ANNEX - 2

WATERSHED CONSERVATION, SABO AND FLOOD CONTROL

ANNEX - 2 WATERSHED CONSERVATION, SABO AND FLOOD CONTROL

TABLE OF CONTENTS

			Page
1	Pre	sent Conditions	A2-1
1.1	Wa	tershed Conservation	A2-1
	1.1.1	Land Use	A2-1
	1.1.2	Geology and Soils	A2-3
	1.1.3	Sediment Yield	A2-4
	1.1.4	Experimental Research of Watershed Conservation	A2-5
	1.1.5	Present Operation, Maintenance and Rehabilitation	A2-6
1.2	Sat	90	A2-7
	1.2.1	Existing Sabo Works	Λ2-7
	1.2.2	Present Operation, Maintenance and Rehabilitation	A2-9
1.3	Flo	od Control	A2-10
	1.3.1	River System	A2-10
	1.3.2	Flood Control	A2-10
	1.3.3	Present Condition of River	A2-11
2	Pro	oblems and Recommendation	A2-14
3	Pro	oposed Projects and Their Outlines	A2-16
3.1	Wa	ntershed Conservation	A2-16
3.2	. Sal	00	A2-19
2.2		10 1	A 2 20

Ī

4	Required Cost and Benefit	A2-24
4.1	Watershed Conservation	A2-24
4.2	Sabo Works	A2-24
4.3	Flood Control Works	A2-25
4.4	Project Implementation Plan	A2-26
5	Action Program	A2-27

(

LIST OF TABLES

		Page
Table A2-1	Land Use in Brantas Basin	A2-28
Table A2-2	Land Use in Mountainous Area of Brantas Basin	A2-28
Table A2-3	Forest Area by its Function, 1995	A2-29
Table A2-4	Production of Wood in KPH by Forestry Public Corporation	A2-30
Table A2-5	Land Use Plan in East Java	A2-31
Table A2-6	Land Capability Classification in the Brantas Basin	A2-32
Table A2-7	Critical Land of Erosion	A2-33
Table A2-8	Chronicle of Eruption of Mt. Kelud	A2-34
Table A2-9	Probable 50-Year Flood Discharge of Brantas River	A2-35
Table A2-10	Inundation Area in Brantas River Basin	A2-36
Table A2-11	Estimation of Sandmining Volume by Field Survey	A2-38
Table A2-12	Watershed Conservation Works for Critical Land of Erosion	A2-40
Table A2-13	Proposed Sabo Dam in the Upper Basin of Sengguruh Dam	A2-41
Table A2-14	Cost for Proposed Works	A2-42

ţ

I

LIST OF FIGURES

		Page
Figure A2-1	Present Land use in 1990	A2-46
Figure A2-2		A2-47
Figure A2-3		A2-48
Figure A2-4		A2-49
Figure A2-5		Λ2-50
Figure A2-6		A2-51
Figure A2-7	Organization Structure of DPKT	A2-52
Figure A2-8	Mt. Kelud Sabo Project	A2-53
Figure A2-9		A2-54
Figure A2-10	River System in Brantas River	A2-55
Figure A2-11	Design Discharge Distribution in 1973 Master Plan	A2-56
Figure A2-12	Design Discharge Distribution in 1985 Master Plan	
Figure A2-13	Design Discharge Distribution in Whole Brantas River	
Ü	Basin	A2-58
Figure A2-14	Location of Past Flood Record	
Figure A2-15	Discharge Capacity of Brantas River (1996)	A2-60
Figure A2-16	Calculated Water Level of Brantas River under Design Discharge Distribution	A2-61
Figure A2-17	River Survey Site in Brantas River Basin	
Figure A2-18		
Figure A2-19	·	
0	River Bed Variation of Brantas River	
•	Cross Section of Brantas River	
-	Location Map of Proposed Sabo Dam in the Upper Basin of	
1 iguic 712 22	Sengguruh Dam	A2-68
Figure A2-23	Location of Proposed Widas River Flood Control Project	A2-69
Figure A2-24	Location of Proposed Diversion Channel Project	. A2-70
Figure A2-25	Hazard Map	. A2-71

Figure A2-26	Location of Natural Retarding Basin of Brantas Middle Reach and Confluence of Ngrowo River	A2-72
Figure A2-27	Location of Natural Retarding Basin of Widas River	A2-73
Figure A2-28	Implementation Program for Water Resources Development Project	A2-74
Figure A2-29	Required Cost for Action Plan	A2-75

1 Present Conditions

1.1 Watershed Conservation

1.1.1 Land Use

1

I

(1) Whole Brantas River Basin

The land use in the Brantas river basin is surveyed by the authorities concerned for their own purposes. Those authorities are 1) Agrarian office, 2) Balai Rehabilitasi Lahan dan Konservasi Tanah (BRLKT, Land Rehabilitation and Soil Conservation Agency), and 3) Perum Perhutani (Forestry Public Corporation) and Pemerintah Propinsi Daerah Tingkat I, Jawa Timur (Provincial Government of East Java, hereinafter East Java Province).

Based on the latest surveys by Perum Perhutani and East Java Province as of 1990, land use in the Brantas river basin is presented in Figures A2-1. The Brantas river basin has been developed to its maximum extent for agriculture. Most of the paddy field extends over the flat alluvial plain formed by the Brantas river and its tributaries. The upland fields are located in the foot area of Mt. Semeru, Mt. Kawi, Mt. Kelud and Mt. Wilis, which have steep slope lands. The upland fields extend over the land enclosed by paddy field in the lower portion and forest in the higher portion. The homestead areas are scattered to all over the basin.

Although there are some difference of the land classification between the surveys and the plans, the breakdown of those land use are estimated as shown in Table A2-1.

Figure A2-2 presents the land use plan in 2008, based on plans by Perum Perhutani and East Java Province. Table A2-1 show estimated breakdown of the land use in 1990 and those in 2008.

Although there are some difference of the land classification between the surveys and the plans,

Although it is difficult to compare the land use in 1990 and land use plan as 2008 because of the difference of the land classification, the following matters can be recognized.

- The homestead area will increase. This tendency is remarkable in the surrounding area of Surabaya City.
- The homestead area in the upper and middle basin will not increase.
- The industrial area will increase in the areas of Surabaya City and its outskirts.

(2) Mountainous Area

With regard to the watershed conservation, the most important area is the mountainous area. In this study, the Mountainous area is defined as the area of which elevation is higher than 200 m of SHVP, based on the consideration described below.

- Generally, a slanting surface is classified into i) 0° to 15°: gentle slope,
 ii) 15° to 35°: steep slopes and iii) more than 35°: extreme slope.
 Mountainous area is a land on the higher slope area above 15° in general.
- In the Brantas river basin, area of a higher 15° in slope is the area surrounded by 200-m counter line based on the longitudinal profile of the basin. Then, the mountainous area in the Brantas basin is defined as the area surrounded by 200-m counter line.

The boundary of mountainous area in the Brantas river basin is shown in Figures A2-1 and A2-2. The breakdown of the land use in the mountainous area is presented in Table A2-2.

At present, the mountainous area is mainly used to the forest and upland fields. In future, however, the upland field will decrease and be improved as the forest and the homestead area.

(3) Forestry

Generally, it has been recognized that forest has a very important function to reduce flood discharge, to retain water resources and to prevent soil erosion in mountainous area.

In and around the Brantas river basin, Perum Perhutani, Unit. II Jawa Timur (Second Unit of Forestry Public Corporation of East Java) mainly manages the forestry areas. And the Brantas River basin is included in eight Kesatuan Pemangkuan Hutan (KPH, Forestry management unit) of the Unit II.

According to Dalam Angka Jawa Timur 1995 (Statistic table of East Java 1995), the forest areas in KPH are divided into four based on their function, those are, productive, preserved, TBP/LDTI (Tidak Baik untuk Perusahan / Lahan Dengan Tujuan Istimewa, No good estate / Land for special purpose) and other forests. Other forest includes national forest park, great forest park, recreation forest park, natural preserve and wildlife reserve. Breakdown of the forest areas in eight KPHs related to the Brantas River basin is presented in Table A2-3 and summarized below.

Forest area in KPI	I related to the Brantas	River Basin	
Function of Forest	Forest Area (ha)	%	
Productive	302,087	63.4	
Preserved	134,812	28.4	
TBP/LDTI	8,760	1.8	
Others	30,671	6.4	
Total	476,330	100.0	

Source: Perum Perhutani, Unit II Jawa Timur.

The forest area in the Brantas River basin mainly ranges in KPH Kediri and KPH Malang. Those are 29.6 % and 28.3 % of the forest area in the Brantas river basin in 1990, respectively.

Trees of the productive area consist of Agathis, Teak, Mahogany, Pine, Sengon, Sonokeling and others. Annual deforestation areas in the East Java reached 50,773 ha in total, which

occupy 6.4 % of the whole productive forest area in 1995. Among the deforestation areas, those of Teak and Pine occupied 60.8 % and 18.2 %, respectively. The deforestation areas in the Brantas River basin are not clear yet.

Wood production of the forest area in the eight KPHs is as shown Table A2-4 and summarized below.

Kind of Wood		1994	1995
Sawn Wood (m³)	Teak wood Others	93,204 166,777	100,542 153,254
Fire Wood (m²)	Teak wood Others	17,984 51,382	15,350 37,533

Source: Perum Perhutani, Unit II Jawa Timur

According to the future land use plan in East Java 2008 as shown in Table A2-5, preserved and production forest area are planned to be increased by 1.4 % and 0.1 % per annum, respectively, while other forest area will be same as that of the present situation.

1.1.2 Geology and Soils

I

The geology of east Java is mostly comprised of tertiary deposits with many volcanic members such as basalts and andesite and some coral limestone. The Brantas river basin is genrally comprised of agglomerate, tuff breecia, tuff and coral limestone accompanying volcanic ashes with varying degrees of consolidation (Figure A2-3).

The flat lowland terrain is composed of alluvial soils of loam, silt and clay, which are mostly suitable for paddy cultivation. The weathered materials of volcanic origin cover the hilly and mountainous area.

A general broad-scaled soil survey was conducted over the Brantas river basin by the Central Soil Research Institute of Bogor in 1967 (Figure A2-4). Generally, the soils of the Brantas river basin can be categorized into 9 groups of which the following 6 groups account for 96% of the area.

Alluvial Soils	347,000 ha	29.4%
Mediterranean Soils	129,000 ha	10.9%
Lithosols	95,000 ha	8.1%
Regosols	288,000 ha	24.4%
Andosols	93,000 ha	7.9%
Latosols	185,000 ha	15.7%

In additions, broad-scale land capability classification for the Brantas river basin had been conducted as part of the 1973 master plan. Land classification is shown in Table A2-6.

In relation to soil erosion, the Andosols, or soils derived from volcanic ash, are particularly problematic. They are concentrated in the upland areas where slope gradients are steepest and the soils are characterized by a dominance of amorphous materials in the clay fraction, a low bulk density, friable consistency, and high sorption capacity. These characteristics contribute to the erosive nature of these soils

1.1.3 Sediment Yield

(1) Critical Land of Erosion

According to the report of the Kali Konto Project, Phase III, in 1988, Ministry of Forestry, "critical land" was estimated in the Brantas river basin in order to upgrade the "Pola RLKT" (land rehabilitation and soil conservation manual) as the integrated watershed management study.

In the report, "critical land" is defined as follows.

"The critical land is an area with reasonably similar reoccurring critical limitations of the physical, social or economic resources (conditions) which result in degradation, damage or misuse to the environment. The damage may be either reversible or irreversible. Critical lands are generally associated with subsistence or below subsistence farming very high land reclamation or maintenance inputs and costs, degraded environment or land unusable for productive exploitation."

The critical land is further classified as shown in Table A2-7 and Figure A2-5.

Based on the above results, the Study team selects the critical lands of erosion that are critical lands except areas of volcanic crater, inundation area, swamp/marsh and flooding area. Selected lands in the basin are estimated at 3,240 km² as shown below.

Basin	Critical Area of Erosion (km²)
Lesti	412.0
Upper Brantas	308.0
Kelud	453.5
Ngrowo	725.4
Widas	295.6
Others	545.5
Around crater	55.5
Total	3,295.5

Watershed conservation works are necessary for such lands.

(2) Sediment Yield

The critical land of erosion described above seems to be a source of sediment yield. The most extensive critical lands of erosion exist in the Ngrowo river basin with 22 % of the whole critical lands of erosion, and those of the Lesti river basin and the upper Brantas river basin are about 13 % and 10 %, respectively.

The following table shows the sediment yields at major reservoirs. The sediment yield varies from 1.13 mm/year/km² to 2.50 mm/year/km².

	Catchment	Completed	Survey	Sedimentation		
Dam	Area (km²)	Year	Year	(million m³/yr)	(mm/yr/km²)	
Sengguruh	1,659	1988	1996	3.14	1.89	
Lahor	160	1977	1995	0.18	1.13	
Selorejo	236	1970	1993	0.59	2.50	
Bening	89.5	1981	1993	0.10	1.12	

Another source of sediment yield is Mt. Kelud. Mt. Kelud is an active volcano located in the center of the Brantas river basin. The volcano has erupted approximately once in 15 years basis as shown in Table A2-8 and the average amount of erupted materials is estimated at 200 million m³ per an eruption.

The latest eruption occurred in February 10-14, 1990 and resulted in the filling of the Wlingi reservoir up to the low water level due to a lahar. The lahar volume in the past eruption is also estimated at 142 million m³ over an area of 2003.3 km².

1.1.4 Experimental Research of Watershed Conservation

1

I

To clarify the relations between forest coverage, land use, soil condition, vegetation, runoff and soil erosion in the Brantas river basin quantitatively, Sub-BRLKT has being performed the experimental research projects.

Locations of the research projects are at Dampit and at Blitar and those areas are 10 ha each. Annual cost is about 15 to 17×10^6 mil.rupiahs/site.

Results are shown below. However, areas of the experimental research are rather small and the results of research are limited to use.

Alley Cropping					Location: Blitar
Observation	Unit	Kind of Wood			Control
1		Lamtoro	Kalianda	Glirisida	
Run-off Volume	m³/year	585	518	575	989
Erosion	t/year/ha	7.6	6.3	6.8	11.7

Grass Barrier					Location: Dampit
Observation	on Unit Kind of Wood			Control	
		Lamtoro	Kalianda	Glirisida	
Run-off Volume	m³/year	209	270	232	433
Erosion	t/year/ha	4.0	5.5	3.8	5.6

1.1.5 Present Operation, Maintenance and Rehabilitation

At present, three (3) authorities, consisting of Sub-BRLKT, DPKT and Perum Perhutani, mainly conduct the watershed conservation in the Brantas river basin. Activities of those authorities are as follows.

(1) Sub-BRLKT Brantas

Sub-BRLKT Brantas belongs to BRLKT Wilayah IV and tasks are as follows.

- Establishment of 25-year long-term plan and 5-year short term plan for land rehabilitation and soil conservation in the Brantas river basin except Perum Perhutani area.
- Engineering consultant activities for farmers.
- Experimental study on relation among vegetation, runoff and erosion. (Pilot plot: Dampit and Blitar)

Organization structure of Sub-BRLKT is illustrated in Figure A2-6 and total staffs are 78 persons. Annual budget in 1996/1997 is 2,263 million rupiahs by APBN. Within this budget, cost of experimental study is 47.6 million rupiahs.

(2) DPKT

DPKT was established in 1 March 1994 by separating from Sub-BRLKT Brantas and there are nine (9) DPKT in the Brantas river basin. Duties and tasks of DPKT are as follows.

