	[9,091,340]	19,091,340
5	2003	52,528,754			178,000	52,706,754	. 0]	-52,706,754	0	37,738,850	-37,738,850
6	2004	11,507,796	이	1,126,565	2,245,750	14,880,111	4,661,287	10,218,824	3,070,145	9,800,747	-6,730,602
7	2005		ol	1,255,734	2,245,750	3,501,484	8,578,165	5,076,680	5,197,302	2,121,465	3,075,838
8	2006		0	1,255,734	2,245,750	3,501,484	9,741,676	6,240,192	5,429,350	1,951,490	3,477,860
9	2007		oj	1,255,734	2,245,750	3,501,484	10,905,202	7,403,717	5,590,858	1,795,134	3,795,724
10	2008		ol	1,255,734	2,245,750	3,501,484	12,068,701	8,567,216	5,691,620	1,651,306	4,040,314
B	2009		o	1,255,734	2,245,750	3,501,484	13,232,212	9,730,728	5,740,351	1,519,001	4,221,349
12	2010		0	1,255,734	2,245,750	3,501,484	14,395,724	10,894,239	5,744,736	1,397,297	4,347,439
13	2011		1,112,000	1,255,734	2,245,750	4,613,484	15,559,235	10,945,751	5,711,569	1,693,543	4,018,026
14	2012		0	1,255,734	2,245,750	3,501,484	16,722,747	13,221,263	5,646,839	1,182,361	4,464,478
15	2013		3,846,000	1,255,734	2,245,750	7,347,484	17,886,260	10,538,775	5,555,816	2,282,270	3,273,54
16	2014			1,255,734	2,245,750	3,501,484	19,049,771	15,548,287	5,443,130	1,000,486	4,442,64
17	2015		5,148,000	1,255,734	2,245,750	8,649,484	19,049,900	10,400,416	5,007,051	2,273,420	2,733,63
18	2016		0	1,255,734	2,245,750	3,501,484	19,050,030	15,548,545	4,605,914	846,588	3,759,32
19	2017		0	1,255,734	2,245,750	3,501,484		15,548,675	4,236,911	778,759	3,458,15
20	2018		13.784.000		2,245,750	17,285,481	19,050,288	1,764,804	3,897,471	3,536,412	361,05
21	2019		0		2,245,750	3,501,484			3,585,225	658,968	2,926,25
22	2020		0			3,501,484	19,050,547	15,549,063	3 297 995	606,170	2,691,82
23	2021		0	1,255,734		3,501,484			3,033,776	557,603	2,476,17
24	2022		0	1,255,734		3,501,484			2 790 725	512,927	2,277,79
25	2023		3,846,000			7,347,481			2,567,146	990,086	1,577,06
26	2024		0,010,000	1,255,734		3,501,484		15,549,580	2,361,479	434,027	1,927,45
27	2025		1,112,000			4,613,484			2,172,290	526,017	1,646,24
28	2026		1,112,000	1,255,734		3,501,484			1,998,257	367,264	1,630,99
29	2027		5,148,000			8,649,481			1,838,166	834,540	1,003,62
30	2027		5,140,000			3,501,484			1,690,902	310,770	1,380,13
31	2023		ì	1		3,501,484			1,555,435	285,871	1,269,56
32	2030		ľ			3,501,484			1,430,821	262,967	1,167,85
33	2030		۱ ×	1,255,734		3,501,484				241,897	1,074,28
34	2032		1,112,000			4,613,484			1,210,728	293,183	917,54
	2032		-3,527,000			-25,516			1,113,723	-1,492	1,115,21
35	Total	100,663,465	· · · · · · · · · · · · · · · · · · ·			237,793,826			108,531,916	108,531,916	1,113,21

FIRR= 8.7%

Table 23-4-3 FIRR Calculation Short Term B-3 Case 2

Вазе Сазе	8.1%
Sensitivity Analysis A	7.0% Cost 10% increase
Secsitivity Analysis B	6.9% Revenue 10% decrease
Sensitivity Analysis C	5.9% Cost 10% increase, Benefit 10% decrease

	т Т		Т	T		Cost	Revenue		Net I	Present Value (1	
	year	Initial	Renewat	Mainte	Operation	Total	Total	Revenue	Revenue	Cost	Revenue
ļ	1	cost	çost	cost	çost	1	- 1	- Cost		. 1	- Cost
-1		•		<u>-</u>			· · · · · · ·				
ı.	1999	1,210,000	ì]	114,000	1,324,000	. 0	-1,324,000	0	1,324,000	-1,324,000
2	2000	2,090,000		i	114,000	2,201,000	0	-2,204,000	0	2,038,007	-2,038,007
3	2001	8,913,901			114,000	9,027,904	0	-9,027,904	0	7,719,253	-7,719,253
4	2002	24,413,011		ļ	114,000	24,527,011	0	-24,527,011	0	19,392,204	-19,392,204
5	2003	52 528,754		. 1	178,000	52,706,754	0	-52,706,754	. 0	38,533,903	-38,533,903
6	2004	11,507,796	0	1,126,565	2,245,750	14,880,111	4,661,287	-10,218,824	3,151,206	10,059,516	-6,908,310
7	2005		0	1,255,734	2,245,750	3,501,484	8,578,165	5,076,680	5,362,403	2,188,856	3,173,547
8	2006	1	٥	1,255,734	2,245,750	3,501,484	9,457,825	5,956,341	5,467,019	2,024,004	3,443,014
9	2007		0	1,255,734	2,245,750	3,501,484	10,337,442	6,835,957	5,525,436	1,871,568	3,653,868
10	2008		0	1,255,734	2,245,750	3,501,484	11,217,080	7,715,596	5,544,054	1,730,612	3,813,442
11	2009		0	1,255,734	2,245,750	3,501,484	12,096,718	8,595,234	5,528,526	1,600,273	3,928,254
12	2010		o	1,255,734	2,245,750	3,501,484	12,976,357	9,474,873	5,483,891	1,479,749	4,004,141
13	2011		1,112,000	1,255,734	2,245,750	4,613,484	13,855,995	9,242,511	5,414,619	1,802,849	3,611,771
14	2012		0	1,255,734	2,245,750	3,501,484	14,735,634	11,234,150	5,324,676	1,265,251	4,059,426
15	2013		3,846,000	1,255,734	2,245,750	7,347,484	15,615,271	8,267,787	5,217,568	2,455,032	2,762,535
16	2014		0	1,255,734	2,245,750	3,501,484	16,494,911	12,993,426	5,096,391	1,081,845	4,014,516
17	2015		5,148,000	1,255,734	2,245,750	8,649,484	17,375,343	8,725,858	4,964,097	2,471,139	2,492,959
18	2016		ا أ أ	1,255,734	2,245,750	3,501,484	17,073,800	13,572,316	4,510,569	925,025	3,585,541
19	2017		o	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	4,707,077	855,357	3,851,720
20	2018		13,784,600	1,255,734	2,245,750	17,285,484	19,268,860	1,983,376	4,352,567	3,901,550	448,017
21	2019	'	0	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	4,024,751	731,368	3,293,389
22	2020		l ol	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	3,721,636	676,285	3,045,350
23	2021		0	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	3,441,344	625,352	2,815,992
24	2022		0	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	3,182,162	578,254	2,603,908
25	2023		3,846,000	1,255,734	2,245,750	7,347,484	19,268,860	11,921,376	2,942,500	1,122,016	1,820,484
26	2024			1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	2,720,888	494,432	2,226,455
27	2025		1,112,000	1,255,731	2,245,750	4,613,484	19,268,860	14,655,376	2,515,966	602,390	1,913,576
28			`	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	2,326,478	422,761	1,903,717
29			5,148,000	1,255,734	2,245,750	8,649,484	19,268,860	10,619,376	2,151,261	965,667	3,185,591
30			0	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	1,989,241	361,479	
31	2029		o	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	1,839,423	334,255	1,505,168
32		l	0	1,255,734	2,245,750	3,501,484	19,268,860	15,767,376	1,700,888	309,083	1,391,807
33		l] o]	1,255,734		3,501,484	19,268,860		1,572,787	285,803	1,286,984
31	1	ĺ	1,112,000				19,268,860		1,454,334	348,207	1,196,123
35	1		-3,527,000			-25,516	19,268,860		1,344,802		1,346,583
	Total	100,663,465	31,581,000	37,542,861	68,006,500	237,793,826	492,016,455	254,252,628	112,578,563	112,578,563	(

FIRR= 8.1%

Table 23-4-4 FIRR Calculation Short Term C-3 Case 1

Base Case	9.3%
Sensitivity Analysis A	8.1% Cost 10% increase
Sensitivity Analysis B	8.0% Revenue 10% decrease
Sensitivity Analysis C	6.9% Cost 10% increase, Benefit 10% decrease

		<u>I</u>	T	1		Cost	Revenue	: 1	Net P	resent Value (1	(PV)
	year	Initial	Renewal	Mainte	Operation	Total	Total	Revenue	Revenue	Cost	Revenue
		cost	cost	cost	cost			- Cost			- Cost
								·			: 1
1	1999	1,210,000	1	1	114,000	1,324,000	0	1,324,000	0	1,324,000	1,324,000
2	2000	2,090,000			114,000	2,204,000	0	-2,204,000	0	2,016,108	-2,016,108
3	2001	7,860,581		i	114,000	7,974,581	0	-7,974,581	oļ.	6,672,863	-6,672,863
4	2002	16,736,196	i		114,000	16,850,196	o.	-16,850,196	0	12,897,676	-12,897,676
5	2003	53,369,609	l		178,000	53,517,609	0	-53,547,609	0	37,492,874	-37,492,874
6	2004	13,053,967	0]	1,136,875	2,245,750	16,436,593	4,661,281	-11,775,306	2,985,497	10,527,436	7,541,939
7	2005		0	1,266,717	2,245,750	3,512,467	8,578,165	5,065,698	5,025,825	2,057,905	2,967,920
8	2006		0	1,266,717	2,245,750	3,512,467	9,741,676	6,229,209	5,220,941	1,882,467	3,338,474
9	2007		0	1,266,717	2,245,750	3,512,467	10,905,202	7,392,735	5,346,271	1,721,986	3,624,285
10	2008		0	1,266,717	2,245,750	3,512,467	12,068,701	8,556,233	5,412,276	1,575,186	3,837,091
п	2009	ŀ	0	1,266,717	2,245,750	3,512,467	13,232,212	9,719,745	5,428,178	1,440,900	3,987,278
12	2010		0	1,266,717	2,245,750	3,512,467	14,395,724	10,883,257	5,402,034	1,318,063	4,083,971
13	2011		1,112,000	1,266,717	2,245,750	4,624,467	15,559,235	10,934,768	5,340,897	1,587,405	3,753,492
14	2012	1	0	1,266,717	2,245,750	3,512,467	16,722,747	13,210,280	5,250,924	1,102,911	4,148,013
15	2013		3,846,000	1,266,717	2,245,750	7,358,461	17,886,260	10,527,792	5,137,476	2,113,575	3,023,901
16	2014		0]	1,266,717	2,245,750	3,512,467	19,049,771	15,537,304	5,005,209	922,879	4,082,330
17	2015		5,148,000	1,266,737	2,245,750	8,660,467	19,049,900	10,389,433	4,578,543	2,081,498	2,497,045
18	2016		o.	1,266,717	2,245,750	3,512,467	19,050,030	15,537,563	4,188,248	772,234	3,416,014
19	2017		e	1,266,717	2,245,750	3,512,467	19,050,159	15,537,692	3,831,224	706,401	3,124,823
20	2018		13,784,000	1,266,717	2,245,750	17,296,467	19,050,288	1,753,821	3,504,634	3,181,987	322,646
21	2019		0]	1,266,717	2,245,750	3,512,467	19,050,418	15,537,950	3,205,883	591,093	2,614,791
22	2020		0	1,266,717	2,245,750	3,512,467	19,050,547	15,538,030	2,932,600	540,702	2,391,898
23	2021		0	1,265,717	2,245,750	3,512,467	19,050,676	15,538,209	2,682,612	491,606	2,183,000
24	2022		0	1,266,717	2,245,750	3,512,467	19,050,806	15,538,338	2,453,935	452,441	2 001 49
25	2023		3,846,000	1,266,717	2,245,750	7,358,467	19,050,935	11,692,468	2,244,751	867,040	1,377,711
26	2024		0	1,266,717	2,245,750	3,512,467	19,051,064		2,053,399	378,588	1,674,81
27	2025		1,112,000	1,266,717	2,245,750	4,624,467	19,651,193		1,878,358	455,951	1,422,40
28	2025		Ĉ	1,266,717	2,245,750	3,512,467	19,051,323	15,538,856	1,718,239	316,789	1,401,449
29	2027		5,148,000	1,266,717	2,245,750	8,660,467	19,051,452		1,571,769	714,499	857,269
30	2028		G	1,266,717	2,245,750	3,512,467	19,051,581		1,437,784	265,079	1,172,703
31	2029		o	1,266,717	2,245,750	3,512,467	19,051,711		1,315,221	242,481	1,072,74
32	2030		0	1,266,717	2,245,750	3,512,467	19,051,840		1,203,106	221,809	981,29
33	2031		O O	1,266,717	2,245,750	3,512,467	19,051,840	15,539,373	1,100,541	202,900	897,64
34	2032		1,112,000	1,266,717	2,245,750	4,624,467	19,051,840		1,006,719	244,362	762,35
35	2033	ŀ	-3,527,000	1,266,717	2,245,750	-14,533	19,051,840		920,896	-702	921,59
	Total	94,320,354	31,581,000	37,871,675	68,006,500	231,779,529	504,770,423	272,990,894	99,383,987	99,383,987	_

FIRR=

9.3%

Table 23-4-5 FIRR Calculation Short Term C-3 Case 2

Base Case	8.7%
Sensitivity Analysis A	7.6% Cost 10% increase
Sensitivity Analysis B	7.5% Revenue 10% decrease
Sensitivity Analysis C	6.3% Cost 10% increase, Benefit 10% decrease

Т				· · · · · · · · · · · · · · · · · · ·		Cost	Revenue	<u></u>	Net F	resent Value (NPV)
-	year	Initial	Renewat	Mainte	Operation	Total	Total	Revenue	Revenue	Cost	Revenue
- 1	,	cost	cost	cost	cost			- Cost		. 1	- Cost
\dashv											
ы	1999	1,210,000		1	114,000	1,324,000	ol	-1,324,000	o	1,324,000	-1,324,000
2	2000	2,690,000			114,000	2,201,000	ol	-2,204,000	0	2,027,275	-2,027,275
3	2001	7,860,581	1		114,000	7,974,581	ol	-7,974,581	ol	6,746,989	-6,746,989
4	2002	16,736,196	1	· j	114,000	16,850,196	o	16,850,196	. 0	13,113,182	-13,113,182
3	2003	53,369,609	l l	1	178,000	53,517,609	0	-53,547,609	0	38,330,479	-38,330,479
6	2004	13,053,967	0	1,136,875	2,245,750	16,436,593	4,661,287	-11,775,306	3,069,100	10,822,236	-7,753,136
7	2005	,,	ō	1,266,717	2,245,750	3,512,467	8,578,165	5,065,698	5,195,180	2,127,250	3,067,930
8	2006		ol	1,266,717	2,245,750	3,512,467	9,457,825	5,945,358	5,268,641	1,956,679	3,311,962
9	2007	İ	ol	1,266,117	2,245,750	3,512,467	10,337,442	6,824,975	5,296,895	1,799,785	3,497,111
10	2008	l	0	1,266,717	2,245,750	3,512,467	11,217,080	7,701,613	5,286,755	1,655,471	3,631,284
11	2009		ol	1,266,717	2,245,750	3,512,467	12,096,718	8,584,251	5,241,184	1,522,729	3,721,455
12	2010		e	1,266,717	2,245,750	3,512,467	12,976,357	9,463,890	5,174,450	1,400,631	3,773,819
13	2011		1,112,000	1,265,717	2,245,750	4,624,467	13,855,995	9,231,528	5,082,182	1,696,189	3,3\$5,993
14	2012		0	1,266,717	2,245,750	3,512,467	14,735,634	11,223,167	4,971,442	1,185,020	3,786,421
15	2013	ļ .	3,846,000	1,266,717	2,245,750	7,358,467	15,615,271	8,256,804	4,815,785	2,283,505	2,562,280
16	2014	. 1	0	1,266,717	2,245,750	3,512,467	[6,494,911	12,982,413	4,708,316	1,002,600	3,705,715
17	2015		5,148,000	1,266,717	2,245,750	8,660,467	17,375,343	8,714,876	4,561,945	2,273,830	2,288,115
18	2016		0	1,266,717	2,245,750	3,512,467	17.073.800	13,561,333	4,123,328	848,262	3,275,066
19	2017		0	1,266,717	2,245,750	3,512,467	19,268,860	15,756,393	4,280,305	780,245	3,500,060
20	2018		13,784,000	1,266,717	2,245,750	17 296,467	19,268,860	1,972,393	3,937,094	3,534,086	403,008
21	2019		0	1,266,717	2,245,750	3,512,467	19,268,860	15,756,393	3,621,403	660,135	2,961,267
22	2020		Ð	1,266,717	2,245,750	3,512,467	19,268,860	15,756,393	3,331,025	607,203	2,723,822
23	2021		0	1,266,717	2,245,750	3,512,467	19,268,860	15,756,393	3,063,931	558,515	2,505,415
24	2022		0	1,266,717	2,245,750	3,512,467	19,268,860	15,756,393		513,732	2,304,521
25	2023		3,846,000	1,266,717	2,245,750	7,358,467	19,268,860			989,918	1,602,327
26	2024		e	1,266,717	2,245,750	3,512,467	19,268,860	15,756,393		434,649	1,949,767
27	2025		1,112,000	3,266,717	2,245,750	4,624,467	19,268,860	14,644,393		526,367	1,666,857
28	2026		0	1,266,717	2,245,750	3,512,467	19,268,860	15,756,393		367,740	1,649,624
29	2027	ł	5,148,000	1,266,717	2,245,750	8,660,467	19,268,860	10,608,393		834,008	1,021,595
30	2028		0	1,266,717	2,245,750	3,512,467				311,130	1,395,684
3 t	2029		0	1,266,717	2,245,750	3,512,467					1,283,777
32	2030	i	0	1,266,717	2,245,750	3,512,467	19,268,860			263,236	1,189,839
33			0	1,266,717	2,245,750	3,512,467	19,268,860			242,128	1,686,15
34	2032		1,112,000	1,266,717		4,624,467	19,268,860			293,222	928,55
35	2033		-3,521,000	1,266,717	2,245,750	-14,533					1,124,65
	Total	94,320,354	31,581,000	37,871,675	68,006,500	231,779,529	492,046,45	5 260,265,925	103,337,791	103,317,791	

FIRR= 8.7%

			·
·			
,			
			·
		* .	

