

Fig.II-4-2 JERS-1/SAR digital mosaic imagery of Mae Sariang area, Thai

occur at the joint between images. In the study, GCP was set between adjacent scenes to establish precise positioning.

c) Preparation of image for analysis

In this survey, a monochrome image (60km x 80km, 1/250,000) was prepared for geological analysis by cutting a sub-scene out from the mosaic image data. Assuming that analysis result will be integrated with existing information such as geological map, topographical map and location of ore deposit / mineral occurrence, latitude and longitude were indicated around the image. Also, a gray scale and a reduced scale were placed to allow correct reprinting.

4-1-3 JERS-1/OPS

ĺ

(1) Selection and acquisition of image data

Since the study area belongs to the tropical zone, few scene of JERS-1/OPS image data without covering of cloud has been observed. So, the observation data with the least cloud were selected for each 4 scenes. Fortunately, we have obtained a set of JERS-1/OPS image data with almost 0% covering of cloud on the study area.

(2) Image processing

Almost all of the study area is covered by vegetation. Exposure of rocks representing geology and alteration zone was rarely found. Therefore, photo-geological analysis with attention to morphological expression would be the most effective for this study area. For this reason, the following image processing and color composite image were produced.

a) Corrections processes

1) Noise reduction process

Various types of noises that disturb analysis should be eliminated during preparation of images. In general, deficiency line, stripe noise and random noise can be found. Deficiency lines, stripe noise in the sample direction or the line direction that may affect analysis was not found on the image data used. Considering that the image for analysis is 1:250,000 in scale, noise elimination with smoothing or median value filter was not performed to prevent poor spatial resolution. Offset of registration between bands(1, 2 and 3) was not observed in the image data used.

2) UTM map projection

The JERS-1/OPS image data is basically projected in UTM. As these UTM coordinates are calculated from the satellite orbit information, they are not sufficiently accurate for the purpose of this analysis. In this study, UTM map projection has been carried out by mean of GCP method using topography maps (1:50,000) published by the Thailand.

3) Edge enhancement and gray level adjustment

In addition, the edge was enhanced using the spatial filter (3 x 3 Laplacian). It is also

necessary to enhance topographical changes or lineament, because morphological expression is usually emphasized in photo-geological analysis.

Systematic difference in gray level (DN) was found between the image data of scenes used due to differences of observation dates and sun elevations. It is desirable that the brilliance of each scene is identical in analysis, and the brilliance should be suitable for analysis. In this study, adjustments have been made for the gray level to match their histogram between scenes and to be suitable for analysis by multiplying DN value of each scene by factors.

b) Preparation of mosaic image

)

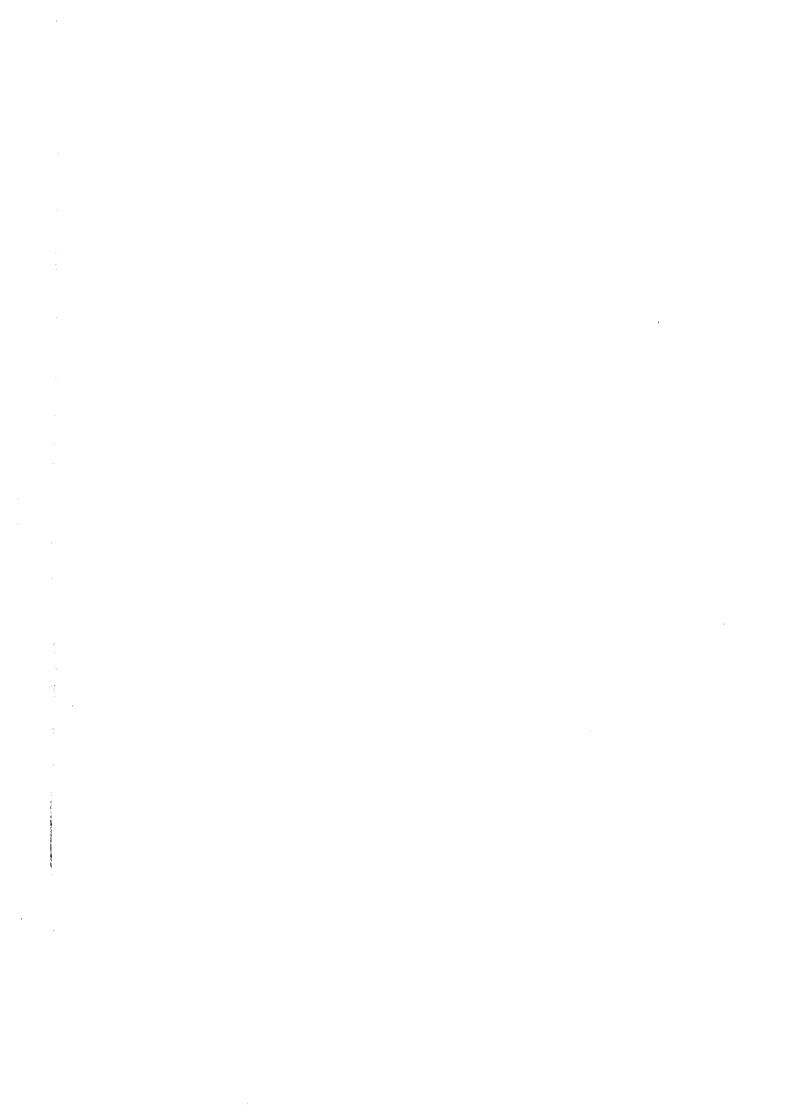
Using 4 scene images, the digital mosaic image data covering the entire study area was prepared (Fig. II-4-3). In principle, as the image data of each scene has already been projected with the UTM map, the mosaic image data can be generated by only arranging each image data on the UTM coordinates. However, a few pixels (dozens of meters) of offset may occur at the joint between images. In the study, GCP was set between adjacent scenes to establish precise positioning.