- Guidance of forestation and land conservation in the Brantas river basin except Perum Perhutani area based on the 5-year plan by Sub-BRLKT.
- Preparation of material for forestation and land conservation.
- Training and education of farmer.
- Production of natural silk.
- Production of honey.

Organization structure of DPKT Kabupaten Malang, one of a DPKT (Kabupaten), is illustrated in Figure A2-7. Annual budget in 1997/1998 is 50 million rupiahs by APBN and INPRES (for Greening project).

(3) Perum Perhutani (DAS Brantas Unit II Jawa Timur)

Perum Perhutani performs planning and implementation of reforestation, production of woods, watershed conservation, etc. in 8 KPHS (forestry management unit) of the Brantas river basin. Area managed by Perum Perhutani is 474,593 ha. Organization, budget and activities of Perum Perhutani cannot be clarified because of no information.

1.2 Sabo

I

1.2.1 Existing Sabo Works

At present, the sabo works in the Brantas river basin have been being implemented in Mt. Kelud basin, the Upper Konto basin and the Upper Brantas and Lesti Basin. Existing sabo works in those basins are presented below.

(1) Mt. Kelud Basin

The sabo master plan in the Mt. Kelud basin was formulated in 1990 by PGK (Proyek Gunung Kelud, former of PGKS). In the master plan in 1970, the following construction works are considered for the target sediment discharge control volume of 70.8 million m³, and sediment capacity of the facilities completed before the 1990 cruption was 19.4 million m³.

Disaster Prevention	Unit	Nos. of Unit			
Works		Plan	Completed before 1990		
- Sabo dams	Place	19	4		
- Check dams	Place	34	23		
- Step dams	Place	42	3		
- Consolidation dams	Place	138	29		
- Sand pockets	Place	11	9		
- River improvement	Km	82	-		
- Restoration of channel	Km	170	-		
Capacity of facilities	Million m ³	70.8	19.4 (27% of the plan)		

Source: Proyek Gunung Kelud (PGK)

After the eruption of Mt. Kelud in 1990, urgent works had been carried out by DGWRD with local fund. The major works were rehabilitation of Sabo facilities to restore their original capacity. It was completed in November 1991. Total restored capacity was estimated at around 5 million m³. The sediment storage capacity of the facilities increased from 27 % to 34 % of the target of the master plan in 1970.

After the said project, the following works were constructed up to 1996 as shown in Figure A2-8, and the capacity of the facilities increased up to 50 % of that of the Master Plan in 1970.

- Check dams: Badak river, Putih river, Semut river, Jari river, and Puncu
- Consolidation dams: Semut river
- Sand Pockets: Badak river, Putih river
- Cross Dikes: Badak river, Putih river, and Semut river
- Gabions for existing cross dike: Putih river, Semut river
- Crater lake drainage tunnel improvement
- Access Roads for maintenance of facilities
- Putih river diversion channel improvements
- Sumbersari diversion structure and irrigation intake on Termas river (Badak river)

Damarwulan dam rehabilitation (Konto River)

Sediment volumes in the existing sand pockets of G. Kelud basin are shown below. All sand pockets are fully silted up by sediment deposits.

as of 1996

Sand Pocket	Name of River	Catchment Area (Km²)	Constructed Year	Sediment Volume (x 10 ³ m ³)	Remarks
Rolag 70	Konto	65	1979	1,000	Full
Badas	Konto	185	1977	3,000	Full
Seriniing	Puncu	30	1975	900	Full
Pulo	Ngobo	90	1970	3,800	Full
Salam	Badak	600	1970	14,200	Full
BA-KL2	Badak	48	1996	(2,6590)	-
Jagoan	Termas	113	1994	1,600	Full
Putih	Putih	400	1971	7,000	Full
PU-KL2	Putih	13	1996	(137)	-
Semut	Semut	320	1972	3,300	Full
Total				34,800	

Source: G. Kelud Project, Note, (): Proposed sediment capacity

At present a diversion channel (L= 7.24 km in length) from Glondong site to the downstream site of the Lodoyo dam have been being constructed as extension of the existing diversion channel. This channel aims to reduce the sediment discharge flown into the Lodoyo reservoir. At present, PGKS has a plan that 50% of the remaining works of the master plan in 1970 will be executed until the year 2003.

(2) Upper Konto River

Location of the existing sabo facilities is shown in Figure A2-9. For these facilities, rehabilitation works of 5 check dams had been done by PJT in 1997, and 3 check dams had been re-constructed by PKB in 1997.

(3) Upper Brantas River and Lesti River basins

The existing sabo facilities in this basin are shown in table below. Five check dams had been constructed and one check dam have been being constructed by PJT.

Name of River	Name of Check dam	Catchment area (km²)	Constructed Year	Sediment capacity (x 10 ³ m ³)	Cost (x 10 ⁶ Rp.)
Ampong	Belung	23.0	1996	22.0	253
Ampong	Kedungrejo	74.0	1996	72.5	194
Cokro	Sumber Pasir	14.0	1996	52.5	204
Lesti	Boker	175.0	1996	16.0	200

Name of River	Name of Check dam	Catchment area (km²)	Constructed Year	Sediment capacity (x 10³m³)	Cost (x 10 ^s Rp.)
Lesti	Talok	312.5	(1997)	11.5	250
Lesti	Wonokerto		1989	645.0	<u> </u>

Note; (): under constructing

1

The check dams have been silted up and no excavation works of sediment have been done.

1.2.2 Present Operation, Maintenance and Rehabilitation

Three authorities are responsible for the sabo facilities in the Brantas river basin. Among them, PGKS is responsible for construction and the OMR works in Mt. Kelud basin, PKB for construction and large-scale rehabilitation works in the area except Mt. Kelud basin and PJT for construction and OMR works in the area except Mt. Kelud. PKB and PJT perform the works in cooperation. Organizations and activities of PKB and PJT are described in ANNEX-7, ANNEX-12 and ANNEX-13.

OMR activities by PGKS are presented below.

- Preparing O & M manuals.
- Planning annual budget of O & M
- Inspecting the sabo facilities
- Making inventory of infrastructures
- Guiding sand mining activity
- Repairing the damaged structures for lahar control and preparing the improvement program
- Performing administration and filing the work records.

Organization structure and members of PGKS are described in Annex 12 and 13.

Annual O & M cost of PGKS is 150 million rupiahs in average by APBN. This cost is used to direct cost of repairing facilities.

1.3 Flood Control

1.3.1 River System

In the Brantas river basin, there are 40 major rivers managed by PJT. Locations of those rivers are shown in Figure A2-10.and listed below.

Brantas River		
New Lengkong Ngrowo R.	Ngrowo R Sengguruh Dam	Sengguruh Dam -
1. Brantas	10. Putih	2. Amprong
32. Brangkal	9. Jari	3. Lesti
31. Watudakon	7. Lekso	
30. Beng	8. Semut	1
23. Konto	11. Ewub	İ
22. Srinjing	6. Bambang	
24. Kedak	5. Labor	
21. Badak	4. Metro	

Surabaya River	Porong R.	Widas R.	Ngrowo R.
37. Surabaya	35. Porong	25. Widas	15. Ngrowo
40. Mas	34. Kambing	26. Kedungsoko	20. Song
39. Wonokromo	33. Sadar	27. Ulo	19. Boding
38. Kedurus		28. Kuncir	16. Ngasinan
36. Marmoyo		29. Bening	17. Tawing
· · · · · · · · · · · · · · · · · · ·			18. Tugu
		İ	12. Dawir
		[13. ParitAgung
			14. Parit Raya

For the rivers managed by PJT, they are categorized into the Brantas main river, tributary and sub-tributary. Those dimensions are as follows.

River	Total Length (km)	Total Catchment Area (km²)
Brantas river	320	11,800
Tributaries	620	7,500
Sub-tributaries	370	

^{*} estimated by the Study team.

1.3.2 Flood Control

(1) Master Plan

Flood control works of the Brantas river Basin has been being implemented based on the comprehensive development plan (referred to as the Master Plan) firstly formulated in 1961, reviewed in 1973 and renewed in 1985.

In the 1973 Master Plan and the 1985 Master Plan, the safety level of 50 years return period was applied to the flood control works. In the 1973 Master Plan, the design discharge distribution was set as shown in Figure A2-11. Afterwards, during study stage of the 1985 Master Plan, the probable flood discharges for the probable rainfall patterns were estimated as

shown in Table A2-9, by storage function method. Base on the estimated results, the design discharge distribution of the Brantas river was renewed as presented in Figure A2-12.

Figure A2-13 shows the design discharge distribution in the whole Brantas river basin based on the 1985 Master Plan. Flood control measures of the Brantas river basin consist of channel improvement including construction of the Lodoyo diversion channel, flood control by Sutami and Selorejo reservoirs and natural retarding basin at the upstream side of Kediri and in the Widas river basin.

(2) Existing Flood Control Works

1

Flood control works of the Brantas river basin have been being implemented by PKB and the main stream of the Brantas river has been almost improved with a safety level of 50 years return period.

At present, the Widas flood control project has been being proceeded and its progress is around 65 % as of 1997 for the scope of first phase (10 year return period) formulated in the Feasibility Study of the 1985 Master Plan.

On the other hand, the Lodoyo diversion tunnel project has not yet commenced up to date.

1.3.3 Present Condition of River

(1) Present Situation on Flood Damage

Flood records in the past are summarized in Table A2-10 and Figure A2-14. Almost of the flood are reported in the tributaries. From these results, it is recommendable to proceed improvement of the tributaries.

Flood records are very important and basic one in order to study flood control project. However, collected data are insufficient because of lack of information such as inundation area, inundation depth, inundation period, inundation map, etc.

(2) Discharge Capacity

The discharge capacities of the main channels are estimated applying non-uniform flow method to check safety level of the channel capacities against the present design discharges.

(a) Condition of Calculation

- Object river: Porong river (river mouth to new Lengkong dam)
 Brantas river (new Lengkong dam to KB 160, Jeli Bridge)
- River cross-section: surveyed in 1991, 1993 and 1996.
- Longitudinal interval of section: 1,000 m
- Channel capacity: capacity below the HWL
- Manning's coefficient of roughness (n): The following are adopted

River mouth- new Lengkong dam; n= 0.025

New Lengkong dam- 59 km; n= 0.025

60 km- 89 km; n = 0.028

90 km- 139 km; n= 0.032 140 km- 160 km; n= 0.035

(b) Result

Estimated results are shown in in Figures A2-15 and A2-16. The river channels in the whole reaches have sufficient capacities against the present design discharges.

(3) Sand Mining in River Channel

Sand-mining in the Brantas, Porong and Surabaya rivers has been prohibited since October 1989 by the order of the Governor of East Java Province. However it has not been thoroughly followed by contractors due to its no alternative business other than river deposit extraction.

In the field, sand mining activities were surveyed by the PJT between the upstream site of the New Lengkong dam (KB 52) and the downstream site of the Kediri bridge (KB 138) in the period from March 26 to April 16, 1996. According to the survey results, sand mining volume are as shown in the Table A2-11. Total sand mining volume per day was estimated at about 5,500 m³.

(4) Riverbed Variation

In order to grasp the river-bed variation, the following survey was conducted during the second works in Indonesia. Location of the river survey site is shown in Figure A2-17.

Location	Longitudinal Survey (m)	Interval of Cross-section Survey (m)	Number of Section	Survey Width (m)
(i) Porong R. (Porong Br.)	1,000 x 2	100	11	300
(ii) Brantas R. (Watudakon)	$1,000 \times 2$	100	11	250
(iii) Brantas R. (Beng R. Conflu.)	$1,000 \times 2$	100	11	250
(iv) Brantas R. (Kediri Old Br.)	1,000 x 2	100	11	250
(v) Brantas R. (Ngrowo R. Conflu.)	$1,000 \times 2$	100	11	300
Total	10,000		55	<u></u>

Riverbed variation is studied by superimposition of longitudinal and cross-sections surveyed in the past and newly surveyed above. Further, the variation is studied in view of sand-mining volume.

(a) Result by survey

The results of comparison of longitudinal section/cross-sections are shown in Figures A2-18 to A2-21. Based on the said figures, the following can be said.

The Porong River and Brantas River have tendency of degradation. The following reaches are remarkable.

Porong river: downstream of the Porong bridge and KP.80 to KP.20.

 Brantas river: KB.74 to Jatimlerek rubber dam and confluence with Widas river to Mrican barrage.

(b) Result by Sand Mining

T

I

As explained above, inventory surveys on sand mining have been made at March 26 to April 16, 1996 at the end of rainy season. The mining volume per day is estimated at 5,500 cum. in total. Assuming this mining volume of 5,500 cum. per day and 365 working days for mining, an annual volume is estimated at 2,000,000 cum. According to PJT, mining volume per day further increase in the dry season.

Based on the annual sand-mining volume, the following are roughly estimated.

- Sand-mining stretches: KB 52 to KB 138

- Distance: 86.6 km

- Average width of low water channel: 177 m

- Annual lowering rate of river bed by sand-mining: $2,000,000 \div 86,600 \div 177 \times 100 = 13.0 \text{ cm}$

On the other hand, existing river bed in the same stretches is lowered at 9.5 cm/year in average as shown in Figure A2-20.

From the above results simply estimated, the following might be said.

- Channel bed of the Brantas River is forecasted to lower for the future in consideration of existing sand-mining activities.
- It is recommendable to carry out inventory survey of the sand-mining activities separately in the rainy season and dry season.
- It is recommendable to study the sediment control taking into consideration of Sabo works, sediment transport, sand mining and so on.

2 Problems and Recommendation

Based on the studies on the Present condition of the watershed conservation, sabo and flood control, the following problems are identified and recommendations are made.

(1) Problem

- At present, land use related to the Brantas River basin are surveyed by four authorities, namely Agrarian office, BRLKT and East Java Province, for their own purpose. As for future land use, BRLKT and East Java Province have respective plans. As a result, there is no responsible authority in an aspect of the watershed management.
- Sub-BRLKT is implementing the experimental research for the watershed management. However, areas of the experimental research are rather small and the results of research are limited to use for planning.
- The progress of the sabo works in Mt. Kelud is only about 50 % by the target storage capacity of the master plan in1970. On the other hand, it is forecasted that Mt. Kelud erupt in 2005.
- Three authorities, consisting of PKB, PGKS and PJT are carrying out the present sabo works in the basin based on the their own plans. Therefore, the present sabo works seems not to be coordinate each other, considering the whole Brantas River basin. For example, there are many critical areas located in the Lesti liver basin and the Ngrowo river Basin. For these area, even though the sabo works are urgently needed.
- The riverbed degradation becomes a serious problem in the lower and middle stretches of the Brantas River. Sand-mining activities seems to be main cause of the degradation.
- At present, most of flood damage happens in the tributaries. However, the flood control works in tributaries except major tributaries are scarcely implemented.

(2) Recommendation

- Considering the PIT's Tasks, PIT shall be responsible to the watershed management and coordinate the watershed conservation activities among the authorities concerned.
- The experimental research should be implemented by PJT in cooperation with Sub-BRLKT.
- It is necessary to grasp urgently the present conditions of deposited sediment amount in the basin, to prepare a detailed sediment control plan for the next eruption and to execute the continuous sabo works.
- Three authorities should cooperate in establishing the basin-wide master plan of the sabo works and should adjust the implementation of their works. To carry out the sabo works efficiently and certainly, however, it is recommendable that three authorities be integrated into one authority.

- Considering the influence of the riverbed degradation on the river facilities, it is required to stop the sand mining activities immediately. However, it is difficult to stop the activities completely. Therefore, it is recommendable to carry out the following activities.
- To carry out inventory surveys of the sand mining activities separately in the rainy season and dry season.
- To study the sediment controls taking into consideration of the sabo works, sediment transport, sand mining and so on.
- It is recommendable to review the 1985 Master Plan considering needs of inhabitants and flood damage in tributaries.