Table 23-4-6 Financial Statement

B-3 Case2

[PROFIT AND LOSS STATEMENT	d 801 - 80	insect.																													
TROTTE AND LOSS STATE STATE			2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027		2029
Operating Revenues						4,661	8,578	9,458	10,337	11.217	12,097	12,976	13,856	14,736	15,615	16,495				19,269	19,269	19,269		19,269	19,269				19,269		19.269
Operating Expenses	114	114	314	114	178	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	6,900	, ,	6,900
Personnel	88	88	88	88	137	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1.728	1,728	1,728	1,728	1,728	1,723	1,728	1,728	1,728	1.728	1,728
Administrations	26	26	26	26	41	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518
Maintenance & repairs	0	0	0	0	0	1,257	1,257	1,257	1,257	1,257	1,257	1,257	1.257	1,257	1,257 3,398	1,257 3,398	1,257 3,398	1,257 3,398	1,257 3,398	1,257	1,257	1,257 3,398	1,257	1,257	1,257 3,398	1,257	1,257	1,257 3,398	1,257 3,398	1,257} 3,398	1.257
Depreciation costs	0	0	0	0	0	3,398	3,398	3,398	3,398	3,398	3,398	3,398 6,076	3,398 6,956	3,398 7,835	8,715	9,595		11,409	^	<u>-3,398</u> -12,369	_3,398 	12,369	3,398 12,369	3,398 12,369	12.369	<u>3,398</u> 12,369	3,398 12,369		12,369		12.369
Not Operating Income	-114	-114	-114	-114	-178	-2,239	1,678	2,558	3,437	4,317	5,196	227	400	366	455	355	647	728	1.433	2,309	2,221	3.169	4,395	5,305	6,506	7,562	8,945	10,361	11,982		15.381
Non-operating Revenues	0	0	0	0	0	0	0	0	٨	Ò	45 45	227	400	366	455	355	647	728	1,433	2,309	2,221	3.169	4,195	5,305	6,506	7,562			11,982		15.381
Interest on deposit	- 0	43	116	431	1,289	3,134	3,517	3,448	3,281	3,113	2,943	2,764	2,512	2,272	1,993	1,718	1,400	1,243	1,069	977	884	792	700	608	515	423	331	240	150	69	DI.
Non-operating Expenses Interest on long-term loans	ŏ	43	116	431	1,289	3,134	3,517	3,448	3,281	3,113	2,943	2,764	2,512	2,272	1,993	1,718	1,460	1,248	1,069	977	884	792	700	608	515	423	331	240	150	69	11
Interest on short-term toans	ő	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Net Income before Tax	-114	-156	-230	-511	-1,467	-5,373	-1,839	891	156	1,204	2,299	3,539	4,814	5,930	7,177	8,232	9,662	10,890	12,733	13,700	13,705	14,745	15,864	17,066	18,359	19,507	20,983	22,490	24,200	25,681	27,739
Corrorate Income Tax	0	0	0	0	0	0	0	0	39	301	575	\$85	925	1,483	833	2,058	1,129	2,722	3,183	C	3,426	3,686	3,966	4,267	3,786	4,877	4,968	5,623	4,763	6,420	6.933
Net Income after Tax	-114	-156	-230	-544	-1,467	-5,373	-1,839	-891	117	903	1,724	2,654	3,888	4,443	6,345	6,174	8,534	8,167	2,550	13,700	10,279	11,059	11,893	12,800	14.572	14,631		·	19,437		20,804
Retained Fareings	114	-270	-500	-1,044	-2,511	7,885	-9,724	-10,615	-10,498	-9,595	-7,870	-5,216	-1,328	3,119	9,46-1	15,638	24,171	32,339	41,883	55,589	65,857	76,926	\$8,824	101,624	116,196	130,827	146,842	163,710	183,147	202,408 2	23,212
		- - "																													
CASH FLOW STATEMENT (Unit:		2000	3001	2002	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2023	2022	2023	2024	2025	2026	2027	2028	2029
Co V Susinging	1999	2000	2001	-500	2003 -1,044	-2,545	-4,612	-3,392	-1,902	-914	453	2,270	4,000	3,663	4,552	3,550	6,470	7,281	14.332	23,086	22,206	31,688		53,052	65,056		89,453			133,821 1	
Cash Beginning	1,096	-134 1,976	-270 8,799	24,299	52,351	12,667	5,076	5,956	6,835	7,715	8,640	9,701	10,754	11,600	12,568	13,348	14,520	15,535	17,200	18,075	17,987	18,935	19,962	21,072	22,272	23,328		26,128	27,749		31,148
Cash Inflow (excluding G. Funds) Net operating income	-114	-134	-114	-114	-178	-2,239	1,678	2,558	3,437	4,317	5,196	6,076	6,956	7,835	8,715	9,595		11,409	12,369	12,369	12,369	12,369	12,369	12,369	12,369	12,369	•		12,369		12,369
Depreciation costs	""	0	0	0	0	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3.398	3,398	3,398	3,398	3,398	3,398	3,398	3,398	3,398
Long-term loans	1,210	2,090	8,913	24,413	52,529	11,508	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]	9
Interest on deposits	L	0	0	0	0_	0	0	0	0	0	45	227	400	366	455	355	647	728	1,433	2,309	2,221	3,169	4,195	5,305	6,506	7,562	8,915		11,982		15,381
Cash Outflow (excluding G. Funds)	1,219	2,133	9,029	24,811	53,851	14,734	3,856	4,466	5,847	6,348	6,823	7,971	11,090	10,711	13,570	10,427	13,710	8,481	8,446	18,955	8.505	8,673	8,860	9,068	11,709	9,494	10,554	9,919	13,747	9.158	7,425
lavestment	1,210	2,090	8,913	24,413	52,529	-	0	0	0	0	0	0	1,112	0	3,846	0	5,148	0	0	13,784	0	0	0	0	3,213	0	1,112	0	5,148	0	420
Repayment for long-term loans	0	0	0	0	34	92	339	1,017	2,527	2,934	3,305	4,322	6,511	6,957	6,892	6,651	5,973	4,514	4,194	4,194	4,191	4.191	4,194	4,194	4.194	4,194	4,144	4,057	3,685	2,668	489
Interest on long-term loans	0	43	116	431	1,289	3,134	3,517	3,448	3,281	3,113	2,943	2,764	2,542	2,272	1,993 833	1,718 2,058	1,460 1,129	1,248 2,722	1,069 3,183	977 0	884 3,426	792 3,686	700 3,966	608 4,267	515 3,786	423 4,877	. 331 4,968	240 5,623	150 4,763	6,420	6,935
Corporate Income Tax	0	0	0	0	0	0	0	0	39 0	301	575 0	885 O	925 0	1,483	0.5	2,050	1,127 N	2,122	3,103	n	3,420	0,000	3,240	7,207	9,100	1,011	4,700	0	3,703	0,720	0
Interest on short-term loans Cash Inflow - Cash Outflow	-114	-156	-230	-544	-1,501	-2,067	1,220	1,490	988	1,367	1,817	1,730	-337	889	-1,002	2,920	811	7,051	8,753	-SSO	9,482	10,263	11.102	12,003	10.563	13,834	14,158	16,209	14,002	19,991	23,723
Cash Ending	-114	-270	-500	-1,044	-2,545	-4,612	-3,392	-1,902	-914	453	2,270	4,000	3,663	4,552	3,550	6,470	7,281	14,332	23,086	22,206	31,688	41,951	53,052	65,056	75,619		<u>_</u>		133,821		77,535
Cash excess	1 30	0	0	0	2,510	0	0	0	0	453	2,270	4,000	3,663	4,552	3,550	6,470	7,281	14,332	23,085	22,206	31,688	41,951	53,052	65,056	75,619	89,453	103,611	119,819	133,821	153,812	77,535
Cush shortage	-114	-270	-500	-1,044	-2,545	-4,612	-3,392	-1,902	-914	0	0	0	0	0	0_	0	0	0	0	0	0_	0	0	0	0	0	0	0	0	0	0
BALANCE SHEET (UNIT: '000US				****	2002	2004	3000	2006	3/9/3	2000	1000	3010	- 3311	2012	2012	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2010	2017	2013	2019	2020	2021	2022	2023	2024	2023	2020	2027	21.20	
(Assets)	۱ ۸		Λ	۸	Λ	٥	Ω	٥	n	453	2,270	4,000	3,663	4,552	3,550	6,470	7,281	14,332	23,086	22 206	31,688	41,951	53,052	65,056	75,619	89 453	303 611	119819	133,821	153.812	177,535
Current Assets Cash & Deposit	1 0	0	0	ň	0	٥	6	0	Ô	453	2,270	4,000	3,663	4,552	3,550	6,470	7,281	14,332	23,085	22,206	31.688	41,951	53,052	65,056	75,619					153,812	
Net Fixed Assets	1,210	3,300	12,213	36,626	89,155	97,265	93,867	90,469	87,071	83,673	80,275	76.877	74,591	71,193	71,641	68,243	69,993	66,595	63,197	73,583	70,185	66,787	63,389	59,930	59,805	56,407	54,121	50,723	52,473	49,075	45,677
Construction costs	1,210	3,300	,	36,626	-	100,663		100,663		100,663	100,663	100,663	101,775	101,775	105,621	105,621	110,769	110,769	110,769	124,553	124,553	124,553	124,553	124,553	127,766	127,766	128,878	128,878	134,026	134,026	134,026
Accoundated depreciation	0	0	. 0	0	0		6,796	10,194	13,592	16,990	20,388					37,378		44,174	47,572	50,970	54,368	57,766	61,164	64,563	67,961	71,359	74,757	78,155	81,553	81,951	83,349
Fotal Assets	1,210	3,300	12,213	36,626	89,155	97,265	93,867	90,469	87,071	84,126	82,545	80,877	78,254	75,745	75,190	74,713	77,273	80,927	86,282	95,783	101,873	108,737	116,441	125,046	135,424	145,861	157,732	170,543	185,295	202,887]	223,212
(Liabilities and capital)	1																	*0.****		40 000	36.005	31011	27 / 47	22.422	10.330	15.034	10.000	6 033	7 1 20	أمسا	c
Liabilities	1,324	3,570	_	37,670		105,150	-	101,084	97,568	93,720	-	86,093	79,582		-	59,075	53,102	48,588	44,394	-	35,005 0	31,811	27,617	23,422	19,228	15,034	10,890	6,833	3,148	480	o o
Current liabilities	111	270		1,044	2,545	4,612	3,392	1,902	914	0.770	0 415	96,000	70.593	0	0	50.075	53.103	0 48,58 3	0 44.301	0 40,200	•	31,811	. •	23,422	19,228	15,034	10,890	6,833	3,148	480	6
Fixed liabilities (Long-term loan)	1,210	*				100,538 -7,885	-	99,181 -10,615	96,654 -10,498	93,720 -9,595	90,415 -7,870	86,093 -5,216	79,582 -1,328		65,726 9,464	59,075 15,638		48,388 32,339	44,394 41,888	55,589	65,867	76,926				130,827	-	-		202,408	223,212
Capital Investment in kind by gov. funds	-114	-270	-300	-1,044	-2,511	*1,003	-9,724	-10,013	-10,470	-7,373	-7,070	-5,210	-1,320	3,117	2,404	10,000	24,471	32,333	11,000	33,347	65,007	.0,720			,.,.		- 10,000		,		,
Retained Earnings	-114	-270	-500	-1,044	-2.511	-7,885	-9.724	-10.615	-10,498	-9,595	-7,870	-5.216	-1,328	3,119	9,464	15.638	24,171	32,339	41,888	55,589	65,867	76,926	88,824	101,624	116,196	130,827	146,812	163,710	183,147	202,408	223,212
Total Liabilities and capital	1,210	3,300	12,213	36,626	89,155	97,265	93,867	90,469	87,071	84,126	82,515	80,877	78,254	75,745	75,190	74,713	77,273	80,927	85,282	95,788	101,873	108,737	116,441	125,046	135,424	145,861	157,732	170,543	186,295	202,887	223,212
									-						•		·														_
FINANCIAL INDICATORS													·							8275					3//23		302	2025	3023	70.50	2022
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027		2029
Working Ratio	0.6%	0.0%		0.0%	0.0%	75 156	40.8%	37.0%	33.9%	31.2%	29 0%	27.0%	25 3%	23.8%	22.4%	21 2%	20 2%	19.1%	18 2%	18 2%	18 2%	18 2%	18.2%	18.2%		18 2%			18 2%		18 2% 35.8%
Operating Ratio	0.0%	0.0%				-2.3%	30.4%	75.0%	2.06/	O1.5%	27.0%	2.00	49.8%	46.8%	44.2% 12.2%	41.8%	59.7%	37.7%	10.6%	33.8% 16.99/	53.8% 17.6%	33 8%s	22.8% 10.5%	33 8% 30 6%	33.8% 20.7%	33 8% 21 6%	22 6% 22 686	33.074 33.4%	23.6%	25 2%	27.1%
Rate of Return on Net Fixed Assets	-9.4%	-3.4% -266.7%	-0.9% -97.8%	-0.3% -26.4%	-0.2% -12.4%	-2.3% \$4.00/	131.6%	133.404	3.976 117 794	3 2% 173 6%	137.6%	7.3%	7.3% 114.444	(21.0%	136-204	14.1%	19.0% 243.381	257.0%	200 A44	30.1.9%	310.5%	316.2%	322.2%	328 3%	3315%	341.5%	352 4%	367.0%	411 0%	576.0%	
Debt Service Coverage Ratio	1 0.0%	-200,1%	-71.570	*20.476	-43.379	33.370	131.070	133.978	\$47.77	127.0/\$	137.070	1 33.570	134.474	121.274	130 270	133.274	100.078	237.074	277.078	304.970	310.470	2102/1	352 270	J-0.3/1	23 1.07	211.214	JJ = . 7 / 1	307.070			
Interest Rate on Short Term Loan	0.0%																														
Interest Rate on Short Term Deposit																															
Rate of Institutional Tax	25.0%																														

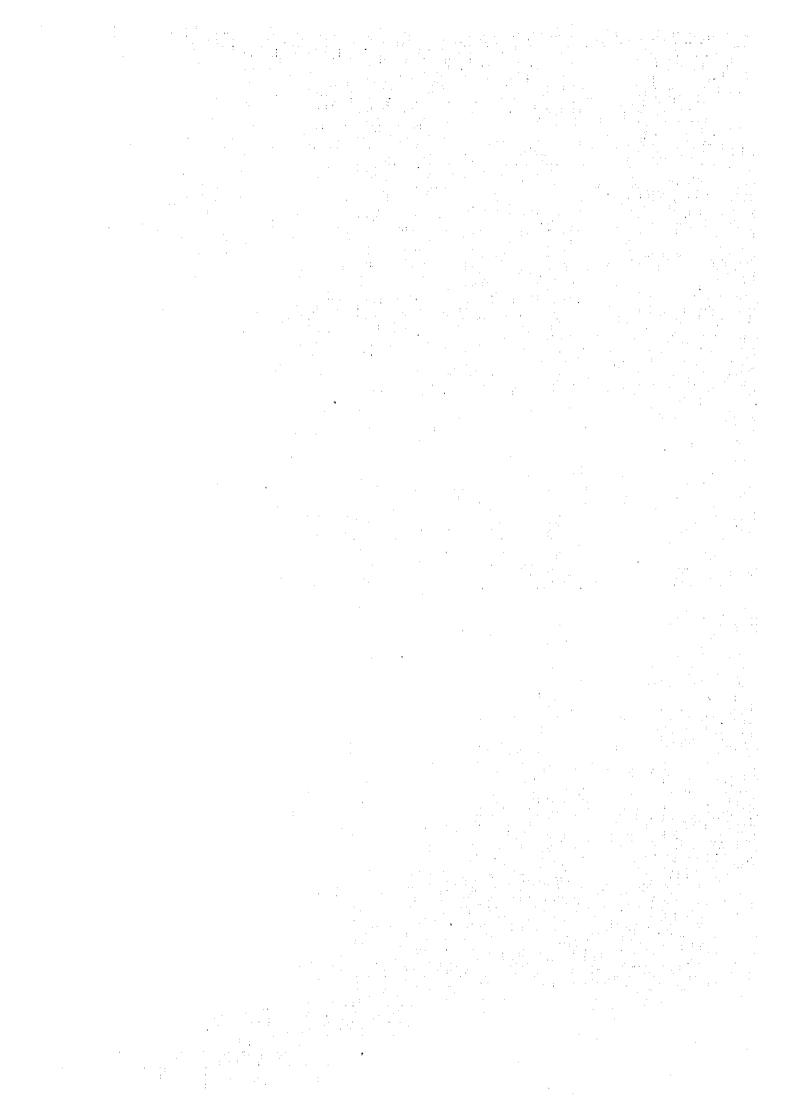

		•

Table 23-4-7 Financial Statements

C-3 Case 2

PROFIT AND LOSS STATEMENT	CUNIT: 90	O USSS																					•								, estiga
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Operating Revenues						4.661	8,578	9,458	10,337	11.217	12.097	12,976	13,856	14,736	15,615	16.495	17,375	18,310	19.269	19,269	19.269	19,269	19,269	19,269	19,269	19.269	19,269	19,269	19,269		19.269
Operating Expenses	114	114	114	114	178	6,751	6,751	6,751	6,751	6,751	6,751	6,751	6,751	6.751	6,751	6,751	6,751	6,751	6,751	6,751	6.751	6,751	6,751	6,751	6,751	6,751	6,751	6,751	6,751	6,751	6,751
Personnel	88	88	88	88	137	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1.728	1,728	1,728	1,728	1,728	1.728	1.728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728	1,728
Administrations	26	26	26	26	41	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	518	. 518	518	518	5 8	518	518	518	518	518	518
l .	1 6	0	6	20	0	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1.267	1,267	1,267	1,267	1,267	1,267	1,267	1.267	1.267	1,267	1,267	1,267	1,267	1,267	1,267	1.267	1,267	1
Maintenance & repoirs	ľ	0	0	0	-	•		5 .	•			3,238	3.238	3,238	3,238	3,238	-	•	-	3.238	3.238	3.238	3.238	3.238	3,238	3.238	3,238	-			1,267
Depreciation costs		<u>-</u> -	<u>`</u>	114	0	3,238	3,238	3,238	3,238	3,238	3,238						3,238	3,238	3,238									3,238	3,238	3,238	3,238
Net Operating Income	-114	-114	-114	-114	-178	-2,089	1,828	2,707	3,587	4,466	5,346	6,226	7,105	7,985	8,865	9,744	10,625	11,559	12,518	12,518	12,518	12,518	12,518	12,518	12,518	12,518	12,518	12,518	12,518		12,518
Non-operating Revenues	0	0	0	0	0	O.	0	0	0	69	237	462	713	758	923	904	1,279	1,426	2,205	3,164	3,168	4,213	5,342	6,562	7,881	9,016	10,532	12.089	13,862		17,557
Interest on deposit	0	0	0	0	0	0	0	0	 -	69	237	462	713	758	923	904	1,279	1,426	2,205	3,164	3,168	4,213	5,342	6,562	7,881	9,016	10,532	12,089	13,862		17,557
Non-operating Expenses	0	43	116	393	981	2.856	3,295	3,243	3,091	2,937	2,782	2,619	2,417	2,165	1,904	1,647	1,405	1,194	1,010	923	837	750	664	577	491	404	318	233	149	73	12
Interest on long-term loans	0	43	116	393	981	2,856	3,295	3,243	3,091	2,937	2,782	2,619	2,417	2,165	1,904	1,647	1,405	1,194	1,010	923	837	750	664	577	491	404	318	233	149	73	12
Interest on short-term loans	U	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	4 2 2 2 2	0	V	0	0	0	0	0		0	0
Net Income before Tax	-114	-156	-230	-507	-1,159	-4,946	-1,468	-536	496	1,598	2,801	4,069	5,401	6,577	7,883	9,001	10,498	11,791	13,714	14,759	14,850	15,981	17,196	18,503	19,908	21,130	22,732	24,375	26,231		30,063
Corporate Income Tax	0	0	0	0	0	0	0	0	124	400	700	1,017	1,072	1,644	1,009	2,250	1,338	2,943	3,428	244	3,712	3,995	4,299	4,626	4,016	5,283	5,405	6,094	5,271	6,966	7,516
Net Income after Tax	-314	-156	-230	-507	-1,159		-1,468	-536	372	1,199	2,101	3,051	4,329	4,933	6,874	6,751	9,161	8,843	10,285	14,515	11,137	11,985	12,897	13,878	15,893	15,848	17,327	18,281	20,960		22,548
Retained Farnings	-114	-270	-500	1,007	-2,167	-7,112	-8,580	-9,116	-8,744	-7,545	-5,445	-2,393	1,936	6,869	13,743	20,493	29,654	38,497	48,782	63,298	74,435	86,420	92,318	113,195	129,088	144,936	162,263	180,544	201,504	222,403 2	44,951
CASH FLOW STATEMENT (Unit																															
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027		2029
Cash Beginning		-114	-270	-500	-1,007	-2,200	-4,000	-2,540	-613	689	2,367	4,621	7,127	7,576	9,230	9,037	12,785	14,260	22,049	31,642	31,681	42,126	53,419	65,624	78,809				138,618		75,572
Cash Inflow	1,096	1,976	7,747	16,622	53,192	14,202	5,065	5,945	6,824	7,713	8,821	9,925	11,056	11,980	13,025	13,886	15,141	16,223	17,961	18,920	18,924	19,968	21,098	22,318	23,637	24,772	26,288	27,845	29,618	31,176	33,313
Net operating income	-114	-114	-114	-114	-178	-2,089	1,828	2,707	3,587	4,466	5,346	6,226	7,105	7,985	8,865	9,744	10,625	11,559	12,518	12.518	12.518	12,518	12,518	12,518	12,518	-	12,518	12,518	12,518		12,518
Depreciation costs	0	0	0	0	0	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3 238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238	3,238
Long-term loans	1,210	2,090	7,861	16,736	53,370	13,054	0	0	0	0	0	0	0	0	0	0	0	. 0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
interest on deposits		0	0	0	0	0	0	0	0	69	237	462	713	758	923	904	1,279	1,426	2,205	3,164	3,168	4,213	5,342	6,562	7,831	9,016	10,532	12,089	13,862	15,420	17,557
Cash Outilow	1,210	2,133	7,977	17,129	54,385	16,002	3,605	4,018	5,523	6,094	6,567	7,419	10,607	10,326	13,218	10,138	13,666	8,434	8,368	18,831	8,479	8,675	8,893	9,133	12,282	9,617	10,715	10,119	14,033	9,807	8,072
Investment	1,210	2,090	7,861	16,736	53,370	13,054	0	0	0	0	0	0	1,112	0	3,846	0	5,148	0	0	13,784	0	0	0	0	3,846	0	1,112	0	5,148	0	0
Repayment for long-term loans	0	0	0	0	34	92	310	775	2,308	2,758	3,085	3,782	6,006	6,516	6,458	6,240	5,775	4,293	3,930	3,930	3,930	3,930	3,930	3,930	3,930	3,930	3,880	3,793	3,465	2,768	544
Interest on long-term leans	0	43	116	393	981	2,856	3,295	3,243	3,091	2,937	2,782	2,619	2.417	2,165	1,904	1,647	1,405	1,194	1,010	923	837	750	664	577	491	404	318	233	149	73	12
Corporate Income Tax	0	0	0	0	0	0	0	0	124	400	700	1,017	1,072	1,644	1,009	2,250	1,338	2,948	3,428	244	3,712	3,995	4,299	4,626	4,016	5,283	5,405	6,094	5,271	6,966	7,516
Interest on short-term loans	l	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
Cash Inflow - Cash Outflow	-114	-156	-230	-507	-1.193	-1,800	1,460	1,927	1,302	1,679	2,253	2.507	448	1,654	-193	3,748	1,475	7,788	9.593	39	10,445	11,293	12,205	13,185	11,354	15,155	15,573	17,726	15,585	21,369	25.241
Cash Ending	-114	-270	-500	1.007	-2,200	-4,000	-2,540	-613	689	2,367	4,621	7,127	7,576	9,230	9,037	12,785	14,260	22,049	31,642	31,681	42,126	53,419	65,624	78,809	90,163	105,318	120,892	138,618	151,203		200,813
Cash excess	0	0	0	0	0	0	0	0	689	2,367	4,621	7,127	7.576	9,230	9.037	12,785	14,260	22,049	31,642	-	42,126	53,419	65,624	78,809	20.163	105,318	120.892	138,618	154.203		200,833
Cash shortage	-114	-270	-500	-1,007	-2,200	-4,000	-2,540	-613	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	· · · · · · · · · · · · · · · · · · ·																						· · · · · · · · · · · · · · · · · · ·								
BALANCE SHEET (UNIT: TOOUS	S)																														_
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
(Assets)																												4			
Current Assets	0	0	0	0	0	. 0	0	0	689	2,367	4,621	7,127	7,576	9,230	9,037	12,785	14,260	22,049	31,642	31,681	42,126	53,419	65,624	78,809	90,163	105,318	120,892	133,618	154,203	175,572	200,813
Cash & Deposit	0	0	0	0	0	0	. 0	0	689	2,367	4,621	7,127	7,576	9,230	9,037	12,785	14,260	22,049	31,642	31,681	42,126	53,419	65,624	78,809	90,163	105,318	120,892	133,618	154,203	175,572	200,813
Net Fixed Assets	1,210	3,300	11,161	27,897	81,267	91,083	87,846	84,608	81,370	78,133	74,895	71,657	69,532	66,294	66,902	63,665	65,575	62,337	59,100	69,646	66,408	63,171	59,933	56,695	57,304	54,066	51,940	48,703	50,613	47,375	44,138
Construction costs	1,210	3,300	11,163	27,897	\$1,267	94,321	94,321	94,321	94,321	94,321	94,321	94,321	95,433	95,433	99,279	99,279	104,427	104,427	104,427	118,211	118,211	118,211	118,211	118,211	122,057	122,057	123,169	123,169	128,317	128,317	128,317
Accountilated depreciation	0	0	0	0	0	3,238	6,475	9,713	12,951	16,188	19,426	22,664	25 901	29,139	32,377	35,614	38,852	42,000	45,327	48,565	51,803	55,040	58,278	61,516	64,753	67,991	71,229	74,466	77,704	80,942	84,179
Total Assets	1,210	3,300	11,161	27,897	81,267	91,083	87,846	84,608	82,059	80,500	79,516	78,785	77,108	75,524	75,939	76,450	79,835	84.386	90,741	101,327	108,534	116,589	125,557	135,504	147,467	159,384	172,832	187,321	204,816	222,947	244,951
(Liabilities and capital)						·····																									
Liabilities	1,324	3,570	11,661	28,904	83,434	98,195	96,426	93,724	90,803	88,045	84,960	81,178	75,172	68,655	62,197	55,957	50,182	45,889	41,959	38,029	34,099	30,169	26,239	22,309	18,379	14,449	10,569	6,777	3,312	544	-0
Current liabilities	114	270		1,007	2,200	-	2,540	613	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ċ	0	0	ol
Fixed liabilities (Long-term loan)	3,210	3,300		27,897	81,233		93,886	93,111	90,803	83,045	84,960	31,178	75,172	•		55,957	50,182	45,889	41,959	38,029	34,099	30,169	26,239	22,309	18,379	14,449	10,569	6,777	3,312	544	-0
Capital	-114	-270	, .	-1.007	-2.167	-	-8,580	-9,116	-8,744	7,545	-5,445	-2.393	1,936	6.859	13.743	20,493		38,497	48,782		74,435	86,420				144,936		,			244,951
Investment in kind by gov, funds	1			-1-41	-,,,,	.,	_,	.,	-,	. ,	- 4	-1	-,200	0,000	10,170	, //		,		,	,		,		,	. ,	,			,	,
Retained Earnings	-114	-270	-500	-1,007	-2,167	-7,112	-8,580	-9,116	-8,744	-7,545	-5,445	-2,393	1,936	6,869	13,743	20,493	29,654	38,497	48.782	63,298	74,435	86,420	99.318	113.195	129.088	144.936	162,263	180.544	201.504	222,403	244,951
fotal Liabilities and capital	1,210					-	•	•																						222,947	
			· ·	• • •							<u> </u>					4 2										· · · · · · · · · · · · · · · · · · ·					
FINANCIAL INDICATORS	1																														
<u> </u>	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2013	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Working Ratio	0.0%	0.0%	0.0%	0.0%	0.0%	75.4%	41.0%	37.1%	34.0%	31.3%	29.0%		25.4%	23.8%	22 5%	21.3%	20.2%	19.2%				18 2%	18 2%	18 2%	18 2%	18 2%	18 2%	18.2%	18 2%	18.2%	18 2%
Operating Ratio	0.0%	0.0%	0.0%	0.0%	0.0%	144 8%	78.7%	71.4%	65.3%	60.2%	55.8%	52 0%	48.7%	45.8%	43.2%	40.9%	38.9%	36.9%		35.0%	35.0%	35.0%	35.0%	35.0%	35 ()%	35.0%	35.0%	35.0%	35.0%	35.0%	35.0%
Rate of Return on Net Fixed Assets	-9.4%	-3.4%	-1.0%	-0 4%	-0.2%	-2 3%	2.1%	3 2%	4.4%	5.7%	7.1%	8.7%	10.2%	12 0%	13.3%	15.3%	16 2%	18.5%	21.2%	18.0%	18.9%	19.8%	20.9%	22 1%	21.3%	23 2%	24.1%	25.7%	24.7%	26.4%	28.4%
Debt Service Coverage Ratio	0.0%	-266.7%		-28.9%	-17.6%	39.0%	140.5%	148.0%	126.4%	135.3%	146 3%	147.8%	122 8%	129.3%	144.7%	1616%	193.1%	269.7%	319.0%	324.7%	330.5%	336.6%	343.0%	349.6%	356.4%	363.5%	375.4%	391.4%	436 0%	554.7%	834 4%
Interest Rate on Short Term Loan	0.0%																														
Interest Rate on Short Term Deposit	10.0%																														
Rate of Income Tax	25.0%																														

