
Chapter 6
Electricity Tariff

6. Electricity Tariff

6-1. Tariff Structure Reform

6-1-1. Tariff System

In Oman, a single electricity tariff system is applied in the whole country. The tariff system has only consumption charge (kWh charge). Capacity charge (kW charge) is not introduced. There are several customer categories in the system; residential and government, commercial, agriculture and fishery, hotel and tourism, and industrial. Total accounts in Oman are about 380,000 and the biggest segment is the residential and government users whose electricity consumption (kWh) accounts for 80% of the total consumption. The second largest segment is the commercial users whose share is about 14%. In contrast, the industrial sector's consumption is only 3% of the total.

Table 6-1-1 Electricity Tariff in Oman

	Monthly Consumption	Tariff
Residential &		
Government	0-3000kWh	10Bz/kWh
	3001-5000kWh	15Bz/kWh
	5001-7000kWh	20 Bz/kWh
	7001-10000kWh	25Bz/kWh
	10000kWh over	30Bz/kWh
Commercial		20Bz/kWh
Agriculture &		
Fishery	0-7000kWh	10Bz/kWh
y	7000kWh over	20Bz/kWh
Hotel & Touri	ism 0-7000kWh	10Bz/kWh
110101 64 10411	7000kWh over	20Bz/kWh
Industrial	Summer (May-August)	24Bz/kWh
Industrial	Other seasons (Sept.—April)	12Bz/kWh

Not charged: Desalination and Mining

Table 6-1-2 Customer Distribution Profile

	Residential	Government	Commercial/ Others	Industrial	Total
Consumption (mil kWh)	3,246(57.7%)	1,264(22.5%)	930(16.5%)	181(3.2%)	5,623
Accounts	290,689(76.9%)	20,442(5.4%)	66,780(17.7 %)	35(0.0%)	378,046

In Japan, the electricity tariff system consists of capacity charge and consumption charge to reflect actual cost structure more accurately. Many countries have such a tariff system. With a capacity charge, the amount of electricity demand (kW) needs to

be measured and monitored. In case the kW demand exceeds the limit which is set by contract, the electricity supply may be disconnected or a surcharge is imposed. Electricity users naturally pay attention to how much they are using and try to keep the kW demand within the limit. Without a capacity charge, it is difficult to expect that people would manage their electricity consumption under a preset limit. It is recommended to introduce a capacity charge to large-scale customers, in particular, which will evoke people's consciousness toward efficient use of electricity.

6-1-2. Residential Tariff

In Oman, the largest segment in electricity tariff is residential tariff. The residential tariff, which generates more than 80% of electricity revenue in Oman, is applied not only to households but also to government and corporate offices. It is, therefore, first priority to consider a reform of residential tariff in order to increase revenue.

A progressive tariff system, which has higher rate for larger consumption, is adopted for the residential tariff. In principle, this system aims at providing lower income households with minimum but necessary amount of electricity at a discounted rate to sustain their living (lifeline tariff). In return it charges affluent families, who always use more electricity than average people, higher rates to offset the discount. It works to rectify the income disparity and also to discourage overuse of electricity by the upscale families.

The progressive tariff system is also used in Japan. The residential customers in Japan are charged based on the formula shown below (Figure 6-1-1). With the three-stage rates, wealthy families pay more for their more-than-average consumption. The premium margin of the most expensive rate covers the foregone revenue caused by the discounted rate. In Japan's system, the limit for the first stage rate is only 120kWh per month. This number is determined by a statistical survey on basic electricity consumption for TV, refrigerator and so on.

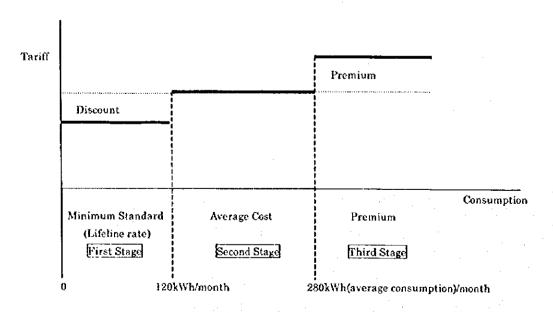


Figure 6-1-1 Residential Tariff in Japan

Before making any decision to modify the current residential tariff, it is required to examine the actual consumption pattern of average household. By analysing this data, the impacts of tariff reform to customers can be predicted. Also, it would be possible to estimate the amount of revenue increase.

In Oman, an average household consumes 12,000kWh per year, which is extremely large compared to Japan. A data set is collected to identify monthly consumption profile of middle income families, who use approximately 12,000kWh per year. It includes more than 30 data samples gathered in the Muscat area. The result is shown in Figure 6-1-2.

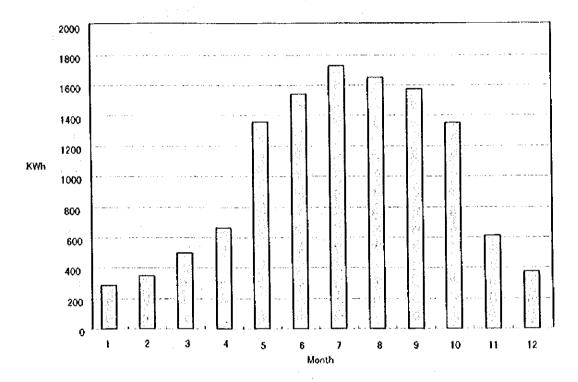


Figure 6-1-2 Annual Electricity Consumption by Standard Household (model)

It is clear from the above graph that in the off-peak season, when air conditioning is basically not necessary, the monthly demand is only around 300kWh. In contrast, from May to October air conditioners are in full operation pushing up the monthly consumption to 1,500 to 2,000kWh level. This can be interpreted that the basic electricity demand of average family other than air conditioning is around 300kWh, which includes lighting, TV, refrigerator, washing machine and so on. On top of this, an extra demand for air conditioning is added during the peak season.

An important finding is that even in the peak season average household does not consume more than 2,000kWh per month. As a result, the discounted first stage rate is applied to those families throughout a year fulfilling the policy objective of social welfare. Even higher income families who are using 2,000kWh to 3,000kWh per month enjoy the discounted price. When the residential tariff reform is planned, it is

necessary to consider this point. Lowering the limit of 3,000kWh should be viewed as easy to justify, because this change does not affect average families. Also, it is important to introduce fixed charge system like the telephone tariff schedule which has a constant charge per month. There is a rationale for the introduction of fixed charge because electricity distribution cost such as low voltage network takes a significant part of total electricity supply cost.

Other issues to be examined are as follows:

a. During the summer season, monthly bills go up significantly; seven to ten times higher than that of off-peak season. For example, an average family needs to pay about 20RO in the summer season, which is substantially big in their monthly household expenses. In winter they only pay about 3RO. The big monthly bill may trigger meter tampering and other illegal practices in which the consumers willfully steal electricity. In order to cope with this problem, accepting deposits may be effective. When the customers pay some deposits during the off-peak season, they should be given some discounts. This program would be fairly easy to implement, because a computerized customer data base has already been operating.

b. In Oman the seasonal fluctuation of electricity consumption is very large. There may be an argument whether or not a single residential tariff throughout a year is appropriate. In the winter season when the electricity consumption level is low and a significant part of generation facilities are being idle, the premium rate may not be necessary because it works to discourage electricity consumption. Rather, it would be more beneficial if MEW promotes electricity consumption during the off-peak season by lowering the overall electricity rate.

Figure 6-1-3 indicates the distribution profile of monthly residential consumption. In this graph all the monthly consumption data from January to December are included. It should be noted that 86% of monthly residential consumption falls in the first stage rate. More precisely, 42% of residential consumption is in the range from 0 to 1,000kWh, 28% from 1,001 to 2,000kWh and 16% from 2,001 to 3,000kWh accordingly. There will be a substantial revenue increase if the limit of 3,000kWh is lowered because most of the residential consumption falls in the current first stage rate. As is clear from the previous analysis, the average household consuming 12,000kWh per year gets no impact even if the threshold is lowered to 2,000kWh.

After considering these issues, it is recommended to lower the threshold of 3,000kWh for the first-stage rate to 2,000kWh per month. By this change, the current rate of 10Bz/kWh would go up to 15Bz/kWh for 16% of the total residential demand, which is 520 million kWh. The expected revenue increase will be about 2.6 million RO per year. If this tariff revision is implemented, those who are using more than 2,000kWh per month will be more or less affected. For example, those who are consuming 3,000kWh per month during the summer season will have to pay 5 RO (5Bz/kWh x (3,000-2,000)kWh) more, from 30RO to 35RO, in a month. The number of wealthy households and government offices who will be affected would be approximately 50,000 to 60,000, depending on many conditions such as the summer time temperature.

Changing other thresholds is not recommendable. It would only generate minimal

revenue increase, because the electricity consumption in higher slabs is very small. (See Figure 6-1-3)

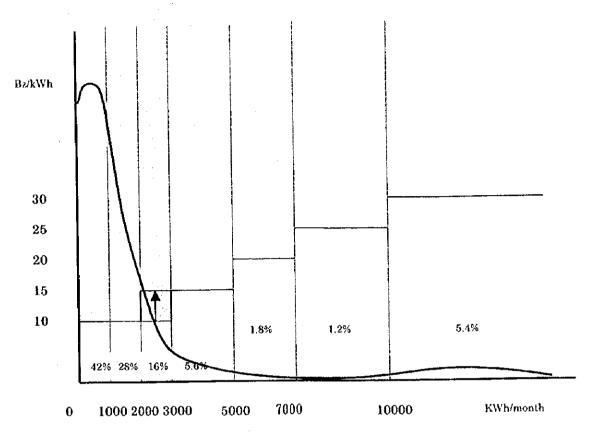


Figure 6-1-3 Consumption profile and overview of proposed tariff

In addition, a small fixed charge of 1RO per month is also recommended. This fixed charge will be applied to all the customers. For the long run, it is advisable to raise the fixed charge and, in return, to lower the consumption charge in order to reflect actual cost structure. This would also contribute to making the fluctuation of monthly payment smaller, which will be well received by the public. The expected revenue increase by introducing a 1RO fixed charge will be 4.5 million RO. If this fixed rate is applied only to households, the revenue increase would be 3.5 million RO. Given all these considerations, a new residential tariff is proposed as follows. (See Table 6-1-3)

Table 6-1-3 New Residential Tariff (draft)

Proposed Ta	riff	Current Tariff		
Fixed Charge	1 RO/month			
Consumption Charge 0-2000kWh 2001-5000kWh 5001-7000kWh 7001-10000kWh 10000kWh over	10Bz/kWh 15Bz/kWh 20Bz/kWh 25Bz/kWh 30Bz/kWh	0-3000kWh 3001-5000kWh 5001-7000kWh 7001-10000kWh 10000kWh over	10Bz/kWh 15Bz/kWh 20Bz/kWh 25Bz/kWh 30Bz/kWh	

As a result of lowering the first-stage threshold, the payment of those who use more than 2,000kWh per month will increase. Such families are regarded to be in the rich segment and can afford higher bills. In principle, the second-stage tariff should be applied to those who consume more than average. At the same time, this change would further accelerate the energy conservation among wealthy households.

Another important issue regarding the residential tariff is the fact that government and corporate offices are applied the same tariff. They are charged in the same way as residential customers. The monthly electricity consumption by these offices is far more greater than family use. Consequently, those offices are mostly charged the highest rate of 30Bz/kWh. It is difficult to find a good reasoning for the extremely high pricing to government and corporate offices. They should be separated from the residential customers and charged by a different tariff which is tailored for large-scale users.

6-1-3. Large-scale Customers

Commercial and industrial tariff should be analyzed not only from financial viewpoint but also from the considerations of industrial development and international competition. The electricity charge for commercial and industrial users in Oman is relatively high compared with other Gulf counties (See Table 6-1-4). Because of this, it is difficult to raise the industrial/commercial tariff for the time being. Furthermore, it cannot be explained why industrial users have to pay more than residential users. Based on the marginal cost theory, the current tariff system cannot be justified and residential users should pay more. This consideration does not also support any attempt to raise the industrial/commercial tariff.

1

Table 6-1-4 Industrial Electricity Cost in the Gulf Region

	cent/kWh
Bahrain	0.030
Kuwait	0.005
<u>Oman</u>	0.030-0.060
Qatar	0.020
Saudi Arabia	0.030
UAE	0.020

The most important revision to be made for large-scale customers is setting up a special tariff for government and corporate offices. As stated earlier, they are now charged with the residential tariff, which is difficult to justify. Comparing with the industrial and commercial customers, who are paying about 16Bz/kWh and 20Bz/kWh respectively, the average rate for government and corporate offices, about 30Bz/kWh, is extremely high. Of course, the demand for electricity in office, mostly during office hours, is undoubtedly contributing to the summer daytime peak. For this reason, office use should be charged a higher rate compared with other consumers. All these considerations would suggest that it is strongly recommended to establish a new tariff system for offices and lower the current rate to around 25Bz/kWh, which seems to be quite reasonable. At the same time, it is necessary to consider how to depress the summer time consumption. Lowering the tariff might have an adverse impact of increasing electricity consumption even in peak hours. In this regard, seasonal tariff system, which is already applied to industrial users, may be a good solution. As MEW

would face revenue decrease because of this revision, the new office tariff should be gradually implemented along with the improvement of cost structure to avoid worsening the financials of MEW.

6-1-4. Tariff System for Load Leveling (1) Time-of-Use (TOU) tariff

In Oman there are two peaks of electricity demand in a day during the summer season, which occur around 3 p.m. and 11 p.m. respectively. The afternoon peak is slightly higher than the midnight peak. With this unique load curve (See Figure 2-1-1), it seems difficult to establish a TOU tariff system. In theory, two peak time zones and two offpeak time zones should be established in a day. But this is too complex and consumers would have difficulty in managing their electricity consumption.

Introducing a TOU tariff for load leveling requires in-depth considerations on target segment and their way of using electricity. In general, only large-scale customers can take advantage of TOU tariff because they can change operation mode in a day or invest in special equipment to utilize cheap electricity during the off-peak hours. It is difficult for residential customers to shift their peak-time electricity consumption to off-peak hours. It is, therefore, recommended to introduce a selectable TOU tariff system for the large-scale customers as a first step. It is expected that some large-scale customers will choose the TOU tariff and start using heat storage technology or switching to other energy sources to reduce their expense on energy.

The time zone of TOU tariff should be structured as simple as possible. One idea is to set a peak time zone only in the daytime of summer season. MEW would benefit if the daytime demand growth in the summer is squeezed, because the highest peak demand appears in the daytime and will grow more rapidly than the second peak at midnight. The most important issue is how to cut down the daytime peak demand for electricity. The electricity consumption of large-scale users during mid-night peak hours is not a big amount, which supports the idea of having only one peak time zone in the daytime. The TOU tariff should be tailored to maintain consistency with the current tariff system; with the industrial tariff (24Bz/kWh in summer and 12Bz in other seasons) in particular. The off-peak rate can be set as low as fuel cost per kWh. The current fuel cost is about 9Bz/kWh in case of gas turbines. Given this, it would be possible to set the off-peak rate at 10-11Bz/kWh taking transmission losses into account. In return, the peak rate should be set higher than the current rate.

There may be some customers who can take advantage of this new TOU tariff without changing their consumption pattern. In order to prevent these customers from using the TOU tariff, a special checking mechanism should be developed. For example, an application form should be filled out and checked by MEW officer. MEW needs to review the customers plan to use TOU tariff before making a decision to accept the application for TOU tariff. If there is no DSM effort, MEW should turn down the application.

One example of TOU tariff is shown in Table 6-1-5.

Table 6-1-5 TOU Tariff (draft)

Industr	ial TOU	Office Building TOU			
New Tariff	Current Tariff	Current Tariff New Tariff			
May to October 10am-5pm 30Bz Other period 10Bz	May to August 24Bz Other months 12Bz	May to October 10am-5pm 50Bz Other period 10Bz	KWh per month -3000 10Bz/Kwh -5000 15Bz -7000 20Bz -10000 25Bz 10000 over 30Bz		

(2) Special contract system for load leveling

Apart from the TOU tariff, special contract programs can be introduced to improve the load factor, and to reduce the costs of power supply eventually. Electricity price discount will be rewarded for users who can contribute to load leveling. These programs, which are common in developed countries, would be also applied to large-scale users (cement, chemical, textile, etc.). The rationale here is to give financial incentives to customers who will contribute to peak shaving and/or peak shifting. The load leveling effort will help MEW reduce their future investment as well, but at the same time the customers will benefit from the discount. Both MEW and customers will share the benefits.

In Oman, there are few large-scale customers. It would be easy to pick out potential large-scale customers who will be able to change their consumption pattern. The detailed examination on how they use electricity is required before formulating contents of new contract. There will be various ideas on the form and amount of financial incentives. Some basic ideas for the special contract system are shown below:

- · Discount for high load factor users
- Discount for changing operation hours
- · Discount for accepting load shedding in case of power shortage

6-1-5. Long-run Marginal Cost

Long-run Marginal Cost (LRMC) can be calculated from the value of future demand growth and necessary investment for power supply facilities. Namely, long-term (five to ten years) demand growth, both in terms of kW and kWh, and corresponding fixed cost and variable cost of new power facilities need to be estimated. The estimated numbers are discounted to the present value. The present value divided by the cumulative kW and kWh represents approximated value of LRMC. Based on the investment plan in this report, which addresses demand growth and investment projects, a preliminary study on the rough estimate of LRMC was conducted. In this study, it is assumed that a constant level of investment to meet demand growth will be executed every year. Financial data such as construction costs, fuel costs and losses in the Fichtner report are reviewed and updated as much as possible. Other assumptions are shown in Table 6-1-6.

Table 6-1-6 Assumptions for LRMC Calculation

Period	From 1998 to 2006	Gas Turbine Generation	160RO/kW
Demand growth	5%/year	Diesel Generation	250RO/kW
Load factor	50%	Transmission & Distribution	240RO/kW
Power Station use	5%	Discount rate	8%
Total loss	17%		

Based on these assumptions, the Long-run Marginal Cost of electricity in Oman is calculated to be 25.5Bz/kWh. This is about 70% higher than the current average sales price of 15.06Bz/kWh. The high LRMC attributes to the dependence on expensive diesel generation in the local networks, the low plant factor, and the high loss ratio. However, the recent trend of falling gas turbine price mitigates these problems. If the electricity tariff in Oman is going to comply with the principle of adjusting to LRMC, the average tariff would be raised by more than 50%. In particular, the residential tariff should be raised much higher because residential customers are supposed to bear the low voltage distribution cost which is an additional cost in case of low voltage connections. It would be difficult to get the acceptance of general public. The tariff adjustment to LRMC, therefore, is very unlikely from the political viewpoint.

The Long-run Marginal Cost in different time zone can be also calculated. This will be a good benchmark for designing a TOU tariff structure. In order to calculate LRMC in the peak hours, for example, the demand growth during the peak time and also the required amount of investment should be clearly defined. There may be many ideas on how to allocate the investment costs into peak and off-peak hours. One idea is to allocate all fixed costs to peak time demand. This, however, leads to huge difference between peak and off-peak LRMC. In this study, therefore, a moderate idea that fixed cost is to be proportionally borne between peak and off-peak is adopted. Assuming that peak hour represents one-fourth of total hours, six hours in a day, 75% of total demand (kW) growth is allocated to the peak hours. The remaining 25% of demand growth is regarded as base load growth. As for the variable cost, the fuel consumption mode in peak and off-peak hours should be studied. In Oman, however, there is no clear difference in the plant operation between peak and off-peak hours. Either gas turbine or diesel generator, depending on electricity network, is used for both peak and offpeak hours. Hence, it can be concluded that variable cost (per kWh) would be equal in the two time zones. Given all these considerations, peak time LRMC and off-peak time LRMC are calculated to be 46.0Bz/kWh and 14.8Bz/kWh respectively.

6-2. Electricity Metering

The electricity losses in Oman are large, reaching around 17% in the Muscat system for example. The non-technical losses including meter tampering and measurement errors due to wear are regarded to be as high as 9%. MEW should recognize the problems related to metering and take appropriate counter measures to reduce losses and increase electricity revenue.

In Oman, electricity meter belongs to house owner, not to MEW. Newly built house or apartment is equipped with electricity meter at owner's expense. MEW engineer will visit and check the new meter before using. A seal is placed to prevent tampering. Once installed, electricity meter is used for many years unless any problem is identified by MEW engineer or meter-reader. As a result, many old meters, used for more than twenty years, can be found in old districts. In Japan, utility companies install meters and replace with new meters every ten years to maintain the accuracy of measurement.

1

1

Meter reading is conducted every month. Oman Investment and Finance Company (OIFC) has been working for MEW to read meters, to record consumption data, to send out monthly bills and to collect monthly payments. One meter reader is assigned to one district which has about 750 customers. Each customer has a code number and consumption record is kept in a computer data base. When a questionable record is found, the meter reader will check the past record and may visit again to find out the cause of problem. There are many advantages in this practice; the same meter reader working in his district for many years. He becomes aware of the people in his district, and can find a problem easily based on his long experience. This practice, however, may have shortcomings. A meter reader can collude with his customers to cover up problems.

6-2-1. Remote Metering System

Owing to the development of electronics technologies, remote metering system has been put in actual operation where the labor cost for meter reading is high. This technology is often used in the United States, because visiting each customer in a less populated area is more expensive than investing in the remote metering system. In Japan, the system is also used, but in special cases such as remote island or auto-lock condominium. The labor cost in meter reading is still low compared to the cost of remote meter reading system. As a result, the large-scale introduction of remote metering system is limited. Furthermore, the special meter has electronic parts and their durability is not as good as mechanical parts. Proper maintenance is a prerequisite of this system.

