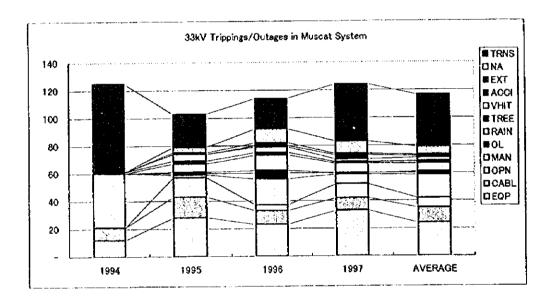
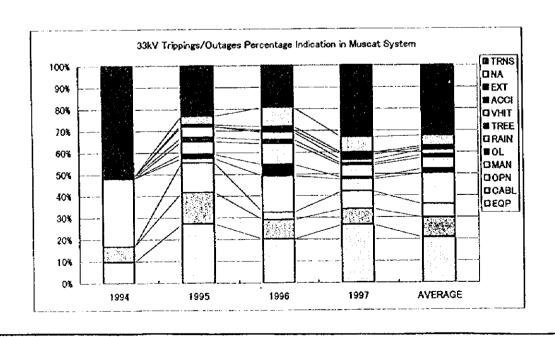

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

4-1-a Summary of 132kV Trippings/Outages(1994~1997 Muscat System)

	Code	1994	1995	1996	1997	AVERAGE	TOTAL
C - 1	EQP	- 105.1	1	3	1	2	6
Equipment	CABL		i t			1	3
Cable problem Operation related	OPN				2	1	3
Manually oppened	MAN			3		1	4
Load/Functuation/UF	OL.					0	0
Weather related reasons	RAIN		1			<u> </u>	!
Tree branches touching line	TREE					<u>\</u>	
Vehicle hit	VHIT					屵	
(Human)Accident	ACCI				<u> </u>	 	
External reasons	EXT					 	14
Others/Not explained	NA	1	10	3	ļ 	1	
Transient/Temporary faults	TRNS	3		1	9		13
TOTAL		\$	13	10	13	111	45



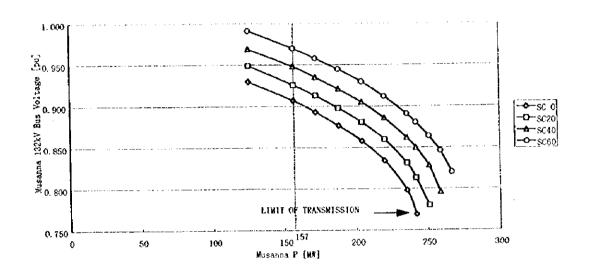

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

1

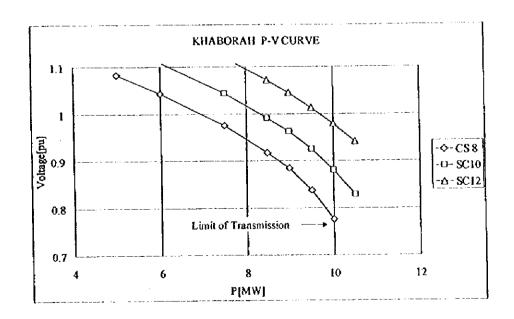
4-1-b Summary of 33kV Trippings/Outages(1994~1997 Muscat System)

	Code	1994	1995	1996	1997	AVERAGE	
Equipment	EQP	12	28	23	33	24	98
Cable problem	CABL	9	15	10	9	11	43
Operation related	OPN		14	4	10		28
Manually oppened	MAN	39	2	19	7	17	67
Load/Functuation/UF	OL	1	2	6	. 1	2	9
Weather related reasons	RAIN		6	11	7	6	24
Tree branches touching line	TREE	1	2	2	1	2	- 6
Vehicle hit	VHIT		5	4	2	3	. 11
(Human)Accident	ACCI			1	3	1	4
External reasons	EXT		1	2	1	1	4
Others/Not explained	NA		4	10	9	6	23
Transient/Temporary faults	TRNS	64	24	22	41	38	151
TOTAL		125	103	114	124	117	456

	-													
JICA Final Report				The	Study on	The Study on Demand Supply Management for Power Sector In the Sultanate of Oman	nand Supply Management In the Sultanate of Oman	Manage ate of C	ment for man	Power	Sector			
		4-1-c	1	ad Flow	Calcul	Load Flow Calculation Result(132k Muscat System)	sult(132	k Musc	at Syste	(E)				
				8	6			•		Off Per	Off Peak (Tr Tap ratio=1.0)	tio=1.0)		
			Heak (1)	17.18prano=LU	() ()	Triemenment	ment			Present			Improvement	ement
			TESSEII	\[\]	1, 200		2	mitonoma	- F. F.	٠,٠	had	132kV	Peak bed Pf	E.
	generation	action) Posici Posi Posici Po	덪	L32kV bus	reak load ri improvement		3		(Reak)	((Peak load)x0.7)	bus	improvement	oent Soo
					voltage	(Pf=0.870.95)	039)				•	agemon	(FT-V.07-V.50)	(35)
	P (WW)	Q	P (MIW)	Q (MVAR)	(p.a)	SC increase	132kV voltage (5)	d (MM)	Q MVAR)	a Mil	Q (MVAR)	(h.d)	SAVA SAVAS	Lazkv voltage (p.u.)
		034.00	- 			(LATATA)	77.77	8	273					
RUSAIL PS (132kV)	/75(67)	SC1/(1/20)						ર્જ	757					
GHUBRAH PS (132kV)	2	(77)						֓֞֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3 6					
GHUBRAH PS (33kV)	78	22						8 8	ક ક					
MANAHPS	86	ස						ò	8	8	3	1 015		1033
RUSAIL PS			131	88	2660		1.010			8	3 &	1019		1037
CHUBRAH PS			83	47	1.00		201			3 8	3 3	1010	Ş	1033
MADINATGABOOSSS			132	8	0.383	8-1	307			8 8	3 8	8000	3	801
WADI ADAI SS			83	81	1385	38	983 333 333 333 333 333 333 333 333 333			8 6	€ €	9660	8	1026
AIFALAJSS			115	5 3	0.563	3 8	200			7.7	48	1660	R	1,023
WADI KABIL SS			9	8 8	0000 00000 00000 00000 00000 00000 00000	3 8	8000			7.7	42	6660	ଞ	1024
SEEBSS			701	3 8	(QS)	8 5	280			8	ফ	0.992	97	1021
BAITBARKASS			8 !	3 8 	7087	2 €	1500			110	₽ P	0960	40	1010
MUSANNASS			Ğ.	3 9	300	2 4	1011			10	9	1012	ເດ	188
IZKI SS			\$1			2 5	10101			83	17	1016	10	1.035
NIZWASS			47	व	S S	2 5	707			5	13	18	10	1.032
BAHIASS			8	82	0860	2	TΩ			10	3	2		
								5	700	8	127		25.5	
TOTAL	(29)1164	(161)999	1153	643(Pf=0.87)	83	335		810	430	3	174		3	
	Load spec	Load shedding quantity = 29 (over load) + 95 (arrest unit)	ty reest unit	15	124 (MW)									C
CONTRACT OCC (MIX)		W			10.7		7.9					4.5		37
SISIEMINAL CONTRACTOR	/	7 300												
NOTE: 1.105 ≥ tanget	≥ target of voltage ≤ U50 (p.u.)	(m.v) (m.v)												