c) Preparation of image for analysis

In this study, a color composite image (60km x 80km, 1/250,000) was prepared for geological analysis by cutting a sub-scene out from the mosaic image data with assignment of band 1, 2 and 3 to blue, green and red, respectively. Almost all of the study area is covered with vegetation and exposure of rocks reflecting geological and alteration zones was rarely found. Therefore, photo-geological analysis that indicates morphological expression would be the most effective for this study area. In this band combination (BGR=123), red-orange part in image represents vegetation areas, and the image is not so much affected by difference of vegetation. This facilitates analysis of topographical information.

Assuming that analysis result will be integrated with existing information such as geological map, topographical map and location of ore deposit / mineral occurrence, latitude and longitude were indicated around the image. Also, a gray scale and a reduced scale were placed to allow correct reprinting.

4-2 Analysis of Image


- 4-2-1 Criteria of Geological Analysis
- (1) Analysis factor and their criteria
- a) Analysis of geological interpretation unit

Factors and criteria for geological interpretation unit and their criteria are as follows:

- 1) Photo-geological characteristics (JERS-1/SAR and JERS-1/OPS)
 - Tone: Color on the image
 - Texture: Smooth, small grain, medium grain, rough grain
- 2) Morphological expression (JERS-1/SAR and JERS-1/OPS)
 - Drainage pattern: Branch, parallel, grid, radiation, annual ring, meandering

Fig.II-4-3 JERS-1/OPS digital mosaic imagery of Mae Sariang area, Thai

Drainage density: Extremely high, high, medium, low, extremely low

Rock resistance: Extremely high, high, medium, low, extremely low

Cross section: Waviness, shape of ridge and valley

Development of bedding: Bedded to massive

3) Vegetation (JERS-1/OPS)

4

()

Vegetation density: Dense - not dense

b) Analysis of geological structure (JERS-1/SAR and JERS-1/OPS)

Factors for analysis of geological structure and their criteria are as follows:

- 1) Stratum tracing: Selection of topography showing bedding (cuesta, flat iron, etc.) is used for analysis.
- Folding structure: Distribution of identified geological interpretation unit and topography showing bedding (cuesta, flat iron, etc.) are used for analysis.
- Fault structure: Discontinuity of identified geological interpretation unit or bedding, and various faults that appear at the rivers and ridge lines are used for analysis.
- 4) Ring structure: Caldera or crater topography is used as a cave-in fracture. Volcanic topography is used as a cone structure.
- 5) Lineament: Linear morphological expression reflecting the underground rupture is used as lineament. Lineament that is considered to be a fault or a tectonic line is separated.
- (2) Characteristics of analysis factors in the study area