•			

24. ENVIRONMENTAL IMPACT ASSESSMENT (EIA)

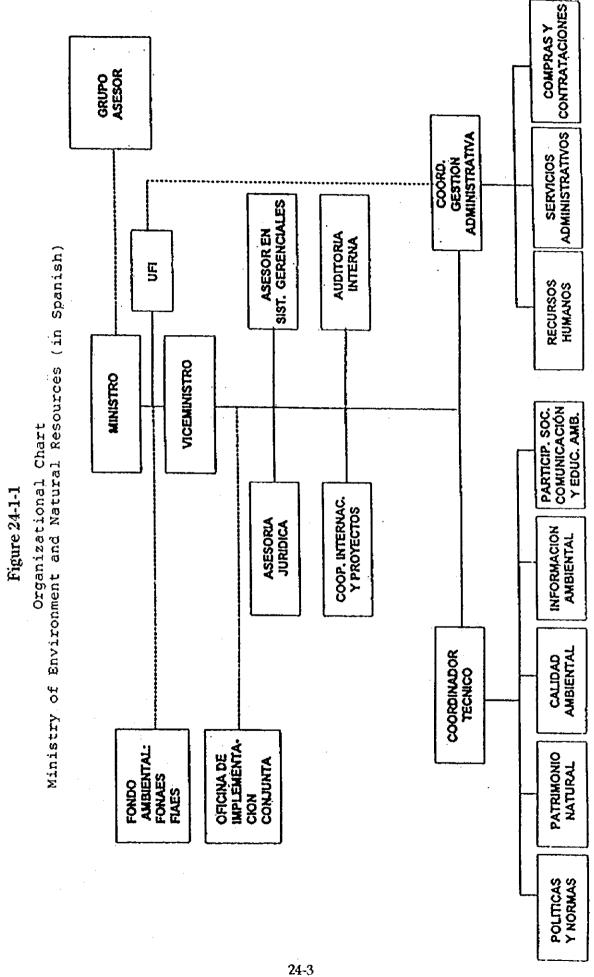
24.1 Introduction

24.1.1 Purpose and Methodology

1. The main purpose of this Environmental Impact Assessment (EIA) is to evaluate environmental impact of items related to the port development plan which were evaluated as having "Significant Effects" in the check list of the Initial Environmental Evaluation (IEE) shown in Chapter 14. Impact on water quality and terrestrial ecology and others are also further examined using the latest data collected by the Study Team during the field survey.

24.1.2 Policy and Regulations on Environment in El Salvador

2. In El Salvador, focus on environmental problems and their possible solutions has been increasing in recent years. In the 1970's, Salvadoran biologists started to voice their alarm with respect to increased rate of pollution of the rivers and estuaries, primarily caused by the unregulated use of pesticides in agriculture. The increased incidents of sea and coastal specie kills also alarmed the Salvadoran population, who began to demand environmental policy and related laws. The following gives a brief review of the current state of environmental policy and law in El Salvador, including the comprehensive environmental law just approved in March, 1998.


(1) Environmental Policy in El Salvador

- 3. In the 1980's, a number of institutions and private citizens groups began to show concern for the environmental problems mentioned above. Ecological institutions were created with support of the media and government agencies. These institutions started various campaigns designed to create ecological awareness at different levels of government and public sectors.
- 4. As a result, in 1990 the government of El Salvador organized the Executive Secretary of Environment of the Ministry of Agriculture (SEMA) which was later reorganized under the Ministry of Planning. SEMA was in charge of all matters related to the environment and for establishing

environmental policy in El Salvador. In 1997, the government of El Salvador also established the MENR. At present the Ministry has a small number of technical personnel, the majority being professionals with considerable experience, including the minister who previously served as the first Executive Director of SEMA. At present the country does not have an environmental policy. The new Ministry is in process of designing and implementing a national environmental policy.

(2) Environmental Management

- 5. Environmental management in El Salvador is currently shared by the following institutions:
- · Ministry of Health
- Ministry of Agriculture
- Ministry of Education
- · Attorney General's Office
- National Assembly Committee on Health and Environment
- National Civil Police (PNC)
- Vice Ministry of Housing
- Ministry of Public Works
- Ministry of the Environment and Natural Resources (MENR)
- 6. It should be noted that in El Salvador there are over one hundred non-governmental organizations (NGOs) that also promote environmental protection.
- 7. The Ministry of the Environment and Natural Resources is ultimately is in charge of implementation for regulations and corresponding laws implicating the environment and natural resources. An organizational chart of this ministry is shown in Figure 24-1-1.

(3) Description of Environmental Laws in El Salvador

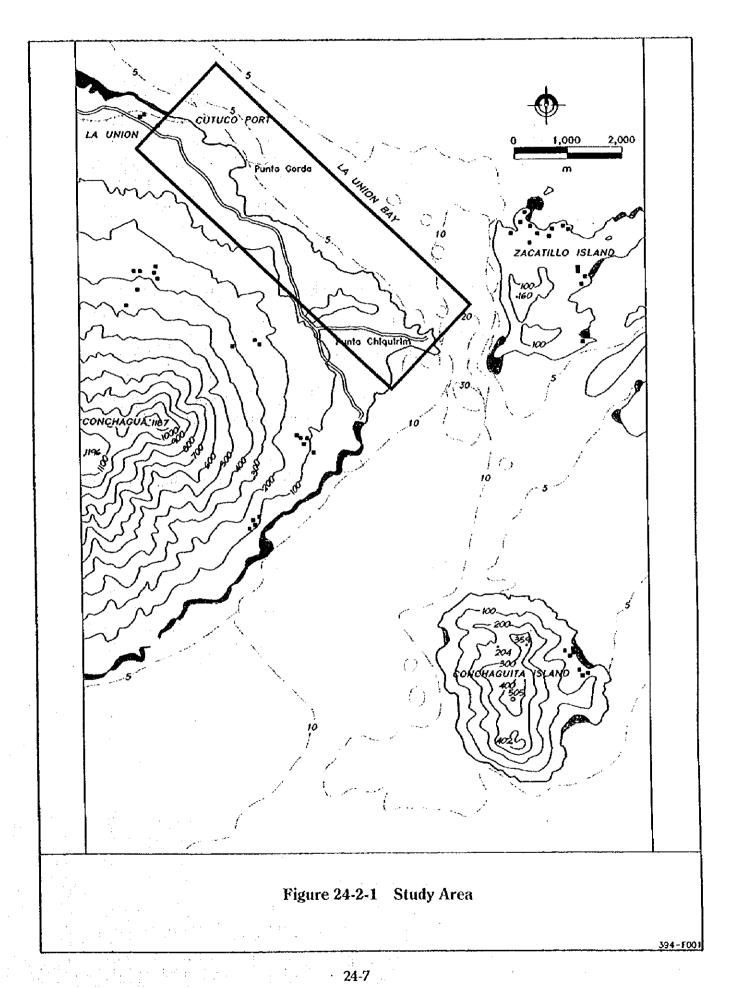
- 8. A significant environmental law for El Salvador was approved on March 2, 1998 and issued to the Official Diary May 4, 1998 (Tome No.339-79, Decree No. 233). It includes 14 titles with 116 articles, establishing the principles and basic norms for conservation and remediation of the environment to ensure sustainable use of national resources and proper environmental procedures in public and private conduct. Its basic premise is to protect the environment as a basic obligation of the government, municipalities, and citizens.
- 9. Also pertaining to the Political Constitution of El Salvador, Articles 69 and 117 establish that it is of social interest to develop environmental protection and rehabilitation, in order to utilize the national resources in a sustainable manner. These articles call for the State to establish economic incentives and provide the necessary technical assistance for development and implementation of adequate environmental conservation and rehabilitation programs.
- 10. The law, approved by the Legislative Assembly, establishes:
- 1) In conformity with the Constitution of the Republic of El Salvador, the protection, conservation and improvement of Environment and Natural Resources must be objective of special legislation.
- 2) That the deterioration of the environment is generating serious economic and social problems, threatening irreversible damages affecting the well being of the present and future generations. In that sense it is necessary to establish a balance between economic and social development with the sustainable utilization of the natural resources and to protect the environment.
- 3) In order to confront the environmental problems with success and in an integral way, it should be considered that the environment is composed of many elements interrelated and in constant change, caused by either natural causes or originated by humans. Therefore it is necessary to give to the country a new environmental legislation coherent with the principles of sustainable economic and social development.
- 4) That El Salvador has signed and ratified international agreements with

the obligations to fulfill the acquired commitments, and according to the situation, to adopt appropriate measures or another type of inclusive legislation to apply the international norms in the country.

11. The new environmental law dedicates Articles 21-29 (Chapters III and IV) to the system of Environmental Impact Assessments (EIA). These articles outline the requirements for an EIA for all activities, works or projects. Article 21(c) addresses the necessity to obtain an environmental permit through a governmental authority for port projects. An EIA must be submitted to the MENR for compliance as one requirement for approval.

(4) Environmental Standards

12. At present there are no environmental standards in El Salvador. The Ministry of Health to a certain degree has established Health Codes and procedures applied to the industrial control of pollution generated by various processes. For execution of new projects it recommends the use of international standards as established by the World Bank. It is also expected that the MENR will define Environmental Standards in the future.


24.1.3 Procedure for approval by the Government

- 13. Although the environmental law has been passed (March 2, 1998), the MENR is only currently preparing the associated regulations of the newly enacted law. At this point, the regulations for environmental permitting and compliance are not yet established.
- 14. The current accepted approach for obtaining a permit and governmental approval for a project begins with coordination with the associated municipality. The EIA of this project for the port reactivation in La Union Province should be presented to La Union Municipality. The La Union Municipality should subsequently send copies of this EIA to the relevant agencies including the Ministry of Health and MENR. Depending on the ruling of these institutions, the project may be approved for the first phase of construction.

24.2 EIA

24.2.1 Overview of Existing Conditions

- 1. According to the field observations, environmental conditions in the bay and surrounding areas are complicated. The critical points are mainly: water pollution, lack of solid waste management, and deforestation and related sediment deposits in the river deltas and the bay. These problems are discussed in the Strategic Plan for Suitable Development of the Salvadoran area of Fonseca Gulf (July 1996), prepared by the Government of El Salvador with the support of the Organization of American States (OAS).
- 2. This document mentions the general environmental conditions of La Union Province and establishes that more than 80% of that province is deforested which is an indicator of poor agriculture practices developed over a long time by the peasants. Similarly, the mangroves have been over exploited to obtain timber and fire wood. In the same way, overexploitation has had a significant impact on local fishery production (mainly shrimp catch) as mentioned in the Final Draft Formulation Rules of the Advantage of Mangrove Ecosystems (SEMA, 1993).
- 3. This section begins with a general review of the present conditions of seawater quality, marine sediment, and terrestrial and marine ecology in and around the selected port site, which are surveyed by the Study Team in 1997, such that the future impacts of the proposed development may be adequately evaluated. For this reason, relevant physical, chemical and biological data are compiled through site exploration and field measurements. The following sections detail the field survey method, analysis results and impact assessment. The entire field survey area is shown in Figure 24-2-1.

24.2.2 Impact on Seawater Quality

(1) Field Survey Method

- 4. Sampling and analysis of sea water were performed by the study team according to methods specified by the United States Environmental Protection Agency (USEPA) and "Standard Methods for the Examination of Water and Wastewater" published Jointly by American Public Health Association, American Water Works Association, and Water Pollution Control Federation.
- 5. The location of the five (5) seawater sampling points selected by the Study Team is shown in Figure 24-2-2. The five sampling locations where sea water and marine sediments sampling was performed were selected by considering their relative location or proximity regarding key points in the impact area of the proposed port redevelopment project. These five sampling points may serve as future monitoring points to compare with baseline data determined in this environmental survey. Sampling point locations are described as follows:

Station 1: Northeast of Cutuco Port, the most interior test location in the gulf

Station 2: Punta Gorda.

Station 3: Lagartos Beach - Manglitos.

Station 4: Punta Remolinos

Station 5: Chiquirin, location is in the outskirts of the gulf

6. In each monitoring location, two seawater samples were obtained in low and high tides respectively. Observations and conditions noted during sampling at sampling locations are listed in Table 24-2-1.

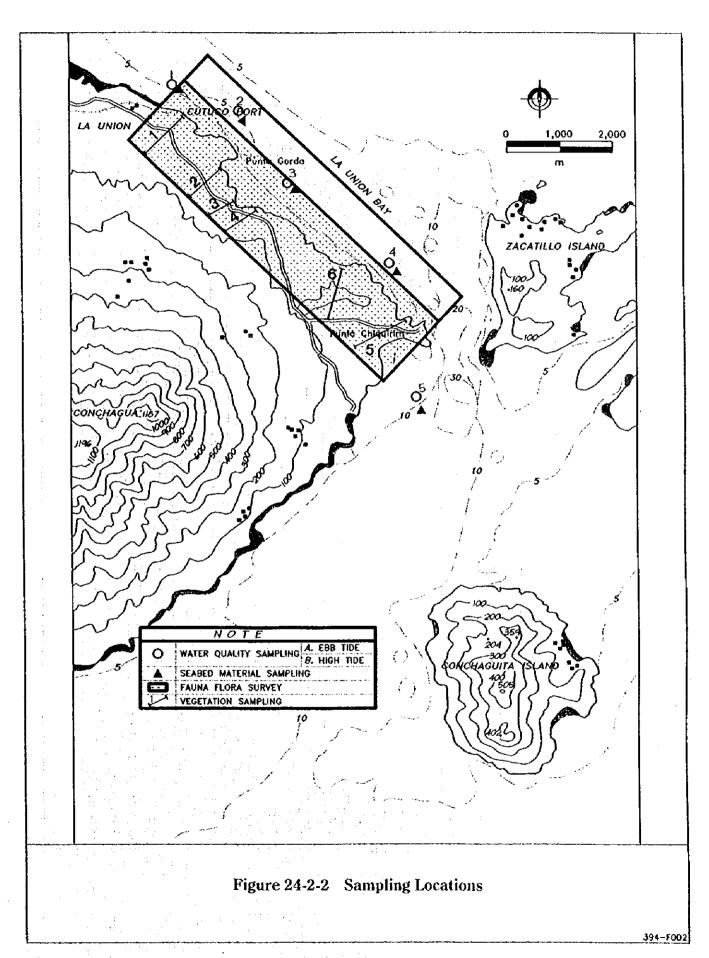


Table 24-2-1 (1)