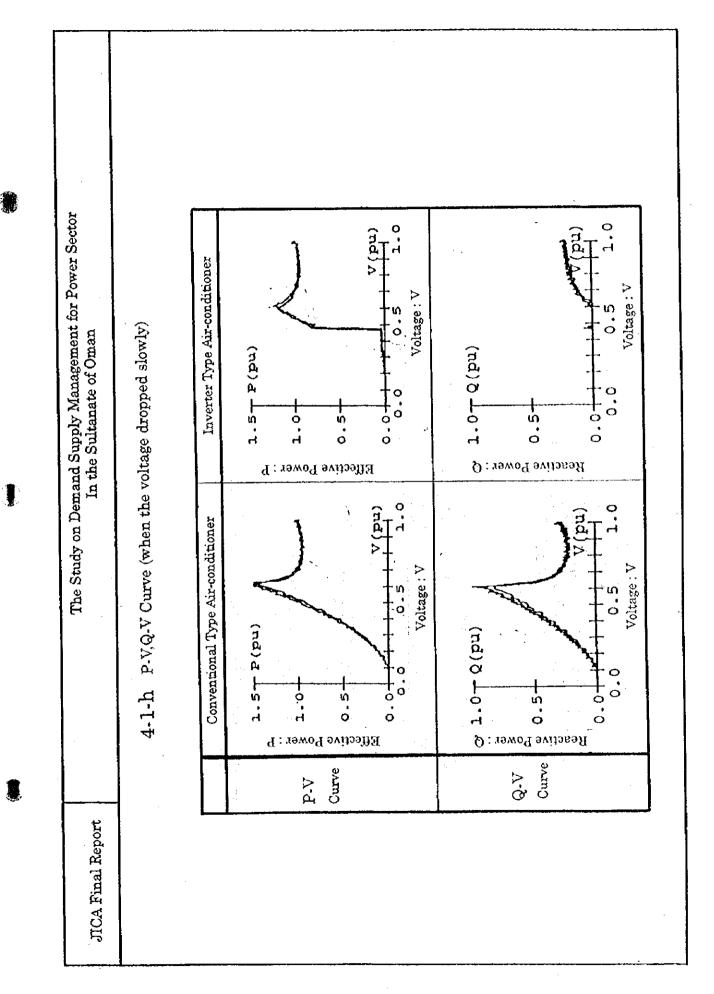

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

4-1-d Load Flow Calculation Result(Musanna SS 33kV System)


		Lo	ad		33kV Bus
		Р	Q	Capacitor	Voltage
Load Point	Name	MW	MVAR	MVAR	p.u.
	Musanna 33kV Bus−1				1.03
	Musanna 33kV Bus-2				1.03
	Khadra-2	5	3	3	0.96
2	Khaborah-1	7	5	6	0.93
3	Khaborah-2	10	7	4	0.77
4	Awabi	4	3	3	1.00
5	Rustaq−1	8	4	5	0.96
6	Thermad	11	6	5	1.00
7	Wudam Naval Base	_		_	
8	Bidaya-1	6	3	5	0.99
9	Bidaya-2	6	3	5	0.99
10	Khadra-1	6	3	3	0.9
11	Sana Bani Gafar	2	*		0.93
12	Musanna-1	7	4	5	1.03
13	Rustaq Hospital	6	4	5	0.9
14	Rustaq-2	10	6		0.8
15	Al Hazam-1	6	4	3	0.9
16	Al Hazam~2	6	4	3	Maria i asar s
17	Wadi Bani Gafar	4	3	3	3 A. J. W. J. 3 A. J.
18	Suweiq-2	9	6	5	1. 3. 210.041.1
19	Al Nasr Marble Fctory	5	3	3	0.6
20) Wai Jawahir	5	3	3	0.6
2	Suweiq-1	12		5 5	0.9
22	2 Billa−2	8	3		
23	Billa-1	8		5 5	
24	4 Musanna−2a	4	,	3	1.0
2	5 Musanna-2b	8		5	

The Study on Demand Supply Management for Power Sector
In the Sultanate of Oman

4-1-e Musanna SS P-V Curve



4-1-f Khaborah SS P-V Curve(Musanna SS 33kV System)

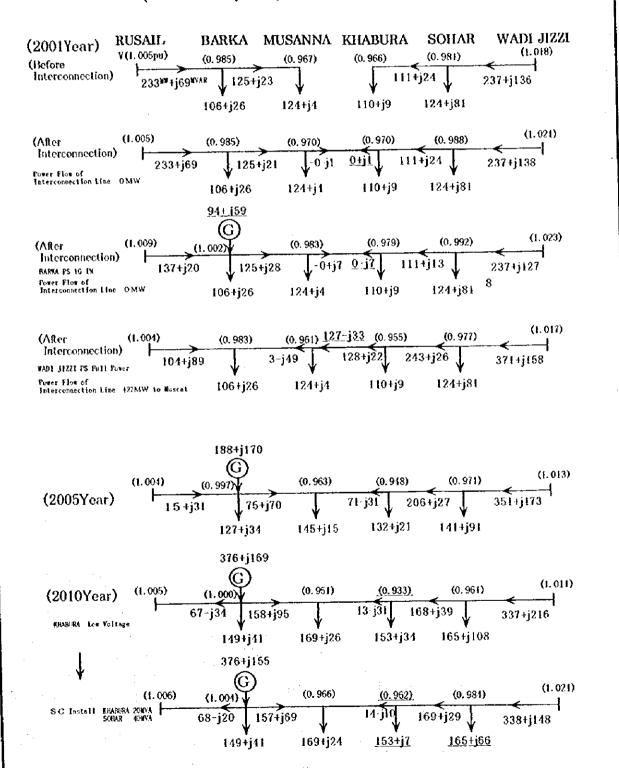
			case3	IBRISS load (351/W)	MANAH PS system 132kV bas (p.u.)			1004	0.979	0.979	1860	0.946	0.933	1	7160				32	
r Sector		Improvement method	case 2	ed noissiment ingeseschi	WASH TANK) 182kV bus voltage (p.u.)			0.993	0.968	0.968	0.955	8160	0.878	618.0	0980				7.8	
The Study on Demand Supply Management for Power Sector In the Sultanate of Oman	Load Flow Calculation Result(132kV Wadi Jizzi System)	Improve	case 1	load Pfimprovement (Pf=0,830.95)	132kVbus voltage (p.u.)			1022	1010				0889		6280				7.2	
nand Supply Managemen In the Sultanate of Oman	32kV Wadi			ibad Pfi (Pf=0	SC increase (MIVA)			9	40	9	က	10	3	10	5	88				
n Demand S In the 2	on Result(1			132Kv bus voltage	(n.c)			0.985	0.960	0.960	0.936	0.839	0.719	0.633	9690				165	
ie Study o	Calculati	(Base)		load (total pf=083)	Q (MVAR)			21	\$	12	မ	23	5	30	7	169				
T.	ad Flow	Present method (Base)		lo d (total p	P (MM)			18	120	18	10	35	8	38	13	257		l (reserve)		
	4-1-g Lo	P. P.		ation	Q (MVAR)	283	25									88	g quantity	turnit) — 1((n.ď,
	4,			generation	P (WW)	238	38									27.4	Load shedding quantity	= 29 (largest unit) - = 28 (MW)		.105 ~ 0.85 of voltage 0.95
JICA Final Report						WADI JIZZI PS (132kV)	WADI JIZZI PS (33kV)	WADIJIZZI PS (66kV)	SOHARSS	UMALINASS	AL WASITSS	BUREIMISS	DANKSS	IBRI SS	ALHAILSS	TOTAL			SYSTEMIOSS (MW)	(64

Ţ

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

1

4-1-i Load and Supply Balance at 2001 Year

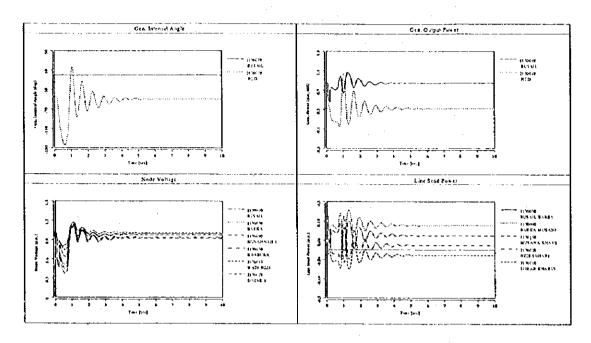

	;		2001		
	Gener	ation	1.00	ad	SC(MVA)
	P(MW)	Q(MVAR)	P (MW)	Q (MVAR)	increase
RUSAIL PS	748	477	162		
GHUBRAH PS	568	484	122	58	-
MANÁII PS	181	109			
MADINAT QABOOS SS			163	99	:
WADI ADAL SS			172	124	40
AL FALAJ SS			142	87	20
WADI KABIR SS			131	80	20
SEEB SS			126	74	
BAIT BARKA SS			106	37	10
MUSANNA SS			124	47	10
IZUKI SS			17	10	
NIZWA SS			52	31	20
BAHLA SS			37	22	10
SHARQIYA			89	51	30
IBRUSS			41	26	20

