CHAPTER 3 FORMULATION OF DEVELOPMENT FRAMEWORK

3.1 Planning Horizontal and Objectives

3.1.1 Planning Horizon

The planning period for the aftercare study is 1999 to 2010 and corresponds to the planning horizon of 2010 identified in the National Water Master Plan. Sewerage development is aimed at selected urban centres in accordance with the strategy outlined in the following sections of the report.

3.1.2 Development Objectives

Sewage, whether domestic or industrial, must no longer be disposed of indiscriminately. Controlled disposal of domestic sewage and industrial wastewater is the only solution for safeguarding water resources and public health in Kenya. The objective of the Aftercare Study are:

- 1) to provide a national sewerage development plan with priorities for implementation, and
- 2) to provide a strategy for the sustainable development, operation and maintenance of sewerage systems

Clearly, actions to resolve the identified constraints must be taken to ensure that operating authorities have the management capacity to properly operate and maintain sewerage. Otherwise continued development will not be sustainable. A complete list of the constraints and recommended actions to overcome them is presented in **Table - 3.1.1**.

3.2 Target Areas

There are a total of 215 urban centres in Kenya. To plan for the development of sewerage by the year 2010 in all 215 urban centres would only exacerbate the difficulties of establishing priorities and create unrealistic demands for funding. As specified in the terms of reference planning will be carried out for urban centres that already have sewerage systems and a few other urban centres where social and environmental conditions merit sewerage. There are 30 urban centres with sewerage facilities and 29 urban centres where the need for sewerage development has been identified in PIP and DDP.

From the long list of 59 urban centres presented in Table - 3.2.1 a total of 40 urban centres are selected for the development plan. The selection criteria are to include all urban centres with sewcrage facilities and all urban centres with a population of 20,000. Only Kabarnet does not meet the selection criteria but has been included because ground conditions are not suitable for on-site sanitation and the risk of contaminating potable water supply is very high. Sewerage facilities for Kabarnet have been planned and ready for construction since the 80's.

The target areas, therefore, are 40 urban centres shown in Table - 3.2.2.

The plan includes an allowance for wastewater discharged from industry into public sewers. It is assumed that industry will be will be required to pre-treat wastewater to meet national trade effluent standards and that most industries within an urban centre will be connected to public sewers.

3.3 Strategy for Sewerage and Sanitation Development

3.3.1 Service Standards

As preceding chapters have indicated, urban centres in Kenya have well developed water supply systems serving a high percentage of the population (>90%). In comparison, sewerage remains poorly developed serving only 28% of the population living in urban centres while almost 50% rely on pit latrines. The environmental and health implications of inadequate sanitation have been further aggravated by rapid rural urban migration and a poorly maintained and failing sewerage infrastructure.

It is not a requirement of this Study to undertake a comprehensive review of on-site sanitation facilities or prepare an implementation programme for the development of on-site sanitation. However, by the year 2010 more than 7 million people living in urban centres will depend on pit latrines for basic sanitation. Providing sewerage in only part of a community will have little benefit if the health of the residents and the water resources is threatened by the unsanitary practices of neighbouring communities that do not have sewerage.

A wide range of sanitation technologies is available as illustrated in Figure - 3.3.1. Technical acceptable sanitation solutions are ventilated improved pit latrines, pour flush toilets, shallow sewers, septic tanks, public toilets and conventional sewers. A comparison of the various sanitation technologies is provided in Table - 3.3.1.

The technical feasibility of alternative sanitation systems in Kenya depends heavily on water supply services in the area, on population densities, on soil permeability, and hydrogeological conditions. These conditions vary widely from one urban centre to the another and are very site specific. Algorithms as shown in Figure - 3.3.2 have been developed as a guide to the kinds of questions that should be asked in the selection of sanitation technology. Although they are directly applicable to many situations encountered in Kenya there will be some situations encountered where the combination of conditions will require the selection of an option that is not that suggested by the algorithm. It should not therefore be used without judgement, but as a tool for decision making.

Conventional sewerage schemes are an excellent form of sanitation for those who can afford them and have sufficient water. There are many other least cost options which, like sewerage, can provide a high standard of health, environmental protection and user convenience. The selection of the technology best suited to provide immediate improvements in sanitation should

also reflect the need for future improvements as the users socio-economic situation improves. The feasibility of sanitation upgrading sequences depends very much on incremental improvements in the level of water supply. Upgrading of on-site sanitation systems is possible over time and should be considered in system planning for areas that are not covered by sewerage Figure - 3.3.3 illustrates the typical upgrading sequence. It also shows the various service standards of water supply that can be accommodated by alternative sanitation technologies.

One of the fundamental problems in increasing sewerage coverage is the high cost and the need to have a sufficiently high per capita use of water. Where water consumption is insufficient for conventional sewerage the alternative of shallow sewers seems particularly attractive. They are designed to accept all household wastewater for off-site treatment. They consist of a network of small diameter pipes connected to septic tanks laid at flat gradients in locations away from vehicular traffic usually in the backyards and narrow alleyways of both planned and unplanned settlements. They are designed to be flushed frequently and in densely populated communities there is ample opportunity for such operation. Most solids are trapped in solids that deposit in the sewer are flushed along by successive waves of wastewater because the pipe is small making it possible to build up the required back pressure.

The United Nations Centre for Human Settlement has issued a design manual for shallow sewers based on experience in several low-income communities across the world. There is no experience in using shallow sewers in Kenya but evidence suggests that they could be a viable option for densely populated unplanned settlements within large urban centres where conventional sewerage is unaffordable and not technically feasible because of low water consumption. More research including pilot installations will be required to determine which of the non-conventional sewer options (e.g. shallow sewers) are technically acceptable and economically feasible. Problems of user acceptance and maintenance are likely in the initial stages and will require appropriate support programmes to inform the public.

Based on a review of current practice and experience in other developing countries, conventional sewerage is usually cost effective in urban zones where:

- 1) The population density is greater than 120 persons per hectare, and
- 2) Water is supplied to individual residences in sufficient quantity to procedure wastewater flows greater than 75 litres per capita daily.

In other cases properly constructed on-site sanitation systems should be used. If conditions are not suitable for on-site sanitation (plot size, soil conditions) and conventional sewer are not affordable or feasible because of low water consumption then alternatives such as shallow sewers must be considered.

The above service standards are recommended as guidelines for future sewerage development but should be re-evaluated again when preparing urban water and sewerage master plans to reflect specific conditions encountered in each urban centre.

3.3.2 Proposed Development Strategy

Based on a review of existing conditions and discussions with MWR and MOLA the following development strategy for urban sewerage is proposed:

- Existing infrastructure should, where economically feasible, be rehabilitated before investing in new works. This approach will in most cases be more cost effective and result in more immediate benefits such as improved treatment levels.
- Residences with water connections should have conventional sewer connections if they are located in already sewered areas.
- Residences with water connections in presently unsewered areas should have connections to conventional sewers, or shallow sewers or septic tanks by the year 2010. The final decision on which technology to use cannot be made at this study stage and should be based on an economic evaluation of options using local conditions.
- 4) Residences which today have a water connection but which cannot be served by a conventional or shallow sewer connection should during the planning period improve their sanitation by upgrading their existing cesspits or septic tanks. In later years they should be connected to the extended sewer network.
- Residences that do not have a water connection today but will be supplied with one by 2010 should, for the immediate future, be served by pour flush toilets with sludge soak-aways if they do not install flushing toilets. They should use new cesspits or septic tanks if they do install internal flush toilets. The choice between cesspits or septic tanks depends on whether enough land is available for the more efficient and cost effective septic tanks.
- Those who are unable to afford the sanitation system that must accompany a water connection will have to rely on standpipes for their water supply. Such residents will principally use either VIP latrines or pour-flush toilets for sanitation. The choice between VIP latrines and pour-flush toilets should be left to the individual householder.

The implementation and monitoring of on-site facilities in urban centres must be formalised to make them more effective. Formalising on-site sanitation will require:

- 1) Setting standards for construction of pit latrines, septic tanks and soak-away pits
- 2) Regulating construction through the issuing of permits and follow-up inspections
- 3) Regulating maintenance intervals of septic tanks and cesspits through mandatory collection
- 4) Providing facilities for disposal of septage
- 5) Regulating municipal and private sludge collection services through licensing and manifest system to ensure proper disposal

Further study and assistance will be required to determine the appropriate institutional arrangements, and implementation plan. It is proposed that MWR plays a leadership role in coordinating the provision of planning and inspection services with other key actors such as the ministry of local authorities and local public health departments.

3.4 Future Demand for Services

The first step in the planning process is to set a realistic target for each urban centre of the number of people that will require sewerage services by the year 2010.

Sanitation needs and planning conditions are site specific and it is impossible to determine exactly how many people in each urban centre should be connected to sewerage unless simplifying assumptions are made. According to a 1973 WHO report, it was estimated that approximately 95% of the urban population in the year 2000 would be in a situation where on-site sanitation was no longer suitable. Given that only 28% of the urban population is presently connected, such a high service coverage ratio cannot realistically be achieved by the year 2010.

Most urban centres have low service coverage. If a large number of residents in an urban community do not have adequate sewage disposal the health of water resources and of other residents who do have sewerage can be adversely affected. Therefore it is assumed that some improvement over existing conditions is required.

In Mombasa, a recent water supply and sanitation study determined that only 50% of the population could afford to pay for conventional sewerage. This seems likely to be the case in most urban centres. Therefore 50% is assumed to represent the maximum economically feasible level of sewerage development for full cost recovery. Working with 50% as a starting point, sewerage development is planned for 40 urban centres: 30 that already have sewerage systems and 10 more where there is an urgent need because on-site sanitation conditions are inadequate. The level of investment required to achieve the 50% target is larger than the forecasted investment funding therefore a lower target is required. More moderate service targets are selected on the basis of population size as shown in the following table. These individual targets translate into serving 38% of the total urban population by the year 2010. This 10% improvement is substantial considering the urban population is expected to double over the period. The corresponding investment requirements are considered achievable if donor support is provided at historical levels. This large increase, driven by rapid population growth, will require a considerable effort in sewerage development activity.

Proposed Sewer Connection Ratio

Population in urban centre	% of population connected to sewer
P > 300,000	50%
300,000 < P < 100,000	40%
100,000 < P < 20,000	25%
P < 20,000	15%

The ratio is larger for cities with larger populations because these will generally have a more people living in high density zones where there is a greater potential for health problems and environmental pollution. Smaller sized urban centres have a much smaller ratio assuming of course that they are typically less densely populated and on-site sanitation is generally suitable except in areas such as the city centre.

In some cases where urban centres already have a higher service ratio than those proposed the strategy will be to continue sewerage development, just keeping pace with population growth to maintain existing service ratios.

By following those target ratios, 38% of the total urban population would be connected to sewerage by the year 2010. This represents a 10% improvement over the current service ratio. In real terms this is an ambitious target considering the large increase in population growth that will occur and represents a net 245% increase in the total number of people served. by sewerage schemes.

The relationship between population growth and target sewerage service coverage is shown in Figure - 3.4.1. The actual service ratio for selected urban centres is shown in Table - 3.4.1 and the overall targets achieved for urban cities classified by population size is shown in Table - 3.4.2.

3.5 Forecast Sewerage and Septage Volumes

The amount of wastewater produced by the consumption of water and the amount of solids produced by various on-site sanitation systems are estimated in order to provide an assessment of the sewage treatment and septage disposal facilities required in the future.

The production of sludge from stabilisation ponds is not significant in quantities, therefore, no estimates are made. There is no requirement for specialised sludge treatment at this time and none is anticipated in the future. The practice of sludge drying beds and land application is quite adequate and requires no special planning at this stage.

3.5.1 Dry Weather Sewage Flow

Dry weather wastewater flows are usually calculated on the basis of land use and the quantity of water consumed by different land use classifications. Since land use data for each urban centre is unavailable this study estimates wastewater flows on the basis of averages derived from more detailed data available to previous master plan studies. It is assumed that the averages are typical for most urban centres and will provide reasonable estimates for programme planning purposes. The analysis of six mid sized urban centres forms the basis for the assumption of basic parameters used in the estimate of wastewater flows as follows:

Urban Centre	Mombasa	Nakuru	Kisumu	Eldoret	Thika	Meru	Averages	Value used for planning
Population	580,000	250,000	231,000	220,000	156,000	124,000		
% Domestic	50	64	40	60	40	60	52	60
% Industrial	20	4	30	30	40	30	26	20
% Others	30	32	30	10	20	10	22	20
Average domestic unit consumption (lpcd)	91.6	42.5 ⁽¹⁾	104	89	87		93	93
Infiltration/inflow % of domestic flow	10	20			20		17	20
		In	come Distri	bution				
% High		15	20		5		13	10
% Medium		54	30		30		38	40
% Low	·	31	50		65		49	50
Data source	Master plan	JICA Study	JICA Study	Master plan	Master plan	JICA study		

Note: Value not used in average because it is abnormally low due to poor water supply conditions

Dry weather flow received at the treatment works consist of wastewater from various sources:

- 1) Domestic sewage,
- 2) Industrial wastewater,
- 3) commercial/institutional and public areas
- 4) groundwater infiltration
- 5) surface water inflow

The method of estimating wastewater flows is summarised in Figure - 3.5.1. The average per capita sewage yield of 93 litres per day compares well with the per capita sewage yield of 101 litres per day based on Kenyan guidelines and the average income distribution as shown in the following table:

Domestic Wastewater 2010	Unit water consumption (lpcd)	Wastewater Production Ratio	Wastewater Yield (Ipcd)	Assumed Income Distribution (from analysis of 3 urban centres)
High income	250	0.75	188	10%
Medium income	150	0.80	120	40%
Low income	75	0.85	64	50%
Average	123	0.82	101	

Note: unit consumption and yield are as recommended by Kenyan design guidelines for sewerage.

A review of data from previous master planning studies carried out in six urban centres indicates that on average the total sewage flow is composed of domestic sewage (60%), commercial/institutional sewage (20%) and industrial wastewater (20%). The average domestic wastewater flow is approximately 93 litres per capita daily. Therefore, using the above percentages the total base sewage flow including residential, commercial, institutional and industrial is 155 litres per capita daily.

The total base sewage flow is multiplied by a factor of 1.2 to allow for the significant contribution of water from extraneous sources such as groundwater infiltration and surface water inflow that occurs even during dry weather periods. The total dry weather flow assumed for planning purposes is 186 lpcd.

The total volumes of sewage generated by existing and future populations in the selected urban centres are estimated based on the selected target service ratios and the assumed contribution from various sources as discussed above. The volumes are compared to existing treatment plant capacities to determine the need to develop sewerage infrastructure to service the target population. The total amount of wastewater that must be collected and treated in 2010 is estimated in Table - 3.5.1.

3.5.2 Septage

The method for calculating the volumes of septage is shown in Figure - 3.5.2. The total volumes of septage generated by on-site facilities in 40 urban centres are estimated based on target service ratios. The volumes are used to demonstrate the need for septage disposal equipment and facilities.

Two methods are used to calculate the volume of septage. An average of the two results is taken for planning purposes.

Due to the poor design of septic tanks, soak-away pits are also sludge receptacles and therefore need to be evacuated. The volume of liquid from the average soak-away is added to the volume of septage to obtain the total volume of liquid waste that must be handled at treatment facilities in urban centres.

The amount of septage waste generated from on-site systems in the year 2010 is presented in Table - 3.5.2.

3.6 Planning Criteria

A flow diagram presented in Figure - 3.6.1 provides an overview of the waste stream (liquid and solid) showing the management processes from source to disposal. The figure also provides a summary of the number of people contributing to the process, the strength of the waste, and the method of disposal assumed for preparing the sewerage development plan.

3.6.1 Sewage Collection

In general there are three basic types of conventional waterborne sewers that can be designed:

- 1) Separate system carrying foul sewage only
- Combined system carrying sewage plus surface water
- 3) Partially separate where some but not all surface water is allowed into the sewer

If a combined system is installed it is necessary to design sewer system elements with more capacity to cope with large volumes of rainwater. Combined sewers require larger diameter sewers, larger capacity pumping stations and more hydraulic capacity at treatment plants. For most urban centres in Kenya it is assumed that high intensity rainfalls would result in uneconomical designs for combined systems.

Most urban centres have implemented separate systems and it is advisable to continue this practice. However, design practice allows for some the acceptance of some very limited storm water termed "inflow", therefore, the sewer system should be considered to be a partially separate system. The wastewater forecasts provided for this study assume a 20% allowance above the normal dry weather sewage flow for inflow.

For developing programme costs in this study it has been necessary to make several general assumptions about conditions in urban centres:

- (1) The target population lives in conditions that make waterborne sewerage the only technical and economically viable option for sanitation and wastewater disposal.
- (2) All sewers will be partially separated and will flow by gravity, the use of pumping stations will be avoided if at all possible by judicious selection of treatment sites and layout of trunk sewers with respect to topography.
- (3) Existing trunk sewers have sufficient hydraulic capacity to serve a larger population.
- (4) Most large diameter trunk sewers need to be cleaned to restore hydraulic capacity.

Actual conditions will vary widely from one urban centre to the next and a site specific assessment of technical options will be required at the master planning or feasibility study stage.

3.6.2 Sewage Treatment Facilities

(1) Treatment Method

A wide range of treatment options are available and currently in use in Kenya:

- 1) Waste stabilisation ponds
- 2) Aerated lagoons
- 3) Oxidation ditches
- 4) Biological filters
- 5) Activated sludge

A qualitative comparison of the advantages and disadvantages of various treatment methods is presented to establish which method should be used for development planning purposes.

The treatment processes must be capable of removing inorganic material and stabilising the organic portion of the waste to produce an effluent that meets the standard and sludge that can be disposed of safely with a minimum of nuisance.

Where climatic conditions are favourable and land is readily available stabilisation ponds are generally the most suitable method of treatment. Kenya's success with waste stabilisation ponds is well documented. Ponds have three major advantages:

- 1) they remove excreted pathogens at a much lower cost than any other form of treatment,
- 2) they provide good removal efficiencies for BOD, and
- they have a minimum of operating and maintenance requirements and produce very little sludge

A comparison of various alternatives is provided in the following table:

ltem	Waste stabilisation ponds	Activated sludge	Extended aeration	Aerated lagoons	Biofiltration
BOD Removal	**	***	***	**	***
SS removal	**	***	***	**	***
Faeçal coliform removal	***	*	*	**	*
Virus removal	***	*	*	*	*
Industrial organics removal	**	*	*	*	*
Heavy metals removal	**	*	*	*	*
Simple and cheap construction	***	*	*	**	*
Simple operation	***	*	*	**	*
Land requirement	*	***	***	**	***
Maintenance costs	***	*	*	**	*
Reliability	***	*	*	**	*
Energy demand	***	*	*	+	**
Minimal sludge production	***	*	**	**	**

Note: * Good, ** Fair, *** Poor

Source: Notes on the design and operation of waste stabilisation ponds in warm country climates of developing countries, World Bank technical paper No. 6, I.P. Arthur.

In urban centres where land availability is small and a more energy intensive treatment method must be considered it is generally more cost-effective to provide acrated lagoons where receiving streams do not require tertiary treatment.

For the purposes of preparing a national sewerage development plan it is assumed that waste stabilisation ponds will be constructed in all urban centres where sewerage treatment works are required. It is also assumed that industrial waste pre-treatment programmes will be implemented and enforced in all large urban centres. The final selection of treatment method will depend on site-specific conditions and should be evaluated at the feasibility study stage based on a detailed assessment of technical and economic criteria.

Waste stabilisation ponds are subdivided into three types:

1) anaerobic

2) facultative

3) maturation

Anaerobic ponds are generally deep ponds in the order of 3 to 4.5 m deep. Treatment occurs under anaerobic digestion and produces methane gas. The mechanism for BOD removal is considered to be primarily sedimentation. Anaerobic ponds result in high BOD removal rates and in the digestion of sludge. They are normally provided to reduce the BOD loading on other ponds in the system with a resulting saving of land space. The combination of anaerobic ponds and a secondary facultative pond in any system is generally preferred as it usually reduces the overall land requirement for a system producing the desired effluent quality compared to a single primary facultative pond. It provides the additional advantage of:

- 1) buffering the secondary facultative ponds from wide variations in flow
- acting as a solids settlement basin, thus reducing sludge accumulation in subsequent ponds
- 3) enabling anaerobic breakdown of some refractory compounds of raw sewage that are slow to degrade aerobically, making them a good choice where there is a substantial amount of industrial wastewater
- 4) Protecting algal populations in the secondary facultative ponds from slug doses of toxic compounds such as heavy metals, etc.

Facultative ponds provide aerobic stabilisation of waste in the surface layers and anaerobic digestion in the lower layers. Oxygen is supplied by the photosynthesis of algae. Facultative ponds are usually 1.2 to 2 m deep. When facultative ponds are the first in a series of ponds they are named "primary" facultative. When they are second in line after an anaerobic pond they are termed "Secondary facultative". Primary facultative ponds generally function well where the raw sewage flow rate is low or the sewage is very weak achieving satisfactory treatment without anaerobic pre-treatment ponds.