In Oman, the remote metering system is considered as a means to prevent meter tampering. If it is to be used to monitor meters to find out unidentified tampering cases, the remote metering system should be installed at each household. This would require huge amount of up-front investment and special maintenance work afterwards. In addition, the low labor cost in Oman will not justify the idea of cost reduction by remote metering.

6-2-2. Maintenance and Monitoring

The potential problems associated with electricity meters are illegal tampering and measurement errors. Both forego electricity revenue, and hence MEW must take appropriate measures to deal with them.

(1)Tampering

There are several different ways of meter tampering which have been all identified by MEW. Most of them are simple, and easily found by checking meters cautiously. In most cases, tampering seems to be suspended a few days before the day of meter reading. To cope with this problem, it is recommended to make a

surprise visit to customers occasionally and also to develop computer software which can pick out suspected cases. MEW and OIFC should discuss these issues and revise the current contract as needed.

(2) Error due to wear

T

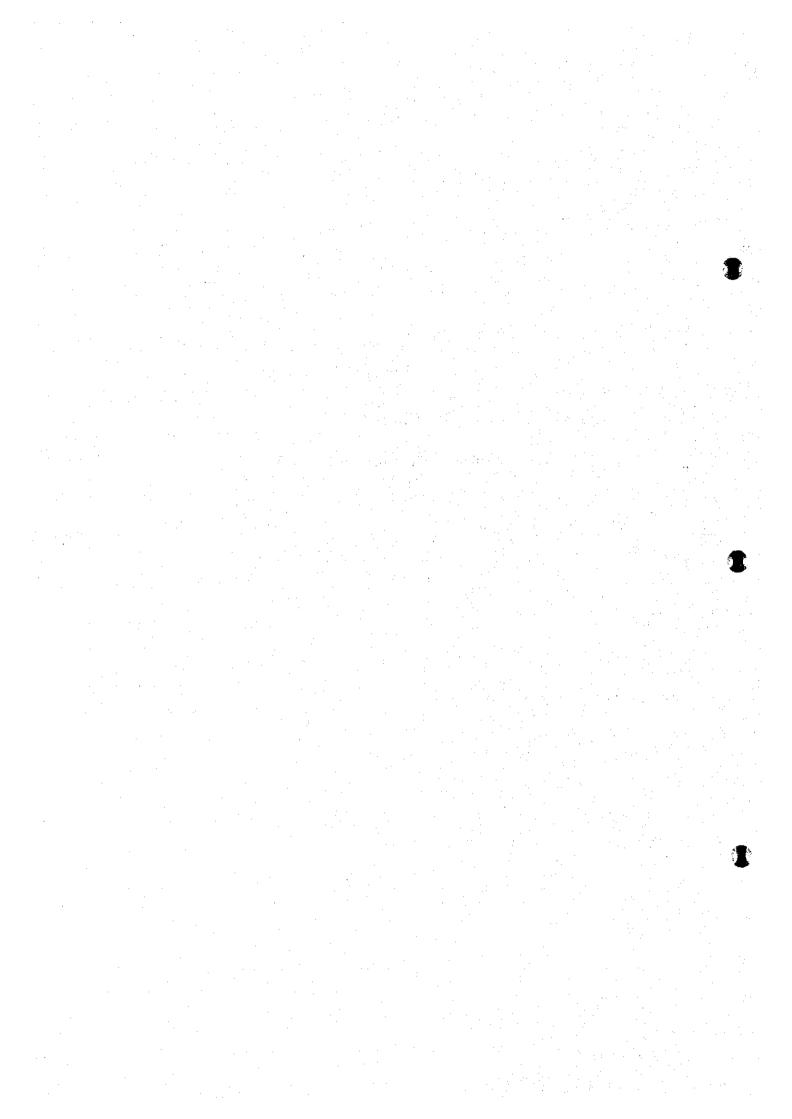
In order to identify errors of old (being used for more than twenty years) meters, samples were tested. (See Table 6-2-1)

Table 6-2-1 Results of old meter testing

No.	Manufacture/country	Years in service	Error(%)
1	Mitsubishi/Japan	18	-8.1
2	Ferrnti/England	20	-1.0
3	Landis&GYR/England	20	
4	Floton/England	20	-4.3
5	Landis&GYR/England	26	-12.0
6	Siemens/Germany	26	-4.5
7	Siemens/Germany	26	-1.4
8	English Electric/England	23	
9	GEC/England	21	-0.6
10	Siemens/Germany	29	-0.5

It is premature to draw a conclusion from this small size of samples, but it can be said that many old meters still show good record. On the other hand, some meters have more than 10% negative error. It is estimated that there are about 50,000 meters, 15% of total accounts, which are used for more than twenty years in Oman. If we assume that those old meters have 4% negative error on average, the foregone revenue every year would reach 500,000RO; 0.6% of the total revenue.

It is not feasible to check every old meter because a lot of time and money are required. The only viable solution is to replace all old meters with new ones. If MEW is going to replace 10,000 old meters every year at their expense, annual budget of 200,000RO is needed. After five years, the foregone revenue will be fully recovered. This project, replacing old meters, is strongly recommended because its Net Present Value (NPV) over the next twenty years is 2.85 million RO. (See Annex 3-3-v)


のない

....

Î

Chapter 7 Optimal Promotion Program

.

7. Optimal Promotion Program

7-1. Optimal SSM Promotion Program

Recently in Oman, the Muscat and Wadi Jizzi systems have been confronting a shortage of power supply because of substantial growth in demand for electricity, especially airconditioning. Accordingly, the systems are forced to do load shedding at the summer peak. During the 1997 summer peak, the Wadi Jizzi system did load shedding 10 times at a maximum of 50MW. But in 1998, power supply shortages became worse and load shedding occurred almost everyday. More power supply needs to be secured immediately in preparation for the next summer.

Measures for coping with this situation, on the supply side, have been considered resulting in the following discussions.

7-1-1. Measures for Present Situation

I

(1) Gas Turbine Output Improvement by Water Injection

Injecting water directly into the gas turbine (GT) fuel chamber increases output. Injection water equal to 2.5% of air volume at the compressor inlet provides about 13% increase in output.

Table 7-1-1 Output increase and water tank capacity

Object	Units	Output Increase (MW)	Tank Capacity (t)	
Ghubrah PS	GT 1~11	29.1	800	
Rusail PS	GT 1~6	93.8	2,200	
Wadi Jizzi PS	GT 3~11	29.1	800	

Extra supply capacity can be secured for the 1999 summer peak by completing construction of water injection system during the 1998 off-peak season.

Increasing Output;

152 MW

Investment Cost;

7.33 mil RO

NPV of water injection

15.4 mil RO (1999-2018)

(2) Preventative Counter-Measures against Voltage Swing due to Load Drops

Occasionally, the load has dropped out on long, rural transmission lines during the summer peak. Examinations concluded that this problem was caused by a shortage of reactive power, not by a collapse in voltage stability or by reaching transmission limits. Preventative measures call for the immediate installation of static capacitors (SC) to improve the power factor and increase the voltage of the 132KV transmission system. The conclusions are as follows.

Total Investment for voltage problems: 0.6 mil RO

Table 7-1-2 Problems and Measures for 132KV System

Name	Problems	Measures
Barka SS 33kV Bus	Low Voltage	Install 10MVA SC
Musanna SS 33kV Bus	Low Voltage	Install 40MVA SC

Table 7-1-3 Problems and Measures for 33KV System of Musanna SS

Name	Problems	Measures	Remarks Already planned (132KV transmission line)	
Khaborah fdr-2	Limit of transmission	Introduction of 132kV transmission line		
Rustaq-2 SS 11kV Bus	Low Voltage	Install 5MVASC		
Sana Bani Gafar SS 11kV Bus	Low Voltage	Install 3MVASC		
Suweiq-2 SS 11kV Bus	Low Voltage	Install 5MVA SC		
Marble Factory SS 11kV Bus	Low Voltage	Install 3MVA SC		
Wadi Jawahir SS 11kV Bus	Low Voltage	Install 3MVA SC		

7-1-2. Securing Mid- Long Term Power Supply and Measures for Cost Reduction (1) Interconnection between the Muscat System and the Wadi Jizzi System

(DBenefits of interconnection

a. Reduction of spinning reserve

After interconnecting both systems, the spinning reserve, equivalent to the capacity of the largest unit, can be shared and generation capacity can be reduced. Also, the total capacity can be reduced due to the diversity of the two systems.

Reduction of generation capacity:

176 MW (2001~2018)

b. Construction investment for the interconnection line

Investment in interconnection line and sub stations: 7.53 mil RO

NPV of net reduction of investment costs:

15.29 mil RO(2001~2018)

c. Reduction of fuel expenses by GT operation at higher efficiency

With this interconnection, the gas turbines in the Wadi Jizzi system can be operated at a higher load factor corresponding to the elimination of spinning reserve. Interconnection also leads to remarkable reductions in fuel expenses.

NPV of reduction of fuel expenses:

15.54 mil RO (2001~2018)

NPV of Interconnection;

30.82 mil RO (1998 price)

Relief power can be interchanged between both systems in case of emergency.

Timing of Interconnection

Interconnection should be done quickly. But no relief power is available now because both systems face a shortage of supply power. We recommend to interconnect the two systems by 2001, when enough power supply can be secured. It is also recommended to introduce the central load dispatching center at the same time.

(2) Fuel Cost Reduction by Economical Operation and Central Load Dispatching Center

()Reduction of annual fuel expenses by economical load dispatching

The economical operation program has been developed and transferred. Principles of the operation are summarized below.

- a. More efficient base units (Ghubrah PS 12,13 & Rusail PS 4~6,1~3) operate at full output one-by-one to meet the hourly demands.
- b. Next to them, peak units (Ghubrah PS 10,11,1~9) operate at higher output as much as possible, securing a spinning reserve equal to the capacity of the largest unit.

Compared with the current operation during a typical summer day, the Muscat system can reduce fuel expenses by 3.5% using the economical operation program.

Table 7-1-4 Comparison between economical and actual operation (1-8-1997)

		Actual Operation	Economical Operation
Base Units	Ghubrah PS(1213)	90 MW	94 MW
Average Output	Rusail PS (1~6)	62	69
(MW)	Average	69	75
Average Spinning	<u> </u>	201	159
Gas Fuel Cost / D		107.4	103.6

Savings of fuel expenses after the introduction of the economical operation program have been estimated using the load curve for a typical year. The result is as follows:

During the peak season, there is no room to change the operational pattern. Almost all units operate at full output in order to meet the high loads. The amount of saving is about 3.5%.

During the off-peak seasons when the load is fairly low or load fluctuation is large, economical operation results in a savings of $6\sim14\%$ because more efficient units can be selected to work in parallel. Average fuel savings per day for one year are about 7%.

②Introduction of central load dispatching center

The further system capacity increase requires improved supply reliability and more economical operations. Introducing a central load dispatching center is recommended when the system interconnection between the Muscat and Wadi Jizzi systems is completed. Benefits of introducing the central load dispatching center are shown below:

Reduction of fuel expenses (7% of gas fuel)

Investment cost of CLDC

NPV of central load dispatching center

1.8 mil RO / year

4 mil RO

20.9 mil RO (2001-2018)

Table 7-1-5 SSM Summary Table (Muscat/Wadi Jizzi System)

0	Total			71,670	58,030	•	78,950	49,960	12,130	270,740
) Investment; 1000 RO	2010	2563	2705	.GT11 (13,850)	.GT17 (13,850)				Battery Storage (2,500)* (not included)	27,700
restment;	2009	2489	2628	·GT10 (13,850)	·GT16 (13,850)		:			27,700
) Inv	2008	2416	2595	·GT9 (13,850)				.GT16 (13,850)		27,700
~	2002	2344	2507				·GT4 (13,850)			13,850
m)	2006	2271	2431				·GT3 (13,850)			13,850
zı əystei	2005	2197	2337	·GT8 (13,850)						13,850
waan Jiz	2004	2122	2243		·GT15 (13,850)		·GT2 (13,850)		·	27,700
Muscat	2003	2046	2160		·GT14 (13,850)					13,850
y Table (2002	1946	2118				.GT1 (37,400)			37,400
SSM Summary Table (Muscat wadı Jizzi System)	2001	1843	2024					-GT15 (13,850)	Interconnection (7,530) -CLDC (4,000)	25,380
d-1-5	2000	1773	1930			·GT4,5 (·····)		·GT14 (6,660)		099'9
Table 7-1-5	1999	1596	1806	.GT7 (13,850) .Water Injection. (2,420)	Ghubrah PS ·Water Injection (2,630)			·GT12,13 (13,320) ·Water Injection (2,280)	Static Condenser (600)	35,100
		(MM)	ty (MW)	Rusail PS		Manah PS	Barka PS	Wadi Jizzi PS	tion Line Dispatching IC) etc.	ta
		Peak Demand (MW)	Supply Capacity (MW)		Generation Expansion				Interconnection Line • Central Load Dispatching Center (CLDC) etc.	Total Investment
		Pe	ß		:	Project	160			Tot

Table 7-1-6 Introduction of Central Load Dispatching Center

	Pirst Step	Second Step
Timing of introduction	At the time of Muscat system and Wadi Jizzi system interconnection	Puture
Central Load Dispatching Center	Introduction of demand-and-supply operation program • Economical load dispatching • Power flow monitoring Introduction of system monitoring panel (132kV system) Introduction of automatic record- keeping program.	Introduction of the system control program
Regional Control Center	Reinforcement of regional control center	Introduction of system monitoring panel (33kV system) Introduction of automatic record keeping program. Introduction of remote switching system Introduction of automatic recovery operation system
Others	Organizational set up Operator training	

7-2. Optimal DSM Promotion Program

(1) Objective of DSM Promotion

Promotion of DSM is to encourage customers to implement certain power utilization pattern for rationalizing power consumption pattern. DSM is also desirable to both the electric utilities and the customers or to the country as a whole. The measures for this DSM are as follows:

- · Reduction of power load through the use of alternative energy sources;
- · Load leveling on the customer side(peak cutting, peak shift and bottom up of off peak load);
- · Introduction of higher-efficiency energy utilization (energy-saving) systems;

New tariff system, special contract system and promotion organization (support organization and subsidy system etc.) are good measures for inducing customers.

(2) DSM Technologies

Technical measures applicable in Oman for accomplishing the above-mentioned objective are as follows:

(DReduction of power load through the use of alternative energy sources (peak cut) Gas cooling and photovoltaic power generation.

②Load Leveling (peak shift)

Ice thermal storage cooling, battery energy storage, and demand and supply adjustment contract (one of tariff contracts).

3 Introduction of energy saving systems

Higher-efficiency appliances(air conditioner), co-generation systems and thermal insulation of buildings.

(3) Specific Promotion Program

In Oman, the cooling demand accounts for a large percentage of power demand. Of the above mentioned DSM technologies, we mainly examined technologies that have attained a high level of technical maturity and have been disseminated in foreign countries in recent years, and technologies for using natural gas and solar light that are abundant in Oman. In particular, we examined design conditions of the following, by making case studies of some existing buildings, and assessed economic effects:

Gas cooling and co-generation with gas:

Ice thermal storage cooling system;

Photovoltaic system.

Moreover, the promotion organizations were also studied. The findings are as follows.

(4) Gas Cooling and Co-generation System

Effects of introducing a gas cooling system, using natural gas as energy source, are expected to be energy conservation and reduction in energy cost at the demand end. At the supply side, too, improvement of plant factor and deferral of constructing generating equipment are expected to reduce electricity supply cost. By these merits, the systems using natural gas are themes to be coped with. The results concerning the model buildings show that the gas cooling system would be more economical than the electrical system in large scale buildings.

However, in Muscat, there are high pressure natural gas supply pipelines only for the power generation plants and other limited sites. There is neither city gas supply network nor a plan for that. Therefore, in order to facilitate gas cooling in Oman, it is desirable to have a project for developing a town gas supply network in the area where electricity load density is high; office building districts and shopping centers.

Promotion program

In the Royal Hospital, the economic effect of introducing gas cooling through cogeneration is large. In addition, the hospital is located very close (less than 1 km away) to the existing high pressure natural gas pipeline. Hence, the introduction of gas cooling system is easy to be introduced, and it is desirable to promote the project of Royal Hospital prior to the development of the town gas supply network. Proposed financing plan, only for gas supply, is as follows.

 Construction of a gas line from a high pressure gas pipeline branch station to Royal Hospital: 60,000 RO (budge of Royal Hospital) 1

• Construction of the high pressure gas pipeline branch station: 1,500,000 RO \sim 1,900,000 RO (budge of MOG)

(5) Ice Thermal Storage Cooling System

Through load leveling by the introduction of ice thermal storage cooling systems, construction of new power supply facilities can be controlled. At the same time, the capacities of power receiving facilities can be reduced. IF the TOU tariff is introduced, customers can take advantage of inexpensive electricity during off-peak period.

The results of economic evaluation are as follows.

Case 1: The construction costs per kW of a gas turbine is subsidized by MEW for rewarding power (kW) reduction.

Case 2: Load leveling operation is conducted, and as for the rate for ice thermal storage operation, the time of use (TOU) rate system is applied. In both cases, the NPV were slightly negative and they were not economically feasible. The reason for this economic difficulty with the ice thermal storage cooling system is as follows.

The load fluctuation is about 68 % between the peak period and the off-peak period of summer. It is not very large. Both the peak period and the off-peak period occur twice a day, and the resulting load fluctuation is complicated. As a result, the period of ice thermal storage operation for making ice is limited. In Case 2 where the TOU rates system is introduced, the period of ice thermal storage operation was assumed to be eight hours. Considerable efforts are needed for proper operation management. Furthermore, the construction cost of gas turbine power plant is as low as 160 RO per kW. The electricity rate is also low. Hence potential measures for promoting the ice thermal storage cooling system are limited.

Promotion program

As described above, it is concluded that the introduction of ice thermal storage cooling system is not economically feasible at the moment. However, the results in Case 2 are very delicate. Depending on promotional measures, Case 2 may become feasible in the future. It is recommended, therefore, to reconsider the implementation plan in the future when electricity tariff is revised and other policy measure are prepared for load leveling.

(6) Photovoltaic System

Generally the daily load peak occur during the period of maximum output of photovoltaic system. Hence, it is possible to achieve load leveling through photovoltaic (peak shaving). Furthermore, fossil fuels is substituted by energy of solar radiation, a renewable energy source. Energy resources available on earth can be saved.

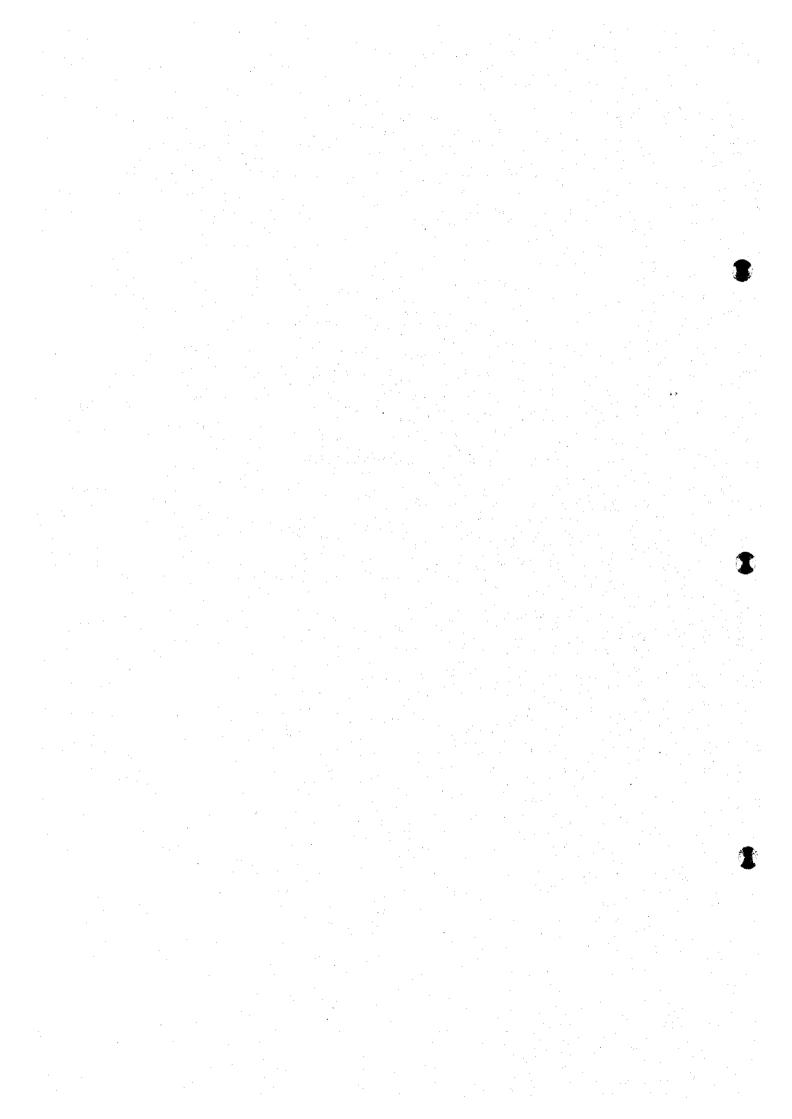
The results of economic analysis as follows.

With the current cost level of 3,000 RO/kW, photovoltaic system is not economical. Even when the construction cost is lowered to 500~800 RO/kW, which is the target for the near future, the investment cannot be recovered from electricity cost saving alone. However, in case of long and expensive distribution line is needed for rural electrification, off-grid photovoltaic system may be economical. For the present, if the diffusion of photovoltaic systems is to be promoted as measures for environmental protection, it will be necessary to grant a considerable amount of subsidies.

Promotion program

Early introduction of the photovoltaic systems in cities is unjustifiable and unadvisable. We, therefore, propose the following policy of introduction.