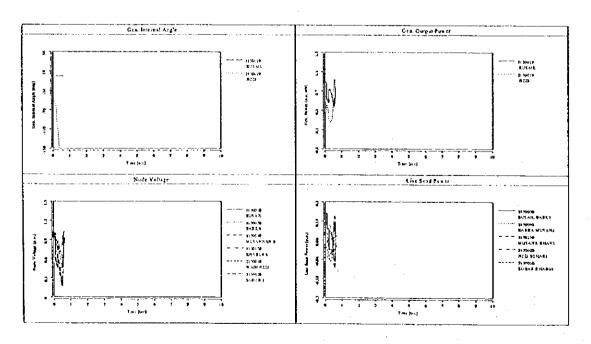
KHABURA SS			110	53	40
SOLIAR SS		:	124	81	
WADI JIZZI PS	365	217	19	7	
UMALINA SS			21	14	
AL WASIT SS			12	8	,
BUREIMI SS			44	28	20
DANK SS			12	8	5
(IBRESS)	to Manah	system	-		:
AL HAIL SS			17	11	10
TOTAL	1862	1287	1843	1055	285

The Study on Demand Supply Management for Power Sector
In the Sultanate of Oman

4-1-j Voltage Power Flow of Interconnection Line

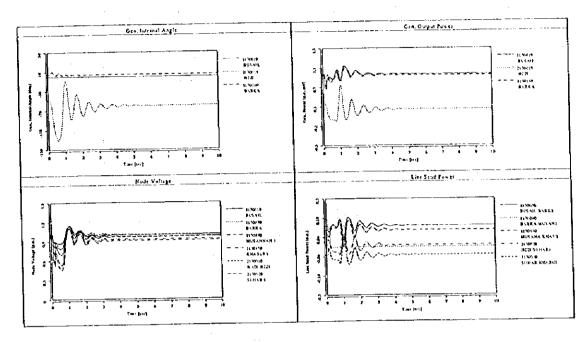
(MUSCAT System)

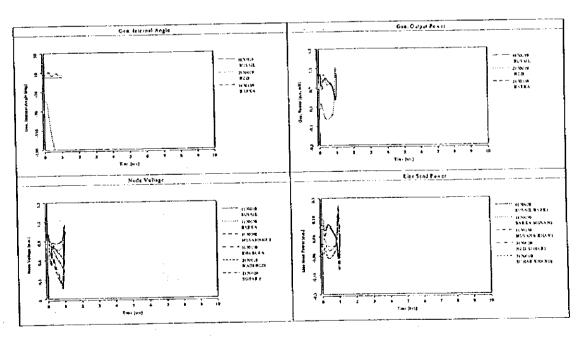

(WADI JIZZI System)


The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

I

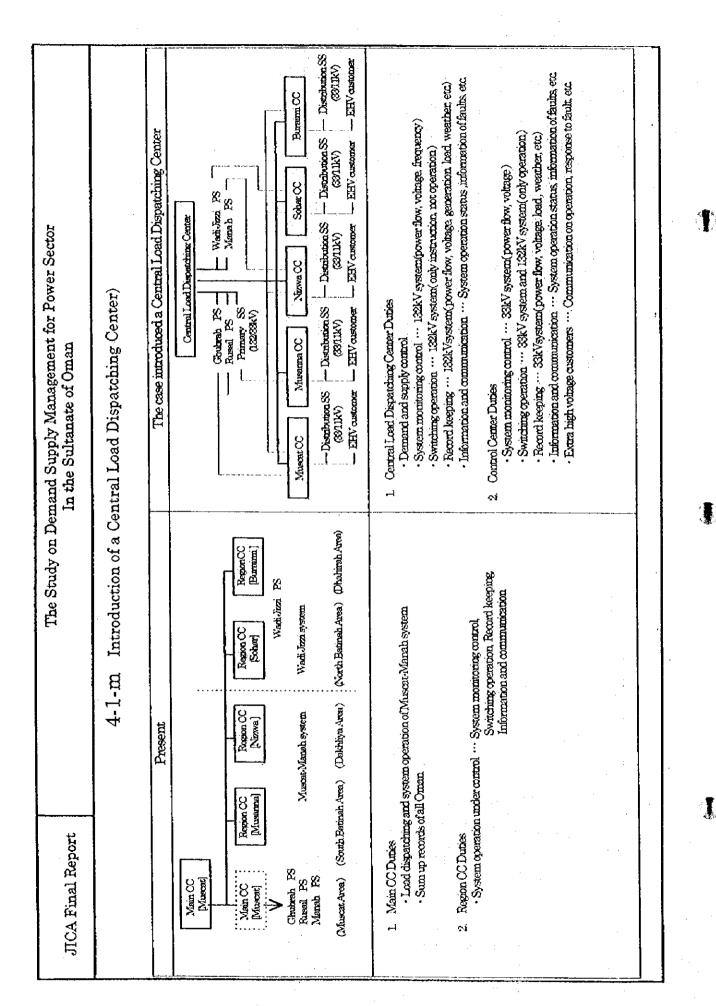
I

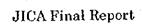

(a) Transmission Power = 173MW, T₁=6cycle, T₂=0.5sec

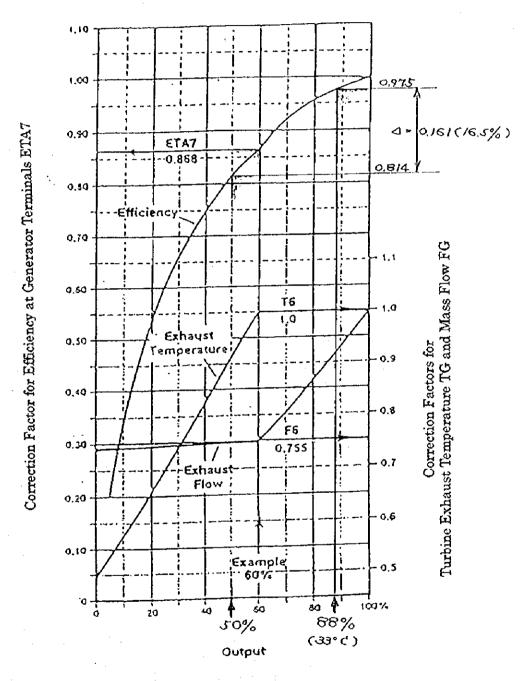

(b) Transmission Power = 212MW, T₁=6cycle, T₂=0.5sec

4-1-k Simulation Waveforms (Exclude Barka PS)

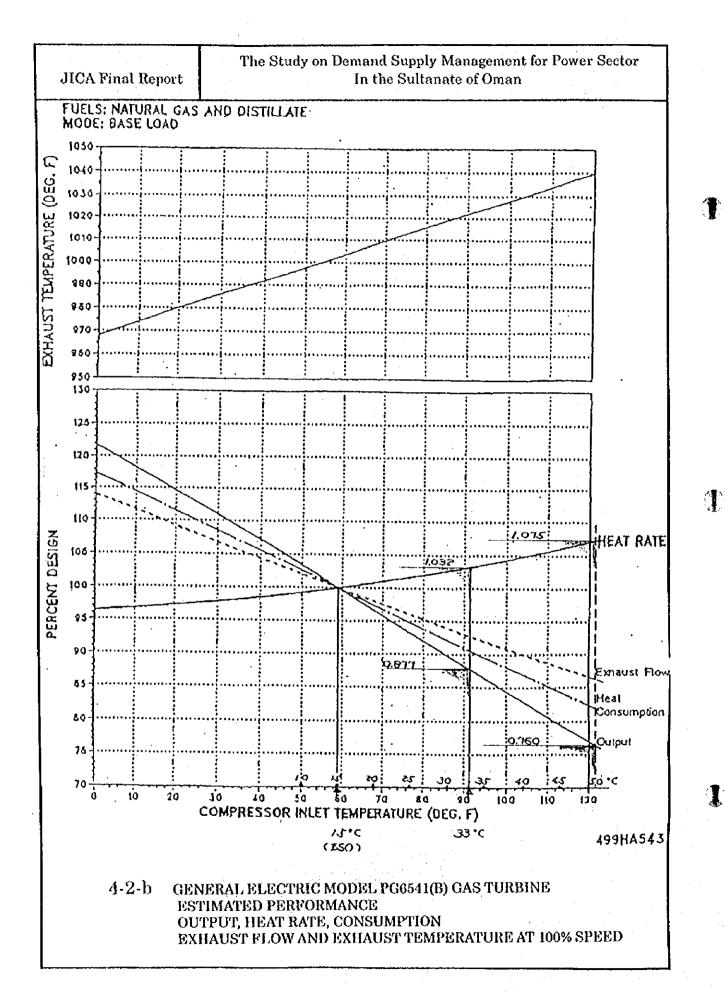
The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

