社会開発調查部報告書

หว่าวน้ำมากระบบก็ตารให้เรื่องการเสียงการเกิดการเกิด

HAND AND THEORY AND A STANDARY AND A DECEMBER OF THE REMARKS SHARE A DELADED AND THE SECOND AND A THE SECOND AND A DECEMBER OF A

Stauthut ; France

416 8

COMPARTS AND STATEST STATEST AND AND THE ADDRESS STATEST AND ADDRESS AND ADDR

្សារខេត្ត"

THE RECORDER FOR A CONTRACT OF THE CONTRACT STREET AND A ST

AII等的最低的情况计算机的问题。

TRUNKI, WESTROOMER

ACOUTINE TOUL

THE REPORT OF THE PROPERTY OF

ON THORAD PLAN

对的国际中国工作的图形。在第二位增加

\$\$\$

JAPAN INTERNATIONAL COOPERATION AGENCY

T.

Ĩ

DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT MINISTRY OF PUBLIC WORKS THE REPUBLIC OF INDONESIA

• THE STUDY ON COMPREHENSIVE MANAGEMENT PLAN FOR THE WATER RESOURCES OF THE BRANTAS RIVER BASIN IN THE REPUBLIC OF INDONESIA

FINAL REPORT

VOLUME III

SUPPORTING REPORT I

OCTOBER 1998

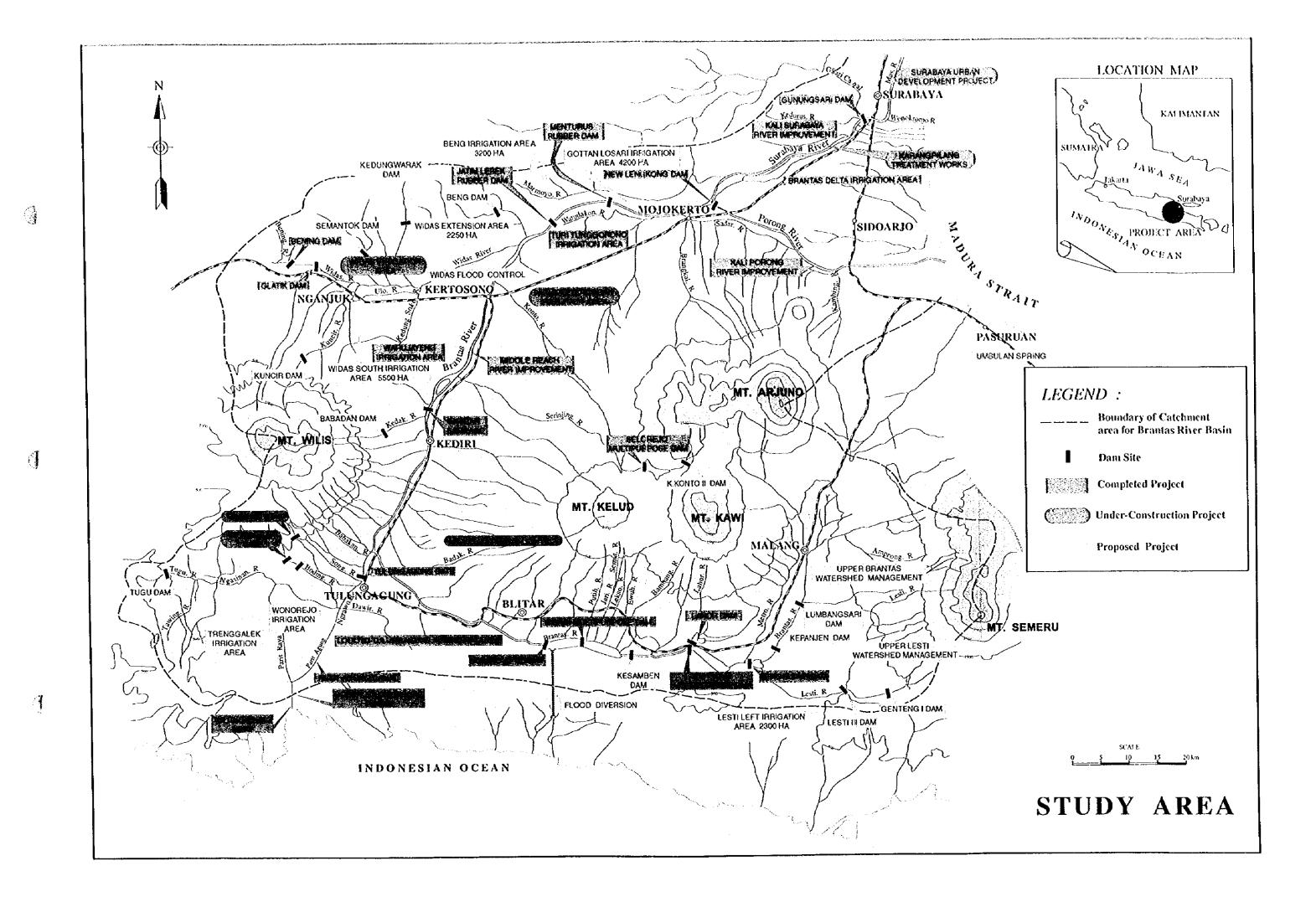
NIPPON KOEI CO., LTD. NIKKEN CONSULTANTS, INC.

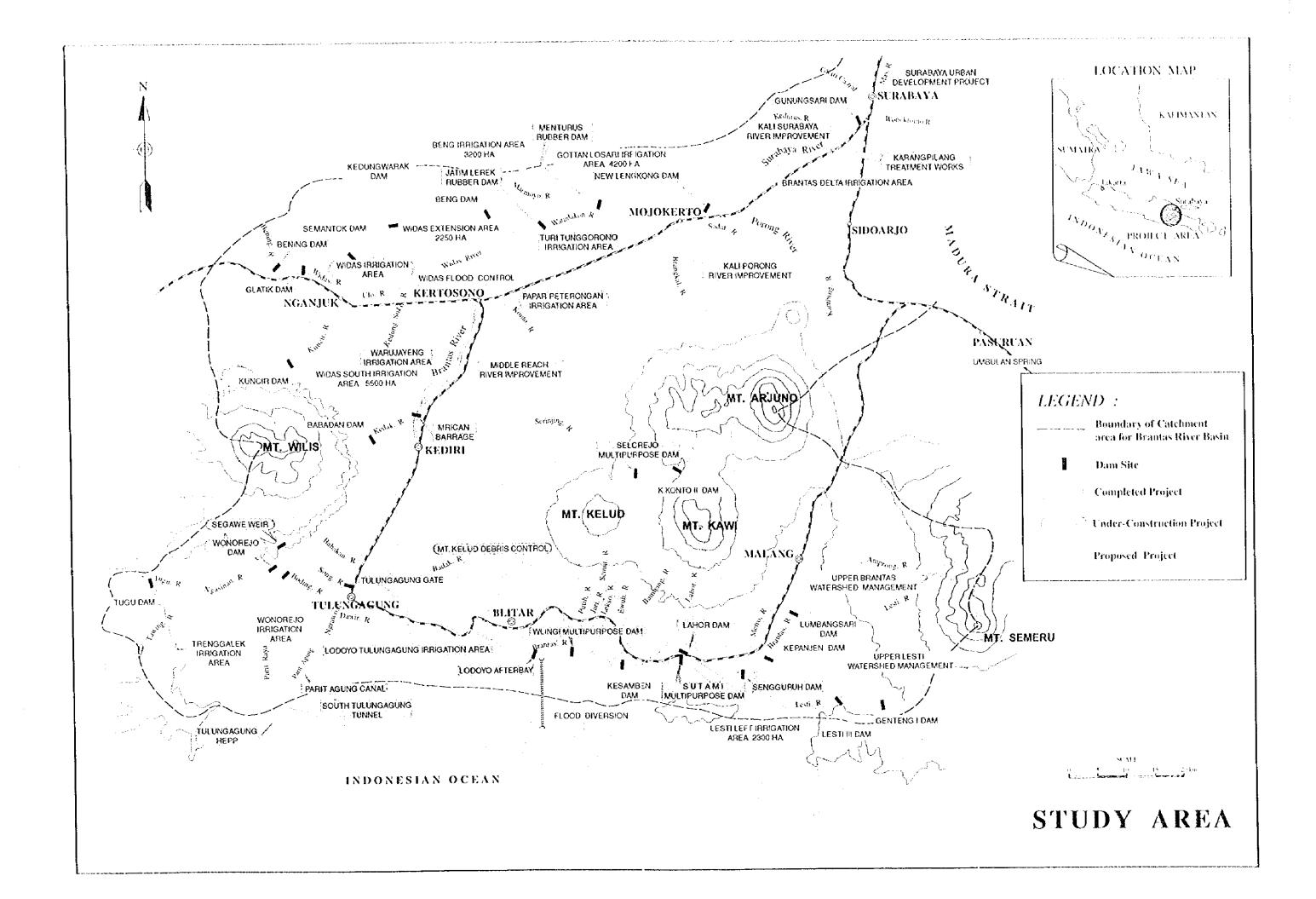
THE STUDY ON COMPREHENSIVE MANAGEMENT PLAN FOR THE WATER RESOURCES OF THE BRANTAS RIVER BASIN IN THE REPUBLIC OF INDONESIA

COMPOSITION OF REPORTS

()

Volume	I	:	Executive Summary	
Volume	Π	:	Main Report	
Volume	III	:	Supporting Report I	
Ann	nex	1.	Meteorology and Hydrology	
		2.	Watershed Conservation, Sabo,	and Flood Control
		3	Water Quality.	
		4.	Water Demand Forecast	
		5.	Water Balance Study	
		6.	Water Resources Development	
		7.	River Facility	
		8.	Effective Operation of Water Re	esources
		9.	Monitoring and Information Sys	stem
		10.	River Environment	
Volume	IV	:	Supporting Report II	
Anı	nex	11.	Institutional Study	
		12.	Organization and Management	
		13.	Human Resources Developmen	t
		14.	Financial Plan and Budget Reso	ources
		15.	Water Charge Mechanism	
		16.	Economic Evaluation	
		17.	Socio-economic Framework	
Volume	V	:	Data Book	1146966 (5)
		MH	Meteorology and Hydrology	
		WQ	Water Quality	
		IR	Irrigation Water Demand	
		RS	River Survey	
		CB	Community and Beneficiaries'	Participation Survey
		BI	Biodiversity Inventory Survey	
		AR	PJT's Annual Report	
			EXCHANGE RA	TE


The exchange rates used in this Study are: US Dollar(US\$) 1.00 = Indonesia Rupiah(Rp.) 2,446.6 Japanese Yen(¥) = Indonesia Rp.21.4 as of June, 1997


•

. .

.

--

THE STUDY ON COMPREHENSIVE MANAGEMENT PLAN FOR THE WATER RESOURCES OF THE BRANTAS RIVER BASIN IN THE REPUBLIC OF INDONESIA

FINAL REPORT

VOLUME III SUPPORTING REPORT I

Annex-1	Meteorology	and Hydrology
---------	-------------	---------------

- Annex-2 Watershed Conservation, Sabo, and Flood Control
- Annex-3 Water Quality

Í

(

- **Annex-4** Water Demand Forecast
- Annex-5 Water Balance Study
- Annex-6 Water Resources Development
- Annex-7 River Facility
- Annex-8 Effective Operation of Water Resources
- Annex-9 Monitoring and Information System

Annex-10 River Environment

ABBREVIATIONS

1 UNIT

Ţ

Į

Length		Weight	
nm	millimeter	gr	gram
cm	centimeter	kg	kilogram
m	meter	t, ton	metric ton
km	kilometer		
Area		Time	
mm²	square millimeter	sec	second
cm ²	square centimeter	nin	minute
m ²	square meter	hr	hour
km ²	square kilometer	yr	year
ha	hectare		
Volume		Others	
cm ³	cubic centimeter	%	percent
m ³	cubic meter	C	degree centigrade
Ltr	liter	10 ³	thousand
		10 ⁶	million
		10 ⁹	billion

2 PLAN

ADIPURA	Kota Bersih (Clean City)
PROKASIH	Program Kali Bersih (Clean River Program)
REPELITA VI	Rencana Pembangunan Lima Tahun Tahap VI (Sixth Five Year Development Plan)

3 ORGANIZATION

BAPEDAL	Badan Pengendalian Dampak Lingkungan (Environmental Impact Management Agency)
BAPEDALDA	Badan Pengendalian Dampak Lingkungan Daerah (Provincial Office of Environmental Impact Management Agency)
BAPPEDA	Badan Perencanaan Pembangunan Daerah (Regional Development Planning Agency)
BAPPENAS	Badan Perencanaan Pembangunan Nasional (National Development Planning Agency)
BBLH	Biro Bina Lingkungan Hidup (Bureau of Environmental Guidance, East Java)
вкрмд	Badan Koordinasi Penanaman Modal Daerah (East Java Regional Investment Coordinating Board)
BMG	Badan Meteorologi dan Geofisika (Meteorological and Geophysical Agency)
BPPI	Balai Penelitian dan Pengembangan Industri, Surabaya (Agency of Industrial Research and Development, Surabaya)

BPPT	Badan Pengkajian dan Penerapan Teknologi (Agency for the Assessment and Application of Technology)	
BPS	Biro Pusat Statistik (Central Bureau of Statistic)	
BRLKT	Balai Rehabilitasi Lahan dan Konservasi Tanah (Land Rehabilitation and Soil Consevation Agency, Ministry of Forestry)	
BTKL	Balai Teknik Kesehatan Lingkungan (Agency of Environment Health Techniques, Ministry of Health)	
DBPP	Direktorat Bina Program Pengairan (Directorate of Planning and Programming, DGWRD)	۲
Dep.HUT	Departmen Kehutanan (Ministry of Forestry)	
Dep.KES/MOH	Departemen Kesehatan (Ministry of Health)	
Dep.KEU	Departemen Keuangan (Ministry of Finance)	
Dep.PE/MME	Departemen Pertambangan dan Energi (Ministry of Mining and Energy)	
Dep.PRINDAG/MIT	Departemen Perindustrian dan Perdagangan (Ministry of Industry and Trade)	
Dep.PU	Departemen Pekerjaan Umum (Ministry of Public Works)	
Dep.TAN	Departmen Pertanian (Ministry of Agruculture)	
DGWRD	Direktorat Jenderal Pengairan (Directorate General of Water Resources Development, Ministry of Public Works)	
DIPENDA	Dinas Pendapatan Daerah Propinsi Daerah Tingkat I (Provincial Revenue Service)	
DIPERTA	Dinas Pertanian Daerah Propinsi Daerah Tingkat l (Provincial Agricultural Service)	
DJBM	Direktorat Jenderal Bina Marga (Directorate General of Highways, Ministry of Public Works)	
DJCK	Direktorat Jenderal Cipta Karya (Directorate General of Human Settlements, Ministry of Publiuc Works)	
DPERIKAN	Dinas Perikanan Daerah Propinsi Daerah Tingkat I (Provincial Fishery Service)	
DPRIND	Dinas Perindustrian Daerah Propinsi Daerah Tingkat I (Provincial Industry Service)	
DPU	Dinas Pekerjaan Umum (Public Works Service)	(
DPUK	Dinas Pekerjaan Umum Kabupaten (Municipal Public Works Service)	
DPU Pengairan	Dinas Pekerjaan Umum Pengairan Daerah Propinsi Daerah Tingkat I (Provincial Water Resources Service)	
GOI	(Government of Indonesia) Pemerintah Indonesia	
GOJ	(Government of Japan) Pemerintah Jepang	