- As for introduction of photovoltaic systems in near future, rural electrification may provide an opportunity. If a long-distance distribution line is required relative to the scale of the demand, the cost will be higher. In such a case, photovoltaic systems may be used.
- In the distant future, the construction costs of photovoltaic system will be reduced.
 Environmental benefits will be added. At that time, introduction of photovoltaic systems may become feasible even in cities. Hence, the diffusion of photovoltaic systems in electrified areas for the sake of energy conservation and environmental conservation should be studied continuously.


(7) Organization for DSM Promotion Program

To facilitate and accelerate individual DSM promotion program with the objective of optimal DSM promotion, an organization dedicated to promote DSM is necessary. The more DSM is implemented, the more the whole country benefits. The point is how to educate consumers and provide incentives. The organization will play a major role in public relations, education and consulting.

I

Chapter 8

Policy Recommendations

8. Policy Recommendations

The stable supply of electricity is essential to industrial development and better life in every country. In Oman, electricity consumption is expected to grow by 5% annually due to the strong and growing economy. Investments in power generation and transmission should be made continuously without interruption. There are, however, some problems in the electricity supply such as shortage of generation and transmission capacity, and revenue shortfall, which need to be resolved as soon as possible. With a fundamental understanding on the importance of electricity supply for the future development of Oman, MEW is recommended to implement the following plans and programs to improve both demand and supply of electricity.

(1) Power Development Plan

The power development plan should be disclosed to the public. It should be revised annually considering the demand growth and big development projects. The plan serves as a basis for investments which must be made in a timely manner to secure enough capacity. At the same time, private investment projects will be accelerated because the prospects of electricity supply, which is an important factor in large-scale industrial projects, would become clear.

(2) Energy Conservation Center

Among DSM measures to curtail electricity demand for air conditioning, energy conservation cannot be ignored. Moreover, it is the only item which can be started immediately, The ideas for energy conservation include not only raising room temperature, but also some technical measures such as improving efficiency of equipment by providing adequate maintenance or replacing old units. These measures, if applied nationwide, would significantly contribute to the electricity supply by cutting down peak demand. In order to undertake the measures, an organization which specializes in educating the public and also in providing the technical services. At the same time, this organization should oversee some midterm issues such as gas cooling or ice thermal storage.

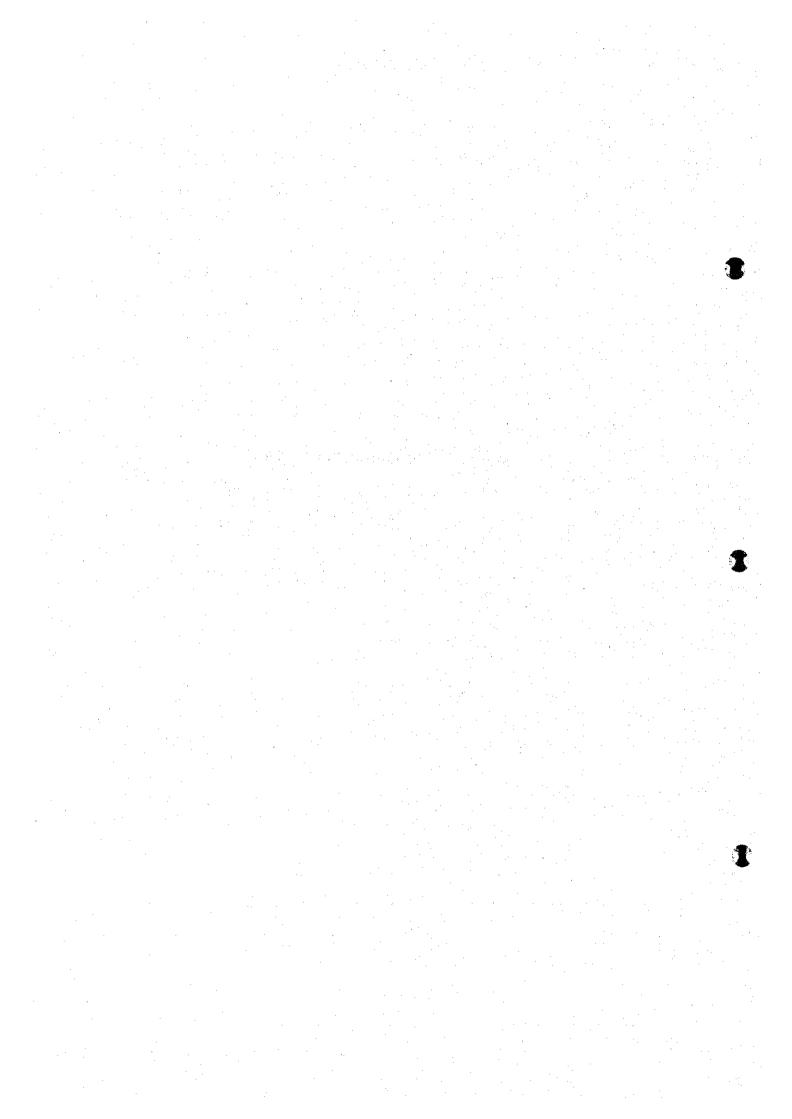
(3)Cost Reduction Effort

In the long run, raising electricity tariff would be inevitable. It is, however, important to make utmost efforts on cost reduction. For this, the consciousness on costs should be stressed among the people working for the electricity service. Furthermore, it is advisable to introduce incentive measures to operators and other related entities to reward them when they generate ideas and achieve significant cost reduction.

(4)Building Database

It is necessary to monitor actual electricity consumption at many sample customers to accumulate data for tariff reform and DSM promotion. By using such a database, it would become possible to develop concrete programs and also to make an assessment on their effects.

(5)Technical Training


Development of technical capabilities within MEW is important to reduce reliance on outside consultants. With sufficient technical knowledge, MEW staff can make decisions very quickly. Overseas technical training program may be effective as a short-time capacity development.

(6) Comprehensive Energy Planning

Coordination between electricity and natural gas is important to achieve "Best Mix" in comprehensive energy planning in Oman. For example, district cooling system or co-generation, which use natural gas directly, is more efficient, and hence, such projects should be promoted where feasible. To facilitate these projects, it is strongly recommended that MEW and MOG (Ministry of Oil and Gas) regularly discuss on various energy issues.

Chapter 9

Electric Power Analysis Programs

9. Electric Power Analysis Programs

9-1. Outline of Technology Transfer

Technology transfer of computer programs that are useful in rationalizing demand supply operation is considered to have great merits for the counterpart because these programs can be used directly in developing their power equipment plan. We, therefore, made technology transfer of three kinds of programs for load flow calculation, system fault calculation and demand and supply operation, that can be directly used in solving various problems of demand and supply of electric power. As for the actual contents of the transfer work, programs, input data, instruction manuals, etc. were developed in Japan. These programs and data were designed to run on the computer systems of the counterpart. We installed these programs in Oman and gave guidance on the operating methods. In response to the requests of the counterpart, we improved the programs and added some functions to them. In the following, the technology transfer will be outlined.

(1) Programs Transferred

1 Load flow calculation program

The program analyzes power flows, voltages, etc. in an electric power system, and provides data essential to planning of substation facilities and transmission lines.

2 System fault calculation program

The program analyzes currents, voltages, etc. in case of a fault. Such data are indispensable in system operation when the scale of the system gets large.

3 Demand and supply operation program

The program is used to determine an economical operation pattern of power generating facilities.

(2) Preparatory Work in Japan

- 1 Load flow calculation program
 - · Development of an analytical program (English version).
 - · Development of an instruction manual (English version).
 - · Development of a program installation procedure (English version).
 - · Development of data on power systems (Muscat, Wadi Jizzi System).

② System fault calculation program

- · Development of an analytical program (English version).
- · Development of an instruction manual (English version).
- · Development of a program installation procedure (English version).
- · Development of sample data for analysis.

3 Demand and supply operation program

Development of a program for determining optimal operation patterns of power generating facilities and calculating costs.

(The program can calculate costs of actual operation patterns.)

(3) Counterparts	
------------------	--

① Ministry of Electricity and Water

Transmission & Control Section

②

"

Planning Section

3

Control Center

(4) Work in Oman

① Load flow calculation program

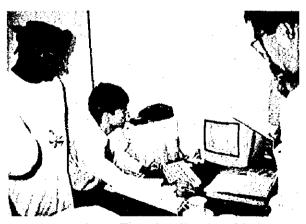
Formats of input and output data of the analytical program and its method of use were explained.

Instruction was provided about effective use of the program by taking an example of developing a P-V curve of Musanna SS.

2 System fault calculation program

Formats of input and output data of the analytical program and its method of use were explained.

Instruction was provided about effective use of the program by using sample data.


3 Demand and supply operation program

Methods of cost calculation for optimal operation and actual operation were explained.

- · The algorithm of determining an optimal operation pattern was explained.
- · The overall accuracy of the program was verified.
- · Upon the requests of the control center, the program was improved as follows:
 - a. As the output of a power generating facility change with atmospheric temperature, the program was improved so that atmospheric temperature can be specified.
 - b. The lowest output of a power generating facility was changed to 40 % of the rated output.
 - c. The number of startup and shutdown of a power generating facility was limited to once a day each.

1

- d. The program was improved so that the shortest shutdown period of a power generating facility can be specified freely.
- e. The order of parallel operation of the power generating facilities were changed to the conditions specific to the respective power stations.
- f. The program was improved so that it can cope with addition of power generating facilities in future.
- g. Demand forecasting functions were added to the program.

Picture 9-1-1 Training Session (MEW)

9-2. Load Flow Calculation Program

9-2-1. Purpose of Load Flow Calculation

Electric power that are generated in many power stations is supplied to the customers via transmission lines, substations, distribution lines, etc. A system that controls the train of these processes is called an electric power system. Calculation of power flows through the respective transmission lines and transformers and voltages at various points is called load flow calculation. Load flow calculation is required in examining the operating method of an electric power system when a change occurred in the load, generated output, state of operation of transmission line, etc. of the system, and in planning for new power station, transmission line, substation, etc. of a system of the future.

9-2-2. Input & Output Data of Load Flow Calculation

The following data are required for load flow calculation.

Electric power system diagrams that indicate how electric power facilities such as generators, transformers and loads are connected with each other. The electric power system diagrams are comprised of "branch" that indicate state of connections of transformers and transmission lines and "node" that indicate connecting points of branches such as substation buses. The respective elements of the system are treated by assigning numbers to them.

Tables of equipment constants that indicate impedances, admittances, tap ratios, etc. of transmission liens and transformers. They are expressed in per-unit method (pu) in many cases.

Data that give operating conditions of the electric power system, such as outputs and target voltages of generators, active and reactive powers of loads, and capacity of reactive power supply equipment.

To ensure the reliability of analytical results of load flow calculation and any other analyses, it is essential to have accurate basic data. Hence it is desirable to control accurate data in a centralized manner.

Load flow calculation reveals, for example, active and reactive powers that flow in transmission lines and transformers, active and reactive powers of loads, values and phase angles of voltages, and transmission loss of the entire power system. An example of input data and output data for load flow calculation is shown in Table 9-2-1. For example, as for the power station bus, when the active powers and voltages of generators are inputted, reactive powers and phase angles of voltages will be determined.

Table 9-2-1	Example of	Input and	Output Data for La	oad Flow Calculation
-------------	------------	-----------	--------------------	----------------------

Power Station BUS	· Active Power · Voltage	· Reactive Power · Phase Angle of Voltage
Substation (Load) BUS	· Active Power · Reactive Power	Voltage Phase Angle of Voltage
Transmission Line	 Power System Diagram Impedance Tap-Ratio of Transformer etc. 	Active PowerReactive PowerTransmission CurrentTransmission Loss

9-2-3. Procedure of Load Flow Calculation

When the input data that were described in 9.2.2 are completed, load flow calculation can be made by following the flowchart of Figure 9-2-1. Here the procedure of load flow calculation will be described briefly by taking an example, examination of measures concerning voltages in Muscat system. First, its electric power system diagram is developed (Figure 9-2-2). The diagram shows the configuration of the system, such as generators, substation buses, loads, transmission lines and transformers. All the components in the system diagram are numbered to avoid duplication.

T

1

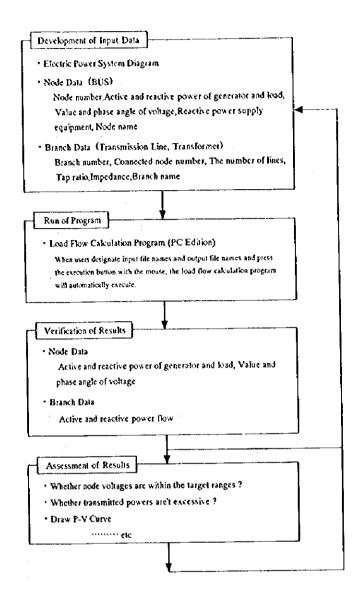


Figure.9-2-1 Flowchart of Load Flow Calclation

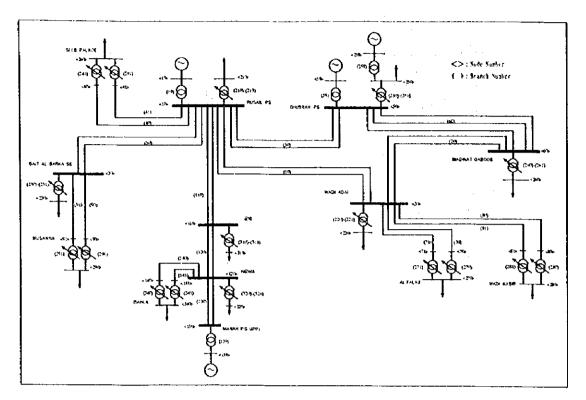


Figure.9-2-2 Electric Power System Diagram of Muscat System

Next, from the system diagram and the table of equipment constants, are prepared electric power system data or input data for the load flow calculation program (Figure. 9-2-3). The first half of the input data is the node data, and the latter half is the branch data. The elements or components are identified by numbers given when the system diagram was developed. In the node data, active and reactive powers of generators, active and reactive powers of loads, voltages, reactive power supply equipment, etc. are inputted. In the branch data, impedances, tap ratios of transmission lines and transformers are inputted. In the example of Figure. 9-2-3, an SC of 20 MVA is connected to a 33 kV bus of Musanna SS.

1

When the input date are completed, next step is to run the load flow calculation program. The load flow calculation program runs on Microsoft Windows. When users designate input file names and output file names and press the execution button with the mouse, the program will automatically execute the load flow calculation. And the results will be written in the output files.

The voltage values and phase angles of all the nodes, flows of the active powers and reactive powers of all the branches are outputted in the output files (Figure. 9-2-4). By checking these values, one can assess whether node voltages are within the target ranges, whether transmitted powers are excessive, etc. In the present case, the voltage of the 132 kV bus of Musanna SS is 0.926 pu. If the lower limit of the target is 0.95 pu, it is lower by about 2.5 %.

Then the SC capacity of the 33 kV bus of Musanna SS is increased to 40 MVA and the load flow calculation is executed again, the voltage of the 132 kV bus of Musanna SS will become 0.948 pu (Figure. 9-2-5). This shows that to keep the voltage of the 132 kV bus of

Musanna SS within the target range, it is necessary to install an SC of 40 MVA or over on the $33\ kV$ bus.

In this way, P-V curves can be drawn by changing conditions and repeating the flow load calculation (Figure. 9.2-6). One can instantly read out from the P-V curves a voltage drop when a load is increased, a capacity of an SC required to maintain the voltage, etc. Thus P-V curves can be used in operating the facilities and in developing a future plan.

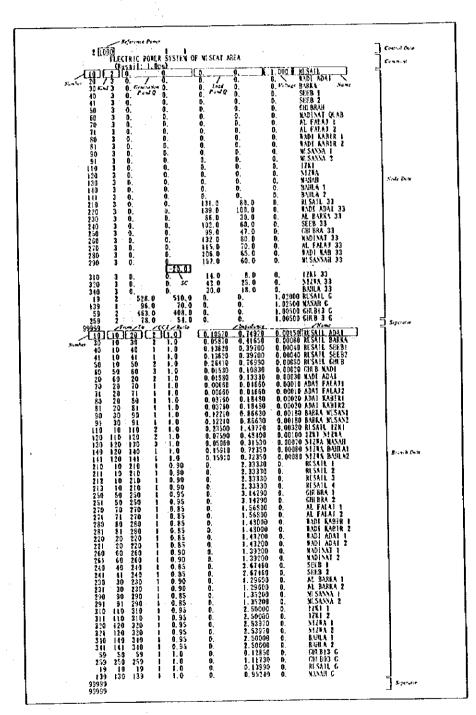


Figure.9-2-3 Input Data of Load Flow Calculation Program

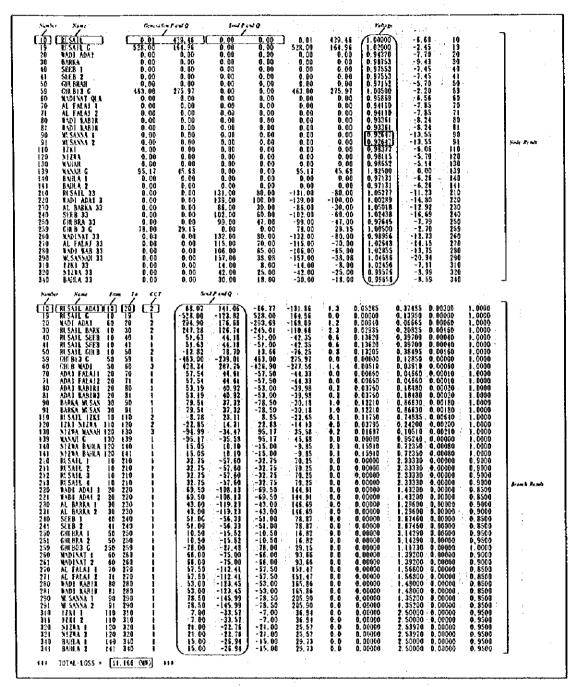


Figure. 9-2-4 Output Data of Load Flow Calculation Program

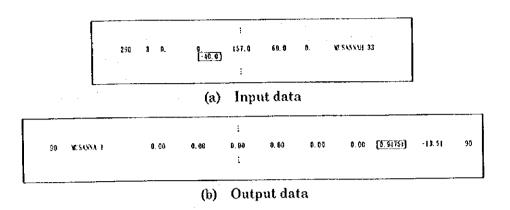


Figure 9-2-5 Input and Output Data (increase SC capacity)

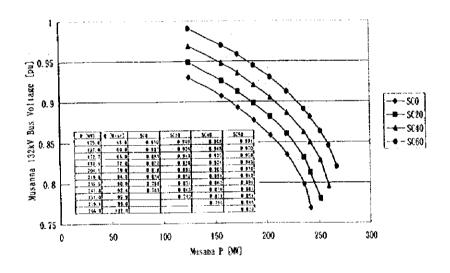


Figure.9-2-6 P-V Curve

9-3. System Fault Calculation Program

9-3-1. Applications of System Fault Calculation

Various faults, such as single line-to-ground fault and line-to-line short circuit, may take place on transmission lines and in power stations and substations. System fault calculation determines voltages and currents at a fault point and other points in the electric power system. The voltages and currents determined by system fault calculation are used extensively in assessing breaking capacities of circuit breakers, overvoltages and over currents on transmission lines and transformers, and induced voltages on adjacent communication lines.

9-3-2. Input and Output Data of System Fault Calculation

The input data are highly similar to those of load flow calculation. As system fault calculation covers unbalanced faults in its scope, it is necessary to input impedances such as line constants as values of symmetrical components. The program is designed so that, to suit the purpose of analysis, mutual induction impedances of lines can be considered. Naturally, fault points and kinds of faults must be inputted in detail.

System fault calculation reveals voltages, currents and phase angles at various points of the system as well as the voltage and current at the fault point.

9-3-3. Procedure of System Fault Calculation

The procedure of system fault calculation is also similar to that of load flow calculation; development and modification of input data \rightarrow run of system fault calculation program \rightarrow verification and assessment of results. The conditions are modified whenever needed and the program is run repeatedly (Figure. 9-3-1).

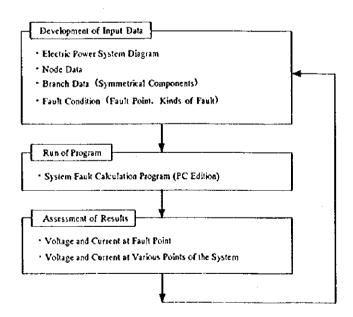


Figure.9-3-1 Flowchart of System Fault Calculation

9-4. Demand and Supply Operation Program

9-4-1. What is Economical Operation?

Economical operation seeks to minimize the annual fuel cost of an electric power system by adjusting outputs of many power generating facilities in the system to meet constantly changing power demand. It is based on economical load dispatching. In economical load dispatching, unit cost of power generating facility and costs of startup and shutdown of every individual power generating facility and other restraints are considered, and the number of power generating facilities to run in parallel and their respective outputs are determined so as to minimize the total cost.

9-4-2. Factors in Determining Economical Operation

(1) Fuel Costs of Power Generating Facilities

Fuel cost varies significantly from facility to facility, depending on the kind of fuel, the type of power generating facility, etc. Every power generating facility is designed to operate most efficiently at the rated output. The smaller the output, the lower the efficiency. The relationship of output and fuel cost of a typical gas turbine power generating facility used in Oman is shown in Figure. 9-4-1. In the diagram, fuel cost is 1 when the output is the rated one. Then, when the output is 70 %, the fuel cost is about 1.12. When the output is 50 %, the cost is 1.25. It is characterized in that as the output gets smaller, the fuel cost increases exponentially. Thus when each power generating facility is operated at the rated load rather than at a partial load, the fuel cost can be economized. In general, power generating facilities of higher efficiencies are constantly operated at their rated outputs to meet the base loads. And facilities of lower efficiencies are operated only during time zones of larger demand to meet peak loads. In this way, the total fuel cost is saved.