Maturation ponds are usually about 1 m deep and act as polishing ponds. They are used as an effective method of reducing the levels of pathogenic organisms released in the effluent by prolonged hydraulic retention time. They also provide a marginal reduction in BOD.

The use of a primary facultative pond will probably not provide the desired level of treatment in most urban centres. For strong wastes (>400 mg/ ℓ) which is usually the case in Kenya the use of anaerobic ponds as a pre-treatment unit ahead of the facultative pond is advantageous since it reduces the organic loading of the facultative pond and thus minimises the land requirements of the whole pond system. For planning purposes it is therefore assumed that the design should consist of at least two anaerobic ponds followed by secondary facultative ponds and two or more maturation ponds to reduce faccal coliform counts.

3.6.3 Septage Disposal

It is assumed that specially constructed anaerobic ponds added in front of the normal treatment process will provide treatment of septic liquid wastes. These ponds, depending on their depth and operating characteristics will need to be de-sludged approximately every five years. The anaerobic ponds and facultative ponds and maturation ponds will need de-sludging every 15 years and will not contribute a significant amount of sludge if grit removal facilities are well maintained and not by-passes by storm flows.

For urban centres where sewage treatment already exists or is proposed than facilities for the treatment of liquid waste will consist of specially designed anaerobic treatment ponds dedicated to the pre-treatment of septic waste. There is little experience in Kenya with the use of such ponds but there is no reason for suggesting that design and operation is different from other anaerobic ponds except that the waste material is stronger than domestic sewage.

Currently most municipalities discharge septic wastes directly into the facultative ponds, which in some cases may contribute to organic overload. It is, therefore, recommended that all treatment facilities in the future be provided with separate anaerobic ponds to receive and pretreat septic waste before discharging into the normal wastewater treatment process.

Septage collection and disposal services need to organised and properly regulated. Many local municipalities will need new scavenging trucks and in greater numbers than the current fleet. The required number of trucks should be included during the equipment survey identified under operation and maintenance improvements. Further study will be required to determine how best to regulate and control private services for collection and disposal. A licensing and manifest system is the usual way of regulating septage haulers but this will require inspectors and administrative systems that are not currently in place.

3.6.4 Disposal of Sludge from Treatment Plants

There are generally two methods for the disposal of sludge at treatment facilities:

- 1) discharge to sludge drying beds, or
- 2) discharge to dewatering and digesting facilities

For disposal of sludge from anaerobic and facultative ponds the current practice of using sludge drying beds is simple, low cost and effective. The only condition is that the sludge must be stored and dried for over 12 months in order to ensure that the material is pathogen-free.

Conventional works produce large quantities of sludge and require a more sophisticated process for sludge disposal:

- 1) dewatering followed by
- 2) digestion followed by
- 3) drying

In the sewerage development plan it is assumed that the capacity of conventional treatment works will not be increased therefore existing sludge facilities are assumed to be adequate.

3.6.5 Wastewater Strength and Effluent Criteria

Wastewater strength is normally expressed in terms of the oxygen demand exerted by the waste matter during oxidation. The most commonly used parameters are Chemical Oxidation Demand (COD where wastes are oxidised chemically), and Biochemical Oxidation Demand (BOD, where

wastes are biologically oxidised through bacteriological degradation). The oxygen demand after five days of biodegradation is the most commonly used parameter since it can be measured in a reasonably short period of time and generally has a fairly consistent relationship with the ultimate BOD.

The BOD per capita in Kenya has been found to vary between 25 grams/day to 60 grams per day. These figures include sullage, which has a far greater impact on BOD than dietary variations on the BOD of sewage. The value most commonly used in design is 50 grams/capita/day as recommended in the WHO Guidelines for design of sewerage facilities in Kenya. This value is probably on the high side but is used for planning purposes because it provides a safe estimate.

The strength of influent raw sewage to the treatment works depends not only on domestic per capita contributions but also on the load contributed by industry which tends to increase BOD and the amount of "clean" groundwater and surface water that enters the sewer which tends to decrease sewage strength. The average BOD obtained from 26 samples taken different treatment works is 480 mg/ ℓ . This value is not used since too few samples were taken to be representative and the unusually prolonged wet weather associated with El Nino during the sampling period probably contributed to the dilution of wastewater flows. A value normally used in design around Kenya is 550 mg/ ℓ and is assumed for planning purposes.

The National standard for discharge to a receiving stream specifies two main effluent parameters that must be considered in the design of sewage treatment works:

- 1) BOD₅ not to exceed 20 mg/ ℓ , and
- 2) Faecal coliform not to exceed 5000 MPN per 100 ml.

These standards are based on the Royal Commission Standard and the BOD and other parameters may not be achievable or appropriate in the majority of cases where waste stabilisation ponds are used. This is because:

- The BOD and SS of pond effluents depend to a large extent on the algae concentration, and are not, therefore a good measure of the degree to which the sewage has been treated.
- Where water is discharged into a river or watercourse, where water will be abstracted downstream for drinking or irrigation, a strict bacteriological standard is required.

A review of literature suggests that effluent standards should be based on the intended end use of the effluent. Arthur J.P., Notes on the Design and Operation of Waste Stabilisation Ponds in Warm Climate Developing Countries, provides the following guidelines:

Method of re-use	BOD ₅ mg/ℓ	Fecal Coliforms ^a MPN/100 m <i>l</i>
Irrigation of trees and other non-edible crops	60	50,000
Irrigation of citrus fruits trees, fodder crops & nuts	45	10,000
Irrigation of sugar cane, cooked vegetables b	35	1,000
Discharge to receiving streams '	25	5,000
Unrestricted crop irrigation	25	100

- Notes: a these concentrations should not be exceeded on 80% of the samples
 - b irrigation should stop 2 weeks before picking
 - c depends on dilution available; effluent should contain less than 105 algal cells/ml

These figures represent rough guidelines. Effluent quality may have to satisfy other standards under particular circumstances or conditions. A review of literature on the performance of waste stabilisation ponds in east Africa and the results of sampling during this study would seem to indicate that a BOD₅ of 20 mg/ ℓ is achievable if the sample is filtered to remove algae.

The other main effluent parameter in the National standard that affects the design is faecal coliform. Where discharge is into a river or watercourse that is likely to be used for domestic purposes downstream, a standard that includes bacteriological parameters is required. A review of current literature suggests a value of 1000 MPN per 100 mℓ is appropriate where water will be used downstream for domestic purposes. This value is easily achievable with maturation ponds as shown by the results of samples taken several facilities during this study.

For the purposes of preparing a sewerage development plan the following standards for the main effluent parameters are therefore proposed:

- BOD, not to exceed 20 mg/l when filtered to remove algae 1)
- Fecal coliforms not to exceed 1000 MPN per 100 ml

Strengthening Operations and Maintenance 3.7

Very little information on the management and organisation of operations and maintenance was available to the Study. Local authorities should be structured to perform and monitor operation and maintenance, administer budgets, record and retain system information, enforce sewer bylaws, plan for repairs and future system growth. Few of the local authorities surveyed can meet these requirements. It is, therefore, proposed to strengthen operation and maintenance capacity as follows:

3.7.1 Increase Operating Revenue

Development projects will not succeed if policies are not in place to generate the revenues required to sustain the services provided. The ultimate goal of every service provider should be to establish a commercially viable organisation with a long-term view to privatisation.

The rehabilitation and construction of new sewerage infrastructure should be accompanies by specific interventions to improve the management of the assets. This should include policy reforms to provide greater autonomy to the municipalities, appointment and training of key municipal staff, improving revenue collection, and better financial management and accountability. Proposals for improving financial management are discussed in the supporting report on institutional strengthening.

Since operating revenue for sewerage is based on water consumption it is imperative that recommended improvements for water supply systems be implemented. These are:

- 1) Improving levels of service water supply
- 2) Reducing UFW
- 3) Improving metering
- 4) Improving customer billing and collection systems

Other institutional changes will also have a significant impact on improving revenue for sewerage. These changes are:

- 1) Establishing tariffs aimed at cost recovery
- 2) Linking water and sewage management within one authority

3.7.2 Establish Planning and Design Standards

Design factors affect long-term maintenance. It is often difficult to balance construction costs against operating and maintenance costs. However, quality design keeps costs and problems associated with O&M to a minimum. National design codes and standards should be developed to ensure consistent planning, selection of appropriate technologies and materials that are suitable for conditions encountered in Kenya.

Most designers have no maintenance experience. While codes of practice, and standards are important, they cannot substitute for practical operations experience. It would be advisable, therefore, to establish a review process to obtain input from qualified maintenance managers or operators during the development of design specifications and drawings for investment projects. Although engineering expertise is available within MOLA and MWR there is little experience with operation and maintenance management. It is recommended that as part of every future investment project assistance from externally sourced operating experts be provided in order to ensure selection and application appropriate technology.

3.7.3 Integrate Sewerage Development with Water Supply Development

The sewerage infrastructure development plan presented in the Aftercare Study is consistent with plans for water supply. Water and sanitation projects should be considered together in order to ensure that there is a means for disposing of wastes resulting from water supplied through house connections.

Institutional improvements for integrating the water and sewerage sector are discussed further in Chapter 11. These are:

- 1) Improved coordination and communication between MOLA and MWR
- 2) Creation of commercially viable water undertakers at the local level that also have responsibility for sewerage

3.7.4 Improve Staff Training and Hire Qualified Personnel

The determination of staff requirements and skills requires a detailed working knowledge of the collection and treatment system and includes variable such as: level of service expected and funded, age of system and materials used, travel distances, type of treatment process among as well as many other variables. No single formula can be sued to determine the staffing needs of a particular system.

The effectiveness of maintenance departments depends fundamentally on the numbers and quality of the staff. Most urban centres cannot operate and maintain the proposed wastewater facilities with the current level of staff. Attempts at improving sewerage in the past have been crippled by the severe national shortage of competent personnel at every level from professional engineers, to plant operators, to sewer maintenance works. More staff will be required to implement and operate the many projects proposed. It is recommended that the following actions be undertaken within each operating authority under the combined supervision of MWR and MOLA:

- 1) a detailed review of organisational structures, staff establishment and qualifications needed;
- 2) a detailed audit of personnel already in post, their qualifications and experience against their job descriptions;
- 3) identification of: vacancies, training needs for existing staff, non-performing surplus staff; and
- 4) development of a programme of: recruitment, training, or transfers to other more suitable positions

As a general guideline the following staffing levels are recommended for operations and maintenance departments:

			Population	Connected to	Sewerage	
Function	Position	10,000 < P < 25,000	25,000 < P < 50,000	50,000 < P < 100,000	100,000 < P < 300,000	300,000 or more
Management & Process Control	Manager	0	0	1	1	1
Treatment Works	Superiatendent	0	0	1	1	1
Operations &	Trade effluent inspector	1	1	2	2	4
Process Control	Technical assistant	0	0	1	l	1
	Laboratory technicians	0	1	1	2	2
Treatment Works	Foreman	1	1	1	2	2
Maintenance	M/E tradesmen	0	1	2	2	4
	Labourers	2	3	4	6	10
	Drivers	0	1	1	2	4
	Watchmen	1	1	1	3	5
Collection System	Superintendent	0	0	0	1	2
Maintenance	Foreman	1	1	2	4	6
	M/E tradesmen	0	0	1	2	3
	Labourers	4	6	10	20	30
	Totals	10	16	28	49	75

The numbers for treatment works staff are derived in part by comparing the number of staff reported in the survey for various municipalities to typical requirements identified in literature on treatment pond O&M. Other adjustments to staffing levels are made based on JICA's experience with the sewerage development projects in Nakuru, and Kisumu.

The training needs for various operating authorities must be reviewed against the latest Action Plan for KEWI to see if they can be accommodated within the planned implementation schedule. If not, KEWI's resources should be further strengthened in both scope and capacity to accommodate larger numbers of trainees from the sewerage sector.

Local authorities will need to budget sufficient funds to increase the level of training and competence of its employees. MOLA may have to subsidise training from its own budget until operating authorities can generate sufficient revenue.

The following training needs are anticipated for collection systems and treatment plant workers:

- 1) Sewer inspection and condition assessment
- 2) Sewer repair and maintenance
- 3) Inspection of house connections
- 4) Mechanical maintenance; valves, screens, pumps
- 5) Electrical maintenance; motors, controls, electronics
- 6) Preventive maintenance management techniques
- 7) Operation and maintenance of waste stabilisation ponds
- 8) Operation of acrated lagoons and other advanced biological treatment processes
- 9) Biology and chemistry for treatment plant operators
- 10) Process monitoring and control techniques
- 11) Laboratory skills

- 12) Bylaw enforcement
- 13) Inspection of industrial wastewater processes

3.7.5 Procure Required Facilities, Tools and Equipment

Proper facilities, equipment and tools are essential to collection and treatment operation and maintenance. Without them, even the best-trained and motivated staff will be ineffective.

A lack of transportation, poor equipment, and a lack of tools often handicap local authorities responsible for maintenance. Much of the equipment and vehicles that were observed during the field visits and survey are old and in disrepair. Much equipment has been scavenged to provide the spare parts that are no longer available.

The local authorities did not provide the information requested on equipment needs however from discussions with superintendents at a number of municipalities the following list of general observations can be made:

- 1) In general vehicles for moving around the sewer maintenance district are unavailable, the number of staff outweights the number of vehicles.
- Rodding equipment breaks down often and sometimes has to be borrowed from a neighbouring urban centre.
- 3) Small tools for removing obstructions are generally available but larger sewer cleaning equipment for dredging sediments out of sewers is not available.
- 4) Pumping equipment for by-passing sewers during repairs is not available in most smaller urban centres.
- 5) Trucks and heavy equipment required for repair of mains are generally too few to support the number of work crews.
- Most local authorities do not have sludge pumps for cleaning ponds and must wait for one from MWR to become available.
- 7) Only two three authorities have properly equipped laboratories for monitoring process parameters.

Specific equipment requirements for each urban centre should be examined in detail during the feasibility study stage and included in as part of the capital investment project. It is recommended that the following actions be undertaken within each operating authority under the combined supervision of MWR and MOLA:

- 1) Review maintenance facilities needs (equipment yard, office space, materials and spare parts storage)
- Review and prepare an inventory of existing tools and equipment to identify what is required
- 3) Assess what equipment, vehicles and tools are needed for maintenance
- Rank items required in order of priority, obtain prices and identify costs in future operating budgets

- Obtain funding to construct required facilities and purchase required tools and equipment. Proceed with purchasing on an annual basis in order of priority based on level of funding available
- 6) Account for the cost of depreciation and identify equipment and tool replacement costs in annual operating budget

3.7.6 Implement Preventive Maintenance and Standard Operating Procedures

When equipment and manpower needs have been determined, the next step is to plan how these resources should be used. Proper operation and maintenance of sewerage facilities is essential in order to provide a system that protects public health and the environment. Maintenance is aimed at:

- 1) Keeping sewers clean to maintain their hydraulic capacity and prevent overflows
- 2) Preventing physical deterioration of facilities to protect existing investments, prevent costly repairs, and extend the useful life
- 3) Ensuring that treatment processes operate as intended to provide the required level of treatment

Some of the most critical maintenance functions that are currently not carried out in Kenya are:

- Inspection of sewers from the inside to determine physical conditions and maintenance needs
- 2) Assessment of sewer rehabilitation and replacement needs
- 3) Flow monitoring and sampling to identify planning and design criteria, problems such as infiltration in leaking sewers
- 4) Routine cleaning and flushing to maintain hydraulic capacity and prevent foul odours and conditions that lead to corrosion
- 5) Preventive maintenance to mechanical and electrical components to minimise equipment failure and prevent the overflow of raw sewage to the environment
- 6) Removal of sludge from anaerobic ponds at 2 to 5 year intervals
- 7) Removal of sludge from facultative ponds at 15 to 20 year intervals
- 8) Monitoring and control of treatment process parameters
- 9) Monitoring and regulation of industrial effluents into public sewers

Improved management cannot be attained with poor, untrained manpower. Steps must be taken to hire well-trained personnel as well as skilled trades persons. In the absence of skilled in-house trades people, it may be more cost effective to contract out mechanical and electrical maintenance of treatment works and pumping stations.

Crisis management tends to be more expensive because the size of the problem tends to grow with time. Preventive maintenance on the other hand includes regular inspection and scheduling routine maintenance before problems occur for the purpose of extending equipment life, reducing maintenance costs and increasing reliability. Sewerage infrastructure represents a large

investment and should be protected and cared for. A preventive maintenance programme is one of the best ways to keep the system in operation and in good condition.

In the long term it is recommended that preventive maintenance programmes be developed within each operating authority. This will require significant effort but is considered a very necessary requirement to establish sustainable operation of sewerage schemes. The success of implementing PM will require properly trained people with an understanding of the maintenance scheduling and planning methods as well as the expected benefits. Successful implementation will require full time assistance and support from externally sourced engineers and experienced maintenance programme managers for a period of 3-5 years in each operating authority.

In the short term it is recommended that the following actions be undertaken with the assistance of appropriate experts as part of future investment projects and as a condition to project onlending:

- 1) Prepare a detailed sewer inventory identifying pipe size, material and location
- 2) Prepare topographic survey along sewer lines and a house connection survey
- Prepare utility maps
- Inspect all trunk sewers and manholes complete with an assessment of condition and rehabilitation needs (this will require contract services for closed circuit television)
- Assemble an inventory of all mechanical and electrical equipment and prepare a manual with manufacturers operating and maintenance instructions, and replacement parts list
- 6) Prepare a maintenance schedule for all M&E equipment
- 7) Prepare a maintenance schedule for regular inspection and cleaning of trunk sewers
- 8) Prepare a monthly and weekly manpower scheduling procedure
- 9) Design and implement a work order system to track all maintenance activities including corrective and emergency repairs
- Write standard operating procedures for process control, equipment operation and maintenance, laboratory procedures, and data recording

3.7.7 Implement an Industrial Wastewater Pre-treatment Program

Industrial effluent laws are in place but enforcement is very weak because there is a lack of money, manpower, and equipment to implement a comprehensive programme at the local level.

Developing a strategy and implementation plan for the enforcement of industrial waste pretreatment will require further study. There are various institutional options, legislation, administrative and operational requirements that must be examined before deciding on the best strategy.

Typically, pre-treatment programmes are implemented at the local authority level where the sewerage operator is responsible for inspecting and monitoring industries connected to its sewer system to ensure compliance with local sewer bylaws.

Implementation of a pre-treatment programme at the local level usually includes the following elements:

- 1) Development of an inventory of industrial discharges to the public sewer system;
- 2) Adoption of an industrial pre-treatment bylaw;
- 3) Purchase of monitoring and laboratory equipment;
- 4) Sampling and analysis of industrial effluents to ensure compliance; and
- 5) Establishment of administrative procedures to obtain compliance with regulations

Once an implementation strategy has been developed, technical assistance and funding will be required to support the implementation of industrial waste programmes in major urban centres across Kenya.

3.7.8 Improve Sewerage Works Operations

Where existing treatment works are inoperative they must be rehabilitated as soon as possible. Treatment works that are overloaded must be expanded to serve existing and future sewered populations.

Other treatment works that are operational but do not meet effluent standards should be the subject of an operational review to determine what can be done to optimise treatment levels. In addition, the operational review should establish standard operating procedures and identify the equipment and training required for operators to monitor and control the process.

CHAPTER 4 SEWERAGE INFRASTRUCTURE DEVELOPMENT PLAN

Chapter 3 considered the strategy and planning criteria for the development of sewerage in Kenya. This section identifies the proposed sewerage projects and phasing required to meet the forecasted sewage flows in the year 2010. Project cost estimates are prepared in order to provide a basis for sewerage development programme budgeting. A list of facilities and the required projects is presented in Table - 4.1.1.

4.1 Rehabilitation Plan for Sewerage Systems

(1) Treatment works

Where existing treatment works are inoperative they must be rehabilitated as soon as possible. Treatment works that are overloaded must be expanded to serve existing and future sewered populations. Other treatment works that are operational but do not meet effluent standards should be the subject of an operational review to determine what can be done to optimise treatment levels. In addition, the operational review should establish standard operating procedures and identify the equipment and training required for operators to monitor and control the process.

Based on a survey of existing conditions major rehabilitation of sewerage treatment works is required at 15 facilities. Major works are defined as those works that require significant capital investment. Other facilities not on the list may require minor repairs to mechanical or electrical equipment but these are considered small expenditures that should be planned for in operating budgets by local authorities or in investment budgets by MOLA. A list of facilities and the required rehabilitation is presented in the following table.

The removal of sludge is a major difficulty for most local authorities because they lack the required pumping equipment and vehicles to haul the wastes to a suitable dumping site. The issue is complicated by the massive size of the operations required at most sites. This type of maintenance should be contracted out to specialised companies.

Septage treatment facilities are required in each urban centre and will be incorporated into existing treatment plant processes.