НІРРА	Himpunan Petani Pemakai Air (Water Users Association)
IBRD	(International Bank for Reconstruction and Development)
IPAIR	luran Pelayanan Irigasi (Irrigation Service Fee)
JICA	(Japan International Cooperation Agency)
Kem. Neg. LH	Kenventrian Negara Lingkungan Hidup (State Ministry of Environment)
КРН	Kesatuan Pemangku Hutan (Unit of Forestry Management)
KPPPI.H	Komisi Pengendalian dan Penanggulangan Pencemaran Lingkungan Hidup (Commision for Environmental Pollution Control and Abatement)
LIPI	Lembaga Ilmu Pengetahuan Indonesia (Indonesian Institute of Science)
MIT/Dep.PRIND	(Ministry of Industry and Trade) Departemen Perindustrian dan Perdagangan
MME/Dep.PE	(Ministry of Mining and Energy) Departemen Pertambangan dan Perdagangan
MOC	(Ministry of Construction, Japan)
MOF	(Ministry of Finance)
MOH/Dep.KES	(Ministry of Health) Departemen Kesehatan
OECF	(Overseas Economics Cooperation Fund, Japan)
PBS	Proyek Induk Pengembangan Wilayah Sungai Bengawan Solo (Bengawan Solo River Basin Project)
PDAB	Perusahaan Daerah Air Bersih (Regional Clean Water Supply Company)
PDAM	Perusahaan Daerah Air Minum (Regional Drinking Water Supply Company)
PGK	Proyek Gunung Kelud (Volcanic Disaster Prevention Project of Mt. Kelud, DOI)
PGKS	Proyek Pengendalian Banjir Lahar G. Kelud Semeru (Volcanic Disaster Prevention Project of Mt. Kelud Semeru)
PJT	Perum Jasa Tirta (Jasa Tirta Public Corporation)
РКВ	Proyek Pengembangan Wilayah Sungai Kali Brantas (Brantas River Basin Development Project)
PLN	Perusahaan Umum Listrik Negara (State Electric Power Company)
PLN PJB II	P.T. PLN Pembangkitan Tenaga Listrik Jawa - Bəli II (PLN Electric Power Generator Corporation Java Bali II)
POJ	Perum Otoritas Jatiluhur (Jatiluhur Authority Public Corporation)
PPPLD	Pengendalian dan Penanggulangan, Pencemaran Limbah Domestik (Work Team for Controlling and Overcoming Domistic Waste Pollution)

ж 2⁷

PPPLI	Pengendalian dan Penanggulangan, Pencemaran Limbah Industri (Work Team for Controlling and Overcoming Industrial Waste Pollution)
UNDP	(United Nations Development Program)
USAID	(United States of Agency for International Development)
WARDEC	(Water Resources Development Corporation)

4 OTHERS

APBD	Anggaran Pendapatan dan Belanja Daerah (Provincial Government Resources and Expenditure Budget)
APBN	Anggaran Pendapatan dan Belanja Negara (Central Government Resources and Expenditure Budget)
BOD	(Biochemical Oxygen Demand)
Bupati	(Head of Regency)
Camat	(Head of sub District)
COD	(Chemical Oxygen Demand)
CPI	(Costumer Price Index)
DIP	Daftar Isian Proyek (Development Budget Allocation)
DO	(Dissolved Oxygen)
ЕОМ	(Effective Operation & Maintenance (ISSD under IBRD)
FFWS	Flood Forecasting and Warning System
GDP	(Gross Domestic Product)
GERBANG KERTOSUSII	
GRDP	Gresik, Bangkalan, Mojokerto, Surabaya, Sidoarjo,Lamongan (Gross Regional Domestic Product)
HWL	(High Water Level)
IPEDA	Iuran Pendapatan Daerah (Village Land Tax)
ISF	(Irrigation Service Fee)
ISSP	(Irrigation Subsector Project) (IBRD Project)
Kabupaten	(Regency)
Kanwil	Kantor Wiłayah (Provincial Office of a Ministry)
Kecamatan	(District)
Kotamadya	(Municipality)
LWL	(Low Water Level)
O&M	(Operation & Maintenance)
Polowijo	(Second crop or collective term for all annual crops other than paddy and sugarcane)
SS	(Suspended Solid)

R

 \bigcirc

ANNEX - 1

METEOROLOGY AND HYDROLOGY

•

1

T

ANNEX - 1 METEOROLOGY AND HYDROLOGY

TABLE OF CONTENTS

1.	Meteorological and Hydrological Observatories	A1-1
1.1	Meteorological and Hydrological Observatories in the Brantas River Basin	A1-1
1.2	Meteorological and Hydrological Observations by PJT	A1-1
2.	Flood Analysis	A1-4
3.	Sediment Analysis of the Existing Reservoirs	A1-5
3.1	General	A1-5
3.2	Previous Survey	A1-5
3.3	Change of the Storage	A1-5
3.4	Evaluation of Sedimentation in Sengguruh and Sutami-Lahor Reservoirs	A1-5
3.5	Estimation of the Sedimentation in the Future	A1-6
4.	Low flow Analysis	A1-8
4.1	General	A1-8
4.2	Natural Flow at the New Lengkong Dam	A1-8
4.3	Drought Year	A1-9
4.4	Miscellaneous Flow	

. .

Ð.

LIST OF TABLES

Page

0

۲

Table A1-1	Meteorological and Hydrological Observation in the Brantas River Basin
Table A1-2	Operation and Maintenance Budget of the Observation in 1997 A1-12
Table A1-3	Meteorological Stations by PJT A1-13
Table A1-4	Hydrological Station by PJT A1-15
Table A1-5	Job Description and Problems of Sections Concerned Meteo- hydrological Services in Technical Planning and Controlling Department
Table A1-6	Countermeasures to Improve Meteo-hydrological and Analysis A1-17
Table A1-7	Annual Maximum 3-day Basin Mean Rainfall at the New Lengkong Dam A1-18
Table A1-8	Surveys in Reservoirs A1-19
Table A1-9	10-day Discharges at the New Lengkong Dam A1-20
Table A1-10	10-day Outflow Records in the Sutami Reservoir A1-21
Table A1-11	10-day Total Irrigation Intake Discharges along the Brantas River A1-22
Table A1-12	Calculation of Miscellaneous Flow between the Sutami Dam and the New Lengkong Dam

LIST OF FIGURES

Figure A1-1	Organization Chart of Meteo-Hydrological Observation in PJT	A1-24
Figure A1-2	Location Map of Meteorological Station Observed by PJT	A1-25
Figure A1-3	Location Map of Hydrological Station Observed by PJT	A1-26
Figure A1-4	Organization Chart of Planning and Controlling Bureau	A1-27
Figure A1-5	Thiesen Polygon in the Catchment Area of the New Lengkong Dam	A1-28
Figure A1-6	Cross Section of Sutami Reservoir	A1-29
Figure A1-7	Longitudinal Section in Sutami Reservoir (Brantas River)	A1-31
Figure A1-8	Longitudinal Section in Senggruh Reservoir (Brantas River)	A1-32
Figure A1-9	Longitudinal Section in Senggruh Reservoir (Lesti River)	A1-33
Figure A1-10	Longitudinal Section in Lahor Reservoir (Lahor River)	A1-34
Figure A1-11	Transition of Sediment Volume in Senggruh and Sutami Reservoir	A1-35
Figure A1-12	H-V Curve of the Sutami and Lahor Reservoirs	A1-36
Figure A1-13	Calculation Method of Natural Flow at the New Lengkong Dam	A1-37
Figure A1-14	Natural Flow at the New Lengkong Dam (1977-1996)	A1-38
Figure A1-15	Natural Flow and Observed Flow at the New Lengkong Dam	A1-39

Ţ

.

1. Meteorological and Hydrological Observatories

1.1 Meteorological and Hydrological Observatories in the Brantas River Basin

The meteorological and hydrological observations are conducted in the Brantas river basin by various agencies including PJT (Jasa Tirta Public Corporation), Dinas PU Pengairan (Provincial Water Resources Service) and BRLKT (Land Rehabilitation and Soil Conservation Bureau, Ministry of Forestry) as shown in Table A1-1. Some of the meteorological equipment used in those observatories is provided by BMG (Meteorological and Geophysical Center) in Malang. Observed meteorological data must be furnished to BMG by those agencies however this has not sufficiently been achieved yet.

1.2 Meteorological and Hydrological Observation by PJT

(1) Observation Organization in PJT

- D

Ţ

The Planning and Controlling Unit is responsible for the meteorological and hydrological observation in PJT. The site observation is carried out by ASA I (Division of upstream water service) located close to the Lahor dam and ASA II (Division of downstream water service) located in Kediri. Figure A1-1 shows the organization chart of meteo-hydrological observation in PJT. The data sent from these observatories are compiled at the processing center in Malang. ASA I and ASA II consist of three(3) sub divisions each of which operate all the observatories located in the catchment area of the Brantas river. The historical data of operation and maintenance costs of the observation is as shown in Table A1-2. There is no particular mentioned problem within observation organization in PJT.

(2) Meteorological Observation

The PJT operates 109 meteorological stations as shown in Figure A1-2. ASA I manages 68 stations including 18 telemetering stations of the FFWS (Flood Forecasting and Warning System) stations while ASA II manages 41 stations including eight(8) telemetering stations. Table A1-3 shows the meteorological stations operated by PJT. The rainfall data of 26 telemetering stations are sent to PJT, Malang by the telecommunication system after the installation of FFWS in 1991.

(3) Hydrological Observations

The PJT operates 52 hydrological stations of which 28 stations are operated by ASA I and 24 by ASA II (ref. Figure A1-3 and Table A1-4). The hydrological stations including 21 telemetering stations are conducting water level and outflow observations.

(4) Meteo-hydrological Data Management and Analysis

The Planning and Controlling Bureau is responsible for meteorological and hydrological data management and analysis as well as their observations. Figure A1-4 shows the organization chart of the Planning and Controlling Bureau. In the Planning and Controlling Bureau, "Technical Planning and Controlling Department" and "Computer and FFWS Unit" concern

the meteo-hydrological data collection and its analysis. Table A1-5 shows the job descriptions and problems of sections concerned with meteo-hydrological service in the Technical Planning and Controlling Department.

In the present condition of the Computer and FFWS Unit, even with the roles of each post are well defined, some of the roles are overlapped each other or the tasks have not been decided in detail. Therefore, it is unclear where the responsibility lies for data management and analysis in some cases. Moreover, lack of technical knowledge and unsuitable staffing of several posts apt to deteriorate job quality and to provoke indigestion of their tasks.

The problems of meteo-hydrological data management and analysis within the Planning and Controlling Bureau are caused mainly by the following reasons:

- Lack of basic technical knowledge regarding meteo-hydrological observation, data management and its analysis especially among actual acting staff.

(3)

I

- Communication problem between "Technical Planning and Controlling Department" and "Computer and FFWS Unit". Data and information exchange is not carried out frequently.
- Hydrological analysis has been carried out by both "Technical Planning and Controlling Department" and "Computer and FFWS Unit". The boundary of each task is unclear.

Conceivable measures against such problems are concluded as follows:

(a) Personnel training

On the job training by a long-term meteo-hydrological specialist for the actual acting staff. Both "Technical Planning and Controlling Department" and "Computer and FFWS Unit" staff should be technically trained meteo-hydrological technical matters by the specialist.

(b) Establishment of meteo-hydrological databases and computer network

To create meteo-hydrological databases and sharing meteo-hydrological information between "Technical Planning and Controlling Department" and "Computer and FFWS Unit" utilizing a computer network. This plan includes 1 staff increase (computer specialist) for "Data Processing Center" in Computer and FFWS Unit. As this plan will utilize existing computers, the additional cost will be only for hardware to establish the computer network.

(c) Improvement of organization

To shift "Hydrologica Application" under "Technical Planning and Controlling Department" and staff increase (2 hydrologists) for Hydrological Application. This plan unifies the dispersed information of hydrological analysis between both departments. Simultaneously, the coordinator of "Technical Planning and Controlling Department" will become a full-time position, who holds the position of "Licensing Water Allocation and Flood Control" also in the present condition, to improve the check function of technical matters.

.

The improvement plans introduced above are summarized as shown in Table A1-6.

ľ.

2. Flood Analysis

In order to review the design flood discharge distribution recommended in the previous master plan study (Widas flood control and drainage project), rainfall data for the recent 13 years; 1984 through 1996 are additionally included in the present study while the previous study used the rainfall data for a period of 1960 through 1983. Daily rainfall data of the 23 stations, which are available presently in PJT have rather continuous observation period. Out of above daily rainfall data collected in the Study, annually three-day rainfall, which is an amount of rainfall in a sequence of three-days data, were selected every year. It is considered that three-day rainfall could cover one flood period in the catchment of the Brantas river and the duration.

(°)

T

The 23 rainfall stations are shown in Figure A1-5. Based on the selected three day rainfall amount and the Thiesen polygon shown in Figure A1-5, annual maximum three day basin mean rainfall at the New Lengkong Dam for 13 years are computed as shown in Table A1-7.

The following table shows the probable three day rainfall by Gumbel method of the New Lengkong Dam catchment for the previous master plan study and the present study. The present study have incorporated 37 years of annual maximum three day rainfall including those computed in the previous study and presently computed in the Study.

Return Period (Year)	Previous Study (1960~1983) (mm)	Present Study (1960~1996) (mm)
2	76	73
5	88	86
10	96	94
25	106	105
50	114	113
100	121	121

Estimated probable rainfall in the table show that the present value is almost the same as the previous study.

A recent big flood were observed in March 1984 and March 1992. The maximum discharge at Ploso station were $1,228 \text{ m}^3/\text{s}$ and $1,078 \text{ m}^3/\text{s}$ respectively. The discharge of $1228 \text{ m}^3/\text{s}$ at Ploso station is less than $1,500 \text{ m}^3/\text{s}$ of the present design flood discharge. The present design flood distribution is not changed and utilized in this study by the reasons mentioned above.

3. Sediment Analysis of the Existing Reservoirs

3.1 General

Ţ

T

To formulate a comprehensive water resources management plan, it is necessary to accurately grasp current storage volume and sediment volume as well as to forecast the future sediment intrusion into the reservoirs. The sediment analysis has been carried out including confirmation of the past survey results and re-computation of the reservoir storage.

3.2 **Previous Survey**

The survey of reservoirs has not been carried out periodically but it was carried out several times in the past, which are compiled in Table A1-8. The PJT has determined in January 1997 to survey all the reservoirs every 2 years.