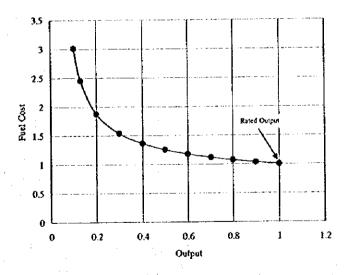


Figure.9-4-1 Relationship of Output and Fuel Cost

(2) Spinning Reserve

An estimation of power demand that changes all the time inevitably has an error of some size. Moreover, it is necessary to have a supply capability that is greater than the

estimated demand so that power is stably supplied even if a fault is generated on a power generating facility. The difference between the supply capability and the demand is called spinning reserve. It is necessary to have such a spinning reserve that the load dispatching center can instantly increase the output by using, for example, a remaining capacity of a power generating facility that is operating at a partial load. However, it should be noted that failure of many power generating facilities at the same time is quite rare, and the greater is the spinning reserve, the greater is the cost. In Oman, it is a normal practice to have a spinning reserve that is equivalent to the output of the largest power generating facility among the power generating facilities in parallel operation.

(3) Startup and Shutdown of Power Generating Facility

If a power generating facility is shut down once, an extra amount of fuel is needed to restart the power generating facility. Hence, if the time from the shutdown to the restartup is short, the cost may be greater than that of continuous operation. Moreover, startup and shutdown of a power generating facility reduces the lifetime of the facility. It, therefore, is necessary to determine the number of startup and shutdown per day by considering this consumption of lifetime.

9-4-3. Economical Load Dispatching

The flowchart of economical load dispatching of power generating facilities is shown in Figure. 9-4-2. First, the calculation conditions are determined. They include the 24 hour load curve, power generating facilities that can be operated in parallel and their rated outputs and fuel efficiencies, atmospheric temperature, shortest shutdown periods of power generating facilities. As the maximum output of each power generating facility changes in proportion to the atmospheric temperature from season to season, it is necessary to correct the maximum output for temperature (Figure. 9-4-3).

Next, power generating facilities to be operated in parallel with each other are selected. Power generating facilities for parallel operation are selected in order of decreasing efficiency. This step is repeated till the total of outputs of the facilities selected exceeds the sum of demand and the spinning reserve. Here, the spinning reserve is defined as the output of the largest generating facility selected. This calculation is repeated to determine hourly sets of generating facilities for parallel operation for 24 hours.

Next, the status of startup and shutdown of every generating facility is checked. If the number of startup and shutdown is twice or over per day, the second and further startup and shutdown will be cancelled to operate the facility continuously. If the shutdown time of a generating facility to be shut down is shorter than an initially specified minimum time, the operation is continued to minimize lifetime consumption of the generating facility and cost increase.

When power generating facilities for parallel operation are selected, finally the outputs of the respective generating facilities are determined. As shown in Figure. 9-4-4, outputs of the generating facilities, starting from 100 %, are set in order of decreasing efficiency. Generating facilities of lower efficiency must be operated at least 40 % of the rated output. Outputs of intermediate generating facilities are adjusted so that the total output of the generating facilities meet the demand. In the actual calculation, all the generating facilities are operated at 40 % of their ratings. Next, the outputs of the generating facilities are increased in decreasing order of efficiency to balance the demand and supply. In this

way, economical load dispatching of generating facilities is determined. The following two restraints were set to meet the requirements of the counterpart:

The number of startup and shutdown of every generating facility is once a day.
 The minimum output of every generating facility is 40 % of the rating.

When the outputs of the respective generating facilities are determined, the total fuel cost can be calculated from fuel efficiencies, unit costs of fuels, etc.

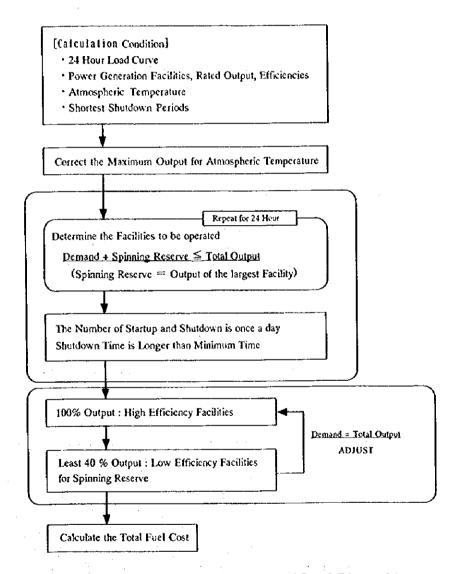


Figure.9-4-2 Flowchart of Economical Load Dispatching

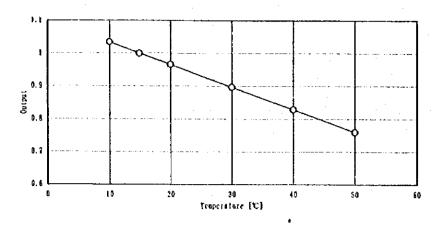
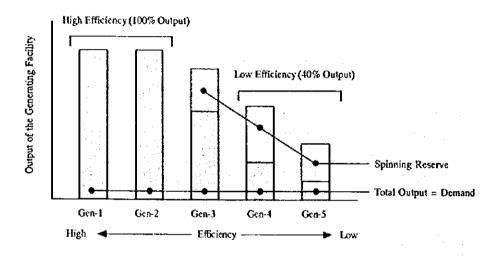



Figure.9-4-3 Relationship of Temperature and the Output of Generating Facility

1

Figure.9-4-4 Determination of the Outputs of Generating Facilities

9-4-4. Demand Forecasting

To make an operation plan of the generating facilities, it is necessary to forecast demands for 24 hours. The daily electricity demand varies significantly with day of week, weather, atmospheric temperature, humidity, etc. It is a general practice to forecast the demand by adjusting past records of power demand for these factors. Proper treatment of these meteorological factors, however, requires many know-hows that can be derived only from accumulation of actual records of the area over many years and analyses of such data. It is not easy to develop a model of high overall accuracy. The flowchart of the most basic demand forecasting is shown in Figure. 9-4-5. First, the date of the day to be forecasted and the forecasted peak demand of the day are inputted. The forecasted peak demand of the day are determined by considering factors such as the meteorological factors. Next, a day, that is considered to be most appropriate, is selected as a reference day from, for example, the same day of the preceding year, the same day of the preceding week and the preceding day. The demand curve of the selected reference day is taken out of the actual demand database that has been inputted in advance. Finally, the demand curve of the reference day is corrected so that the peak value of the demand curve coincides with the forecasted peak value of the forecasted day. The resulting curve is the demand curve of the forecasted day.

One example of demand forecasting is shown in Figure. 9-4-6. This method is relatively simple and easy to understand, and is a practical method. The method fully satisfies the accuracy of forecasting that is practiced daily in Oman.

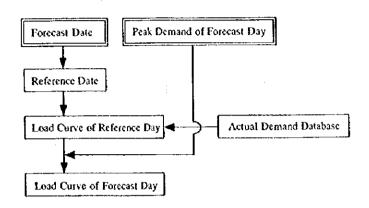


Figure.9-4-5 Flowchart of the Basic Demand Forecasting

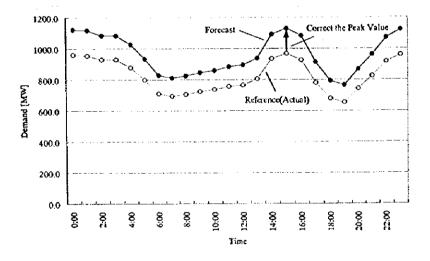


Figure.9-4-6 Example of the Demand Forecasting

9-4-5. Calculation Procedure of Demand and Supply Operation Program

The calculation flowchart of the demand and supply operation program is shown in Figure. 9.4.7. The demand and supply operation program is a combination of the demand forecasting program and the economical load dispatching program. When three items, namely, the date and a forecasted peak demand of a forecasted day and particulars of power generating facilities that can be operated in parallel, are inputted, the program will automatically calculate the demand curve, output of the respective generating facilities, cost, etc. and display them visually with tables and graphs. If the automatic calculation does not provide a satisfactory result, then the reference date, 24-hour demand curve, atmospheric temperature, spinning reserve, etc. of the demand forecasting can be modified.

When all the particulars of load dispatching of the generating facilities are inputted, costs of actual operation can be calculated by the program. The screen configuration and an example of calculation of the demand and supply operation program are shown in Figure. 9-4-8.

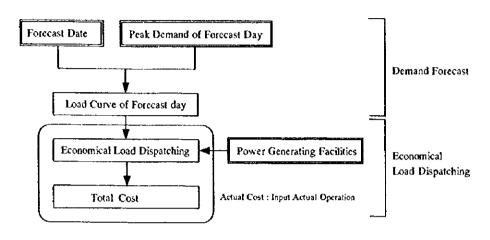
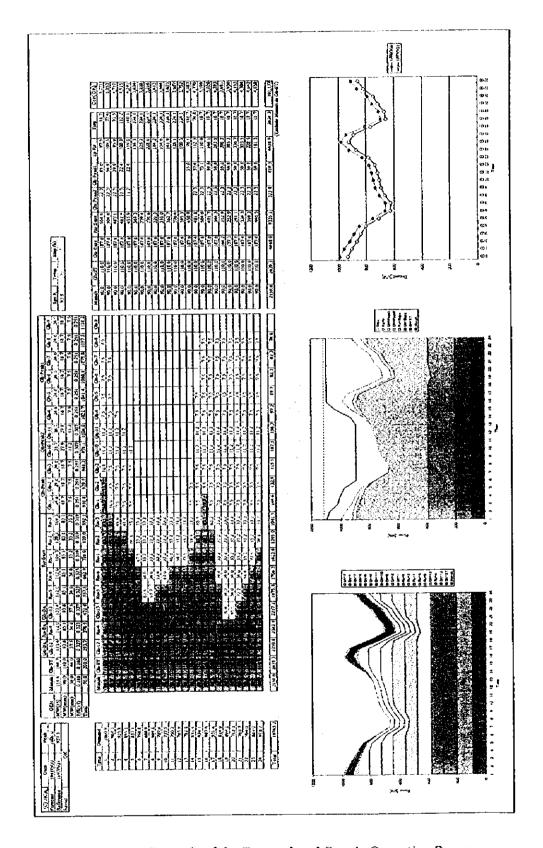
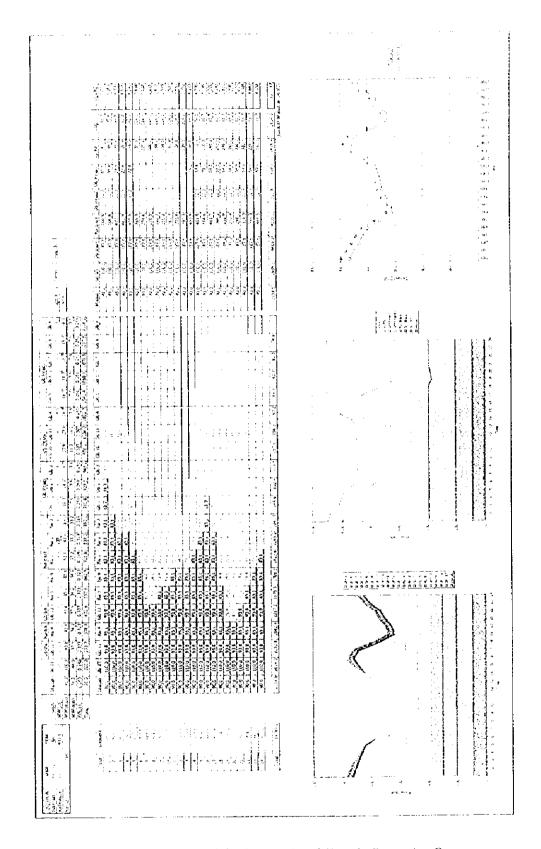
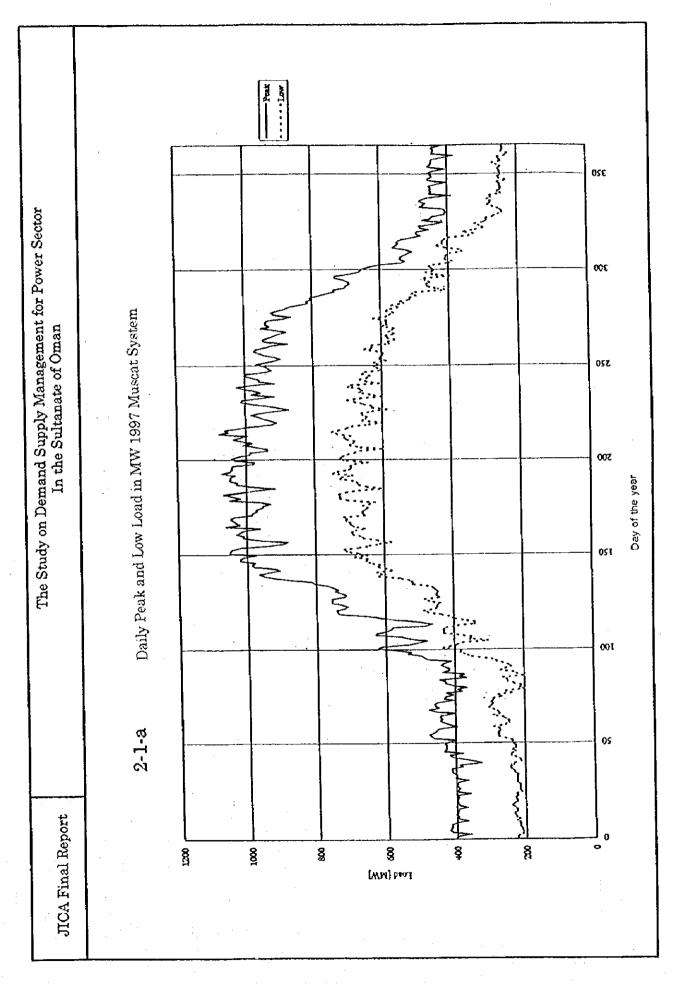
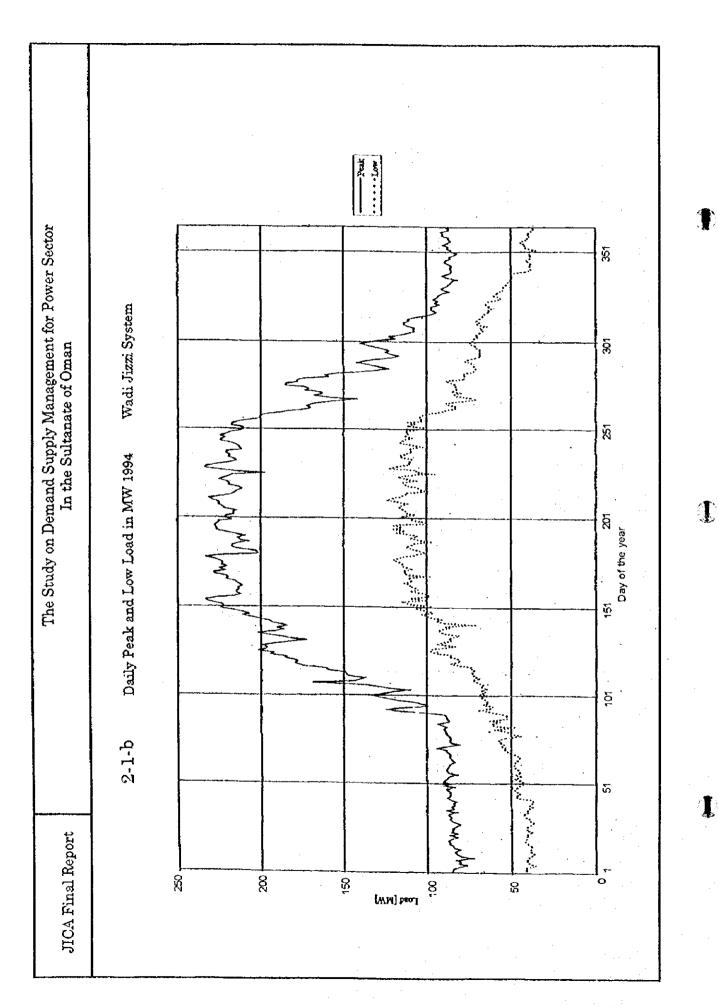



Figure.9-4-7 Flowchart of Demand and Supply Operation Program

¥.

Figure.9-4-8 Example of the Demand and Supply Operation Program


Figure.9-4-8 Example of the Demand and Supply Operation Program

LIST OF ANNEXES

Annex 2-1-a	Daily Peak and Low Load in MW 1997 Muscat System
Annex 2-1-b	Daily Peak and Low Load in MW 1994 Wadi Jizzi System
Annex 2-2-a	Muscat System Maximum Demand Balance & Generation Expansion
	Planning
Annex 2-2-b	Wadi Jizzi System Maximum Demand Balance & Generation Expansion
	Planning
Annex 2-2-c	Diversity of Muscat & Wadi Jizzi System(1996)
Annex 2-2-d	Interconnection Case Maximum Demand Balance & Generation Expansion
	Planning
Annex 2-2-d(2)	Difference of Generation Expansion By Interconnection
	(Muscat & Wadi Jizzi System)
Annex 2-2-d(3)	Saving Investment Cost of Generation Expansion by Interconnection
	$(1998 \sim 2010)$
Annex 2-2-e	Saved Fuel Cost for 10 Years (2001 ~ 2010)
Annex 2-2-f	Interconnection Case Maximum Demand Balance & Generation Expansion
	Planning(2010-2020)
Annex 2-2-g	Muscat System Maximum Demand Balance & Generation Expansion
	Planning(2010-2020)
Annex 2-2-h	Wadi Jizzi System Maximum Demand Balance & Generation Expansion
	Planning(2010-2020)
Annex 3-3-a	Production Cost at Consumer End, 1997
Annex 3-3-b	Unit Cost Consumer End, 1997
Annex 3-3-c	Unit Cost at Exported from Power Station, 1997
Annex 3-3-d	Integral Investment Program (1999 – 2010)
Annex 3-3-e	Preliminary Income Statement, Northern Oman Electricity Grid(Excluding
	Manah) in RO1000 (Muscat System + Wadi Jizzi System)
Annex 3-3-f	Preliminary Income Statement, Northern Oman Electricity Grid(Excluding
	Manah) in RO1000 (Muscat System + Wadi Jizzi System)
Annex 3-3-g	Income Statement, Northern Oman Electricity Grid(Excluding Manah) in
	RO1000 (Muscat System + Wadi Jizzi System + Barka System)
Annex 3-3-h	Income Statement, Northern Oman Electricity Grid(Excluding Manah) in
	RO1000 (Muscat System + Wadi Jizzi System + Barka System)
Annex 3-3-i	Cash Flow Analysis - Interconnection between Muscat System and Wadi
Annex 3-3-j	Jizzi System Cash Flow Analysis – Central Load Dispatching Center
Annex 3-3-k	Cash Flow Analysis - Water Injection Project - Ghubrah
Annex 3-3-l	Cash Flow Analysis – Water Injection Project – Rusayl
Annex 3-3-m	Cash Flow Analysis – Water Injection Project – Wadi Jizzi
Annex 3-3-n	Cash Flow Analysis - Inlet Air Cooling - Rusayl
Annex 3-3-0	Cash Flow Analysis – Pumped Storage Plant
Annex 3-3-p	Cash Flow Analysis - Battery Energy Storage System
Annex 3-3-q	Cash Flow Analysis - Gas Cooling System - Royal Hospital
Annex 3-3-r	Cash Flow Analysis – Gas Cooling System – Al Falaj Hotel
Annex 3-3-s	Cash Flow Analysis – Ice Thermal Storage – Peak Cut Operation
Annex 3-3-t	Cash Flow Analysis – Ice Thermal Storage – TOU Tariff
Annex 3-3-u	Cash Flow Analysis - Solar Energy System
Annex 3-3-v	Cash Flow Analysis Meter Replacement