Facility	Rehabilitation need
Nairobi - Dundora	Remove studge from anaerobic pends and facultative pends
Kisumu - Conventional	Mechanical/electrical equipment replacement and repair
Kisumu - Nyalenda	Remove sludge and weeds from ponds
Nyeri - conventional	Repair embankments and erosion protection at maturation ponds
Nyeri - Kijango	Repair pond inlet structure, repair embankments
Kitale - conventional	Repair inlet works, replace sludge pumps, trickling filter distributor, provide erosion protection at maturation ponds
Kakamega - Shirere	Provide inlet works, repair and protect embankments, remove sludge and weeds
Thika	Remove sludge, provide new inlet works, cut grass and remove trees from embankment, provide erosion protection and improve inter-pond connections
Naivasha	Replace electrical equipment, repair mechanical equipment, remove sludge from anaerobic and facultative ponds.
Webuye	Remove sludge and repair inlet chamber
Busia	Remove sludge
Nanyuki	Remove sludge
Embu	Remove sludge
Isiolo	Remove sludge and provide embankment protection
Homa Bay	Remove sludge, provide new sludge processing equipment and clarifier
Nyahururu	Repair floating aerators, remove sludge, repair embankment protection

(2) Sewers

Rehabilitation of sewers is necessary in all urban centres. The needs vary for each urban centre and is difficult to establish exactly what is required without a more thorough study inspection of facilities and assessment of conditions. Therefore the sewer rehabilitation projects in each case are costed out on the assumption that all trunk sewers need to be cleaned, that sewers should be inspected to assess structural condition and that 25% of all small diameter sewers (150 mm) should be replaced with larger diameter pipe (minimum 225 mm).

The decision on which sewers to rehabilitate will require more information and the following actions should be taken:

- 1) preparation of a comprehensive sewer inventory
- 2) sewer inspections to determine the physical condition of infrastructure
- 3) assessment of hydraulic capacities to identify bottlenecks
- 4) ranking of rehabilitation needs in order of priority

4.1.1 Extension of Sewer Reticulation and Expansion of Treatment Works

(1) Sewer Reticulation

The rehabilitation of existing sewers should be the first priority in urban centres where the service coverage is well below target service ratios and the flows into the treatment plant are well below design capacity in most urban centres. In the short term, extensions should follow simplified designs that feed into existing trunk sewers with excess capacity. Where sewers exist in a community, efforts should be made to reinforce the number of individual service

connections in order to improve flows into the sewers. In the long term, trunk sewers that do not have the required hydraulic capacity should be replaced or augmented before extensions are made in upstream drainage areas.

Sewers should not be extended into areas where individual per capita consumption of water is less than 75 lpcd. Extending the network of sewers should only proceed with the improvement of water supply services into existing and new areas.

Water Supply Condition	Treatment Work Condition	Proposed Measures	Urban Centre Subject
Water supply conditions are probably adequate to support conventional sewerage	Treatment works is operating at or above design capacity	before extending sewer network.	Eldoret, Kakamega, Kapsabet, Kisumu, Machakos, Meru, Nairobi, Nanyuki, Nyahururu, Thika
S. Hitage	Treatment works has short term capacity	Extend sewer reticulation coverage up to treatment works capacity	Athi River, Karatina, Kiambu, Kisii, Muranga, Webuye
Water supply conditions are probably not adequate to support conventional	Treatment works has short term capacity	Improve water supply conditions before extending sewer network	Bungoma, Isiolo, Kitale, Mombasa, Naivasha, Nakuru, Nyeri
sewe1age	Treatment works is operating at or above design capacity	Increase treatment capacity before extending sewer network. Extend sewer network only if	Busia, Embu, Homa Bay, Kericho, Limuru, Ngong, Voi
		water supply conditions improve	

(2) Sewage treatment works expansion

Where existing sewerage treatment works are overloaded the first priority should be the expansion of the treatment works even in cases where water supply conditions are inadequate to support sewer reticulation. In this case the extension of sewer reticulation should be included as part of the treatment works expansion project and phased to match completion of the sewage works or future improvements in water supply conditions.

In general, where treatment facilities already exist there are three possible alternatives that must be considered in assessing future development:

- 1) rehabilitation and expansion of existing facilities, or
- 2) rehabilitation, with expansion of capacity with treatment works at a new site, or
- abandoning existing sewage treatment works and replacing with new.

The decision to maintain existing facilities in operation should be based on an economic evaluation of the site-specific technical options. This type of detailed evaluation should be done when a master plan for the urban centre is developed. The conditions in each urban centre will be different depending on:

- 1) the need to expand capacity,
- 2) the condition of the existing works,

- 3) the availability of land for expansion at the same site, and
- 4) the cost effectiveness of consolidating all treatment facilities in one location

For the purpose of establishing programme costs it is assumed that it will generally be cost effective to rehabilitate existing waste stabilisation ponds. There are of course a few exceptions where the existing ponds are no longer in use or in such disrepair that it would be more cost effective to relocate and build a new facility.

Where existing conventional treatment works are concerned, it is difficult to assess with the information available from this study whether or not it is economical to rehabilitate them and keep them in service. Generally speaking where these works are operational it is probably worth keeping them in service and adding waste stabilisation ponds to improve performance and cope with the incremental flows. This has been the case in recent upgrade projects in Kericho, Nakuru and Eldoret. Where land space at the existing facility is insufficient, then it is assumed that expansion of existing facilities will consist of adding waste stabilisation ponds at a new site.

In the case of Nairobi (Kariobangi conventional), Mombasa (Kizingo primary sedimentation) and Kakamega (Kiambi waste stabilisation ponds) the facilities are in extremely poor condition and in a bad location. It is assumed that it would be technically and economically advantageous to abandon these plants and divert flows to a new facility with more capacity.

The need for sewage treatment works in urban centres with existing facilities is identified in the following table:

Capacity Condition	Proposed Measures	Urban Centre Subject		
Short term (1998-2005) More treatment capacity is required because existing facilities are		Kisumu (Nyalenda), Kapsabet, Limuru, Kakamega, Nairobi (Dundora), Nanyuki, Nyahururu		
overloaded	Provide new treatment works	Busia, Eldoret, Embu, , Kericho, Homa Bay, Machakos, Meru, Ngong, Thika, Voi		
Long-term (2005-2010) provide more treatment	Rehabilitate and/or expand existing treatment works	Bungoma, Isiolo, Kakamega, Karatina, Kisii, Muranga,		
capacity to meet target for 2010	Provide new treatment works	Kitale, Kisumu, Mombasa, Nakuru, Naivasha, Nyeri,		

4.2 Cost Estimates

Cost estimates for the facilities required in each urban centre have been established for programme planning purposes and their limitations are discussed below. Records of unit costs are not systematically kept in Kenya and, therefore, some research was required to establish the cost estimates given in this report. Unit costs where collected from government offices, local consultants and manufacturers. The unit costs where also cross-checked against prices quoted in tenders for recent sewerage development projects and results of recent planning studies.

It is difficult to determine typical unit costs for any method of sewage disposal; costs vary for example, with location, with ease of excavation, and with topography. The depth and, therefore, the cost of excavation for sewers, which flow by gravity and must therefore always fall, depends absolutely upon the local topography. The presence of rock or groundwater can enormously increase construction expenditure. Population density is also another important factor; costs generally fall as the density increases. To estimate the costs of sewerage development, an attempt has been made in the Study to establish average unit costs, which are applicable throughout Kenya. These costs represent typical conditions but do not necessarily apply to any particular project in any particular location.

4.2.1 Basic Conditions

(1) Basic Cost of Material and Equipment

The basic costs of materials and equipment are estimated at the price level prevailing in February 1998. An exchange rate of 1 US\$ = 61.1 Kshs = 124.7 Yen (as of 10 February 1998 by "East African Standard") is applied in estimating the basic costs of imported materials and equipment for the whole project. The costs of materials locally available are estimated based on market price, the latest quoted price and results of the recent studies done in the country. Taxes, duties, and FOB costs are included in the estimates.

(2) Composition of Cost Estimates

The cost estimate is made for the following cost items:

- Direct construction cost
 Costs for sewer reticulation, new treatment, expansion or rehabilitation
- 2) Land acquisition and compensation cost [Local portion only]
- 3) Administration cost [15% of direct cost]
- 4) Engineering cost [10 % of direct cost]
- 5) Physical contingencies [10% of total of 1) 4)]
- 6) Price contingency [5% of foreign portion and 15% of local portion of 1) 4)]

Project cost

Total of 1) - 6)

4.2.2 Facilities Planning and Quantities

The requirement for treatment works and sewer reticulation are summarised in Table • 4.1.1 for each urban centre.

In Kenya there are currently no planning or design standards. This has lead to a variety of technologies, some inappropriate, resulting in systems that are difficult to operate and maintain.

Since design factors affect long-term maintenance, national design codes and standards should be developed to ensure consistent planning, selection of appropriate technologies and materials that are suitable for conditions encountered in Kenya.

(1) Sewer Reticulation

Sewer construction is based on pre-cast concrete pipes and manholes with costs estimated by referring to the existing facility in Muranga (p81, Muranga's Sewerage Scheme, May 1992).

In planning of new construction and extension of existing sewer reticulation systems, the diameter and length of pipe are determined as follows:

1) New construction and extension

i) Diameter and Length of Pipe

The diameter and length of pipe required to serve the target population is determined to estimate the costs of sewer reticulation. Costs are estimated on the basis of an average length per capita and a distribution of pipe sizes considered to be typical for most urban centres in Kenya.

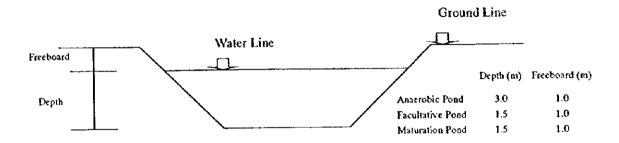
The assumptions made regarding sewer reticulation quantities are shown in Table 4.2.1. The table shows the assumed average depth of buried pipes, the percentage for each diameter of pipe in terms of total installed length, and the length of pipe per capita connected to the sewer system. The typical quantities of pipe of different diameters, expressed as a percentage of total length, is based on a review of existing reticulation inventories for Mombasa and Nakuru (Table - 4.2.4).

The total length of pipe required in each urban centre is calculated by multiplying the incremental population requiring sewer connections in 2010 by the average per capita length of 1.14 meters found from the results of the survey carried out for the Study.

ii) The depth of Excavation and Manhole

The depth of the excavation depends to a large extent on the configuration of the system, and the local topography. The depth generally tends to be shallow in upper reaches of the system where pipes with a smaller diameter are used. The depth tends to be deeper in downstream drainage areas where larger diameter mains are installed. This study assumes an average depth as shown in Table - 4.2.2 for each pipe diameter based on averages obtained for existing installations in Kisumu.

2) Rehabilitation of existing sewer


In this study, it is supposed that 25% of the 150 mm dia. and 200 mm dia. pipes will be replaced, and all the pipes with the diameters, (300 mm, 450 mm and 600 mm) will be cleaned.

Assumptions for replacement and pipe cleaning of existing sewer are given in Table - 4.2.3.

(2) New Treatment Works

1) Pond layout

Pond geometry is based on a study by the UK ODA (pp39-41: Waste Stabilisation Ponds—A design manual for eastern Africa, 1992, Leeds). From the information, the depth of anaerobic ponds adopted in the Study is 3.0 m. The depths of facultative and maturation ponds are set at 1.5 m, and a 1.0 m freeboard is added to prevent overtopping. The top of the embankment is given a 2 m width.

There is little information on the optimum length to breadth ratio for ponds. An approximate ratio between the length and breadth of 2:1 is adopted in the Study based on the existing facilities in Muranga (Muranga's Sewerage Scheme, May 1992).

Furthermore, in planning the layout, it is assumed that there should be more than one series of ponds. This is because a facility with only one series of ponds cannot operate during its rehabilitation, reconstruction, or maintenance. As presented in Figure - 4.2.1, therefore, this study offers three types of layouts, which provide two or more series of parallel ponds.

2) Capacities of ponds

Pond capacities have been estimated on the basis of the UK Overseas Development Administration publication entitled "Waste Stabilisation Ponds: A Design Manual for Eastern Africa" (1992). The assumed influent BOD is 550 mg/ ℓ .

The capacity of each pond is determined based on the design wastewater flow, called "Dry weather flow 2010" in Table - 4.1.1. Required capacities of anaerobic ponds, facultative and maturation ponds are calculated by the following formula:

$$V_A = 2.1X$$
 $A_F = 11.2X$ $A_M = 12.7X$

Where X is each design wastewater flow (m³/day), V_A is volumetric the capacity of an anaerobic pond (m³), A_F is the area of a facultative pond (m²), and A_M is the area of a

maturation pond (m²). The typical relation between the capacities of ponds and the dry weather flow is shown in Figure - 4.2.2.

The formulas above were constructed by calculating the sizes of the waste stabilisation ponds required for flows of 10,000 m³/day 5,000, 2,000 and 1,000 m³/day. The typical relation between these design wastewater flows and the size of anaerobic, facultative and maturation ponds is provided in Figure - 4.2.2.

The formulas can basically be applied to estimate the construction costs of ponds in each urban centre.

When the volume of design wastewater flow in an urban centre exceeds 10,000 m³/day, the volume is equally divided to provide parallel series of ponds with capacities less than 10,000m³/day.

Example:

The expected volume of Kericho's wastewater flow in 2010 is 12,685 m³/day.

To put this volume into its treatment facility, the volume is divided to become less that 10,000 m3/day.

In Naivasha, the divided volumes (6,342.5 m³/day) of the design wastewater flows are put into two parallel ponds respectively. The sizes of each pond are, in this case:

 $VA = 13,319.3 \text{ m}^3,$ $AF = 71,036.0 \text{ m}^2 \text{ and,}$ $AM = 80,549.8 \text{ m}^2.$

After finding the sizes, then, these sizes are multiplied by the sufficient numbers (two parallel ponds) of each pond. In this case;

Anaerobic pond : $13,319.3 \times 2 = 26,639 \text{ m}^3$ Facultative pond : $71,036.0 \times 2 = 142,072 \text{ m}^2$ Maturation pond : $80,549.8 \times 2 = 161,100 \text{ m}^2$

(3) Expansion of Existing Treatment Works

The expansion of existing waste stabilisation ponds is made by increasing the numbers of ponds. Expansion is also considered for the existing aerated lagoons, oxidation ditches and trickling filter installations by adding stabilisation pond in parallel to existing processes.

1) Type of expansion

The expansion works may be classified into the following 3 types: (illustrated in Figure - 4.2.1).

a) Provision of one or more additional series of ponds (Type 1)

Expansion is required for anaerobic, facultative and maturation ponds.

b) Provision of additional maturation ponds (Type 2)

Expansion is required for facultative ponds.

- c) Provision of Stabilisation pond to other treatment types (Type 3)
- 2) Capacity of expansion

This same method for finding the capacity of new ponds is applied or calculating the capacity of the expansion:

$$V_A = 2.1X$$
 $A_F = 11.2X$ $A_M = 12.7X$

Where X is design wastewater flow(m^3/day), called "Incremental treatment capacity (m^3/day)", V_A is the capacity of anaerobic pond (m^3), A_F is the area of facultative pond(m^2), A_M is the area of maturation pond (m^2).

(4) Rehabilitation of Treatment Works

Rehabilitation at treatment works are divided into embankment protection, de-sludging and improvements to, in/out let chamber works. Since the embankments of Muranga's existing ponds are protected by pre-cast concrete (PC) (p82, Muranga's Sewerage Scheme May 1992), this Study designs the embankment protected by PC. To fully cover the freeboards of the ponds, the Study proposes 2.0 m of PC's length from the top to bottom.

Regarding the de-sludge work, the volume required for the de-sludge is calculated with the depth, 0.75m, from the experience of Thika (Appendix 12 of Thika Sewerage Master Plan, April 1998). For the other rehabilitation works, this Study also refers to the Thika Master Plan.

The rehabilitation of the treatment works consist of:

- 1) De-sludging for the anaerobic or primary facultative ponds, and any subsequent ponds if necessary.
- 2) Checking embankment stability, and repairing, replacing or installing embankment protection.
- (5) On-going Projects

Regarding on-going projects, no facilities planning or cost estimates are made in this study.

4.2.3 Unit Costs

The direct construction cost is estimated by multiplying quantities by the unit costs of each work. The unit costs are estimated as follows:

(1) Sewer Reticulation

The construction cost of sewer reticulation is estimated by the pipe length of each diameter. The unit cost for construction of sewer reticulation is given in **Table - 4.2.5** by referring to the Appendix 11 of *Thika Sewerage Master Plan* (April 1997). The construction cost per meter includes those of pre-cast concrete pipes, excavation, and manholes at 50 m spacing.

(2) New Treatment Facilities

The typical process of the calculation for the sizes (i.e. length and breadth) is already presented in 'Capacities of ponds' of Chapter 4.2.2. The sizes of the ponds noted in the chapter are, however, at their wastewater lines, not at the top of their embankment.

In finding the excavation costs of each pond, therefore, their sizes at the top of the embankment are essential. By considering the slope (length-to-breadth ratios of 4 to 1) of Muranga's existing facility defined as one of the typical facilities in this Study and the information of the pond geometry (p39, "Waste Stabilisation Ponds" 1992), the sizes of the ponds at the top of embankment can be found.

The sizes at the mid-depth and bottom of the ponds can also be calculated respectively, and, therefore, the excavation volumes can eventually be found.

In estimating the costs of the excavation, this Study uses the experience of Thika (Appendix 11, *Thika Sewerage Master Plan*, April 1997). For the embankment protection, the Study adopts that of Muranga (p82, *Muranga's Sewerage Scheme*, May 1992).

In addition to the costs themselves, the annual rising level in price should be taken into account for estimating the costs. For examining the rising level, the Study applies to the level of Thika and Muranga (Civil Engineering Index-Cost Index 1991-1994, 1995 Nairobi Figure - 4.2.3). With considering these conditions, the unit cost of the excavation can be 3.1US\$. That of the embankment is 6.62 US\$ in the Study. The unit construction costs are summarised in Table - 4.2.6.

The total construction cost consists of the excavation and embankment protection cost. The relation between the costs and volume of the design wastewater flow is presented in Figure - 4.2.4, with the proportion coefficients which can be defined as the unit costs of the new construction.

The total construction cost of the new treatment facilities is estimated by the following formulas.

Y = 195.6X

Where X is design wastewater flow (m³/day) called "Incremental treatment capacity (m³/day)" and Y is total construction cost of expansion.

(3) Treatment Works Expansion

The formula presented for the new construction can also be applied to the calculation of the expansion works.

(4) Rehabilitation

The total rehabilitation cost for treatment works is estimated based on the quantities of desludging, area of embankment and length of pipeline required for the replacement and cleaning.

The unit costs for the Replacement of sewers are assumed to be 1.5 times of the cost for the new construction. The unit costs for rehabilitation are given in Table - 4.2.7.

(5) Land Acquisition

The unit cost of land acquisition for new treatment facilities and expansion is shown in Table - 4.2.8.

The costs for land acquisition are based on a survey of recent land costs carried out by the Mangat, I.B, Patel and Partners Consulting Engineers, Nairobi, Kenya during this Study.

4.2.4 Facilities Cost Estimates

Table - 4.2.9 details the quantities required to estimate the costs. The cost of treatment works and sewer reticulation in US\$ is shown in Table - 4.2.10. The cost estimate is summarised as follows:

	Item	Estimate Cost (US\$)
	Build New Facility	66,551,000
Treatment Works	Expand	90,458,000
	Rehabilitation	4,717,000
	Sub Total	161,726,000
	Build New Facility	273,426,000
	Replacement	47,200,000
Sewer Reticulation	Pipe Cleaning	698,000
	Sub Total	321,324,000
	Totai	483,050,000
	Mombasa	25,000
On going project	Eldoret	6,000
<i>z z</i> , <i>y</i>	Total	31,000
G	rand Total	483,081,000

4.2.5 Operation & Maintenance Cost

The cost of operation and maintenance (O&M) is estimated based on the following cost items:

- 1) Equipment maintenance and repair cost
- 2) Manpower cost

(1) Maintenance and Repair Cost of Equipment

Maintenance and repair cost of equipment are considered annual maintenance and repair cost as percent of capital cost in the term of economic life. The costs of operation and repair cost of equipment are estimated by referring to the data indicated in Table - 4.2.11.

(2) Manpower Cost

In managing the operation and maintenance, manpower is required for the management, treatment work and collection system. The numbers of the staff depending on the served population of each areas are respectively decided by referring the recent World Bank's study (1983: Notes on the Design and Operation of Waste Stabilisation Ponds in Warm Climates of Developing Countries Washington D.C.).

Table - 4.2.12 indicates the standard number of the desirable staff for operation and maintenance of the system and the annual manpower cost.

(3) Operation and Maintenance Cost

Tables - 4.2.13 and 4.2.14, respectively, provide the annual maintenance and repair cost of equipment for each urban centre, and the annual manpower cost.