Rock resistance, drainage density, drainage pattern and texture in the photo-geological factors were especially effective for geological interpretation of satellite image analysis in the study area,

Rock resistance shows high values for most of all unit, while it shows low for sediment of recent era and limestone. On the other hand, it is considered that drainage density has relation to development of fracture but not to geologic age of unit. Thus, in this study, geological items are grouped by combination of rock resistance and drainage density. Here, rock resistance is grouped into "H", "M" and "L", and drainage density is grouped into "h", "m" and "l". Geological unit with high rock resistance and high drainage density is referred to as "Hh". Geological unit with medium rock resistance and low drainage density is referred to as "Ml". Further, detailed geological interpretation unit, for example from "Mh1" to "Mh12", is made according to other factors.

Lineament is grouped into "clear", "medium" and "obscure". Continuity of lineament does not show any relation to degree of clearness. It is not rare that continuous lineament that may represent a large geologic structure is not grouped to "clear".

- 4-2-2 Classification of Geological Units
- (1) Result of geological interpretation of satellite images

Geological units were classified by photo-geologic interpretation (Table II-4-2, Fig. II-4-4). At the first, geological units were classified roughly based on the rock resistance and drainage density, then geological units were further subdivided based on the differences in other elements. As a result, 36 geological interpretation units were distinguished.

To see all the area for analysis, lowlands (geological interpretation unit: Q, showing only unit mark in follows) with less undulation distribute along the Yuam river that flows from north to south at the western margin of ground survey area, and characteristics of geological units differ between on west side and east side of the river. Geological unit with the same rock resistance and drainage density tends to distribute extending north and south along the river.

Along the Yuam river, geological units with low rock resistance (L**) extend north and south near the Mae Sariang city, and geological units with medium rock resistance (M**) extend northward of that. Geological units with high rock resistance (H**) extend continuously north and south on the West of them. It extends largely north and south on the East of the river, while it is separated into north and south parts by geological units with medium rock resistance (M**) that distribute near the Mae Kanai river on the center of the satellite image. On the East of the image, geological units with medium rock resistance (M**) extend largely north and south that adjoin the same analysis unit near the Mae Kanai river.

Geological units with high drainage density (*h*) extend along the Yuam river and on the center of the satellite image, while they are separated into east and west by geological units with medium drainage density (*m*) that elongating north and south on the east side of the river. Also, geological units with high drainage density (*h*) extend north and south on the East of the image. Other area is of geological units with medium drainage density (*m*), while it is dotted with geological units with low drainage density (*l*) on the center of the image.

(2) Result of geological analysis

1

į

Geological analysis units (Table II-4-3 and Fig. II-4-5) have been analyzed by examination of characteristics of geological unit classified through photo-geological interpretation and by comparison of them with existing materials. For sediments after Neogene age, geological analysis units correspond in one-to-one to geological interpretation unit, but for sediments of Paleozoic age and granite, some numbers of geological analysis units have been united into one geological analysis unit. Characteristics and distribution of geological analysis units will be shown below.

Alluvium (geological analysis unit: Q, showing only unit mark in follows) extend north and south along the Yuam—river that flows from north to south at the western margin of ground survey area, and terrace sediments of Pliocene to Quaternary ages (N1 and N2) extend north and south on the both river side. Other geological analysis units also tend to elongate north and south.

Table.II-4-2 List of geologic unit on JERS-1/SAR and OPS image.