1

3 Proposed Projects and Their Outlines

3.1 Watershed Conservation

(1) Reforestation and Terracing

The reforestation of 170 km² and construction of terracing works of 3,070 km² are proposed in the critical area of erosion as shown in Table A2-12 in order to mitigate soil crosion, decrease flood discharge and improve environment condition in the mountainous areas. Target year of this watershed conservation will be set on the year of 2020. Sub-BRLKT and Perum Perhutani would implement these projects.

(2) Experimental Research

(a) Necessity of Experimental Research

In order to grasp the relations among vegetation including forest and land use, soil condition, run-off and soil erosion quantitatively, many experiment and researches have been executed worldwide for so long. However, the results of the researches are applicable for the researched basins only and no comprehensive conclusion has been found applicable to other basins.

The tendencies of the relation among forest, soil condition, erosion, run-off from the past experimental results are presented below.

(i) Run-off

- Annual run-off

Annual run-off of forest area after deforestation is bigger than that of before. As an example, the result of research by Dr. Hideaki Nakano is shown below.

Research site	Rainfall	increase of annual run-off
	(mm)	(mm)
U.S.A	about 500 (mean annual)	About50
Kenya	about 2,090 (mean annual)	about 460
Japan		190 to 270
·		(correspondent to about 10 ~ 50% of annual discharge)

Source: Dr. Hideaki Nakano Water-Soil Conservation Function of Forestry and It's Applications, 1978

Low flow

By Dr. Hideaki Nakano's speaking, in general, forest area in large basin becomes effective to increase low flow. On the other hand, forest area in small basin has opposite tendency. It is said that the effects of rainfall interception and transpiration cause this phenomenon.

(ii) Erosion

- Relations between deforested area and annual crosion volume

In general, annual erosion volume extremely increases according as increase of the deforested area. An example is shown below.

		By Prof. Takeo Kawaguchi
Situation	Annual erosion	Rate of annual
Of	Volume	Erosion volume
Area	(ton/ba)	(no deforesting = 1)
Whole area: deforesting		
And grubbing	28.53	78
Whole area: deforesting	3.66	10
Upper part of slope:		
3/4 deforesting	2.06	6
Upper part of slope		
1/2 deforesting	1.14	3
Upper part of slope		

0.75

0.35

Notes, Test field: 40 (slope length) x 20 (width) m, slope: 30°, natural pine forest: 30 years growth, annual rainfall: 1,746 mm, Okayama prefecture, Japan.

Relation between soil erosion and land use

The following table shows summary of the relation between soil erosion and land use in Japan.

By Prof. Takeo Kawaguchi

1/4 deforesting

Non deforesting

Land use Erosion factor	Waste	Bare	Upland	Grass	Forest
Mean annual Erosion depth (mm) ¹	10¹ - 10²	100 - 101	10°1 – 10°	10-2 - 10-1	10'2 - 10'1
Annual erosion volume (m³/km².yr.)³)	104	103	10¹	103	10¹

Note: Slope more than 15°

Source: ¹³ Statistically Analysis on Soil Erosion in Mountainous Area, 1951.

In general it is said that soil erosion in the grass area or forest areas is rather small.

Relation between forest - non-forest area and landslide

²⁾ Prevention Function for Sediment Runoff from Forestry, 1962.

By Norio Nanba

		No. of			Per landslide		Per km²			
	Basin Area (km²)	No. of Landslid e (No.)	dslid Landslide e (ba)	e (ha) (10 ⁴ m ³)	Volume of Landslide (10 ⁴ m³)	Area (ha)	Volum e (10 ² m ³	No. of Landslid e (No.)	Area of Landslid e (ha)	Volume of Landstide (10 ² m³)
Forest	1,270	10,400	1,564	2,893	0.15	28	8.2	1.23	228	
Non-forest	121	2,216	289	362	0.13	16	18.3	2.38	298	

Note, Forestland: artificial forest or natural forest

Non-forest land: deforested land (not yet re-forest), grass land, bamboo grass.

Relation between Simple Forest-Mixed Forest and Landslide

By Norio Nanba

		1		Volume of Landslide (10 ⁴ m ³)	Per km²			
Forest	Basin Area (km²)		Area of Landstide (ha)		No. of Landslide (No.)	Area of Landstide (ha)	Volume of Landstide (10 ² m ³)	
Simple	1,104	8,874	1,404	2,623	8.1	1.27	238	
Mixed	147	1,099	178	146	7.4	1.21	99	

Note, Simple forest: Forestry mainly covered by coniferous trees or broad-leaved trees

Mixed forest: Forestry mixing of coniferous trees and broad-leaved trees

(b) Proposed Experimental Research

It is recommended that experimental research basin is established in the river basins of Konto, Lesti and Ngrowo to investigate land use, runoff and sediment yield for the river management in the future. Neighboring basic basin and basin having critical area of erosion will be selected and relationship of rainfall amount, runoff-rate and sediment yield is clarified. Then reforestation will be carried out stepwise in the critical area of erosion and effect of reforestation will be investigated compared with those of basic basin. PJT would implement these projects, in cooperation with Sub-BRLKT.

The outline of the experimental research basin is as follows:

a. Area : 1 km2 for a basin

b. Meteorology and Hydrology: Temperature and Humidity; 1 set,

Evaporimeter and Rain-gauge; 1set

c. Hydraulics : Water level gauge; 2 sets,

Temporary bridge for discharge observation

(wood and bamboo); 2 bridges,

Current meter; 2 sets, Sediment sampler; 2 sets

d. Rented land : 25 ha

(3) Proposed Operation and Maintenance

At present, the greening plan of Sub-BRLKT, DPKT, PJT, etc., is executed primarily by inhabitants, so that the same method will be applied for the operation and maintenance of the watershed conservation.

The training for inhabitants with regard to the practical method of the above operation and maintenance will be executed by Sub-BRLKT and DPKT.

Review of watershed conservation plan will be done if it is necessary. For the purpose of reviewing the plan, it is necessary to update the basin's land use map.

At least once in 5 years, the conditions of forest and bare land will be evaluated by use of LANDSAT or aerial photographs.

3.2 Sabo

A 11/80

Ţ

(1) Mt. Kelud Basin

Sabo works are proposed for next eruption assumed in 2005. The proposed volume to be controlled is estimated under an assumption of 1990 eruption scale as follows.

(1)Total eruption volume	142 million m ³
(2) Volume fly off basin	37 million m ³
(3)Volume to be transported into river channels	46 million m ³
(4) Volume to be transported into river for three years after	
eruption (short-term volume)	7 million m ³
(5)Long-term volume to be controlled: (5)=(1)-(2)-(3)-(4)	52 million m ³

The above (4) short-term volume 7 million m³ is controlled by an urgent works immediately after eruption.

(2) Upper Brantas River and Lesti River Basins

In order to mitigate sediment transported to reservoirs of the Senggruh and Sutami dams, 17 sabo dams are proposed to construct in the upper basin of the Senggruh dam as presented in Figure A2-22. Total storage capacity is to be 15.1million m³ and breakdown is shown Table A2-13.

(3) Proposed Operation and Maintenance

Necessary measures to be taken in the whole basin is as follows:

- (a) Investigation of actual conditions on sedimentation deposited in tributaries and the basin.
- (b) Excavation for increase in volume of sand pocket.
- (c) Monitoring of sediment conditions of sabo facilities.
- (d) Check in every year about control volume of sand pocket and check dam.

- (e) Study for quality-up of deposited materials in sand pocket and repairing its transportation facilities (road and railway)
- (f) Monitoring dangerous places of debris flow occurrence.

3.3 Flood Control

(1) Widas River

Since no remarkable change is observed in the Widas river basin, it is recommended that ongoing and remained flood control works be continuously carried out in accordance with the scheme developed in the 1985 Master Plan. The locations of proposed flood control works are presented in Figure A2-23.

Work Item	Unit	Upper Widas And Lower Ulo	Kuncir river	Upper Ulo
Excavation	1000 m ³	1,207	164	248
Embankment	1000 m³	255	234	150
Treatment of old river	1000 m ³	280	<u>-</u>	51
Reclamation	1000 m ³	11	70	47
Wetmasonry	m²	1,510	1,600	14,500
Gabion	m³	755	800	1,800
Bridge	Bridge	6	7	1
Culvert	Nos	4	7	•
Sluice	Nos	1	1	11
Syphone	Nos	1	1	<u> </u>
Drop structure	Nos	1		
Overflow dike	m	550	•	-
Collector channel	m³	6,000	•	
Head works	Nos	-	2	-
Submergible weir	Nos	-	-	1

(2) Lodoyo Diversion Tunnel

The Lodoyo diversion tunnel project is indispensable one in the viewpoint of the present river channel improvement and disaster prevention measures of Mt. Kelud. It is recommended to commence this project after completion of the Widas project. The location of proposed diversion tunnel and its feature are presented in Figure A2-24.

Design discharge : 600 m³/s
 Length of open channel : 4,700 m
 Length of tunnel and diameter : 5,500 m, 7.5 m
 Control gate : 3 gates
 Excavation volume : 250,000 m³
 Revetment : 13,000 m²

Lodoyo diversion tunnel study was proposed to connect at site between upstream of the Lodoyo dam and Indonesian ocean in 1985 master plan.

Design discharge of the tunnel is as follows:

- (a) Diversion discharge for flood control: 100 m³/s
- (b) Decrease of the discharge capacity after Mt. Kelud eruption (transitional rise of 1 to 2 m of the riverbed in the main Brantas river for several years): 400 m³/s
- (c) Increment of peak discharge after Mt. Kelud cruption (decrease of storage volume in the river channel by sedimentation): 100 m³/s

Location of the tunnel proposed in the Master Plan is required to be review, due to change of site condition.

After establishment of the Master Plan, construction of the Putih diversion channel from the Putih river to the downstream site of the Lodoyo dam have been proceeding to avoid sediment discharge flowing into the Wlingi and Lodoyo reservoirs. Therefore, the proposed tunnel might avoid sediment problems.

If the purpose of construction includes drainage with sediment discharge by Mt. Kelud eruption, following construction are needed.

- (a) Location of diversion point should be considered to construct the diversion tunnel at downstream from confluence of the Putih diversion channel and Brantas river.
- (b) Some weir crossed the main Brantas river should be constructed.
- (c) Detailed design with feasibility study should be done.

(3) Hazard Map

1

I

As a part of flood control project, non-structural measures are requisite. In this study, it is recommended to prepare the hazard map and to announce it to people. For reference, the Study team selects the Porong River as a model and the hazard map along the Porong river is prepared for 50 year probable flood as shown in Figure A2-25.

(4) Review of Flood Control Manual

There are several manuals related to the flood control in Indonesia as shown below, but so far PIT does not use these manual in actual works.

	Name of Manual	Published year	Published by		
(1)	Pedoman Penanggulangan Banjir (Guidance of Flood Fighting)	1987	Ir.Sudaryoko DPU		
(2)	Pedoman Siaga Banjir Kali Brantas	1997/1998	PJT		
(3)	Fleed Centrol Manual	1993	CIDA DPU		
(4)	Irrigation Design Standards	1987	DPU		
(5)	Irrigation Design Manual	1986	DPU		

Note, CIDA: Canadian International Development Agency

There are some discrepancies in these manuals, therefore it is difficult to use. PJT should request to DGWRD to make flood control manual based on materials above and to standardize the technique of river works as a fundamental tool. In addition to the above, it is recommended that design standard on eco-friendly river works be described in the manual in order to restore the natural river functions.

(5) Retarding Basin

Natural retarding basins are located in the upstream reaches of Kediri City, and in the main stream of the Widas river. Storage capacities of the basins are shown below and those locations are presented in Figures A2-26 and A2-27.

Name of river	Location	HWL (m.SHVP)	Area (Km²)	Volume (x 10 ⁶ m³)	Remarks
Brantas	Kedīri to	-	•	•	-
	Tulungagung				
Ngrowo	Tulungagung	-	-	4.5 x 10 ⁸	Confluence of Ngrowo and
					Brantas R.
Widas	Nganjuk	38.4	12.5	11.6	Confluence of Brantas and
					Widas R.
Ulo	Nganjuk	44.4	6.3	4.7	Confluence of Widas R and
					Ulo R.

The retarding basins are indispensable for the flood control in the Brantas river basin. Therefore, the precise management of land use is prerequisite. At present, natural retarding basins are not designated legally.

Natural retarding basins should be designated legally by DGWRD as soon as possible. PJT should perform to survey to drive in stakes and to set up signboards.

(6) Proposed Operation and Maintenance

The necessary operation and maintenance work except river structures is as follows:

- (a) The Plan and the land use conditions along the mainstream and tributaries will be investigated by use of aerial photographs taken once per 10 years.
- (b) Monitoring sand mining on riverbed, especially confluence, foot of levee and around structure.
- (c) Investigating the actual flood damage to grasp major inundated areas.

4 Required Cost and Benefit

The required cost consists of construction cost including administration cost, engineering services cost, contingency, O/M cost, and land compensation.

The cost estimate is carried out based on the following condition.

(a) Condition of Cost Estimate

- - Construction cost: unit construction cost basis

- - Compensation cost : unit construction cost basis

Consultant service cost : 5% of the above total

O/M cost : 1% of construction cost

Contingency : 15% of the above total

(b) Unit Cost of Construction and Compensation

The unit costs employed in the past flood control works are modified by converting price level in 1997.

4.1 Watershed Conservation

(a) Construction cost

Reforestation and terracing: Rp. 162,294 million

(implemented by Sub-BRLKT and Perum Perhutani)

Experimental research site : Rp. 6,984 million

(implemented by PJT in cooperation with Sub-BRLKT)

(b) Benefit

Benefit is counted as decrease of cost of riverbed excavation owing to decreased sediment discharge by watershed conservation measures. Benefit by watershed conservation is calculated at Rp. 1,643 million per year.

- a. Critical land of erosion: 3,296 km²
- b. Specific sediment discharge in critical land: 3,200 m³/yr/km²
- c. Specific sediment discharge in standard area: 1,100 m³/yr/ km²
- d. Effect: 2,100 m³/yr/ km²
- e. Sediment load in total volume: 44%
- f. Unit cost of excavation: 10,793 Rp/m³
- g. Benefit (a x d x e x f / 20 yr): 1,643 million Rp/yr

4.2 Sabo Works

(a) Construction Cost

Mt. Kelud basin : Rp. 470,373 million

Lesti and upper brantas basin : Rp. 133,235 million

(b) Benefit

Mt.Kelud basin:

Benefit is estimated at Rp. 29,539 million per annum as decrease of channel excavation for the design storage capacity (52 mullion m³).

 $52 \text{ million x } 10,793 \text{ Rp/m}^3 / 19 \text{ yr} = 29,539 \text{ million Rp/year}$

Upper Brantas and Lesti river basins:

Benefit is considered the reduction of dredging cost owing to decrease of sediment intlow into the of Sengguruh reservoir. The benefit is Rp.10, 600 million per year under an assumption that the total storage capacities of 17 dams are filled in 22 years.

Item	Unit	Quantity	Unit Cost	Amount
Sengguruh Reservoir				233,093,264,000
1. Land aquisision	Sqm	3,020,000	10,000	30,200,000,000
2. Dredging				202,893,264,000
2.1 Dredging around intake				
(1) Dredging incl. Transport	Cum	15,100,000	11,197	169,077,720,000
(2) Miscelaneous (20% of (1))	LS			33,815,544,000
Per 22 year				10.6 mil.Rp/yr

4.3 Flood Control Works

(a) Construction Cost

Widas river

Rp. 135,761 million

Brantas and Lodoyo diversion tunnel: Rp. 42

Rp. 421,998 million

(b) Benefit

I

The economic internal rate of return had been estimated at 15.0% in the 1985 Master Plan.