3.3 Change of the Storage

Name	H.W.L.	L.W.L.		Original		I	atest Surve	у	(Latest)	/ (Original)
of Reservoir	(El.m)	(El.m)	Gross Storage (Mil.m3)	Effective Storage (Mil.m3)	Completion Year	Gross Storage (Mil.m3)	Effective Storage (Mil.m3)	Survey Date	Gross Storage (%)	Effective Storage (%)
Senggruh	292.5	291.4	21.50	2.50	1988	3.37	1.17	Jul.1996	15.7%	46.8%
Sutami	272.5	246.0	343.00	253.00	1972	183.42	146.63	Aug.1997	53.5%	58.0%
Lahor	272.7	253.0	36.10	29.40	1977	32.88	26.54	Jul.1995	91.1%	90.3%
Wingi	163.5	162.0	24.00	5.20	1977	4.97	1.41	Nov.1996	20.7%	27.1%
Lodoyo	136.0	125.5	5.80	4.20	1980	2.35	2.35	Nov.1996	40.5%	56.0%
Serolejo	622.0	598.0	62.30	50.10	1970	48.76	44.51	Nov.1993	78.3%	88.8%
Bening	108.6	96.4	32.90	28.40	1981	31.70	28.05	Nov.1993	96.4%	93.8%

The following table shows the gross and effective storage of each reservoir:

Source : PJT, Italic is estimated by the Study Team

The above table shows a large reduction in the effective storage of the Sengguruh, Sutami, Wlingi and Lodoyo reservoirs with a range from 27% of the original in Wlingi reservoir to 58% in the Sutami reservoir.

3.4 Evaluation of Sedimentation in Sengguruh and Sutami-Lahor Reservoirs

In August 1997, a new survey in Sutami reservoir has been conducted by PJT. The change of riverbed level of the four cross sections is depicted in Figure A1-6. No big contradictions are observed in the figure as long as a result of four sections is concerned. Figure A1-7 through Figure A1-10 show the change of longitudinal sections of the Sengguruh reservoir along the Brantas and the Lesti rivers as well as that of the Sutami and Lahor reservoirs.

Based on the cross sections and longitudinal sections stated above, it is concluded that the past survey data can be utilized for the volume calculation. Then, the evaluation of past

surveys in the Sengguruh, the Sutami and Lahor reservoirs has been carried out simultaneously.

Survey Year	Gross Storage		Effective Storage		•	e between and H.W.L	Remarks
	(Mil.m ³)	(1977) = 100	(Mil.m ³)	(1977) = 100	(Mil.m ³)	(1977) = 100	
1977	261.68	100.0	194.48	100.0	108.19	100.0	Surveyed by HRS
1982	221.29	84.6	167.20	86.0	97.88	90.5	Surveyed by PKB
1987	192.41	73.5	152.87	78.6	95.34	88.1	Surveyed by PKB
1988	193.82	74.1	151.35	77.8	92.77	85.7	Surveyed by PKB
1989	192.39	73.5	152.63	78.5	94.37	87.2	Surveyed by PKB
1992	194.65	74.4	154.81	79.6	96.86	89.5	Surveyed by PJT
1994	185.27	70.8	148.41	76.3	96.31	89.0	Surveyed by PJT
1995	184.59	70.5	148.62	76.4	95.38	88.2	Surveyed by PJT
1997	183.42	70.1	146.63	75.4	94.45	87.3	Surveyed by PJT

The reservoir storage capacity in the Sutami reservoir is recomputed by the Study Team as shown in the following table:

Source : Computed by the Study Team.

The change of accumulated sediment volume calculated from the storage shown above is illustrated in Figure A1-11. The figure shows clearly that the completion of the Sengguruh dam in 1988 has contributed to reduce the additional sedimentation in the Sutami reservoir though the possible effect of compaction of the sediment should be taken into consideration. Even though after the Sengguruh reservoir is almost full by accumulated sediment after 1993, the increase of sediment in the Sutami reservoir has been insignificant. The ascent of the riverbed level is possible to be seen at upstream of the Senggruh reservoir after completion of the Senggruh dam. There is a possibility that this "back sand" is the cause of the low level sediment increase in the Sutami reservoir. However, since there is no observation in the riverbed upstream of the Senggruh reservoir, the detailed of regular survey is recommended to confirm the effect of back sand.

3.5 Estimation of the Sedimentation in the Future

The estimation of the effective storage capacity of the Sutami and Lahor reservoir towards year 2020 is required to analyze low flow balance and water availability during drought season against future water demand. The storage in the future is estimated based on the change of sediment volume as follows:

Sutami reservoir

Үеэг	Gross Storage (Mil.m ³)	Effective Storage (Mil.m ³)	Storage between EL260m and H.W.L (Mil.m ³)
2000	180.72	144.76	94.18
2005	176.23	141.64	93.74
2010	171.73	138.52	93.29
2015	167.24	135.40	92.85
2020	162.74	132.28	92.40

Source : Estimated by the Study Team based on the change of the sediment volume from 1987 to 1997.

Lahor reservoir

-

Ţ

Year	Gross Storage (Mil.m ³)	Effective Storage (Mil.m ³)	Storage between El.260m and H.W.L (Mil.m ³)
2000	31.99	25.75	20.33
2005	31.09	24.95	19.62
2010	30.20	24.16	18.92
2015	29.30	23.36	18.21
2020	28.41	22.57	17.51

Source: Estimated by the Study Team based on the change of the sediment volume from the original to 1995.

H-V curve of the Sutami and Lahor reservoirs of the latest survey and in 2020 are shown in Figure A1-12.

4. Lowflow Analysis

4.1 General

The observed discharges are subject to various river structures such as dam and barrages, intakes, sluices and so forth. In order to examine low flow balance under various conditions of demand, reservoir capacity etc., a simulated runoff (hereinafter called as "natural flow") is computed assuming no intakes or supply from storage. The method is mentioned below.

The New Lengkong dam site located immediately downstream of the fork of the Surabaya river and the Porong river is selected as the checkpoint of the natural flow in the Brantas river basin based on the following reasons:

- The largest water consumption area within the Brantas river basin extends from the middle and the lower reaches to the delta area which includes Surabaya city, its satellite towns, irrigation fields and fishponds.

()

- Long-term observed discharge records at the New Lengkong dam are available.
- The outflow from the New Lenkong dam is almost zero during the drought season, and the negligible water is taken from the Porong river downstream of the New Lengkong dam.

Since almost all the tributary flow is consumed by irrigation fields in the drought season, the inflow from the tributaries where irrigation field exists to the Brantas river is very small. Since the inflow from the tributaries will not be expected for the time being, the calculation of the natural flow is limited to the main stream of the Brantas river.

4.2 Natural Flow at the New Lengkong Dam

The 10-day base natural flow at the New Lengkong dam from 1977 to 1996 is calculated based on the observed discharges at the New Lengkong dam by adding the following :

- (1) Irrigation intake
 - ·Brantas Atas irrigation (Kekep, Sarem, Prambatan, Gedanklutuk, Ngukir intakes)
 - ·Brantas Bawah irrigation (Sengkaling, Kadalpang intakes)
 - ·Molek irrigation
 - ·Lodagung irrigation
 - ·Warujayeng-Kertosono irrigation (Mrican Kiri irrigation)
 - Turi-Tunggorono irrigation (Mrican Kanan irrigation)
 - ·Brantas Kiri Kediri irrigation
 - · Jatimlerek irrigation
 - •Menturus irrigation
 - · Jatikulon irrigation

·Brantas Delta irrigation (Voor canal I, Voor canal II)

Return flow from irrigation area is assumed to 30 % of water taken from each intake.

(2) Industry intake

ł

- ·PG.Ngadirejo (sugar factory)
- ·PG.Mrican (sugar factory)
- ·PG.Lestari (sugar factory)
- ·PG.Gempol Kerep (sugar factory)
- •Ajinomoto
- (3) Storage capacity of the Sutami and Lahor reservoirs
- (4) Discharge to the Surabaya river (at the Mrilip gate)

The schematic diagram of the methodology of natural flow calculation is illustrated in Figure A1-13. Return flow from the irrigation area is considered as Figure A1-13. The observed discharge at the New Lengkong dam is shown in Table A1-9, the outflow from the Sutami reservoir is shown in Table A1-10, and the total irrigation intake discharges along the Brantas river for 20 years from 1977 to 1996 is shown in Table A1-11 respectively. Figure A1-14 shows the calculated natural flow at the New Lengkong dam for the period 1977 to 1996.

4.3 Drought Year

To work out available discharge during a drought season in the Brantas river basin, total discharge in drought season is analyzed. The drought season is defined as the six months from June to November in the present Study. The total natural flow at the New Lengkong dam during the drought season is compared for the late 20 years. The table shown below includes total natural flow in the drought season, the rank of the runoff in the late 20 years and the water level in the Sutami reservoir.

	Potential Flow	Rank	Water level in Sutami reservoir				
Year	in drought season	in	June	30 November	Minimum water level		
		20 years	(Daily average)	(Daily average)	in the drought season		
	(Million m ³)						
1977	818.90	2	269.61	248.90	247.81		
1978	3,927.99	20	273.05	261.21	260.84		
1979	1,736,72	12	272.82	261.25	260.59		
1980	992.21	4	271.92	N.A.	(257.54)		
1981	2,316.85	19	271.13	262.96	257.87		
1982	741.05	1	272.34	250.01	249.89		
1983	1,846.52	13	272.21	258.82	256.66		
1984	1,891.80	14	272.41	261.10	260.00		
1985	1,656.38	11	272.44	260.90	260.62		
1986	2,063.86	16	272.44	261.56	261.81		
1987	891.25	3	270.84	264.03	259.29		
1988	1,382.38	8	272.34	261.78	257.86		
1989	2,254.38	18	272.80	N.A	(262.81)		
1990	1,211.62	7	272.23	259.91	259.83		
1991	1,053.75	6	272.36	261.58	261.03		
1992	2,135.94	17	272.34	262.74	260.73		
1993	1,492.73	9	272.43	260.51	256.60		
1994	1,033.85	5	272.50	259.18	257.86		
1995	2,003.16	15	272.40	266.12	263.23		
1996	1,597.57	10	272.42	259.64	259.42		

\bigcirc

T

Source : Potential flow is calculated by the Study Team. Water level is from PJT.

Remarks : Minimum water level in 1980 and 1989 are the lowest water level within the available data.

Based on the above table, the year 1977 that is the second serious drought year in the late 20 years is adopted as a 10-year drought year. Figure A1-15. illustrates the observed discharge and the natural flow at the New Lengkong dam in three years of 1982, 1977 and 1987 which respectively correspond to the first, second and third doughtiest year in the late 20 years.

4.4 Miscellaneous Flow

The miscellaneous inflow and outflow between the Sutami dam and New Lengkong dam that is not included in the potential flow simulation is estimated for 1996 case as presented in Table A1-12. The table shows that the discharge of 9.89 m³/s at a minimum in 10-day average flows into the Brantas river at the river range from the Sutami dam to the New Lengkong dam.

Table A1-1 Meteorological and Hydrological Observation in the Brantas River Basin

Meteorological Observation

	Observation Agency	Number of Observatories	Remarks
PJT	ASA I (Division of upstream water service)	68	63 stations observe only rainfall.
	ASA II (Division of downstream water)	41	38 stations observe only rainfall.
	Total	109	
DPU Pengairan	Coordination office of region I, Malang	59	Rainfall only.
	Coordination office of region II, Kediri	112	Rainfall only.
	Coordination office of region III, Jombang	98	Rainfall only.
	Coordination office of region IV, Mojokerto	59	Rainfall only.
	Total	328	
BRLKT		6	Rainfall only.
DIPERTA		3	Rainfall only.

Hydrological Observation

۰.

5. 14

	Observation Agency	Number of Observatories	Remarks
PJT	ASA I	28	
	ASA II	24	
	Total	52	
BRLKT		6	
PGK		5 B	ed load only.

Source : Surveyed by the Study Team

Remarks : Within the Brantas river basin, several agency such as BMG, the sugar factories, the universities observe rainfall in addition to the above table.

Table A1-2 Operation and Maintenance Budget of the Observation in 1997

۲

No.	Area	Unit	Nos.	Cost (Rp.)
	Central Office (Malang)			
1	Periodical O & M for FFWS	Unit	1	100,000,000.00
2	Decasional Maintenance for FFWS	Unit	1	200,000,000.00
	Sub Total			300,000,000.00
	Division of Upstream Water Service (ASA - I)			
1	Sumber Brantas	Unit	1	351,000.00
-	- Meteorological Station			•
2	Sengguruh Dam			
-	- Meteorological Station	Unit	1	351,000.00
	- Rainfall Station	Unit	22	10,450,000.00
	- FFWS Station	Unit	6	1,080,000.00
3	Sutami Danı/Lahor Dam			, .
	- Meteorological Station	Unit	1	351,000.0
	- Rainfall Station	Unit	9	4,275,000.0
	- FFWS Station	Unit	4	720,000.0
4	Wlingi Dam/Lodoyo Dam			
	- Meteorological Station	Unit	1	351,000.0
	- Rainfall Station	Unit	7	3,325,000.0
	- FFWS Station	Unit	3	540,000.0
5	Selorejo Dam			
	- Meteorological Station	Unit	1	351,000.0
	- Rainfall Station	Unit	9	4,275,000.0
	- FFWS Station	Unit	3	540,000.0
6	Parit Raya/Parit Agung			
	- Meteorological Station	Unit	1	351,000.0
	- Rainfall Station	Unit	26	12,350,000.0
	- FFWS Station	Unit	5	900,000.0
	Sub Total			40,561,000.0
	Division of Upstream Water Service (ASA - II)			
1	Bening Dam			
	- Meteorological Station	Station	2	1,400,000.0
	- Rainfall Station	Station	16	3,000,000.0
	- Salary of worker	Month	12	8,406,000.0
2	Kediri			
	- Meteorological Station	Unit	1	504,000.0
	- Rainfall Station	Unit	11	1,496,000.0
	- Salary of worker	Month	12	4,800,000.0
3	Porong			
	- Salary of worker	Month	12	960,000.0
4	Brantas Downstream			
	- Meteorological Station	Station		1,000,000.0
	- Salary of worker	Month	12	_1,300,000.0
	Sub Total			22,866,000.0
	Total	,		363,427,000.0