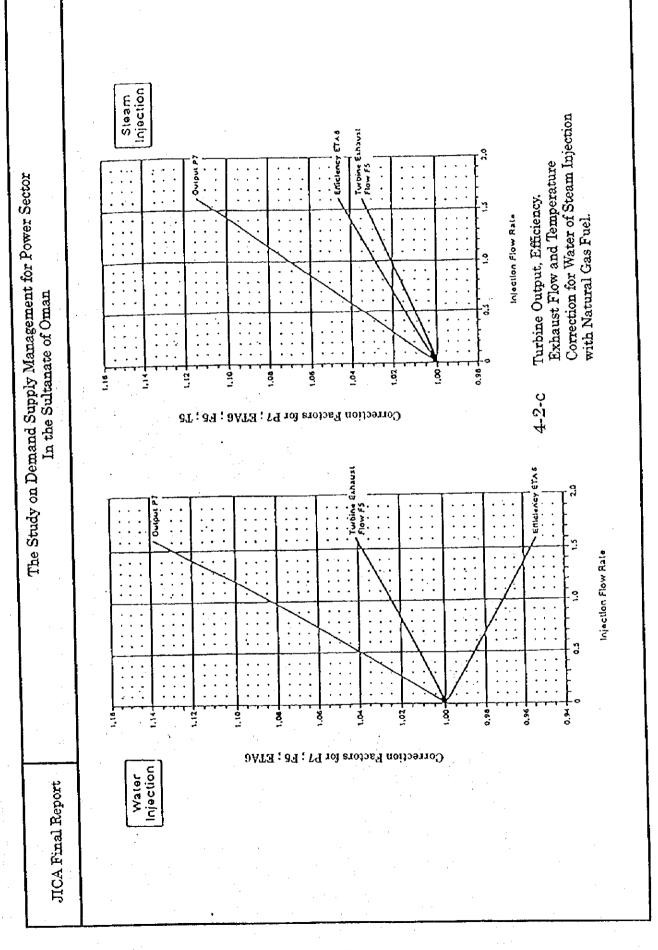


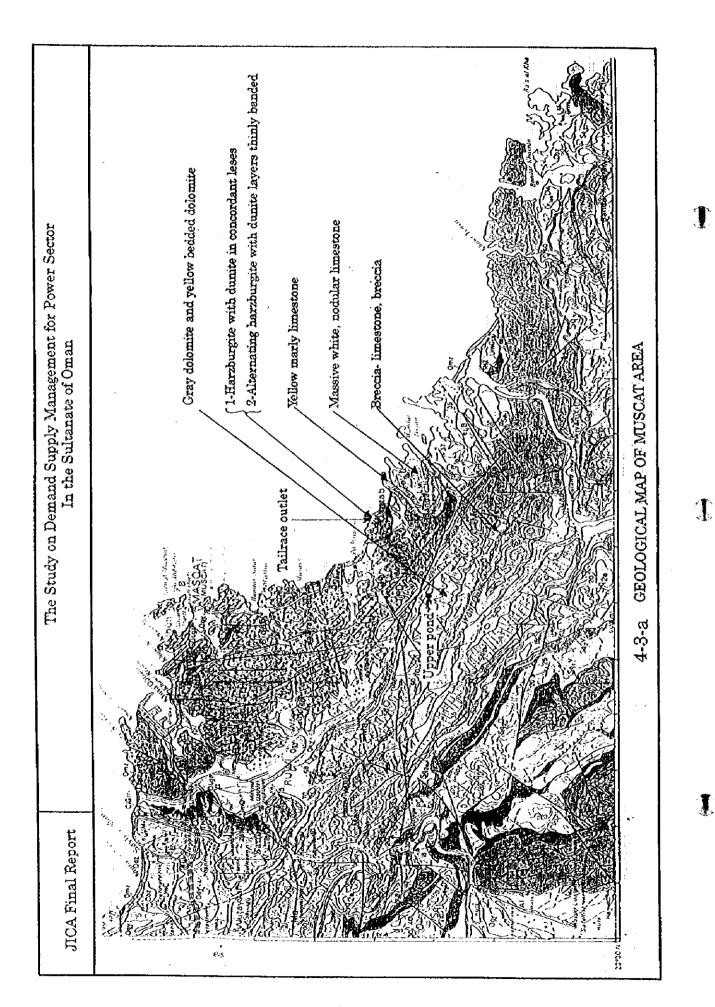

(a) Transmission Power = 212MW, T_1 =6cycle, T_2 =0.5sec

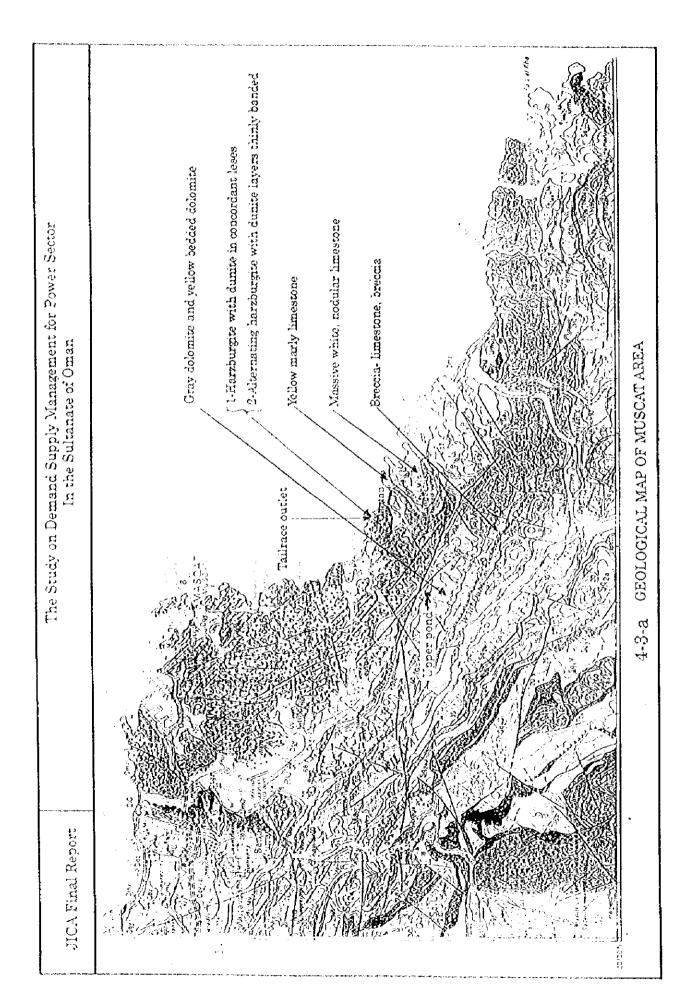

(b) Transmission Power = 212MW, T_1 =7cycle, T_2 =0.5sec

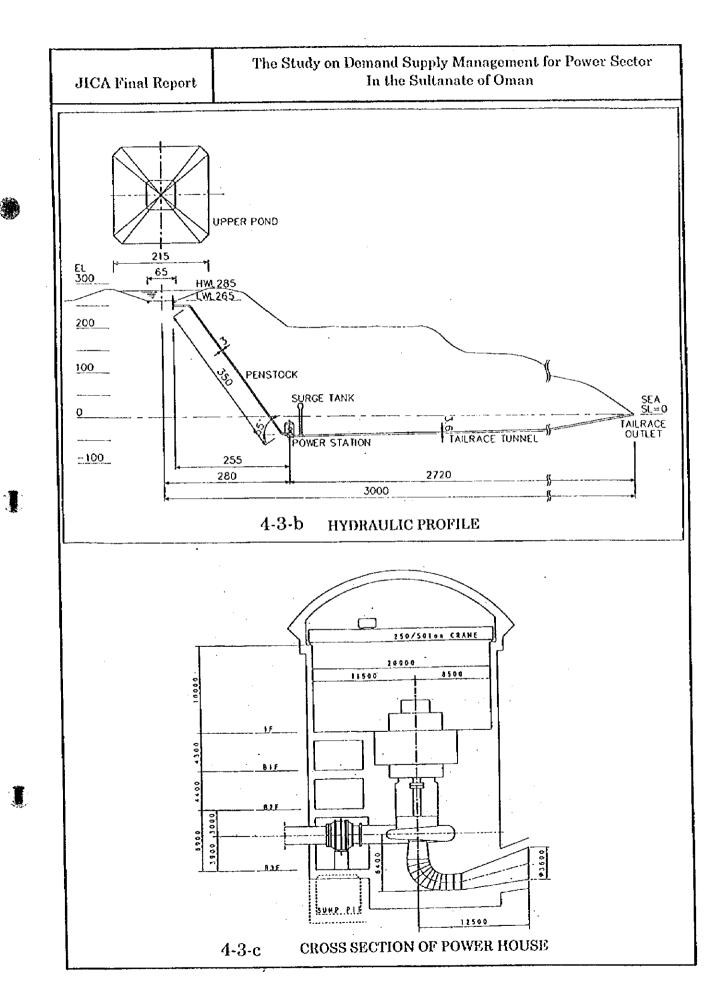
4.1.1 Simulation Waveforms (Include Barka PS)