4.4 Project Implementation Plan

The implementation schedule is shown in Figure A2-28, and they are summarized below. Sabo works are firstly carried out, that is, those of the Lesti and Upper Brancas river basins, and Mt. Kelud basin are proceeded.

Implementation Schedule

Project Name	Detailed Design	Land Compensation	Works Commence	Work Completion	Remarks
(1) Watershed Conservation					
- Reforestation	2000	-	2001	2020	BRLT,
- Experimental research	2000	2001	2002	2020	Perum
(2) Sabo		1			Perhutani
- Mt. Kulod	2000	2001	2002	2020	
- Brantas R. & Lesti R.	1999		2000	2006	
(3) Flood Control			:		
Widas River		1			
- Widas R. & Ulo R. down	1999	2000	2001	2003	1
- Kuncir river	2002	2003	2004	2005	
- Ulo river Upstream	2008	2009	2010	2011	
Lodoyo diversion tunnel	2005	2016	2017	2020	

5 Action Program

In order to prepare New PJT by consolidation of PKB, PGKS and PJT in 2002 and change of status to Persero in 2005, the following activities will be required.

1999 - 2001

- (a) Preparation for land use map which is drawn in detail erosion area and forestry zone, for the purpose of the watershed conservation.
- (b) Preparation for sediment control master plan based on the detailed investigation on the debris run-off from the Mt. Kelud basin.
- (c) Review of master plan on watershed conservation based on the recent basin conditions.
- (d) Preparation of implementation program for watershed conservation plan and recommendation on its execution to administrator.
- (e) Investigation on present condition of sabo facilities.
- (f) Preparation on quality improvement and transportation measures for product made from deposit materials in sand-pocket.
- (g) Preparation for the ledgers of the rivers.
- (h) Survey and setting out the boundary sticks of retarding basin which was recommended in the 1985 master plan.

2002 - 2004

1

I

- (a) Preparation of flood control manual by mutual consent with related agencies.
- (b) Preparation and announcement of hazard map in the whole basin.

1999 – 2004 (continuous Investigation)

- (a) Investigation on actual conditions of illegal sand mining on riverbed.
- (b) Investigation on actual conditions of flood damage.

The required costs of the above action plan are shown in Figure A2-29.

Table A2-1 Land Use in Brantas Basin

	Area	(km²)
Land Categories	Present (1990)	Plan (2008)
Farm land	6,772	6,038
Paddy field	4,315	4,371
Upland field	2,143	1,107
Plantation	314	560
Forest	3,094	3,411
Homestead/settlement	* 1,701	2,072
Industry	n.a	79
Fish pond/Lake	218	132
Waste land	15	68
Total	11,800	11,800

Source: Rencana Tata Ruang Wilayah Propinsi Daerah Tingkat I, Jawa Timur 2008.

Note,

: Village area

n.a : Data not available.

Note: Area are calculated and adjusted by the Study Team based on the above land use map.

Table A2-2 Land Use in Mountainous Area of Brantas Basin

	Area	(km²)
Land Categories	Present (1990)	Plan (2008)
Farm land	3,083	2,428
Paddy field	1,010	1,144
Upland field	1,852	823
Plantation	221	461
Forest	2,288	2,360
Homestead/settlement	* 319	834
Industry	n.a	13
Fish pond/Lake	23	30
Waste land	15	63
Total	5,728	5,728

Source: Rencana Tata Ruang Wilayah Propinsi Daerah Tingkat I, Jawa Timur 2008.

Note,

: Village area

n.a : Data not available.

Note: Area are calculated and adjusted by the Study Team based on the above land use map.

Forest Area by its Function, 1995

(Unit: ha)

			Area in the Brantas Basin					
КРН	Productive Forest	Preserved Forest	TBP/ LDTI	Wildlife Preserve/ Recreational Forest National Park	Forest Area	KPH	%	Forest
Blitar	40,263	15,139	1,634	<u>.</u>	57,036	157,900	64	29,600
Kediri	76,951	37,900	1,827	19	116,697	313,000	83	91,700
Malang	46,075	47,793	1,421	22,858	118,147	236,100	67	87,600
Pasuruan	19,352	25,574	401	7,794	53,121	77,100	37	23,000
Mojokerto	31,161	253	504	-	31,918	157,400	52	7,000
Jombang	35,103	4,283	818	-	40,204	169,600	100	38,300
Nganjuk	19,370	1,352	553	-	21,275	51,900	100	19,100
Saradan	33,812	2,518	1,602		37,932	17,000	22	13,100
Total	302,087	134,812	8,760	30,671	476,330	1,180,000		309,400

Source: Perum Perbutani, Unit II Jawa Timur

Table A2-3

(Unit II of Forestry Public Corporation of East Java)

Note, KPH: Kesatuan Pemangkuan Hutan (Forestry Management Unit)
TBP/LDTI: Tidak Baik Perusahan / Lapangan Dengan Tujuan Istimewa

(No good estate / Land for special purpose)

Production of Wood in KPH by Forestry Public Corporation

		Sawn Wood (m.)	ood (m.)			Fire Wood (m ²)	od (m²)	
	Took Wood		others	7.2	Teak Wood	1	others	rts
T. W.	1994	1995	1994	1995	1994	1995	1994	1995
Blitar	12,776	9,481	6.422	3,383	1,766	1,081	230	1,106
Kediri	3,798	5,263	112,323	106,153	609	353	27.750	16.461
Malang	8,608	11,593	22,185	23,885	317	854	6,776	2.396
Pasuruan	1,060	5,049	18,638	7,419	151	287	8,362	10.123
Mojokerto	3,740	5,370	2,034	1,437	659	376	566	1,485
Jompang	20,730	15,843	1,299	3,036	8.775	8.775	1,484	1,604
Nganjuk	12,267	12,753	2,653	5,411	1,225	2,853	1,965	1,339
Saradan	30,225	35,190	1,223	2,530	4,482	771	4,249	3,019
Total	93,204	100,542	166,777	153,254	17.984	15,350	51,382	37,533

Source: Perum Perhutani Unit II Jawa Timur (Unit No. II of Forestry Public Corporation of East Java)

KPH: Kesatuan Pemangkuan Hutan (Forestry Management Unit)

(9)

Table A2-5 Land Use Plan in East Java

I 1 C. A	Area (h	a)	%
Land Categories	1993	2008	
Forest	1,346,425	1,421,870	28.10
a. Preserved forest	312,646	377,222	
b. Production forest	805,257	816,927	
c. National park	174,675	174,062	
d. Great forest park	24,813	24,726	
e. Natural preserve	10,866	10,828	
f. Wildlife reserve	17,874	17,812	
g. Recreation park	296	295	
Agriculture	1,157,092	1,156,213	24.15
a. Irrigation	905,988	961,464	
b. Non-irrigation	251,104	194,750	
Plantation	859,627	905,296	17.94
Industry	33,890	52,598	0.71
Housing	564,962	637,419	11.79
a. House	509,762	527,939	
b. Small industry	55,200	109,480	
Others	830,202	618,803	17.32
Total	4,792,198	4,792,198	100.00

Source: Rencana Tata Ruang Wilayah Propinsi Daerah Tingkat I, Jawa Timur 2008 (Land Use plan, East Java Province 2008)

I

Table A2-6 Land Capability Classification in the Brantas Basin

		***************************************		Acrea	ge
Class	Definition	Soil type	Land use at present	На	(%)
I	Very suitable for irrigated farming	Alluvial	Two crops of paddy, one crop of paddy and one upland crop of sugar cane	289,000	24.5
П	Suitable for irrigation farming, drainage is indispensable	Alluvial Grumsols Humus Gley Soils	Two crops of paddy or one crop of paddy and one upland crop	94,000	8.0
Ю	Suitable for irrigated farming of upland crops with irrigation	Latosols Mediterranean Regosols	One crop of paddy or upland crops	49,000	4.1
Ш	Usable for crop cultivation	Latosols Mediterranean Brown Forest Soils Andosols Regosol	Upland crops, forest or waste land	192,000	16.3
IV	Unusable for crop cultivation	Mediterranean Soils Lithosols Latosols Regosols Andosols	Waste land	556,000	47.1
 ·	Total			1,180,000	100.0

Source: 1973 Master Plan Report

Table A2-7 Critical Land of Erosion

		Land by the Team
	Critical aldn due to combination of presence of very shallow soils, very high	
	inherent relative erodibility, localized occurrence of rock outcrops, stoniness and	
	marginalty critical agrocrimate.	0
	Non critical land is confined only to valley bottoms with deep soils.	
	On the farm erosion causes a major hazard.	
	Critical land due to combination of presence of very shallow soils, very high	
	inherent relative erodibility, localized occurrence of rock outcrops, stoniness.	
	Non critical land is confined only to valley bottoms with deep soils.	0
	On the farm erosion causes a major hazard. On recent volcanic terrain includes	
	land with high occurrence of boulders (>60%by volume) and shallow soils.	
	Critical land due to combination of presence of very shallow soils, very high inherent	
	relative credibility, localized occurrence of rock outcrops, stoniness and steep slopes.	
	Non critical land is confined only to valley bottoms with deep soils.	_
	On the farm erosion causes a major hazard.	
C4	Critical land due to presence of coarse texture soils with low water holding	
~	capacity restricting land use, very high inherent erodivility and low stability.	0
	On the farm, stream bank and river bank erosion cause a major hazard.	
C5	Critical land due to presence of cinders, ashes, gravel, rocks and sandy soils	—
	associated with volcanic craters and very recent lava flows.	1
C6	Critical land due to very high stream bank erosion hazard and occurrence of flush	
	floods during peak rainfall events of rainy season.	0
	Effects generally only land adjacent to streams and rivers only.	
C7	Critical land due to permanent flooding or inundation and very poor drainage,	_
	swamp or marsh.	
P	Potentially critical land consisting of C1 to C3 class conditions but under the	
	present land utilization is not being degraded, damaged or misused.	0
	Generally forested, agroforestry, tree crops or soil conservation measures effective.	
P1	Potentially critical land consisting of C4 class conditions but under the present land	
``	utilization is not being degraded, damaged or misused.	
	Generally forested, agroforestry, tree crops cover or Soil Conservation measures	
	generally effective.	
P2	Potentially critical land consisting of C5 class conditions but under the present land	
' -	utilization is not being degraded, damaged or misused.	
	Use for recreation and as a national reserve.	
SC	Seasonally critical land due to regular annual flooding and poor drainage restricting	
1	growing season and or causing crop damage during high water flows.	
SC1	Seasonally critical land due to regular annual flooding and poor drainage restricting	
] 301	land utilization and or causing crop damage during high water flows. In dry season	
	subject to salt water intrusion and effects of high salinity and alkalinity.	

Source; Class, Definition and Characteristics: Screening Study Brantas Watershed, Volume III, Konto River Proejet, Phase III, 1988, DGRLR

Table A2-8 Chronicle of Eruption of Mt. Kelud

	ite of n/Project	Killed	Property Damage	Crater Lake Volume (10 ⁶ m³)	Eruption Materials (10 ⁶ m ³)	Remarks
1586		<u> </u>	-	_		
1752	1-May	10,000	•		-	-
1771	10-Jan	-	•		-	-
1811	5-Jun	-	-		•	•
1826	13-Oct	-	65 villages	-	-	-
1835		-	-		•	•
1848	16-May	21	11 villages 100,000 coffee trees	•	•	-
1851	24-Jan	•	-			-
1864	3 Jan	Many	•	-		
1901	22-May	Many	•	-		•
1919	19-May	5,110	104 villages 9,000 houses 1,600 animals 13,500 ha	40	323	•
1919		.	-		-	Construction of crater tunnel
1923 -1928	-	•		2	٠	Drainage of the crater water. Lake water decreased 40 x 10 ⁶ m ³ to 2 x 10 ⁶ m ³
1951	31-Aug	7	7,000 ha	2	190	-
1966	26-Арт	286 (89 injured)	7 villages damaged	20	90	Establishment of Mt. Kelud Debris Control Project.
			700 houses destroyed 2,200 houses damaged 2,400 ha. destroyed 9,200 ha. damage 1,300 animals			
1970	<u> </u>	-	-	T .		Master Plan Study
1990	10-14 Feb.	31 (50 injured)	950 houses destroyed 200 buildings destroyed 200 buildings destroyed 13,000 refugees	4.5	125	AD 1811-AD 1991 11 time/179 yr.
1997	·	-	-			Completion of Mt. Kelud Volcanic Disaster Mitigation Project

Source: Mt. Kelud and Semeru Project, Feasibility Report on "Mt. Kelud Volcanic Debris Control Project", May 1969

: Mt. Kelud Urgent Volcanic Disaster Mitigation Project, Dec. 1993.

Note, -: Data not available

Table A2-9 Probable 50-Year Flood Discharge of Brantas River

(Unit: m³/s)

Base F	Point Point]	Return Peri	od in Year		
		2	- 5	10	25	50	100
Karangkates	Inflow	760	1,250	1,460	1,880	2,180	2,480
		580	910	1,160	1,500	1,740	1,990
	Outflow	380	470	540	640	740	870
		330	390	450	520	570	630
Pakel		640	760	880	1,020	1,100	1,210
		980	1,120	1,220	1,430	1,620	1,830
Kediri		670	780	850	950	1,020	1,090
		670	720	760	820	910	1,090
Before the of Konto R.	Confluence	670	780	850	940	1,020	1,090
		640	700	740	830	900	1,010
After the of Konto R.	Confluence	870	970	1,050	1,130	1,200	1,260
		820	930	1,020	1,120	1,210	1,280
Before the of Widas R.	Confluence	860	960	1,050	1,120	1,190	1,250
		810	920	1,010	1,100	1,190	1,260
After the of Widas R.	Confluence	1,060	1,190	1,280	1,370	1,440	1,510
		1,020	1,170	1,250	1,370	1,460	1,550
Ploso		1,060	1,190	1,270	1,360	1,440	1,500
		1,020	1,150	1,230	1,330	1,420	1,500
Before the of Brangkal I	R. Confluence	1,080	1,210	1,300	1,400	1,480	1,540
		1,050	1,170	1,260	1,370	1,460	1,540
Lengkong		1,200	1,340	1,420	1,520	1,600	1,660
_ -		1,180	1,300	1,380	1,490	1,580	1,660
Porong		1,190	1,340	1,410	1,510	1,570	1,640
		1,200	1,300	1,380	1,490	1,570	1,650

Note: Upper: Jan. 1981 flood pattern

Lower: March, 1984 flood pattern

Source: Widas Flood Control and Drainage Project, 1985.