Source : PJT

	Table A1-3 Melcol	4 3	-	Managed
No.	Name of	Observation	Established	
	Station	Items	Year	by
	BRANTAS UPSTREAM AREA			
	Sengguruh	a,b,c,d,e,f	1982	ASA I (FFWS)
	Pagak	а	1984	ASA I
	Gondanglegi	а	1979	ASA I
4	Turen	a	1982	ASAT
5	Tawangrejeni	а	1985	ASA I
6	Srimulyo	a	1983	ASA I
7	Ampel Gading/Tirtoyudo	a	1980	ASA I
8	Patok Picis	а	1983	ASA I
9	Gubuk Klakah	a	1980	ASAI
10	Jabung	a	1979	ASAI
11	Singosari	а	1979	ASA I
	Wagir	а	1979	ASA I (FFWS)
13	Dau	3	1985	ASA I
14	Sumber Brantas	а	1980	ASA I
15	Malang	1		
1	a. Perum Jasa Tirta	а	1982	ASA I
1	b. Brawijaya University	a,b,c,d,e,f,g,h,i	1972	ASA I
16	Poncokusumo	a	1979	ASA I (FFWS)
	Tangkil	a	1979	ASA I (FFWS)
	Dampit	a	1979	ASA I (FFWS)
	-			
1	HYDROELECTRIC AREA	abadafb	1964	ASA I (FFWS)
	Sutami Dam (Joint Control with BMG)	a,b,c,d,e,f,h a,b,c,d,e,f	1967	ASA I (FFWS)
20	Selorejo Dam		1972	ASA I (FFWS)
21	Wlingi Dam	a,b,c,d,e,f,i a	1972	ASAI
22	Jajagan	а	1980	ASAI
23	Talangagung	a	1978	ASAI
24	Babadan		1978	ASA I (FFWS)
25	Pujon	a a	1977	ASAI
26	Kedungrejo	a	1979	ASAI
27	Batu	a	1980	ASAI
28	Blitar	a	1980	ASAI
29	Garum	a 3	1980	ASA I (FFWS)
30	Semen	a	1980	ASAI
31	Badak	a	1980	ASA I (FFWS)
32	Birowo	а	1980	ASA J
33	Sutojayan	a	1981	ASA I
34	Bendosari	a	1991	ASA I (FFWS)
35	Doko	a	1991	ASA I (FFWS)
36		a	1980	ASA I
37		a 3	1979	ASAI
38 39		a	1979	ASAI
		a	1977	ASAI
40	Bangelan Sumber Agung	а Э.	1978	ASA I (FFWS)
41		a	1991	ASA I (FFWS)
42	-	ľ		······································
1	TULUNGAGUNG AREA		1077	1011
43		а	1977	ASA I
44		a	1981	ASAI
45		а	1977	ASAI
46		а	1980	ASAI
	Keboireng Besuki	a	1980	ASA I
	Karangtuwo	а	1980	ASAI
	Jati Karangan	а	1980	ASAI
	Gandekan	a	1980	ASAI
51	Jaeyan	a	1980	ASAI
52		а	1981	ASAI
53	Paingan Dam	a	1981	ASAI
54	Bagong Dam	a	1981	ASAI

Table A1-3 Meteorological Station by PJT (1/2)

Source : PJT

Acres 1

 \sim

I

Remarks : a; Precipitation, b; Temperature, d; Evaporation, e; Sunshine duration, f; Humidity, g; Solar radiation, h; Wind velocity, i; Soil temperature ASA I; Division of upstream water service, ASA II; Division of downstream water service

No.	Table A1-3 Meteor Name of	Observation	Established	Managed
NO.	Station	Items	Year	by
55	Sumber Pandan	a	1981	ASAT
	Widoro Dam	a	1982	ASAI
	Boyolangu	a	1982	ASAI
	Prambon Dam	a	1982	ASAI
	Dongko	a	1984	ASAI
	Salam	a	1984	ASAI
61	Watulimo	а	1984	ASAI
62	Campurdarat	a	1981	ASAI
63	Pangkal	а	1984	ASAI
	Tangkilan (Besuki - Neyama)	а	1980	ASAI
65	Tapan	а	1980	ASA I ASA I (FFWS)
66	Pagerwojo	a	1974	ASA I (FFWS)
67	Kampak	а	1974	ASA I (FFWS)
68	Tugu	а	1974	ASA I (IT US)
	BRANTAS MIDDLE REACH AREA			
69	Mrican Barrage	a,b,c,d,e,f,h	1977	ASA II
70	Mojoagung	a,c,d,e,f,h	1977	ASA II
71	Ploso	а	1978	ASA II
72	Siman	a	1980	ASA II
73	Wates	a	1980	ASA II (FFWS)
74	Kandangan	а	1980	ASA II
75	Pagu Menang	a	1980	ASA II
76	Mojo Besuki/Wilis	а	1980	ASA II (FFWS)
77	Blimbing	а	1980	ASAII
78	Jombang	а	1980	ASA II (Out of order)
79	Prambon	а	1981	ASA II
80	Lengkong	а	1981	ASA II
81	Pare	а	1982	ASA II
82	Begendeng	а	1986	ASA II
83	Jeli	а	1991	ASA II (FFWS)
84	Kediri	a	1991	ASA II (FFWS)
85	Kertosono	a	1977	ASA II (FFWS)
	WIDAS AREA		1	
86	Ngudikan	а	1974	ASA II
87		a	1975	ASA II
88		a,b,c,d,e,f,h	1975	ASA II
89		а	1978	ASA II
90		а	1979	ASA II
91		a	1981	ASA II
92		a	1981	ASA II
93	Ngrambek	a	1981	ASA II
94		а	1981	ASA II
95	Ngluyu	а	1981	ASA II
96		a	1981	ASA II ASA II
97		a	1981	ASA II ASA II
98		a	1981	ASA II ASA II (FFWS)
- 99		a	1991	ASA II (FFWS) ASA II (FFWS)
10	0 Wates Sawahan	а	1991	Ash a (cr ws)
	BRANTAS DOWNSTREAM AREA			
10	1 Semimi	a	1970	ASA II (Out of order)
	2 Gubeng Dam	а	1972	ASA II
	3 Mernung	a	1975	ASA II
	4 Porong	a	1978	ASA II
	5 Kabuh	a	1978	ASA II
	6 Sumberaji	a	1978	ASA II
	7 Sukodadi	а	1978	ASA II
	08 Mojokerto	а	-	ASA II
	19 Tampung	а	1980	ASA II (FFWS)

Table A1-3 Meteorological Station by PJT (2/2)

Source : PJT

Remarks : a; Precipitation, b; Temperature, d; Evaporation, e; Sunshine duration, f; Humidity, g; Solar radiation, h; Wind velocity, i; Soil temperature ASA I; Division of upstream water service, ASA II; Division of downstream water service

No.	Name of	Name of	Established	Discharge Data	Managed
	Station	River	Year	Data	by
	BRANTAS UPSTREAM AREA			-	
1	Sengguruh Dam	Brantas	1988	0	ASA I (FFWS)
2	Pandanpuro	Lanang	1986	-	ASAT
3	Madyopuro	Amprong	1986	-	ASA I (No operation from 1996)
4	Wandanpro	Manten	1986	-	ASA I
5	Kedung Pendaringan	Brantas	1986		ASA I
6	Gadang	Brantas	1978	0	ASA I (FFWS)
7	Sumber Kembar	Genteng	1986	-	ASAI
8	Clumprit	Lesti	1989	0	ASA I
9	Tawangrejeni	Lesti	1986	0	ASA I (FFWS)
10	Blobo	Brantas	1986	0	ASAT
	HYDROELECTRIC POWER AREA				
11	Sutami Dam	Brantas	1974	0	ASA I (FFWS)
12	Selorejo Dam	Brantas	1972	0	ASA I (FFWS)
13	Wlingi Dam	Brantas	1979	0	ASA I (FFWS)
14	Lahor Dam	Lahor	1976	0	ASA I
	Lodoyo Barrage	Brantas	1983	0	ASA I (FFWS)
	Kali Bambang	Bambang	1980	· ·	ASA I
17	Kali Legi	Legi	1989	-	ASA I
18	Kali Biru	Biru	1989	i .	ASA I
	Kali Metro	Metro	1989		ASA I
20	Jugo	Brantas	1989	-	ASA I
21	Kedungrejo	Konto	1989		ASA I
22	Tangkil	Lekso	1989	-	ASA I
~~	TULUNGAGUNG AREA				
23	Bendungan	Bendungan	1982	-	ASAI
24	Paingan Dam	Bodeng	1991	Ι.	ASAI
25	Kali Song	Song	1982	· .	ASAI
26	Ngujang	Brantas	1972	1	ASA I (Replaced from Pakel)
27	Bendo	Parit Raya	_	0	ASA I (FFWS)
28	Inlet Gate	South T.Agung	} _	ŏ	ASA I (FFWS)
20	BRANTAS MIDDLE REACH AREA	South Firigong	1	Ť	
29	Mrican Barrage	Brantas	1973	0	ASA II (FFWS)
30	Kertosono	Brantas	1984	ŏ	ASA II (FFWS)
31	Keras	Keras		-	ASA II
32	Jongbiru	Brantas	1977	0	ASAII
33	Ploso	Brantas	1989	0	ASA II (FFWS)
34	Jeli	Brantas		Ŏ	ASA II (FFWS)
35	Kediri	Brantas	1989	ŏ	ASA II (FFWS)
35 36		Brantas	1989	ŏ	ASA II
30		Diantas			
27	WIDAS AREA	Kuncir	1979		ASA II
37	Sawahan	Kuncir	1979		ASA II
38	Keringan		1979		ASA II
39	Ketandan	Ketangan Pabung	1700		ASA II
40	Petung	Petung	1002		ASA II
41	Semantok	Semantok Kadupa Saka	1993	-	ASA II
42	Kedung Suko	Kedung Soko Widas	-	0	ASA II ASA II (FFWS)
43			l -		ASA II (FFWS)
44		Bening	-		ASA II (FFWS)
1	BRANTAS DOWNSTREAM AREA		1000		1011
45		Marmoyo	1975		ASA II
46		Porong	-	0	ASA II (FFWS)
47		Surabaya	1077	0	ASA II (FFWS) ASA II
48		Surabaya	1977	0	ASA II (FFWS)
49		Surabaya Surabaya	1978	0	ASA II (FFWS)
50		Surabaya Brantas	17/8	0	ASA II
51 52		Brantas		Ŏ	AŞA II (FFWS)
_	re : PJT	1			

Table A1-4 Hydrological Stations by PJT

Source : PJT Remark : O; Data available, -; Data not available

ASA I; Division of upstream water service, ASA II; Division of downstream water service

Ţ

Table A1-5 Job Description and Problems of Sections Concerned Meteo-hydrological Services in Technical Planning and Controlling Department

Name .	Name of Position	Number of Staff	Job Descripition in the Present Condition	Problems
Technical planning and controlling department	Technical planning Chief of technical and controlling planning and department controlling department	•	Controlling survey, investigation, evaluation on meteo-hydrology and research for the sake of company operation.	As it is impossible to control in detail, the checking function of technical output is not enough.
			Management of reservoir operation pattern and flood warning manual. Controlling technical recommendation of licensing on water usage, sand mining, land, water, waste disposal and environmental protection, both in operational or conceptual manners.	- op -
	Coordinator	1	Coordinating survey and investigation and technical controlling for the sake As coordinator holds the position of licensing water of planning operation.	As coordinator holds the position of licensing water allocation and flood control in the present consition, verification of the technical matter is not enough.
			Preparing reservoir operation pattern and flood warning manual.	- op -
			Evaluating technical recommendation.	- 00 -
			Coordinating technical planning control.	- 00 -
	Licensing water allocation and flood control	-	Responsible for technical recommendation as the requirement of licensing water usage.	As P1T does not manage all Brantas river basin, it is impossible to license in total balance in the basin.
			Responsible for water allocation pattern, reservoir operation in dry and rainy Lowflow management is not based on actual seasons.	Lowflow management is not based on actual rainfall, but based on only the forcast.
			Responsible for making flood warning manual.	Flood warning manual is not revised every year properly. Basical hydrological analysis such as creating H-Q curve is very poor.
	Survey and investigation	6	Responsible for both the subcontracted or self management surveys as well as the technical requirement.	No understanding to the purpose of each survey. Delay of result of each survey. Lack of initiative to subcontractors. Lack of verification ability for the survey result from subcontractors.
			Responsible for maintenance of survey and investigation instrument at head Maintenance for imported instrument in Indonesia.	Maintenance for imported instrument in Indonesia.

Sourse : The Study Team

A1-16

 \bigcirc

۲

Ţ

Table A1-6Countermeasures to Improve Meteo-hydrological Data Management and Analysis

Problems to be Improved	Effect	Procedure
 Personnel training Pack of technical knowledge regarding to meteo-hydrological -Improvement observation, data management and its analysis especially among understanding actual acting staff. It has a bad influence on the quality of tasks. Procedure. 	-Improvement of technical output by understanding of the purpose and method of tasks. -To know the data management and analysis procedure.	 Personnel training Personnel training Lack of technical knowledge regarding to meteo-hydrological Improvement of technical output by To dispatch a long-term meteo-hydrological technical specialist by foreign aid. Secretation, data management and its analysis especially among understanding of the purpose and method of The specialist trains both Technical Planning and Controlling Department' and actual acting staff. It has a bad influence on the quality of tasks. To know the data management and analysis +The specialist educates both purpose and method of meteo-hydrological observation in the site observatories.
 Establishment meteo-hydrological database and computer network Data and information exchange between 'Technical Planning and 'Easy to share data and information between Establishing meteo-hydrological Controlling' Technical Planning and Controlling' Department' and 'Computer and FFWS Unit' is not 'Technical Planning and Controlling' Department' and 'Computer and FFWS Unit' is not 'Technical Planning and Controlling' Technical Planning and Controlling' Department' and 'Computer and FFWS Unit' -Utilizing existing computers. To create data and information in the server machine. Is taff increase (computer spinters), etc Ata input by site stuff with the server machine. Is taff increase (computer spinters), etc Ata input by site stuff with the server machine. Is taff increase (computer spinters), etc Ata input by site stuff with the server machine. Is taff increase (computer spinters), etc Ata input by site stuff with the server machine. Is taff increase (computer spinters), etc Ata input by site stuff with the server machine. Is taff increase (computer spinters), etc Ata input by site stuff with the server machine. It is the input by site stuff with the server machine. Ata input by site stuff with the server machine. It is the server machine spinterspinters (co	 Easy to share data and information between Technical Planning and Controlling Department' and 'Computer and FFWS Unit' Possible to keep the latest data or nformation in the server machine. Easy to manage metco-hydrological data. 	 Establishment meteo-hydrological database and computer network and computer network Data and information exchange between Technical Planning and Comuolling Technical Planning and Comrolling Department' and 'Computer and FPWS Unit' is not 'Technical Planning and Compling 'Technical Planning and Controlling Department' and 'Computer and FPWS Unit' interventy Department' and 'Computer and FFWS Unit' is not 'Technical Planning and Controlling Department' and 'Computer and FFWS Unit' interventy It result in lack of utilization of useful information and Department' and 'Computer and FFWS Unit' information or difference of technical output. Possible to keep the latest data or Center Utilizing existing computers and analysis format. Plana input by site staff with existing computers and compiled by Data Processing information in the server machine. Plana input by site staff with existing computers and compiled by Data Processing information of difference of technical output. Plan input by site staff with existing computers and compiled by Data Processing information of difference of technical output. Plan input by site staff with existing computers and compiled by Data Processing information in the server machine. Plan input by site staff with existing computers and compiled by Data Processing information in the server machine. Plan input by site staff with existing computer staff to manage computer information in the server machine. Plan input by site staff with existing computer in manage computer information in the server machine. Plan input by site staff with existing computer in manage computer information in the server machine. Plan input by site staff with existing computer in the set of the interverse input by a
 Improvement of organization Hydrological analysis has been carried out by both 'Technical To avoid task overlap. Planning and Controlling Department' and 'Computer and FFWS -To share tasks properly. Unit'. The boundary of each task is unclear. Strengthen of check -Lack of staff for meteo-hydrological analysis has a bad influence technical output. of the quality of technical output. 	verlap. roperly. checking function for	•To shift 'Hydrological Application' under 'Technical Planning and Controlling Department' from 'Computer and FFWS Unit' to unify hydrological analysis section. for -2 staff increase (hydrologist) of 'Hydrological Application' to digest tasks with satisfied quality. The coordinator of 'Technical Planning and Controlling Department', who holds the position of 'Licensing Water Allocation and Flood Control' in the present condition, will be concentrated on coordination task instead to improve the check function of technical matters. Rp.3,000,000/month is estimated as salary for 2 staff.