4.3 Implementation Strategy

4.3.1 Priorities Among Urban Centres

The previous sections have identified the various sewerage development needs in each urban centre. A key task in defining a national programme for sewerage development is the setting of priorities because not all needs can be satisfied in the near future. The following five criteria for ranking priorities among urban centres are proposed:

% of population with piped water supply but no sewer connection	Population requiring services by 2010	Potential Health & Environmental Impact	Industrial growth potential	Tourism Potential	Rating
<25%	P<20,000	nil	nil	nil	0
25 to 50%	20,000 <p<100,000< td=""><td>Minor impact on water environment</td><td>low</td><td>low</td><td>1</td></p<100,000<>	Minor impact on water environment	low	low	1
50 to 75%	100,000 <p<300,000< td=""><td>Serious impact on sensitive ecosystem</td><td>medium</td><td>medium</td><td>2</td></p<300,000<>	Serious impact on sensitive ecosystem	medium	medium	2
>75%	P>300,000	Contamination of drinking water source	high	high	3

(1) Percentage of population that has piped water but no sewage connection

This criteria is a direct indication of how urgently sewerage services in an urban centre are required. The larger the percentage the higher the rating. Where a large percentage of the population have piped water but no sewer connection the disposal of sullage will likely be large enough quantities to find it's way to surface drainage. Large amounts of untreated wastewater in surface drainage can affect the quality of drinking water resources in rivers and shallow wells and is a serious threat to the public health of all residents, especially in larger, more densely populated areas. The situation can even affect neighbouring communities with sewerage facilities.

(2) The number of people that need to be connected

This criteria is also a measure of the urgency and the need for services. This factor compares the number of people now connected to sewers to the number of people that would be connected to achieve the target proposed for 2010. This comparison can result in large numbers if existing service coverage ratios are very low or if urban populations are very large but in general this factor tends to favour the larger urban centres. There are many reasons for attaching a higher rating to a larger population:

- 1) There is more risk of health and environmental impacts
- 2) The cost per capita is usually lower for larger systems, in more densely populated urban centres
- 3) A greater number of people would benefit from improved social, and environmental conditions

(3) Potential Health and Environmental Impact

This criteria is based on two factors:

- 1) a qualitative comparison of the potential receiving stream impacts
- the potential impact on potable water supplies, evaluated on the basis of statistics for access to safe water

Several urban centres will have a profound impact on the environment. Other urban centres pollute water that will be used downstream as an important source of potable water supply. In some districts access to safe water is very low and many people rely on surface water for domestic use. Urban centres in these districts have a very high potential for contaminating surface water used by rural residents in downstream reaches especially if the district is densely populated and urbanised.

(4) Industrial Growth Potential

In 1975 the Physical Planning Department prepared a study "Human Settlements in Kenya, A strategy for Urban Development". This study identified the potential growth status of urban centres by evaluating a number of criteria including industrial potential, agricultural potential, tourism potential, proximity to large urban centres, accessibility, administrative potential and level of infrastructure. The results of the evaluation are shown in Figure - 4.3.1. Although the study is old the assessment of industrial potential is considered valid today and has been used in recent master planning studies. Industrial potential is a measure of several factors that can influence the need for sewerage development:

- 1) these towns will likely grow at a much faster rate in the near future given the Government's policy to increase industrial output
- 2) the influx of more people and industrial development will increase the consumption of water and exert a greater demand for wastewater infrastructure
- 3) control of industrial effluents and wastewater treatment will be important in these industrialised urban centres to safeguard the environment.

(5) Tourism Potential

Tourism is one of Kenya's most important sources of revenue. The sanitary conditions in important tourism centres must be improved to maintain tourism as a viable industry as identified in the National Tourism Master Plan

A ranking of urban centres is presented in Table - 4.5.1 and summarised below:

Priority	Urban Centre	Score
1	Mornbasa	14
2	Nairobi	13
3	Kisumu	12
4	Machakos, Meru, Nakuru	11
5	Narok, Malindi, Kitale	10
6	Kisii, Naivasba	9
7	Maragua, Ruiru, Wajir, Thika, Kericho, Nanyuki	8
8	Garissa, Ongata, Kilifi, Nyahururu, Webuye, Voi, Eldoret, Nyeri	7
9	Mandera, Kabarnet, Muranga, Bungoma, Busia, Isiolo	6
10	Kapsabet, Homa Bay, Karatina, Embu, Kakamega	_ 5
11	Ngong, Athi River	4
12	Kiambu	3
13	Limuru	2

4.4 Strategy for Project Scheduling and Phasing

The scheduling of sewerage development projects should follow the relative order of priorities established by the ranking of urban centres in order to meet the target service coverage ratio set for 2010. The actual timing of a sewerage project will depend on the funding available and on the timing of water supply improvements where low unit consumption does not support waterborne sewerage. Sewerage development can proceed independently where water supply conditions are adequate and can support waterborne sewerage.

The approach to phasing the treatment works and sewer network components in each urban centres will also depend on prevailing water supply conditions and the availability of spare treatment works capacity. The strategy for phasing of sewerage development for each urban centre is shown in the following table:

Urban Centre	Stage 1	Stage 2	Stage 3
Bungoma, Isiolo, Mombasa Condition A	Improve water supply	Extend Sewer Network	Expand sewage treatment works and/or build new
Kitale, Naivasha, Nyeri Condition B	Rehabilitate treatment works	Improve water supply	Expand sewage treatment works and sewer network
Kisii, Muranga, Nakuru, Webuye Condition C	Extend Sewer Network	Provide new sewage treatment works and/or expand existing	
Athi River, Kiambu	Extend Sewer Network		
Condition D			<u> </u>
Busia, Kericho, Homa Bay,	Provide new sewage treatment works and/or expand existing	Improve water supply	Extend Sewer Network
Condition E		Extend Sewer Network	
Eldoret, Embu, Kapsabet, Kisumu, Limuru, Kakamega, Machakos, Meru, Nairobi, Nanyuki, Ngong, Nyahururu, Thika	Provide new sewage treatment works and/or expand existing		
Condition F		<u> </u>	
Garissa, Kabarnet, Kilifi, Malindi, Manderu, Maragua,Narok, Ongata, Ruiru, Voi, Wajir	Improve water supply	Provide Sewerage Network	
Condition G			

Note: improving water supply system is a constraint that must be resolve before the next stage can be implemented

Condition A = sewer network extensions are not possible due to low unit water consumption.

Condition B = existing treatment works can be rehabilitated but sewer network extensions are not possible due to low unit water consumption

Condition C = treatment works have capacity for more flow but will need expansion before 2010.

Condition D = treatment works have capacity for more flow but will not need expansion before 2010

Condition E = treatment plants are overloaded and should be expanded. Sewer network extensions are not possible due to low unit water consumption.

Condition F = treatment plants are overloaded and should be expanded before extending sewers.

Condition G = No existing sewer system.

4.5 Implementation and Disbursement Plan

(1) Implementation Schedule

To obtain the target of serving 38% of the urban population in 2010 with sewers, all the urban centre projects must be implemented in order of priority. The ranking is: Mombasa at first followed by Kisumu, Machakos, Narok, Malindi, etc. The ranking of the sewerage development priority in the urban centres is summarised in Table - 4.5.1.

In general, the sewer development projects must be co-ordinated with water supply schemes because the volume of sewage depends on that of water supply in the urban areas. In other words, the strategy for sewerage development should follow that of water supply development. Accordingly, the Study at first plans the implementation of water supply schemes as shown in Table - 4.5.2.

After programming water supply schemes, the implementation schedule for sewerage schemes is determined as shown in **Table - 4.5.3**. Some of the sewer schemes exceed the end of the planning horizon, because there are some water supply projects expected to be completed in the year 2010. The schedule consists of the following items:

- 1) Studies, surveys, detailed designs, financial arrangements, etc.
- 2) Rehabilitation of treatment works
- 3) New construction and rehabilitation of sewer reticulation
- 4) New construction and expansion of treatment works
- 5) New construction and expansion, rehabilitation of treatment works

(2) Disbursement Schedule

The disbursement of expenditures based on project cost estimates is planned in accordance with the implementation schedule. The costs of studies, surveys, detailed designs, financial arrangements, etc. are calculated by dividing total engineering costs equally into three years.

Table - 4.5.4 indicates the disbursement schedule from 1999 to 2011 for the complete programme, excluding deferred urban centres.

(3) Schedule based on Historical Funding Levels

The annualised costs of implementing the full sewerage development programme will likely exceed available financial resources. An alternate implementation plan (Schedule "B") was developed to provide annual costs that are closer to historical investment levels. The implementation schedule in Table - 4.5.5 was developed by deleting lower priority projects. The corresponding disbursement schedule is shown in Table - 4.5.6.

CHAPTER 5 PRELIMINARY STUDY ON PRIORITY PROJECTS

5.1 Priority Projects

The implementation plan for achieving the proposed target service ratios by 2010 is based on the relative ranking of urban centres. It is clear that several projects share the same timeframe and will be competing for funding resources. Since funding will likely continue to be a serious constraint it is necessary to assess which projects should proceed on an urgent basis.

The selection of priority projects is made from the short list of the 9 urban centres identified in the implementation plan to start in the first year. The relative merits of sewerage development for each of these urban centres is evaluated against the following selection criteria and given an overall rating a shown below:

- 1) Expected health benefits and improvement to living conditions
- 2) Importance to the viability of tourism
- 3) Degree of sewerage development planning already in place
- 4) The present condition of existing sewerage systems
- 5) The status of on-going projects

Urban centre	Studies to date	Sanitation conditions	Status of on-going project	Health & environment benefits	Importance to viability of tourism	Overall rating
Mombasa	F/S	Contamination of drinking water supply, impact on reef and beaches	No funding commitment for design and construction	High	High	A
Nairobi	M/P	Good coverage except in slum areas, treatment plants performing well despite overload	World Bank actively involved		Low	С
Kisumu	F/S	Treatment works polluting Lake Victoria, high level of industrial pollutant.	HCA completing F/S, no funding identified for next phase	High	Medium	A
Machakos	M/P	Treatment works overloaded, polluting surface waters used for drinking.	No funding identified for next stage	High	Low	A
Meru	F/S	Adequate on-site sanitation is available. Existing sewage works is overloaded but capacity can be restored by removing sludge.	On-going water supply project will probably include sanitation improvements	Medium	Low	В
Nakuru	M/P and F/S	Treatment works are operating under design capacity	New treatment works recently completed but sewer reticulation required	High	Medium	С
Narok	nil	Wastewater drainage is affecting surface water used for drinking. On-site sanitation is inadequate.	No funding identified for sewerage development	High	High	Λ
Kitale	nil	Treatment works are operating under design capacity	GTZ is strengthening water management	Medium	Low	С
Malindi	M/P	On-site sanitation is inadequate.	No funding identified for sewerage development	High	High	A

A = Highest priority, B = intermediate priority, C = lower priority

Five priority urban centres (rating of A) are identified: Mombasa, Kisumu, Machakos, Malindi, and Narok. The project requirements for each urban centre are summarised below:

- 1) Mombasa: proceed to design and construction of facilities following the development programme proposed in feasibility study.
- 2) Kisumu: proceed to design and construction of facilities following the development programme proposed in feasibility study.
- 3) Machakos: pre-design review of existing master plan then proceed to design stage.
- 4) Malindi: proceed with design and construction as identified in master plan.
- 5) Narok: proceed with master plan and feasibility study to identify sewerage development plan.

5.2 Project Description

Master planning and feasibility studies are available for each urban centre except Narok. A summary of the proposed sewerage development from each master plan is provided below.

Mombasa

Source of information: (Draft feasibility study, Gibb Engineering Report, 1996)

"Currently only 10% of Mombasa's 600,000 population are connected to piped sewerage system. The main industries and hotels are not connected, and none of the municipality's treatment works are operating. Uncontrolled and untreated sewage is therefore being discharged into Mombasa's marine environment. This environment supports fragile and valuable ecosystems that include the offshore fringing coral reef, and a mangrove forest that exists within the inland creeks. It also supports a local fishing industry and a thriving tourism industry that contributes significantly to the National economy. Current levels of pollution are shown to be a threat to these industries and also to public health." The areas of Mombasa covered by sewerage are shown in Figure - 5.2.1.

A new treatment works is currently being completed on the West Mainland. The project included trunk sewers but not secondary sewer reticulation. The scope of the on-going project is shown in Figure- 5.2.2. Areas were prioritised during the strategy study for sewerage in accordance with their potential for reduction of pollution load, early maximisation of revenue, and household ability to pay for both the full costs of both water and sewerage. The resultant priority ranking was:

- 1) Mombasa Island primary and secondary sewer reticulation
- 2) The West Mainland secondary sewer reticulation
- 3) The North Mainland primary and secondary reticulation
- 4) The South Mainland primary and secondary reticulation

In accordance with these priorities a strategy for phased construction of the sewerage system was derived. The recommended staged construction project for the 2010 horizon is summarised below:

Stage	Period	Proposed Investments
1A	1997-2000	- North Mainland headworks and long sea outfall
		- Island trunk sewers, priority pumping stations, rising mains,
		N. Mainland connecting sewers, M/E work
1B	2000-2010	- Island and W. Mainland secondary sewers and pumping stations

The scope of work of West Mainland is shown in Figure - 5.2.3.

In the feasibility study the system recommended for the Island and North Mainland includes "two main pumping stations on the Island, and a number of secondary pumping stations. Sewage will be collected at one of the main pumping stations, located close to Nyali Bridge and will be pumped across the bridge to a preliminary treatment plant prior to marine treatment and disposal via a long sea outfall. Alternative sewage treatment and disposal methods were evaluated. The proposed solution comprising preliminary treatment was the least cost solution designed to meet the water quality guidelines proposed. This option also presents the least risk in the case of plant or power failure."

Cost estimates from taken from the feasibility have been adjusted for inflation and included in the disbursement schedule for this study. Total project costs identified in the feasibility study are 3,426 million Kenyan shillings (approximately 57 million US dollars).

Kisumu

Source of information: (Draft Final Report, Kisumu Water Supply & Master Plan, JICA, 1998)

Currently approximately 56% of the population in Kisumu is connected to the wastewater system. The existing sewerage system is described in Figure - 5.2.4.

The central district collects wastewater from the area north-west of the old town by gravity and from low lying areas along lake Victoria through three pumping stations. All three pumping stations in the collection system are inoperative and wastewater overflows from manholes and pumping station wet wells to Lake Victoria. Flows are conveyed to a conventional treatment works that is overloaded hydraulically and organically. Flows exceed design capacity by more than 150% during dry weather and by more than 200% during the rainy season.

The eastern district collects wastewater from southeast of the old Kisumu town, and conveys it to a primary facultative pond facility. The treatment works receives less than 20% of its design capacity due to inadequate water supply in this district. As a result, sewers are blocked with sediment.

The master plan identifies that 60% of the wastewater flow from domestic and industrial sources should receive treatment by 2005. That percentage will increase to 83% in 2015. The proposed sewer area for 2015 is shown in Figure - 5.2.5. The priority project identified for the year 2005 consists of Phase 1 works identified as follows:

- 1) Rehabilitation of three pumping stations
- 2) Installation of 2.6 km of trunk sewers in central district and 23.1 km in eastern district

- 3) Rehabilitation of conventional treatment works (Figure 5.2.6)
- 4) Expansion of conventional treatment works to 2015 design inflow
- 5) Rehabilitation of treatment ponds (Figure 5.2.7) Phase 1 costs total: 14,234,000

Phase 2 works are planned for the period 2005-2015 and consist of:

- 1) Construction of three new pumping stations
- 2) Abandon 1 existing pumping station
- 3) Expand existing ponds
- 4) Construct new treatment works in new western district (Figure 5.2.8)
- 5) Provide 23.2 km of trunk sewers in new western district Phase 2 costs total: 23,001,000

Machakos

Source of information: (Draft Final Report, Machakos Sewerage Scheme, Master Plan and Preliminary Design Report, Mangat, I.B. Patel & Partners, 1985)

Currently approximately 10% of the population in Machakos is connected to the wastewater system. The existing sewer network was originally installed in 1973. Since then a great deal of development has taken place. Most of this development is unsewered, which means wastewater is discharged untreated to receiving streams. The existing treatment facility is overloaded and is discharging poor quality effluent into the Mitheau river. This situation is creating a significant health risk in the area.

The municipality is divided into two areas north and south. The north consists of the northern slopes of the Mua hills and the Mitaboni plateau. In the 1985 study it was identified as rural and populations studies indicated it would remain so until middle of next century therefore no sewerage was proposed. The southern area is made up of land with the horseshoe ridge of hills. It contains the urban centre of Machakos town and the relatively flat land that surrounds it. This area is where most of the urban growth has occurred and where the sewerage system needs to be developed most urgently.

Drainage areas are shown on Figure - 5.2.9. The 1985 master plan identified development of sewer systems in two phases.

- 1) from 1985 to 1995 sewerage in drainage areas 2 & 3, and
- 2) from 1995 to 2005 sewerage in drainage area 4

The Phase 1 works identified in the 1985 master plan consist of:

- 1) upgrading sewers networks in drainage areas 2 & 3
- 2) new gravity trunk sewer lines A and F
- 3) new oxidation pond treatment facility at site 3 (Machakos)
- 4) new oxidation pond treatment facility at site 2 (Kiavndini)
- 5) New pumping station at Miwani river

Total costs 110,295,000 Kshs (1985 prices)

The Phase 2 works consist of:

- 1) New sewerage in drainage area 4
- 2) a new gravity sewer line B along the Maruba River
- 3) expansion of capacity @ t/w site 2 and 3 Total costs 110,054,000 Kshs (1985 prices)

The population and land use projections made in the master plan should be compared to existing situation in order to confirm if phase two works should be implemented with Phase 1.

Malindi

Source of information: (Final Report, Malindi Sanitation and Hygiene Education Feasibility Study, Financed by Federal Republic of Germany, 1994)

Over 60% of the population in Malindi have no sanitation facilities at all. Over 40% of the population has no access to any direct source of water and there is clear evidence of shallow wells with nearby pit latrines. The potential for a major epidemic of cholera or typhoid is great. Malindi is an important tourism centre. Urgent action is necessary to ensure that the sanitation systems in the town are improved to sustain the welfare of the population and ensure further economic development.

The feasibility study proposes a sewerage system for densely developed parts of the town, hotels, commercial and industrial areas. The sewerage system consists of collector sewers, 3 pumping stations and a treatment facility all designed to meet the needs until 2005. The study evaluated several treatment site options and recommends the Ganda site. The feasibility study also recommends improving the collection of effluent from on-plot sanitation facilities in order to ensure a healthy living environment. A location plan is shown in Figure - 5.2.10 and proposed sewer reticulation in Figure - 5.2.11. The treatment works layout is shown in Figure - 5.2.12.

Total project costs for sewerage is estimated at 580,000,000 Kshs (1994 prices).

Narok

At present, there are no sewer systems in Narok. According to the sewer development strategy, the number of the sewer served population is expected to reach 19,347 by the year 2010. Under the strategy sufficient sewer facilities and reticulation are required to cover Narok's served numbers as follows:

The development strategies of Narok from 1999 to 2011 are:

- 1) New treatment works: Waste Stabilisation Pond, and
- 2) New sewer reticulation: 22,055 m

The direct costs are:

1) New treatment works: 768,766 US\$, and

2) New sewer reticulation: 1,336,694 US\$

A preliminary layout of the waste stabilisation ponds is shown in Figure - 5.2.13.