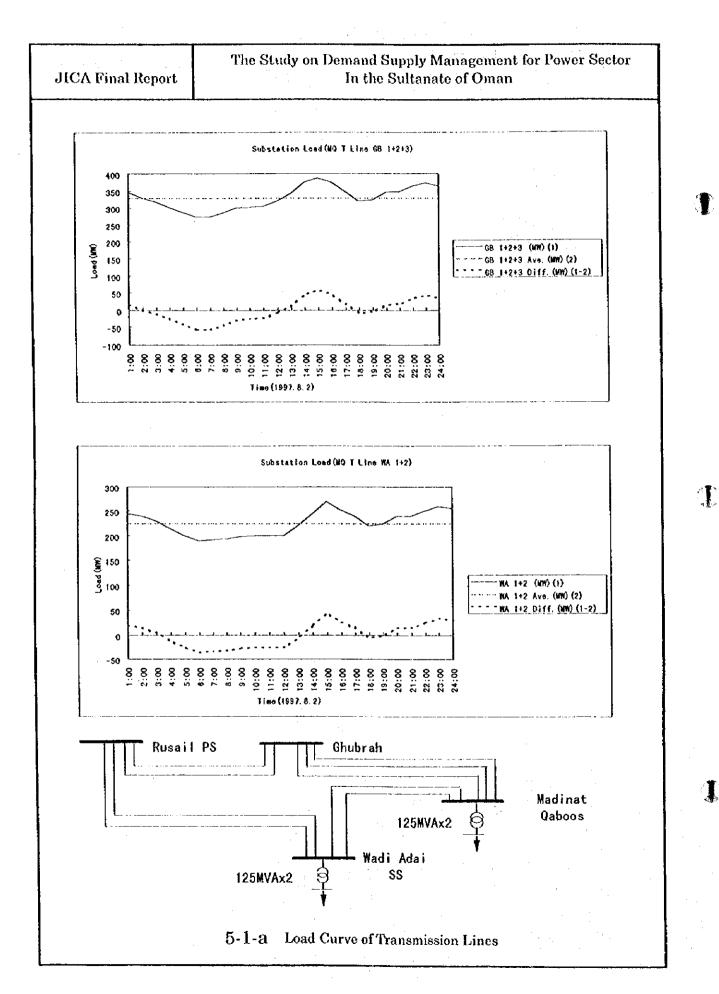




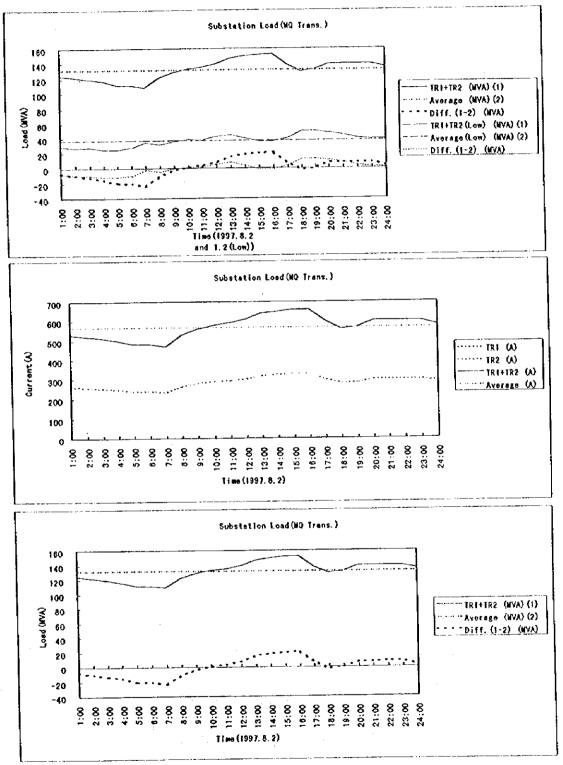

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

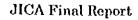


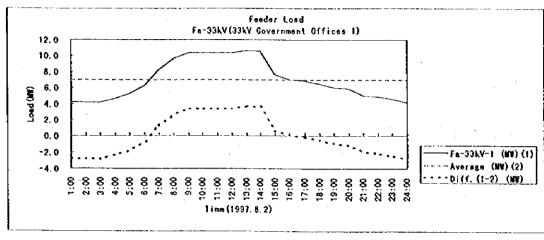

4-2-a Efficiency, Exhaust Temperature and Flow Correction for Part Load Operation (For 100% use 1.0)

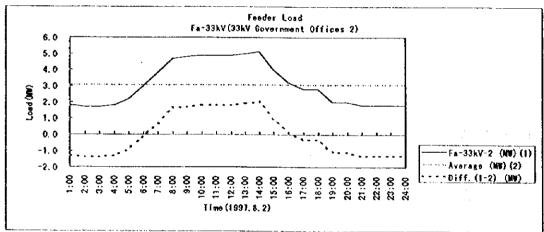


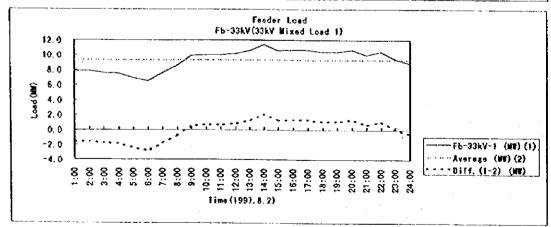




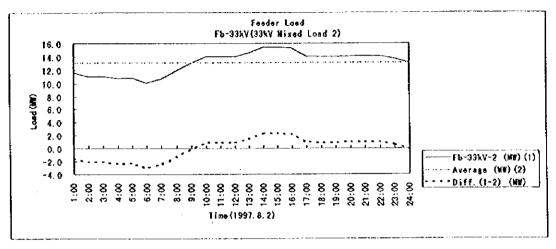


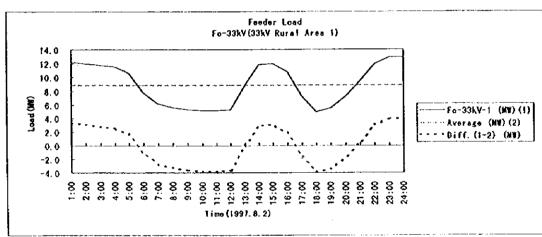

The Study on Domand Supply Management for Power Sector In the Sultanate of Oman

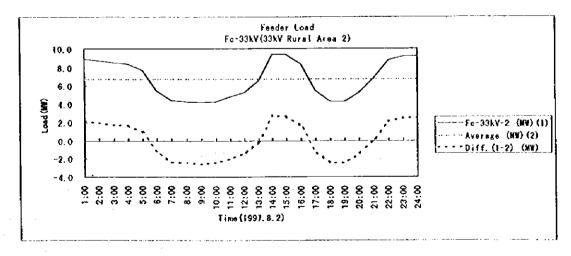



Load Curve of Transformer 5-1-b

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman





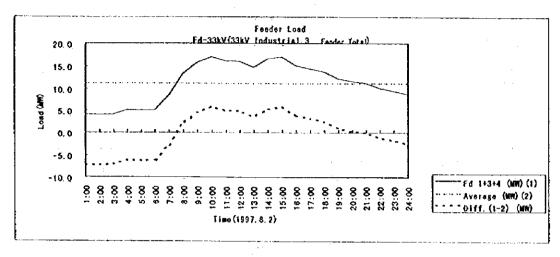
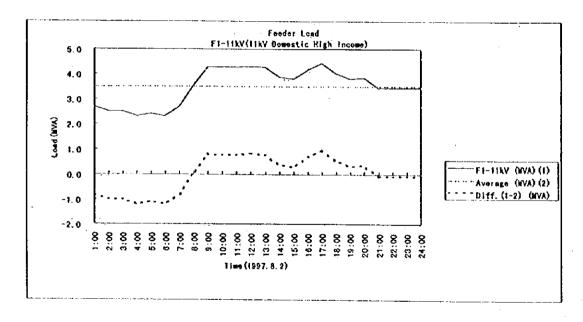