FIELD DATA FORM FOR SAMPLING LOCATIONS

ENVIRONMENTAL SURVEY FOR PORT REACTIVATION STUDY, LA UNION, EL SALVADOR

3A	5-Dec-97	10:05	EBB TIDE	9	SOLUMBURA DESCRIPTION OF LEGISLITOS	שליים שליים מביאמורים	0,0	0/8	NORMAL	TRANSPARENT	NORMAL	ON	NOT LIKELY	TSAST TO SOUTH FAST	001100	0.0 10 0.2		32	29	7.88	34	WINKLER	1.0	*	WARM	FISHING	ABANDONED INFRAESTRUCTURE	ON	ON	NOT DURING SAMPLING	ON	NO	ON	NOT DURING SAMPLING	MODERATE CURRENT	
4 7	5-Dec-97	9:35	EBB YING	101.001	9.7	FUNIA GORDA		0/8	NORMAL	TRANSPARENT	NORMAL	ON	NOT LIKELY	1000	SOUTH EAST	0.3 to 1.5		30	29.2	7.82	31	WINKLER	1.0		WARM	FISHING	FISHING FACTORY	·ON·	ON	NOT DURING SAMPLING	ON	ON	ON	NOT DURING SAMPLING	MODERATE CURRENT	1 11 1
A1	K.Dec.97	00:0	10:5 10:5	בממ ווסב	6.1	NORTHEAST CUTUCO PORT		8/0	NORMAL	TRANSPARENT	NORMAL	ON	NOT LIKELY		SOUTH EAST	1.6 to 3.3		29	29.5	7.8	35.2	WINKLER	1,3		WARM	FISHING	TOURISM AND PORTS	ON	ON	NOT DURING SAMPLING	ON	ON	ON	NOT DURING SAMPLING	MODERATE CURRENT	
SAMPLE	PARAMETER	DATE	HOUR	SAMPLE	0ΕΡΤΉ (m)	SAMPLING SITES	SAMPLING SITE DESCRIPTION	SUBJECT CO	VSDC7	201.00	0000	1000 1000 1000 1000 1000 1000 1000 100	ZOOPLANKTON AND ALGAE PRESENCE	1 3	WIND DIRECTION	WND VELOCITY (m/s)	ANALYSIS IN SITU	AMRIENT TEMPERATURE (°C)	CAMPI E TEMPERATURE (°C)		CALIMITY (%)	CALIFORNIA (%)	TOWNSDADENCY (Secret depth) (m)	SNOT AVOR BOOK ON ONLY OF ONLY	SORNOW CONTROL OF THE PROPERTY	יייי שווא אונייייייייייייייייייייייייייייייייי	THE SHORE ALONG THE SHORE		SIVEN OUTCE	CICLI KALIN WIL THIS CHARLES TO THE COMPONICO	THE SHOW IN THE SHOPE	HOUSEN ALONO THE MADRE	DOCUMENT OF THE PARTY OF THE PA	というに これである こうしゅついしょうこう	CHANGEDVATIONS	

Table 24-2-1 (2)

FIELD DATA FORM FOR SAMPLING LOCATIONS

ENVIRONMENTAL SURVEY FOR PORT REACTIVATION STUDY, LA UNION, EL SALVADOR

SAMPLE	44	5A	a
PARAMETER			0 000
DATE	6-Dec-97	6-Dec-97	P-Dec-3/
9.00	9:50	8:30	15:20
SAMPIE	EBB TIDE	EBB TIDE	HIGH TIDE
ישי חוסטט	6.5	5	5.5
CAMBING CITES	PUNTA REMOLINOS	CHIQUILIN	NORTHEAST CUTUCO PORT
MOITING OFFICE AND			
IE DESCRIPT	970	OJ8	8/0
CLOUDINESS	9/0		NODMAI
ASPECT	NORMAL	NORMAL	TOANSOADENTED
COLOR	TRANSPARENT - GREENISH	TRANSPARENT - GREENISH	CONTROL - CACCA
ODOR	NORMAL	NORWAL	NORIWAL
Oly Cit M	ON	Q	ON
ZOODI ANKTON AND ALCAE PRESENCE	NOTLIKELY	NOT LIKELY	NOT LIKELY
NOILISOANOO		•	
COMPOSITION	HIGON	SOUTHEAST	SOUTHEAST
WIND DIRECTION	6 5 5 5	1 6 10 3 3	1.6 to 3.3
WIND VELOCITY (m/s)	1.5 to 3.3	2.200	
ANALYSIS IN SITU			
ATURE	30	30	32
		27	28
TEMPERALURE (7.87	7.8
(Jim) Ha	4A' /		<u> </u>
SALINITY (%)	33	65	O LANGE
DISSOLVED OXYGEN (mg/L)	WINKLER	WINKLER	VIIIVA
TRANSPARENCY (Secchi depth) (m)	1.64	1.23	5.1
SI ISBOLINDING OBSERVATIONS			
DE VIEW I	WARM	WARM	WARM
	SISHING	PISHING	PISHING
TOWN TO THE SUCCESSION OF THE	HOUSING - CROPS	CROPS	PORT
CAND COE ALONG THE SHORE	CN	ON	ON
SIN TO SAMPLINION SAMPLINION TO SAMPLINION T	O.Z.	ON	ON
	CN	ON	ON
ROWBOAL INSTRUCTION OF THE PURPLE	SEA	YES	ON
CULTIVATION ALONG THE SHORE		CIV	CŽ
	YES	2	CZ
SUSPENDED ORGANIC MATTER	ON CONTRACT	ON.	ON TOWN ON TO TO!
FISHING ACTIVITY	NOT DURING SAMPLING	NOT DUKING SAMPLING	PAID SALEDO TON
OBSERVATIONS	MODERATE CURRENT	MODERATE CURRENT	MODERATE CORRENT
	NEAR PUEBLO VIEJO		

Table 24-2-1 (3)

FIELD DATA FORM FOR SAMPLING LOCATIONS

ENVIRONMENTAL SURVEY FOR PORT REACTIVATION STUDY, LA UNION, EL SALVADOR

3 ideas	28	38	48
The Hallo			
PARAMETER		5 Dec 07	5-Dec-97
DATE	2-Dec-97	0.000	14/36
HOUR	14:50	13:50	DOM:
SAMPLE	HIGH TIDE	HIGH TIDE	מסוד הסוד
DEPTH (m)	9	4.5	SOM SOMEON STATES
SAMPLING SITES	PUNTA GORDA	LAGARTO'S BEACH - MANGLITO	FONTA REMOCINOS
SAMPLING SITE DESCRIPTION			
CLOUDINESS	0/8	8/0	8/0
Vebort	NORMAL	NORMAL	NORWAL
acion	TRANSPARENT - GREENISH	TRANSPARENT - GREENISH	TRANSPARENT - GREENISH
0000	NORMAL	NORMAL	NORMAL
OI DI M	NO	ON.	OZ.
ZOOPLANKTON AND ALGAE PRESENCE	NOT LIKELY	NOT LIKELY	NOT LIKELY
COMPOSITION			PAST CO
WIND DIRECTION	SOUTH EAST	SOUTHEAST	SCHOOL STATE
WND VELOCITY (m/s)	1.6 to 3.3	1.6 to 3.3	1.5 to 3.3
ANA YOU IN SITIL			
CONTRACTOR TEMPERATIRE (°C)	33.5	31.5	30
	27	29	27
SAMPLE LEMPERSTONG (C)	27.7	7.76	7.77
pH (Unit)	30.5	31.5	35
SALINITY (%)	AH IXIIV	WINKLER	WINKLER
1.	1.4	1.58	1.2
TRANSPARENCY (Secchi depth) (m)	+ · ·	¥	
SURROUNDING OBSERVATIONS		400 417	MOVIN
CHMATE	WARM	WAKM	MY AA
WATER USE	FISHING	FISHING	DUILDIL OCCUPANTAL
AND LISE ALONG THE SHORE	FISHING FACTORY	ABANDON INFRAESTRUCTURE	HOUSING - CROPS
	ON.	ON	O _N
RIVER COLLECT AND TO SAMPLING	ON	ON	O.
	ON	NO	OZ
ROWBOAL TRAFFIC	CN	ON	YES
CULTIVATION ALONG THE SHOWS	CN	YES	YES
HOUSING ALONG THE GAORE	ON	ON	ON
AW ONE	NOT DURING SAMPLING	NOT DURING SAMPLING	NOT DURING SAMPLING
FISHING ACTIVITY	WEAK CURRENT	WEAK CURRENT	WEAK CURRENT
Coordinate			
	THE CONTRACTOR OF THE PARTY OF		

Table 24-2-1 (4)

FIELD DATA FORM FOR SAMPLING LOCATIONS ENVIRONMENTAL SURVEY FOR PORT REACTIVATION STUDY LA UNION, EL SALVADOR

PARAMETER DATE HOUR SAMPLE DEPTH (m)	
DATE HOUR SAMPLE DEPTH (m)	
HOUR SAMPLE DEPTH (m)	6-Dec-97
SAMPLE DEPTH (m)	14:00
DEPTH (m)	HIGH TIDE
	*
SAMPLING SITES	CHIQUILIN
SAMPLING SITE DESCRIPTION	
CLOUDINESS	8/0
ASPECT	NORMAL
COLOR	TRANSPARENT - GREENISH
ODOR	NORMAL
OILFILM	ON
2009LANKTON AND ALGAE PRESENCE	ON
COMPOSITION	
WIND DIRECTION	SOUTHEAST
WND VELOCITY (m/s)	1,6 to 3,3
ANALYSIS IN SITU	
AMRIENT TEMPERATURE (°C)	31.5
SAMPLE TEMPERATURE (°C)	29.5
man (nuit)	7.86
SALINITY (%)	35
DISSOLVED OXYGEN (mg/L)	WINKLER
TRANSPARENCY (Secchi depth) (m)	1.18
SURROUNDING OBSERVATIONS	
CLIMATE	WARM
WATER USE	FISHING
LAND USE ALONG THE SHORE	CROPS
RIVER OUTLET	ON.
DID IT RAIN WITHIN 24 hr PRIOR TO SAMPLING	NO
ROWBOAT TRAFFIC	ΟN
CULTIVATION ALONG THE SHORE	YES
HOUSING ALONG THE SHORE	٥×
SUSPENDED ORGANIC MATTER	ON
FISHING ACTIVITY	NOT DURING SAMPLING
OBSERVATIONS	WEAK CURRENT

(2) Results of Existing Seawater Conditions

7. The results of water quality laboratory tests are shown in Table 24-2-2 and summarized in the following:

a) pH

- 8. The pH values vary from 7.7 to 7.9. This is a normal range for seawater and indicates the large buffering capacity of the ocean.
 - b) Normal Hexane Extracts (NHE)
- 9. Generally, NHE corresponds to content of fats and oils. Results show value range of 21.4 to 71.4 mg/l. NHE ambient standards are not common but when they do exist they are low (such as the Malaysian requirement of 0.5 mg/l). All results were at least one order of magnitude higher than 0.5 mg/l, indicating pollution levels that are likely caused by ship and boat activities. The highest NHE concentration was 71.4 mg/l detected at station point No.1, northeast of Cutuco Port where sampling was performed in the morning hours.
- 10. Similarly, a high NHE concentration of 45.8 mg/l was detected in a sample obtained at station No.5 also in the morning hours. It is likely that the morning activities of fishing vessels contribute to this pollution due to oil residuals from their motors.

c) Dissolved Oxygen

Measured results varied between 5.65 and 6.5 mg/l. Generally speaking, this range of values is not so bad taking into consideration the minimum standards in other countries. However, these values are enough to guarantee the development of diverse marine fauna. The excessive values of the COD subsequently discussed are likely to be the cause of the decrease in dissolved oxygen.

Table 24-2-2

WATER QUALITY ANALYSIS RESULTS

SAMP	SAMPLING DATE	DAY-MONTH-YEAR	TH-YEAR	5-Dec-97	5-Dec-97	5-Dec-97	6-Dec-97	6-Dec-97	6-Dec-97	5-Dec-97	5-Dec-97	6-Dec-97	6-Dec-97
		ANALYSIS	IS NUMBER	A-736/97	A-737/97	A-738/97	A-739/97	A-740/97	A-741/97	A-742/97	A-743/97	A-744/97	A-745/97
	PARAMETER							SAMPLING	SAMPLING LOCATIONS				
		TINO	SITE	14	2A	34	\$	5A	5	2B	38	48	58
a I	TRANSPARENCY (SECCHI DEPTH)	E	ŭ.	1.30	00,1	1.00	26.	52.1	1.50	1.50	1.58	1.22	1,18
> v> -	SAMPLE TEMPERATURE	ပု	u.	29.50	29.20	29.00	27.00	27.00	28.00	28.00	21.00	29.00	39.50
د ∢ ن	AMBIENT TEMPERATURE	ပု	u.	29.00	30.00	32.00	30.00	30.00	32.00	32.00	31.50	30.00	31.50
<u></u>	Ha	TINO	L	7,80	7.82	7.88	7.94	7.87	7.80	7,80	7.78	77.7	7.86
	SALINITY	%	٤.	35.20	31.00	8.8	33.00	35.00	34.00	34.00	31.50	35.00	35.00
υx	CHEMICAL OXYGEN DEMAND (COD)	mg/L		1313.92	1101.27	1435.44	1648.10	1443,04	1336.71	1336.71	1298.73	1329,11	1891.14
ш≵	TOTAL NITROGEN	mg/L	_	5.81	6.12	3.93	5.81	5.02	3.45	3,45	3,45	3.45	3.77
- c	TOTAL PHOSPHOROUS	mo/L	ر	0.17	0.09	9.04	0.22	91.0	60.0	60.0	0.13	0.18	0.14
٠ .	NORMAL HEXANE EXTRACTS (OIL)	Mg/L	.,	71.40	28.00	46.20	26.30	45,80	37.00	37.00	33.20	22.90	21.40
J	CHLORINE (CL)	√5w		Q.	Q	ð	20	ON	ON ON	Q	Ö	Q	Š
	DISSOLVED OXYGEN	mg/L	u.	6.30	5.70	5.65	6.00	6.15	6.50	6.10	5.80	6.00	5.80

	F FIELD	L LABORATORY	ND NOT DETECTED		
	1B NORTHEAST CUTUCO PORT	PUNTA GORDA	LAGARTOS BEACH - MANGLITOS	48 PUNTA RÉMOLINOS	CHIOCIRIN
ついこううとうしゃくつ	14 NORTHEAST CUTUCO PORT		H-MANGLITOS 38		5A CHIQUIRIN 5B
	4	. 4	; <u>\$</u>	\$	8

Chemical Oxygen Demand (COD)

- Very high COD results in the range between 1,101 and 1,891 mg/l were obtained. These results are consistent in all monitoring stations and exceed the maximum allowed standard value of 8 mg/l by more than two orders of magnitude. The results indicate a high degree of contamination. It is most likely that this contamination is caused by excess of both organic loading and inorganic substances that are being oxidized. This high degree of pollution is likely due to the combined effects of uncontrolled discharge of untreated sewage and other domestic residuals, and the present industrial activities in the gulf. These industrial activities that may be confirmed by the high levels of NHE, are likely contribute to the excessive COD values. It is highly recommended that COD loading be evaluated in the following rivers: Goascorán, Pasaquina, Siramá, El Nacimiento, El Municipeo, El Camarón, and El Zapote.
- 13. It is likely that these rivers serve as contamination conduits since they act as receptors to diverse polluting loads from domestic sewage, and industrial sources along their drainage path.

e) Total Nitrogen (T-N)

14. T-N results show values between 3.45 and 6.12 mg/l. These results are high and indicate high concentrations of nitrogen nutrients. The minimum total N standard for eutrophication avoidance is 0.06 mg/l. This analysis shows significant differences among the value at each sampling point with regard to the high and low tide, with the higher values always apparent during low tide. The results were consistent with slight differences among sampling stations.

f) Total Phosphorum (T-P)

15. T-P results range between 0.04 and 0.22 mg/l. These results are consistently above the standard of 0.01 mg/l. Significant differences are not observed among the stations These high values are likely to indicate pollution from municipal, agricultural, and industrial sources including sewage, fertilizers and detergents.

g) Chlorine (Cl)

16. There was no detection of residual free chlorine in any of the samples.

h) Air temperature

17. Ambient air temperature varied between 29°C and 32°C during the two sampling days on December 5th and 6th, 1997. As it was observed, the maximum variation of temperature was of 3°C, with an average temperature of 30.8°C.

i) Sea water Temperature

18. During these two sampling days there was a slight variation in sea water temperature, 29.5°C and 27.0°C for maximum and minimum, respectively. There was also no appreciable difference observed among the sampling stations.

j) Transparency (Secchi Depth)

19. Transparency observations were similar for all the sampling stations. Results varied between 1.0 and 1.64 m. These values are low and indicate turbidity. A universally accepted, minimum reference value is 2.50 meters.

(3) Impact Evaluation

- 20. As mentioned in IEE, the present seawater is polluted mainly by raw municipal solid waste and untreated industrial discharges from inland, including the activities of local fishing boats, since both the Port of Cutuco and Punta Gorda have not been used so much by cargo ships recently. If necessary, detailed survey concerning the inflow of the relevant rivers should be conducted.
- 21. Regarding the port activities in the Short Term Plan, their impact on water quality of the surrounding area is limited and insignificant. Modern, well-equipped container terminals essentially have no significant pollution source.

- 22. As to dry bulk, a sheet should always be covered between the quay and the ship so that cargo cannot fall into the sea during cargo handling. Whatever remains on the apron after cargo handling should be cleaned or collected without water, which sometimes results in contaminants flowing into the sea. On the other hand, liquid bulk is handled by pipeline system.
- 23. Generally, major oil spills do not necessarily increase along with increased port activities and vessel traffic. Major oil spills and leaks are accidental. Such events are difficult to predict. However, they can be prevented or significantly decreased through efforts to increase safe and efficient operations.
- 24. It is recommended that a sound contingency plan for oil spill be established with authorities concerned on the bay as soon as possible, following the Port of Acajutla. In addition, the government is expected to take appropriate measures for MARPOL, including inspections of calling vessels to prevent illegal disposal of bilge.
- 25. Currently, CEPA is preparing a National Contingency Plan to address large oil spills and accidental marine discharges of other harmful substances. The plan includes: 1) measures to contain, control, and skim oil spills and dispersion of other harmful substances in the sea; 2) measures to protect ecosystem and natural resources; and, 3) measures to establish the necessary mechanisms of coordination and cooperation to utilize human, material, and legal resources.
- 26. During construction, proper countermeasures will be taken for turbidity by soil dredging and dumping by the method described in the section of 20.1.7. using a silt protector sheet.

24,2.3 Impact on Marine Sediment

(1) Field Survey

27. Sampling and analysis of marine sediments were performed by the Study Team according to methods specified by the United States Environmental Protection Agency (USEPA) and American Society of Testing and Materials (ASTM). Figure 24-2-2 also shows the location of the five (5) seabed sampling points, the same as those for the seawater quality. Marine sediment samples were obtained at the five sampling points using an

Eckman dredger and a PVC sampler. For each sediment sample, field observations were carried out and tabulated including color, scent, and general composition.

(2) Results of Seabed Material Laboratory Test

28. Laboratory results of seabed material tests are shown in Table 24-2-3 and summarized in the following:

a) Color and scent

29. Sediment color and scent may be indicators of contamination. The slight hydrosulfuric scent and greenish-gray color of all five sediment samples indicated possible contamination of the sediments.

b) Loss of Ignition

30. Sediment samples S-1 -through S-4 results show high ignition loss values in the range of 12 to 15% which indicate high content of organic matter that could be associated with pollution. Sample S-5 in the open waters, having ignition loss value of 2.17%, is very low compared with the other four sampling locations.

c) Particle Size Distribution

31. Ignition loss results correlate well with particle size distribution of samples S-1 to S-4. These samples have high silt and clay contents, whereas sample S-5 consists mostly of sand.

d) Chemical Oxygen Demand (COD)

32. As was the case with the sea water analysis, COD in the marine sediments samples was very high with values ranging between 25,929 and 33,809 mg/kg. These values confirm that marine sediments in the study area have accumulated high contamination levels due to pollutant transport by gulf currents. Although they remain very high, COD levels decrease significantly in sampling stations S-2 through S-5 with respect to S-1 that is located in the interior of the gulf. This decrease in COD levels towards the open waters appears to demonstrate that contamination is reduced with increased distance from the gulf, likely by the buffering effect of the ocean.

e) Lead (Pb)

- 33. Lead was detected in all five marine sediment samples with concentration values between 0.41 and 0.8 parts-per-million (ppm). The current values obtained could be compared to the standard values or criteria concerning specifications of the bottom specifications of the bottom sediments. Permissible limits for offshore dumping of dredged material set up in Canada and U.S.A are 45 and 33 ppm, respectively.
- 34. This lead contamination could be related to three pollution mechanisms: 1- Runoff from agricultural pesticides; 2- Contamination from spills of ship and boat fuel (lead is used as a common preservative in there fuels to increase octane); and, 3- The breakup of metallic parts and welds of the several sunken ships. Lead concentration values decrease in sampling stations that are further from the gulf towards the open water, respectively, which appears to demonstrate again the buffering affect of the ocean.

f) Zinc (Zn)

- 35. Zinc was detected in all five samples at a concentration value range of 33.67 to 46.42 ppm. These values are lower than the allowable USEPA standard of 105 ppm.
- 36. Zinc contamination could be related to two pollution mechanisms: 1- Contamination from ship maintenance activities such as stripping, protective coating, and painting since many of the thinners, coatings and paints used for ships and boats contain Zinc; and, 2- The breakup of metallic parts and welds of the several sunken ships. The zinc concentration value significantly decreases in sampling station No.5 that is further from the gulf and nearest to the open water, which appears to demonstrate again the buffering effect of the ocean.

g) Total Chromium (Total - Cr)

37. Chromium contamination could also be attributed to ship maintenance activities since it is in ship protective coatings that are applied before painting. Total-Cr concentration values were consistent in all five sediment samples, ranging from 32.50 to 38.26 ppm.