Year	Period	3-day rainfall (mm)	Remarks
1960	1-3 March	81	
1961	17-19 February	92	
1962	21-23 January	88	
1963	1-3 February	68	
1964	2-4 March	109	
1965	2-4 February	72	Period Covered
1966	14-16 March	83	by the
1967	2-4 January	77	Previous Study
1968	5-7 February	72	
1969	22-24 January	76	
1970	20-22 January	68	
1971	18-20 November	86	
1972	6-9 March	73	
1973	1-3 March	64	
1974	26-28 February	62	
1975	23-25 December	73	
1976	1-3 March	104	
1977	18-20 January	87	
1978	1-3 January	80	
1979	5-7 March	71	
1980	20-22 Гергиагу	68	
1981	6-8 January	80	
1982	24-26 December	67	
1983	28-30 December	71	
1984	3-5 February	90	
1985	6-8 March	80	
1986	7-9 Jaunty	53	
1987	2-4 January	75	Period Added
1988	23-25 January	69	in the
1989	31-2 December	54	Present Study
1990	1-3 January	63	
1991	5-7 January	60	
1992	8-10 January	92	
1993	7-9 April	48	
1994	24-26 March	73	
1995	20-22 January	79	
1996	21-23 March	70	

Table A1-7 Annual Maximum 3-day Basin Mean Rainfall at the New Lengkong Dam

 \bigcirc

Ţ

Source : Data from PJT.

Table A1-8 Surveys in Reservoirs

Name	No.	Survey	Survey	Surveyed	Report	Published	Remarks
of		Date	Data	by		by	
Reservoirs							
Senggruh	1	1987	0	РКВ			Before impounding.
	2	June 1989	0	РКВ	-	-	
	3	January 1992	0	РКВ	•	-	
	4	October 1993	0	PJT	0	PJT	
	5	July 1996	0	PJT	0	Ttq	
Sutami	1	1973	-	РКВ	-	-	Survey result is poor.
	2	June 1977	0	HRS	0	HRS	
	3	July 1980	0	NK	0	NK	
	4	1981	-	PKB	0	РКВ	Survey data not found.
	5	June 1982	0	РКВ	0	PKB	
	6	1983	•	PKB	0	РКВ	Survey data not found.
	7	March 1984	-	РКВ	0	РКВ	Survey data not found.
	8	1985	•	РКВ	0	РКВ	Survey data not found.
	9	1986	0	РКВ	0	РКВ	
	10	1987	0	РКВ	0	PKB	
	11	June 1988	0	РКВ	-	·	
	12	August 1989	0	РКВ	-	-	
	13	April 1992	0	PJT	0	PJT	
	14	1994	0	PIT	0	PJT	
	15	June 1995	0	PJT	0	РЈТ	
	16	August 1997	0	PJT	-	•	
Lahor	1	July 1987	0	РКВ	-	· · ·	
	2	September 1988	0	РКВ	-	-	
	3	September 1989	0	PKB	-		
	4	1994	0	PJT	0	PJT	
	5	1995	-	PJT	0	PJT	Survey data not found.
Wlingi	1	July 1982	0	HRS	0	HRS	
	2	1985	-	PKB	0	РКВ	
	3	April 1986	0	PKB	0	РКВ	
	4	1987	0	РКВ	0	РКВ	
	5	July 1996	0	РКВ	0	РКВ	Different beacons with the previou
	6	August 1996	0	PKB	. <u> </u>	<u> </u>	Different beacons with the previou
Lodoyo	1	October 1993	0	PJT	0	PJT	····
	2	August 1996	0	РКВ		-	Different beacons with 1996's.
Serolejo	1	June 1977	0	HRS	0	HRS	
ļ	2	June 1982	0	HRS	0	HRS	
	3	1983	-	PKB	0	РКВ	Survey data not found.
	4	1986	0	РКВ	-	-	
	5	1988	0	PKB	-	-	
<u> </u>	6	1993	-	PJT	0	PJT	
Bening	1	November 1993	-	PJT PJT	0	TIQ	Survey data not found.

Source : Remarks :

Ţ

Ţ

The Study Team **O**; Available

-

; Not Available

HRS ; Hydraulics Research Station

NK ; Nippon Koei Co., LTD

A1-19

10-day Discharges at the New Lengkong Dam
Table A1-9 10

Unit : m³/s

Month	10-day	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	9661
		126 27	100 102	X5 705	100.62	317.54	395.29	309.64	218,223	225.29	377.97	463.20	56.30!	320.801	247.50			312.75	60.58:		214.92
January		70001								337.82	222.71	227.90	178.70	266.20	151.90		- 1	352.10			207.51
		00000	}		t	£	1	1	47.71	355.18	271,49	362.90	518,90	199,40	262.40			423.67			284.12
	Duy	160.004					L		i -	21 07F	304,84	385.10	408.00	122.70	244.60	331.20	447.201	442.02			255.77
February				00.440	74046				568.78	341 59	474.45	650.90	237.20	323.50	172.90			182.99			314.89
	2nd	234.58		100.000			72 322		354.07	344 66	254.55	549.90	109,801	367.70	372.90	240.001	282.50	154.04			346.25
	3rd	2.58.88		ŀ						100 09 V	21723	437 80	142.201	255.30	393.20		224.00	93.51	500.141		188.15
March	lst	257.89	- 1	- 1	- 1	1			1	Nr 145	328 40	229.60	301.20	144 50	249.20	160.40	613.20	205.17	448.03		289.95
	2nd	356.20							210 05	240.20	00 665	200.70	353.80	140.00	138.80	ι.	1	279.56	582.51	444 30	241.72
	3rd	383,09	1	1	1	1	. 1		CC-000	00.000	2440V7	5	161 20	333.40	77.20	L	L	446.18	260.371	442.72	26.97
April	lst	321.20	- 1	- 1	1	1	1		202.17	102 750	00.010	20.50	101	157.90	75.30	I.,		400.29		247.18	326.59
	2nd	212.37	`'	1	1		Z29.04	1/./07	24.410	00.002	70.0k	20505	104 05	100.011	86.00	Ι.	1	216.28	205,831	69.191	177.35
	3rd	152.60	- 1	· I	- 1		. 1		00.1.2			A7 AN	07 621	106 001	01.8	1_		114.99	80.44	109.58	4.87
May	lst	40.32			7	- 1		ļ	10.04	0/ 171	14.01	V V V	1.52	06 20	65.40	06.95	ł	14.12	43,431	36.15	0.00
,	2nd	12.12		384.60	1	"			163.101	21.80	27.75	72.30	2.00	00.02		200	04 401	000	80	1.35	010
	3rd	9.04	314.07	413.18	1.26	60.09	0.27	. 1	90.30	49.04	6.02	4 20	0/·10	102.201	105.191		10011	0000		57.0	8
1	151	27.23	ŧ.,	1	00.00	27.16	00'0		27.89	275.99	71.77	23.20	31:40	312.50	49.60	_L	107-11	10.52		10.02	200
2000	101	21 02	1	1.			0.00	ł	54.78	160.45	160.44	2.80	15.40	8 53	80		1.90	3	8.0	60.04	3.0
	210	104 66	· .	•		[•	29.70		65.16	89.64	1.30	0.00	144.801	38.20	1.60	0.0	42.30	0.0	10.19	0.00
	5rd	.00 0								11.37	118.27	0.00	0.00	75.201	30.20	0.0	5.90	0.0	80	1.54	8
yin/	lst		- E			1		1012		27.55	29.93	00.0	0.00	66.00	0.00	0.00	0.00	8.0	8	890	8
	puz.		1			í.				11 30	15.15	00.0	0.00	135.80	0.00	0.00	0.00	0.00	0.00	0.94	0.27
	3rd	00.0	1					ł		976	13.20	0.00	0000	64,40	0.00	00.0	0.00	0.00	0.0	0.00	1:05
August	1st	0.0	7	1			3.6			2.22	115	000	000	100.01	0.0	0.00	0.00	0.00	0.00	0.00	35.36
-	2nd	8.0	1						[3 V 0	10.01	800	W o	000	11.50	0.00	0.00	0.00	0.00	0.00	0.62
	3rd	0.0		1				1		2			0	80	10 00	00.0	55.80	800	0.00	0.00	0.00
September 1st	İst	0.00		8 0 0	:	1			ł	777	7.07			8	07.81	000	e S S	000	0.0	0.00	0.00
	2nd	0.0	55.79		l					3,5		32			0.80	800	80	800	00'0	00.0	0.0
-	3rd	0.00				÷	1	1	27.00	3	101 0		000	8	100 2	0.00	64.80	000	1.101	0.00	5.27
October	lst	0,0		0.00		97.88				3 8	0.10			8	066	80	34.90	0000	4.15	0.0	0.50
	2nd	0.0		8	1					3.5	70.01			12 20	05.0	0000	53.40	000	0.0	0.00	38.99
	3rd	000		0.00			1			10.04	100 001		200	121 201	18 4	000	57.70	00.0	0.00	0.0	66.07
November 1st	lst	000	73.17	0.76	·	- J				10.03	101.101		07.171	00 00	222	1 40	53 60	512	800	106.53	121.22
	2nd	0.00	172.91	1.53	23.37	- 1				6.0	109.73	3	20.4/1	N0.40	000		140 101	77 25	190	330.70	05 20
	3rd	0.00	115.18	2.69				2	- 1	61.77	94.17	8.6	107.00	N 0	102.00		00000	100 50	142.21	205 01	128.17
December	lst:	5.10	141.41	58.67	380.55	274.73]	203.33	48.63	192.20	62.881	2	20.02		10/1/07	104.00	20.07	00	172 022
	2nd	34.36	302.38	72.64	142.21	374.54	1		- 1	38.18	120.07	333.00	00.00	9	10/.01	45.10	00.002	60 E 33	2.2	20.95	
	3rd	151.15		231.19	245.55	253,35	123.78	229,96	279.93	129.09	133.55	222.00	135.53	20.40	09.905	02 77 1	-N7-071	00.00		CO121	
Total Dis. (Mil.m ³)	(^c ml)	2934.39	•	I٣	3824.76	5283.85	4082.58		5115.51 6,049.16 4,650.79 5,091.27	4.650.79		3,901.82 2	2,932.82 3,915.61	3,915.61	.,922.85 3	2,922.85 3,283.85 5,076.86 3,682.60 3,564.21 4.518.26 3,214.24	076,86 3,	,682.60 3	.564.21 4	518.26 3.	214.24
					:									-							
Source	: PJT, //a	lic is estin	mated bu	: PJT, Italic is estimated bu the Study Team	y Tcam																