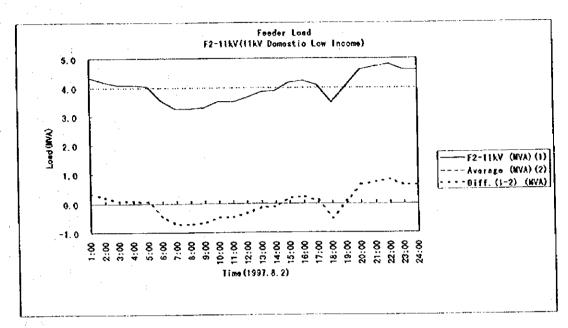
5-1-c Load Curve of 33kV Feeder

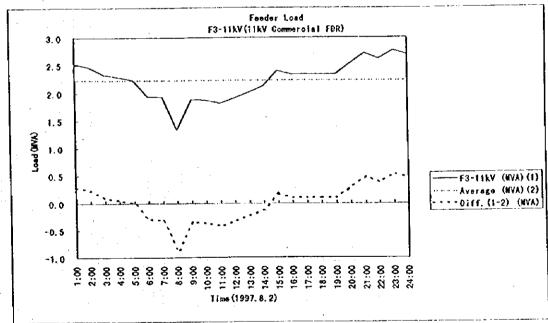
The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