Table 24-2-3

MARINE SEDIMENT ANALYSIS RESULTS

SAMPLING DATE	DAY-MON	DAY-MONTH-YEAR	9-Dec-97	26-59G-67	9-Dec-97	9-Dec-97	9-Dec-97
	ANALYSIS	ANALYSIS NUMBER	S-2107/97	S-2108/97	8-2109/97	S-2110/97	S-2111/97
PARAMETER				75	SAMPLING LOCATIONS	NS	
	TINO	SITE	3-4	\$-2	ુ ૨-૬	~	S.
COLOR		u.	GREENISH-GRAY	GREENISH-GRAY	GREENISH-GRAY	GREENISH-GRAY GREENISH-GRAY GREENISH-GRAY GREENISH-GRAY GREENISH-GRAY	GREENISH-GRAY
ODOR	,	L	HYDROSULFURIC	HYDROSULFURIC	HYDROSULFURIC	HYDROSULFURIC HYDROSULFURIC HYDROSULFURIC HYDROSULFURIC HYDROSULFURIC	HYDROSULFURIC
IGNITION LOSS	%	۰	13.34	13.34	12.55	14.98	2.17
SAND	%	-	16.92	16.92	16.92	16.92	94.92
SILT	%	L	54.00	30.00	60.00	48.00	2:00
CLAY	%	.	29.08	53.08	23.08	35.08	3.08
CHEMICAL OXYGEN DEMAND (COD)	mg/kg	7	33809.59	29072.62	29358.62	26466.31	25929.77
LEAD (Pb)	шdd	-	0.80	0.76	0.76	0.71	0.41
ZINC (Zn)	Eudd		43,45	41.62	44.81	46.42	33.67
CADMIUM (Cd)	qdd	J	<0.08	<0.08	<0.08	<0.08	\$0.0\$
ARSENIC (As)	qd		<0.23	<0.23	<0.23	<0.23	<0.23
TOTAL CHROMIUM (Cr)	mdd	,	38.26	32.43	35.56	36.32	33.50
TOTAL MERCURY (Hg)	р9/кд		<0.1	<0.1	<0.1	40.1	00.1
SULFIDE (S ² ·)	тв/ка	ر. ا	14	×	\$4	99	10
SULTIDE (S.)	a. b.						

SAMPLING SITES

S-1 NORTHEAST CUTUCO PORT
S-2 PUNTA GORDA
S-3 LAGARTOS BEACH - MANGLITOS
S-4 PUNTA REMOLINOS
S-5 CHIQUIRIN

FIELD LABORATORY

h) Sulfide

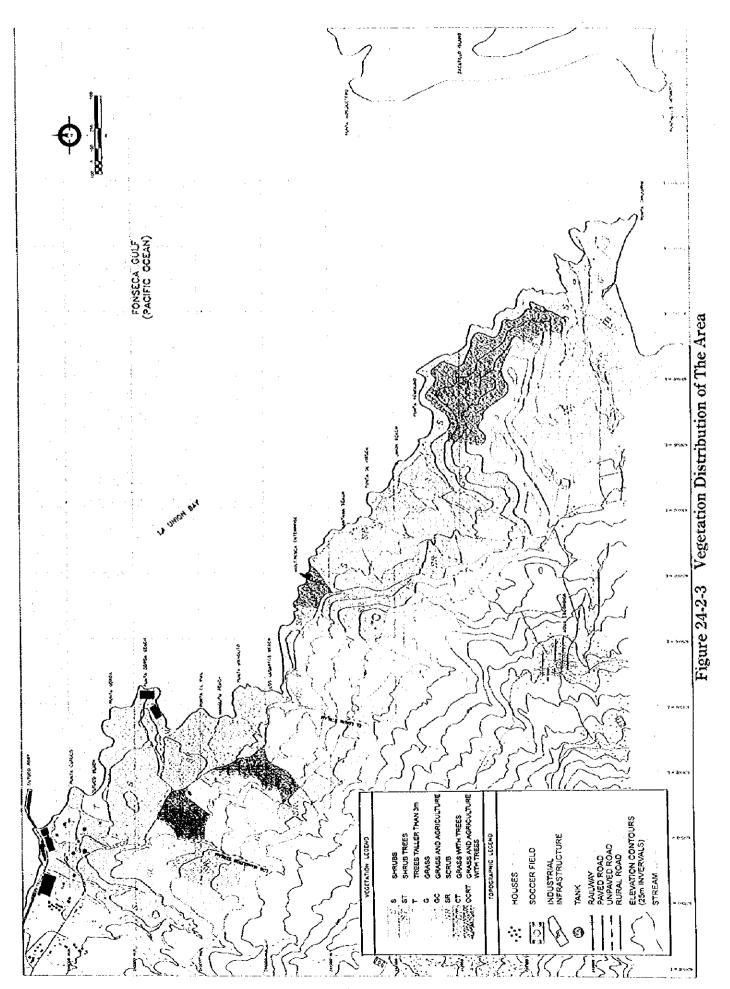
- 38. The sulfide concentrations range is from 10 to 64 ppm. This range also indicates a certain degree of metal contamination in these marine sediments.
 - i) Arsenic (As), Cadmium (Cd), and Total Mercury (Total-Hg)
- 39. These parameters were reported as traces smaller that their respective method detection limits (MDLs) of the laboratory analysis, 0.23, 0.08, and 0.1 parts-per-billion (ppb), respectively. Therefore, for all practical purposes it may be considered that there were no As, Cd and Total-Hg contamination in these five samples.

(3) Impact Evaluation

- 40. The aforementioned inflow of pollutants from land areas is mainly assumed to be adversely affecting the marine sediment around the port, taking into consideration the high value of the organic indices such as Loss of Ignition and COD, while the inorganic substance is detected but estimated at the allowable level.
- 41. To cope with the situation, a municipal solid waste program is being implemented by the La Union Municipality. In addition, appropriate countermeasures such as a sewage treatment system are under examination by the Municipality of La Union to minimize or eliminate the further contamination of the bay, under the coordination of the Ministries of Health, and Environment and Natural Resources.
- During construction of the new port, dredging and dumping of such materials require special attention as mentioned in the previous section related to seawater quality. The dumping site is also an important factor as well as the method of dredging and dumping. The place in the bay of the territory of El Salvador, where the current velocity is weak and impact on the marine ecology is limited, is desirable. In this standpoint, dredging and dumping methods are examined as explained in the section of 20.1.7.

24.2.4 Impact on Terrestrial and Marine Ecology

43. The impacts on terrestrial and marine ecology are addressed in this section. Field survey methods and results are discussed for terrestrial flora, terrestrial fauna, and marine fauna, followed by an analysis of overall impacts.


(1) Field Survey

- 1) Terrestrial Flora Survey Method, Analysis, and Results
 - a) Survey Method
- 44. The study team conducted a terrestrial ecology survey by the following method. Based on the survey results, the Study Team developed Figure 24-2-3. The figure is a vegetation distribution map that was developed to delineate the present distribution of the different types of vegetation in the study area.
- 45. Aerial photographic maps were obtained from the National Geographical Institute of El Salvador (NGIES). The aerial photographs obtained from the NGIES and Cartographic bases used are listed as follows:

PHOTOGRAPHIC AERA NUMBER	FLIGHT	SCALE
087	1S-I-1980-C1	1:20,000
088	1S-I-1980-C1	1:20,000
089	1S-I-1980-C1	1:20,000
129	NN-1962	1:20,000
130	NN-1962	1:20,000
131	NN-1962	1:20,000
132	NN-1962	1:20,000
133	NN-1962	1:20,000
134	NN-1962	1:20,000
SAL CH-5	1972	1:20,000
SAL CH-6	1974-1979	1:40,000
No. 65406	1985	1:5,000
No. 65405	1985	1:5,000

- 46. Initially the aerial photographs were interpreted stereoscopically to create a preliminary map that was later adjusted according to field observations:
- The sampling methodology presented by Matteucci & Coleman (1982) was used for this survey. Flora characterization was carried out using a methodical perpendicular and parallel cross-sections of the study area, with respect to the coastline. Sampling of present species in a given quadrant was then performed. In areas where the trees were taller than three (3) meters, study quadrants were each a hundred square meters (100 m²). In study areas where bushes and small trees prevailed (less than three meters), study quadrants were each twenty-five square meters (25 m²). In study areas where grass prevailed, study quadrants were each four square meters (4 m²). The locations of the parallel and perpendicular cross-sections are shown in Figure 24-2-2 (a total of 6 parallel and perpendicular cross-section and 63 quadrants).
- 48. In each parcel the flora species were identified and quantified. Their height and importance to the region were also noted. In cultivated areas, the species present and their use were recorded.
- 49. The identified species were counted and their density computed. The diversity of each species was also computed using the Shannon Weaver method (Matteucci and Coleman 1982). Based on Figure 24-2-3, the percentage of the study area covered by various vegetation types was identified.
 - b) Analysis and Results of Existing Conditions
- 50. In the study area there are the following categories of vegetation, as shown in Figure 24-2-3.

Shrubs (s)
Shrub Trees (ST)
Scrub (SR)
Trees taller than 3 m (T)
Grass (G)
Grasses with dispersed trees (GT)
Grass and cultivated land (GC)
Grass and cultivated land with trees (GC + T)

24-25

- 51. The category for Shrub Trees also includes trees shorter than 3 m since it is difficult to differentiate the two categories on a map. It should also be noted that the term "agriculture" used in Figure 24-2-3 legend refers to areas of human intervention and cultivation.
- 52. In total, the studied area is covered by about 61% of all grass types (including cultivated areas), 22% shrubs and smaller trees, and about 17% canopy covered by taller trees (taller than three meters).
- 53. The species found in each one of the working quadrants are presented in Table 24-2-4(1) through 24-2-4(6) (6 table sheets). Average height, species number, species density, and total number of species encountered are listed for each quadrant.
- 54. In total, there were 32 families with 55 flora species in the categories of bushes, shrubs and trees. There were 964 samples, obtaining a diversity index of 1.48 (Table 24-2-5). This diversity index value is not considered very high.
- 55. In the cultivated and grass areas, there were 22 species belonging to 10 families (Table 24-2-6). In total, 73 vegetation species were identified in the study area among herbaceous, shrubs, bushes and trees.

Table 24-2-4 (1)VEGETATION SPECIES OF THE STUDY AREA

TRANSECT: SITE: PLOTS:

LOCAL NAME	FAMILY	SCIENTIFIC NAME	AVERAGE HEIGHT (m)	NUMBER: OP INDIVIDUALS	INDIVIDUALS PER m²
Oct.	Simporthaceae	Smerrube deuce	4.3	\$	0.0077
Darrecillo	Graminean	Cynodon decivion	5	2	0.0031
Carron name		sp2	2.1	8	0.0123
Cipco peoritos	Verbenaceae	Lantana camara	2.2	9	0,0092
Silver Silver	Ancomaceae	Stemmedenie diabra	2.3	15	0.0231
Conservate Manch	Mimosarese	Albazia caribaea	5.8	2	0.0031
Consciste perm	Mimosaceae	Enterploblum cyclocerpum	7.3	7	0.0108
Charemo	Fahaceae	Lonchocarous miniforus	က	3	0.0046
Feodylla	Malvacea	Side acuta	1.68	9	0.0092
Fanino blanco	986	Acecie famesiana	3	5	0.0077
Eriolilo		Phasaolus carazalla	3.5	3	0.0046
Granadilla		Crateeva taoie	3.6	1	0.0015
Cignomia Ciscino o tenencio	Stercaliscese	Guazuma ulmifolia	3.8	13	0.0200
Cuitos	Misaceae	Musa sapentum	3.5	-	0.0015
Militario de la composición dela composición de la composición dela composición dela composición dela composición de la composición dela composición de la composición del composición dela composición	Rhamnaceae	Kanwinskie celderoni	4	-	0.0015
Discount of the Control	Momesaceae	Acada handsii	2.8	S.	2,0077
layerin	Rufaceae	Murrava paniculata	3.5	က	0.0046
	8	Bursera simeruba	2.7	•	0.0015
incode	9	Spordies purpures	3.7	က	0.0046
72.0		Cordia alliodora	6	11	0.0169
Madrecacao	Panilionaceae	Girlcidia sepium	4	•	0.0015
Manda	Anacardiaceae	Manoifera indica	8.5	2	0.0031
Magnificus	Bignoniaceae	Tababuia rosea	7.0	1	0.0015
Marson	Anacardiaceae	Anacardium occidentale	3.6	2	0.0031
Naracia orev	Rutaceae	Ctrus aurantium	5.5	1	0.0015
Dalmera	Palmae	Erythee selvedorensis	7.3	2	0.0031
Die de venario	Ceasalpinaceae	Bahuiria eculoata	3.5	13	0.0200
Dintadillo	•	Sp3	4	4	0.0062
Circherto	Mimosacoae	Abizzia so	2.5	7	0.0062
Tibuilde	Borracinaceae	Cordia dentata	4	10	0.0154
Varilla name	•	305	2.4	3	0.0046
Zoren	Smilacaceae	Smilax mexicana	2.6		0.0015
201-1-1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					32
TOTAL SPECIES					145
TOTAL INDIVIDUALS					1.36
DIVERSITY					

Table 24-2-4 (2)

VEGETATION SPECIES OF THE STUDY AREA

TRANSECT:
SITE:
PLOTS:

CORSAIN 13

	!		AVERAGE HEIGHT		INDIVIDUALS PER
LOCAL MAME	FAMILY	SCIENTIFIC NAME	(ພ)	RDIVIDUALS	- LD-3
Carbon negro	1	sp2	4.5	12	0.0143
Cinco negritos	Verbenaceae	Lentena camara	2	3	0.0036
Soign	Apocynaceae	Stemmadenia glabra	3.9	11	0.0131
Chupa chupa	Bignoniaceae	Arrabidaea millisima	•	3	0.0036
Guacimo o tapaculo	Sterculiaceae	Guezume ulmifolie	3.5	5	0.0060
Guarumo	Moraceae	Cecropia sp.		8	0.0095
Huesito	Flacourtiaceae	Ceseerie sylvestris	9	1	0.0012
Huilhuiste	Rhamnaceae	Karwinskie calderoni	9	4	0.0048
Iscanal	Momasaceae	Acecie hendsii	5'5	5	0.0060
Jiote	Burseraceae	Bursera simeruba	9	-	0.0012
Jocote	Anacardiaceae	Spondies purpures	9	2	0.0024
Laurel	Borraginaceae	Cordia alfodora	4.5	12	0.0143
Madrecacao	Papilionaceae	Giricidie sepium	¥Ç.	1	0.0012
Mangle	Rhizophoraceae	Rhizophora mangle	9	15	0.0179
Mangle	Martyniaceae	Avicenia germinans	4,5	7	0.0033
Mangle	Combretaceae	Leguncularie racemosa	9	4	0.0048
Mongoliano	Momosaceae	Pithecollobium dube	Ş	1	0.0012
Pie de venado	Ceasalpinaceae	Bahumia aculaata	3	1	0.0012
Pintadito		sp3	9	4	0.0048
Sombrento		sp4		2	0.0024
Thuilote	Borraginaceae	Cordia dentata	4	5	0.0060
Varilla regra		SpS	1,5		0.0012
TOTAL SPECIES					22
TOTAL INDIVIDUALS					108
CIVERSITY					1.2

Table 24-2-4 (3)

VEGETATION SPECIES OF THE STUDY AREA

TRANSECT: SITE: PLOTS: 13

LAGARTOS 13

LOCALNAME	FAMILY	SCIENTIFICNAME	AVERAGE HEIGHT (m)	WUMBER OF INDIVIDUALS	NOIVIDUALS PER
Barenillo	Garmineae	Cynodon dectylon	2	1	0.0017
	Cactaceae	Lamaireocereus cichiemii	1.2	2	0.0033
Carambolilo		501	3	20	0.0333
		Ceibe pentandra	7.5	4	0.0067
neontos	Verbenaceae	Lentana camara	1	2	0.0033
	Apocynaceae	Stemmedenia glabra	3	10	0.0167
aste negro	Mimosaceae	Enterolobium cyclocarpum	12	4	0.0067
	Fabaceae	Lonchocarpus miniflorus	3.5	12	0.0200
8	Rubieaceae	Hemelie petents	2.5	17	0.0283
Chupa chupa	Bignoniaceae	Arrabidaea	•	ઝ	0.0517
DIVERSITY				1	0.0017
Espino blanco	Mimosaceae	Acecie fernesiene	9	2	0,0033
Friello	Fabaceae	Phasaolus carazalla	1,5	88	0.0633
o o tapaculo	Sterculiaceae	Guezume интіго йа	4	15	0.0250
	Moraceae	Cecropia sp.	8	7	0.0117
	Rhamnaceae	Karwinskia calderoni	4	15	0.0250
Liote	Burseraceae	Bursera simeruba	4	18	0.0300
Mora	Bignoniaceae	Crescentia alata	2.5	2	0.0033
Pintadillo		sp3	5	3	0.0050
Q		Albazia sp	4	14	0.0233
	Euphorbiaceae	Astrotonium gravealeus	18	ļ	0.0017
6	Borraginaceae	Cordia dentata	S	2	0.0033
Vanila negra		sp5	1.8	-	0.0017
Verdenance		sp6	3.5	2	0.0033
72073	Smilacaceae	Smilax mexicana	4	44	0.0733
TOTAL ESPECIES					24
TOTAL INDIVIDUALS					267
DIVERSITY					1.17

Table 24-2-4 (4)

VEGETATION SPECIES OF THE STUDY AREA

TRANSECT: SITE: PLOTS:

LOCAL NAME	FAMILY	SCIENTIFIC NAME	AVERAGE HEIGHT (m)	NUMBER OF INDIVIDUALS	INDIVIDUALS PER
	Simenihaceae	Smarting digues	9	1	0,0013
Signature of the state of the s	Graminese	Cynodon dectyton	9	3	0.0040
Simple Si	Cartachase	Lamairaccaraus cichlamii	1.5	•	0.0013
Cannonito (io	Comobulaçõese	loomoea sp.	q	2	0.0027
Code non non	•	502	4		0.0013
Calcollege	Romhacaceae	Ceiba pentandra	4.5	3	0.0040
Cioco pacarice	Verbenaceae	Lantana camara	1.5	12	0,0160
Sales Sales	Accompanies	Stemmedania diabra	3.8	ಜ	0,0440
Consette Seatth	Minosaceae	Enterolobium cyclocarpum	11	2	0.0027
Chaperto	Fabaceae	Lonchocerpus miniforus	3.5	3	0.0040
Chittens (chile)	Solanacea	Capsicum annuum	1.8	2	0.0027
Chipa Chipa	Biononiaceae	Arrabidaea millisime	1.8	2	0.0027
Chicago			1.3	•	0.0013
CIVENCIA	Mohovos	Sixta acutta		4	0.0053
Esconia Eccis Notes	Mimocareae	Acecia famesiana	3.5	-	0.0013
Capino Dialico	ade Scholesee	Deboir so		R	0.0307
Fior Tuesdoguecament	Cabanaga	Drace-dire Capazalla	00		0.0013
rnjoina	Character	Cuerumo utmifolio	8.4	23	0.0307
Suacimo o tapacuro	Sign College	Kondokie zeblemoj	3.5	40	0.0133
HUMINUSTO	- Kriektmistooro	Acerio boodeii	5	85	0.0827
Scanal	Monesecee	Acada Honos	2.5	7	0.0053
Jalacate for amanila	Composition	Construction Construction	4	12	0.0160
Dicaro o Morto	Dignoniacede	Disson simeraha	800	5	2900'0
Jioke	DUISEIGCOGG	DUI SELB SELICE UPO	7		0,0053
Madrecacao	Papilionaceae	Ciencicia saprum	,		70000
Mangoliano	Mirrosaceae	Prinecorpoium duice		2	0.0013
Pie de venado	Ceasalpinaceae	Banunia acuiasta	2	. 4	0.0213
Pintadillo	1	sp3	6.6	2	0.0013
Quebracho	Mimosaceae	Abizzia sp	O	-\	0.000
Salamo	Rubiaceae	Calycophyllum candidissimum	4	.,	0.0040
Sombrento	•	Spk	3	_	0.0073
Talo cuadrado	Compositae	Melantera nivea	2	70	0.0933
Tibuilde	Borracinaceae	Cordia dentata	5	-	0.0013
/arila pages		SpS	1.5	9	0.0080
TOTAL ESDECIES					32
TOTAL MONOTOR					315
TO THE INDIVIDUALS					1.13
DIVERSILT					

Table 24-2-4 (5)

VEGETATION SPECIES OF THE STUDY AREA

TRANSECT: SITE: PLOTS:

					ALDERICH S DEG
COCALNAME	FAMILY	SCIENTIFIC NAME	AVERAGE HEIGHT (m)	NOWING OF	n
Carambolillo		sp1	ю	2	0.0100
Carbon negro	,	sp2	S	2	0.0100
Chapemo	Fabaceae	Lonchocarpus miniflorus	£,1,	2	0.0031
Frijoliko	Fabaceae	Phaseolus carazalla	\$	2	0.0031
Huilhuiste	Rhamnaceae	Karwinskia calderoni	3.5	18	0.0277
Iscanal	Momasaceae	Acecle hendsii	Ş	Сŧ	0.0031
Jicaro o Morro	Bignoniaceae	Crescentia cujete	5	1	0.0015
Liste	Burseraceae	Bursera simaruba	4.5	2	0.0031
Pie de venado	Ceasalpinaceae	Bahuinia aculoata	2.8	9	0.0092
Pintadillo		දිප්s	5	14	0.0215
Zarza	Smilacaceae	Smilax mexicana	4	2	1:00:0
TOTAL SPECIES					14
TOTAL INDIVIDUALS					63
DIVERSITY					0.006

Table 24-2-4 (6)