Int. Anal. Tone Hh1 P1 B / M M M M M M M M M M	M/M F/F F/F B M/M B M/F D M/M D C/C D M/M C M/C C/C C/C	B B B B B S P S P B G G G	n & density H H M M M L L H H H H	Resistance H H H H H H M M M M M		M M M M M M M M M M M M M M M M M M M	density D D D D D D D D D D D D D
Hh2 P4 MD/M Hm1 P1 MB/M Hm2 P4 M/M Hm3 P4 M/M Hm4 P4 M/M Hm5 P4 MD/M Hl1 Gr1 M/M Hl2 Gr2 MD/M Mh1 P1 M/M Mh2 N2 M/M Mh4 P3 MD/M Mh5 Gr2 MD/E Mh6 Gr2 M/M Mh7 Gr2 M/M	S/F B M/M F/F F/F B M/M B M/F D M/M D C/C D M/M C M/C C/C	B B B B C C C C C C C C C C C C C C C C	H M M M M M L L H H H H	H H H H H H M M		M M M M M M M M M M M M M M M M M M M	D D D D D D D D D D D D D D D D D D D
Hm1 P1 MB/N Hm2 P4 M/N Hm3 P4 M/N Hm4 P4 M/N Hm5 P4 MD/N Hl1 Gr1 M/N Mh1 P1 M/N Mh2 N2 M/N Mh3 P1 M/N Mh4 P3 MD/N Mh5 Gr2 MD/E Mh6 Gr2 M/N Mh7 Gr2 M/N	B M/M	B B B R O R SP SP B SP G	M M M M L L H H	H H H H H M M		M M M M M M M M M M	D D D D D D D D D D D D D D D D D D
Hm2 P4 M/M Hm3 P4 M/M Hm4 P4 M/M Hm5 P4 MD/M Hi1 Gr1 M/M Mi2 Gr2 MD/M Mh1 P1 M/M Mh2 N2 M/M Mh4 P3 MD/M Mh5 Gr2 MD/E Mh6 Gr2 M/M Mh7 Gr2 M/M	M/M F/F F/F B M/M B M/F D M/M D C/C D M/M C M/C C/C C/C	B B B S P O R S P S P B G G	M M M L L H H H H	H H H H M M M		M M M M M M	D D D D D D D D D D D D D
Hm3 P4 M/M Hm4 P4 M/M Hm5 P4 MD/M Hl1 Gr1 M/M Hl2 Gr2 MD/M Mh1 P1 M/M Mh2 N2 M/M Mh3 P1 M/M Mh4 P3 MD/M Mh5 Gr2 MD/E Mh6 Gr2 M/M Mh7 Gr2 M/M	F/F F/F B M/M B M/F D M/M D C/C D M/M D M/C C/C C/C	B B~SP O R SP SP B SP G	M M L L H H H H	H H H M M M M		M M M M M M	D D D D D D D D D D
Hm4 P4 M/M Hm5 P4 MD/M Hl1 Gr1 M/M Hl2 Gr2 MD/M Mh1 P1 M/M Mh2 N2 M/M Mh3 P1 M/M Mh4 P3 MD/M Mh5 Gr2 MD/E Mh6 Gr2 M/M Mh7 Gr2 M/M	F/F B M/M B M/F D M/M D C/C D M/M D M/C M/C C/C	B~SP O R SP SP B SP G	M M L L H H	H H H M M M		M M M M M	D D D D D D D D D