- PART III : SEWERAGE DEVELOPMENT PLAN -

TABLES

Table - 1.1.1 Projects Identified in Public Investment Plan

On-going rioject	Status	Estimated cost	Year started	pletion	Funding source
	3 rehabilitation complete	30.800	1991		(FRG)
2) Kapsabet	3 new works completed	10,000	1990		(not identified)
	3 ungrade complete	250	1990	2000	(JAPAN)
A) Murand'a	3 new treatment works complete	92,500	1992	1998	(ADF)
5) Bungama	2 construction halted	12,500	1992	1998	(ADF)
7) Dangolina 6) Nonyuki	3 rehabilitation complete	5,000	1991	2000	(GOK)
	awaiting funding	72,000	1995	1998	(GOK)
() Mombassa	2 new treatment works under construction	13,000	1988	2000	(GOK)
	2 new treatment works under construction	31,000	1990	2000	(ADF)
	1 awaiting funding	200	1993	1998	(GOK)
1) Waiir	1 awaiting funding	300	1994	1998	(GOK)
12) Othawa	1 awaiting funding	400	1993	1998	(GOK)
3	1 awaiting funding	8,000	1990	2000	(GOK)
14) Embii	1 sewerage design complete	5,000	1992	2001	(GOK)
15) Machakos	1 master plan completed	500	1989	1998	(GOK)
15) Marcahir	1 awaiting funding	225	1994	2000	(GOK)
17) Karatina	3 improvements completed	200	1994	1999	(GOK)
18) Thika	1 master plan completed	750	1994	1999	(GOK)
19) Makueni	1 awaiting funding	not shown	not shown	not shown	(GOK)
12) Pomet	1 awaiting funding	400	1992	1997	(GOK)
20) Bonier	1 awaiting funding	750	1993	2000	(GOK)
Oly District	1 decign stage	006	1992	1999	(FRG)

Note:

"1" under investigation, planning or design "2" under implementatin "3" under operation and maintenance

identified in DDP

Table - 1.1.2 Projects Identified in the District Development Plans

Urban Centre	Project Identified in District Development Plan	Status
1) Kiambu	Upgrade treatment works to double capacity	1
2) Kenigoya/Kutus	Water supply & sewerage to minimize water pollution	1
3) Kianyaga	Water supply & sewerage to minimize water pollution	1
4) Ol kalou	Construction of new sewerage system	1
5) Karatina	Sewer capacity improvements to relieve frequent blockages	3
6) Nyeri	Extend 4 trunk sewers & purchase vacuum truck for exhausting septic tanks	3
7) Malindi	Master plan for sewerage is complete, awaiting funding	1
8) Lansu	Septic tanks unsatisfactory, new sewerage system required for whole town.	ı
9) Mwingi	Sewerage system required to reduce frequent outbreak of water borne disease	1
10) Embu	Sewerage design complete, awaiting funds	1
11) Meru	Provide sewerage system and relocate treatment works to larger site in Thuura	1
12) Isiolo	Complete house connection program started in '91	2
13) Chuka	Undertake water supply and sewerage works	1
14) Wajir	Provide sewerage system to replace the use of unsanitary bucket lattines	1
15) Keroka	Stabilization ponds designed but not implemented	1
16) Nyamira/Kebirigo	On-site systems are unsatisfactory; provide sewerage system	1
17) Kisumu	Expansion of water supply and sewerage facilities	1
18) Homa Bay	Rehabilitation of treatment works	1
19) Kehancha	Construction of sewerage network and treatment works	1
20) Nyabikaye	Construction of sewerage network and treatment works	1
21) Kilgoris	Construction of sewerage network and treatment works	1
22) Kabarnet	On-site sanitation is unsatisfactory; planning & design for construction of sewerage network and treatment works.	1
23) Marigat	Planning for sewerage is required	11
24) Webuye	Extend sewerage to include schools and hospital	1
25) Kapsakwony	Construct a new sewerage system	1
26) Busia	Construct a new sewerage treatment works	11_
27) Luanda	Construct a new sewage treatment works to allow hygienic disposal of sanitary waste	1
28) Kakamega	De-sludging of ponds	1
29) Kapsabet/Baraton	Complete ph2 of sewerage, piping and pump installations	2

Note: "1" under investigation, planning or design

Legend: identified in PIP

[&]quot;2" under implementatin

[&]quot;3" under operation and maintenance

Table - 2.1.1 Summary of Sewage Disposal Methods in Kenya

Census	sus Data				Welfare M	Welfare Monitoring Report '94 (2)
Method of disposal	% of Total Population	Population	% of Urban Population	<u> </u>	% of Total % of Urban	Method of disposal
	(1)69,	68.	68,	Population	Fopulation	
Dublia Comenan	2	6.7	28.7	4.5	20.5	Water Closet
Agriamac annan I	1			4.6	20.8	Pour Flush
				9.1	41.3	sub-total (includes septic tanks)
Div I aterian	40	68.5	57.0	68.6	50.7	Pit Latrine
יון דייון וויך				2.5	5.0	V.I.P.
				71.1	55.7	sub-total
Other (mainly septic tank)	7	4.7	10.7	0.2	5.0	Bucket
No sanitation (mainly bush)	51	20.1	3.6	19.6	2.4	No Sanitation

Source: (1) Figures taken from WHO report no. 8 (1972), (2) Central Bureau of Statistics

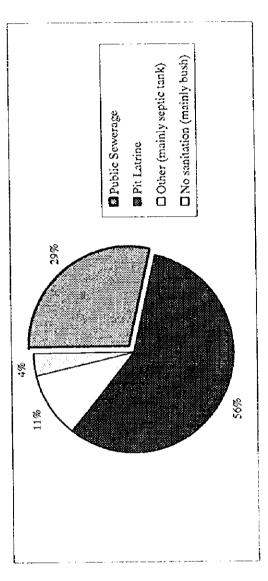


Table - 2.2.1 (1/4) Summary of Urban Sewerage Schemes

No.	District	Urban Area / Name of Scheme	Municipal Area (km²)	Urban Population	Quantity of Water Supplied (m³/d)	Water Undertaker	Type of Sewage Treatment Works	Year Constructed (Expansion)	Treatment Works Capacity (m ³ /d)	Organization Running the Works	No. of Sewer Connections	Population Served	Present Flow (m³/d)	Per capita flow (lped)	Total Length of Sewers (m)	Length' per capita (m)	Method of Sludge Treatment	Influent BOD (mg.1)	Per capita BOD (gʻday)	Effluent BOD (mg.l)	Total O & M Staff	Remarks
	Bungoma	Bungoma	55.	70,000	2,620	NWCPC	WSP	1965	45	Municipal Council	260	12.600	N	£M	3,710	0.29	No Facility	550	NFM	No Etiluent	9	The works have been neglected. The first pond is full of sludge and covered with vegetation. Part of The plot is being used as a school. No Effluent from The first pond. Construction of the newworks has been stopped. Future plans to complete stalled sewerage project.
2	Kisumu	Kisumu (conventional)	390 ha	221 687		Mucro	conventional	1966, subsequent rehabilitation in 1986	6.800	Municipal			13,000		8.500		anaerobic digestion followed by studge drying beds		105	143-254		 oil separator unit added in 1986 is not working, frequent mechanical and electrical equipment failures, the treatment works are subjected to heavy organic and hydraulic overload.
3	Kisumu	Nyalenda	214 ba	231,687	14.565	NWCPC	WSP	1975	11,000	Council	NA 	130,000	2,000	115	8,000	0.13	No Facility	314-472	54	75-86	NA	beavy accumulation of weeds and sludge has reduced hydraulic retention times
4	Nakuru	Nakeru town	4.2	123,500		Municipal	WSP	1997	6.600	Municipal		57,480	3,484	61			anserobic digestion	875	53	104		- new t/w - operating below capacity
5	Nakuru	Nakuru - Njoto	8.7		41,120	Council	WSP	1997	9,600	Council	NA NA	65,980	4,739	72	86,156	0.70	followed by sludge drying beds		48	236	60	- new t'w - operating below capacity
6	Meru	Meru	ΝA	124,412	4,700	MOWR	WSP	1974	2,500	Municipa! Council	NA	800	500	625	NA	NA	No Facility	502	314	160	NA	- hydraulically overlooded - no screening or grit removal - no maintenance
7	Isiolo	Isiolo	NA	124,412	4,760	MOWR	WSP	1984	2,000	Municipal Council	NA	1,700	595	350	NA	NA	No Facility	605	212	251	NA	- accumulation of studge - poorly maintained, no grass cutting, weeds
8	Nyeri	Karatina	NA	7,299	1,300	MOWR	WSP	NA	317	Municipal Council	NA	5,109	561	116	NA	NA	No Facility	267-438	51	23-63	NA	- t/w slightly overloaded
	Bungoma	Webuye	69	60,000	1,700	NWCPC	WSP	1973	NA	Municipal Council	1,620	12,000	NFM	NFM	8,500	0.71	No Facility	200	NFM	60		There is no inlet works and the ponds are choked with sludge. No access road to site. About 40% of the sewer lines are undersize (< 150mm) No future plans for rehabilitation or expansion
	Busia	Busia (South Teso)	25	48,000	2,072	NWCPC	WSP	1981	600	Municipal Council	473	9,600	600	63	7,350	0.77	No Facility	200	13	85	13	The works are poorly maintained Scepage from embankment between first and third pond. Slabs lining the second maturation pond have collapsed. No future plans for rehabilitation or expansion.
11	Enibu	Embu	80	45,000	7,305	NWCPC	WSP	1973	682	Municipal Council	1,400	9,000	NFM	NFM	13,395	1.49	No Facility	700	NFM	140	7	- The works are overloaded and poorly maintained - Sludge accumulation in the facultative pond Future plans for rehabilitation and expansion of treatment works and sewer system. (awaiting funding)

Table - 2.2.1 (2/4) Summary of Urban Sewerage Schemes

No.	District	Utban Area / Name of Scheme	Municipal Area (km²)	Urban Population	Quantity of Water Supplied (m ³ /d)	Water Undertaker	Type of Sewage Treatment Works	Year Constructed (Expansion)	Treatment Works Capacity (m³/d)	Organization Running the Works	No. of Sewer Connections	Population Served	Present Flow (m ³ /d)	Per capita flow (lped)	Total Length of Sewers (m)	Length per capita (m)	Method of Sludge Treatment	influent BOD (mg.l)	Per capita BOD (g/day)	Effluent BOD (mg/l)	Total O & M Staff	Remarks
12	Kajiado	Ngong	NA	45.000	1.260	NWCPC	WSP	1950s	230	Municipal Council	85	750	NFM	NFM	NA	NA	No Facility	Inlet Not Accessible	NFM	No Effluent		- the works have been neglected and ponds are covered with vegetation There is very tittle flow to the works and the seeind pond is dry - no future plans for rehabilitation or expansion.
13	Kakamega	Kakamega - Kambi Somali		15,000			WSP	1980	NA	Municipal	500		500		3,455		No Facility	300	29	No Effluent		The works have been neglected and ponds are covered with vegetation. There is very little flow to the works and there is no effluent to the river. No future plans for rehabilitation or expansion
14	Kakamega	Kakamega - Shirere	51	110.000	7.000	NWCPC	WSP	1972	NA	Council	5.000	51,700	4,500	97		0.07	No Facility	500	48	50		 the works have been neglected and ponds are covered with vegetation and require desludging There is very little flow to the works and no flow to the last pond, surface water runoff to ponds no future plans for rehabilitation or expansion
15	Kericho	Kericho	66	80,000	5,246	Municipal Council	Conventional	1962 (1995)	1,500	Municipal Council	236	41.600	2,000	48	15,625	0.38	Digesters & Drying	450	22	25	30	 existing t/w rehabilitated and expanded very well maintained
16	Kiambu	Kiambu	58	7,500	490	Municipal Council	Conventional	1982	960	Municipal Council	127	2,250	NFM	NFM	NA	NA	Drying	225	NFM	90	7	- Well maintained works. - There is provision to increase the capacity of the works. However, there is no space for polishing ponds. - Future planned expansion of treatment works.
17	Kiambu	Limure	NA	3,000	660	NWCPC	Conventional	1984	550	NW'CPC	352	2,160	NFM	NFM	7,725	3.68	Drying	90	NFM	68	6	 Mechanical equipment on site does not function. The maturation pond and sludge drying beds are covered with vegetation. The works are poorly maintained. No future plans for rehabilitation or expansion.
18	Kiambu	Thika	93	155,770	24,000	Municipal Council	WSP	1972	6,100	Municipal Council	6,000	87,230	10,000	115	18,740	0.21	No facility	570	65	40	30	The works are overloaded and poorly maintained. Mechanical equipment at inlet works does not function. Sewer blockages are common due to small size pipes. Masterplan proposals (funding agency being sought)
19	Kisii	Kisii	29	65,000	4,000	NWCPC	WSP	To be commissioned	NA	Municipat Council	500	13,000	NFM	NFM	NA	NA	Drying	500	NFM	No Effluent	8	- Newly constructed Treatment Works still filling Old Treatment Works have been abandoned.
20	Laikipia	Nanyuki	147	55,000	11,250	Municipal Council	WSP	1985	2,270	Municipal Council	2,100	24,750	8,000	323	33,880	0 1.37	No Facility	294	95	68	15	- The works are not well maintained Some concrete sewer pipes have ingrown roots No future plans for rehabilitation or expansion.
21	Laikipia	Nyahumu	104	60,00	3,000	Municipal Council	Conventional	1987	2,500	Municipal Council	1,511	18,000	3,430	5 19:	1 23,38	5 1.30	No Facility	300	57	50	20	The works are well maintained. Inadequate power supply to run both aerators at the same time. Future planned expansion of treatment works and sewer system.
22	Machakos	Muvuti - Machakos	520	80,60	0 1,740	NWCPC	WSP	1974 (1984)	2,000	0 Municipat Council	2,000	8,000	NFM	NFM	18,07	0 2.20	No Facilit	y 670	NFM	130) 18	 The works are overloaded and anaerobic pond requires desludging. Maturation pond is formed by a dam across the stream and is overgrown with weeds. The works are not well maintained. Masterplan proposal (funding agency being sought)
23	Machakos	Mavoko (Athi River)	684	50,00	0 2,000	NWCPC / NCC	WSP	1994	12.96	0 Municipal Council	370	12,500	NFM	NFM	22,07	0 1.7	7 No Facilit	Site Not Accessibl	NEM	Site Not Accessibi		- Low flow to the new works and ponds are still filling The works are poorly maintained.

Table - 2.2.1 (3/4) Summary of Urban Sewerage Schemes

No.	District	Urban Arca / Name of Scheme	Municipal Area (km²)	Urban Pepulation	Quantity of Water Supplied (m ³ /d)	Water Undertaker	Type of Sewage Treatment Works	Year Constructed (Expansion)	Treatment Works Capacity (m³/d)	Organization Running the Works	No. of Sewer Connections	Population Served	Present Flow (m³/d)	Per capita flow (lpcd)	Totat Length of Sewers (m)	Length per espita (m)	Method of Sludge Treatment	lafluent BOD (mg/l)	Pet capita BOD (g/day)	Effluent BOD (mg/l)	Total O & M Staff	Renorks
24	Mombasa	Mombasa - Changamwe					Conventional	1961	17,100		NΔ		1.450		9,400		Drying	NA	NA	NA		- New works still to be commissioned and old works to be abundance.
25	Mombasa	Mombasa - Kizingo	282	580,000	180.200	NWCPC	Primary Sedimentation	1961	32.500	Municipal Council	NA	69,600	3.140	66	23,970	0.14	No Facility	NA	NA	NA		Treatment works has not worked since 1988 and raw sewage passes to the sea. Mechanical equipment on site does not function. Proposed long sea outfall.
26	Muranga	Mbiri - Muranga	25	30,000	2,000	MOWR	WSP	1997	1,564	Municipal Council	500	10.500	870	83	14,645	1.39	No Facility	568	47	50	17	- Newly constructed Treatment Works receives low flow. Levels in the ponds made up with river water.
27	Nairobi	Nairobi - Dandora					W.25	1977 (1992)	\$0,000	Nairobi City Council			Estimate				No Facility	440		120		- The works are well maintained and the old ponds are being desludged. - Future planned construction of new anaerobic ponds.
28	Nairobi	Nairobi - Kariobangi	693	2,240,000	326,700	NWCPC	Conventional	1961	32,000	Nairobi City Couscil	NA	1,000,000	217,000	217	153,000	0.15	Digester & Drying	448	95	129	60	The works are not well maintained. Some mechanical equipment does not function. The works are overloaded and there is no space for polishing ponds. No future planned rehabilitation or expansion.
29	Nakuru	Naivasha	9.89	60,000	762	NWCPC	Conventional	1983	2,035	Municipal Council	2,012	30,000	NFM	NFM	15,640	0.52	Studge Thickener & Drying	664	NFM	60	11	- Mechanical equipment on site has not functioned since 1992 Aerated lagoons and facultative pond require desludging Future planned rehabilitation of treatment works (Electomechanical equipment)
30	Nandi	Kapsabet	14	20,000	1,100	NWCPC	WSP	1997	1,000	Municipal Council	130	4,000	NFM	NFM	35,540	8.89	No Facility	480	NFM	20	8	- Newly constructed Treatment Works to be commissioned and is well maintained
31	Nyeri	Nyeri - Kiganjo		22,000			WSP	1990	2,000	Municipal Council	73	1,100	500	455	5,885	5.35	Drying	560	255	185	7	- Inflow is low due to few sewer connections and frequent breakdown of the pumping station Studge drying beds have never been used due to low flow and are flooded No future plans for rehabilitation or expansion
32	Nyeri	Nyeri - ADB	200	120,000	7,000	Municipal Council	Conventional	1938	6,100	Monicipal Council	1,865	36,000	2,000	56	5 42,540	1.18	Digester & Drying	372	21	87	23	- Grit removal air blowers and flow recorder out of order Third maturation pond embonkment washed away and sludge drying beds flooded Trunk sewer damaged and some sewage leaking Planned rehabilitation of trunk sewer and maturation pood.
33	Taita	Voi	10	15,772	2,700	NWCPC	WSP	1980	NA	Municipal Council	NA	700	Facility is dry	NFM	NA	NA	No Facility	NA NA	NA	NFM	NA	- no flow to pond - pond is dry
34	South Nyanza	Homa Bay	19	7 75,000	1,231	NWCPC	Conventional	1987	750	Municipal Council	2.500	15,000	1,043	5 70	9,650	0.64	Sludge Thickener d Drying	250	17	40	11	- Mechanical equipment on site does not function Sedimentation tanks are by-passed due to sludge accumulation Surface water run-off to ponds The works are poorly maintained No future plans for rehabilitation o

Table - 2.2.1 (4/4) Summary of Urban Sewerage Schemes

No.	District	Urban Area / Name of Scheme	Municipal Area (km²)	Urban Population	Quantity of Water Supplied (m ³ /d)		Type of Sewage Treatment Works	Year Constructed (Expansion)	Treatment Works Capacity (m³/d)		LOGA ALL NOWER		Present Flow (m³/d)	Per capita flow (lpcd)	Total Length of Sewers (m)	Length per capita (m)	Method of Studge Treatment	loffuent BOD (mg/l)	Per capita BOD (g'day)	Effluent BOD (mg/l)	Total O & M Staff	Remarks
35	Frans Nzoia	Kitate - Conventional	92	75,000	9,000	Municipal Council	Conventional	1957 (1978)	1.830	Municipal Council	1.500	37.500	NFM	NFM	54.945	1.47	No Facility	550	NFM	105	9	Mechanical equipment on site does not function and most of the units are blocked. The works receive negligible wastewater and are poorly maintained. No future planned rehabilitation or expansion.
36	Trans Nzoia	Kitale - Ponds				Council	WSP	1983	2.930				NFM				Drying	550	NFM	100		- The works are well maintained but receive high strength industrial waste. - No future planned rehabilitation or expansion.
37	Uasin Gishu	Eldoret - Conventional				Municipal	Conventional	1959	1.575	Municipal			6,000	NFM	21.000	0.21	Digester & Drying	300		115	20	- The works are overloaded. Overflow is diverted to the waste stabilization ponds site. - The works are well maintained. However, some mechanical parts require replacing. - Future planned construction of new treatment works.
38	Uasin Gishu	Eldoret - Ponds	147	220,000	25,000	Council	WSP	1978	4,800	Council	5.886	70.400	NFM	NIM	21,900	0.31	No Facility	370		85	30	The works are overloaded and receive a lot of industrial waste. There is permanent overflow to the facultative pond. Anaerobic ponds require desludging. Future planned construction of new treatment works.