Source : PJT, Italic is estimated bu the Study Team

A1-20

																				Cai	Unit : m /s
Month	10-day	1977	1978	6261	1980	1981	1982	1983	1984	1985	1986	1987	1988	6861	0661	1661	1992	1993	1994	5661	1996
		54.67	41 31	136.45	58.51	51.41	119.79	55.98	88.88	68.78	100.001	120.71	60.66	89.33	95.31	111.20	60,90	136.21	38.81	156.64	108.77
לומחוומי	100	54.07	70.08	126.87	55.71	52.07	102.74	60.09	108.00	88.87	119.37	131.90	122.06	76.86	105.73	104.06	63.71	132.23	81.40	56.22	123.37
	2.4	61.30	58.14	149.37	52.91	52.74	85.69	57.76	94.78	112.11	116.92	119.04	133.77	53.08	91.33	96.92	89.30	147.93	138.93	54.371	110.81
Geberary	1 er	V1 59	(0 61	143.01	50.11	53.40	68.63	62.05	99.35	79.47	88.26	124,14	160.20	49.97	96.79	89.79	113.05	136.39	152.901	88.71	88.91
(mmm)	puc	57.20	46 33	136.66	47.30	54.06	70.54	95.48	134.51	120.26	110.32	124.06	143.83	67.45	67.53	84.67	142.64	106.47	151.48	135.73	135.71
	2 mil	45.20	45 00	120.65	44 50	54.72	81.92	102.35	134.97	96.73	74.64	115.69	121.13	115.39	59.25	90.37	83,61	98.87	117.851	151.071	1:0.38
March -	1 24	46.78	48 52	96.54	41.70	55,38	105.75	84.82	177.62	147.16	94.12	100.16	103.48	130.31	93.31	105.30	98.61	92.58	158.62	138.46	0.40
IN IVIA	in c	55 18	K7 84	78.19	42.89	\$6.05	129.25	68,84	155.43	133.55	108.08	84.10	123.87	107.27	128.26	71.08	174.47	100.30	145.31	102.27	109.61
	3rd	\$2.19	83.02	67.30	42.10	56.71	66.57	74.35	140.76	132.74	130.06	75.09	135,19	75.62	75.69	55.50	116.47	110.75	173.69	136.84	106.82
Antil		77 77	70.72	58.84	41.31	57.37	80.89	79.21	156.92	103.24	137.78	60.09	96.03	115.91	73.89	95.601	129.35	i 10.11	121.86	107.55	73.33
unity.	10.1	70.70	70.73	0.09	64 38	50.80	93.84	89.53	187.52	67.73	137.53	57.48	81.05	80.96	74.60	91.54	136.92	134.20	127.93	104.47	138.52
	3rd	5016	63 16	84.73	91.75	49.36	84.88	103.99	137.95	94.88	113.33	57.55	64.60	72.41	68.34	95,14	96.90	91.31	121.57	87.52	56.79
Mari	let l	00.09	47 32	95.74	67.43	62.54	53.32	132.80	104.18	59.76	63.95	71.331	84.23	90.98	56.75	39.87:	75.67	85.271	86.24	85.20	64.29
Å PIAT	puc	\$3.78	104 70	166.74	43.11		45.37	98.38	106.66	50.38	60.95	53.54	88.48	58.00	54.76	49.18	71.02	63.03	77.32	69.39	54.43
	2.1	20.05	03.38	11775		05.02	46.58	110.24	76.57	71.98	65.31	63.55	64.08	76.77	98.66	65.87	80.33	62.11	58.341	50.95	56.19
Tuna	1 et	10.53	134 35	12013			41.95	73.64	68.20	94.12	101.38	94.17	82.12	105.63	54.851	38.30	69.93	63.17	56.871	60.351	54.42
2110/		20 2V	05.22				41.80	72.36	72 36	111.21	101.92	69.73	68.35	118.31	45.63	38.17	53.71	80.64	49,44	80.99	48.57
	2.04	40 65	04 07				45.80	80.19	55.47	53.25	101.571	59.74	41.12	69,90	54,831	34.81	45.29	\$7.95	66.77	64.37	47,40
Inly.	12	30.33	133.71	L	44.31	52.05	45.64	94.45	61.41	46.84	95.80	60.42	48.27	65.08	58.36	32.55	63.12	46.40	43.22	54.86	48.95
7 m /	2nd	47.51	72.06		51.18	1	45.49	73.76	55.05	56.95	71.41	53.49	42.13	75.03	47.78	31.60	49.90	55.80	52.77	61.52	59.92
	3rd	44.03	93.01	E	58.05		74.97	44,43	53.34	54.02	59.31	48.43	41.22	94.13	45.78	30.61	50.77	60.41	58.60	91.15	68.84
Aurust	i Ist	44.88	50.46		51.69	L	49.87	50.45	53.36	54.35	68.91	29.49	47.07	90.38	41.44	28.79	47.42	53.93	51.43	58.00	\$2.73
8	2nd	39.56	69.18	56.87	53.90		51.38	49.55	51.37	52.65	59.14	31.83	51.47	62.07	42.10	28.23	53.11	50.75	48.00	51.61	36.65
	3rd	40.37	71.38		56.11	73.73	51.95	50.04	62.68	60.35	76.62	33.43	56.82	55.53	60.41	28.05	57.10	53.18	46.31	41.171	51.36
Sentember	181	43.69	56.21		46.37	61.97	44,90	44.31	68.38	54.59	71.50	31.27	47.16	62.02	54.66	27.631	68.19	57.321	51.22	36.761	43.76
	2nd	39.43	73.54	57.07	48.09		44.52	40.85	93.73	56.01	52.15	29.78	47.90	\$5.70	59.81	23.73	61.94	55.77	52.41	40.32	46.67
	3rd	41.14	74.821	1	50.68			44.01	88.20	52.93	64.69	29.14	42.96	51.27	43,04:	26.40	61.57	55.71	50.75	35.66!	48.32
October	lst	40.97	71.30	Ł	41.97	62.51		44.33	91.76	45.24	58.95	36.33	39.65	44,45	41.57	49.80	89.12	S4.75	58.63	35.531	21.22
	2nd	39.47	69.60	37.73	39.55			42.10	91.22	41.20	73.37	29.76	56.15	43.99	40.09	22.81	90.75	41.20	43.34	37.27	60.46
	3rd	33.701	73.10	33.39	39.60			53.43	54.49	60:96	60.94	29.75	67.54	53.61	43.65	21.97	121.76	41.81	35.70	36.12	75.83
November	Ist	30.71	78.86	48.01	37.61			64.29	41.80	71.83	85.03	35.83	47,07	127.08	55.32	22.93	132.79	41.52	34.83	48.34	75.65
	2nd	32.36	77,101	48.96	58.66		37.76	78.33	38.43	50.73	94.56	36.80	56.71	69.34	45.36	39.56	8.8	43.13	34.96	85.89	75.68
	3rd	33.74	118.87	55.50	48.77		35.49	103.32	57.05	74.63	108.14	47,48	49.72	47.06	44,04	51.64	112.211	42.86	34,88	141.31	70.78
December	lst	32.44	68.69	59.90	49.43	75.64	33.69	56.00	113.35	97.18	71.37	86.94	86.94	52.61	47.49	104.37	135.94	47.48	40.71	205.76	58.17
	2nd	45.35	76.69	65.73	50.09		38.17	52.53	97.67	70.14	71.88	145.03	145.03	52.24	51.00	44.95	135.89	51.26	46.06	147.30	103.20
	3rd	29.71	74.021	61.31	50.75			75.65	61.331	85.45	72.85	141.95	141.95	55.86	118.33	64,21	122.01	40.10	44,11	103.04	47.07
Total Dis. (Mil.m ³)	Mil.m ³)	1519.07	2376.65	2486.82	1551.41	2057.87	1883.49	2238.53	2,904.83 2,427.91		2,752.68 2.205.95		2.564.58	2.363.03 2.053.95	2.053.95	1,775.88	2.852.58 2	2.362.81 2.387.63 2.555.06	2.387.63	2,555.06	2,385.29
Source	: Calcul	: Calculated from daily records by PKB and PJT. Italic is from M	daily reco	ords by P	KB and I	PJT. Itali	c is from		onthly report by PKB and PJT. Bold is estimated by the Study Team.	PKB an	d PJT. Be	old is esti	mated by	the Study	v Team.						

Table A1-10 10-day Outflow Records in the Sutami Reservoir

A1-21

A.

Table A1-11	10-day Total Irrigation Intake Discharges along the Brantas River
	-

Unit : m³/s

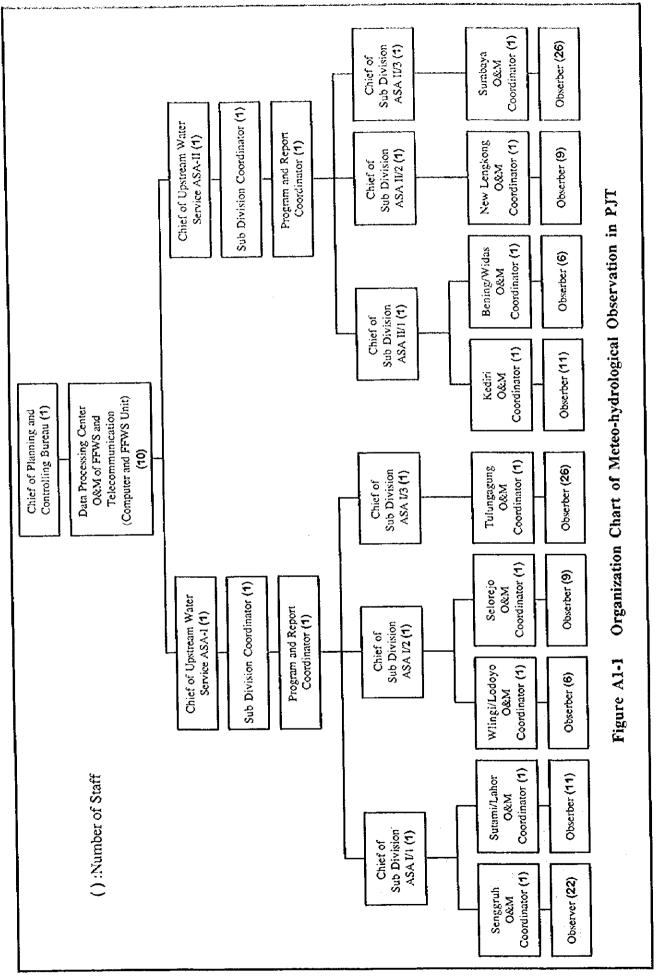
Month	10-day	1977	1978	1979	1980	1861	1982	1983	1984	1985	1986	1987	8861	1989	0661	1661	1992	1993	1994	3661	9661
						100 001	00.00	07 13	05.15	100 88	00 57	X3.021	75.77	95.02	89.03	91.33	108.321	19.98	90.80	93.32	93.20
January	ž,	4 2	20.00	_ L -	101.70	0.02	100 57		Į	1	15	81.97	87.69	103.47	89.58	117.44	06.98	119.99	83.30	95.00	87.75
	Shd	95.28	12:02	00.44	20 20		104.43			1_		97.41	104.66	112,40	86.291	101.02	82.86	119.27	84.43	84,84	83.37
	2	20.02	00.02		5.02	17	111 35		ł		86.87	85.31	92.97	101.72	85.88	105.50		113.32	74.29	82.49	85.88
February	N	50.00	70768	72.04	3 6		102.701				ł	80.53	113.08	110.29	113.87	132.13	94.78	121.10	85.92	\$9.03	87.98
	5ug	88.91	46.00	2.2	101 OC	1	10101	ł		1	1	81.66	126.77	110.82	103.85	15.00	99.55	106.62 1	101.95	103.69	90.97
	Brd	94.1.	20.49	* .	10.101		10.20					82.22	92.24	104.14	87.68	88.79	109.04	116.66	110.94	106.45	89.91
March	R	94.38	89.71	123.131			10.0%	*0.22				8	24 45	117.28	110.30	121.76	83.18	117.82	85.10	110.06	89.88
	2nd	91.11	106.44	98.95			01.00	_			E	8	21 88	104.21	70.77	80.66	77.69	86.76	93.60	99.57	85.55
	3rd	88.63	99.60	100.05	97 84		X1.FX					10 21	07 X0	112 201	17	80.92	75.31	92.30	91.27	78.99	83.26
April	lst	83.39	91.45	95.58	113.06		88.20	-1		1	1		01.20	100 56	-	75.43	71.07	88.70	82.52	65.61	75.53
	2nd	81.09	91.88	96.82	120.38	1	68.82	-	5.02		14.70	00-00	10 70	\$7 12	178 28	74.66	77.38	94.46	80.37	76.77	76.41
-	3rd	80.13	85.50	88.67	108.20		1						06 02	01 151	01.72	80.461	76 88	98.02	84.73	71.83	83.77
May	lst	79.14	91.24	-	96.91		81.78	ł				1	0.0	24 12	00.26	22.52	00 43	100 X01	79.74	77 30	75.36
	2nd	78.96	91.75	94.85	92.40	98,78	- 1			1	1	5.2	4.20	00.01	00.02	72 10	00 20	06.65	22.00	01 11	75 00
	3rd	75.12	96.17		R6.33		- 1				. 1		57.72				20.00	01 551	127.02	70.72)	20.07
lune	St	78.60	93.16		81.82			79.65					76.42	87.71	1.28		00.02	0	10 02	04 20	10.00
	2nd	79.16	92.09	92.80	64.26							75.76	83.89	72.77	72.53	Q 1	89.08	20.02			
	21	28.45	80.85	01 58	62.95		ŀ	\$5.15	76.75	79.90		73.08	64.24	100.15	81.94	66.141	81.79	19.74		10	AC 70
		K1 06	02 27		60.07	L		85.63		76.33	1 75.57	70.47	61.71	79.16	74.56	62.50	70.21	72.11	57.58	6.6	00.51
Śinr		11.21	100 10	00.17	1013		58.77				73.36	68.68	59.08	79.97	69.60	59.42	67.20	64. 1 8	55.35	66.87	58.78
	DU7	10.00	17 10	1	1213	1.	75 67	1					55.16	74.57	58.68	56.781	64.58	66.62	58.041	67.62	57.67
Ī	p:	02.00		00.01	70 05	1	56.45			ł	Í		77.12	66.53	57.38	54.60	61.28	57.03	54.64	57.32	55.29
August	51	47.74	16.40		20.27		01.55					1	55.01	60.80	50.78	06.62	59.94	58.49	50.19	51.50	68.27
	Znd	47.98	81.98	-15	70.00								Ł	56.93	52.04	46.64	60.59	59.16	46.79	49,54	55.39
	3rd	45.49	20.20		77.00	1					Ł	I.		55.671	51.86	44.22	50.31	49.45	45.92	44.85	50.97
September	5	48.02	17.11	60.AC	10.00			-				Ι.	45.37	50.02	57.11	53.66	48.56	16.64	45.99	37.27	47.26
	Znd	44.33	N/ //	11	+C 00	1.		20 VV	ł			1		43.51	48.99	45.86	53.06	50.84	46.09	38.82	4 1.1
	3rd	42.52	10.41	·	20.00		100.04 I							38.96	42.31	54.60	57.28	52.39	43.94	34.43	51.83
October	ZI I	21.15	C/.2/		10.14		1		75.85				46.64		39.52	47.84	59.61	48.48	44.77	40.61	52.13
	P	0	C/7/		71 01				L	64 00 9	49.91		51.61	41.11	47.92	41.89	69.76	44.32	39.10	43.76	59.92
	2	00.00	(0.1)		12.08	E		1	1				48.72	39.41	59.28	47.95	77.24	36.59	38.581	47.63	68.68
November	ISI	70.02	25.20	4C-71	27.64		1						63.00	59.19		73.42	80.55	56.70	41.52	56.56	71.26
	DUT	38.80		÷L.	20.20	10.00					1	43.90	75.60	63.01		83.00	90.34	71.871	47.68	61.121	78.59
	.Ard	1/0.05	67.20	00.00	01 10		1						85.95	72.50	79.05	88.27	97.98	82.87	69.83	87.02	80.66
December	ISI (C1.0C	00.10	1	11 70			17			Ļ		80.351		80.44	92.62	106.04	86.33	83.45	86.35	77.14
	ynd C	04.39	10,00	07-701 107-00	04 63					17	1	59.32	95.99		91.29	100.03	118.68	89.67	68.47	86.21	88.2
		10.05	17.4	10.201		20.00			20 20 2	100300	1.2	22 120 1	7 220 36	02 377 4	2 376 02	2 394 41	\$02 73 2	563.562.	182.93 2	261.592	280.2
Total Dis. (Mil.m'')		2,118.59,	2,740.85]	2,766.77.	2.500.68	2,118.592,740.852,766.77,2.500.6822,696.402.		14'000'7	CX-10C17	11-700-7	C++*C++C+7	00.175.1		A						-	

anal II. 3 Remarks : (1) This table includes the Brantas Atas, Brantas Bawah, Molek, Lodagung, Warujayeng-Kertosono, Turi-T (2) Original data is from PJT and DPU Pengairan. The missing data is complemented by the Study Team.