Annex 4-1-a	Summary of 132kV Trippings/Outages(1994 ~ 1997 Muscat System)
Annex 4-1-b	Summary of 33kV Trippings/Outages(1994 ~ 1997 Muscat System)
Annex 4-1-c	Load Flow Calculation Result(132k Muscat System)
Annex 4-1-d	Load Flow Calculation Result(Musanna SS 33kV System)
Annex 4-1-e	Musanna SS P-V Curve
Annex 4-1-f	Khaborah SS P-V Curve(Musanna SS 33kV System)
Annex 4-1-g	Load Flow Calculation Result(132kV Wadi Jizzi System)
Annex 4-1-h	P-V,Q-V Curve(when the voltage dropped slowly)
Annex 4-1-i	Load and Supply Balance at 2001 Year
Annex 4-1-j	Voltage Power Flow of Interconnection Line
Annex 4-1-k	Simulation Waveforms(Exclude Barka PS)
Annex 4-1-l	Simulation Waveforms(Include Barka PS)
Annex 4-1-m	Introduction of a Central Load Dispatching Center
Annex 4-2-a	Efficiency, Exhaust Temperature and Flow Correction for Part Load Operation(for 100% use 1.0)
Annex 4-2-b	General Electric Model PG6541(B) Gas Turbine Estimated Performance
	Output, Heat Rate, Consumption Exhaust Flow and Exhaust Temperature at
	100% Speed
Annex 4-2-c	Turbine Output, Efficiency, Exhaust Flow and Temperature Correction for
	Water of Steam Injection with Natural Gas Fuel
Annex 4-3-a	Geological Map of Muscat Area
Annex 4-3-b	Hydraulic Profile
Annex 4-3-c	Cross Section of Power House
Annex 5-1-a	Load Curve of Transmission Lines
Annex 5-1-b	Load Curve of Transformer
Annex 5-1-c	Load Curve of 33kV Feeder
Annex 5-1-d	Load Curve of 33kV Feeder
Annex 5-1-e	Load Curve of 11kV Feeder
Annex 5-1-f	Load Curve of 11kV Feeder
Annex 5-2-a	General Weather Conditions at Muscat in Oman
Annex 5-2-b	Location of the Buildings/Facilities in Capital Area Muscat, Oman
Annex 5-2-c	High-Pressure Natural Gas Transmission Pipelines in Oman
Annex 5-2-d	Schematic Diagram of Proposed Cooling System using NG for Royal Hospital
Annex 5-2-e	Schematic Diagram of Proposed Gas Cooling System using NG for Al Falaj Hotel
Annex 5-3-a	Peak Cut Operation Mode – Royal Hospital
Annex 5-3-b	Power Consumption by Peak Cut Operation - Royal Hospital
Annex 5-3-c	Load Leveling Operation Mode(8 Hour Ice Making) – Royal Hospital
Annex 5-3-d	Power Consumption by Load Leveling Operation – Royal Hospital

	i i	2010	2120	2291	95	2196	76	4.5%		814.8	▶83.3	94.1	825.1	94.1	(GT18)	274.6		376.4		104.9
	⟨ ⁄	5009	2060	2186	95	2091	31	4.6%		804	₩83.3	94.1	731		94.1	274.6		376.4		50.9
	(MM)	2008	2000	2135	95	2040	04	4.8%		793.2	₹83.3	94.1	6.069	(GT10~11)	(CT17)	274.6		376.4	:	10.8
ector		2007	1940	2124	95	2029	89	4.9%		782.4	(GT1~3)	(GT9~11)	6.069		(6716)	274.6		376.4		94.1
Power S		2006	1880	2030	95	1935	55	5.1%		782.4			596.8			274.6	•	376.4	94.1 (GT 4)	94.1
The Study on Demand Supply Management for Power Sector In the Sultanate of Oman	Janning	2005	1820	1936	95	1841	21	5.2%		782.4			596.8	▲105 (GT4~9)	94.1 (GT15)	274.6		282.3		
nand Supply Management In the Sultanate of Oman	Demand Balance & Generation Expansion Planning	2004	1756	1936	95	1841	85	5.4%		782.4			596.8	▲ 105	94.1	274.6		282.3	94.1 (GT.3)	83.2
Supply I Sultan	ation Ex	2003	1693	1853	95	1758	65	5.6%		782.4			607.7	▲52.5	94.1	274.6		188.2	94.1 (GT 2)	135.7
emand in the	& Gener	2002	1605	1717	95	1622	17	5.9%		782.4		Į	566.1	(GT1~3)	(GT14)	274.6		94.1	94.1 (GT 1)	94.1
ıdy on D	Balance	2001	1514	1623	95	1528	14	6.3%		782.4	94.1	(GT-8)	566.1			274.6		0		94.1
The St	Demand	2000	1423	1529	95	1434	11	6.7%		688.3			566.1		\ 	274.6	94.1*2 (GT~4.5)	0		188.2
	Махітит	1999	1268	1341	95	1246	-22	7.5%		6883		94.1	566.1	29.1	(Water.In	86.4		0		217
		1998	1210	1124	95	1029	-181	7.9%		5004	(Water.In	(51-7)	537			86.4		C		0
	Muscat System		Demand	Net Supply Capacity (*)	Reserve Margin	Firm Generation	Balance of Firm Generation to Peak Demand	Ratio of Reserve Margin	(*) Net Supply Capacity	ď	} ě		Acratical DO			PS h	ě	Sd «	မ်	Expansion Total
JICA Final Report	2-2-a		Peak	Net Supply	Reserve	Eim G	Balance of Fil to Peak	Ratio of Res	(*) Net Sup	o o	nj.		4 4	7	!	Manah	fu	a chur	fo	Expan
JICA Fi	2.																			

:	2010	496	530	စ္တ	200	4	6.0%		529.6	8	(GT 21)	(GT 4)	2.1	
	2009	480	528	30	498	18	6.3%		527.5	9 9	(GT 20) A17.8	(GT 3)	12.2	
W.	2008	465	515	30	485	20	6.5%		515.3	8	(GT 19) ▲17.8	(GT 2)	12.2	der to have a in the
	2007	452	503	30	473	21	6.6%		503.1	30	(GT 18) ▲17.8	(GT 1)	12.2	city in or reded to] the best
: :	2006	437	491	8	461	24	6.9%		490.9	30	(GT 17)		30	tem capa e, it is ne V unit is
anning	2005	422	461	30	431	<u></u> ნ	7.1%		460.9		-			total syst / shortag (us, 30M)
G noise	2004	409	461	30	431	22	7.3%	· <u></u>	460.9	ဇ္တ	(GT 16)		30	% of the a supply
tíon Exp	2003	395	431	30	401	9	7.6%		430.9					about 150 prevent ne largest
	2002	381	431	30	401	20	7.9%		430.9	30	(GT 15)		30	nited to it trip. Ta
သိ	2001	367	401	30	371	4	8.2%		400.9		300			uld be hi ase of un the capa
emand B	2000	350	401	30	371	21	8.6%		400.9	30	(GT 14)		30	plant sho ance in c ivalent to
Ğ English	1999	328	371	30	341	13	9.1%		370.9	29.1	27 80 80		89.1	of new redisturba
e X	1998	310	282	30	252	-58	9.7%		281.8	(Water Inj)	(GT 12,13)			The capacity of new plant should be limited to about 15% of the total system capacity in order to avoid a large disturbance in case of unit trip. To prevent a supply shortage, it is needed to have a spinning reserve equivalent to the capacity of the largest unit. Thus, 30MW unit is the best in the
stem		Ę	city (*)	ig.	ion	eneration and	Margin	apacity	PS					Note: The capacity of new plant should be limited to about 15% of the total system capacity in order to avoid a large-disturbance in case of unit trip. To prevent a supply shortage, it is needed to have a spinning reserve equivalent to the capacity of the largest unit. Thus, 30MW unit is the best in the
2-2-b Wadi Al Jizzi Sv		Peak Demar	Net Supply Capac	Reserve Mar	Firm Generati	alance of Firm Ge to Peak Dem	Ratio of Reserve	(*) Net Supply Ca	Wadi Al Jizzi		future exp			Z
	2-2-b Wadi AJ Jizzi System Maximum Demand Balance & Generation Expansion Planning (MW)	Maximum Demand Balance & Generation Expansion Planning (MW) 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008	Maximum Demand Balance & Generation Expansion Planning (MW) 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008 20 310 328 350 367 381 395 409 422 437 452 465	Maximum Demand Balance & Generation Expansion Planning (MW) 1998 1999 2000 2001 2002 2003 2004 2005 2007 2008 20 *) 282 371 401 401 431 431 461 461 461 461 503 515 5	Maximum Demand Balance & Generation Expansion Planning (MW) 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 20 282 371 401 401 401 401 401 401 401 401 401 401 401 401 401 30	Maximum Demand Balance & Generation Expansion Planning (MW) 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 20 310 328 350 367 381 395 409 422 437 452 465 503 515 5 282 371 401 401 431 431 461 461 461 461 503 515 5 30 30 30 30 30 30 30 30 30 30 30 30 30 485 4	Maximum Demand Balance & Generation Expansion Planning Construction Expansion Planning Constr	Maximum Demand Balance & Generation Expansion Planning CMM) 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008 282 371 401 401 431 481 461 461 461 461 465 465 282 371 401 401 431 461 461 461 461 461 461 461 461 465	Maximum Demand Balance & Generation Expansion Planning C000 2002 2004 2006 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2009 2009 2009 2009 2009 2009 4461 4461 4465 4465 4465 4465 4485 4485 4865 458 4865 458 458 4668 6.6%	Maximum Demand Balance & Generation Expansion Planning Company of the properties	Maximum Demand Balance & Generation Expansion Planning Cool 2001 2002 2004 2006 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 4451 4461 4461 4462	Maximum Demand Balance & Generation Expansion Planning Coorting 2002 2003 2004 2005 2006 2007 2008 282 371 401 401 431 431 461 461 491 503 515 30	Maximum Demand Balance & Generation Expansion Planning CMM/S 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2 282 371 401 401 431 431 461 461 461 465 465 30 30 30 30 30 30 30 30 30 30 -58 13 21 401	Maximum Demand Balance & Generation Expansion Planning (MMV) 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2 310 328 350 367 381 395 409 422 437 452 465 328 330 30 30 30 30 30 30

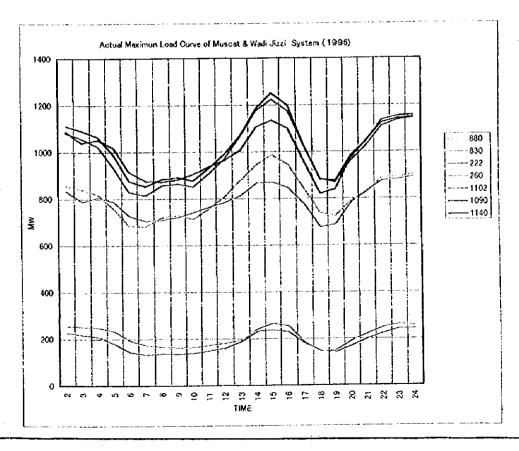
1

Ţ

JICA Final Report

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

2-2-c


Diversity of Muscat & Wadi Jizzi System (1996)

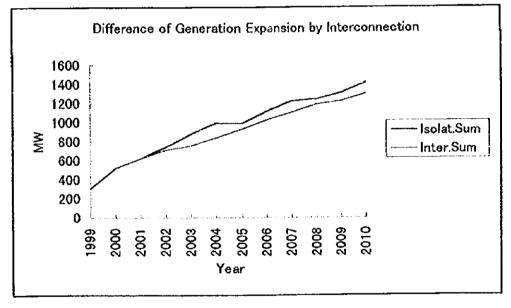
	Muscat		Wadi Jizzi		Muscat +V	adi Jizzi	
	Mus 5-6	2-8	Wadi 5-6	2-8	M+W 5-6	M+W 2-8	M5-6+W2-8
. l	880	830	222	260	1102	1090	1140
2	855	832	226	256	1081	1088	1111
3	840	788	217	251	1057	1039	1091
4	817	805	208	247	1025	1052	1064
5	756	786	177	232	933	1018	988
6	685	725	142	190	827	915	875
<u>~</u>	681	704	132	172	813	876	853
8		708	136	164	855	872	883
9		120	134	162	863	882	891
10		740	138	164	850	904	876
11	755	762	148	172	903	934	927
12		782	160	181	966	963	987
13		813	188	194	1065	1007	1071
14	945	866	231	241	1176	1107	1186
15		869	237	265	1223	1134	1251
16		845	228	254	1173	1099	1199
17	 	775	181	183	1023	958	1025
18		676	146	144	883	820	881
19	4	688	143	151	861	839	875
20		781	169	192	958	913	981
21		827	199	220	1024	1047	1045
22		874	223	248	1109	1122	1134
23		879	243	261	1133	1140	1151
24		890	244	256	1143	1146	1155

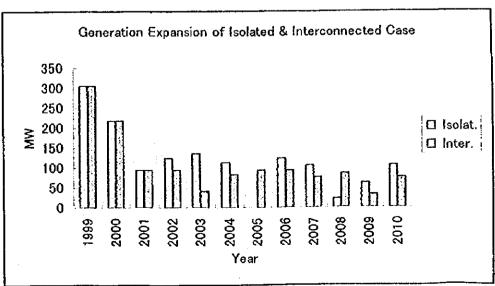
Diversity Factor;

(986+256)/1223=1.02

Coincidence Factor: 1/1.02=0.978

Interconnection case	Seneration Expans 002 2003 20 1946 2046 3 2118 2160 2 95 95 2 2023 2065 2	nsion Planning					
1998 1999 2000 2001 2002 2002 Peak Demand 1520 1596 1773 1843 1946 Net Supply Capacity (*) 1406 1712 1830 2024 2118 Reserve Margin 1281 1587 1805 1929 2023 Elim Generation 1281 1587 1805 1929 2023 Elim Generation 1281 1587 1805 1929 2023 Elim Generation 239 -9 32 86 77 Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 7.4% (*) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 7.4% (*) Net Supply Capacity 7.1% 7.1% 7.4% 7.4% (*) Net Supply Capacity 7.4% 7.4% 7.4% 7.4% 7.4% (*) Net Supply Capacity 7.4%	2003 2 6 2046 6 2046 5 2160 5 95	2			(MM)		
Net Supply Capacity (*) 1406 1712 1930 2024 2118 Reserve Margin 125 125 125 95 95 Firm Generation 1281 1587 1805 1929 2023 Salance of Firm Generation 239 -9 32 86 77 To Peak Demand -239 -9 32 86 77 Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% Atture expansion (G1-7) 94.1 Atture expansion (G1-7) 9	2160		2006	2007	2008 2	2009	2010
Net Supply Capacity (*) 1406 1712 1930 2024 2118 218	2160	2122 2197	2271	2344	2416	2489	2563
Firm Generation 125 125 125 95 95 Balance of Firm Generation to Peak Demand −239 −9 32 86 77 Ratio of Reserve Margin to Peak Demand −239 −9 32 86 77 Ratio of Reserve Margin (x/) Net Supply Capacity 8.2% 7.8% 7.1% 5.2% 4.9% Rusail PS 500.4 688.3 688.3 688.3 688.3 688.3 future expansion future expansion (GT-7) 94.1 (GT1-3) (GT1-3) future expansion future expansion 86.4 86.4 86.4 574.6 274.6 Barka PS 0 0 0 94.1 GT 1) GT 1)	2065	2243 2337	2431	2507	2595	2628	2705
Firm Generation 1281 1587 1805 1929 2023 Balance of Firm Generation to Peak Demand −239 −9 32 86 77 Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% (FT) Net Supply Capacity Rusail PS 500.4 688.3 688.3 688.3 688.3 (GT1.∞3) future expansion (Water Inj) 93.8 (GT1.∞3) future expansion (Water Inj) 93.8 (GT1.∞3) future expansion (Water Inj) 94.1 (GT1.∞3) future expansion (GT-7) 94.1 (GT1.∞3) future expansion (GT4.5) Barka PS 86.4 86.4 274.6 274.6 274.6 (GT1.4) future expansion (GT4.5) GHUbrah PS 86.4 86.4 274.6 274.6 (GT1.4) (GT1.∞3) (GT1.∞3) (GT1.∞3) (GT1.0) (GT1.0) (GT1.0) (GT1.0) (GT1.0) (GT1.0)	2065	95 95	35	92	95	95	95
Balance of Firm Generation to Peak Demand		2148 2242	2336	2412	2500	2533	2610
Ratio of Reserve Margin 8.2% 7.8% 7.1% 5.2% 4.9% (**) Net Supply Capacity Rusai PS 500.4 688.3 688.3 688.3 688.3 688.3 future expansion (Water Inj) 93.8 future expansion (CGT-7) 94.1 (GT1~3) future expansion (Marer Inj) 94.1 (GT1~3) (GT1.4) future expansion (GT4.5) (GT1.4) (G	19 77	26 45	65	68	84	4	47
Rusail PS 500.4 688.3	4.9% 4.6%	4.5% 4.3%	4.2%	4.1%	3.9%	က တို့	3.7%
Rusaii PS 500.4 688.3 688.3 688.3 688.3 fruture expansion (Mates Inj) 93.8 (GT-7) 94.1 (GT1 ≈ 3) (GT1 ≈ 3				1	-	+	Ţ
future expansion (Water Inj) 93.8 Ghubrah PS 537 566.1 566.1 566.1 566.1 566.1 (GT1√3) future expansion (Water Inj) 94.1 (GT1√3) Kuture expansion (Mater Inj) 94.1 (GT1√3) Barka PS 0 0 0 94.1 (GT4,5) future expansion (GT4,5) (GT4,5) (GT1√5) (GT1√5) (GT1√7) 94.1 (GT1√5)	688.3	688.3 782.4	782.4	782.4		804	814.8
Ghubrah PS 537 566.1 566.1 566.1 566.1 566.1 566.1 566.1 566.1 561.2		94.1	•	(GT1~3)		₹ 83.3	€833
Ghubrah PS 537 566.1 566.1 566.1 566.1 future expansion (971,~3) Manah PS 86.4 86.4 274.6 274.6 (14.4) Future expansion (074.5) Barka PS 0 0 0 94.1 future expansion (071, 1) (071, 1) (071, 1)		(GT-8)		(679~11)	24.	7.4.	*
### PS ### ### ########################	607.7	596.8 596.8	596.8	596.8		636.9	731
Manah PS 86.4 86.4 274.6 274.6 274.6	▲ 52.5	9		೪	(GT10~11)	¥ 54	94.1
Manah PS 86.4 86.4 274.6 274.	GT 14) 84.1	94.1 (GT 15)			(6) (5)	-	
future expansion 94.1*2 (GT4.5)	274.6	274.6 274.6	274.6	274.6	274.6	274.6	274.6
PS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Ì			
re expansion (G	94.1	188.2 188.2		376.4	376.4	376.4	376.4
		94.1 (GT 2)	94.1 (GT 3)	9 4.1 (GT 4)	}		-
Wadi Al Jizzi PS 281.8 370.9 400.9 495 495	495 495	495 495	495	—}	- : =	-	507.8
n (Water Inj)			(GT 1-4)	▲17.8 (61 16)	▲17.8 ▲ 94.1	▲ 17.8	▲ 27.9
306.1 218.2	94.1 41.6	83.2 94.1	94.1	76.3	87.1	33.1	77


JICA Final Report


The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

2 - 2 - d(2)

Difference of Generation Expansion By Interconnection (Muscat & Wadi Jizzi System)

			IMMOORE OF	Wadt OILL	0,000,	,	
Year	Muscat	Wadi Jizzi	Isolat.	Isolat.Sum	Inter.	Inter.Sum	Differece
1998	0	0	0	0	0	0	0
1999	217	89.1	306.1	306.1	306.1	306.1	0
2000	188.2	30	218.2	524.3	218.2	524.3	0
2001	94.1	0	94.1	618.4	94.1	618.4	0
2002	94.1	30	124.1	742.5	94.1	712.5	30
2003	135.7	0	135.7	878.2	41.6	754.1	124.1
2004	83.2	30	113.2	991.4	83.2	837.3	154.1
2005	0	0	0	991.4	94.1	931.4	60
2006	94.1	30	124.1	1115.5	94.1	1025.5	90
2007	94.1	12.2	106.3	1221.8	76.3		120
2008	10.8	12.2	23	1244.8	87.1	1188.9	55.9
2009	50.9	12.2	63.1	1307.9	33.1	1222	85.9
2010	104.9	2.1	107	1414.9	77	1299	115.9

JICA Final Report

The Study on Demand Supply Management for Power Sector In the Sultanate of Oman

2-2-d(3)

Saving Investment Cost of Generation Expansion by Interconnection $(1998 \sim 2010)$

	Generatio	n Expansio	ก	investmen	t(1000 RO)	Prese	nt Value(10	000 RO)
Year	Isolated	Interconn	Difference	Isolated	Interconn	Isolated	Interconn	Coefficient
1998	0	0	0	0	0	0	0	1
1999	306.1	306.1	0	34500	34500	31945	31945	0.92593
2000	218.2	218.2	0	6660	6660	5710	5710	0.85734
2001	94.1	94.1	0	13850	13850	10995	10995	0.79383
2002	124.1	94.1	30	20510	13850	15075	10180	0.73503
2003	135.7	41.6	94.1	27700	13850	18852	9426	0.68058
2004	113.2	83.2	30	34360	27700	21653	17456	0.63017
2005	0	94.1	-94.1	0	13850	0	8081	0.58349
2006	124.1	94.1	30	20510	13850	11081	7483	0.54027
2007	106.3	76.3	30	20510	13850	10260	6928	0.50025
2008	23	87.1	-64.1	20510	27700	9500	12830	0.46319
2009	83.1	33.1	30	34360	27700	14736	11880	0.42888
2010	107	77	30	34360	27700	13645	11000	0.39711
1								
Total					1	163451	143914	<u> </u>

GT Investment Cost

Difference 19.538*1000 RO

1

1

Frame9 (94.1MW); 13,850,000 RO

(30MW);

6,660,000 RO

2-2-е

Saved Fuel Cost for 10Years (2001~2010) (1000RO)

	\20	01 20,07	(1000110)
Year	Sav. F.C	Coefficie.	Pre.Value
1998	0	1	0.0
1999	0	0.92593	0.0
2000	0	0.85734	0.0
2001	1492	0.79383	1184.4
2002	1558	0.73503	1145.2
2003	1625	0.68058	1105.9
2004	1691	0.63017	1065.6
2005	1761	0.58349	1027.5
2006	1826	0.54027	986.5
2007	1891	0.50025	946.0
2008	1956	0.46319	906.0
2009	2022	0.42888	867.2
2010	2093	0.39711	831.2
		Total	10065.5

Interconnection at year 2001

Saved Fuel Cost of 1997; 7,988,000 *0.139 =1,110*1000 RO

Growth Rate of Power Demands

in Wadi Jizzi System;