Note: Legend WSP

WSP - Waste stabilization ponds

NWCPC

- National Water Conservation & Pipeline Corporation

NCC NFM - Nairobi City Council
- No flow measurement

NA

- Not available

Table - 2.2.2 Comparison between Sewage Quantities and Water Supplied

T						Sewerage	Developerac	nt 1998		Wate		onditions 199	3
İ				į			Prese	nt Sewage	Flow		_	of Water plied	l
1						ŀ	Treatment			Population	Ť]
ı				13.4	Population connected to	Service coverage	Works		Liters :	connected ;		Liters per	Service coverage
	Province	District	Urban Centre	Urban Population	SCACE 10	ratio	Capacity m3/day	m3/day	•	supply	m.Vday	Capita/day	ratio
1	Sairobi N		Nairobi	2,240,000	1,000,000	45%	112,000	217,000	217	1,784,577	364,000	163	80%
2	Coast 3	Iombasa	Mombasa	5\$0,000	59,600	12%	49,600	4,590	66	370,764	18,200	49	64%
3	Rift Valley	akuru	Nakuru	231,687	123,500	53%	16,200	8,181	66	304,561	41,120	135	13157
4	Nyanza I	Cisumu	Kisuma	232,327	130,000	56%	17,800	15,000	115	280,845	14,565	52	121%
5	Rift Valley 1	lasin Gishu	Eldoret	230,000	70,400	32%	6,375	2	NFM	90,000	28,850	321	410
6	Central 1	Gambu	Thika	155,770	87,230	\$6%	6,100	10,000	315	120,000	24,000	200	77%
7 (Central ?	Syeri	Nycci	142,000	37,100	26%	8,100	2,500	67	40,000	5,940	149	28%
3	Eastern !	vieru	Meru	124,412	800	1%	2,500	500	625	16,330	4,730	290	13%
9	Western 1	Kakamega	Kakamega	110,000	51,700	47%	5,500	4,800	93	27,826	7,000	252	25%
10	Rift Valley	Kericho	Kericho	80,000	41,600	52%	1,500	2,000	48	58,723	5,325	91	73%
11	Eastern !	Machakos	Machakos	80,000	8,000	10%	2,000	3,000	375	80,000	2,660	33	100%
12	Rift Valley	Frans Nzoia	Kitale	75,000	37,500	50%	2,930		NEM	60,000	9,000	150	80%
13	Nyanza I	Homa Bay	Homa Bay	75,000	15,000	20%	750	1,045	70	43,000	1,231	29	57%
14	Western	Вирдопа	8ungoma	70,000	12,600	18%	45		NFM	36,000	2,630	73	51%
15	Nyanza	Kisii	Kisii	65,000	13,000	20%	NA		NFM	45,000	3,520	78	69%
16	Rift Valley	Nakuru	Naivasha	60,000	30,000	50%	2,035	700	2.	46,000	762	17	77%
17	Rift Valley	Laikipia	Nyahururu	60,000	18,000	30%	2,500	3,436	19	50,000	3,000	60	83%
18	Western	Bungoma	Webuye	60,000	12,000	20%	NA	1,500	12:	40,000	1,700	43	67%
19	Rift Valley	Laikipia	Nanyuki	55,000	24,750	45%	2,270	8,000	32:	3 43,100	2,720	63	78%
20	Eastern	Machakos	Athi River	50,000	12,500	25%	12,960	1,000	8	12,500	2,000	150	25%
21	Coast	Kiliú	Malin∕ti	48,327	, (0%) (141,293	15,985	113	293%
22	Western	Busia	Busia	48,000	9,600	20%	600	600	6	3 17,267	2,072	120	36%
23	Eastern	Embu	Embu	45,000	9,000	20%	68.	2 835	9	3 35,000	4,053	116	78%
24	North Eastern	Garissa	Garissa	40,00		09	i (0 0)	0 34,758	1,440	41	87%
25	Central	Muranga	Maragua	39,41	1 (02	+	0 (o)	6,200	15	:	16%
26	Central	Kjambu	Ruiro	32,30	2	09	ž (0		6,000	781	130	199
27	Central	Muranga	Muranga	30,00	0 10,500	35%	1,56	4 87	8	3 24,000	2,000	83	80%
28	Eastern	Isiolo	tsiolo	26,96	8 1,70	0 69	2,00	0 60	0 35	3 36,000	4,356	121	133%
29	North Eastern	Wajir	Wajir	26,23	9	0 09	ř	o.	0	0 1,500	20	1.	69
30	Rifi Valley	Kajiado	Orgata	25,08	0	0 09	č	o	o	0 7,200	978	134	5 297
31	North Eastern	Mandera	Longai Mandera	22,85	5	0 09	÷	o.	0	0 8,166	500	6	357
32	Coast	KSEG	Kiifi	20,55	5	0 09	ř	0,	0	6 30,17	4,300	14.	3 1479
33	Rift Valley	Nandi	Kapsabet	20,00	0 4.00	0 209	7),00	o l	NEM	7,00	1,100) 15	7 359
} —	Rift Valley	Narok	+ Buraton Narok	19,85		0 01	-	0	ol	0 12,00	3.31:	5 17	609
1-	Coast	Taita Taveta		15,77		 -	+		0	c 20,30	0 2,70	0 13	3 1299
	Rift Valley	Kajiado	Ngong	15,00		-}			NFM	6.00		9 21	9 40
\vdash	Rift Valley	Baringo	Kabarnet	11,80		0 09	- 	- 	o	0 127,50	- i		6 10804
 	Central	Kiandu	Kiambu	7.50	- 	-i	- i		- · 	33 8,05	┪…—…	0 6	1 107
-	Central	Nyeri	Karatina	7,25	- 	-				10 14.53	- } -	- [· ·	199
-	Central	Kjambu	Limuru	3,00				50	1	1.95	+		5 65

Table - 2.2.3 Effluent Standard

"A" - Accepta	nce into Public Sewers
B.O.D (5 days at 20°C)	Not to exceed 450 mg/1
pII	To be in the range 6 to 9.
Temperature	Not to exceed 35°C
Suspended Solid	Not to exceed 300 mg/1
4 hours oxygen absorption for permanganate	N./80 at 27°C, 100 mg/1
Greases	The wastes should not (contain more than 100 milligrams per litter of greases that dissolve in Ethyl-ether.
Oil, Petrol, Kerosene or other combustible materials	These must be intercepted.
TOXICITY	The wastes should not include any toxic materials.

Note: 1) In addition the waste should not contain materials that might damage pipes or treatment works.

- 2) The flow must not exceed the capacity of the sewerage system and a meter is to be provided with a log book to record flows which can be inspected by the City Engineer or Medical Officer of Health.
- 2) Quarterly tests will be carried out, at the expense of the industry concerned, in accordance with the "Standard Methods for the Examination of water, sewage and Industrial wastes", issued by the American Public Health Association.

"B" - Direct Dis	scharge to Natural Water Course
C.O.D	Not to exceed 10 mg/1
Total Nitrogen exclusive NO	1 mg/1
NH ₃	1.5 mg/1
B.O.D (5 days at 20°C)	Not to exceed 20 mg/1
рН	In the range 6 to 9
Temperature	Not to exceed 25℃ .
Suspended solids	Not to exceed 30 mg/1
Total Dissolved Solids	Not to exceed 1,500 mg/1
4 hours oxygen absorption for permanganate	N./80 at 27°C not to exceed 15 m/g1.
Nitrate as NO ₃	Not to exceed 45 mg/1

Note: All other standards mention in "A" supra viz. greases oil toxic materials also apply.

Table • 2.2.4 (1/4) Results of Wastewater Quality Testing

		Influent	Eiflueni	%	R	iver	Ra	tio
No.	Urban Name/Plant	(mg·l)	(mg/l)	Removat	Upstream	Downstream	U.Stream /D.Stream	Effluent /D. Strean
1	Bungoma	700	400	42.86			 L	
2	Webuye	80	67	16.25	20	20	1.00	3.35
3	Busia	60	20	66.67	20	20	1.00	1.00
4	Embu	900	410	54.44	810	825	0.98	0.50
5	Kakamega Kambi Somali	200			-			
5	Kakamega Shirere Ponds	200	20	90.00	60	90	0.67	0.22
7	Kericho	250	60	76.00	-	_	_	_
8	Kiambu	905	280	69.06	580	590	0.98	0.47
9	Limuru	1,170	670	42.74	_	1,050	_	0.64
10	Thika	1,900	1,170	38.42	1,000	1,050	0.95	1.11
11	Kisii (Old Ponds)	40		_	100	275	0.36	
12	Nanyuki	280	75	73.21	530	440	1.20	0.17
13	Nyahururu	1,515	920	39.27	1,500	_		_
14	Machakos (Mavuti)	1,265	685	45.85	1,201	1,235	0.97	0.55
15	Mavoko (Athi River)						_	T
16	Mbiri (Muranga)	800	69	92.50	6	10	0.60	6.00
17	Nairobi (Dandora)	1,405	570	59.43	1,630	1,825	0.89	0.31
18	Nairobi (Kariobangi)	1,800	1,160	35.56	1,225	1,325	0.92	0.88
19	Naivasha	630	180	71.43	_	_	_	
20	Kapsabet	140	80	42.86		30	_	2.67
21	Nyeri (Kiganjo)	1,000	200	80.00	1,160	1,325	0.83	0.15
22	Nyeri (ADB)	1,050	760	27.62	1,153	1,124	1.03	0.68
23	Homa Bay	400	40	90.00		-		-
24	Voi	_		-	 	_	-	
25	Kitale Conventional	700	40	94.29	25	167	0.15	0.24
26	Kitale Ponds	11,700	700			_	_	
27	Eldoret Conventional	140	20	85.71	10	50	0.20	0.40
28	Eldoret Ponds	800	650	18.75	240	250	0.96	2.60
29	Isiolo (1)	653	170	73.97				
30	Meru (1)	621	197	68.28		-		_
31	Nakuru Njoro (2)	566	93	83.57	T -	-		
32	Nakuru Town (2)	315	56	82.22				
33	Kisumu (Conventional)	864	579	32.99		-	- 	
34	Kisumu Ponds - Nyalenda (3)	893	197	77.94		_ 	-	
	Average	718	351	61.10				
_	Maximum	1.900	1.170	94.29	1.500	1.825		
 -	Minimum	40	20	16.25	6	10		

Source: (1) JICA Report 1997." The Study on the Water Supply for Seven Towns in Kenya."
(2) JICA Report 1994." Feasibility Study on the Nakuru Sewege Works Rehabilitation and Expansion Project."
(3) JICA Report 1997." On-going Study on Kisumu Water Supply and Sewerage System."

Table - 2.2.4 (2/4) Results of Wastewater Quality Testing

BOD

		Influent	Efflyent	%	R	iver	Ra	itio	Influent
No.	Urban Name/Plant	(mg/1)	(mg.1)	Removal	Upstream	Downstream	U.Stream /D.Stream	Effluent /D. Stream	Ratio BOD,COD
3	Bungonia	550	12.5	97.73	-	-	-	-	-
2	Webuye	200	60	70.00	10.5	7.5	1.40	8.00	0.29
3	Busia	200	85	57.50	12.5	8.5	1.47	10.00	0.71
4	Embu	700	140	80.00	55	44	1.25	3.18	0.64
5	Kakamega Kambi Somati	300	-	-	-	-	-	-	0.30
6	Kakamega Shirere Ponds	500	50	90.00	7.5	5	1.50	10.00	-
7	Kericho	450	25	94.44	-	-	-	-	0.23
8	Kiambu	225	90	60.00	16	10	1.60	9.00	0.32
9	Limunı	90	63	24.44	-	13	-	5.23	-
10	Thika	570	40	92.98	20	20	1.00	2.00	0.71
11	Kisii (Old Ponds)	500	-	-	6.5	4	1.63	-	0.25
32	Nanyuki	294	68	76.87	30	30	1.00	2.27	0.45
13	Nyahururu	300	50	83.33	30	-	-	-	0.38
14	Machakos (Mavuti)	670	130	80.60	40	50	0.80	2.60	0.56
15	Mavoko (Athi River)	-	-	-	-		-	_	-
16	Mbiri (Muranga)	568	50	91.20	16	16	1.00	3.13	0.36
17	Nairobi (Dandora)	440	120	72.73	46	43	1.07	2.79	0.55
18	Nairobi (Kariobangi)	448	129	71.21	54	112	0.48	1.15	0.56
19	Naivasha	664	60	90.96		-	-	-	0.33
20	Kapsabei	480	20	95.83	_	4	-	5.00	0.60
2)	Nyeri (Kiganjo)	560	185	66.96	20	10	2.00	18.50	0.51
22	Nyeri (ADB)	372	87	76.61	21	23	0.91	3.78	0.41
23	Homa Bay	250	40	84.00	-	-	_	-	0.37
24	Voi	-	-		-	-	-	-	-
25	Kitale Conventional	550	100	81.82	12.5	9.5	1.32	10.53	0.16
26	Kitale Ponds	550	105	80.91	-	-	1	-	0.01
27	Eldoret Conventional	300	115	61.67	12.5	5	2.50	23.00	0.38
28	Eldoret Ponds	370	85	77.03	10.5	4	2.63	92.50	0.55
29	Isiolo (1)	605	251	58.51	-	-	-	-	-
30	Meru (1)	502	160	68.13	-		-	-	-
31	Nakuru Njoro (2)	665	236	64.51	-	-	-	-	0.82
32	Nakuru Town (2)	875	104	88.11	_	-	<u>-</u>	-	0.82
33	Kisumu (Conventional)	868	216	75.12	-	-	-	-	0.34
34	Kisumu Ponds - Nyalenda (3)	374	79	78.88	-		 -	-	0.38
	Average	489.64	98.68	76.40		1	<u>. </u>	 <u>-</u> .	
	Maximum	875	460	97.00	54	112			
	Minimum	200	12.5	24.44	6.5	1 1			

Source:

⁽I) JICA Report 1997. The Study on the Water Supply for Seven Towns in Kenya."

⁽²⁾ JICA Report 1994 * Feasibility Study on the Nakuru Sewege Works Rehabilitation and Expansion Project*

^{(3)/}ICA Report 1997 * On-going Study on Kisuma Water Supply and Sewerage System*

Table - 2.2.4 (3/4) Results of Wastewater Quality Testing

		Influent	Effluent		R	iver	Ra	tio
No.	Urban Name/Plant	(mg/l)	(mg/l)	% Removal	Upstream	Downstream	U.Stream /D.Stream	Effluent /D.Stream
1	Bungoma	-	•		-		-	
2	Webuye	700	100	85.71	57	70	0.81	1,43
3	Busia	280	105	62.50	40	85	0.47	1.24
4	Embu	1,100	240	78.18	100	100	1.00	2.40
5	Kakamega Kambi Somali	1,000	-	-	-	-	-	
	Kakamega Shirere Ponds		100	-	45	55	0.83	1.82
	Kericho	1,950	120	93.85		-		
	Kiambu	700	300	57.14	50	50	3.00	6.00
	Limuru	-		-	-			
	Thuka	800	120	85.00	80	80	1.00	1.50
_	Kisii (Old Ponds)	2,000	_		40	45	0.89	-
	Nanyuki	650	140	78.46	60	60	1.00	2.33
	Nyahururu	800	120	85.00	60			-
	Machakos (Mavuti)	1.200	300	75.00	70	100	0.70	3.00
	Mavoko (Athi River)	-	-	 	i -	-	-	
	Mbiri (Muranga)	1,600	200	87.50	20	20	1.00	10.00
*	Nairobi (Dandora)	800	320	60.00	160	160	1.00	2.00
	Nairobi (Kariobangi)	800	180	77.50	120	280	0.43	0.64
	Naivasha	2,000	100	95.00	-	-	-	-
20	Kapsabet	800	220	72.50	-	-	-	-
	Nyeri (Kiganjo)	1,100	350	68.18	40	40	1.00	8.75
	Nyeri (ADB)	900	450	50.00	40	40	1.00	11.25
	Horna Bay	675	168	75.11	 	-	-	-
24	Voi			-	-	-	_	-
25	Kitale Conventional	3,520	120	96.59	90	85	1.06	1.41
26	 	63,500	180	99.72	-	_		
27	ļ	800	80	90.00	35	41	0.85	1.95
	Eldoret Ponds	670	296	55.82	40	40	1.00	7.40
\vdash	Isiolo (1)	-			-	-	<u> </u>	-
	Meru (1)					-	-	-
-	Nakuru Njoro (2)	810	290	64.20	-			-
_	Nakuru Town (2)	1,070	172	83.93			-	-
<u> </u>	Kisumu (Conventional)	2,550	633	75.18			- 	-
L	Kisumu Ponds - Nyalenda (3)	978	354	63.80		-		
	Average	1,163.58	223.12	75.67	- 	1	<u> </u>	
	Maximum	3520	633	96.50	160	280		
<u> </u>	Minimum	280	80	55.80	20	20		

Source:

⁽¹⁾ JICA Report 1997 " The Study on the Water Supply for Seven Towns in Kenya"

⁽²⁾ JICA Report 1994 "Feasibility Study on the Nakuru Sewege Works Rehabilitation and Expansion Project" (3) HCA Report 1997 "On-going Study on Kisumu Water Supply and Sewerage System"

Table - 2.2.4 (4/4) Results of Wastewater Quality Testing

DO,T-N

		Ema	ent	D	0
٧o.	Urban Name/Plant	DO	T-N	River D.Stream	River U.Stream
_		(mg/l)	(mg/l)	(mg/1)	(mg/l)
1	Bungoma				-
2	Webuye	6	14.8	6.00	5.9
3	Busia	8.5	14.4	6.00	5
4	Embu	4.5	18.5	3.90	4.4
5	Kakamega Kambi Somali	-	-	-	-
6	Kakamega Shirere Ponds	10.5	13.8	6.85	6
7	Kericho	5.5	34.8	-	_
8	Kiambu	3.26	25.5	3.90	4.15
9	Limuru	1.8	15.5	2.20	_
10	Thika	5.3	13	7.10	6.2
11	Kisii (Old Poods)	-		7	7
12	Nanyuki	4.6	7.75	4.00	4
13	Nyahururu	8	5.38	3.20	4.3
14	Machakos (Mavuti)	4.6	12.25	4.70	4.6
15	Mavoko (Athi River)	-	_	-	-
16	Mbiri (Muranga)	4	6.88	5.00	5
17	Nairobi (Dandora)	4.5	5.25	5.00	5
18	Nairobi (Kariobangi)	1.5	6.63	4.60	4
19	Naivasha	2.18	20.5		-
20	Kapsabet	8.5	5.2	6.60	-
21	Nyeri (Kiganjo)	4.1	8	5.40	5.3
22	Nyeri (ADB)	4.2	10.25	4.60	4.2
23	Homa Bay	. 5	36.4	-	-
24	Voi	-	_	-	-
25	Kitale Conventional	3	10.4	4.00	5.5
26	Kitale Ponds	2.5	17	-	-
27	Eldoret Conventional	3	8	8.00	8
28	Eldoret Ponds	8.5	28	8.00	6
29	Isiolo (1)	-	-	-	-
	Meru (1)	-	-	-	-
	Nakuru Njoro (2)	_	_	_	-
	Nakuru Town (2)	_	_		-
	Kisumu (Conventional)	0.33	197		
	Kisumu Ponds - Nyalenda (3)	7.06	24		-
	Average	4.84	22.37	5.30	5.25
	Maximum	10.5	197	8.00	8
	Minimum	0.33	5.2	2.20	4

Source:

⁽¹⁾ JICA Report 1997." The Study on the Water Supply for Seven Towns in Kenya"

⁽²⁾ JICA Report 1994 "Feasibility Study on the Nakuru Sewege Works Rehabilitation and Expansion Project"

⁽³⁾JICA Report 1997 " On-going Study on Kisumu Water Supply and Sewerage System"

Table - 2.2.5 Typical Composition of Untreated Domestic Wastewater

	***		Concentration	
Contaminations	Unit	Weak	Medium	Strong
Solids total (TS)	mg/ℓ	350	720	1,200
Dissolved, total (TDS)	mg/ℓ	250	500	850
Fixed	mg/ℓ	145	300	525
Volatile	mg/ℓ	105	200	325
Suspended solids (SS)	mg/ℓ	100	220	350
Fixed	mg/ℓ	20	55	75
Volatile	mg/ℓ	. 80	165	275
Settleable solids	mg/ℓ	5	10	20
Biochemical oxygen demand, mg/l; 5-day, 20°C (BOD ₅ , 20°C)	mg/ℓ	110	220	400
Total organic carbib (TOC)	mg/ℓ	80	160	290
Chemical oxygen demand (COD)	mg/ℓ	250	500	1,000
Nitrogen (total as N)	mg/ℓ	20	40	85
Organic	mg/ℓ	8	15	35
Free ammonia	mg/ℓ	12	25	50
Nitrites	mg/ℓ	0	0	0
Phosphorus (total as P)	mg/ℓ	4	8	15
Organic	mg/ℓ	1	3	5
Inorganic	mg/ℓ	3	5	10
 Chlorides ^a	mg/ℓ	30	50	100
Sulfate ^a	mg/ℓ	20	30	50
 Alkalinity (as CaCO ₃)	mg/ℓ	50	100	200
Grease	mg/ℓ	50	100	150
Total coliform ^b	no/100 mℓ	10 ⁶ - 10 ⁷	10 ⁷ - 10 ⁸	10 ⁷ -10 ⁹

Note: $1.8 \, (^{\circ}C) + 32 = {^{\circ}F}$

a: Values should be increased by amount present in domestic water supply.

b: See Table 3-18 for typical values for other micro organisms.