A1-22

 (Θ)

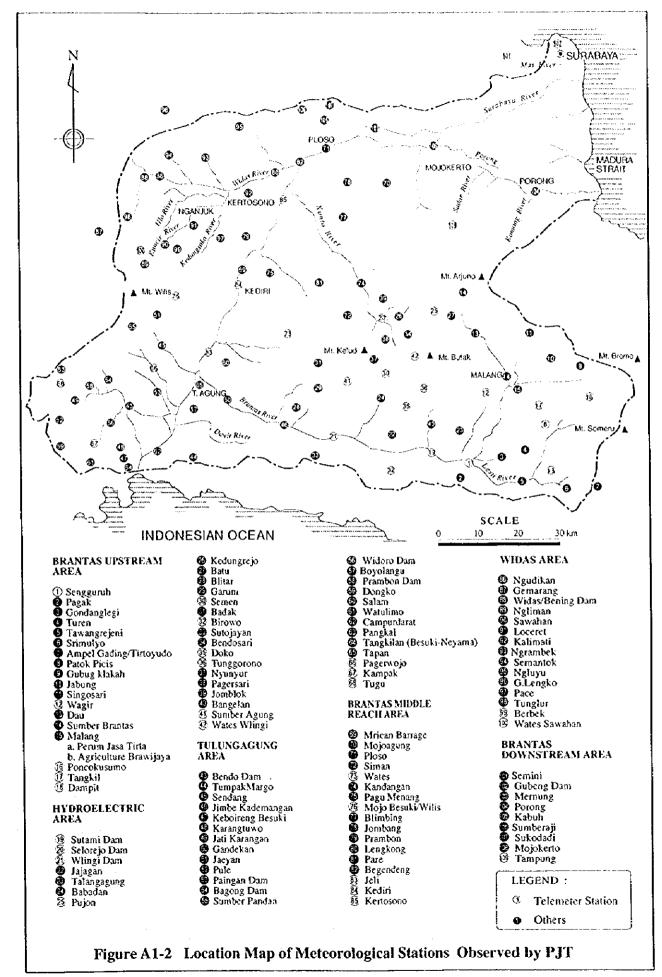
Table A1-12Calculation of Miscellaneous Flow between the Sutami Damand the New Lengkong Dam

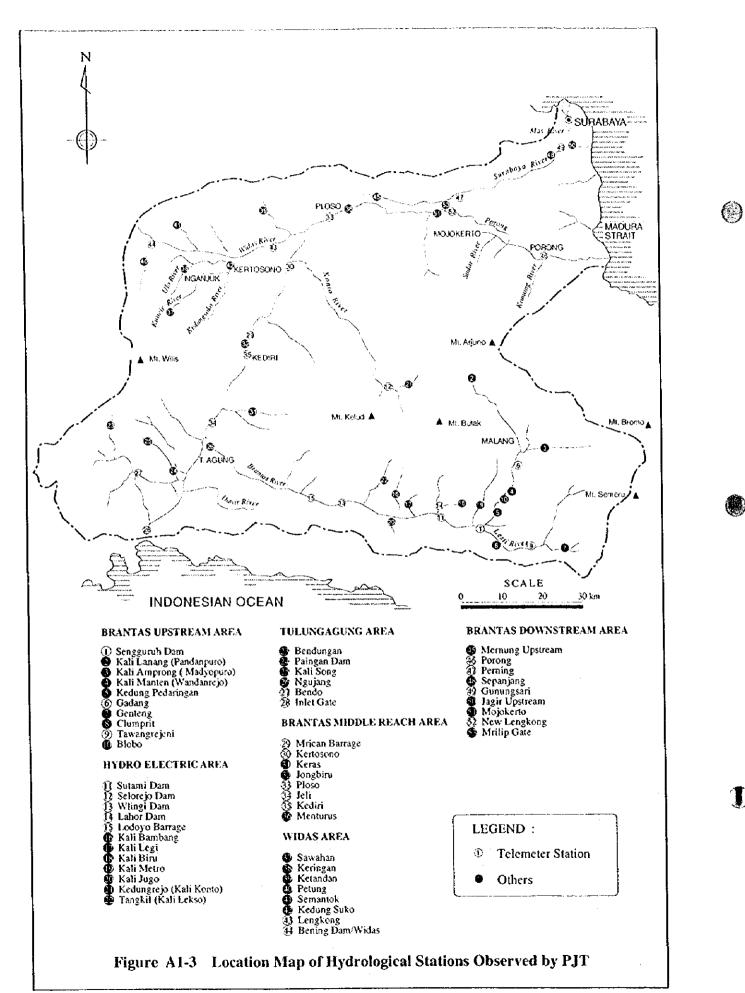

YEAR : 1996

1

	r				Teach	Terel		Total	New	Calculated	Unit : m ³ /s Miscellaneous
			athow	Taul	Total	Total	Malla		Lengkong		Inflow
۱ <i>۴</i> ۰ – ۱۰		Sutami 1	Lanor	Totat	-	Industrial	Mrilip	Return	Dam	from	from
Month		:	(*1)		Intake	Intake Discharge	Gate	Flow	Observed 1		Sutami
			(*1)			from Sutarai		from Setami		and	to
					to N.L	to N.L.		to N.L.	machange	Lahor	N.L.
		a	ь	c = a+b		e :	f	g	h	i=d+e+f+h-g	j=i-c
anuary	lst	108.77		108.77	84.97		55.69				239.05
aneary	2nd	123.37		123.37	79.52		69.94			350.93	227.56
	3rd	110.81	· ··· · _ ··	110.81	74.38	f	69.95	·		· · ·	311.85
February	lst	88.91	0.00	88.91	77.30		62.33		255.77	389.87	300.96
	2nd	135.71	0.00	135.71	78.87		43.93			431.95	296.23
	3rd	110.38	0.00	110.38		€	46.44				359.24
March	[1st	70.40	0.00	70.40			45.98				239.23
	2nd	109.61	0.00	109.61	80.69	;;•· •··;·	50.73				306.10
	3rd	118.54	0.00	118.54		<u>.</u>	61.70		241.72		255.52
April	1st	73.33	0.00	73.33			68.54				91.94
· · · · ·	2nd	138.52	10.68	149.20		· · · · · · · · · · · · · · · · · · ·	62.53		326.59		301.55
	'3rd	97.93	3.26	101.19			61.57				200.00
May	151	64.29	0.00	64.29			61.62				73.07
	2nd	54.43	0.00	54.43		+	32.86	·	0.00		40.50
	i3rd	56.19	0.00	56.19	· · · · · · · · · · · · · · · · · · ·	÷	33,44	÷	;	95.39	39.20
June	lst	54.42	0.00	54.42			33.46	6.36	0.00	91.65	37.23
	2nd	48.57	0.00	48.57	62.62	2.35	34.51	6.05	0.00	93.43	44.87
	3rð	47.40	0.00	47.40	54.35	2.35	32.36	5.88	0.00	83.18	35.78
July	lst	48.95	0.00	48.93	52.72	2.35	33.38	s ⁱ 5.74	0.00	82.71	33.76
	2nd	59.92	0.00	59.92	50.44	2.35	31.42	5.12	0.00	79.09	19.17
	3rd	68.84	0.00	68.84	49.50	2.35	31.22	4.60	0.27	78.74	9.90
August	lst	52.73	0.00	52.7	47.58	2.35	31.86	4.50	1.05	78.34	25.61
	2nd	86.65	0.00	86.6	60.80	2.35	32.85	4.17	35,36	127.19	40.55
	3rd	51.36	0.00	51.3	5 48.48	3 2.35	23.80) <mark>* 4.0</mark> 0	0.62	71.25	19.89
September	Ist	43.76	0.00	43.70	5 43.30	2.35	24.67	7 3.74	0.00	66.58	22.82
	2nd	46.67	0.00	46.6	7 39.63	5 2.35	23.34	4 3.81	0.00	61.53	14.86
	3rd	48.32	0.00	48.3	2 39.7.	2.35	27.3	5. 3.80	0.00	65.64	17.32
October	lst	57.27	0.00	57.2	7 44.9.	3 2.35	30.70	3.82	5.27	. <u>79.4</u>	22.16
	2nd	60.46	0.00	60.4	5 46.0	4 2.35	31.60	3.82	2 0.50	76.67	16.21
	3rd	75.83	0.00	75.8	3 52.6	2.35	36.80	o! <u>3.73</u>	38.99	127.02	51.20
November	lst	75.65	0.00	75.6	5 60.6	5 2.35	37.50) ¹ 3.84	66.07	162.74	87.10
	2nd	75.68	0.00	75.6	8 62.6	9 2.35	36.9	3.85	5 121.22	219.31	143.63
	3rJ	70.78	0.00	÷•••		4 2.35	37.2	3. 81	104.89	210.77	140.00
December	lst	58.17	0.00	58.1	7 82.2	6 2.35	37.2	4 5.36	5 128.17	244.66	186.49
	2nd	103.20		103.2	-1	6 2.35	39.2	0.8.05	5 330.50	5 433.21	330.02
	3rd	47.07	0.00	···· — —			1	5 7.70	18.79	128.69	81.6
Total Dis.(M		1		2,418.0	_	1 74.31	1,326.2	I 193.54	4 3,244.1	6,481.55	4,063.5

Source :Inflow and outflow discharges, Irrigation and industry intake discharges, Mrilip gate discharge and observed
discharge at New Lengkong dam are from PJT and DPU Pengairan. Missing data is supplemented by the Study Tearn.Remarks :(*1) Exclude tunnel discharge to Sutarni reservoir.