Hm5 P4 MD/M Hl1 Gr1 M/M Hl2 Gr2 MD/M Mh1 P1 M/M Mh2 N2 M/N Mh3 P1 M/N Mh4 P3 MD/M Mh5 Gr2 MD/E Mh6 Gr2 M/N Mh7 Gr2 M/N	B M/M B M/F D M/M D C/C D M/M D M/C C/C C/C	O R SP SP B SP G	M L L H H	H H M M M		M M M M	D D D D D D
HI1 Gr1 M/M HI2 Gr2 MD/M Mh1 P1 M/M Mh2 N2 M/M Mh3 P1 M/M Mh4 P3 MD/M Mh5 Gr2 MD/E Mh6 Gr2 M/M Mh7 Gr2 M/M	B M/F D M/M D C/C D M/M D M/C M/C C/C	R SP SP B SP G	L H H	H H M M M		M M M M	D D D D
HI2 Gr2 MD/M Mh1 P1 M/N Mh2 N2 M/N Mh3 P1 M/N Mh4 P3 MD/N Mh5 Gr2 MD/E Mh6 Gr2 M/N Mh7 Gr2 M/N	D M/M D C/C D M/M D M/C C/C C/C	SP SP B SP G	1 1 1 1	H M M M	······································	M M M	D D D
Mh1 P1 M/N Mh2 N2 M/N Mh3 P1 M/N Mh4 P3 MD/N Mh5 Gr2 MD/E Mh6 Gr2 M/N Mh7 Gr2 M/N	D C/C D M/M D M/C M/C C/C	SP B SP G	± ±	M M M	······································	M M M	D D D
Mh2 N2 M/N Mh3 P1 M/N Mh4 P3 MD/N Mh5 Gr2 MD/E Mh6 Gr2 M/N Mh7 Gr2 M/N	D M/M D M/C M/C C/C	B SP G G	± ±	M M M	······································	M M	D D
Mh3 P1 M/M Mh4 P3 MD/M Mh5 Gr2 MD/E Mh6 Gr2 M/M Mh7 Gr2 M/N	M/C M/C C/C	S P G G	H	M M		М	D
Mh4 P3 MD/N Mh5 Gr2 MD/E Mh6 Gr2 M/N Mh7 Gr2 M/N	M/C C/C C/C	G G	Н	М			
Mh5 Gr2 MD/E Mh6 Gr2 M/M Mh7 Gr2 M/N	C/C	G				В	D
Mh6 Gr2 M / N Mh7 Gr2 M / N	C/C	 -	Н	М			
Mh7 Gr2 M/N		G		1	······	М	Ď
,	B CZC	1 9	Н	М	~~~~~	М	D
A44.0 DE		G	Н	М		М	D
Mh8 P5 MB/M	D C/C	В	Н	М	······	М	D
Mh9 P5 MB/N	C/M	В	Н	М	······	М	D
Mh10 Gr4 M/N	B C/C	G	н	М		M	D
Mh11 Gr3 M/N	C/F	В	Н	М		М	D
Mh12 Gr3 MD/N	D C/F	В	Н	М	**********	М	D
Mm1 P4 MD/M	D F/S	В	M	М	~~~~	М	D
Mm2 P4 MD/E	Ç/M	G	М	М	~~~~	М	D
Mm3 P4 M/E	M/M	G	М	М	~~~~	М	D
Mm4 P5 MB/M	D F/F	В	М	М	~~~~	М	D
MI1 P2 MD/D	S/S	В	L	М	~~~	М	D
MI2 P4 MD/N	D F/S	В	L	М	~~~	М	D
MI3 Ls MB/M	S/S	SP	L	М	~~~	М	D
MI4 P4 MD/N	D F/F	В	L	М	~~~~	М	D
MI5 P4 MD/N	F/M	В	L	М		М	D
MI6 Ls MB/N	D S/S	8	L	М	~~~	М	D
MI7 Gr3 M/N	B F∕M	G	L	М	· · · · · ·	М	D
Lh1 N1 M/N	F/F	SP	Н	L		М	D
LI1 Ls M/N	D S/S	B∼P	L	L	~~~~	М	D
L12 P4 D/N	F/M	В	L	L		М	ND
Q Q D/8	ue S/D	_		-			ND