5.0% /Year

Saved Fuel Cost for 10 Years; 10,065*1000 RO

	Expansion Planning(2010-2020)	2016 2017 2018 2019 2020	77 3057 3148 3241 3337 3436	4 3178 3272 3430 3495 3589	5 95 95 95	9 3083 3177 3335 3400 3494	2 26 29 94 63 58	% 3.1% 3.0% 2.9% 2.8% 2.8%		7 940.7 940.7 940.7 940.7	√6) ~ 14)	719.6 719.6 8	94.1 (GT20)	7 368.7 368.7 368.7 368.7		470.5 564.6 658.7 658.7	1 94.1 94.1 94.1 94.1 51.1 (GT8)	678.9 648.6 713.1	94.1 \$29.6 \$29.6 (CT0.10) 94.1 (C	94.1 94.1 158.6 64.5
	Demand Balance & Generation Expansion Planning(2010-2020)	2012 2013 2014 2015	2718 2799 2882 2967	2866 2913 3018 3084	95 95 95	2771 2818 2923 2989	53 19 41 22	3.5% 3.4% 3.3% 3.2%			▲83,5 ▲83,5 ▲83,5 (GT4~6) 94,1 94,1 94,1 (GT12~14)	655.5 719.6 719.6	(ST1,4) ▲30 (ST5) (GT18) 94.1 (GT19)	274.6 3	94.1 (GT6)	376.4 376.4 376.4 470.5		6191 6191 5841	A 28 (G	76.7 46.7 104.7 66.1
	Maximum	2010 2011				2610 2694				6.806	(GT3) (GT11)		▲ 75.5	274.6		376.4 376.4		0 10	 	77 84.8
a rodinar remri vora	2-2-f Interconnection case		Peak Demand	Net Supply Capacity (*)	Reserve Margin	Firm Generation	Salance of Firm Generation	Ratio of Reserve Margin	(*) Net Supply Capacity	Rusail PS	9	Od dead	future expansion	Manah PS	0	A Syres	ė		Wadi Al Olzzi FS	Evanorion Total

2-2-5 Muscat System Maximum Demand Balance & Generation Expansion Planning/2010-2020) Muscat System Maximum Demand Balance & Generation Expansion Planning/2010-2020) Peak Demand 2010 2011 2012 2013 2014 245 2500 2354 2455 2516 2589 2684 2741 2220 Net Supply Capacity (**) 2291 2310 2414 2459 2500 2354 2458 2688 2688 2782 2876 2970 Peak Demand Peak Demand 2120 2131 2244 2405 2499 2560 2594 2459 2690 2594 2495 2970 Peak Capacity (**) 2291 2310 2414 2489 2500 2354 2459 2560 2594 2495 2690 2594 2495 2690 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2590 2594 2495 2499 2594 2495 2499 2594 2499 2499	j	JICA Final Report	•			In the Sultanate of Oman		In tł	ne Sulta	In the Sultanate of Oman	Oman	·			
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2120 2181 2244 2309 2376 2445 2560 2594 2688 2688 2682 2782 2876 2 2591 2310 2414 2489 2500 2594 2688 2683 2687 2781 2 2196 2215 2319 2394 2405 2499 2593 2593 2687 2781 2 4.5% 4.4% 4.2% 4.1% 4.0% 3.9% 3.8% 3.7% 3.5% 3.5% 4.5% 4.4% 4.2% 4.1% 4.0% 3.9% 3.8% 3.7% 3.6% 3.5% 4.5% 4.4% 4.2% 4.1% 4.0% 3.9% 3.8% 3.7% 3.6% 3.5% 4.5% 4.4% 4.2% 4.1% 4.0% 3.9% 3.8% 3.7% 3.6% 3.5%		2-2-g Muscat System	. <u></u>	solated cas	ie Demand	Balance	& Gener	ation Ex	pansion	Planning	,2010-20	20)		(MW)	. [
2120 2181 2244 2309 2376 2445 2516 2588 2664 2771 2291 2310 2414 2489 2500 2594 2688 2782 2876 2 95			2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		
2291 2310 2414 2489 2500 2594 2688 2688 2782 2876 2876 2876 2895 35			2120			2309	2376		2516	2589	2664	2741	2820		
95 96		Net Supply Capacity (*)		2310	2414	2489	2500	2594	2688	2683	2782	2876	2970		
2196 2215 239 2294 2405 2499 2593 2593 2687 2781 76 34 75 85 29 54 77 4 23 40 4.5% 4.4% 4.2% 4.1% 4.0% 3.9% 3.8% 3.7% 3.6% 3.5% 908.9 919.5 930.1 846.6 846.6 846.6 940.7 940.7 94.1 GT12) 83.5 83.5 617.4~6 94.1 GT15) 94.1 731 749.6 74.6 813.7 813.7 90.8 907.8 907.8 907.8 94.1 GT19) GT20) 94.1 GT19) GT20) 368.7 368.7 368.7 368.7 368.7 376.4 376.4 470.5 470.5 470.5 564.6 564.6 564.6 564.6 564.6 96.1 104.9 18.6 104.7 74.7 10.6 94.1 94.1 94.1<		Reserve Margin	95			95	95	95	95	35	95	95	95		
76 34 75 85 29 54 77 4 23 40 4.5% 4.4% 4.2% 4.1% 4.0% 3.9% 3.8% 3.7% 3.6% 3.5% 908.9 908.9 919.5 930.1 846.6 846.6 846.6 846.6 940.7 940.7 83.3 (G13) ▲83.5 ▲83.5 ▲83.5 (G14~6) 94.1 G713.14 97.8 907.8 907.8 907.8 94.1 G719 94.1 G713.14 94.1 G713.14 94.1 G7150 94.1 731 749.6 749.6 813.7 813.7 907.8 907.8 907.8 907.8 94.1 470.5 (S15) 94.1 368.7 368.7 368.7 368.7 368.7 74.6 274.6 274.6 274.6 368.7 368.7 368.7 368.7 368.7 376.4 376.4 376.4 376.4 367.6 364.1 <td></td> <td>Firm Generation</td> <td>2196</td> <td>2215</td> <td>2319</td> <td>2394</td> <td>2405</td> <td>2499</td> <td>2593</td> <td>2593</td> <td>2687</td> <td>2781</td> <td>2875</td> <td></td> <td></td>		Firm Generation	2196	2215	2319	2394	2405	2499	2593	2593	2687	2781	2875		
4.5% 4.4% 4.2% 4.1% 4.0% 3.9% 3.8% 3.7% 3.6% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6		Balance of Firm Generation to Peak Demand		34	75	85	29	54	77	4	23	40	55		
908.9 908.9 919.5 930.1 846.6 846.6 846.6 940.7 <t< td=""><td></td><td>Ratio of Reserve Margin</td><td></td><td></td><td>:</td><td>4 1%</td><td>4.0%</td><td>3.9%</td><td>3.8%</td><td>3.7%</td><td>3.6%</td><td>3.5%</td><td>3.4%</td><td></td><td></td></t<>		Ratio of Reserve Margin			:	4 1%	4.0%	3.9%	3.8%	3.7%	3.6%	3.5%	3.4%		
908.9 908.9 919.5 930.1 846.6 846.6 846.6 940.7 940.7 943.1 ▲83.3 (GT3) ▲83.5 ★83.5 ★83.5 (GT4~6) 94.1 (GT12) 94.1 (GT12) 94.1 (GT13.14) (GT13.14) 731 749.6 749.6 813.7 813.7 907.8 9007.8 907.8 907.8 907.8 907.8 907.8		(*) Net Supply Capacity													
on A83.3 (GT2) A83.5 A83.5 (GT4~6) 94.1 94.1 (GT12) 94.1 94.1 (GT13.14) (GT15) 731 749.6 749.6 813.7 813.7 907.8 907.8 907.8 907.8 GT17) 94.1 (GT18) 94.1 (GT19) (GT20) GT17) 94.1 (GT18) 749.6 813.7 868.7 36		Rusail PS					846.6	846.6	- 41	846.6	940.7	940.7	940.7	-	
on 94.1 ★75.5 (ST1 ~4 ★30 (ST5) 94.1 (GT17) 94.1 (GT18) (GT20) on 274.6 274.6 274.6 274.6 368.7 376.4 470.5 470.5 470.5 470.5 564.6 564.6 564.6 658.7 361		future expansion	▲83.3 94.1	(GT3) (GT12)	I◀ ˈ	I —	▲83.5 (GT13,14)	GT4~6,		- -	94.1 (GT15)				
on 94.1 A 75.5 (ST1~4 A 30 (ST5) 94.1 (GT17) 94.1 (GT18) 94.1 (GT19) (GT20) 274.6 274.6 274.6 274.6 368.7 376.4 470.5 470.5 470.5 470.5 564.6 564.6 558.7 361.7		Ghubrah PS	-	749.6			813.7	Ł ·	907.8	907.8	907.8	907.8	907.8		
on 274.6 274.6 274.6 368.7 368		Rion	94.1 (GT17)	1	00	_		94.1 (GT20)						•	 [
on (GT6) 376.4 376.4 470.5 470.5 470.5 564.6 564.6 564.6 658.7 94.1 94.1 0.6 94.1 94.1 94.1			274.6		. :	274.6	368.7	368.7	368.7	368.7	368.7	368.7	368.7		
on 376.4 376.4 470.5 470.5 470.5 564.6 564.6 564.6 658.7 on 94.1 GT5) (GT6) 18.6 104.7 74.7 10.6 94.1 94.1 0 94.1 94.1		future expansion					94.1 (GT6)							:	
on 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1			376,4	376.4	470.5	470.5	470.5	470.5	564.6	564.6	564.6	658.7	752.8		
104.9 18.6 104.7 74.7 10.6 94.1 94.1 0 94.1 94.1		future expansion			94.1 (GT5)				94.1 (GT6)			94.1 (GT7)	94.1 (GT8)		
		Expansion Total	104.9	18.6	104.7	7.4.7	10.6	94.1	94.1	0	94.1	94.1	94.1		 •

		(MW)											
tor			2020	989	795	95	700	14	13.8%		794.9	ļ	0
The Study on Demand Supply Management for Fower Sector In the Sultanate of Oman		30)	2019 2	999	795	98	700	36	14.3%		794.9 79	▲29.6 (GT10)	\$29.6
ment for . man		Generation Expansion Planning(2010–2020)	2018	643	825	95	730	87	14.8%		824.5	94.1 (GT27) ▲29.6 ▲ (GT9) ((64.5
Manage late of C		Planning	2017	623	760	95	665	42	15.2%		760		0
nand Supply Managemen In the Sultanate of Oman		xpansion	2016	603	760	95	665	62	15.8%		760		0
Demand In th		eration E	2015	583	760	95	665	82	16.3%		760	94.1 (GT26) ▲28 (GT8)	66.1
udy on			2014	565	694	95	599	34	16.8%		683.9)	0
The St		Balance	2013	547	694	95	599	52	17.4%		693.9	94.1 (GT25) ▲28 (GT7)	66.1
		Demand	2012	529	628	95	533	4	18.0%		627.8	I — I	66.1
	Isolated case	Maximum Demand Balance &	2011	512	562	စ္က	532	20	5.9%		561.7	30*2 94. (GT22.23) (GT24) ▲27.9 ▲28 (GT5) (GT6)	32.1
	<u> </u>		2010	496	530	30	500	4	% 0.9		529.6		2.7
JICA Final Report	2-2-h	Wadi Al Jizzi System		Peak Demand	Net Supply Capacity (*)	Reserve Margin	Firm Generation	Salance of Firm Generation to Peak Demand	Ratio of Reserve Margin	(*) Net Supply Capacity	Wadi Al Jizzi PS	Č	Expansion Total

3-33-3-

Production Cost at Consumer End, 1997; RO

Ì	COS: CIGINALIA	Ghubrah	Rusayl	Muscat Total	Wadi Jizzi	Manah	Rural	Tota	ę	e.
-	1 Fuel	14,930,156	13,531,167	28.461,323	7,993,343	4,428,976	26,095,840	66,979,482	61.2%	43.9%
2	2 Man Power	1,244,795	540.072	1,784,867	538.522	784,000	1,923,118	5,030,507	4.6%	3.3%
38	Spare Parts	782,375	487,251	1,269,626	662,270	292,304	2,212,657	4,436,857	4.1%	2.9%
4	4 Depreciation	3,759,820	2,306,860	6,066,680	1,806,420	0	2,503,952		9.5%	6.8
5	5 Financing Cost	3,995,660	2,451,039	669.977	1,919,321	7,933,071	2,660,449	18,959,540	. 17,3%	12.4%
9	6 Insurance	39.471	21.704	61.175	10.798	0 :	12,515	84.488	0.1%	0.1%
5	7 Others	620.949	366.016	Ű	55,731	1,205,315	1,163,702	3	3.1%	2.2%
8	8 Power Purchases						212,823	212.823	0.2%	0.1%
1018	10 Sub Total	25,373,226	19,704,109	45.077,335	12,986,405	14,643,666	36,785,056	36,785,056 109,492,462	100.0%	71 7%
4	Power	Purchase	:		types to the		36,572,233	36,572,233 109,279,639		
òst	Cost Outside Plant									
110	11 Depreciation		1.0	3,926,575	2,166,913		1,884,358		18.5%	5.2%
12 F	12 Financing Cost			4,162,170	2,296,927	164/0/491	1,997,419		41.5%	11.7%
13 S	3 Spare Parts			1.174.763	648,303		563 767	10	5.5%	. 16%
14	14 Maintenance			1,028,098	567,364		493,383	2,088,845	4.8%	1 4%
15	15 Insurance			7,718	4.259		3,704	15,681	%0.0	0.0%
16 N	16 MEW Administration			3,391,472	1,871,612		3,623,753	8,886,837	20.6%	5.8%
17 B	7 Billing Charges			2,387,155	563,159	170.417	759,549	3,830,280	80.6	2.5%
-			1							
8	20 Sub Total		1,514	16,077,951	8,118,537	9,640,908	9,325,9331	43,163,329	100.0%	28.3%
Н	The second second second second							1000		
30 T	30 Total Cost			61,155,286	21,104,942	24,284,574	46,110,989 152,655,791	152,655,791		100.0%
				100	100	476 114 114 144	****	2010/01/07		
8 01	40 Billed Amount			54,954,949	11.132.000	8 125 036	8,125,036 13,534,139	87,746,124,40/30	40/30	57.5%
4	Actual Revenue		***		A CONTRACTOR		20,700,000	86,808,768	Section Contract	
50 G	Govt. Subsidy			6,200,337	9.972,942	16.159,538	32,576,850	32,576,850 64,909,667 50/30	50/30	42.5%
Н		A		1					÷,	:
S	60 Electricity Generated	2,362,415	1,938,842	4,301,257	1,131,707	680,106	1,204,670	7,317,740		:
٥	(MWh)-Exolude OMCO	(5	1,051,052		1,190,349			
70 E	Electricity Exported	2,126,661	1,906,445	4,380,135	1,121,460	327,927	1,118,996	09/02/818/218 70/60	.09/0/	95.0%
5	(MWh)			-347,029	1000	347,029				
8 8	80 Electricity Consumed : Billed	: Billed		3,489,931	845.360	537,392	952,018	5.824,701 80/60	30/60	79.6%
٥	(MWh) Exclude Desail				100			5,623,045		
0	90 Consumed/Generated			81.1%	74.7%	79.0%	79.0%	79.6%		:
					Export to F	Paid up Consumption	mption	76.8% 5 600 336		
				•						

3-3-b

Unit Cost at Consumer End, 1997: baiza/KWh

Cost Within Plant							
No Cost Flament	Ghubrah	Rusay	Muscat	Wadi Jizzi	Manah	Rural	Tota
10			8.155	9.456	8.242	27.411	11.499
Pued Deman			0.511	0.637	1,459	2.020	0.864
S Wall Power			0,364	0.783	0.544	2.324	0.762
S Operation			1.738	2.137	000.0	2.630	1.782
4 Depreciation			1847	2.270	14.762	2.795	3.255
o Financing Cost			0.018	0.013	0000	0.013	0.015
o insurance			0.283	9900	2.243	1.222	0.586
O Dougs Durchages						0.224	0.037
10 Sub Total			12.916	15.362	27.250	38.639	18.798
2000							

Cost Orange Diagram					
110,000,000	1.125	2.563	000'0	1.979	1.370
	1 193	2717	17.623	2.098	3.078
12 Financing Cost	0.337	0.767	0000	0.592	0.410
13 Spare Parts	0.295	0.671	0000	0.518	0.359
14 Maintonance	0.002	0000	0000	0.004	0,003
i Dalinsurance	0,972	2214	0000	3.806	1,526
12 Billion Charges	0.684	0.666	0.317	0.798	0,666
20 Sub Total	4.607	9.604	17.940	9.796	7.410
30 Total Cost	17,523	24.966	45.190	48,435	26.208

40 Billed Amount	15.747	13.168	15.119	14.216	15.064
			00000	010	11 174
1 1 1 1 1 1 1 1 1	1 777	16/	0/000	20.7.4	-

3-3-c

Unit Cost at Exported from Power Station, 1997; baiza/KWh

Cost Within Plant							
	Ghubran	Rusayl	Muscat	Wadi Jizzi	Manah	Rural	Total
յերտյ	6.320	6.979	6.617	7.605	6.512	21.923	9.273
2:Man Power	0.527	0.279			1.153	1.616	0.696
3. Spare Parts	0.331	0,251		0.630	0.430	1.859	0.614
4 Depreciation	1,592	1.190	1.410		000:0	2.104	1.437
5 Financing Cost	1 691	1.264		ľ		2.235	2.625
6:Insurance	0.017	0,011	ľ		1	0.011	0.012
7 Others	0.263	0.189		Ĭ	1.772	0.978	0.472
101Sub Total	10,740			•		30.724	15.130

01000	7 8 9 10 11 2005 2006 2007 2008 2009	13,850 13,850 13,850 13,850 13,850	13,850 13,850	0 13,850 13,850 13,850 27,700 27,700					0 13,850 13,850 13,850 27,700 27,700
Integral Investment Program (1999 – 2010) : unit RO1000	5 6 2 2003 2004	13,850 13,850	37,400 13,850 27,700	37,400 13.850 27.700	·			200 200	37,600 14,050 27,700
integral investment Progr	2 3 4 2000 2001 2002	6,660 13.850		7,530 6,660 21,380 37		4,000		200 200	6.860 25,580 37
	ar 0 1 1998 1999	Muscat and Wadi Jizzi Syste	27,170	253,810	2,630 2,420 2,280 7,330	Center 4,000		1,000	34.700
	Year	A Interconnection between Muscat and Wadi Jizzi System investment to Gas Turbine 1 Grubrah 2 Rusayi 3 Wadi Jizzi 13,850	4 Barka 5 (Manah) 10 Gas Turbine Total	20 Investment to T/D 30 Total (10+20) 40 12 year total	B Water Injection 1 Ghubrah 2 Rusayl 3 Wadi Jizzi 10 Total (1+2+3) 40 12 year total	C Central Load Dispatching Center I investment 40 12 year total	D Battery Energy Storage 1 Investment	E Meter Replacement 1 Investment 40 12 year total	F Total investment 1 Annual investment 50 12 year total

1

J

	Year A Year A strict Restriction of the striction of the strict Restriction of the strict Restri	n, CLDC, neturing ctual / 1996 5,395 5,395 5,163 4,327 7,839 16,516 20,055 2,602 47,072 36,275 5,841 42,116 89,188 15,528 15,5	Actual 1997 5,433 5,154 4,335 16,311 12,565 2,950 41,008 47,98 47,98 47,98 47,98 47,98 47,252 82,260	6,032 5,743 4,826 8,963 16,907 12,601 0 3,237 41,708 40,399 5,731 46,130 87,838	1999 6,416 6,108 5,133 16,230 13,192 3,443 41,914 43,200 6,095 91,209 15,245	2 2000 6,866 6,537 5,493 9,770 13,730 46,218 6,523 45,218 6,523 52,741 98,400	3 2001 7,312 6,961 5,850 18,248 13,387 13,387 45,447 6,947 6,947 6,947 6,947 82,394 97,602	4 2002 7,728 7,357 6,182 14,233 14,233 4,147 47,549 48,021 7,542 55,362 102,911	(Muscat System + water Dizzl System) 3	6 2004 8.416 8.416 8.055 6.769 11.089 21,620 15,150 15,150 86 4.540 52,486 52,486 60.594 113,080	7 2005 8,778 8,356 7,022 11,289 23,046 14,771 4,710 53,896 53,896 53,896 116,746 115,245	8 2006 9.088 8,652 7,270 11,487 23,269 15,146 4,877 54,855 56,432 8,634 65,065 1119,921	9 2007 9,394 8,943 7,515 11,520 23,484 15,098 15,098 15,098 15,098 15,244 15,245 114,566	10 2008 9.694 9.228 7,755 11,424 23,690 14,721 60,178 9.209 69,386 124,488 118,223 118,223	11 2009 10,000 9,520 8,000 11,673 25,033 14,525 61 5,366 56,658 62,073 9,500 71,573 128,231 15,245 121,962	12 2010 10,316 9,820 8,253 11,844 26,322 14,162 56 57,920 64,022 9,800 73,822 131,742 15,2809
67,190 00,027 73,503 70,500 500 300 400 500 500 500 500 500 500 500 500 5		7,190	/80.39	73,569	5,680 83,933	6,080 89,921	200 6,474 95,854	300 6,842 101,392	400 7,213 106,943	500 7,491 111,182	500 7,774 115,325	500 8,049 119,386	500 8,319 123,385	500 8,582 127,306	8,853 131,314	9,134 135,444

Generated: 100%, Exported: 84%, Consumed: 80%	Assets (PS + T/D) x 2%	Assets x (Loan Repayment 4% + Interest 4.25% + Insurance 0.02% + 0.47%)	Assets x (Loan Repayment 2.5% + Interest 2.50% + Insurance 0.52% - 0.17%)	Assets X (Loan Repayment 02 + Interest 0.103 + Instrance 0.023 - 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Consumption X 4.4% (Private 5.7%), Government 1.70%, Constantion	Generation x 6.652/KWh(Muscat), 7.152/KWh(Waqi Oizzi)	Generation x 0.956z/KWh	Consumption x 15,24552/7Wn (1997 actual)
Note 1 Energy	∑	3 Capacity Cost - PS	4 Capacity Cost - T/D	5 Capacity Cost - Meter	6 Billing Charges	7 Foel	8 Consumables & Others	9 Revenue