Table A2-10 Inundation Area in Brantas River Basin (1/2)

NO.	NAME OF RIVER	LOCATION	DATE	AREA		1	REMARKS
				(ba)	(m)	(br)	
				۱, ۱	0.00	72	
	Ngoro	Candiharjo	Jan'86	18	0.70 0.80	72	
	Ngoro	Tambakrejo	Jan'86	13	0.70	72	
	Ngoro	Wates Negoro	Jan' 86	13	0.70	12	
	Ngoro	Kembangsii	Jan' 86	:	0.4	•	
	Porong	Bangursari	Mar.17 th , 1992 Mar.14 th - 17 th , 1992	·	0.4	-	
	Wonokromo	Medokan, Semampir			0.33	118	
	Ngasinan	Ngasinan Sub Basin	Aug. 31" - Sept. 1", 1992	·	0.55	110	
	Lesti	Upper reaches	Oct 7 ", 1992	i	0.60	95	
	Bangsal	Pekuwon	Jan' 93	5	0.50	96	
	Bangsal	Jumeneng	Jan' 93 Jan' 93	4	0.45	96	
	Bangsal	Tingger	Jan' 93	15	0.60	96	
	Bangsal	Salen	Jan 93 Jan' 93	20	0.60	96	
	Bangsal	Mejoyo	Jan' 93	14	0.60	96	
	Mojosari	Modopuro	Jan' 93	5	0.50	96	1
	Mojosari	Kebon Dalem	Jan 93 Jan 93	10	0.50	96	j l
	Mojosari	Kedung Gempol	Jan' 93	10	0.60	96]
	Mojosari	Jotangan	Jan' 93	22	0.60	96	j !
	Puri Konto	Lengkong Lower reaches	Sep. 8 th, 1993			~~]
	1	Rolak 70 (Gale No. 70)	Dec. 8 ", 1993	i . i	•	١.	
	Konto Termas Baru	Tunjung - Kraas District	Jan. 27 15 - Jan. 29 15, 1994	_	•		
	Termas Baru	Tumenggungan - Kraas Dist.	Jan. 27 " - Jan. 29 ", 1994	. 1	-		
	Bangsal	Jumeneng	Feb' 94	14	0.50 -1.00		
	Bangsal	Salen	Feb'94	23	0.00 - 0.50	١.	
	Bangsal	Mejoyo	Feb' 94	51	0.00 - 0.50	١.	1
	Bangsal	Wunut	Feb' 94	8	0.50 - 1.00		
	Bangsal	Sadar Tengah	Feb' 94	10	0.50 - 1.00	١.	
	Mojosari	Modepuro	Feb' 94	66	0.50 - 1.00	١.	
	Mojosari	Kebon Dalem	Feb' 94	29	0.50 - 1.00		ļ
	Mojosari	Jotangan	Feb' 94		0.50 - 1.00	-	1
•	Puri	Lengkong	Feb' 94	22	0.00 - 0.50		İ
	Puni	Sumber Jati	Feb' 94	49	0.50 - 1.00	•	
	Puri	Gebang Malang	Feb' 94	51	0.50 - 1.60	-	
	Sadar	Mojosari District	Feb. 13 th , 1994] - !	-	-	
3.5	Sadar Sadar	Pungging District	Feb. 14 th, 1994	-		· ·	i
+36	S Ngoro	Candiharjo	Mar'94	22	•		
•37	7 Ngoro	Tambakrejo	Mar' 94	4	•	•	•
•38	8 Ngoro	Kembangsri	Mar'94	14	•	-	1
*39	Pungging	Kembangringgit	Mar' 94	10	-	•	i
*40	0 Pungging	Balongmasin	Mar'94	20	•	I -	1
	1 Pungging	Ngrame	Mar'94	30	•	1 -	1
	2 Pungging	Jabontegal	Mar'94	5 25	-	1 .	1
	3 Pungging	Watukenongo	Mar' 94	25	-	1 -	I
	4 Kento	Purwoasn District	Mar. 2 ²⁰ , 1994 Mar. 2 ²⁰ , 1994	· ·	1 -		
	5 Brantas	Purwoasn District	Mar. 2 ⁻¹ , 1994 Feb. 28 ⁱⁿ - Mar. 3 ¹⁰ , 1994		[
	6 Konto	Gambang - Gudo District	Feb. 28 " - Mar. 3", 1994 Feb. 28 " - Mar. 3", 1994		1 [1 :	1
	7 Konto	Janu - Perak District	Mar. 2 ^{no} , 1994	1 :	0.50 - 1.00	, I	i
	8 Gunting	Sumobito - Mojoagung	Mar. 3 ¹⁴ , 1994	1	0.50 - 1.00	1	
	9 Buntu	Lengkong - Kertosono	Mar. 3 , 1994 Mar. 3 , 1994			_	
	0 Manten	Pagu District	Jan. 31" - Feb. 1", 1995	120 - 240	0.50 - 1.00		1
	1 Gunting	Sumobito - Mojoagung	Jan. 31", 1995	120.240	10.50 - 1.00	Ί΄.	
	2 Batan	Pesing - Purwoasri District	Jan. 31" - Feb. 1", 1995	1 .	· .	96	
	3 Catak & Banteng	Janti - Mojoagung District Mancilan - Mojoagung Dist	Jan. 31" - Feb. 1", 1995	1 .	١.	96	
	4 Catak & Banteng		Feb. 3" - Feb, 4",1995	150	_	72	1
	5 Termas Lama	Sumbersari Udanawu	red. 3 - red, 4 ,1995	T 130	<u> </u>	1 /2	

Source, • : Cabang Dinas Pengairan Brantas Mojokerto Others : Perum Jasa Tirla

Table A2-10 Inundation Area in Brantas River Basin (2/2)

NO.	NAME OF RIVER	LOCATION	DATE	AREA	DEPTH		REMARKS
				(ha)	(m)	(pt)	
		_	10 19				
	Termas Lama		Feb. 310 - Feb. 4 10,1995	•	-	72	
	Termas Lama		Feb. 310 - Feb, 410, 1995	•	-	72	
	Termas Baru	¥	Feb. 314 - Feb, 414,1995	-	-	72	
	Termas Baru	Bleber	Feb. 310 · Feb, 4 10, 1995	•	-	72	
60	Termas Baru	* ' ' '	Feb. 31a - Feb, 4 in,1995	· .		72	
	Brangkal	Sooko District	Nov. 20 th., 1995	75	0.50 - 1.50		
	Bunting	Ngrowo Basin	Nov'95	-		•	
63	Tawing	Ngrowo Basin	Nov' 95	-	•	-	ľ
64	Ngasinan	Ngrowo Basin	Nov' 95	-		-	
65	Amprong	Lesanpuro	Dec. 3 14 - Dec. 6 16, 1995	7	0.6	-	
66	Amprong	Madyopuro	Dec. 3 14 - Dec. 6 1995	•	•	-	
67	Lesti	Bokor, Turen	Dec. 3 10 - Dec. 6 11, 1995	100		-	
68	Lesti	Wonokerto, Bantur	Dec. 3 10 - Dec. 6 10, 1995	•		٠ .	
69	Genteng	Sumber Kembar, Dampit Dist.	Dec. 5 " - Dec. 9 ", 1995	-	-	٠ ا	
70	Ulo	Mangundikaran	Dec. 14 th, 1996	-	-	· ·	i
	Ulo	Ngrami, Sukomoro	Dec. 14 th, 1996	-	-	-	1
72	Beng	Plandaan	Feb. 2 40 - Feb, 3 th, 1997	-	~		ļ
73	Beng	Bawangan, Ploso	Feb. 2 no - Feb, 3 n, 1997	-	-	· ·	
74	Beng	Kampungbaru	Feb. 2 nd - Feb, 3 m, 1997	-	-		i
75	Beng	Jatigedong.	Feb. 2 d - Feb, 3 ,1997	-	i •	- 1	
76	Grojokan & Gembyang	Gebangbunder - Plandaan Dist	Feb. 2 nd - Feb, 3 m, 1997	-		1 -	
	Marmoyo	Karangmojo	Feb. 2" - Feb, 3 ",1997	•	-	-	ļ
78	Marmoyo	Gebangbunder	Feb. 2 no - Feb, 3 un, 1997	-	-	-	
79	Marmoyo	Jatimlerek	Feb. 2 0 · Feb, 3 0,1997	-	-	-	
80	Marmoyo	Tanggungkramat	Feb. 2 00 - Feb, 3 00,1997	-	1 -		
81	Marmoyo	Rejougung	Feb. 2 4 - Feb, 3 4,1997	•	i -		
82	Marmoyo	Ploso	Feb. 2 na - Feb, 3 m, 1997	-	-	1 .	1
83	Мастоуо	Losari	Feb. 2 no - Feb, 3 m, 1997	-	-	•	1
84	Marmoyo	Jatigedong	Feb. 2 na - Feb, 3 n, 1997	-	-	· ·	ł
85	Marmoyo	Bawangan	Feb. 2 ta - Feb, 3 ta, 1997	-	-	-	Į.
86	Kento	Santrean	Feb. 2 °°, 1997	-	-	-	
	Konto	Kuđu	Feb. 4 ", 1997		-	1 '	
88	Konto	Tembelang	Feb. 4 m, 1997	-	-		ì
89	Song	Kauman	Feb. 12 ^m , 1997	l -	-	1 -	
90	Song	Gondang	Feb. 12 in, 1997		-	-	1
91	Song	Boyolangu	Feb. 12 ^{tr} , 1997		-	-	1
92	Song	Karangrejo	Feb. 12 m, 1997		-	-	
	Song	Kedungwaru	Feb. 12 th , 1997			-	1
4	Song	Kalidawir	Feb. 12 th, 1997			-	1
95	Wudu	Ngrowo Basin	Feb. 12 in, 1997	-	-	Ι .	1
	Song	Ngrowo Basin	Feb. 12 th, 1997		-	1 .	1
97	Bokor	Manyar Tirloyoso	Feb. 12 " - Feb. 13 ", 1997		_		
	Dami	Sukolilo (ITS)	Feb. 16 ⁱⁿ , 1997		1 -	-	1
2	Makmur	Kedurus	Feb. 18 th, 1997	-	1 -	-	
	Makmur	Wiyung	Feb. 18 ⁱⁿ , 1997	-	-	-	
101	Makmur	Kebraon	Feb. 18 ", 1997	<u> </u>	<u> </u>		<u> </u>

Source, *: Cabang Dinas Pengairan Brantas Mojokerto Others: Perum Jasa Tirta

1

I

Table A2-11 Estimation of Sandmining Volume by Field Survey (1/2)

Survey: March. 26 -- April.16, 1996

No.	Location	Sta. No.	Worker	Truck	Carrying capacity	Total volume
			person/day	(car/day)	(m3/car)	(m3/day)
1	Terusan	KB 52 L	72	35	4	140
2	Watudakon	KB 54	32	15	4	60
3	Gempolkrep	KB 56 L	30	12	4	30
4	Blimbing	KB 57 R	30	26	4	104
5	Ngares. 1	KB 58 L	80	25	11	275
6	Ngares. 2	KB 58 L	45	28	4	116
7	Wuluh	KB 59 R	24	17	4	68
8	Bahudan	KB 60 R	19	11	4	44
9	Betro. 1	KB 61 L	24	7	11	77
10	Betro, 2	KB 61 L	25	20	4	80
11	Betro. 3	KB 61 L	40	23	4	92
12	Kesamben	KB 61 R	21	14	4	56
13	Keboan	KB 63 L	95	30	11	330
14	Podoroto	KB 63 R	17	15	4	60
15	Randuwatang	KB 68 L	30	9	11	95
16	Tapen	KB 69 L	15	5	11	55
17	Gumul	KB 70 R	12	4	4	16
18	Daditunggal	KB 71 L	45	13	11	143
19	Kepuhdoko	KB 71 R	15	11	4	44
20	Jatigedong	KB 73 L	102	25	11	279
21	Ploso	KB 76 L	31	20	4	80
22	Bedahlawak	KB 77 R	45	24	11	231
2.3	Rajoagung. 1	KB 78 L	35	25	4	100
24	Rejoagung. 2	KB 78 L	8	6	4	24
25	Tanggungkramat	KB 79 L	8	8	4	32
26	Melik	KB 79 R	5	4	4	16
27	Pacarpeluk	KB 80 R	16	8	4	32
28	Karangmojo	KB 81 L	45	30	4	120
29	Sumberagung	KB 82	13	4	4	16
30	Munung	KB 87 L	22	5	11	55
31	Munung	KB 87 R	80	70	2	280
37	Begendeng	KB 89 L	12	8	2	32
33	Tirtobinangun	KB 91 L	62	50	2	200
34	Ngrembot	KB 95 L	25	20	2	∤ 80
	5 Brodot	KB 96 R	15	12		48
30	Kudu	KB 99 L	1	3	12	36
3	7 Pelem	KB 101 L	7	7 3	3	12
38	S Mekikis	KB 101.4 R	25	10	1:	110
39	Tembarak	KB 102 L	25	5	1:	1 77
40) Bangsri	KB 103 L	10	5 3	3	12

Source: PJT(Perusahaan Umum Jasa Tirta)

Table A2-11 Estimation of Sandmining Volume by Field Survey (2/2)

Survey: March. 26 -- April. 16, 1996

			<u></u>		Survey: March. 26	Apra. 16, 1996
No.	Location	Sta. No.	Worker	Truck	Carrying capacity	Total volume
			person/day	(car/day)	(m3/car)	(m3/day)
41	Purwodadi	KB 104 R	20	4	11	44
42	Purwoasri	KB 106 R	9	4	4	16
43	Mranggen. 1	KB 107 R	4	2	4	8
44	Mranggen, 2	KB 107 R	15	7	4	28
45	Kunti. 1	KB 108 R	22	5	12	60
46	Dadapan	KB 108 L	40	20	. 4	80
47	Kunti. 2	KB 108.6 R	33	8	11	88
48	Tanon	KB 109.4 R	25	7	12	84
49	Banjarsari. 1	KB 110 L	15	7	4	28
50	Banjarsari. 2	KB 110 L	25	6	12	72
51	Kelutan	KB 112 L	14	3	12	36
52	Papar	KB 114.4 R	9	7	4	28
53	Juwet	KB 115119 L	30	18	3.5	63
54	Minggiran	KB 116.6 R	30	6	12	72
55	Tanjungtani	KB 120 L	38	25	3.5	87
56	Wanengpaten	KB 122 R	15	7	4	28
57	Singkalanyar	KB 122 L	75	15	12	180
58	Gondanglegi. 1	KB 123 L	16	11	3.5	38
59	Gondanglegi. 2	KB 123 L	35	8	12	96
60	Ngebrak	KB 123.4 R	35	7	12	84
61	Gampeng	KB 125.4 R	21	4	12	48
62	Jampes	KB 126 L	37	6	12	72
63	Jongbiru	KB 128.6 R	106	18	12	210
64	Semampir	KB 130 R	35	20	3.5	70
65	Bandarlor	KB 132 L	13	15	2	30
66	Bandarkidul	KB 133 L	12	13	2	26
67	Banjarmlati	KB 134 L	13	8	3.5	28
68	Manisrenggo	KB 136 R	20	9	3.5	31
69	Bulu	KB 136 L	11	13	2	26
70	Petek	KB 138 L	15	+		····
	Total		2,064	958		5,538

Source : PJT(Perusahaan Umum Jasa Tirta)

Table A2-12 Watershed Conservation Works for Critical Land of Erosion

		Mararchay	Watershed Consortion Works	Works	
{	Specifical Tands	Land Use	Land Use near Critical Land	Land	Remarks
Class	Deminion and Characteristics of Content Lances	Upland field Plantation	Plantation	Forest	
១	Critical land due to combination of presence of very shallow soils, very high inherent relative crodibility, localized occurrence of rock outcrops, stoniness and marginally critical agrocrimate. Non critical land is confined only to valley bottoms with deep soils. On the farm crosion causes a major hazard.	TE	•	五	Reforestation: not implementation due to shallow soils, rock outcrops, stony. Terracing: to be controlled crosion at crodible area.
ខ	Critical land due to combination of presence of very shallow voils, very high inherent relative erodibility, localized occurrence of rock outcrops, stoniness. Non critical land is confined only to valley bottoms with deep soils. On the farm crossin causes a major hazard. On recent volcanic terrain includes hard with high occurrence of boulders (>60% by volume) and shallow soils.	TE	•	E	ditto
ຍ	Critical land due to combination of presence of very shallow soils, very high inherent relative erodibility, localized occurrence of rock outcrops, stoniness and steep slopes. Non critical land is confined only to valley bottoms with deep soils. On the farm crossion causes a major hazard.	TE	,	Ξ.	ditto
క	Critical land due to presence of coarse texture soils with low water holding capacity restricting land use, very high inherent crodivility and low stability. On the farm, stream bank and river bank erosion cause a major hazard.	RF	t	TE	Reforestation: to be implemented at future forest area. Terraging: to be controlled erosion from present forest area.
3	Critical land due to presence of cinders, ashes, gravel, rocks and sandy soils associated with volvanic craters and very recent laya flows.	•	-	,	No measures: due to voicanie crater area.
క	Critical land due to very high stream bank erosion hazard and occurrence of flush floods during peak rainfall events of rainy season. Effects generally only land adjacent to streams and rivers only.	TE	•	Œ	Reforestation: not suitable due to field condition. Terracing: to be controlled erosion at stream and river bank.
ઇ	Critical land due to permanent flooding or inundation and very poor drainage, surann or march	-	•	,	No measures: not crodible area and carried out mood control works.
۵.	Potentially critical land consisting of C1 to C3 class conditions but under the present land utilization is not being degraded, damaged or misused. Generally forested, agroforestry, tree crops or soil conservation measures effective.	RF	,	TE	Reforestation: to be implemented as same as near the critical area. Terracing: to be controlled erosion from present forest area.
I A	Potentially critical land consisting of C4 class conditions but under the present land utilization is not being degraded, damaged or misused. Generally forested, agroforestry, tree crops cover or Soil Conservation measures renerally effective.	RF	TE	Ħ	Reforestation: to be implemented at joure jorest area. Terracing: to be controlled at future plantation and forest area.
22	Potentially critical land consisting of CS class conditions but under the present land utilization is not being degraded, damaged or misused. Use for recreation and as a national reserve.	•	•	•	No measures; not crodible area.
သွ	Seasonally critical land due to regular annual flooding and poor drainage restricting prowing season and or causing crop damage during high water flows.		•	•	No measures: not crodible area.
ਤ੍ਹ	}	,		•	No measures: not crodible area.