B∶bright Mimedium Didark

(_)

C:corse

P:pailarel H:high

S P : subpallare M : medium B : branch L : low

Mimedium
Fifine
Sismooth
Didappled

Gigrid Oioblong R:rudial Bibedded Didense

Mimussiv Ninot dense

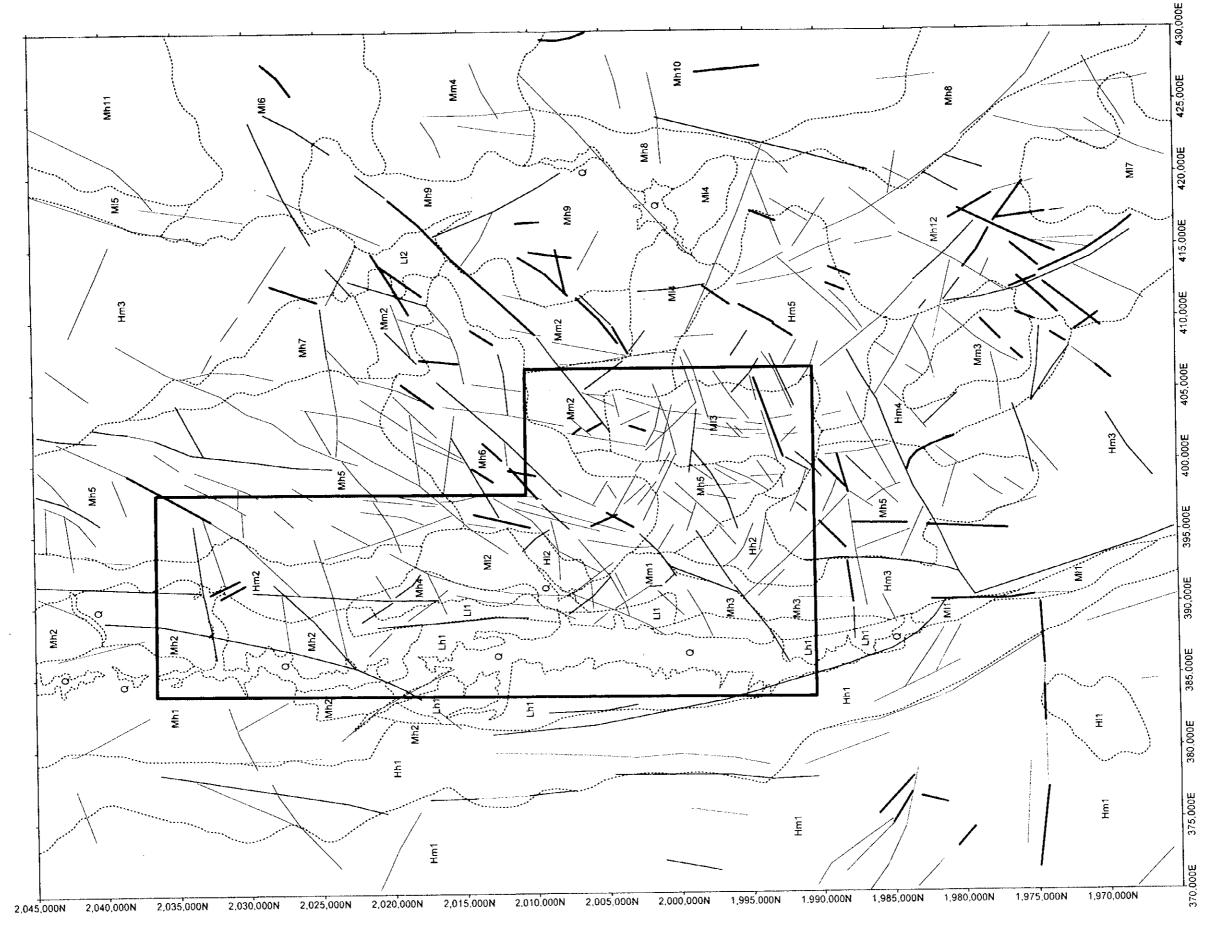


Fig.II-4-4 Photo-geologically interpreted unit and structure

Table. II-4-3 Comparison of interpretation and analytical unit.

Geologic unit by interpretation	Geologic unit by analysis	Assumed geology and lithology by comparison with existing materials		
ବ	Q	Alluvium		
Lh1	N1	Quaternary terrace sediments		
Mh2	N2			
Ml3 Ml6 Ll1	Ls	Paleozoic limestone		
Hh1 Hm1 Mh1 Mh3	P1	Paleozoic(Western)		
Ml1	P2			
Mh4	Р3	Paleozoic(Central)		
Hh2 Hm2 Hm3 Hm4 Hm5 Mm1 Mm2 Mm3 Ml2 Ml4 Ml5 Ll2	P4			
Mh8 Mh9 Mm4	P5	Paleozoic(Eaztern)		
Hl1	Gr1	Granite(Western)		
Hl2 Mh5 Mh6 Mh7	Gr2	Granite(Central)		
Mh11 Mh12 Ml7	Gr3	Granite(Eastern)		
Mh10	Gr4			