Table 3.1.1 Summary of Actions Required to Overcome Constraints

				Assessment of technical
Problem/constraint	Cause	Strategy	Recommended Action	assistance needed
I Inadequate investment funding	Low development priority	increase internal funding to	GOK to review development	not assessed
	Dependancy on donors	sewerage/sanitation sector	plan and shift budget	
2 Insufficient information for planning	No urban land use data	- implement data collection and Information Management Systems	Feasibility study for EMS at national level	not assessed
	No M.P for urban development	establish MP for urban centers larger than 50,000 revice MP for urban centers every 10 years	individual urban master planning and feasibility studies in order of priority	Lot assessed
3 Inadequate on-site sanitation	Incorrect construction methods	Regulate on-site sanitation,	Feasibility study to develop	not assessed
	Poor choice of technology	construction & maintenance.	standards, institutional	
	Unreliable collection of septage	Provide collection equipment	arrangements and	
	Lack of septage disposal facilities	and disposal facilities	implementation plan for	
4 Insufficient operating revenue	L'naccounted for water	Leakage detection/correction & metering program	Technical assistance in Las to implement programs	5 PY over 3 years
	Inadequate billing & collection	Improve management process and systems		
	Sewer surcharge collected by water	Combine water and sewerage	Supported by GTZ until 1999	3 PY over 3 years
	undertaker but not remitted to	operations into one operating.		
	municipality	entity. Continue with commercialization in 12		
	Revenue for sewer operations used to fund other municipal expenses	nunicipalities.		
	sewer and water tariffs do not	Revise tariffs to reflect true	Tariff study	4 person weeks
	represent operating costs	operating costs		
 Facilities difficult to operate and maintain 	No technical standards	Establish Planning & Design standards Establish a design review	Technical assistance in Las to implement programs	not assessed
	No operator input during design	process including O&M expertise		
6 Water consumption too low to support	Deteriorating water supply systems	Rehabilitate and restore	implement infrastructure	not assessed
conventional sewerage	1	system capacity	rehabilitation projects	
		Leakage detection/correction & metering program	recommended by Aftercare study.	
7 Lack of qualified personnel	Inodequate staffing levels Qualifications required to fell a position are set too low	Organisational review	Technical assistance in LAs to implement programs	20 PY over 5 years
	Poor training and development of employees	National training program		
8 loadequate tools, facilities & equipment	llisufficient operating revenue	Prepare a procurement plan for each LA Identify funds & obtain budget		
9 Inadequate maintenance management	Crisis management approach to	implement preventive		
10 Treatment process upsets from industrial discharges	maintenance Legislation is not enforced	maintenance Feasibility study to devise a strategy for implementing industrial wastewater pre-		
	lack of inspectors, no qualified personnel	treatment programs within each LA. Identify the required		
	lack of equipment to sample industrial effluents			<u> </u>
Poor operation of collection and treatment works	Failure of mechanical/electrical systems	Rehabilitate	Operational review of collection & treatment facilities.	not assessed
	to process monitoring or control	Develop written standard operating procedures for pumping stations and all treatment process operations.		
	organic/hydraulic everload	Rehabilitate & expand treatment capacity or provide new facilities	Implement infrastructure development projects recommended by Aftercare study.	not assessed

Table - 3.2.1 (1/2) Urban Centres with Planned Projects

Page Straight	_	Design to the Contract of the						
	_	L COME TO CO.			,			ACC of the Control of the Control
	ica Urban Centre		Treatment No. 1ypa	Population served VS	(%)	Condition	Ch-Coing	
Nairebi Nairebi	Nairobi	1,857,000	2 TF, SF	415,200		4]. Polluting NairobUADi Kiver, 2. Conventional the inoperative 1. Deshudging of Dandors ponds. 2. New Anaerobic ponds	1. Desludging of Dandors ponds. 2. New Anaerchic ponds	
7. Court	Montain	\$73,000	3 5.4	009'69	12.1	12.1 1. All t/w are inoperative	New treatment works are under construction	Water supply and sewerage
		231 687	2.SP. KF.OF	<u> </u>	53.3 1	2. Improved effluent standards	numakement project GTL	
1		751 157	2,TF S.F	ļ.	56.211	ige secunulation	1. Development study JICA, 2. numagement project G17.	Expansion of water & sewerage systems
	7	1 80 PJ	ISP	08/9	451		new facility proposed in 85, delayed for lack of funding	naster plan completed
Olympian particularies	Т.	72.87	2 TKSP	16,907	11.4	siam iver, 2. Affected by industrial waste	1. New Vw proposed by FRG/GTZ	
		CIE IC.	2	8	190	0.6 1. Studge secungulation, Zovertoad		Municipal seweragn, relocate UW to larger sale impura
Enslern Michigan	Winds	23.50%	2174.84	2,900	6.4	6.4 1. Insufficient sewage inflow to two	Connercialization pilot project GTZ/FDR	extend 4 sower lines & purchase vacuum thick for septage
		100	0.30	>17 >	200	7.0.1 Studes accuratished		De-shudging of ponds
1	•	BC'//	10.4	ON V		e a 1 family form	1. Management project GTZ	
10 Kit Valley Trans Nzoin	- 1	23,936	-[64] 2	333	٥	World World	1. Marries also recombly completed	
H Central Kinmbu	Thika	73,718	185	11,718	15.9	15,9 1, Low indow, 2, Shudge accumulation	Service of the servic	
12 Kift Valley Kencho	Keńcho	56,108	1. TT	4,600	8,2	8.2 1. Rehabilitated in 1997 and expanded	Convergalisation pilot project C12	
13 Kift Valley Nakura	Nakasha	51,442	104.89	3300	4.5	4.5 1, Motor starters stolen. 2. Aerators non-operational	And the second s	
		20,00	1 SP	00x	1,0,1	1.6 1. Sludge accumulation, 2. Overtoaded	1. New system commissioned in 98	
1	7-	41.935	1.5P	6,700	1003	16,0 1. Sludge accumulation		Extend severage to include hospital & schools
	1	39,679	35	8	2	2.3 1, not operational, low inflow	L. construction of new ponds delayed	
:		00 m	481	5,052	14.7	14.7 1. Sludge accanulation, overload		Sewerage detailed design is complete
	Mannin	15.63	dS	0097	80%	R.O. 1. Overlanded	complete house connections	Construct new servage the
		11.550		CO+'01	33.0	33,0 1. Insufficient sewage indow	numagement project GTZ	
19 Kite vaney	1 2	30.985		2,912	9.6	9.4.1. Studge pumps inoperative, 2. DANIDA house connection 91		Repair sewage treatment plant
		26.968		1,700	3	3.3.1, Sludge accuraviation, 2.Low inflow		house connection program
1		30, 176	-	9550	26.2	26.2 11. New Vw corpripasioned 1997		
	1	Str. CI	-	3,239	16.7	16,7 11, Low inflow, 2. Sludge accumulation	1. management project GTZ	house connection program
	1	18,364	LIST	1,310		7.2 L. New facility		land acquired for future expansion
		15.772	1 SP	82	4.0	4.4.1. Serves housing development, 95 connections only		
le de	Kapsabet +	38.7	_	4,000	.,	27.4 1. New facility		Complete phit piping & punty installation
Valley Kaller		12,730	1 SF	750		5.9 1. Shudge accumulation. 2. insufficient loading		
İ		8,239	100	500		2.4 1. Overlanded		Kenso to double destinent capacity
		7,299	ĺ	\$,100		70 1. Overloaded, 2.111E(Overs polluting Ragati Kiver		sewer capacity in provenients
	-	856'T	_	89		30.6 2. Complete mechanical fallore,	1000000	

Urban centers without sewerage that will have a population exceeding 100,000 by the year 2010 are highlighted, base population obtained from 1989 census, 1995 population estimated by JICA study team Type of treatmont: EA = extended acration, OD=oxidation ditch, OL=oxidation lagoon, TF=trickling filter, SP=Stabilisation ponds. RF=rock filter, GP = grass plot, ST=septic tank, PL=pit late Development status is based on a review of the Public Investment Plan for 1997 - 2000, and the District Development Plans both issued by the Ministry of Planning and National Development Information on existing sewage t/w and served population obtained from 1995 JICA report prepared by Dr. Morita

III - T - 16

Table - 3.2.1 (2/2) Urban Centres with Planned Projects

						3	Kisting Sewerage Systems		
Principle	District	Urban Centre	Sign Sign Sign Sign Sign Sign Sign Sign	Ireatment	Population served 95	Served 95	Condition	On-Going	Identied in PIP & DDP
				No.					
MConst	Now	Malindi	4K,237	sт	c	٥	1. Septic tanks unsatisfactory due to population density		sewerage planning complete, funding not identified
32 North Eastern, Garlesa	Garlesa	Ganten	000'0	1 SP	0	0	1. Poor performace, 2.Effluent into Tana river		
331Central	Мисенуя	Магаран	39,411	ST, PL	O	0	1. On site systems are unsatisfactory		
McCentral	Kinishi	Kinci	32,302	1.ST.SP	0	0	1. On site systems are unsatistictory		
35 North Favieri Wajir	Wajer	Wajir	26,2,10.	ST, PL	0	O	1. High water table, on site antitation is unruitable		undertake water supply & converage works
Mikin Valley	Kajiado	Ongote Longai	25,0%0	ST, PL	0	0	1. On site ayarensa are unsanaluctory		
37 North fastern	m Mundera	Mondera	22,856	ST, PI,	Ó	0	1. High water table, on site sanitation is unsuitable		undertake water supply & sewerage works
33 Coast	200	Kind	20,555	ST, PL	0	0	1. Septic tanks unsadefactory 2.Studge disposal in Gede forest		
39 Kift Valley	Narok	Narok	19,859.	ST, PL	0	0	1. On-site systems are unsabslactory		
40 Eastern	Marsabit	Marsabit	16,0%	ST, PL	0	ō	1. Kigh water table, on site sanitation is unsuitable		Proposed water supply & sewerage study
41 Central	Kirinyaya	Kerugoya/Kums	13,784		0	0			water supply & sewerage to esimmize water pollution, GOK
42 Kift Valley		Kabamet	702	ST.PL	Ö	0	1. On site sanitation is unsatisfactory		Town sewerage, planning & design complete
43 Coast	l.murl.	1 Januar	764,1	ST, Pt.	0	0	1. Nepho tanka & pit latenes unastisfactory		new sewerage system to serve the whole town
44 Kift Valley	Trum Mara		7,665		0	0			Construct sewage pond and piping network
45 Nymazu	Namina		7.130	SER	- 0	0	1. On sie unsaisfactory. 2. Planned district HO		Construction of sewerage system
46 Control	Nyen	Othaya	67,5		c	•			Rewernge study proposed
17 Eastern	Tharaka Nithi Chiika	në Chutka	7,007	j	ō	٥			undertake water supply & sewerage works
4N Eastern	Mwing	Mvvingi	69 1 °S		- 0	0			New Sewerage to reduce freq, outbreaks of waterborne disease
49 Westen	Vibig	Vihiga +	5.274		0	Ö			water supply & sewerage study
50 Kin Valley	Naringo	Marignt	4,707		o	٥			Town sewengs planning
S1 Western	Valigo	Lumba	9.57	<u> </u>	-c	0			Construct a sewage the to allow hygenic disposal in numericality
S. Nynnya	Migori	Nyabikaye	4,184		0	0			Construction of sewerage network & Vw
53 Central	Nyandana	OI Kaleu	3,840		0	0			Construction of new sewerage system
S. Nyanza	Nyamiria	Keroka	Oro.;	ST, Pt.	0	0	33	Stabilization ponds designed	Construction of sewerage systems
55 Nyanza	Migori	Kebancha	8.5.5		0	٥	The state of the s		Construction of sewerage network & t/w
56 Enstern	Makueni	Wate	1,731		0	٥			Proposed water supply & newcrage study
57 Kin Valley	Temet	Bonset	925		0	ő			underlake water supply & sewerage works
58 Western	ในเกฎกาหล	Kapsakweny	795		0	Ó			Construct a sewerage system
S9 Central	Kionyasa	Ki kusus	408		P	0			water supply & sewerage to minimize water pollubon, GOK
			1			Ī			

Type of treatment: EA = extended aeration, OD=oxidation ditch, OL=oxidation lagoon, TF=trickling filter, SP=Stabilisation ponds, RF=rock filter, GP = grass plot, ST=septic tank, PL=pit latrine Information on existing sewage t/w and served population obtained from 1995 JICA report prepared by Dr. Morita

Development status is based on a review of the Public Investment Plan for 1997 - 2000, and the District Development Plans both issued by the Ministry of Planning and National Development

Table - 3.2.2 (1/2) Urban Centre Selected for Sewerage Development

			_				time to companie to the barrier			100
Province	င် လ	District	Code	Urban Cent43	Urban Population (4)	Population connected to water supply (3)	Population connected to sewer (1)	Population with water but no sewerage	ith water rerage	% of urban population connected to
. Naigobi	110	Nairobi	Ü-1	Nairobi	2,240,000	1,784,577	1,000,000	784,577	44%	45%
Tagnicol C	016	-	45	Kiambu	7,500	8,058	2.250	5.808	72%	30%
Contrai	210			Limuru	3,000	1,958	2,100	0	%0	70%
Central	210		Ì	Ruin	32,302	000'9	0	000'9	100%	%0
4 Central	012			Thika	155,770	120.000	87,230	32,770	27%	\$95
Central	2 6			Maraeua	39,411	6,200	0	6,200	100%	%O
o Central	05.5		10-21	Muranga	30,000	24,000	10,500	13,500	26%	35%
Central of October	240		10-28	Nyahururu	000'09	20,000	18,000	32,000	64%	30%
O Mill wanty	0\$2		U-33	Karatina	7,299	14,533	5,109	9.424	9599	70%
10 Control	250	ī	U-36	Nyeri	142,000	40,000	37,100	2,900	7%	26%
11 00001	310	1	U-38	Kilifi	20,555	30,170	0	30,170	100%	
11 000	015	1	0.40	Malindi	48,227(2)	141,293	0	141,293	100%	200
15 Coast		_i	11.50	Mombasa	000'085	370,764	009.69	301,164	81%	12%
13 Coast	0.00	1	25.71	Voi	15,772@	20,300	700	19,600	97%	4%
14 Coast	VCC.				45 000	35,000	000'6	26,000	7450	20%
15 Eastern	410	Embu	00-O	Emon	3000			34 300	95%	6%
16 Eastern	420	Siolo	D-63	Isiolo	00,07		•		%0	25%
17 Eastern	440	Masaku	05-0	Athi River	20,000			>		
18 Eastern	440) Masaku	U-71	Machakos	154,006	80,000	8,000	72,000	806	
19 Eastern	460	Meru	0-86	Meru	124,412 ⁽³⁾	16,330	800	15,530	95%	
O North Fastern	\$10	Garissa	U-104	Garissa	40,000(2)	34,758	0	34,758	100%	%0

estimated by JICA study team.

Note (3) - from various sources gathered by JICA study team.

Table - 3.2.2 (2/2) Urban Centre Selected for Sewerage Development

				_			Water	Water & Sanitation Development 1998	Jonement 1998		
							iam		a mariada.		
	Province	8 0	District	ပိုင်	Urban Centre	Urban	Population	Population	Population with water	with water	% of urban population
						Population	connected to water supply	connected to sewer	but no sewerage	werage	connected to
22	21 North Eastern	520	Mandera	U-109	Mandera	22,856	8,160	0	8,160	100%	% 0
8	22 North Eastern	230	Wajir	U-116	Wajir	26,239	1.500	0	1,500	100%	0%0
23	23 Nyanza	610	Kisii	U-117	Kisii	000'59	45,000	13,000	32,000	71%	20%
2	24 Nyanza	620	Kisumu	U-120	Kisumu	231,327 ⁽²⁾	280,845	130,000	150,845	24%	26%
25/2	25 Nyanza	640	Homa Bay	U-129	Homa Bay	000'54	43,000	15,000	28,000	959	20%
26 F	26 Rift Valley	710	Kajiado	U-144	Ngong	15,000	0000'9	750	5,250	88%	8%
27 F	27 Rift Valley	710	Kajiado	U-146	Ongata Longai	25,080	7,200	0	7,200	100%	%0
28	28 Rift Valley	720	Kipsigis	U-148	Kericho	000'08	58,723	41,600	17,123	29%	52%
29 7	29 Rift Valley	730	Laikipia	U-153	Nanyuki	000'55	43,100	24,750	18,350	43%	45%
30 4	30 Rift Valley	740	Nakuru	U-158	U-158 Naivasha	000*09	46,000	30,000	16,000	35%	20%
31 F	31 Rift Valley	740	Nakuru	U-159	Nakuru	231,687	304,561	123,500	181,061	29%	\$3%
32 F	32 Rift Valley	750	Narok	U-163	Narok	19,859	12,000	0	12,000	100%	0%
33 8	33 Rift Valley	760	Trans Nzoia	U-164	Kitale	000'54	000'09	37,500	22,500	38%	20%
34	34 Rift Valley	770	Uasin Gishu	U-166	Eldoret	220,000	000006	70,400	19,600	22%	32%
35 F	35 Rift Valley	810	Baringo	U-179	Kabarnet	11,804	127,500	0	127,500	100%	0%0
36 R	36 Rift Valley	830	Nandi	U-185	Kapsabet + Baraton	20,000	2,000	4,000	3,000	43%	20%
37 V	37 Western	910	Bungoma	U-199	Bungoma	000.07	36,000	12,600	23,400	65%	18%
38	38 Western	910	Bungoma	U-205	Webuye	000'09	40,000	12.000	28,000	70%	20%
39 V	39 Western	920	Busia	D-206	Busia	000'87	17,267	009.6	7,667	44%	20%
4 V	40 Western	930	Kakamega	U-210	Kakamega	77,3067	27,826	5,445	22,381	80%	7%

		1998	
		Urban population connected to sewers	octed to sewers
Population living in urban centers where sewerage is available	4,017,986	1,794,734	45%
Total population in all urban centers.	6,576,000	1,794,734	28%
Notes; (1) - Populations reported by municipal and town councils during JICA study team survey, (2) - Information not reported in survey or incorrect therefore population shown is for 1995 as	vey, (2) - Information not reported in :	survey or incorrect there	fore population shown is for 1995 as

Note (3) - from various sources gathered by JICA study team.

Table - 3.3.1 Descriptive Comparison of Sanitation Technologies

	Rural		Construction Operating	Operating	Fase of construction	Self-help	Water requirement	Required soil conditions	Complementary Programment Programment	Reuse Health		Institutional
Sanitation technology	application	Urban appareation		cost		potential		Stable nermeable soil:	1	77	B	-1
Ventilated improved pit (VIP) latrines and Reed Odorless Earth	Suitable	Suitable in LM-denkity areas	1	ı	Very casy except in wet or rocky ground	Ľ		ى				
Closets (ROEC'S)						17	Water near toilet	Water near toilet Stable permeable soil:	None	-	Very	1
Pour-flush (PF) toilets	Suitable	Suitable in L/M-density areas			Enky	:		groundwater at least 1 meter below surface b			poog	
Double vault composing (DVC)	Suitable	Suitable in LM-density areas	×	12	Very easy except in wet or rocky ground	н	Nonc	None (can be built above None ground)	None	¥	Good	_1
toilets						11	Weter pass toilet	Where ages soles Stable normcable soil:	Treatment facilities	Σ	Vcry	L.
Self-topping aquaprivy	Spitable	Suitable in L/M-density areas	Σ		Requires some skilled labor	ī.	W4101 11041 101101	groundwater at least 1 meter below surface b	for sludge		poos	
	_						Water nined to	Stable permeable soil:	Off-site treatment	Σ	Very	
Septic tank		Suitable in LM-density areas	=		Requires some skilled labor	.3	-	groundwater at least 1 meter below surface b	facilities for sludge		pood	
	institutions						101.01.01.01	W soiler Scalela narmonble soil	Treatment facilities	Σ	Very	H
Three-stage septic	Suitable	Suitable in L/M- density areas	Σ	 	Requires some skilled labor	I.	water near toner	groundwater at least I meter below surface b	for sludge		poos	
					Damies come skilled	H	Water near toilet	Water near toilet None (can be built above Treatment facilities	Treatment facilities	H	Very	Ē
Vault toilets and cartage	Not sustable Sustable	Suitable	Σ	=	Jabor	(for vault		ground)	for sludge		poor	
			 - -	:	Description of the A	,	Water piped to	None	Sewers and	Ξ	Very	=
Seaward P1 toilets, septic tanks.	Not switable Suitable	Suitable	=	Σ	engineer/builder	a 	house and toilet		treatment facilities		poos	
aquaprivies				1	Dell'ille	-	Water piped to	None	Sewers and	11	Very	Η
Sewerage	Not suitable Suitable	e Suitable	-	=	cugineer/builder	;	house and toilet		treatment facilities		poog	
			,	-	P=11:40	2	Water near toilet i None	Nonc	Sewers and	H	Very	×
Shallow sewerage	Not suitable Suitable	e Suriable			engineer/builder	:			treatment facilities		poos	
						d/111	Month Johns Honki	1 Parkings 1 April Honkins University Press, 1982, p. 160 (modified to include shallow sewerage).	160 (modified to include	shallow:	ewerage).	

Source: J.M. Kalbermatten, and obters, Appropriate Samitation Alternatives: A Planning and Design Manual (Baltimore, Johns Hopkins University Press, 1982, p.160 (modified to Notes: L = Low, M = medium, H = High, VH = Very High
a. On: or of-site sullage disposal facilities are required for nonsewered technologies with water service levels in excess of 50 to 100 led, depending on population density.
b. It groundwater is less than 1 meter below the surface, a plinth can be built.