VEGETATION SPECIES OF THE STUDY AREA

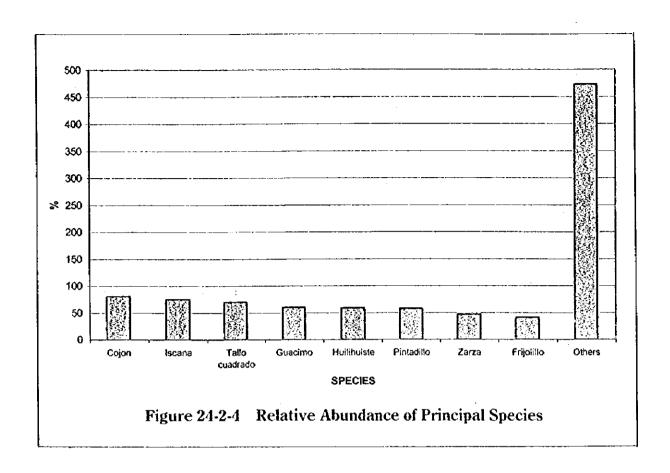
TRANSECT:
SITE:
PLOTS:

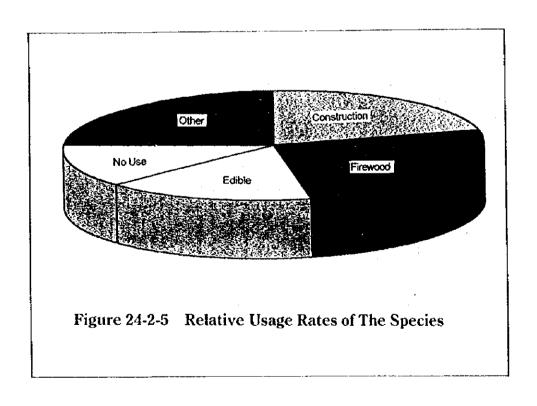
PUEBLO VIEJO

				╓	GEG & INTIMINIA
LOCAL MAME	YAMILY	SCIENTIFIC NAME	AVERAGE MEIGHT	INDIVIDUALS	m
		801	3.5	2	0.0047
Carampolino	Accountable	Stemmedenie diebra	3.5	12	0.0282
E (2)	2000	Alberia cerbasa	12	-	0.0024
Conacaste planco	WILLYCOCOCO			47	00400
Chapemo	Fabaceae	Lonchocarpus miniforus	C		
Chings Offices	Biononiaceae	Arrabidese millisima	3.5	1	0.0024
Chupa Clopa	ħ			+	0.0024
DIVERSITY		3 2	33	4	0.0094
Guacimo o tapaculo	Sterculiaceae	Guazuma uimiroka	0.0		
Himmin	Flacourtiaceae	Caseane sylvestris	3.5	4	0.0094
	2000	Kaninckia caldamoi	8.4	-	0.0259
Hullingste	רק ופון ווון ופרכסים				70000
Iscanal	Momasaceae	Acecie hendsii	ę		0,0024
	Bureacacaca	Bursera simaruba	S	•	0.0024
Cote	and see and	4	138	4-	0.0024
Morro	•	/ds	?		12000
Pie de venado	Ceasalpinaceae	Behuinia aculeata	4	3	L/00:0
		en3	5.5	17	0.0400
Pintadillo					7
TOTAL SPECIES	ļ				2
TOTAL INDIVIDIALS					75
					0.92
DIVERSITY					

Table 24-2-5 VEGETATION SPECIES OF THE STUDY AREA

PLOTS: 63


LOCAL NAME	FAMILY	SCIENTIFIC NAME	NUMBER OF	INDIVIDUALS PER m²
ceituno	Simarubaceae	Simarouba glauca	6	0.0017
arrenillo	Graminece	Cynodon dactylon	6	0.0017
actus	Cartacese	Lamireocereus cichlamii	3	0.0009
ampanilla lifa	Comvolvulaceae	ipomoea sp.	2	0.0006
arambolillo	-	sp1	24	0.0069
arbon negro	-	sp2	23	0.0066
eiba	Bombacaceae	Ceiba pentandra	7	0.0020
Cinco negritos	Verbenaceae	Lantana camara	23	0.0066
cojon	Аросупасеве	Stemmadenia glabra	81	0.0234
onacaste blanco	Mimosaceae	Albizzia caribaea	3	0.0009
Conacaste nagro	Mimosaceae	Enterolobium cyclocarpum	13	0.0038
hарето	Fabaceae	Lonchocarpus miniflorus	37	0.0107
Chichipince	Rubiaceae	Hamelia patents	17	0.0049
Chillege (chile)	Solanacea	Capsicum annuum	2	0,0006
Chupa chupa	Bignonlacese	Arrabidaea millisima	37	0.0107
Scobilla	Malvacea	Sida acuta	10	
	Mimosaceae	Acacia famesiana	8	
Espino blanco Flor fuego/guacamayo	Caesalpinaceae	Delonix sp	- 23	
	Mirtaceae	Phisidium guayaba	3	
Guayabo		Phisolom goayaca Phaseolus carazalla	41	0.0118
Frijolillo	Fabaceae			0.0003
Granadilla	Cappandaceae	Crataeve tapia	60	
Guacimo o tapaculo	Sterculiaceae	Guazuma ulmifolia	15	
Guarumo	Moraceae	Cecropia sp		
Guineo	Musaceae	Musa sapientum		
Huesito	Flacourtiaceae	Casearia sylvestris		
Huilihuiste	Rhamnaceae	Karwinskia całderoni	59	
Iscanai	Momasaceae	Acacia hendsii		
Jalacate flor amarilla	Compositae	Baltimora recta	<u></u>	
Jazmin	Rutaceae	Murraya paniculata		
Јісего о Могто	Bignoniaceae	Crescentia cujete		
Jiote	Burseraceae	Bursera simaruba	28	
Jocote	Anacardiaceae	Spondias purpurea		
Laurei	Вотгадіпаселе	Cordia alliodora	2:	
Madrecacao	Papilionaceae	Gliricidia sepium		0.001
Mangle	Rhizophoraceae	Rhizophora mangle	1	0.004
Mangle	Martyniaceae	Avicenia germinans		0.002
Mangle	Combretaceae	Laguncularia racemosa		0.001
Mango	Anacardiacese	Mangifera indica		0.000
Mangoliano	Mimosaceae	Pithecollobium duice	-	0.001
Maquiligua	Bignoniaceae	Tabebuia rosea		0.000
Maranon	Anacardiaceae	Anacardium occidentale		2 0.000
Moro	Bignoniaceae	Crescentia afata		2 0.000
Naranja grey	Rutacese	Citrus aurantium		0.000
naranja grey Palmera	Paimae	Erythea salvadorensis	_1	0.000
		-1	2	
Pie de venado	Ceasalpinaceae	Bahuinia aculeata		
Pintadillo	<u> </u>	sp3	_ 1 	9 0.003
Quebracho	Mirrosaceae	Albizzia sp	<u>-</u>	1 0.000
Ronron	Euphorbiaceae	Astrotonium gravealeus		
Salamo	Rubiaceae	Calycophyllum candidissimum		0.00
Sombrerito		sp4	- J	3 0.00
Tallo cuadrado	Compositae	Melantera nivea	_	0.02
Tihuilote	Borraginaceae	Cordia dentata	-	8 0.00
Vanita negra	•	sp5	_	1 0.00
Verdenance	-	sp6		2 0.00
Zarza	Smilacaceae	Smilax mexicana		7 0.01
TOTAL SPECIES	_			
TOTAL INDIVIDUALS	<u> </u>			9
DIVERSITY			· · · · · · · · · · · · · · · · · · ·	1


Table 24-2-6
GRASSES AND CULTURAL SPECIES OF THE STUDY AREA

FAMILY	SCIENTIFIC NAME	LOCAL NAME
POCYNACEAE	Allemende cethertica	San Jose
	Cetharanthus roseus	Chula
GRAMINEAE	Cynodon dactylon	Barenillo
	Zea meys	Maiz
	Sorghum vulgare	Maicillo
	Cenchrus brownii	Mozote
	Eleusine Indica	Cola de Caballo
	Ixophorus uniselus	Mesmeto
COMBRETACEAE	Combretum fruticosum	Chupachupa
LOASACEAE	Gronovia scandens	Pan caliente
COMPOSITAE	Melanthera nivea	Botoncillo bianco
	Melampodium divaricatum	Hierba del sapo
	Baltimora recta	Flor amanila
	Tridax procumbens	Hierba del toro
BROMELIACEAE	Bromelia Karatas	Piñuela
COMMELINACEAE	Commelina erecta	Coyuntura
	Tinantia erecta	Chuspa
CYPERACEAE	Cyperus rotundus	Coyolito
	Cyperus difussus	Coyolito
	Cyperus mutissi	Coyolito
MALVACEAE	Sida Acuta	Escobilla
CACTACEAE	Acanthocereus pentagonus	Pitahaya

c) Main Species

- The predominant flora species present in areas of shrubs, trees and bushes are listed in descending dominance order, as follows: cojon (Stemmadenia glabra; with 81, Iscanal (Acacia hendsii) with 75. Tallo cuadrado (Mewlanthera nivea) with 70, Guacimo (Guazuma ulmifolia) with 60, Huilihuiste (Karwinskia calderonii) with 59, Pintadillo with 58, Bramble (Smilax mexicana) with 47, and Frijolillo (Phasea cazaralla) with 41. The majority of these species are bushes (cojon, tallo cuadrado, bramble, frijolillo), or pioneer species, characteristic of intervention areas, such as the Guacimo and/or Iscanal that are typical to warm-dry areas (Figure 24-2-4).
- 57. Of the species present in areas of grass and cultivation, 59.1% belong to the families Gramineae, Compositae and Cyperaceae, and the majority are herbaceous species typical of warm and dry areas.
- 58. Although not very abundant, the presence of a small swamp area stands out near the south side of Punta Gorda (out of the project site of this Study), where three tree species are present. Although this area may potentially be the habitat for breeding fish, mollusks and/or crustaceans, the swamp area is very small which suggests that its contribution to the ecosystem of the bay is limited.
- Table 24-2-7 shows the various uses of flora species found in the study area. Most species are principally used for firewood (25.45%), construction (21.8%), food (16.4%), ornaments, and medicines. Figure 24-2-5 shows the relative usage rates of flora species found in the study area. It means almost all the kinds of species there are already utilized for human daily life in some way.

Table 24-2-7 VEGETATION SPECIES USE OF THE STUDY AREA

PLOTS: 63

LOCAL NAME	FAMILY	SCIENTIFIC NAME	USE
Aceituno	Simarubaceae	Simerouba giauca	BOARD, MORTUARY BOXES, OIL
Barrenillo	Gramineae	Cynodon dactylon	1.
Cactus	Cartaceae	Lamireocereus cichiamii	1-
Campanilla lila	Comvolvulaceae	Ipomoea sp.	
Carambolillo		sp1	*
Carbon negro		Sp2	FIREWOOD
Ceiba	Bombacaceae	Ceibe pentandra	CONSTRUCTION
Cinco negritos	Verbenaceae	Lantana camara	MEDICINAL.
Cojon	Apocynaceae	Stemmadenia glabra	
Conacaste blanco	Mimosaceae	Albizzia caribaea	CONSTRUCTION
Conacaste negro	Mimosaceae	Enterolobium cyclocarpum	CONSTRUCTION
Chaperno Chaperno	Fabaceae	Lonchocarpus miniflorus	FIREWOOD
Chichipince	Rubiaceae	Hameila patents	MEDICINAL
	Solanacea	Capsicum annuum	EDIBLE, ORNAMENTAL
Chiltepe (chile)		Arrabidaea millisima	FIREWOOD .
Chupa chupa	Bignonlaceae		
Escobilla	Maivacea	Sida acuta	BROOMS
Espino blanco	Mimosaceae	Acacia farnesiana	FIREWOOD
Fior fuego/guacamayo	Caesalpinaceae	Delonix sp	ORNAMENTAL
Guayabo	Mirtaceae	Phisidium quayaba	EDIBLE
Frijolillo	Fabaceae	Phaseolus carazalla	
Granadilla	Capparidaceae	Crataeva tapia	EOIBLE
Guacimo o tapaculo	Sterculiaceae	Guazuma ulmifolia	MEDICINAL
Guarumo	Moraceae	Cecropia sp	POST
Guineo	Musaceae	Musa saplentum	EDIBLE
Huesito	Flacourtiaceae	Casearia sylvestris	FIREWOOD
Huitihuiste	Rhamnaceae	Karwinskia calderoni	FIREWOOD
Iscanal	Momasaceae	Acacia hendsli	FIREWOOD
Jalacate flor amarilla	Compositae	Baltimora recta	CONSTRUCTION
Jazmin	Rutaceae	Murraya paniculata	ORNAMENTAL
Jicaro o Morro	Bignoniaceae	Crescentia cujete	FIREWOOD
Jiote	Burseraceae	Bursera simaruba	POST, MEDICINAL
Jocote	Anacardiaceae	Spondies purpurea	EDIBLE
Laurel	Borraginaceae	Cordia alliodora	CONSTRUCTION
Madrecacao	Papilionaceae	Gliricklia seplum	CONSTRUCTION
Mangle	Rhizophoraceae	Rhizophore mangle	CONSTRUCTION, FIREWOOD, COLORANT
Mangle	Martyniaceae	Avicenia germinans	CONSTRUCTION, FIREWOOD
Mangle	Combretaceae	Laguncularia racemosa	CONSTRUCTION, FIREWOOD
Mango	Anacardiaceae	Mangifera Indica	EDIBLE
Mangollano	Mimosaceae	Pithecolioblum dulce	FIREWOOD
Maquiligus	Bignoniaceae	Tabebula rosea	CONSTRUCTION
Maranon	Anacardiaceae	Anacardium occidentale	EDIBLE
Moro	8ignoniaceae	Crescentia sista	CONSTRUCTION
			EDIBLE
Naranja grey	Rutaceae	Citrus aurantium	BROOMS, ROOF
Palmera	Palmae	Erythea salvadorensis	FIREWOOD, POST
Pie de venado	Ceasalpinaceae	Bahuinia aculeata	·
Pintadillo	<u>-</u>	sp3	FIREWOOD, POST
Quebracho	Mimosaceae	Albizzia sp	FIREWOOD, POST
Ronron	Euphorbiaceae	Astrotonium gravealeus	CONSTRUCTION
Salamo	Rubiaceae	Calycophyllum candidissimum	FIREWOOD
Sombrerito	<u> -</u>	sp4	RATTAN CANE
Talio cuadrado	Compositae	Melantera nivea	<u> </u>
Tituilote	Borraginaceae	Cordia dentata	FIREWOOD
Varilla negra	<u>l</u>	sp5	BROOMS
Verdenance		sp6	EDIBLE
Zarza	Smilacaceae	Smilax mexicana	FIREWOOD

d) Rare Species

- Mccording to inhabitants of the region, some rare species exist which include: lagarto (Sciadendron excelsum), cortez amarillo (Tabebuia chrysantra), papaya montes (Carrica caliliflora), and huesito (Casearia sylvestris). Of these, only one huesito specimen was encountered in the 63 quadrants studied. (One individual was found on the No.2 cross-section just on the south of Punta Gorda, and four were on the No.6 around Punta Chiquirin cross-section.) The remaining species were not found in the study area and are thought to be more prevalent at higher elevations out of the study area.
- 61. According to local residents, some other species have diminished considerably in number from the area including: madrecacao (Gliricidia sepium), conacaste blanco (Albizzia caribeae cambaca), and ceiba (Ceiba pentandra). The reduction in these species is attributed to their over-exploitation, since they are considered valuable for construction.

e) Analysis of Existing Conditions

- 62. The study area is characterized by flora species common to hot and dry climate, with diameters smaller than 10 cm to the chest height, typically found in intervention areas, showing evidence that vegetation has been negatively impacted by serious degree of human interference. The vegetation has suffered greatly as a majority of species have been used for construction or firewood.
- Due to their demand, there are less than 80 mature trees (greater than 25 years old) in the area. The mature tree species include Conacaste (Enterolobium cyclorarpum), ceiba (Ceiba pentandra) and Jiote (Bursera simaruba), and are primarily used for shade by residents.

2) Terrestrial Fauna Survey Method and Analysis

a) Field Survey Method

64. Mammal observations were carried out at dawn, dusk and specified hours during the day. The Study Team also conducted continuous night observations at several locations between the hours of 7 p.m. to 5 a.m.

b) Results

b-1) Mammals of the Study Area

65. Table 24-2-8 shows the observed mammals and mammals reported by town inhabitants in the study area. There is a total of 19 species belonging to seven (7) orders. It is also possible that the area contains other species that are difficult to observe. The following describes the most important ecological characteristics of each species encountered:

• Didelphis marsupialis (Tacuazin)

66. Nocturnal; arboreal and terrestrial; solitary. Feeds chiefly on small animals: insects, worms or small vertebrates, including snakes, with about one quarter of the diet consisting of fruit, and in the dry season sometimes nectar. Found in humid forests and outlying gallery forests; thrives in secondary forests and around dwellings, where it feeds on garbage and other wastes.

• Philander opossum (Weasel, ferret)

67. Nocturnal; arboreal and terrestrial; solitary. Feeds chiefly on invertebrates and small vertebrates, supplemented by fruit. Found in mature and secondary rainforests, gardens, plantations, and gallery forests.

Marmosa mexicana (Fox)

68. Nocturnal; arboreal and terrestrial; solitary. Feeds on insects and probably fruit found on or near the ground. Uses a leaf nest borrowed in the ground. Most common in moist evergreen forests, but also found in plantations and arid grasslands.

• Dasypus novemcinctus (Cusuco)

69. Chiefly nocturnal, sometimes diurnal; terrestrial; solitary. Feeds mostly on ants, termites, and other insects, but will eat many kinds of small animals. Found in a wide range of mature and secondary habitats from deep rain forests to grasslands and dry scrubs.

- Saccopteryx bilineata (Bat)
- 70. Feeds on tiny insects (2-4 mm). Found in mature lowlands and secondary rainforests, dry forests, gallery forests, plantations, gardens, and pastures.
- Trachops cirrhosus (Bat)
- 71. Feeds on frogs and lizards, with some insects and occasional small mammals. Found in rainforests, gallery forests, deciduous forests, plantations and areas of secondary vegetation.
- Glossophaga sp. (Bat).
- 72. Feeds on nectar, fruits, insects and pollon. Found throughout the rain forests and secondary forest, plantations, deciduous forests and savannas.
- · Carollia perspicillata (Bat),
- 73. Feeds on fruit and insects, supplemented by nectar in the dry season. Found in mature and disturbed rainforests, gardens and plantations, deciduous forests and gallery forests.
- Uroderma bilobatum (Bat)
- 74. Feeds on fruit, nectar, and insects. Found in mature and disturbed rainforests, gardens and plantations, and deciduous forests.
- · Artibeus jamaicensis (Bat)
- 75. Feeds mainly on fruit, especially figs, nectar, and insects. Found in mature and secondary rainforests and deciduous forests, gardens, and plantations.
- Procyon lotor (Mapache).
- 76. Nocturnal; terrestrial and arboreal; solitary except females with young or congregations at food sources. Feeds on fruits and small animals, especially aquatic ones such as crayfish, crabs, and fish; also raids garbage

bins and dumps. Also known to eat young ears of corn and cause damage to crops. Found on the beaches of both coasts of Central America and are also found inland in mangrove swamps and near rivers. Adapts well to humans and thrive in towns and cities.

- Conepatus semistriatus (Skunk, beaver)
- 77. Nocturnal; terrestrial; solitary. Feeds mainly on insects and other invertebrates, probably small vertebrates and occasional fruit. Found in pastures, clearings, roadsides, and other cultivated areas, in rainforests, and dry forests.
- Mazama americana (cachon, deer)
- 78. Diurnal and nocturnal; terrestrial; solitary. Feeds on fruits, fungi, leaves, and fallen lowers; leaves are mainly eaten when fruits are scarce in the dry season. Found in mature and secondary rainforests, gallery forests, forest edges, gardens and plantations, and savannas near the forest.
- Odocoileus virginianus (White-tailed Deer)
- 79. Diurnal and nocturnal; terrestrial; small groups or solitary. Feeds on leaves and grass, some fruit and fallen flowers. Found in open and secondary habitats bordering the rainforests and old secondary forest.
- Sciurus variegatiodes (Squirrel)
- 80. Diurnal; arboreal; solitary. Feeds mainly on soft, juicy fruits, other types of fruits, and flowers. Found in deciduous forest, open woodland, scrub, and plantations of fruit trees; uncommon in evergreen rainforests.
- Rattus rattus ('casero' mouse)
- 81. Nocturnal; mostly terrestrial. Feeds on grains, garbage, fruits, carrion, and almost anything remotely edible, such as soap, candles, or leather. Found in buildings and farms.

- Mus musculus ('casero' mouse)
- Nocturnal; terrestrial but climbs well. Feeds mainly on grains and cereals stored by humans, such as ruffles and corn, supplemented by other stored foods and insects. Found in agricultural areas, grain fields and hedgerows as well as buildings.
- Dasyprocta punctata (Tepescuintle)
- 83. Diurnal; terrestrial; solitary and rarely lives in pairs. Feeds chiefly on seeds, fruits, and cotyledons of seedlings, supplemented by fungi, flowers, leaves, and insects. Founds in mature and secondary lowlands and mountain rainforests and deciduous forests and in gardens and plantations.