Note ; TE: Terracing RF: Reforestation Study Brantas Watershed, Volume III, Konto River Project, Phase III, 1988, DGRLR Source; Class, Definition and characteristics: Screening Study Brantas Watershed, Volume III, Konto River Project, Phase III, 1988, DGRLR

()

Table A2-13 Proposed Sabo Dam in the Upper Basin of Sengguruh Dam

Sediment Volume	(m3)	882,000	1,125,000	33,000	945,000	749,000	000*666	1,166,000	585,000	279,000	000.066	437,000	522,000	405,000	405,000	918,000	259,000	378,000	92,000	1,006,000	391,000	912,000	1,614,000	15.092.000
3	Arca (m2)	22050	33750	2500	23625	24975	24975	24975	29250	13950	29700	18720	26100	13500	13500	20250	7762.5	9450	3950	16762.5	16762.5	17100	30262.5	
it Area	Length (m)	2940	4500	1000	3150	3330	3330	3330	3900	1860	3960	3120	3480	1800	1800	2700	1035	1260	190	2235	2235	2280	4035	
Sediment Area	Hight (m)	15	15	5	15	15	15	15	1.5	15	15	12	15	15	15	15	15	15	10	15	15	15	15	
	River Width	09	90	20	09	45	09	70	30	30	20	35	30	45	45	89	90	09	35	8	35	80	80	
1(1/2)	peq	196	300	200	210	222	222	222	260	124	264	260	232	120	120	180	69	8		149	149	152	592	
Crest	(ELm)	415	415	415	395	355	339	310	502	470	457	457	455	400	400	360	450	405	405	360	360	340	310	
Apply Bed	(ELm)	400	400	410	380	340	324	295	487	455	442	445	440	385	385	345	435	390	395	345	345	325	295	
1985 Sabo Bed Apply Bed	(ELm)	385				340		295								345		390		345	345		295	
1973 Dam Bed 198	(ELm)	400			380	353	324	305	487	455	442		440	385		349	435	375				330	302	
	ó	No.3	(K.Amprong)	(K.Banco)	No.11	No.2	No.10	No.1	No.14	No.13	No.12	(K.Julu)	No.15	No.8	(North)	No.7	No.17	No.6	(K.Bambang)	No.5	0.0N	No.16(Lesti 3)	No.4	
	Basin	Brantas							Amprong	•				Lesti				-		•	•			Total

Table A2-14 Cost for Proposed Works (1/4)

Work Item	Unit	Quantity	Unit Cost Rp.10 ³	Amount Rp.10 ⁶	Remarks
I. Watershed Conservation					
1.1 Reforestation and Terracing					
(1) Reforestation	km²	3,070	35,100	107,757	
(2) Terracing	km²	170	88,000	14,960	
1.2 Experimental Research					
Installation/Running	site	3	602,300	1,807	
2. Sabo					
(1) G. Ketud Basin					
Sediment volume	$10^{6} \mathrm{m}^{3}$	52	4.918	255,736	
Excavation of short term	10^6 m^3	7	10.798	75,551	3 years
sediment volume		•	23.112	,	,
(2) Upper Brantas & Lesti Basin					
Brantas R.1	L.S	1	=	5,236	No.3
Brantas R.2	L.S	1	-	5,358	Tanbaksari (No.11)
Brantas R.3	L.S	1	-	4,629	Lumbangsari No.2
Brantas R.4	L.S	1	-	5,358	Blobo (No.10)
Brantas R.5	L.S	1	-	4,352	Kepanjen No.1
Amprong R.6	L.S	1	-	3,714	Juli 2 (No.14)
Amprong R.7	L.S	1	÷	3,714	Juli 3 (No.13)
Amprong R.8	L.S	1	•	4,803	Amprong (No.12)
Amprong R.9	L.S	1	-	3,714	Bango (No.15)
Lesti R.10	L.S	1	-	5,789	Genteng 1 No.8
Lesti R.11	L.S	1	-	5,789	Genteng 2 No.7
Lesti R.12	L.S	1	-	4,803	Lesti 1 (No.17)
Lesti R.13	LS	1	-	4,352	Lesti 2 No.6
Lesti R.14	LS	1	-	7,834	Lesti 2 No.5
Lesti R.15	L.S	1	-	3,869	Lesti 2 No.9
Lesti R.16	L.S	1	•	6,446	Lesti 3 (No.16)
Lesti R.17	L.S	1	•	7,834	Lesti 4 No.4
3. Flood Control					
(1) Widas River	refer Tal	ble A2-14 (2	/4 - 4/4)		
(2) Lodoyo Diversion Tunel					
Excavation of channel	10^{6} m^{3}	3.119	10.793	33,663	
Excavation of rock	10 ⁶ m ³	0.585	223.251	130,602	
Concrete for tunnel	10 ⁶ m ³		213.786	66,060	
Supporting	L.S	1	-	9,909	15% of concrete works
Gate	L.S	1	-	22,584	
Miscellaneous	L.S	1	-	52,564	20 % of total
4. Land Compensation Cost					
(1) Experimental Research	site	3	378,000	1,134	20 years 25 ha, rental
(2) Sabo G. Kelud	10 ⁶ m ²	0.550	8.7	4,785	
(3) Flood Control					
Widas river & Lower Ulo river	10 ⁶ m		15.0	11,970	
Kuncir river	10 ⁶ m	0.570	15.0	8,550	
Upper Ulo river	10 ⁶ m		15.0	8,175	
(4) Lodoyo Diversion Tunnel	10 ⁶ m	² 0.467	8.7	4,063	

Table A2-14 Cos

Cost for Proposed Works (2/4)

Comprehensive Management Plan for the Water Resouces of the Brantas River Basin r Widas and Lower Uno

וייים בו	Toper Widge and Lower Ulo								
744	Wides age to the control of the cont			Unit Cost	Cost		Amount		Domorbe
Š.	Work Item	Unit	Quantity .	Yen	Rupiah	Yen	Rupiah	Total Equiv.(Rp)	Notified As
	T	2	1 207 000	310	4.155	374,170,000	5,015,085,000	13,022,000,000	
-	Excavation	11:11	20011011		10V 4	104 650 000	1 401 735 000	3 639 000 000	
C 3	Embankment	Cu.m	255,000	410	0,47		7,401,100,000	000000000000000000000000000000000000000	
) (Till and to thendened river	2	280.000	236	4,305	66,080,000	1,205,400,000	2,620,000,000	
o i	Fill up to abandamed fiver		11,000	,,,,	2 748	2 442 000	30.228,000	82,000,000	
4	Reclamation	Ci.B	11,000	777	5		CEC 000 10 1	100 000 000	
V	Rank Protection - W Masonry	So.m	1,510	2,394	70,187	3.614,940	0/5,282,501	100,000,001	
۰ ۲	Dank However Carlon	1	755	1 088	25 575	1,500,940	19,309,125	51,000,000	
٥	Bank Protection - Capton		3	7,700			010 100 110	000 000 000	6 haidan
٢	Bridge B.C.	Sa.m	2,607	102,324	1,371,196	266,758,668	3,574,707,972	2,283,000,000	o orieges
- 0	C. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ž	2	6.196.262	88,400,000	12,392,524	176,800,000	442,000,000	
0	Culveil Link to the				0000	700 704 70	270 000 280	0.00 0.00	
Φ	Culvert - II $(2.5 \times 2.0 \times 2)$	Zos.	7	13,248,393	189,010,390	20,496,780	2/0,020,076	747,000,000	
	Cultural III (25×20×3)	No	0	14.359.207	363,703,970	0	0	>	
O	Carvers (200 A 200 A)	;	•	207 200 2	96 106 400	6 035 495	86 106 400	215,000,000	
Ţ	Intake Sluice (1.5 x 1.5)	Nos.	⊣	0,000,400	00,100,400	7111000		000 000	
1,	Cympone	Nos.		18,003,196	256,845,600	18,003,196	256,845,600	044,000,000	
1 0		N	**	5 220 925	74 485 200	5.220.925	74,485,200	186,000,000	
51	Lyrop	Ċ	٠,	***********	22000000	0000000	001 626 016 1	7 128 000 000	
14	Side Overflow Dike	Œ	550	68,704	2,398,842	37,787,700	1,519,505,100	7,120,000,000	
٧,	Collector Drain	Cu.m	6.000	318	4,533	1,908,000	27,198,000	68,000,000	
3									
16	Irrigation Headwork	Nos.	0	-				000 000 702 66	
<u> </u>	Total		į			926,960,674	926,960,674 13,671,266,547 33,506,000,000	33,506,000,000	

Conversion Rate: $Y 1 = R_I = 21.40$

Table A2-14 Cos

Cost for Proposed Works (3/4)

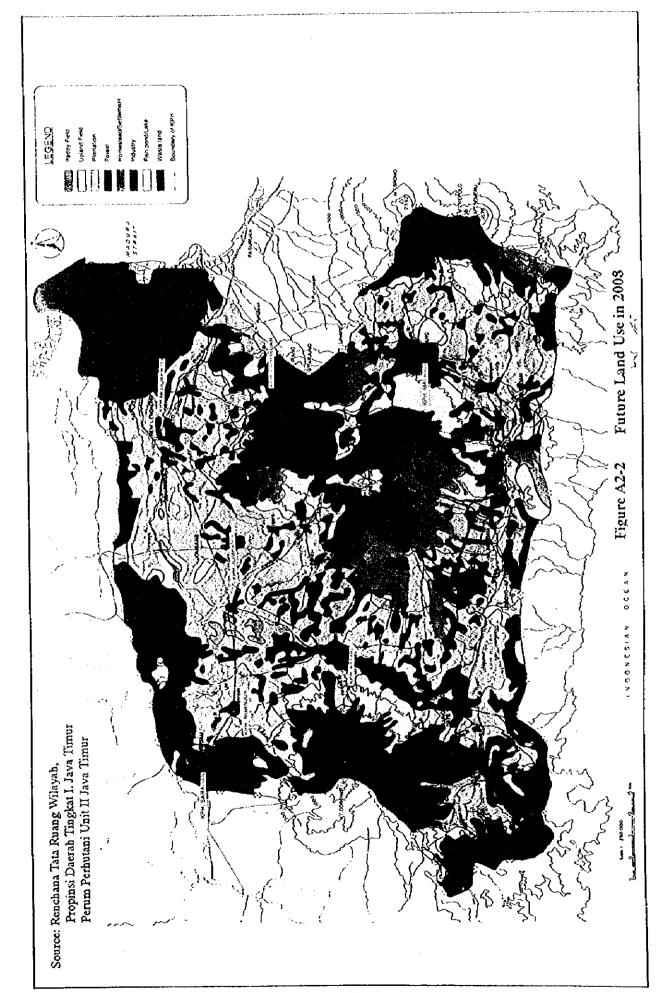
Comprehensive Management Plan for the Water Resouces of the Brantas River Basin

				Uni	Unit Cost		Amount		Dominibe
Š.	Work Item	Unit	Quantity	Yen	Rupiah	Yen	Rupiah	Total Equiv.(Rp)	Neillein
-	L'among to time	E T	164,000	310	4,155	50,840,000	681,420,000	1,769,000,000	
→	ENCAVABION		000	•	2002	05 070 000	1 286 298 000	3 339 000 000	
~	Embankment	S.E.B	234,000	410	164.0	000,046,06	7,4004400		
۳,	Fill up to abandaned river	Ç.,	0	236	4,305	>	>		
, ,		۽ ح	70.000	222	2.748	15,540,000	192,360,000	525,000,000	
4	Keclamation	į,	000	200	70 187	3 830 400	112 299 200	194,000,000	
'n	Bank Protection - W.Masonry	E.G.	7,000	1,017	/07 ⁴ 0/	201000	000 000 00	000 000	
¥	Bank Protection - Gabion	Ou.m	800	1,988	25,575	1,590,400	20,460,000	24,000,000	,
.			1 751	102 324	1,371,196	179.169.324	2,400,964,196	6,235,000,000	7 bridges
_	Bridge K.C	out.	۲ ، ۱ ۱	10000		20.001.210	742 000 000	1 105 000 000	
o:	Culvert - I $(1.5 \times 1.5 \times 1)$	Zos.		6,196,262	88,400,000	20,201,510	000,000,7	7,1700,000	
0	Cx10cx 11 (0x00x0)	Nos	ę	13.248.393	189,010,390	13,248,393	189,010,390	473,000,000	
>	Culveit - II (213 A 213 A 22)		-	14 359 207	363, 703, 970	14.359.207	363,703,970	671,000,000	
⊋	Cuivert - III (2.5 x 2.0 x 5)	ixos:	4	104 100 1	000 300 30	200 2000	007 707 70	215 000 000	
_	Intake Shijce (1.5 \times 1.5)	Nos.	-	6,035,495	86,106,400	0,030,490	00,100,400	000°000°010	
; ;	Combone	Nos	-	20.543.916	293,093,200	20,543,916	293,093,200	733,000,000	
77	Syphone			200 000	77 785 200	<u> </u>	0	0	
E	Drop	Sos.	>	C7C'077'C	000,000,00	• <	, (•	
7	Side Overflow Dike	æ	0	68,704	2,398,842	0	> •		
	Collector Desin	E S	0	318	4,533	0	0	•	
; ;	Total Marie 1	N	•	78 924 400	1,438,762,840	78.924.400	1,438,762,840	3,128,000,000 Kapas	Kapas
9	Iffigation fieadwork	1403	₹ '	0000000	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	070 200 03	73V L77 0E0 1	2 247 000 000	Kramat
17	Irrigation Headwork	Nos.	1	59,225,960	1,079,667,456 59,225,960	29,225,900	1,07,007,430	ľ	AN daylar
	Total					570,228,805	8,586,145,652	20,733,000,000	