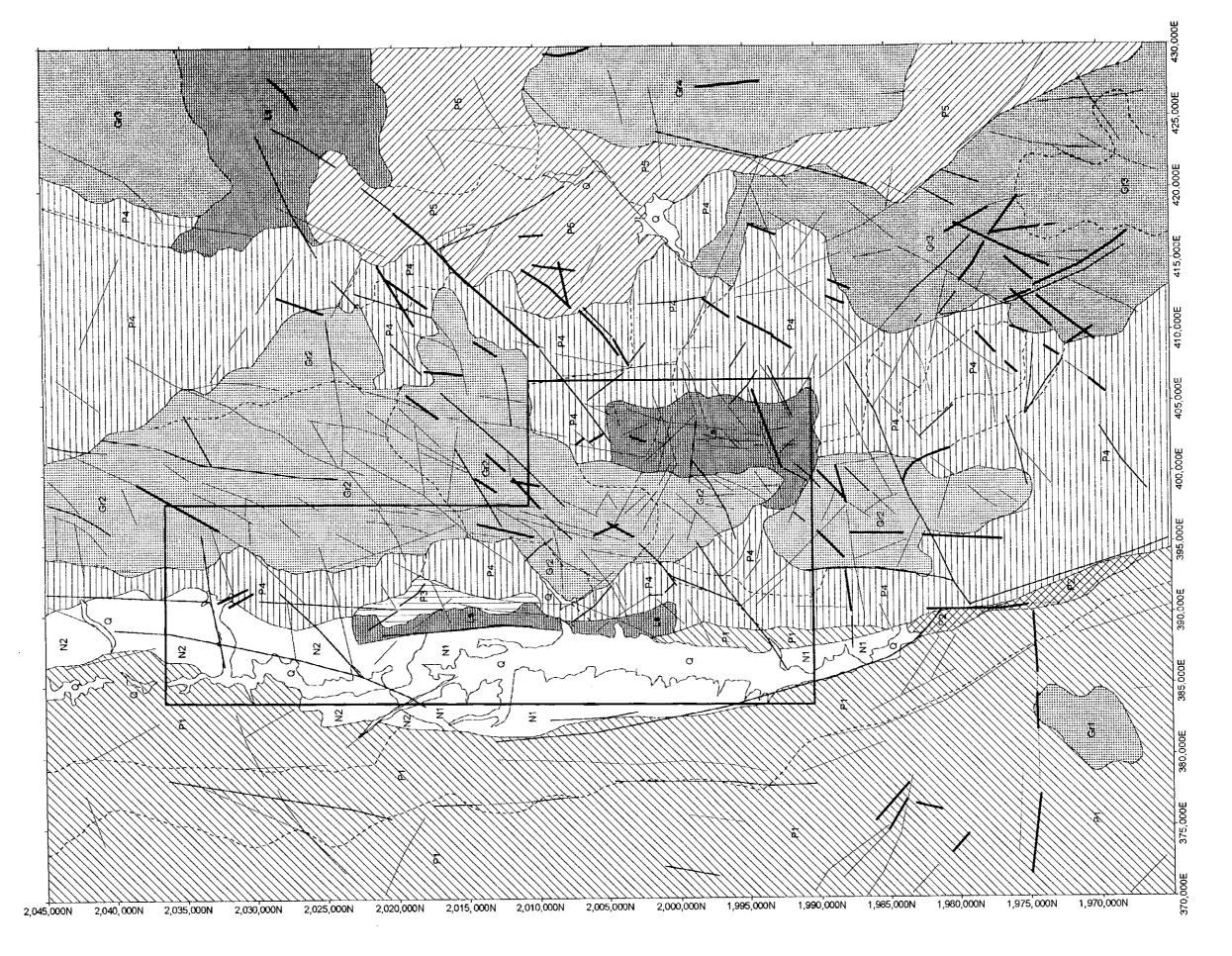


Fig. II-4-5 Distribution of geological unit analysed

.

Geological unit analyzed as Paleozoic Limestone shows smooth texture, low drainage density and smooth cross section. It elongates narrow and long (ca. 22km) north and south along its strike on the East of Mae Sariang city. It also extends, near the Rit river, Dong Noi and Mae Kanai, as a rectangle block (15km NS x 5km EW) between Central Granite (Gr2) and Central Paleozoic (P4) that will be presented bellow. On the Northeast of the image, it extends largely between Eastern Granite (Gr3) and Eastern Paleozoic (P5), while it is considered that its characteristics are different a little from two Limestone units mentioned above.

All geological interpretation units except for Alluvium, Paleozoic Limestone and Granite were analyzed as Paleozoic (partly Mesozoic). According to distribution and characteristics of them, they have been classified into five units; Western Paleozoic (P1 and P2), Central Paleozoic (P3 and P4) and Eastern Paleozoic (P5).

Western Paleozoic (partly Mesozoic) units (P1 and P2) distribute on the West of Yuam river and very rarely on the eastern side of the river. One of Western Paleozoic-Mesozoic (P1) on the West of the river is composed of three types of geological interpretation units. With considering of continuity and characteristics of them, a geological interpretation unit on the east river side south of Mae Sariang city was also classified as Western Paleozoic-Mesozoic (P1). Another Western Paleozoic (P2) extends only a little on the south margin of the image.