3.701

3,083

2,817

925

-535

-1,421

-1,899

-3,627

-1,519

-1,749

-8,479

-7.277

-21,998 -16,173

Net Income

73,569 -14,269

u.	
:	
•	

3-3-f Without Projects				ů.	reliminar	y Income	Statemer Muscat S	Preliminary Income Statement, Northern Oman Electricity Grid (Excluding Manah) in RO1000 (Muscat System + Wadi Jizzi System)	n Oman (Vadi Jizzi	Electricita System)	' Grid (Ex	oluding Ma	ınah) in R	001000		
,o Y	Year /	Actual 1996	Actual 1997	1998	1999	2 2000	3 2001	2002	5 2003	6 2004	7 2005	3 2006	9 2007	10 2008	11 2009	12 2010
Energy 1 Generated in GW 2 Exported in GW 3 Consumed in GW		5,395 5,163 4,327	5,433 5,154 4,335	6,032 5,743 4,826	6,416 6,108 5,133	6,866 6,537 5,493	7,312 6,961 5,850	7,728 7,357 6,182	8,145 7,754 6,516	8,461 8,055 6,769	8,778 8,356 7,022	9.088 8,652 7,270	9,394 8,943 7,515	9,694 9,228 7,755	10,000 9,520 8,000	10,316 9,820 8,253
Fived Cost 11 0 & M 12 Capacity Cost - PS 13 Capacity Cost - T/D 14 Billing Charges 15 Total		7.899 16,516 20,055 2,602 47,072	9,182 16,311 12,565 2,950 41,008	8.963 16.907 12.601 3.237 41,708	8.955 16,230 13,003 3,443 41,631	9,476 17,828 13,351 3,685 44,340	9,230 17,666 12,817 3,924 43,637	9,433 18,059 13,096 4,147 44,735	10,477 20.934 13,996 4,371 49,777	10,687 22,342 13,658 4,540 51,228	10,950 24,244 13,151 4,710 53,055	10.804 23,228 13,407 4,877 52,317	10,914 23,950 13,240 5,041 53,145	10,891 24,642 12,749 5,202 53,484	10.936 25.307 12,450 5,366 54,059	11,190 27,090 11,990 5,536 55,806
Variable Cost 21 Fuel 22 Consumables & Others 23 Total		36,275 5,841 42,116	36,454 4,798 41,252	40,399 5,731 46,130	42,979 6,095 49,075	45,997 6,523 52,520	48,987 6,947 55,934	51,763 7,342 59,105	54,544 7,737 62,281	56,665 8,038 64,703	58,787 8,339 67,126	60.869 8,634 69,502	62.918 8.924 71,842	64.929 9.209 74.138	66.984 9.500 76.484	69,100 9,800 78,900
Expenses Total		89,188	82,260	87,838	90,706	098'96	99,571	103,839	112,059	115,931	120,181	121,819	124,987 127,621	127,621	130,543	134,706
Revenue 31 Unit Price, baiza/KWh 32 Revenue in RO1000		15.528 67,190	15.245 66,087	15.245 73.569	15,245 78,253	15,245 83,741	15.245 89,180	15.245 94,251	15.245 99,330	15.245 103,190	15.245	15.245	15.245 114.566	15.245 118,223	15.245	15.245 125,809
Net Income without Project		-21,998	-16,173	-14,269	-12,453	-13,119	-10,391	-9,588	-12,728	-12,740	-13,131	-10,982	-10,420	-9,398	-8,581	-8,897
Net income with Project	,	-21,998	-16,173	-14,269	-7.277	-8,479	-1,749	-1 519	-3,627	-1,899	-1,421	-535	925	2,817	3,083	3,701
Difference(With-Without)				0	5,177	4.640	8,642	8,069	9,101	10,842	11,710	10,447	11,345	12,215	11.664	12,598
Accumulation of Difference		* *.		0	5,177	9,817	18,459	26.528	35,630	46,471	58,181	68.628	79.973	92,188	103,853	116,451
Note 1 Energy 2 O & M 3 Capacity Cost - PS 4 Capacity Cost - T/D 5 Billing Gharges 6 Fuel 7 Consumables & Others 8 Revenue	ૐ ૡૻૡૻઌૻઌૻઌૻ	seets (PS ssets x (I ssets x (I ssets x (I onsumpti eneration	Generated: 100%, Exported: 84%, Consumed: 80% Assets (PS + T/D) x 2%. Assets x (Loan Repayment 4% + Interest 4.25% + Insurance 0.02% = 8.27%) Assets x (Loan Repayment 2.5% + Interest 2.65% + Insurance 0.02% = 5.17%) Consumption x 4.4% (Private 5.72%, Government 1.75%, compounded) Generation x 6.6bz/KWh(Muscat), 7.1bz/KWh(Wadi Jizzi) Generation x 0.95bz/KWh Consumption x 15.245bz/KWh (1997 actual)	2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2	Consumer Interest 4 Interest 7,102/K 7,102/K	1: 80% .25% + Ins 2:65% + I ment 1.7 Wh(Wadi	surance 0 nsurance 5%, compo Jizzi)	02% = 8.27 0.02% = 5. unded)	12% 2%							

9-9-8-				4	come State	Income Statement, Northern Oman Electricity Grid (Excluding Manah) in RO1000 Income Statement, Northern Company - World (Excluding Manah) in RO1000	orthern Oman Electricity Grid (Excluding Manah) in ROI	Electricity	Grid (Exclud	ding Manah) n + Barka S	in RO1000			
With All Proposed Projects Case 1: Consumption/Generation 1% Improved from 16% Year Actual Actual Year 1997	sots Seneration 1% Imp Year Actual 1996	proved from 1 Actual 1997	,6% 0 1998	1 1999	2000 2000	3 2001	nuscat system 4 2002	5 2003	6 2004	7 2005	8 2006	9 2007	10 2008	11 2009
Energy 1 Generated in GWh 11 Davised Constation	5,395	5,433	6,032	6,416	6,866	7,312	7.728	8.145	8,461	8.778 8,672	9.088 8.979	9,394	9,694	9,880 9,880
2 Exported in GWh 3 Consumed in GWh	5,163	5,154 4,335	5,743	6,108	6,537 5,493	6,961 5,850	7,357 6,182	7,754 6.516	8.055 6,769	7,022	7,270	7,515	7,755	8,000
Fixed Cost	7,899	9,182	8,963	9,028	9,770	9,592	10.099	11,096	11,089	11,288	11,487	11,520	11,424	11,673
12 Capacity Cost - PS 13 Capacity Cost - T/D	16,516	16,311	16,907 12,601	16,230 13,192	18,434	18,248 13,337	18.994	21,327 15,350	15,150	14,771	15,146	15,098	14,721	14,525
14 Capacity Cost - Meter 15 Billing Charges	2.602	2.950	3,237 41,708	20 3,443 41,914	40 3,685 45,658	58 3,924 45,208	75 4,147 47,549	92 4,371 52,235	36 4.540 52,486	81 4,710 53,896	4,877 54,855	5.041 55,214	5,202 55,102	5,366 56,658
Variable Gost 21 Fuel 22 Gonsumables & Others 22 Total	36.275 5,841 42.116	36,454 4,798 41,252	39,914 5,662 45,576	42.682 6.022 48.704	45,664 6,445 52,108	44,902 6,863 51,765	47,445 7,254 54,698	49,991 7,644 57,635	51,926 7,941 59,867	53.857 8.239 62.096	55.755 8.530 64,285	57,623 8,817 66,440	59,455 9,098 68,554	61.328 9.386 70,714
23 lotal Expendes Total	89.188	82,260	87.285	90,618	97.767	96,974	102,247	109,370	112,353	115,992	119,140	121,654	123,656	12/3/3
Revenue 31 Unit Price, baiza/KWh 32 Revenue in RO1000	15.53 67,190	15.25 66,087	15.25 73.569	15.25 78,253 0	15.25 83,741 100	15.25 89,180 200	15.25 94.251 300	15.25 99.330 400	15,25 103,190 500	15.25 107.050 500	15.25 110,837 500	15.25 114,566 500	15.25 118,223 500	121.962 500
34 Tanff Restructuring 35 Total Revenue			73,569	5,680	6,080	6,474 95,854	6,842	7,213	7,491	1,774 115,325	8.049 119,386	8,319 123,385	8,582 127,306	8,834 131,314
Net Income	-21,998	-16.173	-13,715	-6,685	-7,846	-1,120	-855	-2,927	~1.171	-667	246	1,732	3.650	3,942
N N														

10,316 10,192 9,820 8,253

11,844 26,322 14,162 56 5,536 57,920 63.254 9.682 72.936 130.856

Ę
_
ω
•
ω

;;;)				ڃ	come State	income Statement, Northern Oman Electricity Grid (Excluding Manah) in RO1000	hem Oman	Electricity	Grid (Exclu	ding Manah) in R0100	0			
With All Proposed Projects	7					ટ	(Muscat System + Wadi Jizzi System + Barka System)	cem + Wadi	Jizzi Syste	in + Barka	System)				
Case 2: Kevenue on increased	ed Actual 1996	Actual 1997	0 1998	1 1999	2000	3 2001	2002	5 2003	2004 4	7 2005	8 2006	9 2007	10 2008	2009	12 2010
Energy 1 Generated in GWh 2 Exported in GWh 3 Consumed in GWh	5.395 5,163 4,327	5,433 5,154 4,335	6.032 5.743 4.826	6,416 6,108 5,133	6,866 6,537 5,493	7.312 6.961 5.850	7,728 7,357 6,192	8,145 7,754 6,516	8,461 8,055 6,769	8,778 8,356 7,022	9,088 8,652 7,270	9,394 8,943 7,515	9.694 9.228 7.755	10,000 9,520 8,000	10,316 9,820 8,253
Fixed Cost 11 0 & M 12 Capacity Cost - PS 13 Capacity Cost - T/D 14 Capacity Cost - Meter 15 Billing Charges 16 Total	7.899 16,516 20,055 2,602 47,072	9,182 16,311 12,565 2,950 41,008	8,963 16,907 12,601 0 3,397 41,708	9,028 16,230 13,192 20 3,443 41,914	9,770 18,434 13,730 40 3,685 45,658	9,592 18,248 13,387 3,924 45,208	10,099 18,994 14,233 75 4,147 47,549	11.096 21.327 15.350 92 4.371 52.235	11.089 21.620 15.150 86 4.540 52.486	11,238 23,046 14,771 81 4,710 53,896	11,487 23,269 15,146 76 4,877 54,855	11,520 23,484 15,098 71 5,041 55,214	11,424 23.690 14,721 66 5,202 55,102	11,673 25,033 14,525 61 5,366 56,658	11.344 26.322 14.162 56. 5.536 57.920
Variable Gost 21 Fuel 22 Gorsumables & Others 23 Total Expenses Total	36.275 5,841 42,116 89,188	36,454 4,798 41,252 82,260	40,399 5,731 46,130 87,838	43,200 6,095 49,296 91,209	46.218 6.523 52.741 98,400	45,447 6,947 52,394 97,602	48,021 7,342 55,362 102,911	50,598 7,737 58,335 110,570	52.556 8,038 60,594 113,080	54,511 8,339 62,850 116,746	56,432 8,634 65,065 119,921	58,323 8,924 67,247 122,461	60.178 9.209 69.386 124,489	62.073 9,500 71.573 128,231	64,022 9,800 73,822 131,742
Revenue 31 Unit Price, baiza/KWh 32 Revenue in RO1000 33 Meter Replacement 34 Tariff Restructuring 35 Total Revenue	15.53	15.25	16.00	16.00 82.128 0 5.680 87,908	16.00 87,883 100 6.080 94,068	16.00 93,597 200 6,474 100,270	16.00 98,918 300 6,842 106.060	16.00 164.250 400 7,213 111.862	16.00 108.301 500 7,491 116.292	112,352 500 7,774 120,626	16,326 500 9,049 124,875	16.00 120,240 500 8,319 129,059	16.00 124,078 500 8,582 133,161	128,002 500 8,853 137,354	16.00 132.040 500 9.134 141.674
Net Income	-21,998	-16,173	-10,625	-3,401	-4,332	2.668	3,149	1,292	3,212	3.830	4,955	865,9	8,672	9,123	9.932
Note 1 Energy 2 O & M 3 Capacity Cost PS 4 Capacity Cost T/D 5 Capacity Cost Meter 6 Billing Charges 7 Fuel 8 Consumables & Others 9 Revenue	Generated: Assets (PS Assets x (L Assets x (L Consumptio Generation: Generation	Generated: 100%, Exported: 84%, Consumed: 80% Assets (PS + T/D) x 2% Assets (PS + T/D) x 2% Assets x (Loan Repayment 4% + Interest 4.25% + Insurance 0.02% = 8.27%) Assets x (Loan Repayment 2.5% + Interest 5.15% + Insurance 0.02% = 5.17%) Assets x (Loan Repayment 5% + Interest 5.15% + Insurance 0.02% = 10.17%) Consumption x 4.4% (Private 5.12%, Government 1.75%, compounded) Generation x 6.6bz/KWh(Muscat). 7.1bz/KWh(Wadi Jizzi) Generation x 0.95bz/KWh (1997 actual x 1.05)	d: 84%, Consi tt 4% + Intern tt 25% + Inter tt 5% + Intern ste 5,72%, Go Muscat), 7,11 Wh (1997 ac	nsumed: 80% erest 4.25% + Insurance 0.02% = 8 resest 2.65% + Insurance 0.02% = 8 erest 5.15% + Insurance 0.02% = 1 Government 1.75%, compounded) (1bz/KWh(Wadi Jizzi) actual x 1.05)	nsurance O. Insurance O. nsurance O. 75% compo i Jizzi)	02% = 8.27% 0.02% = 5.17 02% = 10.17% unded	· · · · · · · · · · · · · · · · · · ·								

I

	Cash Flow Analysis - Interconnection between Muscat System and Wadi Jizzi System	connect	TOO DOT		,																	
ž	Year	0 8661	1 999	2 2000 2	3 2001 2	2002	5 2003 20	2004 24	7 2002	9 ; 2006 20	9 1	10 1	2009 20	12 1	13 14	15 15 2013	3 2014	17	18 2016	15 2017	20 2018	Residuel
inter	Interconnection 1 GT - Build (MW) 2 Investment Residual Value of 2 in 2019	NPV 154,952	154.1 27,170 5,434	30 5,660 1,598	94.1 13,850 3,878	94.1 37.400 11,968	94.1 13.850 2 4.986 1	188.2 27,700 1 11,080	94.1 13,850 1 6,094	94.1 13.850 11 6,648	94.1	188.2 1 27.700 23 15.512 16	188.2 1 27.700 27 16,620 13	188.2 27,70 31 827,71	1 2,881 72 007,72 91 8836	186.2 11 27,700 27, 19,944 21,	188.2 9. 27,700 13.8 21,052 11.0	94.1 94.1 13.650 13.650 11.080 11.634		2 2	94.1 188.2 (850 27,700 1742 26,592	2 0 -242,816 2
. 4 N	3 Transmission Line 4 Grid SS 5 Total (3+4)	5.155	٥	o	5,830 1,700 7,530	•	o	0	۰	۰	o	0	۰	0	0	٥	٥	0	0	o	٥	۰
9	6 Investment Total	160,107	27.170	099'9	21,380	37.400	13,850	27.700	13,850 1	13,850 1	13,850 2	27.700 2'	27,700 2	2 001,72	72 001.72	72 001,72	27,700 13,6	13,850 13,8	13,850 13,	13,850 13,850	50 27,700	8
W/G	Without Interconnection 11 CT – Build (MW) 12 Investment Residual Value of 12 in 2019	175,392	154.1 27,70 5.43 4	30 6,660 1.598	94.) 13.850 3.878	124.1 44.060 14.099	188.2 27.700 :: 5.972	218.2 34,360 13,744	000	124.1 20,510 2 9,845 1	124,1 20,510 2 10,665 1	124.1 20,510 3 11,486 2	218.2 24,360 3 20,616 2	218.2 34,360 2 21,990 1	154.1 : 277.70 4: 18,476 2:	282.3 2 41,550 41	2823 41,550 31,578	0 18	168.2 (22.700 13.23.268 12.23.20.23.208 12.208 12.208 12.23.208 12.23.208 12.23.208 12	94.1 13.850 12.188	0 1862 0 27.700 0 26.592	4 8 3
% K	Net Cash Flow 2: Investment Saving(12-6)	15,285	۰	ပ	-7.530	6.660	13,850	6.660	-13.850	6.560	9,66	-7,190	6,660	6,660	-530	13,850	13,850 -13	-13,850 13,	13,850	0 -13	-13.850	٠
22	22 Fuel Saving	15,537	0	۰	1,492	1,558	1,625	1.69.1	1,761	1,826	1,891	1,956	2,022	2,093	2,162	2,233	2.307 2	2.383 2.	2.462 2	2.543 2	2,627 2.	2,714
23	23 Total (21+22)	30,822	•	٥	-6.03A	8,218	15,475	B.351 -	-12,089	8,486	8,551	-5,234	8,682	8,753	1,632	16,083	16.157 ~11	-11,467 16	16,312 2	2,543 -11	-11,223 2.	2.714

Center
Dispatching
Load
Central
ysis =
Anal
Flow
Cash

RO1000

Residuel	Value		-1,120			
20	2018		0			4,093
2	2017		٥			3.970
<u> 50</u>	2016		٥			3.851
1.7	2015		0			3,735
91	2014		0			3,622
31	2013		0			3,514
4	2012		o			3,408
Ē	2011		o			3,305
51	2010		0			3,206
=	2003		0			3.110
õ	2008		0			3,016
ø	2007		0			2,925
Ð	2006		٥			2.632
~	2005		٥			2.736
10	2004		0			2.639
ĸ'n.	2003		a			2,542
4	2002		۰			2.405
9	1002		0 4,000			2.285
8	2000		٥			•
-	1995		0			٥
o	1938	ΛdΝ	2,953			23,867
No Year			1 Investment	i	Benefit	2 Fuel Saving
_					_	

20.914

1

Not Cash Flow 3 Benefit - Investment

A-20

3-3-k

1

Cash Flow Analysis - Water Injection Project-Ghubrah

Λ-21

Frame6

3 Investment of GT

Cash Flow Analysis - Water Injection Project-Rusayl

No Year	o	_	64	co	4	ĸ	ø	~	80	¢s.	0	11	12	ŭ	4	5	91	17	8.	ð; ₩	20 Re	Residual
	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	Value
Water Injection	ΥPV																					
1 Water Injection, Rusay!	2,145	2,420	۰	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	-484
2 Fuel	11,990	1,221	1,22,1	1,22,1	1,22,1	1,22,1	1,22,1	1,22,1	1,22,1	1,221	1221	1,22,1	1,221	1,22,1	1,22,1	1,221	1,221	1,22,1	1,221	1,221	1,22,1	
3 Water	299	61	63	-6	61	Ē	ĝ.	19	5	15	19	15	19	61	5	Ĝ.	19	19	19	£	19	
4 Project Cash Flow Total 14,733		3,702	1,232	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	1,282	-484
GT Addition																						
5 Investment w/o Project 12,274	12,274	13,850	0	0	0	0	•	0	0	0	۰	٥	۰	0	0	٥	•	٥	٥	c	0	-2,770
6 Fuel	11,322	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	
7 Project Cash Flow Total 23,596		15,003	1,153	1,153	1,153	1,153	1,153	1.153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	1,153	-2,770
Net Cash Flow (7-4)	8,863	11,301 129	-129	-129	-129	-129	129	-129	-129	+129	-129	-129	-129	-129	-129	-129	-129	-129	-129	-129	-129	-2,286

25 years Note 1 Depreciation of Gas Turbine 2 LHV of Gas

8,900Kcal/CuM

3 Investment of GT

Frames

RO1000

			•	c	-	u	tc.	۲-	50	- ص	2	=	12	13 14	15	16	17	18	10	20		Residuel
× × × × × × × × × × × × × × × × × × ×	1998	1090	3000	2001	2002	903	\$	902	906	2007	2008	2009	2016 2	2011 2	2012 2	2013 20	2014 20	2015 20	2016 20	2017 2	2018 V.	Value
Water Injection	MPV																					
1 Water Injection, Wadi Jiz.	2,021	2,280	٥	٥	0	o	0	0	0	ø	٥	٥	0	٥	0	0	0	0	٥		٥	-456
2 Fuel	5,475	558	558	558	658	558	558	558	558	558	558	558	558	558	558	929	558	558	558	558	558	
3 Water	200	50	50	20	20	20	20	20	20	50	50	50	50	50	20	20	50	20	20	20	20	
4 Project Cash Flow Total	7,695	2,858	578	578	578	578	573	578	578	578	578	578	578	578	578	578	578	578	578	578	578	-456
GT Addition																			,	,		5
5 Investment w/o Project	5,902	6,660	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	>	7001-
i de l'		536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	536	
7 Project Cash Flow Total 11,162	11,162	7,196	536	536	536	536	536	536	536	936	536	536	536	536	536	536	536	536	536	536	. 929	-1,332
Net Cash Flow (7-4)	3,466	4.338	-42	- 42	-42	-42	24-2	-42	-42	.42	.42	-42	-42	-42	-42	-42	-42	-42	-45	-42	24	-876

Note

25 years 1 Depreciation of Gas Turbine 2 LHV of Gas

8,900Koal/CuM

Frame6 3 Investment of GT

g-Rusayl
00 12 13 13 13 13 13 13 13 13 13 13 13 13 13
Inlet Air
Analysis - In
Cash Flow
٠.