Table A2-14 Cost for Proposed Works (4/4)

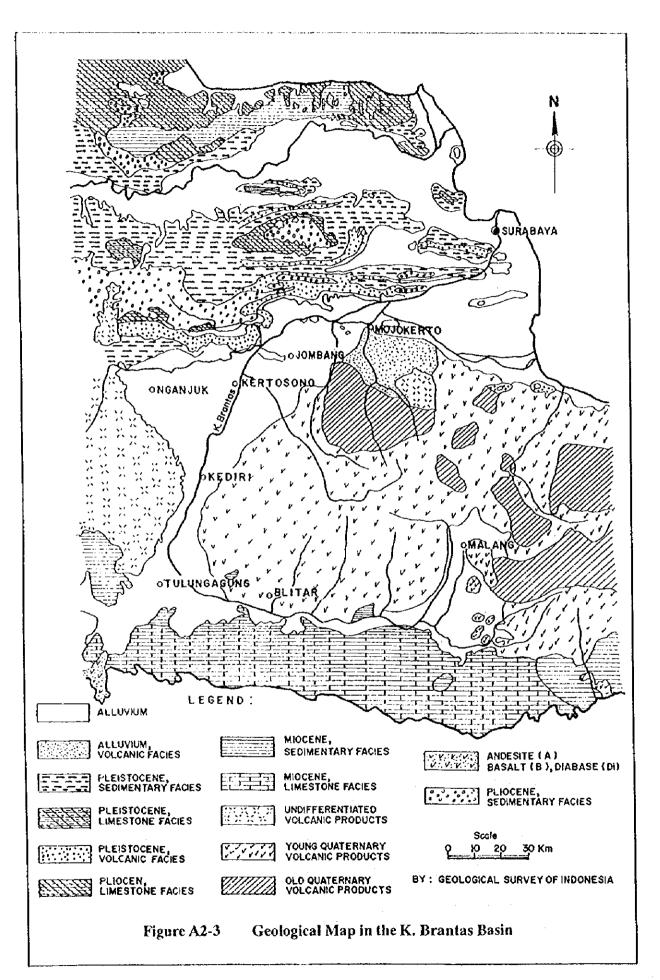
Comprehensive Management Plan for the Water Resouces of the Brantas River Basin

D

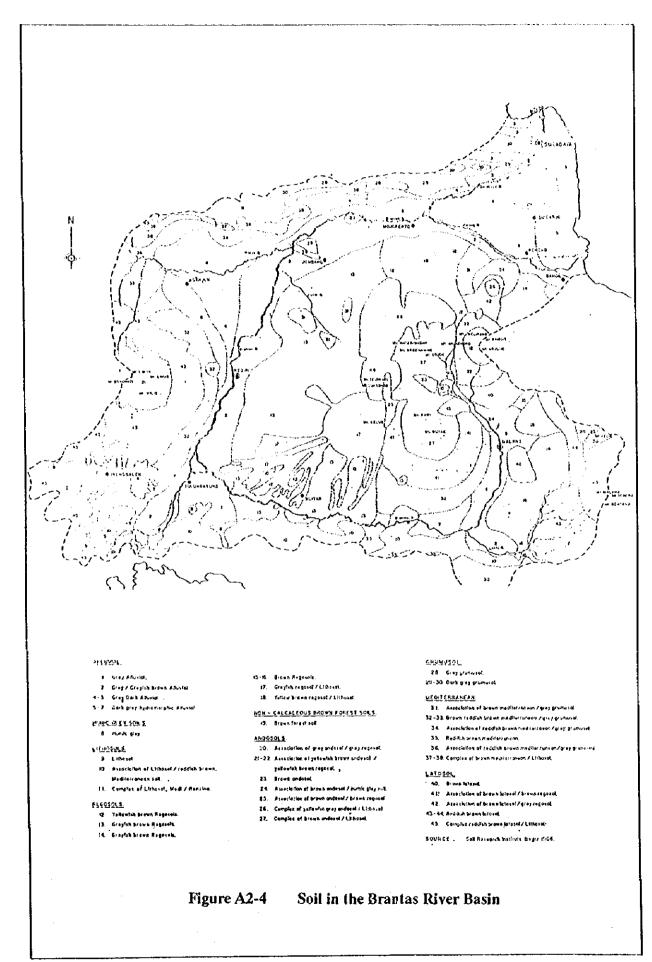

		;			Unit Cost		Amount		. Remarks
ģ	Work Item	Cart	Cuantity	Yen	Rupiab	Yen	Rupiah	Total Equiv.(Rp)	
	Excavation	o O	248,000	310	4,155	76,880,000	1,030,440,000	2,676,000,000	
. ^	Embankment	5	150,000	410	5.497	61.500,000	824,550,000	2,141,000,000	
	Till on to the doned the	2	21,000	726	4 305	12 036 000	219,555,000	477,000,000	
^	Fill up to apandance river	m:1)	27.00)		() 0 . 0	250,000,000	
4	Reclamation	Ca.n	47,000	222	2,748	10,434,000	129,156,000	352,000,000	
٠.	Bank Protection - W. Masonry	Sa.m	14,500	2,394	70,187	34,713,000	1,017,711,500	1,761,000,000	
ي د	Bank Protection - Gabion	Ö.	1,800	1,988	25,575	3,578,400	46,035,000	123,000,000	
	Bridge R.C	Sq.m	201	102,324	1,371,196	20,567,124	275,610,396	716,000,000	1 bridge
- 00	Culvert - I (1.5 x 1.5 x 1)	Nos.	0	6,196,262	88,400,000	0	0	0	
. 0	-	Nos.	0	13,248,393	189,010,390	0	0	0	
0	Culvert - III $(2.5 \times 2.0 \times 3)$	Nos.	0	14,359,207	363,703,970	0	0	0	
	Intake Sluice (1.5 x 1.5)	Nos.	₩	6,035,495	86,106,400	6,035,495	86,106,400	215,000,000	
2	Syphone	Nos.	0	18,003,196	256,845,600	0	0	0	
60	Drop	Nos.	0	5,220,925	74,485,200	0	0	0	
4	Side Overflow Dike	E	0	68,704	2,398,842	0	0	0	
S	Collector Drain	Cu.m	0	318	4,533	0	0	0	
Ý	Irrigation Headwork	Nos.	H	125.801.880	125,801,880 2,293,321,768 125,801,880	125,801,880	2,293,321,768	4,985,000,000 Tiripan	Tiripi
	Total					351 545 899	5 922 486 064	5 972 486 064 13,446,000,000	

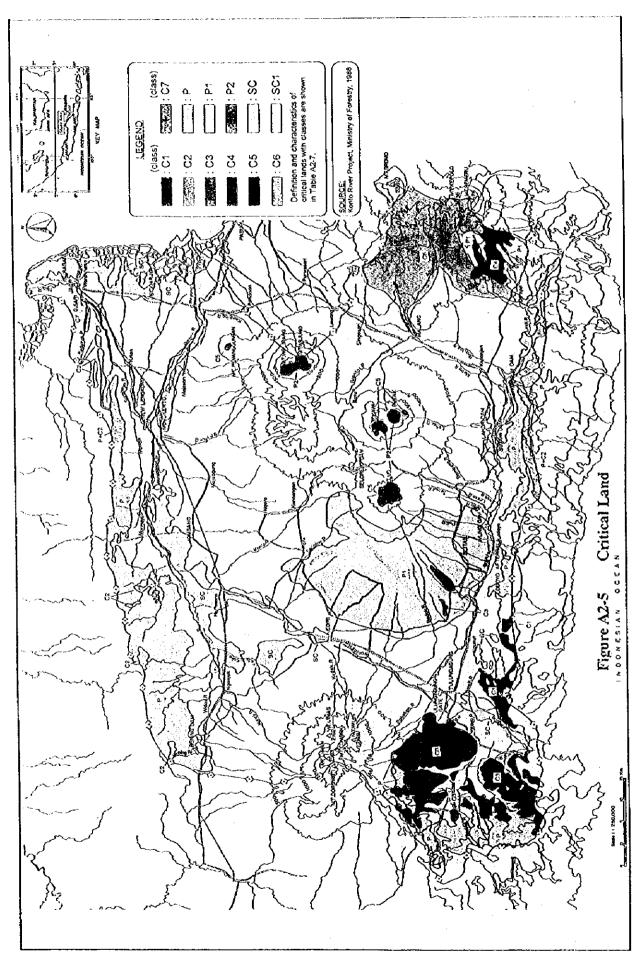
Conversion Rate: ¥ 1 = R_F 21.40

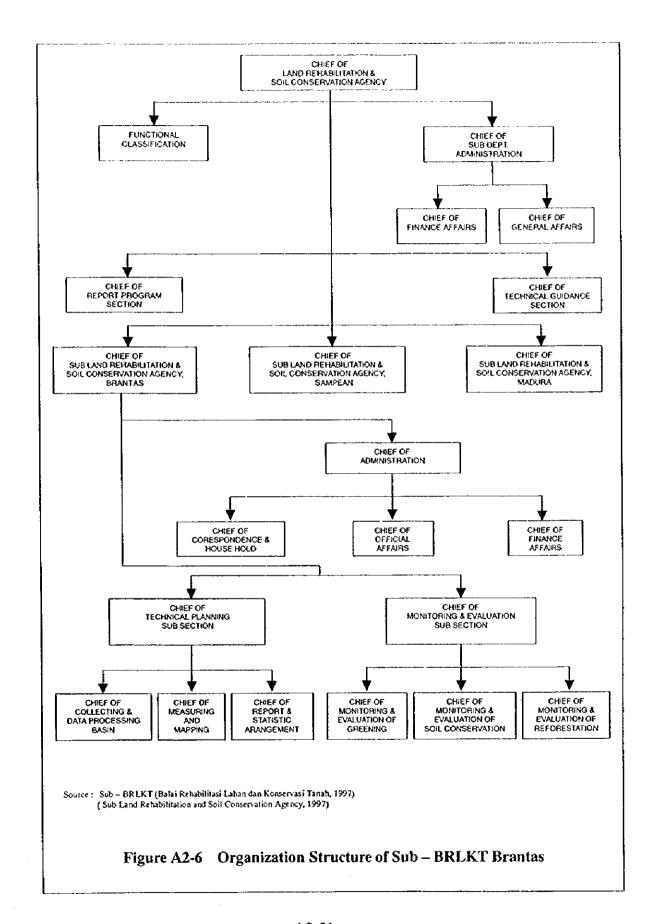
. N. 16.