Table 24-2-8

MAMMALS OF THE STUDY AREA (RESEARCH AND OBSERVATIONS)

	FAMILYOR	PANA CIERTARIOS CIÓCAS	1 OCAL NAME	DISTRIBUTION
OKOEK	SUBFAMILY			
MARSUPIALIA	Didelphidae	 Didelphis marsupialis 	Tacuazin	Mexico to Bolivia
	•	Philander opossum	Comadreja	S. Mexico to Panama
			Huron	
		Marmosa mexicana	Zorro	Central America
EDENTATA	Dasybodidae	* Dasypus novemcinctus	Cusuco	S. United States through
				Central America
CHIROPTERA	Phyllostominae	Trachops cirrhosus	Murcielago	S. Mexico South to Bogota
				and SE Brazil
	Glossophaginae	Glossophaga sp.	Murcielago	Central and South America
	Carollinae	Carollia perspicillata	Murciélago	S. Mexico to Bolivia
		Uroderma bilobatum	Murciélago	S. Mexico South to Bogotá
			•	N. Bolivia and SE Brazil
	Stenodermatinae	Artibeus iamaicensis	Murcielago	Central Mexico South to
			•	Paraguay and N. Argentina
	Emballonuridae	Saccopteryx bilineata	Murcielago	S. Mexico to SE Brazil
CARNIVORA	Procyonidae	Procyon lotor	Mapache	S, Canada South to
				Chiriqui Panampa
	Mustelidae	Conepatus semistriatus	Zorrillo	Veracruz South through
		-	Castor	Central America
ARTIODACTYLA Cervidae	Cervidae	Mazama americana	Venado	S. Mexico South to N.
			Cachón	Argentina
		Odocoileus virginianus	Venado cola blanca	 Canada to South America
RODENTIA	Scuridae	Sciurus variegatoides	Ardilla	Central America
)	Muchae	Mus musculus	Raton casero	Worldwide
-		Rattus rattus	Rata	Worldwide
	Dasyproctidae	Dasyprocta punctata	Tepescuintle	Central and South America
AGOMORPHA	Leboridae	* Sylvilagus floridanus	Chilinco - conejo	Central America, Colombia,
				Venezuela

. OBSERVED IN THE FIELD

b-2) Reptiles of the Study Area

- 84. Reptile Species observed by the Study Team are listed in Table 24-2-9 and their ecological importance is described in the following:
- Iguana iguana (Iguana)
- 85. Diurnal and arboreal, primarily herbivores, but will eat eggs, insects and small vertebrates; prefers fruits, found in canopies of tropical forests.
- Ctenosaura similis (Garrobo)
- 86. Solitary and terrestrial. Feeds on small vertebrates. Found in hot areas exposed to direct sun which are its preferred habitats.
- Crotalus durissus (Cascabel)
- 87. Terrestrial. Feeds on small vertebrates. Founds in dry areas, savannas and bushes.

Table 24-2-9

REPTILES OF THE STUDY AREA (Observation and/or Research)

FAMILY	SCIENTIFIC NAME	LOCAL NAME	OCCURRENCE
IGUANIDAE	Iquana iqruna	Iguana	Scarce
	Ctenosaura similis	Garrobo	Common
	Phyliodactylus tuberculosus	Geco casero	Common
VIPERIDAE	Crotalus durissus	Cascabel	Scarce
	Masticophis mentovarius	Zumbadora	Common

b-3) Birds of the Study Area

- 88. A total of thirty-one (31) bird species were in encountered in the study area as shown in Tables 24-2-10. Table 24-2-11 shows bird species of the area listed in the literature. Ecological importance of each bird species observed and/or reported is summarized in the following:
- · Actitis macularia (Agachadiza)
- 89. Common, solitary. Feeds on small crustaceans and fish. Their habitat is the coastal areas and internal lakes.
- Amazilia rutilia (Canelo hummingbird)
- 90. Feeds of nectar. They develop their activities in intervened areas and forest and shrub ecosystems.
- Aratinga holochora (Green parakeet)
- 91. Found in groups. Feeds mainly on fruits and inhabits small and shrub areas in dry regions.
- Ardea herodias (Blue heron)
- 92. Found in groups and nests in small colonies. Feeds on fish, frogs and aquatic insects and inhabits estuaries, swamps, rivers and lakes.
- Calidris mauri (Playerito).
- 93. Found in groups. Inhabits coastal zones and humid areas and feeds on small crustaceans, mollusks and aquatic insects located near the beaches.
- Calocitta formosa (Magpie)
- 94. Solitary or in pairs. Feeds on seeds and fruits. Inhabits forest areas, bushes and tall shrubs.

- Cathartes aura (Red head zopilote)
- 95. Solitary or in groups. Feeds on decayed matter and occasionally fruits. Inhabits open areas, shrub and forest areas are mainly found in proximity to urban areas.
- Charadrius alexandrinus (Playerito)
- 96. Solitary or in groups. Feeds on small crustaceans and insects. Inhabits beaches and river basin areas.
- Colinus leucopogon (quail)
- 97. Solitary on in groups. Feeds on seeds and occasionally fruits and insects. Inhabits savannas and open areas.
- Columba livia (white dove)
- 98. Found in groups. Feeds on seeds and fruits. Inhabits open areas, gardens and parks and nests in abandoned houses.
- Columbine inca (Turtle dove)
- 99. Generally observed in groups and feeds mainly on seeds. Inhabits open areas, savannas and gardens.
- Coragyps atratus (Zopilote)
- 100. It is usually found in groups. Feeds on insects and occasionally fruits and seeds. Inhabits primarily open and brush areas, and also cultivated areas.
- Crotophaga sulcirostris (Pijullo)
- 101. Sociable, found in groups. Feeds on insects and occasionally fruits and seeds. Inhabits primarily open and brush areas and also cultivated areas.

- Dendrocygna autumnalis (Pichiche)
- 102. Found in groups. Feeds on crustaceaus, fish and amphibians. Inhabits humid coastal areas.
- Egretta thula (Heron)
- 103. Found in small groups and feeds on small crustaceans, insects, fish and amphibians that it locates in the bottom of water bodies. Inhabits humid coastal areas.
- Fregata magnificens (Fragata, Tijereta)
- 104. Found in colonies and feeds on fish and crustaceans. Inhabits coastal areas swamps and marshes.
- Icterus sp. (Chiltota)
- 105. Usually found in groups in isolated trees. Feeds on fruits and occasionally seeds and insects. Inhabits open areas in savanna and dry areas.
- Pelecanus occidentalis (Pelican)
- 106. Usually found in groups and feeds mainly on fish. Inhabits coastal areas, swamps and marshes.
- Pitangus sulphuratus (Guis)
- 107. Territorial and solitary. Feeds on insects and occasionally fruits. Inhabits open areas, gardens and brush.
- Progne chalybea (Swallow)
- 108. Found in large groups and feeds on insects. Inhabits open areas.
- · Quiscalus mexicanus (Clarinero and Zanate)
- 109. Solitary or in small groups. Feeds on insects, seeds, fruits, and occasionally small crustaceans. Inhabits open areas with dispersed trees,

gardens and urban areas.

- Stema maxim (Gull)
- 110. Found in large groups and feeds mainly on fish. Inhabits beaches and coastal areas.
- Asian zenaida (white wings)
- 111. Observed in groups. Feeds on seed, fruits and grains. Found in open areas and in general cultivated areas.

Tables 24-2-10
BIRDS OF THE STUDY AREA (OBSERVATIONS)

FAMILY	SCIENCTIFIC NAME	LOCAL NAME	OBSERVATIONS / 60 HOURS	RANGE
COLOPACIDAE	Actitis macufaria	Agachadiza	1	SCARCE
ROCHILIDAE	Amazilia rutilia	Cotibri caneto	2	SCARCE
SITTACIDAE	Aratinga holocchlora	Perico verde	14	COMMON
VRDEIDAE	Ardea herodias	Garza azul	1	SCARCE
SCOLOPACIDAE	Calidris mauri	Playerito	\$1	COMMON
ORVIDAE	Calocitta formosa	Urraca	35	COMMON
CATHARTIDAE	Cathates aura	Zopiłote cabeza roja	7	SCARCE
HARADRIIDAE	Charadrius alexandrinus	Playerito	3	SCARCE
HASIANIDAE	Colinus leucopogon	Codomiz	15	COMMON
OLUMBIDAE	Columba livia	Paloma	3	SCARCE
CATHARTIDAE	Coragyps atratus	Zopilote cabeza roja	12	COMMON
CUCULIDAE	Crotophaga sulcirostris	Pijullo	30	COMMON
OLUMBIDAE	Columbina inca	Tortolita	19	COMMON
NATIDAE	Dendrocygna autumnatis	Piche	1	SCARCE
ARDEIDAE	Egretta thula	Garza	. 1	SCARCE
FALCONIDAE	Falco sparvenus	Listique	3	SCARCE
REGATIDAE	Fragata magnificens	Fragata Tijereta	6	SCARCE
CTERIDAE	icterus sp.	Chiltota o Chorcha	9	SCARCE
LARIDAE	Larus philadelpia	Gaviota	1	SCARCE
STRIGIDAE	Micrathene whitneyi	Lechuza	2	SCARCE
ARDEIDAE	Nyclanassa violacea	Paloma mareña	10	SCARCE
PICIDAE	Piculus sp.	Carpintero	6	SCARCE
PELECANIDAE	Pelecanus occidentalis	Pelicano	53	ABUNDANT
TYRANIDAE	Pitangus sulphuratus	Guis	42	ABUNDANT
HIRUNOINIOAE	Progne chalybea	Golondrina	65	ABUNDANT
CTERIDAE	Quiscalus mexicanus	Cfarinero	39	ABUNDANT
PARULIDAE	Seiurus novaboracensis	Alzacolita	3	SCARCE
LARIDAE	Sterna hilotica	Paloma de mar	43	ABUNDANT
LARIDAE	Sterna maxima	Gaviota	30	COMMON
TORTIDAE	Turdus gravi	Zenzontie	5	SCARCE
COLUMBIDAE	Zenaida asialica	Alas blancas	70	ABUNDANT

Table 24-2-11 BIRDS OF THE STUDY AREA (RESEARCH)

SCIENTIFIC NAME	LOCAL NAME
Accipiter striatus	Gavilán pajarero
Actitis macularia	Agachadiza
Amazilia rutila	Colibri canelo
Aratinga canicularis	Chocoyo
Aratinga holoochiora	Perido verde
Brotegeris jugularis	Catalnica
Bubo virginianus	Tecolole
Busarettus nigricollis	Gavilan pescador
Buteo brachyurus	Gavilan
Calidris mauri	Playerito
Calocitla formosa	Umaca
Campylorinchus rufinucha	Guacalchia
Cathartes aura	Zopilote cabeza roja
Charadrius alexandrinus	Zopiioto edeces roja
Charadrius semipalmatus	
Charadrius vociferus	
Colinus leucopogon	Codomis
Columba livia	Paloma
	r sronta
Columbina inca	
Columbina paserina	
Columbina taparoti	Zopilote
Coragyps atratus	
Crolophaga sulcirostris	Pijallo Piche
Dendrocygma autumnatis	
Dendroica pelechia	Carpintero
Dendroica virens	Chipe
Egretta rufescens	Garza
Egretta thula	Garza
Eumamota supercitiosa	Talapo
Falco sparverius	Lilisque
Fragata magnificens	Fragata - Tijereta
Geothlypis trichas	
Glaucidium brasilianum	Aurora
Haematopos palliatus	
icteria virens	*
icterus sp	Chittota - Churcha
Larus argentatus	Gaviola
Larus philadelphia	Gaviota
Melanerper carolinus	Chengo
Micrathene whitneyl	Lechuza
Mimus poligiottus	Tijerilla veranera
Mornotus momota	Тодогог
Nyclanassa violacea	Paloma mareña (inmatusre)
Ortalis leugocastra	Chacha
Parabutco unialctus	
Passerina ciris	-
Passerina cyanea	
Pelecanus occidentalis	Pelicano
Picoldes scalaris	Carpintero
Pitangus sulphurarus	Guis
Progne chalybex	Golondrina
Puculus sp.	Carpintero -
Quiscalus major	-
Quiscalus mexicanus	Clarinero (sanete)
Rhynchops niger	Rauyador negro
Rosthiramus sociabilis	Gavitan
Ruteo brachyurus	Gavilan
Seiurus noveboracensis	Alza colita
Spectyto cunicularia	Lechuza
Sterna maxima	Gaviola
Stema nilotica	Paloma de mar
Trogon elegans	Coa elegante
Turdus gravi	Zenzotle
Turdus sp.	Chunta
Tyto alba	Joiote
Vireo beliii	Piñalero
	1 HOUSE
Wilsonia pusilia	Alas Mancas
Zenaida asiálica	Alas blancas

b-4) Insects of the Study Area

112. The more common insects observed in the survey area are the following:

- Periplaneta americana (Orthoptera)
- Mantis reliogiosa (Orthoptera)
- Termes sp. (Isoptera)
- Libellula sp. (Odonata)
- Pediculus humanus capitis (Anoplura)
- Notonecta sp. (Hemiptera)
- Magicicade septen (Homoptera)
- Papilio machaon (Lepidoptera)
- Marpho peleides (Lepidoptera)
- Deilephilar sp. (Lepidoptera)
- Hellula undalis (Lepidoptera)
- Musca domestica (Diptera)
- Anopheles sp. (Diptera)
- Pulex irritans (Diptera)
- Tunga penetrans (Diptera)
- Hydrophilus picens (Coleoptera)
- Dynastes sp. (Coleoptera)
- Apis sp. (Himenoptera)

3) Marine Fauna Survey Method, Analysis, and Results

a) Survey Method

113. The marine species recorded in this study were found by means of research, visits and surveys in the fish markets, interviews with local fishermen, and direct observations. References used for species identification include Orellana (1989), Von Prahl et al. (1990), and others.

b) Analysis and Results

- Seventy-three (73) marine species belonging to 32 families were recorded in the study area and surrounding waters as listed in Tables 24-2-12 and 24-2-13. Twenty-one (21) of these were captured within the confines of the study area.
- 115. The dolphin (Stenella longirostris) and marine turtles (Lepidochelys olivacea and Erectochelys imbricata) occasionally visit the study area.
- 116. It is important to note that the *golfina* turtle is considered endangered.
- 117. Activities to protect the turtles include implementation of nets that avoid their capture and the care of their eggs. At present these activities are carried out by CENDEPESCA in La Union.
- 118. Most of the commercial fishing is conducted in sectors outside of the study area. Locally, fisherman mainly capture crustaceans and mollusks species, especially shrimps of the red "chacalin" (Xiphopenaeus riveti) and the shrimp zebra or carabali (Trachypenaeus sp.) species. Most of the Penaeus species captured locally are sold directly to industrial fishing processing plants.
- 119. Several species are generally sold locally. These include the green lobster (Panulirus gracilis), captured mainly from Punta Chiquirins rocky sectors; the Punche (Gecarcinus lateralis) also, captured from rocky sectors; and the Jaiba (Callinectes arcuatus) which is not as common as the other species.

120. A favorite species of area inhabitants is known as the donkeys helmet, or "Casco de Burro" (Anadara grandis), which is captured during low tide but is becoming scarce due to its over exploitation. Unfortunately, there are no statistical data on the fishing industry in the region. However, fishermen affirmed that the fishing has substantially diminished over the last decade.

(2) Impact Evaluation

- 121. The survey area had already been disturbed mainly by agricultural activities of local inhabitants in some way to a significant degree. It could also be suggested by the vegetation diversity index of 1.48, which is not considered very high (see Table 24-2-5).
- As well, the population density of the important terrestrial fauna species is supposed to be relatively low especially in the short-term project area due to human activities related to the existing facilities such as the Ports of Cutuco and Punta Gorda for Alternative C-3 and the private piers for Alternative B-3.
- 123. There remains the very small swamp near the south side of Punta Gorda, but it is located out of the project site of this Study. Although it may potentially be the habitat for breeding fish, mollusks and/or crustaceans, it is generally supposed to be too small to contribute to the coosystem of the bay.
- 124. In this sense, the north area of La Union City is still covered with massive mangrove growth. Considering the total ecological capacity of the area, the authorities concerned should make it a top environmental priority to carefully conserve this mangrove area.
- Additionally, the population density of the important marine fauna species is also relatively low in the short-term project area, and most of the commercial fishing is conducted outside of the port development area (however, the fishing has substantially diminished over the last decade). As to the important *golfina* turtle, appropriate measures would be able to be taken for its protection with related groups such as CENDEPESCA, if necessary.

Table 24-2-12

MARINE SPECIES IN AND AROUND THE STUDY AREA

	FISH	
CARCHARHINIDAE	Carcharinus sp.	Tiburon
SPHYRNIDAE	Sphyma lewini	Tiburon martillo
ARIIDAE	Bagre panamensis	Bagre
	Bagre pinimaculatus	Bagre tacazonte
	Arius troschelli	Guicho
	Arius Seemanni	Bagre
	Galeichthys jordani	Guicho
	Galeichthys peruvianus	Bagre
	Galeichthys sp.	Guicho
•	* Sciedes troschely	Bagre gaticiano
DASYATIDAE	Dasyaus sabina	Raya
-,, <u>-</u> ,,, <u>-</u>	Pristis zephyreus	Raya
SCIANIDAE	Stellifer ercymba	Corvinilla
	Cynoscion procephalus	Pinchada
	Cynoscion squamipinnis	Babosa
	Cynoscion reticulatus	Pancha rayada
	* Cynoscion sp1	Curvina
	Cynoscion albus	Corvina blanca
	Nebris occdientalis	Guabina pinchada
	Larimus sp.	Pinchada
	Micropoginias altipinis	Pancha
	Cynoscion sp2	Peladura
	* Larimus effulgeus	Guabina
ARIIDAE	Sciades troschely	Bagre galiciano
TETRADONTIDAE	Sphocroides tricocephalus	Sapa
POLYNEMIDAE	Polydactylus approximaus	Pez gato
SCOMBRIDAE	* Scomberomorus sierra	Maçarela
	Scorpaena sp1	Pejetoro
CORYPHAENIDAE	Coryphaena hippurus	Dorado
LUTTANIDAE	Lutjanus peru	Pargo colorado
	Lutjanus novemfasciatus	Pargo dienton
	Lutjanus guttatus	Pargo lunarejo
SPHYRAENIDAE	Sphyraena ensis	Picuda
MUGILIDAE	Mugil Curema	Lisa
CENTROPOMIOAE	Centropomus medius	Robalo
•	Centropomus robalitos	Robalito
HAEMULIDAE	* Haemulon sp.	Ruco
	* Anysortemus pacific	Ruco
	* Pomadasys panamenses	Ruco
	* Macrodon sp.	Dientona
NN	sp1	Chopa
SERRANIDAE	Ephinephelus sp.	Mero
CARANGIDAE	Carranx canicus	Jurel
	Hemicaranx sp.	Palometa
	Selene peruvianus	Palometa
MULLIDAE	Pseudopeneus grandisquamis	-
STROMATEIDAE	Peprilus synideri	Triosa
	Peprilus medius	Tilosa
GERRIDAE	Diapterus peruvianus	Huesudas
OF MINIONE	Scorpaena sp.	Pez toro
SYNGNATHIDAE	Hippocampus ingens	Pez caballo
GOBIESOCIDAE	Gobiesox daedaleus	Pez sapo
PODIESCOUNE	Contract anergiess	Pez gavilan