No Yeer	O	-	63	8	4	so.	ω	8	0	5	Ξ.	12	Ę	14	5	16	12	81	5	8	Residuel	
	1998	1959	2000	2001	2002	2003	2004	2005	2006 2	2007 20	2008 2009		2010 2011	1 2012	2 2013	2014	2015	20:5	2017	2018	Value	
Inlet Air Cooling	NPV																					
1 Inlet Air Cooling, Rusayl	9.004	10,160	0	Ö	0	o	0	٥	0	0	0	0	0	٥	0 0	0	0	•	0	0	-2.032	
2 Chiller Power	9	106	301	106	106	106	901	301	106	106	106	1 901	106 10	106 106	90: 9	106	106	105	901	106		
3 Project Cash Flow Total	10,044	10.266	106	106	106	106	106	106	106	106	106	106 1	106 10	106 106	5 106	106	106	106	105	10\$	-2.032	
GT Addition																						
4 Investment w/o Project	12,274	13,850	0	0	o	0	0	0	0	0	0	0	0	٥	0 0	0	0	0	0	0	-2.770	
5 Extra Fuel	184	6	6,4	64	6	o,	6	49	49	49	45	49	49	49 49	49	49	49	41 Q	\$	40		
6 Project Cash Flow Total	12,755	13,899	49	5	69	49	43	69	49	49	49	45	6	49	49 49	67	67	45	49	40	-2.770	
Net Cash Flow (6-3)	2.710	3.633	-57	5.	-67	-57	-57	-57	-57	. 53	-67	-6- -	-57	e - 5	رئ- ر	-57	-57	-57	-57	-57	-738	

Note

1 Depreciation of Gas Turbine 25 years

2 LHV of Gas 8,900Koal/CuM (Until 19:9,550Koal/CuM

3 Investment of GT: Frame 9 13,850

1

Cash Flow Analysis - Pumpod Storage Plant

RO1000

· ·	Vear 0	Year	Year 2		Year 4	Year () Year 2 Year 3 Year 4 Year 5 Year 5		Year?	Year 8	r ears ⊀	Year 9 Year 10 Year 11 Year 12 Year 12 Year 14 Year 15 Year 16 Year 17 Year 19 Year 20	ear 11 - Ye	sar 12 Ye	ser 13 Ye	ar 14 Ye	sar 15 Ye	var 16 Ye	sar 17 Yeu	er 18 Yea	19 Year	0 Residual	d (sa)
	900	6691	000	1006	2003	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017 20	2018 Value	.3
	0 0 0		3	3																	7	-48,186
1 Investment - Civil Work	83,060																					
2 - Plant	27.700																				'	704
3 - Transmission	1,220																					-580
4 - Overhaul of Plant								3.048								3.048						-762
5 Total (1 to 4)	112,000							3.048								3.048					ĩ'	-53.950
6 O & M Cost		3.360	3,360	3,360	3,360	3,360	3.360	3,360	3,360	3.360	3.360	3,360	3.360	3,360	3,350	3,360	3.360	3,380	3,360	3,350 3.0	3.350	
7 Pumping Energy Cost		484	484	484	484	484	484	484	484	484	484	484	484	48 48	484	484	484	484	484	484	484	
8 Total Cost	112,900	3,844	3.844	3.844	3.844	5,844	3.844	6.892	3.844	3.844	3,844	3.844	3.844	3.844	3.844	5.892	3.844	3.844	3,844 3	3,844 2,844	•	-53,950

141,761 9 Net Present Value

Without Pumped Storage Plant

Residual	Value	-2,752			-2.752
/ear 20	2018		516	225	741
/ear 19 \	2017		516	225	741
ear 18 \	2016		516	225	121
'ear 17 Y	2015		કાઢ	225	741
Year 16 N	2014		516	225	741
Year II Year 12 Year 13 Year 14 Year 15 Year 15 Year 17 Year 18 Year 20	2013		8 8 8	225	741
Year 14	2012		516	225	741
/ear 13	2011		516	225	741
(ear 12)	2010		516	225	741
(ear 11	2008		516	225	74:
(ear 10	2008		516	225	741
Year 9 Year 10	2007		516	225	741
Year 8	2006		516	225	741
Year /	2002		516	225	741
Year 6	2005		516	225	741
Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6	2003		516	225	741
Year 4	2002		516	225	741
Year 3	2001		516	225	741
Year 2	2000		516	225	741
≺ ear ⊥	1959		516	225	741
Year 0	1998	17,200			17,200
Investment		GT-107,340kW	2 O & M Cost	3 Fuel Cost	4 Total Benefit
2		5	2	າ (+ ອ	4 To

23.929 5 Net Presont Value

-1:7,832 Benefit - Cost (NPV)

0 169 Benefit / Cost

System
Storage
Energy
Battory
Analysis -
FIOW
Cash

Cash Flow Analysis – Battory Energy Storage System	attory Ener	igy Sto	rage Sy	stem																	ά	RQ1000
No Year	٥	-	8	ຕ	4	v)	9	~	80	\$	01	=	12	13	14	15 1	16 1	1 71	18 19		20 Re	Residual
	1998	1999	2000	2001	2002	2003	2004	2005	2008	2007	2008	5003	2010	2011	2012	2013 2	2014 2	2015 2	2016 2	2017 2	2018 V	Value
Project Cash Outflow																						
1 Investment - Battery	11,000									=	11,000									Ξ	11000	-9,900
2 Investment - Add. Facilities	ss 25,600																					
3 Investment Total	36,600	0	0	•	•	•	0	0	0	0	11,000	٥	۰	٥	o	0	0	0	٥	0 11	11,000	-9,900
4 0&M		366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	386	386	366	366	386	
5 Cash Outflow Total	36,600	366	366	366	396	366	366	366	366	366 11	11,366	366	366	366	366	386	366	366	366	366 11	11,366	-9.900
• • • •																						
Project Cash Inflow																						
6 Investment Saving	13,850																				•	-2,216
7 O&M Saving		416	416	416	416	416	416	416	914	416	416	416	416	416	416	416	416	416	416	416	416	
8 Fuel Saving		1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1.500	1,500	1,500	1,500	1.500	1,500	1,500	1,500	1,500	
9 Cash Inflow Total	13,850	1,916	9161	1,916	1,916	1,916	1,916	1,916	1,916,1	1,916	1,916	1,916	1,916,1	1,916	1,916,1	1,916,1	1,916	1,916,1	1,916,1	1,916	916,1	-2,216
10 Net Cash Flow (9-5)	-22,750	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550 -8	-9,451 1	1,550	1,550	1,550 1	1,550	1,550 1	1,550 1	1,550 1	1,550 1	1,550 -9	-9,451	7,684
# Not present Value	-13,465																					
Note																						
1 Life of Battery	10 years																					
Z Line of Additional Pacilities Culyears 3 O & M (BES) Investme 4 O & M (GT) Investme	investment x 1% Investment x 3%	× 3 × 3 × 3																				

T

I

RO1000

Cash Flow Analysis - Gas Cooling System - Royal Hospital	Gas Cooling	System - F	Roval Hosi	pital												RO1000
1. Gas Co-Generation No	Year O	Year 1	Vear 2	Year 3 2031	Year 4 2002	Year 5 2003	Year 6 ,	Year 7 2005	Year 8 2006	Year 9 Y	Year 10 Y 2008	Year 11 2009	Year 12 Y	Your 13 Y	Year 14 7	Year 15 2013
Project Cash Outflow 1 Gas Co-Generation 2 O&M 3 Natural Cas 4 Water 5 Cash Outflow Total	1908	1999 55,800 146,880 70,580 273,240	25.800 146,880 70,580 273,240	55,800 146,880 70,560 273,240	55.800 146,880 70.560 273,240		55,800 146,880 70,580 272,240	55,800 146,880 70,560 273,240	55.800 146.880 70.560 273.240	55,800 146,880 70,560 273,240	55.800 145.880 70.560 273.240	55,800 146,880 70,580 273,240	55,800 146,980 70,560 273,240	55.800 146.880 70.560 273.240	55.800 146.880 70.560 273.240	55,800 140,860 70,560 273,240
Propect Cash Inflow 6 Saved Electroity 7 Saved Fuel Oil 8 Cash Inflow Total		720,000 48,000 768,000	720.000 48.000 768.000	720.000 48.000 768.000	720.000 48.000 768.000	720,000 48,000 768,000	720,000 48,000 768,000	720,000 48,000 768,000	720,000 48,000 768,000	720,000 48,000 788,000	720,000 48,000 768,000	720.000 48.000 768.000	720,000 48,000 768,000	720,000 48,000 768,000	720,000 48,000 768,500	720.000 48,000 768.000
9 Net Cash Flow (8-5) 10 Net present Value	-1 860 000 2 374,848	494.760	494,760	494,760	404.780	494,750	494.760	494,760	494,760	494,760	434,760	494.760	494,760	494.780	494.760	494,760
2. Steam Absorption Chiller No	iker Year û 1998	Year 1 1999	Year 2 2000	Year 3 2001	Year 4 2002	Year 5 2003	Year 6 2004	Year 7 2005	Year 8 2006	Yeer 9 2007	Year 10 2008	Year 11 2009	Year 12 2010	Year 13 2011	Year 14 20:2	Year 15 2013
1 Steem Absorption 2 O&M 3 Natural Gas 4 Water 5 Cash Outflow Total	1,212,000	36.000 167.400 169.320 372.720	36,000 167,400 169,320 372,720	36,000 167,400 169,320 372,720	36,000 167,400 169,320 372,720	36,000 167,400 169,320 372,720	36,000 167,400 165,320 372,720	36,600 167,400 169,320 372,720	36,000 167,400 169,320 372,720							
Project Cash Inflow 6 Sayed Electricity 7 Sayed Fuel Oil		568.080 48,000 616.080	568 080 48.900 615.980	568,080 48,000 616,080	568,080 48,000 610,080	568.080 48.000 616.080	568,080 48,000 615,080	588,080 48,000 616,080	568,080 48,000 516,080	568.080 48.000 616.080	568,080 48,000 616,080	568,080 48,000 616,080	568,080 48,000 616,080	568,080 48,000 616,080	568,080 48,000 616,080	568,980 48,900 616,680
8 Cash Innow 10cal 9 Net Cash Flow (8-5) 10 Net present Value	-1.212.000 -1.212.000	243.360	243.360	243,360	243,360	243,380	243,360	243.360	243.360	243,360	243,360	243.360	243.360	243,360	243,360	243,360
3. Gas-Fired Absorption Chiller No Project Cash Outflow	Chiller Year 0 1998	Year 1 1999	Year 2 2000	Year 3 2001	Year 4 2002	Year 5 2003	Year 6 2004	Year 7 2005	Year 8 2006	Year 9 2007	Vom: 10 2008	Year 11 2009	Year 12 2010	Year 13 2011	Year 14 2012	Year 15 2013
1 Gass Fired Absorption 2 O&M 3 Natural Gas 4 Water 5 Gash Outflow Total	1,174,000	35,220 126,960 169,320 331,500	35,220 126,960 169,320 331,500	35.220 126,960 169,320 331,500	35,220 126,960 169,320 331,500	35,220 126,960 169,320 331,500	35,220 126,960 168,320 331,500	35,220 126,960 169,320 331,500	35,220 126,960 169,320 331,509	35.220 126.800 169.320 331,500	35,220 126,960 169,320 331,500	35,220 126,960 169,320 331,500	35,220 126,960 169,320 331,500	35,220 125,960 169,320 331,500	35,220 126,960 169,320 331,500	35,220 126,860 165,320 331,500
Project Cash Inflow 6 Seved Electricity 7 Seved Fuel Oil 8 Cash Inflow Total		568.080 0 568.080	568.080 0 568.080	568,080 0 568,080	\$68,080 0 \$68,580	568,080 0 568,080	568,080 0 568.080	568.080 0 568.080	568,080 0 558,080	568.080 0 568.080	568.080 0 568.080	568,080 568,080	568.080 0 568.080	568,080 558,080	568.080 568.080	568,080 0 568,080 238,580
9 Net Cash Flow (8-5) 10 Net present Value	-1 174 000 R51,001	226.580	236.580	236.580	236,580	235.580	236.580	236,580	236.580	236.580	236.560	000000	200			

Cash Flow Analysis - Gas Cooling System - Al Falaj Hotel	sas Cooling	System -	Al Falaj H	otel												RO1000
1, Steem Absorption Chiller	, , ,	, 4	Year 2	Yeer 3	Year 4	Year 5	× 8 8	Year 7	Year 8	Year	Year 10	Year 11	Year 12	Year 13		Year 15
Project Cash Outflow	1998	1988	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011		2013
2 Ogen Absorption Chinese	200	4940	4 940	4.940	4.940	4,940	4.940	4,940	4.940	4,940	4,940	4,940	4,940	4,940	4.940	4,940
A Contract C		17.640	17.640	17,640	17,640	17,640	17,640	17,640	17.640	17,640	17,640	17,640	17.640	12,640	17,640	17,640
d Water		10.550	10.560	10,560	10,560	10,560	10.560	10,560	10,560	10,560	10,560	10,560	10,560	10,560	10,560	10,560
5 Cash Outflow Total	164,800	33,140	33,140	33,140	33,140	33,140	33,140	33,140	33,140	33,140	33,140	33.140	33,140	33,140	33,140	33,140
Project Cash inflow		6	6	008.18	008.19	908	81,800	61 800	91,800	61.800	900	81,800	61,800	61.800	61.800	61.800
5 Saved Electronty		20000	11440	13.440	13 440	13.440	13.440	13.440	13,440	13,440	13,440	13,440	13,440	13,440	13,440	13,440
/ Saved rue! Ou 8 Cash Inflow Total		75,240	75,240	75.240	75.240	75.240	75,240	75.240	75,240	75,240	75.240	75,240	75.240	75,240	75.240	75,240
9 Not Cash Flow (8–5)	-164,800	42,100	42,100	42,100	42,100	42,100	42.100	42.100	42,100	42,100	42.100	42,100	42,100	42.100	42.100	42.100
10 Not present Value	195,554															
2. GHP Chiller														;	;	;
· ·	0 200%	Year 1	Year?	Year 3	Yer' 4	Year 5	Year	Your?	Year 8	Year 9	Year 10	Year 11	Year 12	Year 13	Year 14	Year 13
Project Cash Outflow	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2002	2010	2011	2012	2013
OTH Chiller	D/ Z/9CZ		2750	7.750	024.4	7.750	7 750	7.750	7,750	7,750	7,750	7,750	7.750	1,750	7,750	7,750
2 Court		13.040	13.040	13.040	13.040	13.040	13,040	13,040	13,040	13,040	13.040	13,040	13,040	13,040	13,040	13,040
A Western		0	0	0	0	٥	0	•	0	0	0	0	0	0	٥	•
5 Cash Outflow Total	258,270	20.790	20,790	20,790	20.790	20.790	20,790	20.790	20,790	20,790	20,790	20,750	20.790	20.790	20,790	20,790
Project Cash Inflow		63.840	63.840	63.840	63.840	63,840	63,840	53.840	63,840	63,840	63,840	63,840	63,840	63.840	63,840	63.640
7 Sample First Oil		C	C	0	a	•	0	0	0	0	o	0	0	•	۰	۰
8 Cash Inflow Total		63,840	63,840	63,840	63,840	63,840	63.840	63,840	63,840	63,840	63,840	63,840	63.840	63,840	63.840	63,840
9 Net Cash Flow (8-5)	-258,270	43,050	43,050	43.050	43,050	43.050	43,050	43,050	43,050	43,050	43,050	43.050	43,050	43,050	43,050	43.050
10 Not present Value	110,216				·											

ഗ
•
ന
•••
٠.
CJ

RO1600	Yo <u>₩</u> 15 2013	2,480 9,810 12,290	1,940 7,020 8,960	2,520 8,424 10,744	1,700 5,850 7,550	856 1,890 2,746	090 1,360 2,076
	Year 14 2012	2,480 9,810 12,290	1,940 7,020 8,960	2.320 8.424 10.244	1,700 5,850 7,550	956 1,690 2,746	690 1,380 2,070
	Yes 13 2011	2,480 9,810 17,290	1,940 7,020 8,960	2,320 8,424 10,744	1,700 1,850 7,550	855 1.890 2.746	050 1,360 2,070
	Year 12 2010	2,480 9,810 12,790	1,940 7,020 8,960	7,320 8,424 10,344	700 5.850 7.550	856 1.890 7.746	690 1,360 2,070
	Year 11 2009	2,480 9,810 12,290	1,940 8,960 8,960	2,020 8,424 10,744	1,700 5,856 7,830	856 7,890 7,746	690 090,1 070,5
	Year 10 7009	2.480 9.810 12.290	1,940 7,020 8,560	2,229 5,424 10,744	0,700 5,850 7,850 7,850	996 1,1990 2,746	690 0851 2,070
	Your 9 2007	7,480 9,510 12,290	1,940 7,076 994,8	2,320 8,424 10,744	0,700 8,850 7,550	856 1,890 2,746	690 1,380 2,070
	Year 6 2006	2,480 9,810 17,290	1,540 7,020 8,960	7.520 8.424 19.744	1,700 3,836 7,550	856 1.890 5.746	696 1.380 2.070
	Your 7 1 2005	2.480 2.810 17.290	1,940 7,020 8,360	2,320 8,424 8, 10,744	0 1,700 0 5,850 0 7,350	856 0 08,0 0 2,746	069 090 0071 0700 0071 0
	Year 6 2004	2,490 0 9,810 0 12,290	0 7,940 0 7,027 0 8,960	0 2,370 4 0,424 4 10,744	0 1,700 0 5,850 0 7,850	656 10 1.990 15 7.746	680 00 1,380 00 7,070
	Yow's 2003	9 2,480 9,810 0 (2,290	0 7,020 0 7,020 0 6,960	2.320 2.4 0.474 54 10.744	1,700 50 3,890 50 7,350	856 856 80 1890 40 2.746	90 690 80 1,380 70 2,070
•	Vear 4 31 7602	90 2.480 10 9.810 30 12.290	40 1,240 50 1,520 50 8,350	20 2.320 24 8.474 44 10.744	007.1 00.5.1 008.2 008.5 008.5 00.5.5	856 856 1,890 1,390 2,746 2,746	690 690 1,380 1,390 2,070 2,070
	Year 3 30 2001	80 2,480 10 9,810 00 12,290	. 1.340 20 7.020 50 89.60	20 2.2.20 24 8.424 44 10,744		896 8 1,090 1.8 2,746 2.7	690 6 1,380 1,3 2,070 2,0
ut Operation	Year 2	2,480 10 9,810 30 17,290	40 1,940 20 7,020 50 4,360	24 8,424 44 10,744	90 1,700 90 5,850 50 7,550	w O w	696 (3 1,390 (3 2,070 ?.c
-Peak G	Verv 1 1999	2,480 9,810 12,290	1,240 7,070 8,960	2,320 8,424 10,744	1,700 5,650 7,550	8 1.8 2.7 2.7	ል ነ ያ
Thermal Storage	1 - too Thermal System Volat 0 1998	28,000 191,600 2,48 191,600 228,796 28,796 29,796	194,000 194,000 274,683 0.912	1 - 1 (sat 1 harmani Synecon 785/000 -98/240 186/260 246/2723 n - Wichout too Tharmani Synetom	176.000 170,000 234,6574 -76,009 0,000	107,000 -34,430 77,600 85 1,690 1,69 1,59 1,500 2,74 96,104 96,104 Thomas System	69,000 69,000 86,7,18
Cash Flow Analysis-toe Thermal Storage-Peak Cut Operation	Goyal Houpital Camb I: Investment Program - toe Thermal System No. No. System (1996 System (1996)	1 los Thomas Syntom 2 Count 2 Count 3 Investment Total 4 Outh 5 Education 7 Next Present Value	Investment (Conventional VO Education VO Education Volume Volume Found Volume Powerff - Court Gell'/ Enewart (Court Well') Enewart (Court Well')	Case 1: Investment Program - Too Therman Syntam Evertaint I be Therman Syntam 26.500 2 Cast South System 98.240 4 O.M. 4 O.M. 160.760 5 Tool Cast Cast Online 160.750 7 Not Preparal Value 260.723 Case 2: Investment Program - Without tee Therman	Investment	Investment 1 on Thermal System 2 Gent 3 Investment Total 4 Odd 5 Endbert 7 Net Present Valve Case 2: Investment Pragram	investment Conventional A/G 2 Odd 3 Editholy 4 Toul Cash Duffore 5 Net Present Value Besselfs - Over (NPV) Besself - Cover (NPV)

Cash	Gash Flow Analysis - Solar Energy System (1kW)	- Solar E	nergy	Systen	1 (1KW)																ā	Unit: RO
ž	, ,	•		e	e	4	NO.	9	~	\$	o	5	Ξ.	12	<u>5</u>	4	15	16	71	8	19	20
?		1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Ο̈́	Solar System																					
<u>č</u>	Investment - Solar	2,980													;	;	6	9	9	a oc	8	29.8
2 O&M	wa.		29.8	29.8	29.8	29.8	29.8	29,8	29.8	29.8	29.8	29.8	29.8	29.8	8.62	28.8	0'E7	0167	3			•
<u>ධ</u>	3 Electricity Saving		49.9	49.9	49.9	45,9	49.9	49.9	49.9	49.9	49.9	49.9	49.9	6.64	49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9

5 Net present Value -2.577

1 Life of Solar System 20 years
2 O & M (Solar) Investment x 1%
3 Electricity Tariff 30 Bz/kWh

20.1

20.1

20.1

20.1

20.1

20.1

20.1

20.1

20.1

20.1

20.1

20.1

20,1

20.1

20.1

20.1

20.1

20.1

20.1

20.1

-2,980

4 Not Cash Flow

Cash Flow Analysis – Meter Replacement

Unit1000 RO

No Year		_	64	m	4	ç	ô	7	EQ.	6	10	-	12 1:	13 14	15		16	17 1	1.8	91	20
	Adn	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008 2	2009 2	2010 2	2011 2	2012 2	2013 2	2014 2	2015 2	2016	2017	2018
1 investment	799	8	200	200	200	200	٥	۰	۰	۰	•	٥	٥	٥	٥	0	o	0	o	•	۰
2 Revenue Increase	3,650	٥	8	8	8	8	200	98	200	200	200	200	009	200	999	85	200	500	200	200	200
3 Benefit - Investment	2.851	-500	28	۰	8	200	900	200	900	200	200	200	200	200	9005	200	200	200	200	88	200
Note 1 Life of Meter	10 years																				

A-32