5-1-d Load Curve of 33kV Feeder

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

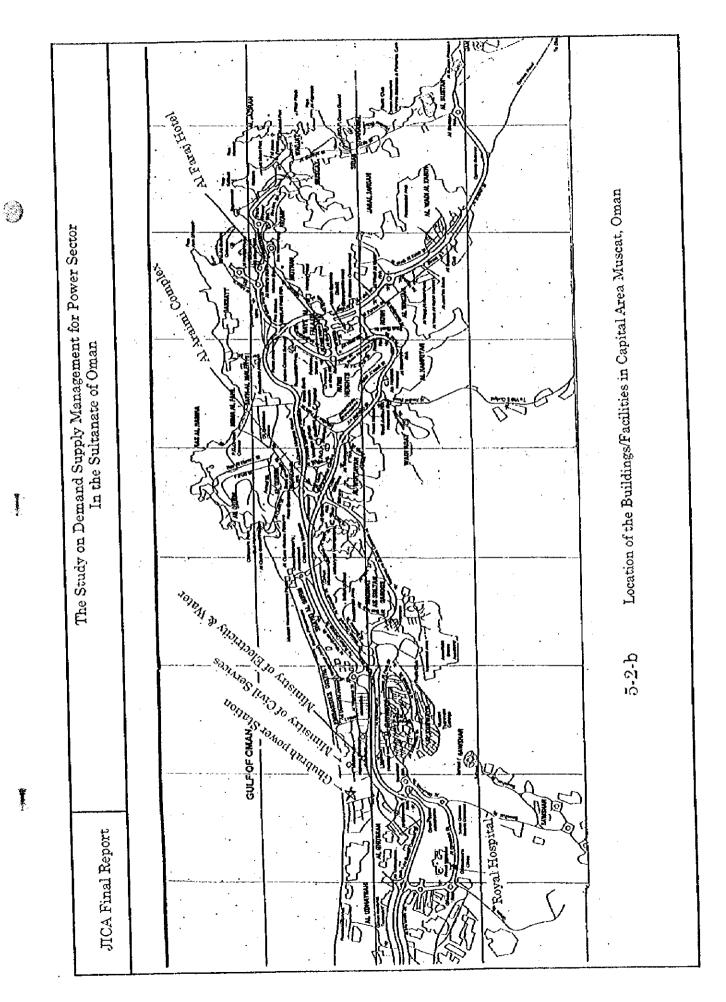



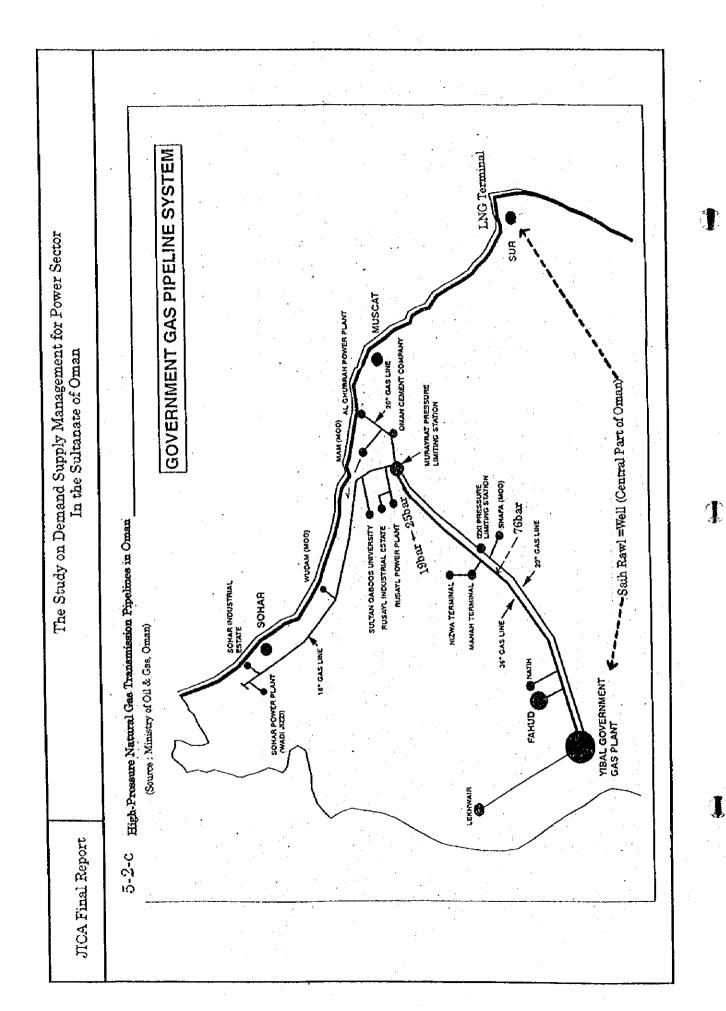

Fig.5-1-6-3 Load Curve of 33kV Feeder

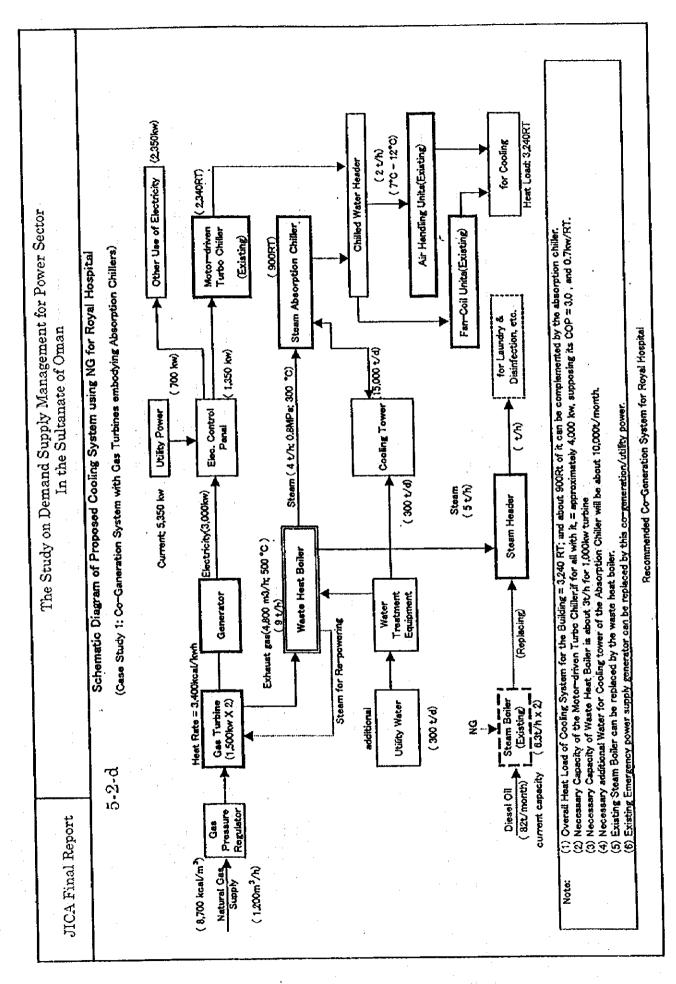


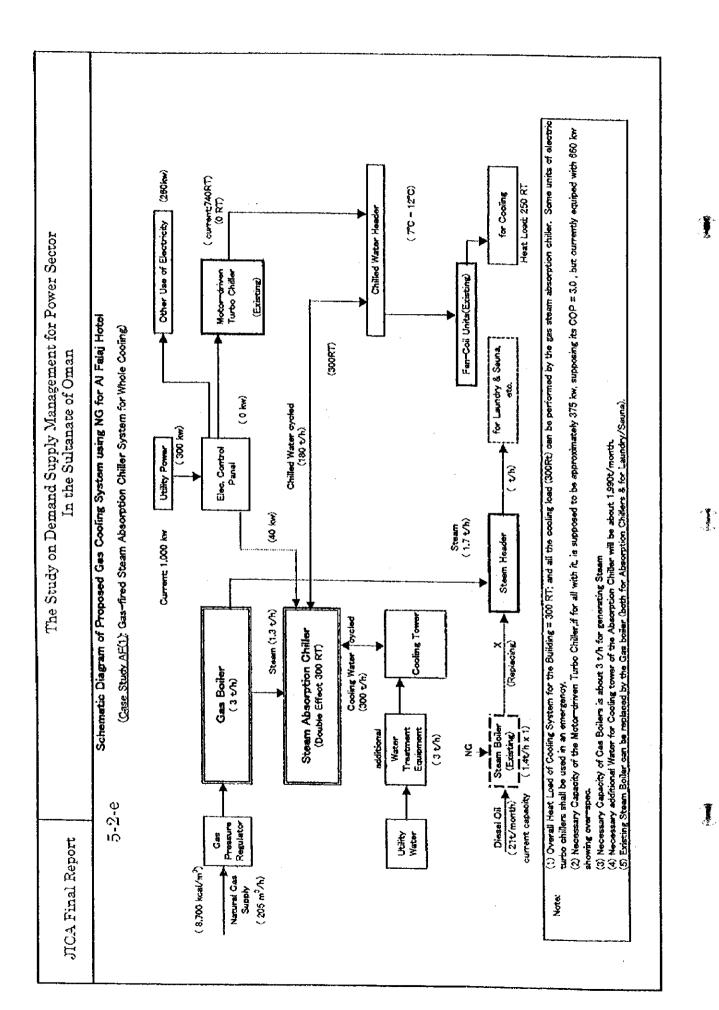
5-1-e Load Curve of 11kV Feeder

1


The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

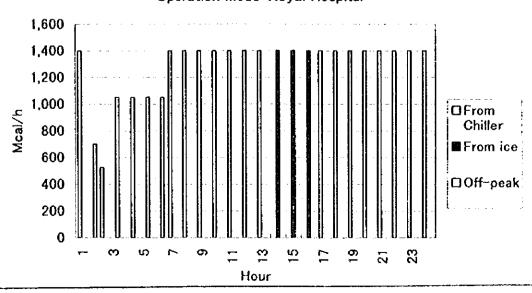





5-1-f Load Curve of 11kV Feeder

	ologa kilak nepole						70 777	ne ounea	iii wie Survaiiave oi Omaii	mam				
	IU.	5-2-a		Ų.	eneral We	"General Weather Conditions at Muscat in Oman"	ditions at N	fuscat in O	man"					R
1) Monthl	ly Averag	a Tempera	ature & Hur	1) Monthly Average Temperature & Humidity (in Mus	(uscat)				1996					
Wo	Month	Jan.	Feb	Mar.	Apr.	May	Ame	July	Aug.	Sept	Oct	Nov	Dec.	Average
Temperature	ture	20.4	21.7	24.4	28.8	34.1	34.4	2.0	31.2	29.7	27.5	23.6	50.6	27.6
	(Tokyo)	5.2	5.6	3.5	14.1	18.5	21.7	25.2	27.1	212	17,6	12.6	7.9	15.4
Humidity		2	68	69	20	4	72	22	74	70	52	57	61	59.6
(%)	(Tokyo)	50	52	95	83	99	73	92	52	73	<i>L</i> 9	19	22	63.7
2) Monthi	у Махіти	m/Minimu	іт Тетрегі	2) Monthly Maximum/Minimum Temperature &Humidity (in Muscat)	nidity (in l	Muscat)		į	1996					
Č.	9	Jan.	Feb	Mar.	Apr.	May	June	July	Aug	Sept	Oct	Nov.	Dec	Average
Temperat M.	MAX	28.5	29.1	36.5	41.5	45.2	47.8	4	42.1	39.8	37.5	31.5	28.4	37.7
5	(MIN)	12.8	14.1	15.4	19.2	22.4	27.1	27.3	25.3	22.2	16,6	12.8	10.9	18.8
Humidity	[MAX]	æ	86	26	\$	68	91	100	98	94	68	68	8	93.6
(%)	Ž Ž	28	ह	24	11	3	တ	11	24	25	¥	24	22	18.6
3) Hourty	Fluctuatic	n of Tem	perature &	3) Hourly Fluctuation of Temperature & Humidity in a	n a day		!							
Date≕	Maximur	Maximum 05.06.1996	966											
Типе (осеск)	(Clock)				4	5	9 ;	2			10		12	
Temperature	ure	37.8	37.6	38	36.9	36.6	35.9	36.4	37.5	39.3	41.2	43.8	46.9	
Humidity (%)	(%)	18	21	37	32	35	37	38	35	37	52	1,	`	
Trans. (ofclock)	Clock)	13	1.4	15	91	21.	18	61	. 20	23	22	8	24	Average
Temperature	ure	46.4	46.2	45.1	44.7	43.2	42.8	4	39.5	38.6	38.5	34.8	34.5	40.1
Humidity (%)	(%)	70	6	01	44	12	10	12	74	7.5	7,4	20	35	20.9
Date≃	Minimum		96											
(c) euri	Time (o'clock)	· · · · · · · · · · · · · · · · · · ·	5	2	4	3	9			Ŏ.	10	11	2	
Temperature	ure	16.1	13.9	11.7	12.7	13.1	13.1	13.2	16.6	20.5	22.6	22.7	83.3	
Humidity (%)	(%)	24	87	24	25	25	53	52	47	34	S	40	41	
Time (o'clock)	(clock)	13	14	15.	. 16	71.	. 18	- 19	. 20 :	 2	22	S	24	Average
Temperature	ire	23.4	23.1	23.2	ន	1.22	20.2	19.9	18.8	18.3	17.5	17.2	16.4	18.4

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman


5-3-a Peak Cut Operation Mode -Royal Hospital (Case 1)

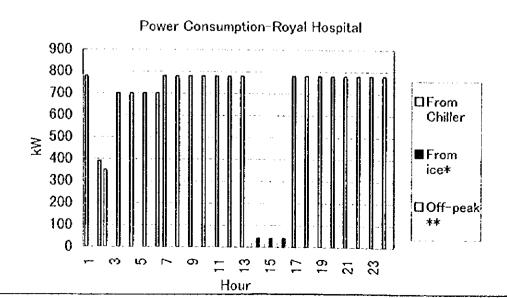
2x 270RTx 3,024 Kcal/h = 1,633 Mcal/h A/C presumed load factor=0.85