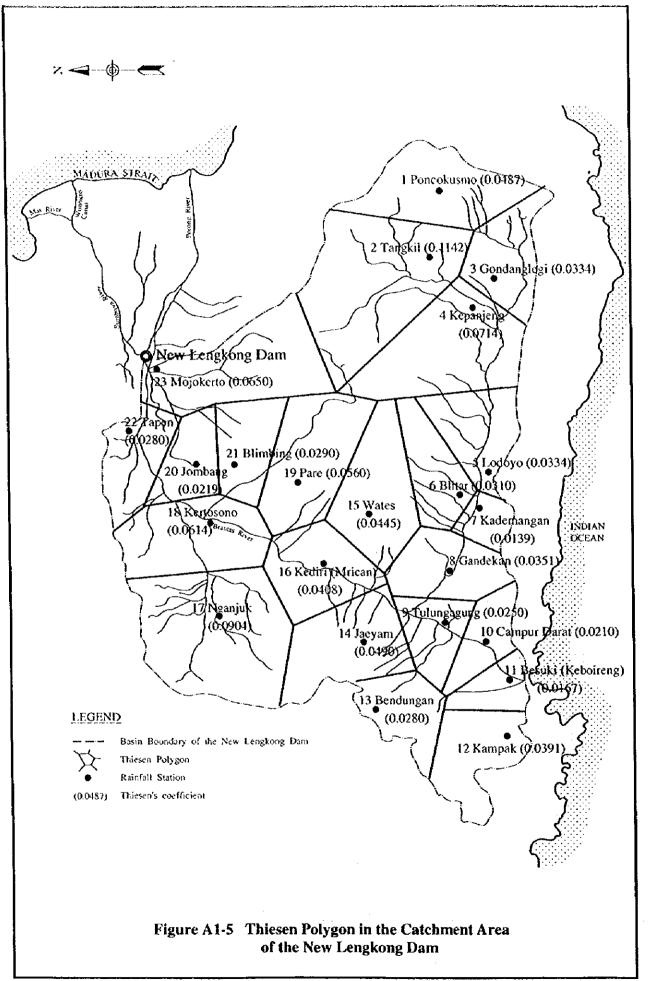

A1-23


A1-24

۲

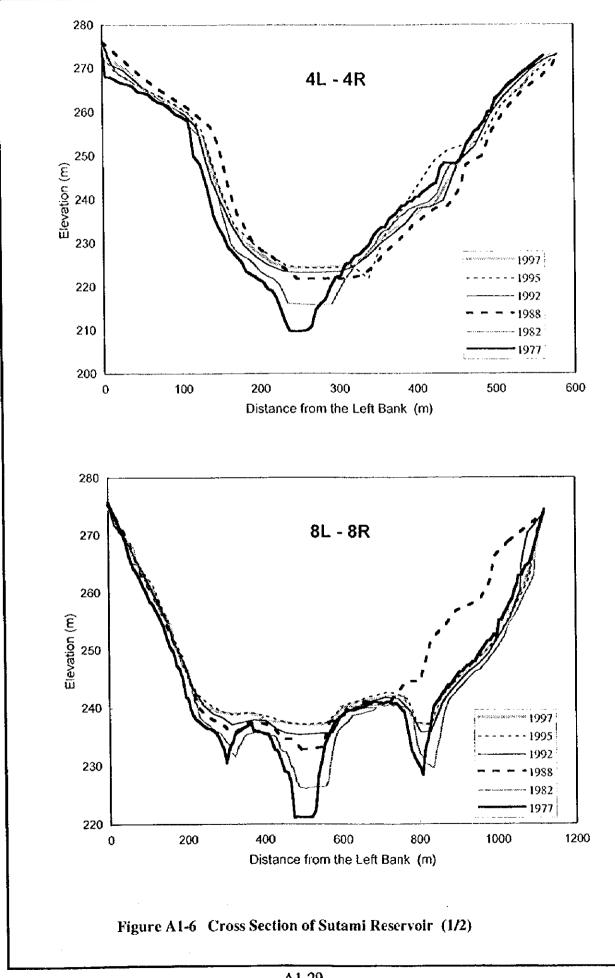
لأبرينك

I

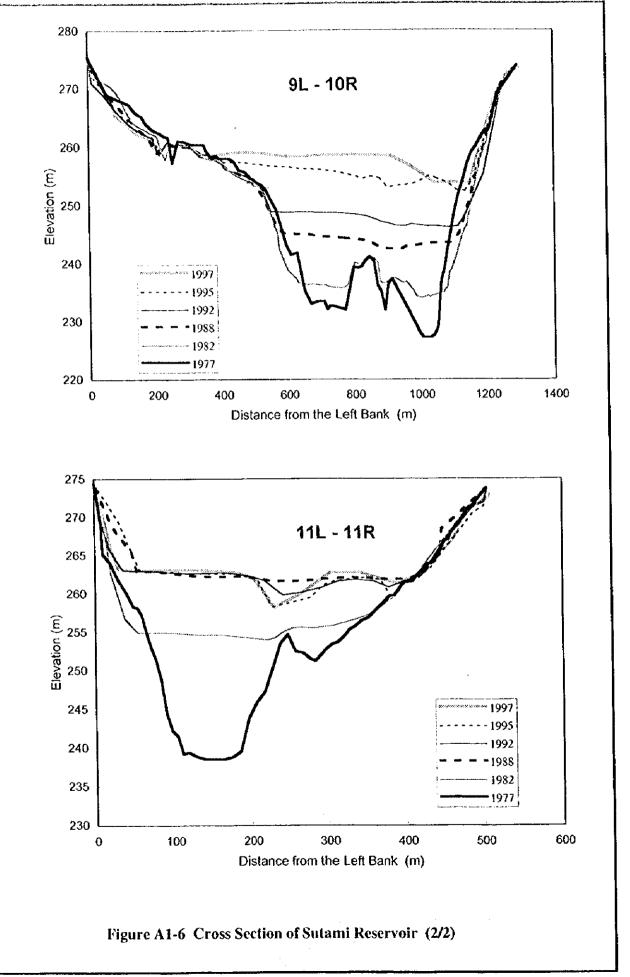


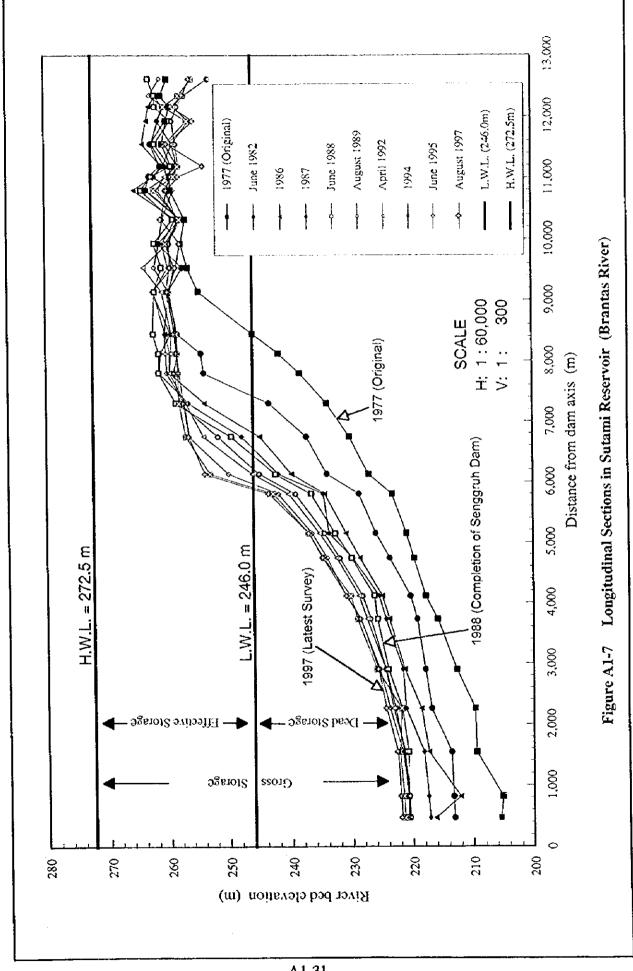
A1-26

Ţ



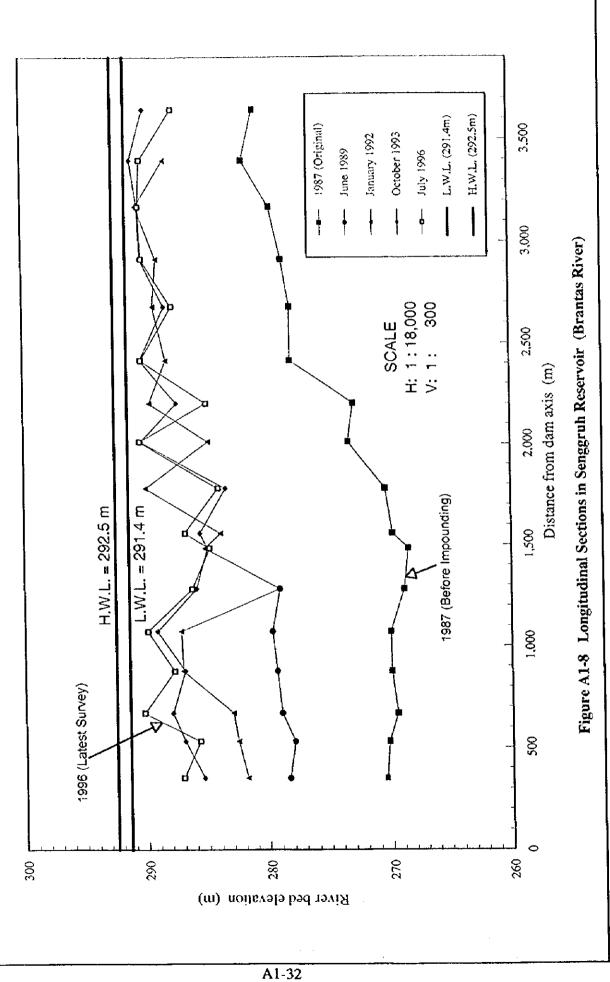
J


 \bigcirc


I

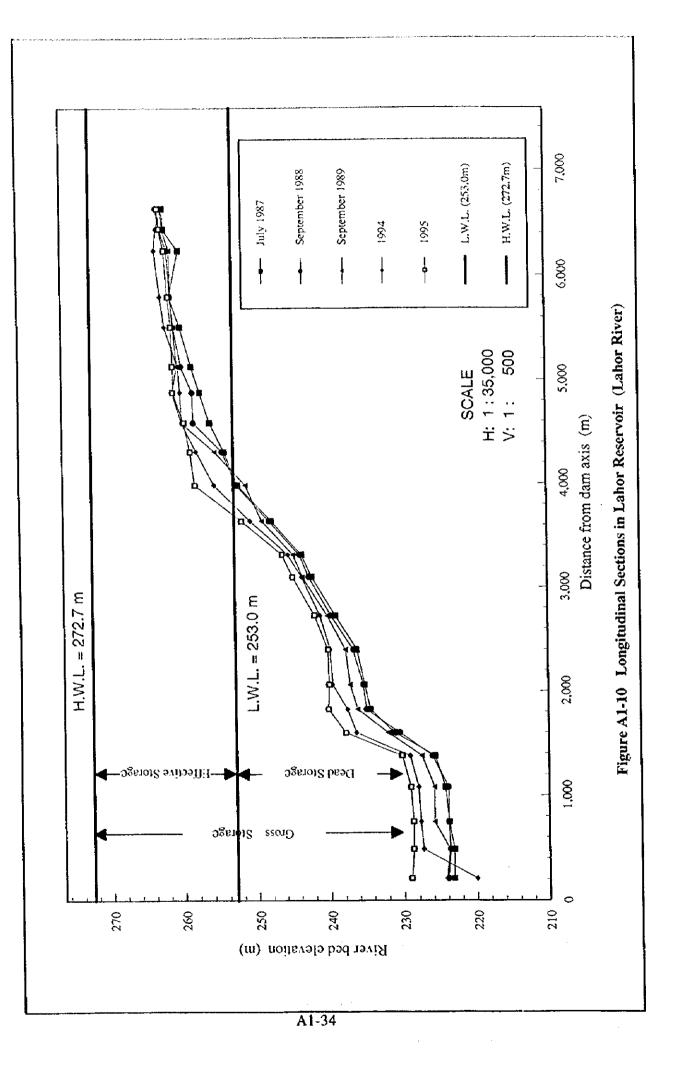
A

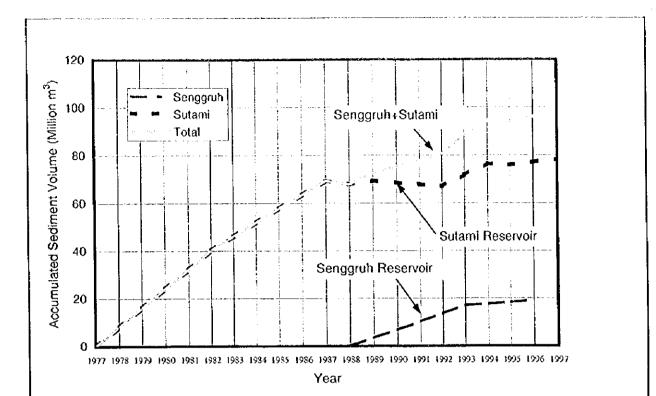
Ţ



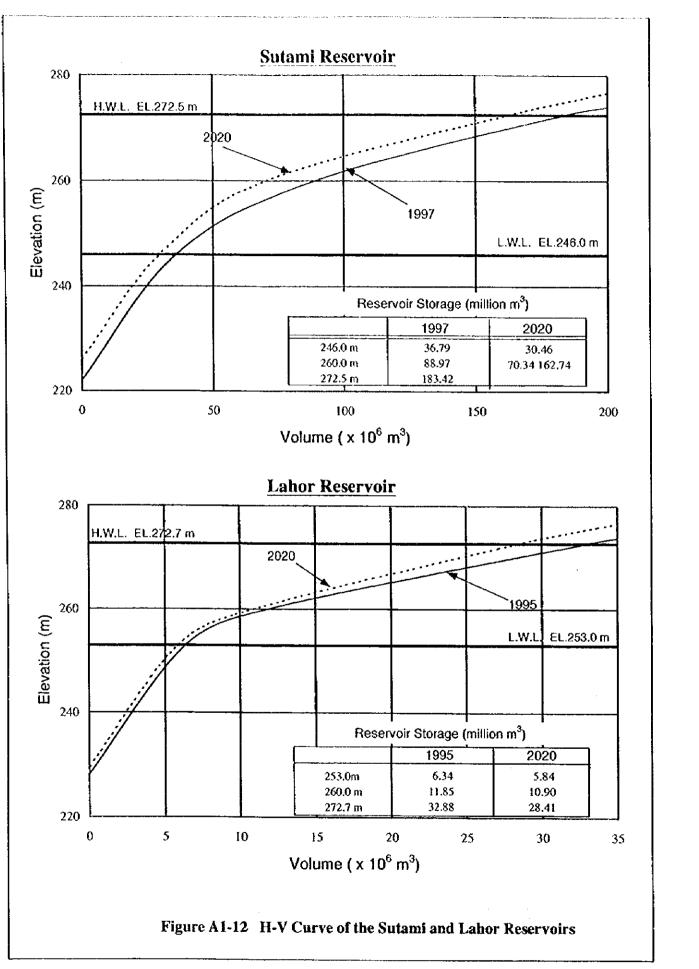


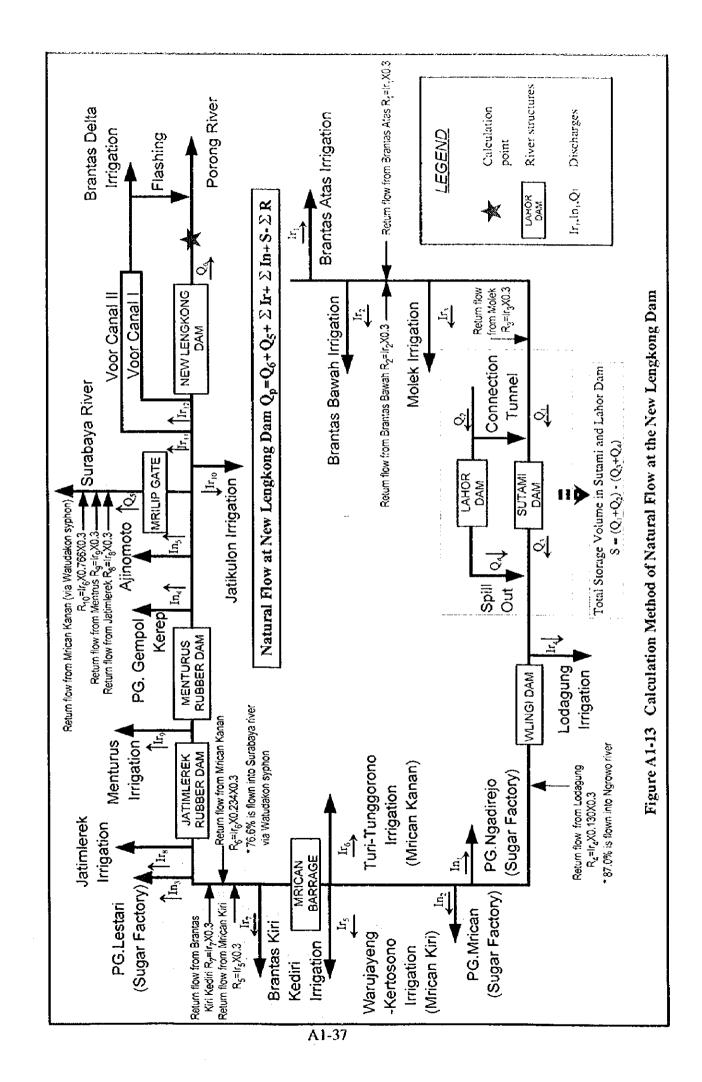
Ţ


Ĩ

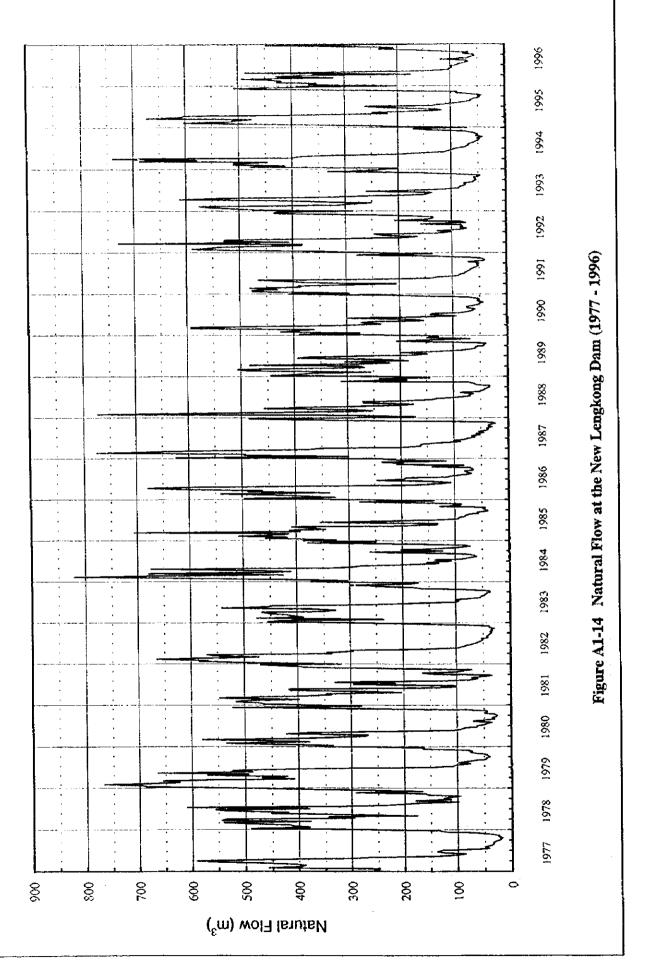

A1-31

Į


Year	Accumulate	d Sediment V	olume (m ³)	Sediment	Volume per Y	est (m³)	Remarks
	Senggruh	Sutami	(Total)	Senggruh	Sutarni	Total	
1977	-	0	0	- [-	-	
1978		-	8,076,501	- 1	8,076,501	8,076,501	
1979		-	16,153,002	-	8,076,501	8,076,501	
1980	-	-	24,229,503	-	8,076,501	8,076,501	
1981	•	-	32,306,004	-	8,076,501	8,076,501	
1982		40,382,505	40,382,505	-	8,076,501	8,076,501	
1983	-	-	46,159,430	-	5,776,925	5,776,925	
1984	-	-	51,936,355	-	5,776,925	5,776,925	
1985	-	-	57,713,279	-	5,776,925	5,776,925	
1986	-	-	63,490,204	-	5,776,925	5,776,925	
1987	-	69,267,129	69,267,129	-	5,776,925	5,776,925	
1988	0	67,857,166	67,857,166		-1,409,963	-1,409,963	Completion of Senggruh Dam
1989	-	69,282,230	72,686,297	3,404,067	1,425,064	4,829,131	
1990	-	-	75,337,320	3,404,067	-753,044	2,651,023	
1991		•	77,988,342	3,404,067	-753,044	2,651,023	
1992	-	67,023,097	80,639,365	3,404,067	-753,044	2,651,023	
1993	17,020,335	-	88,735,542	3,404,067	4,692,110	8,096,177	
1994			94,096,326	668,675	4,692,110	5,360,785	
1995		75,898,161	94,255,847	668,675	-509,155	159,520	·
1996	19,026,361		96,102,373		1,177,851	1,846,526	
1997		78,253,862	-	-	1,177,851	-	


Remarks :

Sediment volume of Senggruh reservoir is calculated by the Study Team in accordance with the survey report by PJF.
 Sediment volume of Sutami reservoir is calculated by the Study Team in accordance with the original survey data.
 The sediment volume in 1977 is set at 0 m³ due to the lack of applicable survey result before 1977.


Figure A1-11 Transition of Sediment Volume in Senggruh and Sutami Reservoir

Ţ

J

A1-38

 \bigcirc

۲

Ţ

Ţ