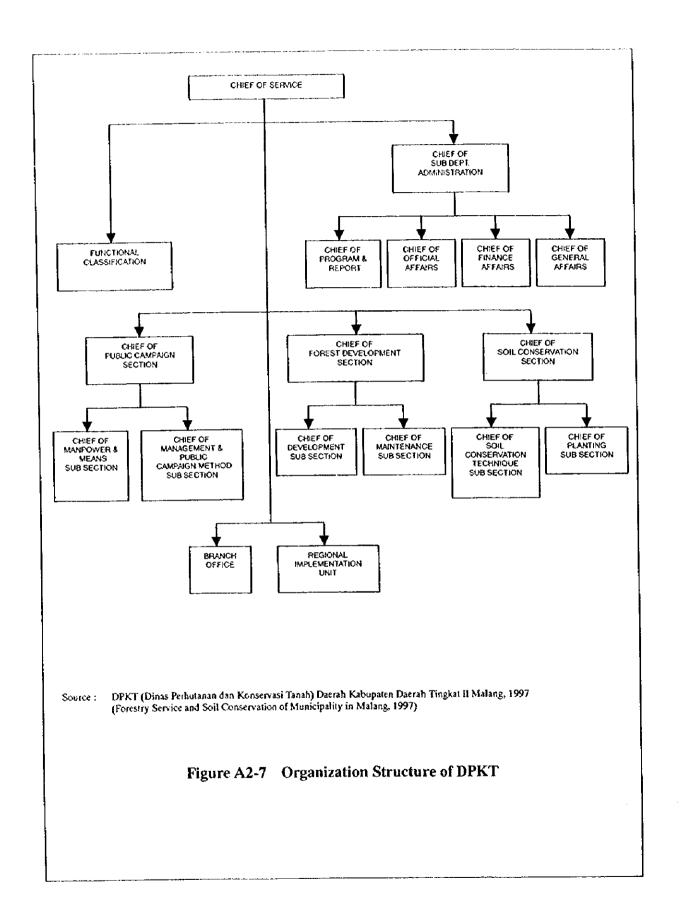


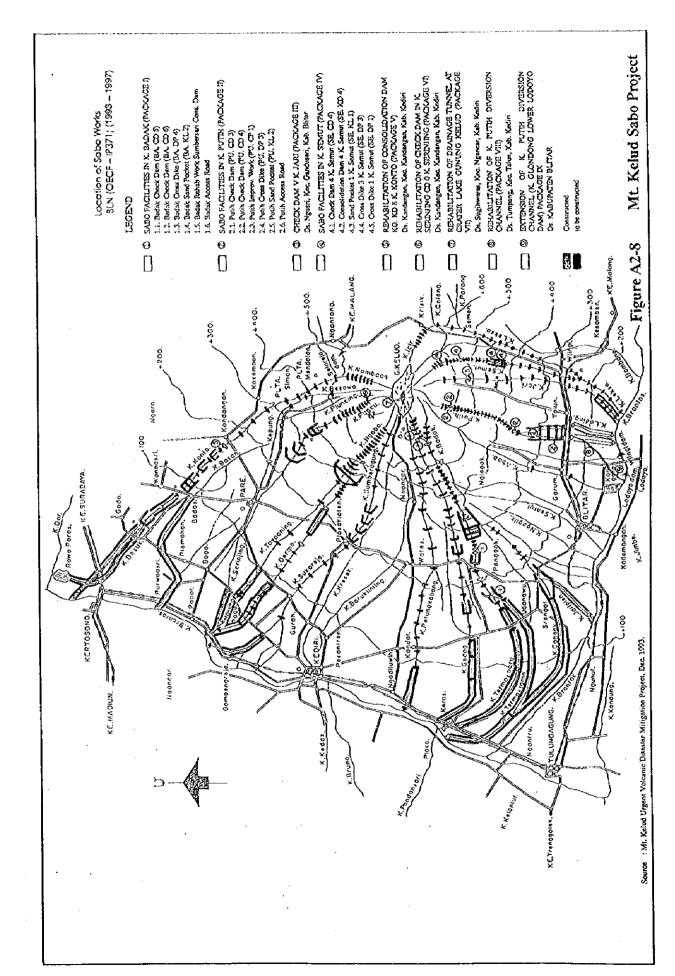
Ţ

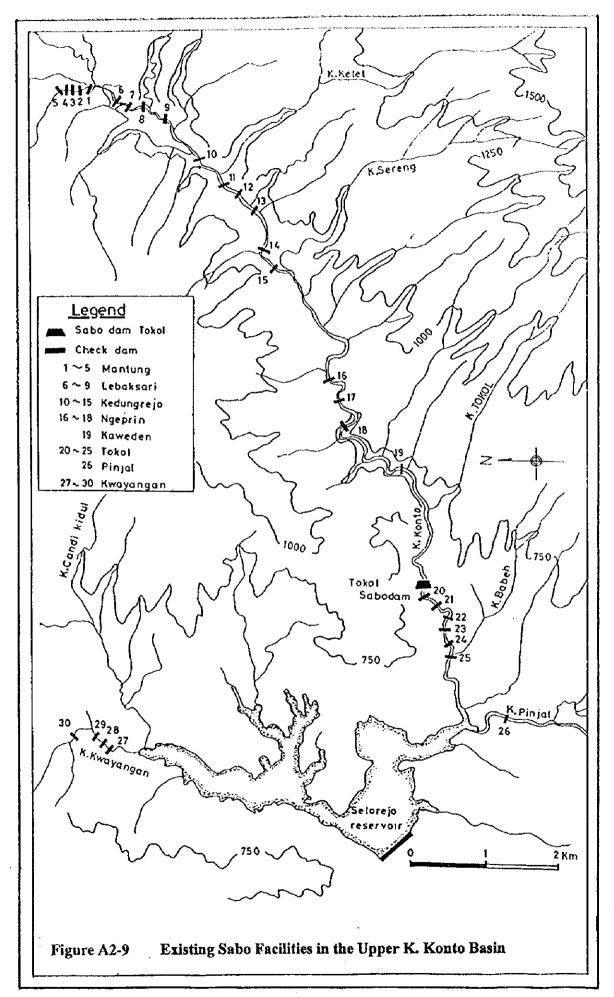

Ţ

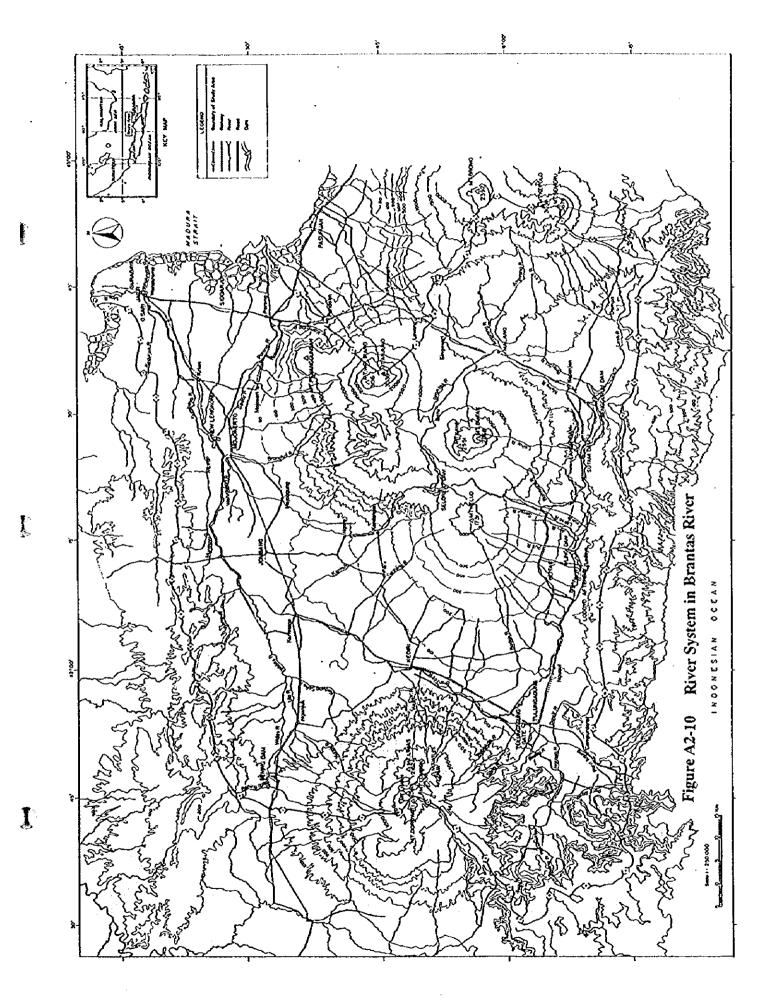

A2-47

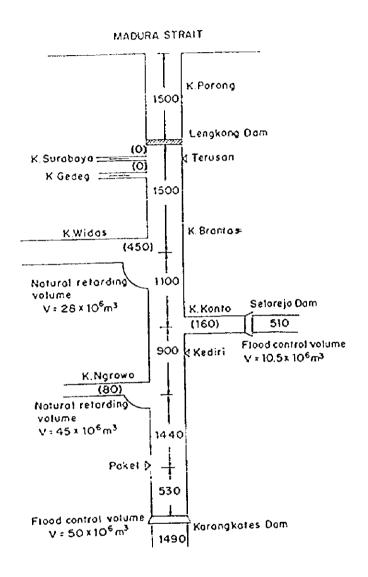


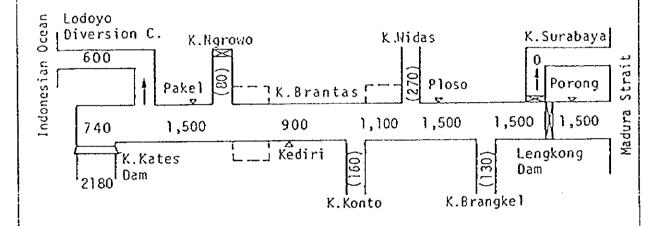



A2-48

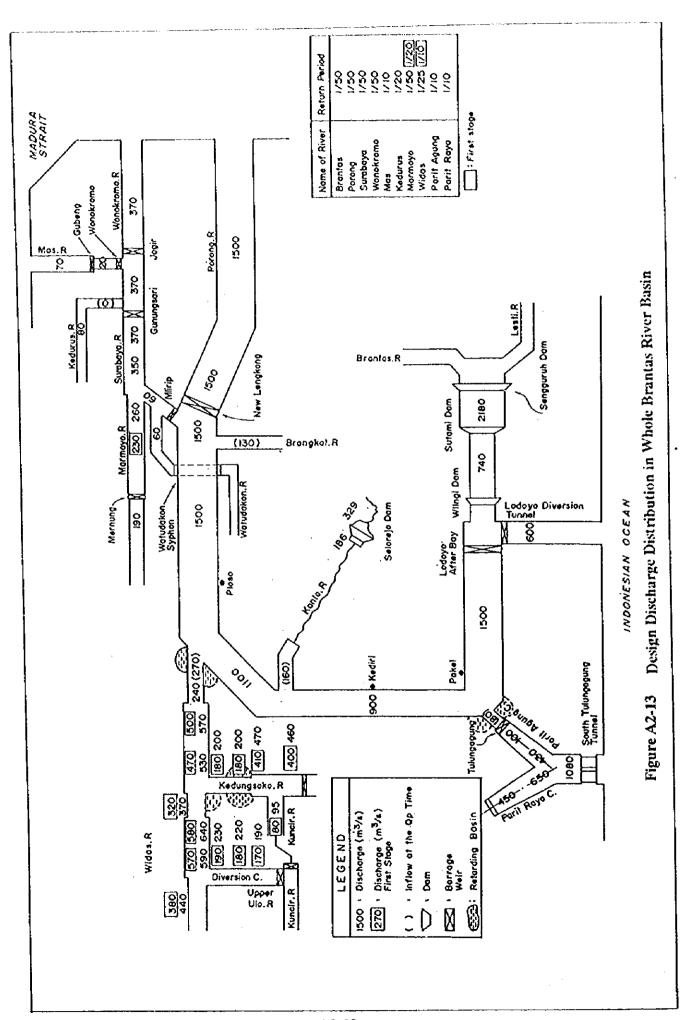


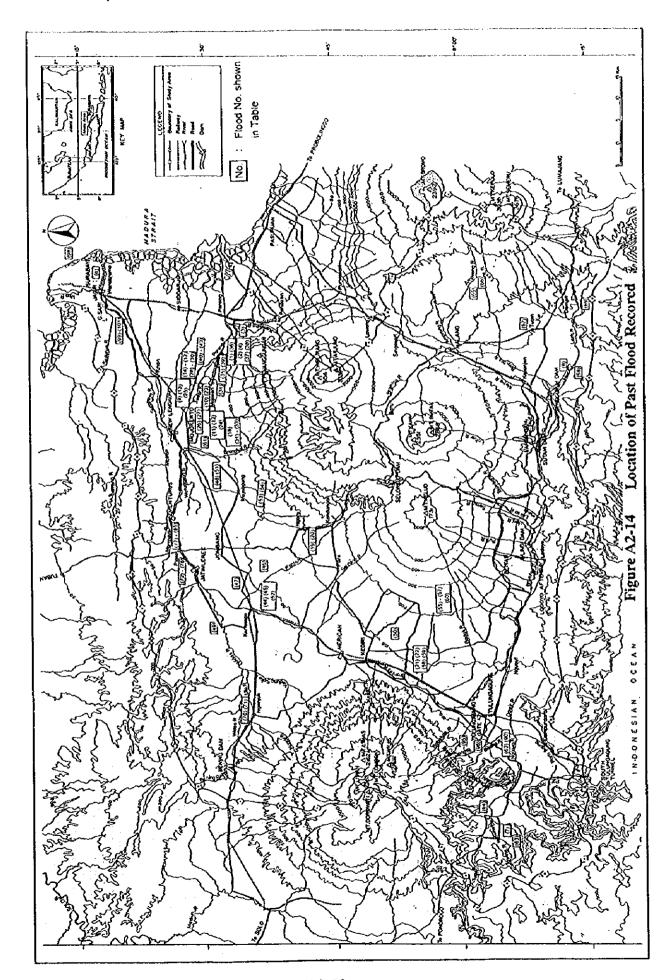


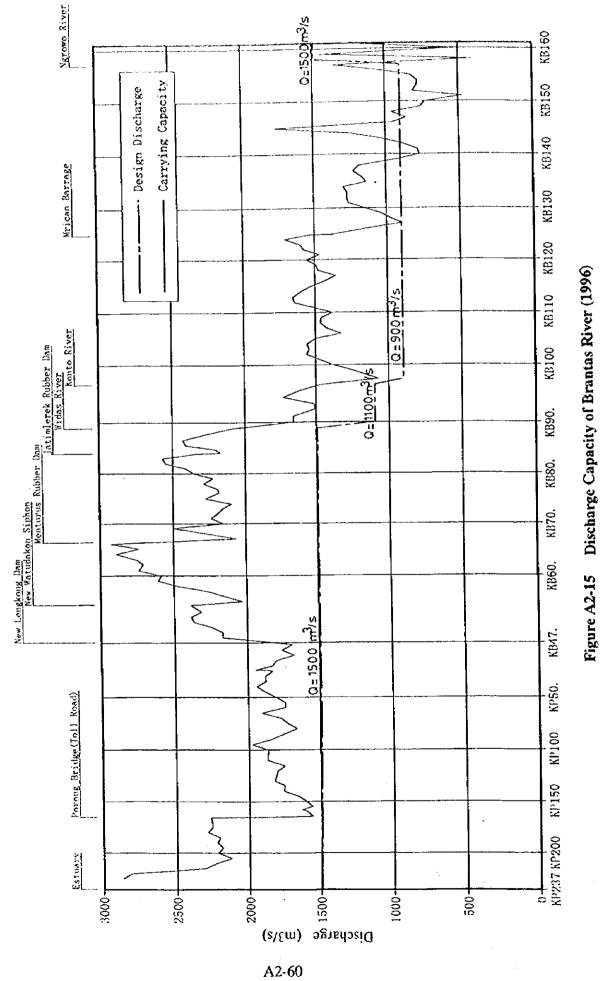




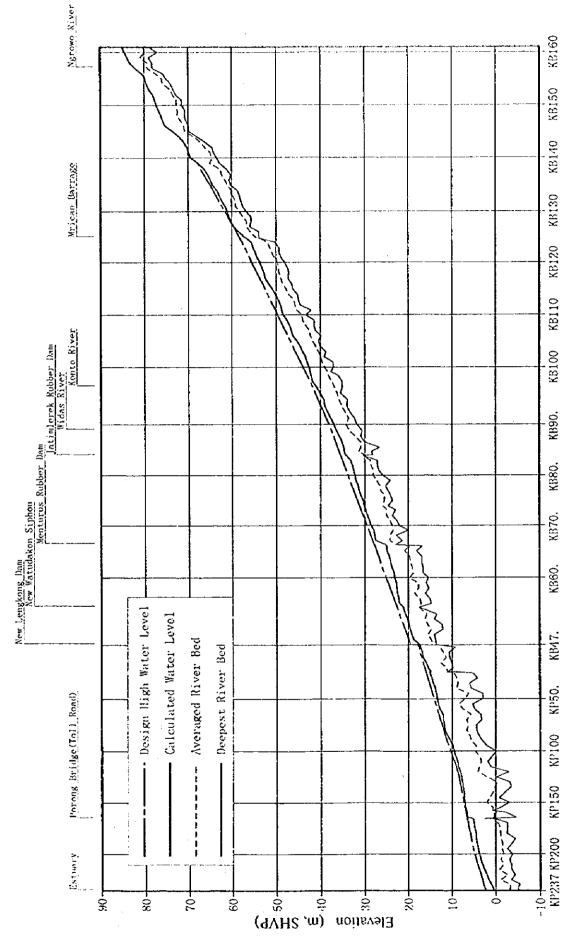
Proposed by


The Brantos River Basin Development Plan
1973 Moster Plan

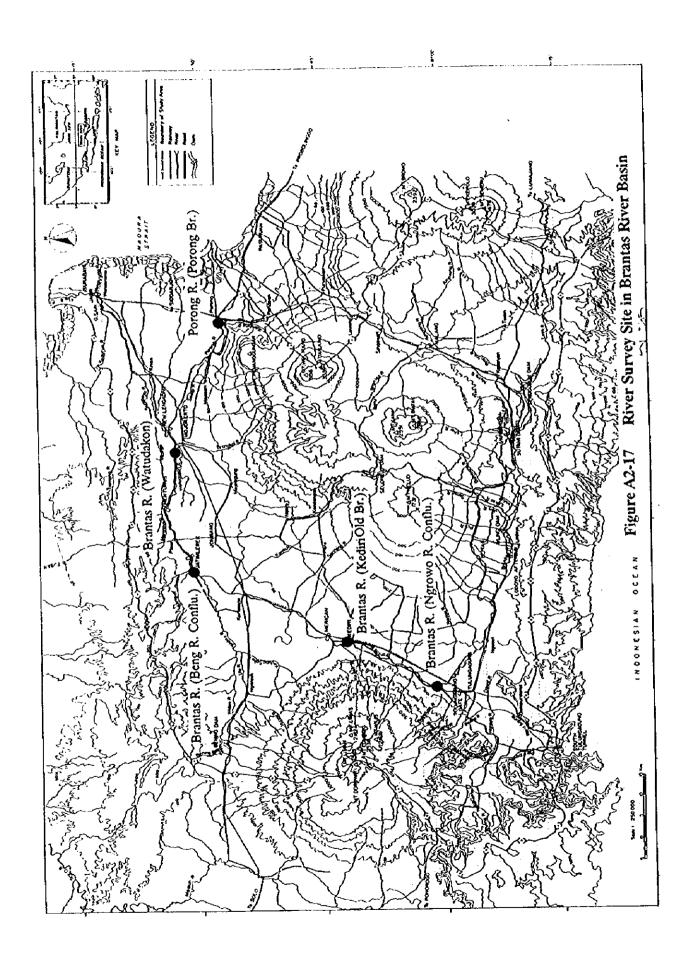

Figure A2-11 Design Discharge Distribution in 1973 Master Plan



Unit: m3/s


Figure A2-12 Design Discharge Distribution in 1985 Master Plan (1985 Master Plan, Widas Project)

()



T

J

Figure A2-16 Calculated Water Level of Brantas River under Design Discharge Distribution

A2-61

(