Linit:	Mcal/h	

				Unit: Mcai/h
	A/C	peration mo	de	Ice stored mode
Hour	From Chiller	From ice	Total	Off-peak
1	1,400	0	1,400	0
2	700	0	700	525
3	0	0	0	1,050
4	0	0	0	1,050
5	0	0	0	1,050
6	0	0	0	1,050
7	1,400	0	1,400	0
8	1,400	0	1,400	0
9	1,400	0	1,400	0
10	1,400	0	1,400	0
11	1,400	0	1,400	0
12	1,400	0	1,400	0
13	1,400	0	1,400	0
14	0	1,400	1,400	C
15	1.5	1,400	1,400	C
16	. 0	1,400	1,400	C
17	1,400	0	1,400	C
18	1,400	0	1,400	C
19	1,400	0	1,400	C
20	1,400	0	1,400	C
21	1,400	0	1,400	C
22	1,400	0	1,400	C
23	1,400	0	1,400	
24	1,400	0	1,400	
Total	23,100	4,200	27,300	4,725

The Study on Demand Supply Management for Power Sector
In the Sultanate of Oman

5-3-b Power Consumption by Peak Cut Operation-Royal Hospital (Case 1)


2x270RTx 3,024 Kcal/RT = 1,633 Mcal/h A/C load factor = 0.85

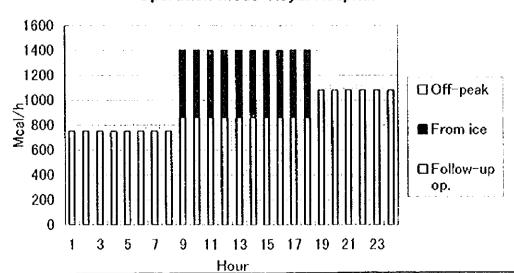
Unit: kW

*

	·			,	Offic. All
	A/C	operation m		Ice stored mode	Power Consumption
Hour	From Chiller	From ice*	Sub-Total	Off-peak **	Total
1	780	0	780	0	780
2	390	0	390	350	740
3	0	0	0	700	700
4	0	0	0	700	700
√5	0	0	0	700	700
6	0	0	0	700	700
7	780	0	780	0	780
8	780	0	780	0	780
9	780	0	780	0	780
10	780	0	780	0	780
11	780	0	780	0	780
12	780	0	780	0	780
13	780	0	780	0	780
14	0	40	40	0	40
15	0	40	40	0	40
16	0	40	40	0	40
17	780	0	780	0	780
18	780	0	780	0	780
19	780	0	780	0	780
20	780	0	780	0	780
21	780	0	780	0	780
22	780	0	780	0	780
23	780	0	780	0	780
24	780	0	780	0	780
Total	12,870	120	12,990	3,150	16,140

*included brine circulating pump of 401 ** included brine pump of 53kW

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman


5-8-c Load Leveling Operation Mode(8Hour Ice Making)-Royal Hospital (Case 2)

> 2x 270RTx 3,024 Kcal/h = 1,633 Mcal/h A/G presumed load factor=0.85 Gapacity of chiller: 70%(5x120HP)

Un <u>it:</u>	Mca	<u>l/h</u>
	_	_

			<u> </u>	Unit: Meal/h
	A/C ope	ration mode	9	lce stored mode
Hour	Follow-up op.	From ice	Total	Off-peak
1	0	0	0	750
2	0	0	0	750
3	0	0	0	750
4	0	0	0	750
5	0	0	0	750
6	0	0	0	750
7	0	0	0	750
8	0	0	0	750
9	860	540	1,400	0
10	860	540	1,400	-0.4
11	860	540	1,400	
12	860	540	1,400	7 · · · · · · · · · · · · · · · · · · ·
13	860	540	1,400	0
14	860	540	1,400	
15			1,400	
16				
17				
18				
19		0	1,080	
20				
21	1,080			
22				
23				
24				
Tota	15,080	5,400	20,480	6,000

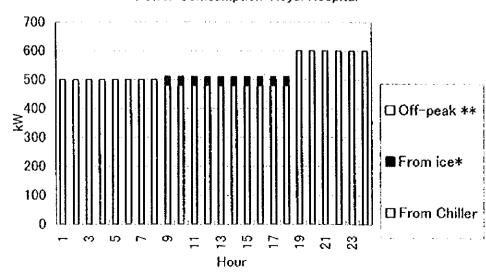
Operation Mode-Royal Hospital

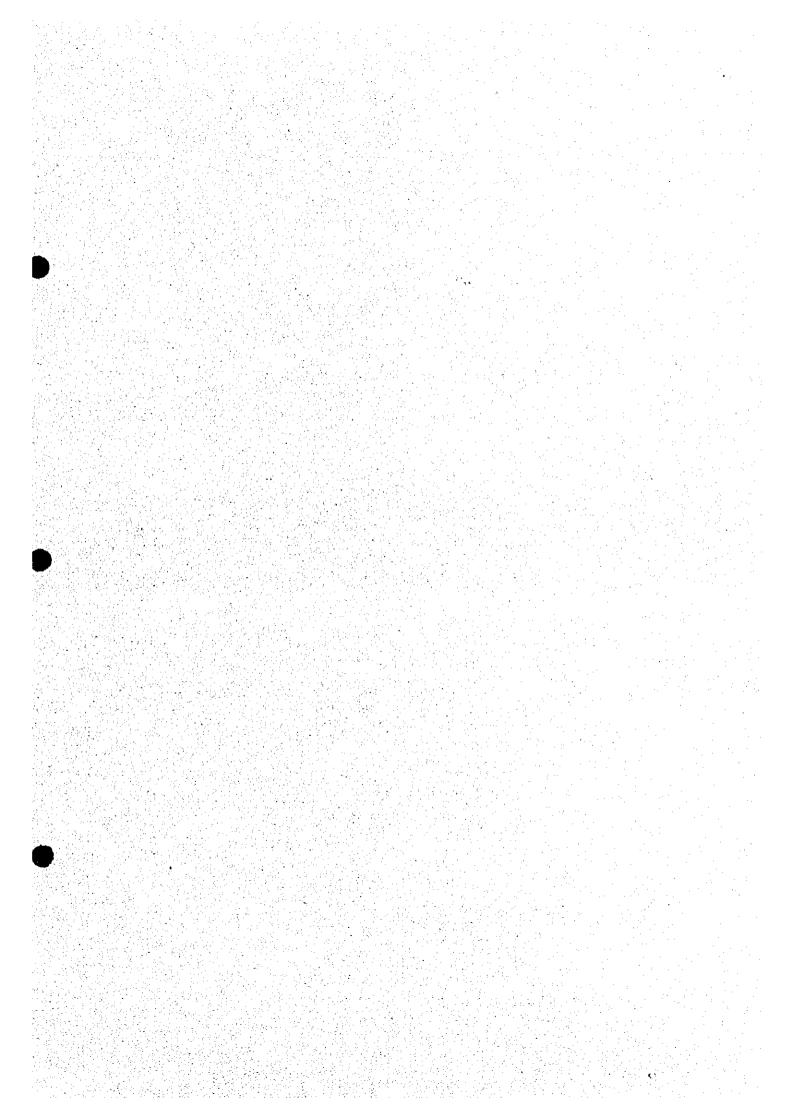
The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

5-3-d Power Consumption by Load Leveling Operation -Royal Hospital (Gase 2) Chiller capacity of 70%(5x12011P)

2x270RTx 3,024 Kcal/RT = 1,633 Mcal/h A/C load factor = 0.85

Unit: kW


1


I

	A/C operation mode			Ice stored mode	Power Consumption
Hour	From Chiller	From ice*	Sub-Total	Off-peak **	Total
1	0	0	0	500	500
2	0	0	0	500	163 4 1 4 58 H. H. H. 500
3	0	0	0	500	500
4	0	0	0	500	500
5	0	0	0	500	500
6	0	0	0	500	500
7	0	0	0	500	500
8	0	0	0	500	500
9	480	30	510	0	510
10	480	30	510	0	510
- 11	480	30	510	0	510
12	480	30	510		510
13	480	30	510	0	510
14	480	30	510	0	510
15	480	30	510		510
16	480	30	510		510
17	480	30	510	0.0	510
18	480	30	510	12 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	510
19	600	0	600	0	600
20	600	0	600	0	600
21	600	0	600	0	
22	600	0	600	0	
23	600	0	600	0	
24	600	.0	600	0	
Total	8,400	300	8,700	4,000	

*included brine circulating pump of 30 ** included brine pump of 38kW