Table - 3,4,1(1/2) Sewerage Development Targets

							Water &	Water & Sanitation Developement in 1998	slopement in 1º	998		Water &	2 Sanitation De	Water & Sanitation Developement in 2010	2010	Incremental
	Prevince	п	District		Urban Center	Urban Population (1)	Population connected to water supply (3)	Population connected to sewer (1)	Population with wa	Population with water but no population sewerage connected to sewer	% of urban population connected to sewer	Crtsan Population	Population connected to water supply	Population connected to sewer	% of urban population connected to sewer	requiring sewerage by 2010
٥	Nairobi	011	110 Nairobi	ŭ.,	Nairobi	2,240,000	1,784,577	1,000,000	784,577	44%	45%	3,023,000	2,912,310	1,511,500	50	511,500
7.1	2 Central	210	210 Klambu	7	Kiambu	7,500	8,058	2,250	5,808	72%	30%	21,356	14,241	6,407	30	4,157
~ .	3 Central	210	210 Kambu	9 2	Limuro	3,000	1,958	2,100	0	%0	70%	4,347	4,129	3,043	70	943
7	4 Central	210	210 Kambu	S D	Ruin	32,302	900'9	0	6,000	%00I	%0	70,142	106,041	17,500	25	17,500
ν. Σ	S Central	210	210 Kamba	0.9	Thika	155,770	120,000	87,230	32,770	27%	26%	190,350	212,082	95,175	50	7,945
ě	6 Central	230	230 Muranga	0.20	Mangua	39,411	9'500	٥	6,200	2001	20	79,924	27,266	120,02	25	10,021
2	7 Central	330	230 Muranga	U-21	Muranga	30,000	24,000	10,500	13,500	26%	38%	62,635	105,547	21,930	35	11,430
30	S Rift Valley	240	240 Nyandarua	U-28	Nyahuno	000'09	20,000	13,000	32,000	64%	30%	60,136	150,583	18,056	30	35.
ŏ	9 Central	250	250 Nyeri	U-33	Karatina	7,299	14,533	5,109	9,424	95%	70%	19,471	38,767	13.630	70	8,521
ğ	10 Central	250	250 Nyeri	95.5	Nyen	142,000	40,000	37,100	2,900	770	2678	331,393	217,108	165,697	50	128,597
Ĕ	11 Coast	310	310 Kilifi	0.38	Xiiñ	20,555	30,170	0	30,170	100%	0%	57,082	41,335	14,300	25	14,300
2	12 Coast	016	310 Kilifi	07.0	Malindi	48,227(3)	141,293	0	141,293	2001	%0	134,152	193,530	53,661	40	53,661
Ĕ	13 Cosst	340	340 Mombasa	U-52	Mombasa	\$30,000	370,764	009'69	301,164	81%	12%	736,000	476,234	368,000	8.	298,400
=	14 Coast	350	350 Taita Taveta U-55	U-55	Voi	15,772 ⁽³⁾	20,300	200	19,600	9776	476	35,159	46,991	8,800	ß	3,100
15.	15 Eastern	410	410 Embu	09-7	Еть	45,000	35,000	000'6	26.000	74%	20%	92,214	93,054	23,100	B	14,100
9	16 Eastern	420	420 Isiolo	U-63	Isiolo	26,968	36,000	1,700	34,300	456	%9	83,440	75,596	20,902	23	19,202
12	17 Enstem	9	440 Masaku	69-n	Athi River	18,700	12,500	1,300	11,200	206	77%	48,441	42,911	12,110	ង	10,310
13	13 Eastorn	\$	440 Masaku	U-71	Machakos	154,006	80,000	8,000	72,000	206	8%	407,322	274,630	203,911	S.	195,911
2	19 Eastern	9	460 Meru	0.86 U	Meru	124,412(3)	16,330	800	15,530	%\$6	124	337,437	213,467	168,718	88	167.918
20	20 North Eastern	\$10	510 Garissa	U-104	Carissa	40,000 ⁽³⁾	34,758	0	34,758	100%	0%	115,126	82,850	46,051	40	46,051

Table · 3.4.1(2/2) Sewerage Development Targets

T							•	340						
		٥	2010											
l				1		90%	22,381	5,445	27,826	77,306 ⁽³⁾	U-210 Kakamega	0-210	930 Kalcamega	40 Western
75,561	8	81.006	-			\$ 6			۱	48,000	Busin	U-206	920 Busia	39 Western
31.854	9	ます"Cマ	98,433	103,635	20%	44%				aon'no	U-205 Weenye	6.5 0	910 Bungoma	38 Western
34,259	9	43,259	110,439	120,647	20%	70%				00009	annoguna.	21.2	910 Bangona	37 Westom
	40	45,634	362'66	114,036	18%	65%	23,400	12,600	36,000	70,000	Dungana		O.O.	So Kitt Valley
		11,200	42,458	44,693	20%	430%	3,000	000,4		20.000	Kansabel + Bamion	3,1,1	oto Dannigo	S Kiff Valloy
		8,100	139,666	32,363	9%0	100%	127,500	0	127,500	11,804	TI-170 Kabamet	11-170	Orania Ora	Se Mili Valley
		47777			32%	22%	19,600	70,400	000'06	220,000	Eldorel	D-166	720 Usein Gishu U-166 Eldorel	2.t Din Valley
		225314				%OX			000'09	75,000	Kitate	3 0	760 Trans Naoia U-164 Kitate	33 Rift Valley
77,164	8,	114,664	217.862	1	ľ	300				VC8,VI	Narok	C-163	750 Narok	32 Rift Valley
19 347	25	19,347	73,369			100%			•	/ OD'1 (7)		U-159	740 Nakuri	31 Rin Valley
256.619	95,	330,119	733,756	760,237	330	\$00%	140 191		ľ		O-Co instruction	3	/40 Nakuru	30 Rift Valley
54.45	8	84,452	110,824	168,905	20%	258	16,000	30,000	46.000	00000	7		To kenimum	Zy Will valley
		44,089	131,804	579,79	45%	43%	18,350	24,750	43.100	55,000	Napanki	11.150	730 Y officials	on one valley
		76,261	148,636	152,522	52%	29%	17,123	41,600	58,723	30.000	11-14% Kencho	11.14%	7.10 Vineime	בי שוני בפווסא
		20,337	29,365	81,185	20	100%	7,200	0	7,200	25,080	TI.146 Oncata Lonesi	1	710 16 1000	Carrie Mario
		10,300		41,207	5%	88%	5,250	750	000'9	15,000		11.11	210 Valido	
		18,000			20%	65%	28,000	15,000	43,000	75,000	Homa Bay	U-129	640 Homa Pav	AS Nimera
-		280,514	4	~	56%	24%	150,845	130,000	280,845	231.327/2	U-120 Kauma	U-120	Wisimus 600	Name of
	3 8	44,240		120,615	20%	71%	32,000	13,000	45,000	000'59	Kūsii	U-117 Kisii	AlolXisii	Nonette
		Tologo I	01.00			100%	1,500	0	1,500	26,239	Wajir	U-116 Wajir	S30 Waiir	22 Noah Eastern
16,500	25	16.500	61 637	690 99		100			0,100	00077	Mandera	0 0 0 0	520 Mandera	21 North Eastern
12,900	ង	12,900	29,603	51,680	<u>. </u>	100%	8.160		8 160	A38.C0		1		
(A)	connected to sewer	sewer	water supply	Population	connected to sewer	380	sewenge	connected to sewer (1)	connected to water supply (3)	Population (1)			District	1/10Vince
requiring	% of urban population	Population		T. than	% of urban	or tred	70 of urban	Population	Population		1			
Incremental	2010	elopement in	Water & Sanitation Developement in 2010	Water &		80	Water & Sanitation Developement in 1998	Sanitation Deve	Water &					

		2/// PES 530 :			4,379,257	
Urban population connected to sowers		1, (00,007			1,4,6	
aldelicate assessment of the contract of	982,080 €	45%		9,458,078	0/. C +	
Population living in urban centers where sewerage is available	and look to			000 000	285	
	WU 925 9	 27%		11,500,000	ar or	1
Total population in all ordan centers.	200101.46					

Note: (1) - Populations reported by municipal and town councils during JICA study team survey.
(2) - Information not reported in survey or incorrect therefore population shown is for 1995 as estimated by JICA study team.
(3) - from various sources gathered by the Aftercare Study Team

Table - 3.4.2 Anticipated Service Levels by Sanitation Method - 2010

Urban Centr	Urban Centre Characteristics	S	Urban Popu	Urban Population 2010	Sewerage	rage	On-Site	Site
Population	Number of cities	% Distribution	8000	%	N000	%	000.	%
P>300,000	8	4	6,608	25	1,687	26	4,921	74
300,000>P>100,000	11	5	1,652	14	1.053	75	599	36
100,000>P>20,000	\$4	25	2,349	20	1,510	3	838	36
P<20,000	142	99	892	8	122	14	769	98
Total	215		11,501		4,373	38	7,128	62

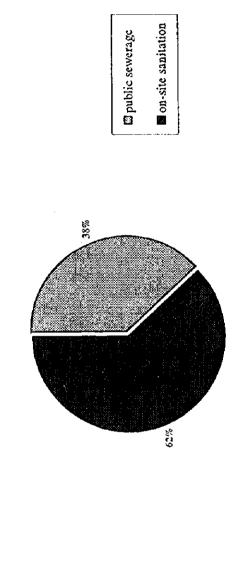


Table - 3.5.1 (1/2) Wastewater Flow Calculation in 2010

				Sev	Sewenge Developement 1908	opernent 1902	-		Sewerage	Sewenge Developement 2010	ant 2010			≯	Waste water flow 2010	ow 2010			
					September 2	Preser	Present Sewage Flow	*	ļ ·		medun jo %	<	स	υ	D=A+B+C	ធ	Dry weather flow F≃D+E		Incremental
	Code	Urban Centre	Urean Population 1998	Population connected to sewer	_ <u></u>	Treatment Works Capacity	m3/day	Liters per per Capita/day	Urban Population	Population connected to sewer	population served by sewers	Domestic sewage discharge m3/day	Commercial/ institutional/ Public m3/day	Industrial sewage discharge m3/day	Total sewage flow m3/day	Infiltration/I nflow allowance m3/day	Total m3/day	Per Capita m3/day	capacity m3/day
	11.1		00000000	000.000.1	45%	112,000	217,000	217	3,023,000	1,511,500	50	140,570	46,857	46.857	234,283	46,857	281,139	136	169,139
1	11.150	Nakara	231.687	123,500	230%	16,200	8,181	99	760,237	380,119	φ.	35,351	11,784	11,784	\$8,918	11,784	70,702	95:1	\$4.502
	211.6	Mombasa	280.000		12%	49,600	4,590	99	736,000	368,000	20	34,224	11,403	11,408	57,040	11,408	63.448	32	15.648
	4 TIA170	Kisumu	231.327		20%	17,800	15,000	118	\$61,029	280,514	80	26,083	8,696	3,696	43,480	8,696	52,176	186	74,376
	S T T T T KA	1714 0000	000 022	ĺ	32%	6,375	NFM	*	450,629	225,314	95.	20,954	\$86'9	6.985	34,924	6,985	*T*008	136	35,533
1	× 11-71	Machaelos	000 08			2,000	3.000	375	407,822	203,911	20	13,964	6,321	6,321	31,606	6.321	77,927	1881	35.927
	11,36	Men	124.412			2,500	90S	625	337,437	168,718	20	15,691	5,230	5,230	26,151	5,230	31,382	981	28,862
<u> </u>	2 12 8	n on N	000	15.	26%	8,100	2,500	67	331,393	165,697	%	15,410	5,137	5,137	25,683	5,137	30,520	186	22,720
	0 11.164	Kitale	75,000		20%	2,930	NFM	Ä	229,328	114,664	S	10,664	3,555	3,555	17,773	3.555	21,327	186	1430
l	toll 1-210	Kokameza	110,000		47%	5,500	4,300	63	202,516	101,258	S.	9.417	3,139	3,139	15,695	3,139	18,834	136	13.334
24	11.0	in the second	155.770		2008	6,100	10,000	115	190,350	95,175	50	8,851	2,950	2,950	14,752	2,950	17,703	136	11,603
	11.15	Neiszehn	000 09			2,035	700	ន	163,905	84,452	8	7,854	2618	2,618	13,090	2,618	15,708	136	13,673
1_	1111.148	Kericho	80.000			1,500	2,000	33	152,522	76,261	\$0	7,092	2,364	2,364	11,820	2,364	14,185	136	12,645
	01-71	Malindi	18,227			0	0	0	134,152	37,661	3	4,990	1,663	1,663	8.317	1,063	9.981	981	6,961
	LS U.208	Wehuve	000'09	12,0		Š	1,500	125	120,647	48,259	9	4,438	1,496	967.1	7.480	1,496	3,976	186	A.976
	16 U-117	- Kisii	65,000	000'£1	20%	ς.	NTM	Σ	120,615	48,246	40	4,487	1,496	1,496	7,478	1,496	5,974	98	8,074
1	101111	Guðssa	10.000	0	%0	0	٥	٥	115,126	46,051	9	4,283	1,428	1,428	7,138	1,428	8,565	136	A.565
1	001-11 KI	Bungoma	70,000	12,600	%81	45	NFM	×	114,086	45,634	07	445,4	1,415	1,415	7.07.1	1,415	8,488	136	8,443
	10 11.706	Busia	48,000		20%	909	009	63	103,635	41.454	OF	3.855	1,285	1,285	6,425	382.1	7,710	186	2116
Ţ.,	5377106	Niovaki	55,000	24,750	257	2.270	8,000	323	97,975	44,080	5.4	4,100	1,367	1.367	6.834	1.767	8,200	136	5.030
J	20 02																		

Table - 3.5.1 (2/2) Wastewater Flow Calculation in 2010

_				ž	Nowerage Developement 1993	Jopennent 199	88		Sewenge	Sewenge Developement 2010	sent 2010			3	Waste water flow 2010	ow 2010			
		i			% of urban	Present	ont Sewage Flow	-low			% of urban	<	ĸ	U	D=A+B+C	ъ	Dry weather flow F=D+E		Incremental
-	Code	Urkan Center	Population 1998	ropulation connected to sewer	population connected to sewers	Treatment Works Capacity m3/day	m3/day	Liters per Capite/day	Urban Population	ropulation connected to sewer	population served by sewers	Domestic sewage discharge m3/day	Commercial/ institutional/ Public m3/day	Industrial sewage discharge m3/day	Total sewage flow	Infiltration/I ntlow allowance m3/day	Total m3/day	Per Capita m3/day	treatment capacity m3/day
21 1:-00		Embu	000'51	000'6	20%	682	180	20	412,29	23,018	25	1717	714	714	3,568	714	133.	987	3,500
22 C-63	; ;	Siolo	26.968	.	929	2,000	909	353	33,440	20,340	25	3.641	949	949	3,230	646	3,876	136	1,876
23 U-146		Ongata Longai	25.080	0	%0	0	0	0	81,185	20,296	52	1,888	629	629	3,146	629	3.775	981	NT75
24 (1.20		Мападан	39,411	0	200	o	0	0	79,924	19,981	25	858'1	619	619	1,097	619	3,716	136	3,716
25 (1-163		Narok	19.859	0	0%	0	0	0	77.231	19,345	អ	1,799	009	909	2,999	009	3,598	136	3.598
AC1+11 92		Floma Bay	75,000	15,000	20%	750	1.045	70	71,860	17,962	53	1,670	557	557	2,784	557	3,341	136	1,501
27 U.S		Ruin	32,302	0	%0	o	0	0	70,142	17,571	22	1,63.1	545	\$45	2,724	\$15	3,268	186	3.26A
311-1182		Wajir	26,239	o	%0	0	0	0	66,062	16,516	ĸ	1.536	512	512	2.560	512	3,072	951	3.072
29 U-21		Muraga	30,000	10,500	357	1,564	870	83	62,635	21.922	35	2.039	989	680	3,308	630	4,078	136	2,514
30 0.28	62	Nyahurura	40,000	13,000	30%	2,500	3,436	191	60,136	30,093	SO	2,790	933	033	4,664	126	5,597	136	3.097
31 U.38		Kilifi	\$55'07	0	250	o	0	0	57,082	14,271	SS	1.327	442	442	2212	142	2,654	136	2.654
12 U-109		Mandera	22.856	Ô	%0	0	0	0	\$1,680	12,946	25	1,204	401	401	2,007	401	2,408	136	2,408
33 U-69		Alhi River	13.000	1,300	7570	12,960	1.000	269	48,441	12,110	25	1,126	375	375	1.877	378	222	981	0
34 U-18S		Kapsalvet + Baraton	20,000	4,000	20%	1,000		MEN	44,693	11,173	25	1,039	346	346	1.732	346	2,078	136	1,078.
35 0-144		Ngong	15.000	750	%S	230	15	8	41,207	10,314	25	656	320	320	1.599	320	1,918	136	1,645
36 U-55		Voi	15,772	700	857	٥	0	0	35,159	8,811	જ	819	273	273	1,366	273	1.639	136	1,670
37 75		Kabamet	11,304	0		0	0	0	32,363	3,091	25	752	251	152	1,254	251	1.505	136	1,505
38 0.4		Kambu	7,500	2,250	30%	096	300	133	21,356	6,407	30	965	199	180	266	199	1,192	136	232
30 U.33		Kantina	7,299	\$,109	70%	317	9 <u>5</u>	110	19,471	13,630	70	1,268	423	423	2113	423	2.535	158	2,216
40 11-6		Limun	3,000	1,1	70%	550	113	56	4,347	3,043	70	283	ŏ	94	472	0.4	566	186	ट
														er capita o	Hibutions				
							Popul	Population connected to sewers 4,411,315	ed to sewers	4,411,315	_	69	36	31	155	31	186	_	

Note: avurage donnestiv sewage flow (liters per capita)
donnestiv sewage us a percent of total sewage
sewage from conunercial, institutional and public areas as a percent of total sewage
industrial wastewater as % of total sewage
infliration and surface water inflow allowance

93 20% 20% 20% 20%

Table - 3.5.2 Septage Generated from On-site Sanitation in 2010

	· · · · · ·	1		<u> </u>			Populatio	n 2010	7
i	Province	Code	District	Code	Urban Centre	Total Population	with sewer	with septic	Total septage m³/year
1	Nairobi	110	Nairobi	U-1	Nairobi	3,023,000	1,511,500	377,875	107,065
<u> </u>	Central		Kiambu	U-4	Kiambu	21,356	6,407	3,737	1,059
3	Central	210	Kiambe	U-6	Limura	4,347	3,043	326	92
4	Central	210	Kiambu	U-S	Reiru	70,142	17,500	13,161	3,729
<u>·</u> 5	Central	210	Kiambu	U-9	Thika	190,350	95,175	23,794	6,742
6	Central	230	Muranga	U-20	Maragua	79,924	20,021	14,976	4,243
7	Central	230	Muranga	U-21	Muranga	62,635	21,922	10,178	3,325
8	Rift Valley	240	Nyandarua	U-28	Куаћигоги	60,186	30,093	7,523	2,984
9	Central	250	Nyeri	U-33	Karatina	19,471	13,630	1,460	414
	Central	250	Nyeri	U-36	Nyeri	331,393	165,697	41,424	11,737
		310	Kilifi	U-38	Kilifi	57,082	14,300	10,696	3,030
13	 -		Kilifi	U-40	Malindi	134,152	53,661	20,123	5,701
-	Coast	310 340	Mombasa	U-52	Mombasa	736,000	368,000	92,000	26,067
\vdash	Coast	 	Taita Taveta	U-55	Vei	35,159	8,800	6,590	1,867
	Coast	350		U-60	Embu	92,214	23,100	17,278	4,896
H	Eastern	410	Embu	U-63	Isiolo	83,440		15,634	
<u> </u>	Eastern	420	Isiolo		Athi River	48,441		 	
┝	Eastern	440	Masaku	U-69	 	407,822		50,978	
┞	Eastein	440	Masaku	U-71	Machakos	337,437	ļ.———	 	
⊢	Eastern	460	Meru	U-86	Meru	115,126		<u> </u>	
}-	North Eastern	+	Garissa	U-104	Garissa	51,680			
2	 	-	Mandera	U-109	-{	66,062	 	 	
2		 	Wajit	U-116	 	120,615		 	<u> </u>
2.	3 Nyanza	610		U-117		561,029	_	 	
2	Nyanza	620			Kisumu	 	 	<u> </u>	
2	5 Nyanza	640		U-129		71,860		 -	
2	6 Rift Valley	710			Ngong	41,20	· 		
2	 	710			Ongata Longai	81,18	_	 	
2	8 Rift Valley	720	Kipsigis		Kericho	152,52		<u> </u>	
2	9 Rift Valley	730	Laikipia		Nanyuki	97,97	<u> </u>	 	-
3	0 Rift Valley	740	Nakuru		Naivasha	168,90	 -	+	
3	1 Rift Valley	740			Nakuru	760,23		 	
1	2 Rift Valley	750		—∔	Narok	77,23		+	
1	3 Rift Valley	760) Trans Nzoia		Kitale	229,32	 		
	4 Rift Valley	77() Uasin Gishu	U-16	5 Éldoret	450,62	+		
	5 Rift Valley	810) Baringo	-	9 Kabarnet	32,36	 	_	
	6 Rift Valley	834) Nandi	U-18.	5 Kapsabet + Baraton	14,69		 -	
	37 Western	91	O Bungoma	U-19	9 Bungoma	114,08	6 45,63	+	-
	38 Western	91	0 Bungoma	U-20	5 Webaye	120,64	48.25		
	39 Western	92	O Busia	U-20	6 Busia	103.63	35 41.45		
r	40 Western	93	0 Kakamega	U-21	0 Kakamega	202.5	101,25	8 25,31	14 8.60