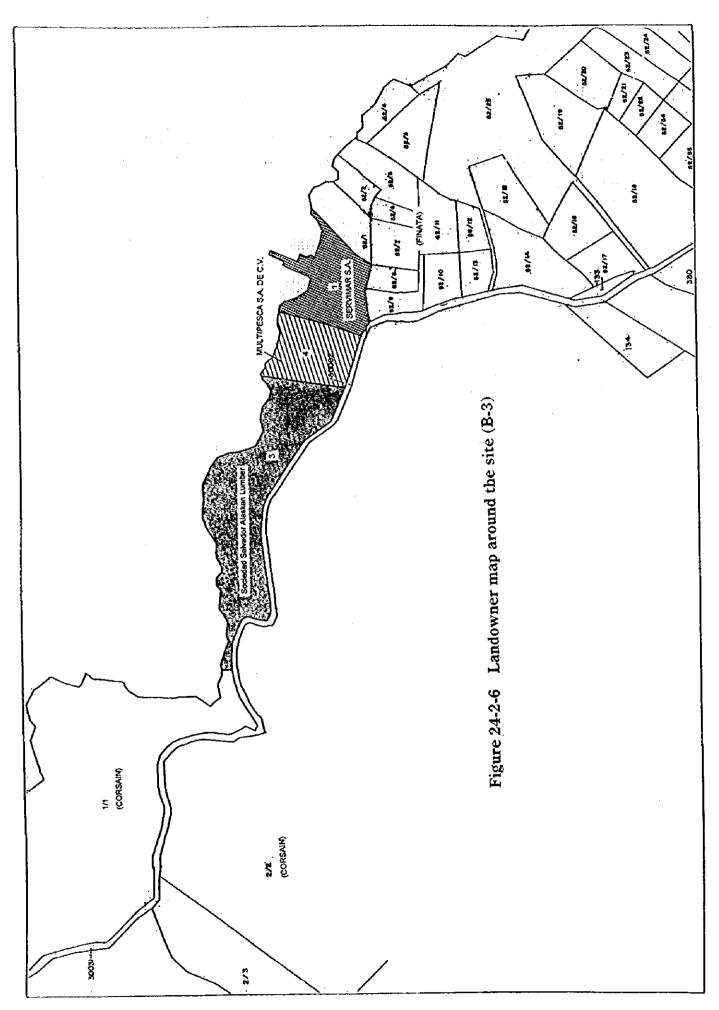
NN NO NAME IDENTIFIED

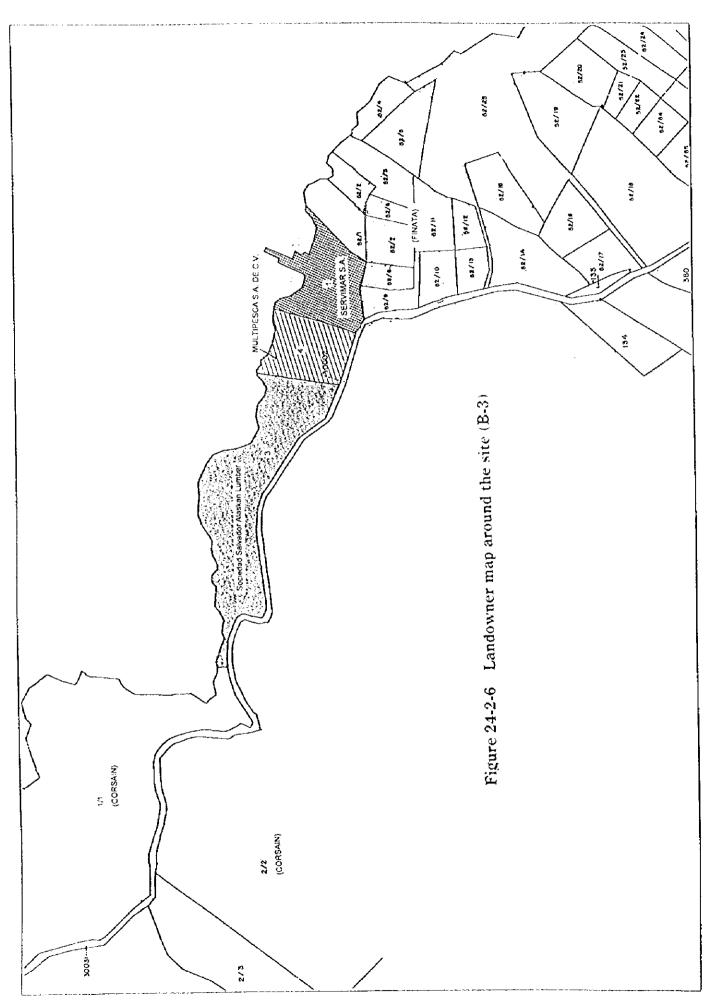
MARINE SPECIES IN THE STUDY AREA
 MARINE SPECIES OCCASIONALLY IN THE STUDY AREA

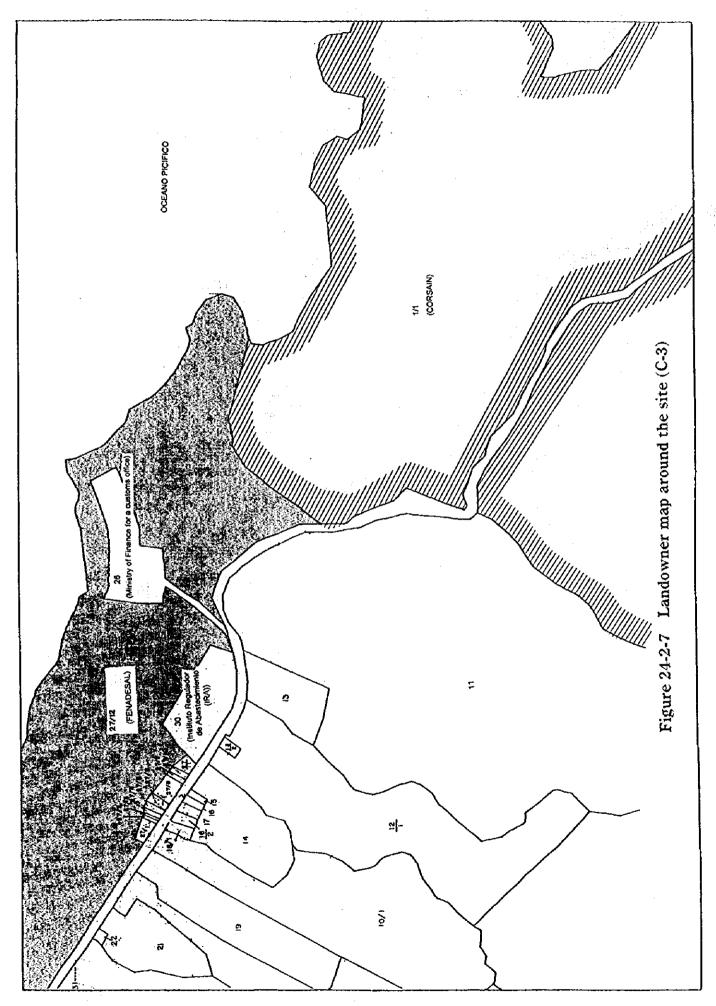
Table 24-2-13 MARINE SPECIES IN AND AROUND THE STUDY AREA

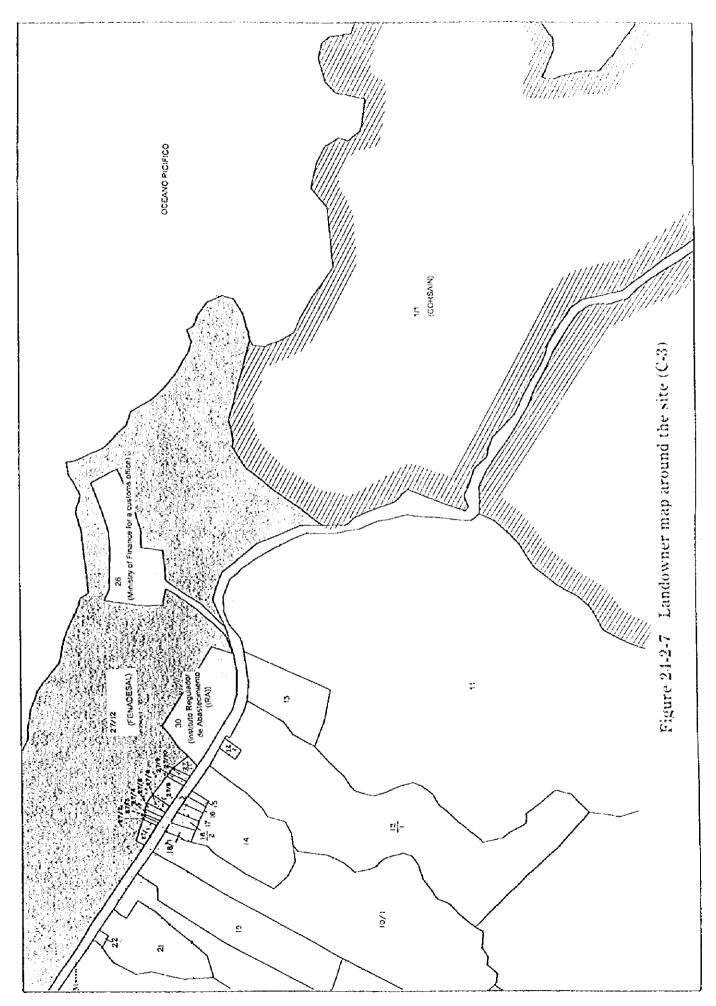
FAMILY	SCIENTIFIC NAME	LOCAL NAME			
MOLLUSKS					
ARCIDAE	Anadara grandis	Casco de burro			
	Anadara tuberculosa	Curil concha negra			
	Anadara simitis	Curit concha negra			
OSTICIDAE	Ostrea Iridescens	Ostra			
MYTILIDAE	Mytela estrigata	Churria Almeja			
	CRUSTACEANS				
PENAEIDAE	Xiphopenaeus riveti	Chacalin rojo			
	Penaeus stylirostris	Camaron azul			
	Trachypenaeus sp.	Camaron cebra o carabali			
	* Penaeus vannamel	Camaron patas biancas			
	Penaeus californiensis				
	* Penaeus occidentatis	Camaron café			
PORTUNIDAE	Callineetes arcuatus	Jaiba			
	Portunus sp.	Jaiba			
GECARCINIDAE	Gecarcinus lateralis	Puche			
	Cardisoma sp.	Concho apred			
	Menippes sp.	Aprelador			
	 Caleppa sp. 	Apretador negro			
PALINURIDAE	Panulirus gracilis	Langosta verde			
		Langosta cuca			
	MAMMALS				
OELPHINIIDAE	** Stenella longirostris	Bufeo			
REPTILES					
CHELONIIDAE	** Lepidochelys olivacea	Golfina			
	** Eretmochelys imbricate	Carey			

^{*} MARINE SPECIES IN THE STUDY AREA
** MARINE SPECIES OCCASIONALLY IN THE STUDY AREA
NN NO NAME IDENTIFIED


24.2.5 Impact on Displacement of Inhabitants and Facilities


(1) Impact Around Alternative B-3


- 126. The construction of Alternative B-3 could affect three private shrimp piers operated by MULTIPESCA, VERALMAR, and INDUMAR. At least, the Short Term plan requires the demolition of the pier of MULTIPESCA which is located to the west side. However, the said pier is in very poor structural condition and presently abandoned, surrounded by sunken ships. Therefore, it seems not to be difficult to resolve the issues.
- 127. Regarding the remaining piers, the central pier (VERALMAR) and the east pier (INDUMAR) are in use and under construction, respectively. In order to obtain the rights for these properties, CEPA will need to negotiate acceptable agreements with these users and owners before the second bulk terminal on the east side is constructed.
- 128. As one of the best alternatives, these three piers should be relocated to the fishing Port of Punta Gorda, even if this involved some form of compensation. Such functional separation is desirable from the standpoint of proper port development on the La Union bay.
- Land owners around the site are shown in Figure 24-2-6 based on the information of CNR(Centro Nacional de Registros). The divisions of CORSAIN (1/1), Sociedad Salvador Alaskan Lumber(3) and MULTIPESCA S.A. DE C.V.(4) on the sea side could be mainly affected at the Short Term plan. The neighboring divisions of SERVIMAR S.A.(1), where the VERALMAR operates, and FINATA (52/1 to 52/24) related with INDUMAR might be affected at the Master Plan stage.
- 130. The land of CORSAIN could be utilized considering the purpose of the institute without any problems. Sociedad Salvador Alaskan Lumber has many lots around the site, and its activities seem not always to be related to coastal activities. Further, FINATA is a public organization.
- 131. Other private lots, neither mentioned here nor related to coastal activities, could be involved for the project, if necessary, with some proper treatments according to the authorities concerned, since such a matter has never become a big issue in the country side in El Salvador.


(2) Impact Around Alternative C-3

- Alternative C-3 is basically located between the areas of the Port of Cutuco and Punta Gorda. Therefore, a serious problem would not arise, compared to Alternative B-3. As shown in Figure 24-2-7, the former belongs to FENADESAL(27/12), and the latter to CORSAIN (1/1). The parcel of 3/1 is also owned by CORSAIN. The area (26) surrounded by the said FENADESAL is of the Ministry of Finance for a customs office.
- 133. At present, approximately 25 rural houses are settled along the existing road to the small bay of Punta Cutuco, in the property belonging to the said CORSAIN. The alternative requires a landfill of the bay, but doesn't force settlers to relocate to another place. However, it is desirable that such an area be incorporated for total port development. According to authorities concerned, it would not be so difficult because of the original right for the corresponding land in addition to the same reason referred to concerning B-3.
- 134. Furthermore, as mentioned in Chapter 5, this area lacks basic infrastructure such as electricity, telephone, school and toilet, so inhabitants are forced to go to the town area every time such services are needed. In addition, the economic activities are limited to self-sufficient cultivation and animal husbandry, which cause exploitation of the area in disorder, deteriorating natural resources and discharging the waste water into the sea. In this sense, such activities should be planned to be incorporated into around the town area of La Union in a proper way. If necessary, the new port could generate new jobs for people for this area.
- 135. In this regard, the similar measures are desirable to be taken for the parcels from 27/1 to 27/11 and 30 in the long run. The former parcels of from 27/1 to 27/11 are used only for private, and 30 is owned by Instituto Regulador de Abastecimiento (IRA).

24.2.6 Impact on Water Area Use

- During the port construction stage channel navigation might be affected for a limited period of time. However, small fishing boats which are able to move flexibly in a shallower area of the bay would not be greatly affected. Out of the bay, and outside the channel fishing is permitted. Good planning and stringent navigation control during construction could greatly minimize any inconvenience associated with channel navigation.
- 137. Dredging and port construction activities could also adversely affect international traffic of vessels from other countries entering to discharge products such as oil, fertilizer, grains and gas. At present, however, these kinds of activities are limited. In this sense, good planning to smoothly execute the project is required in order to cope with these large ships as soon as possible.
- 138. After the completion of the project, the number of large ship calls is only one or two per day which won't greatly affect use of the water area.

24.2.7 New Road to By-Pass the Town Area

- As shown in Figure 18-3-6, the Study Team proposed the construction of a by-pass road around the south part of La Union City to the new port. This by-pass will greatly reduce the negative impacts of commercial port traffic on the city including noise, air pollution, and traffic jams as aforementioned.
- 140. The by-pass route is roughly described in the figure based on the brief site survey, which runs around the area where city activities are of low-density. However, it might affect the settlements of Barrio Las Flores and Hacienda La Paz in some way. In such a case, proper treatment such as land acquisition and resettlement of the affected inhabitants would be required.
- 141. Of course, the by-pass road will require topographic and geotechnical investigations, engineering design and environmental considerations. In addition, proper land use along the said road, including the establishment of EPZs, should be considered. It also appears that in the near future it may be necessary to improve access roads to the said by-pass.

(Note)

- 142. It appears that the by-pass road will affect approximately 850 houses in the settlement of Barrio Las Flores. The Municipality of La Union estimated that the fair market value of these houses may be about US\$6.00/m².
- 143. Hacienda La Paz is registered as one private property. At the present time the property is occupied by many dwellers, who are the beneficiaries of the government program "ISTA". It is difficult to estimate at this time what will be the land acquisition cost of this affected property. However, it is said that it could be reasonably negotiated at an approximate price of about US\$3.70/m².

24.2.8 Other Significant Environmental Impact Considerations


- (1) Environmental Impact of Dredging in the Bay Area
- Based on the IEE for the Master Plan, disposal of dredging spoil is one of the important factors to be examined from the environmental aspect. The method and the disposal place is already explained in the section of 20.1.7. In this section, supplementary explanation will be given.

(Note)

- 145. To begin with, it should be remembered that the initial dredging volume was drastically reduced from the environmental viewpoint.
- At the Master Plan stage, the total volume is estimated at around 6-7 million m³ for Alternative B-3 and C-3, which is generated by dredging up to -13m in general (See Appendix 3., PART II). If the initial dredging is left up to -12 m, the volume would be 4-5 million m³.
- As examined in 18.3.3(3), turning basin and access channel are planned to be dredged only up to -11m at the Short Term stage, taking into consideration the real calling draft of ships and the tidal benefit of around 3 m at La Union. By this means, the dredging volume decreased to approximately 2 million m³, less than half than that up to -12 m and around one-third than that up to -13m, for the smooth implementation of the project.
 - (2) Disposal of Dredged Materials
 - a) The Municipal Crematory Site
- 148. According to preliminary negotiations conducted by the Study Team with the La Union Municipality it was agreed that dredged materials could be disposed and placed, if necessary, at the site that is presently used as the municipal crematory. Figure 24-2-8 shows the location of that site which has an approximate area of 13.3 hectares, based on a traditionally estimated area of 19 "Manzanas" where a Manzana is $7,000 \text{ m}^2$ (or 1 Manzana = 0.7 hectare).
- 149. However, there are two potential problems that will require proper

evaluation and engineering before disposal of dredged materials at that site and could unreasonably increase the disposal cost, as follows:

- The site is on a relatively steep slope. Therefore, there could be problems of stability of the dredged materials such as landslides. To resolve this problem a containment embankment will have to be properly designed and constructed from compacted, locally available fill soils.
- The stormwater runoff and leachate from the dredged materials, if allowed to flow uncontrolled, could significantly increase the salinity of downgradient soil surface and adversely affect vegetation. To resolve this problem, it may be necessary to properly drain the site in a lined channel to properly convey the stromwater runoff and leachate.
- 150. Therefore, this site is not preferred.

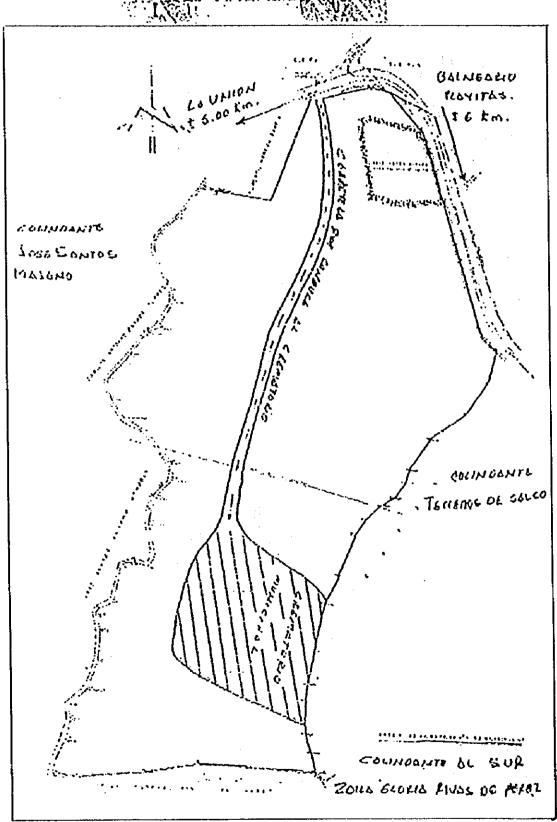


Figure 24-2-8 Municipal Crematory

b) Marine Area Disposal

- 151. Due to the potential environmental impacts of land disposal discussed in the previous section, the study team identified finally two possible sites for marine placement of dredged materials, as follows:
- Site A: located between Cutuco Port and Conejo Island as shown in Figure 20-1-3
- Site B:located between the Conchaguita Island and Meanguera Islandas as shown in Figure 20-1-4
- Both sites A and B have an approximate area of 1,000,000 $\rm m^2$ (a 1,000 x 1,000 m square shape), and are located at a distance of about 2,000 m from the navigation channel.
- Site A: This site is located inside the bay, where the seabed is already relatively shallow and covered with a very soft silty deposit. Although this site might be relatively close to the existing mangrove area, the dredged materials which are well controlled under the proposed method could not spread so easily due to the calmness and the low current velocity at the site. This site was selected as the most appropriate site for marine disposal of the dredged materials.
- Site B: This site is located in the open seas. However, the Fishing Development Center has determined that this site will not affect fishing activities since fishing activities at this area include lobster fishing performed in rocky seabed areas which are sufficiently far from the disposal site. Therefore, this site is selected as the alternative site for Site A.
- 153. It should be noted that sufficient data concerning natural conditions and environmental conditions at these sites are not found at the stage of this Study. It is desirable to investigate such data before the project execution. In addition, environmental monitoring should be implemented through the whole period of dredging work.

(Note)

- 154. Two additional sites, A-1 also located between Cutuco Port and Conejo Island, and A-2 located between the Martin Perez Island and Zacatillo Island, were also evaluated.
- As a result, however, these sites were ruled out since they could potentially impose significant adverse impacts as follows:
- Site A-1: This location was ruled out because the seabed at this site is already relatively shallow and covered with a very soft silty deposit. This site is also relatively close to the existing mangrove area and could adversely affect the mangrove ecosystem. Additionally, the Fishing Development Center has determined that dredging disposal at this site could adversely affect fishing activities.
- Site A-2: Was ruled out due to strong currents and the possibility that
 dredged materials disposed at this site could be displaced into the nearby
 territorial water of the neighboring countries (Honduras or Nicaragua).
 - c) Dredging and Marine Disposal Method
- 156. The Study Team has proposed a dredging and marine disposal method that will significantly reduce any negative impacts, as in the section of 20.1.7. As illustrated in the related figures, by using a boat mounted sheet fence to protect the dredge bucket area from silt dispersion, and a floating sheet fence containment shield system at the disposal location, the dispersion of the dredged materials during both dredging and disposal is greatly reduced.
- Dredging operations could impact some part of fishing activities made by about 7,000 local fishermen according to data provided by the Fishing Development Center. However, this impact is short-term and should last only through the duration of dredging operations. In addition, it is limited at the actual dredging locations with proposed countermeasures as explained.
- 158. By the way, it will be necessary to consider the presence of submarine electrical cables that provide energy to various settlements. These cables are laid on the seabed and should be carefully handled to

prevent any damages. One is connected from the Playitas area to houses on the south side of Conchaguita Island and further onto another group of houses on the north of the Meanguera Island. Another cable is connected from the Pueblo Viejo area to a group of houses on the north of the Zacatillo Island.

(3) Impact on Employment

- 159. The project will increase employment around La Union Province as described in the Chapter 22. This impact could be evaluated from three different aspects, as follows:
 - a) Short-Term Employment during Port Construction
- 160. Port construction work of the project will result in a significant number of jobs and indirect employment in related industries during the construction period.
 - b) Direct, Long-Term Employment Related to Terminal Operation
- During the implementation of the short-term development plan, facilities and activities at the port of La Union will increase. The resulting employment will increase, respectively and continue for the long-term as the port continues to operate and develop.
 - c) New Indirect Employment Supported by Port Activity
- 162. The Port development project will support the expansion of La Union Province, with significant economic activity related to indirect employment of services and industry associated with increased long term port activities. The long-term effects of this port development will positively impact the entire economy of El Salvador.