Central Paleozoic units (P3 and P4) extend largely north and south on the East of Yuam river and on the center of the image. A unit with bedded structure was classified to a Paleozoic unit (P3) and other massive units were classified to another Paleozoic unit (P4). The bedded Paleozoic (P3) is considered to be alternation of limestone, limy sediments or normal sediments, since it lies adjoining Paleozoic Limestone (Ls) on the West. The massive Paleozoic units (P4) extend largely surrounding Central Granite (Gr2) on the center of the image.

Eastern Paleozoic units (P5) extend largely surrounding Eastern Granite (Gr4) on the East of the image, and they are medium rock resistance and with less undulation.

Granite shows commonly medium rock resistance and fine drainage pattern. According to distribution and characteristics of geological interpretation units, four Granite units have been classified; Western Granite (Gr1), Central Granite (Gr2) and Eastern Granite (Gr3 and Gr4). Western Granite (Gr1) is an oval-shaped body (ca. 5km x 8km) lying in the Western Paleozoic-Mesozoic (P1) on the West of the image, and so it is considered as an intrusive body of Mesozoic or later age. Central Granite (Gr2) extends largely north and south in Central Paleozoic (P4) on the center of the image. With attention to drainage pattern of geological interpretation units, it is estimated that Granite along the Mae Sarinag river and north east of the river is different from Granite extending north or south of these area, and that Central Granite (Gr2) might be of composite intrusive or of two or more intrusions of different time. Eastern Granite units (Gr3 and Gr4) extend on the Northeast and south east of the image, and they are divided into two; Granite (Gr3) adjoining Central Paleozoic and Granite (Gr4)

lying in Eastern Paleozoic.

4-2-3 Result of interpretation of geological structure

Through interpretations of geological structure using satellite image, only a few bedded structures have been found while we have made attentions to stratum tracing, folding structure, fault structure and ring structure.

On the West of the Yuam river, boundaries between Western Paleozoic units (Hm1/Hh1 or Hh1/Mh1) seem to reflect a bedded structure of them. Strike of the boundaries is ca. N5W on the North, and it turns to ca. N25W on the South. Westward dip may be assumed, while it is difficult to judge direction of dip since direction of radar probe crosses near a right angle with strike of geological unit. Paleozoic Limestone (Ls) and Paleozoic (P3) on the North of Mae Sariang along the Yuam river show NS strike and seem to dip westward.

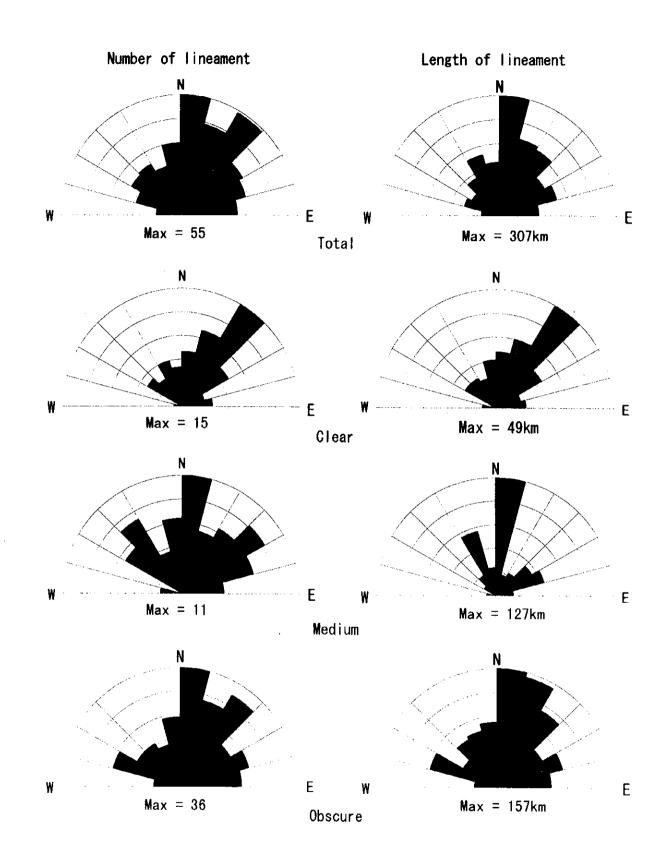
4-2-4 Result of interpretation of lineament

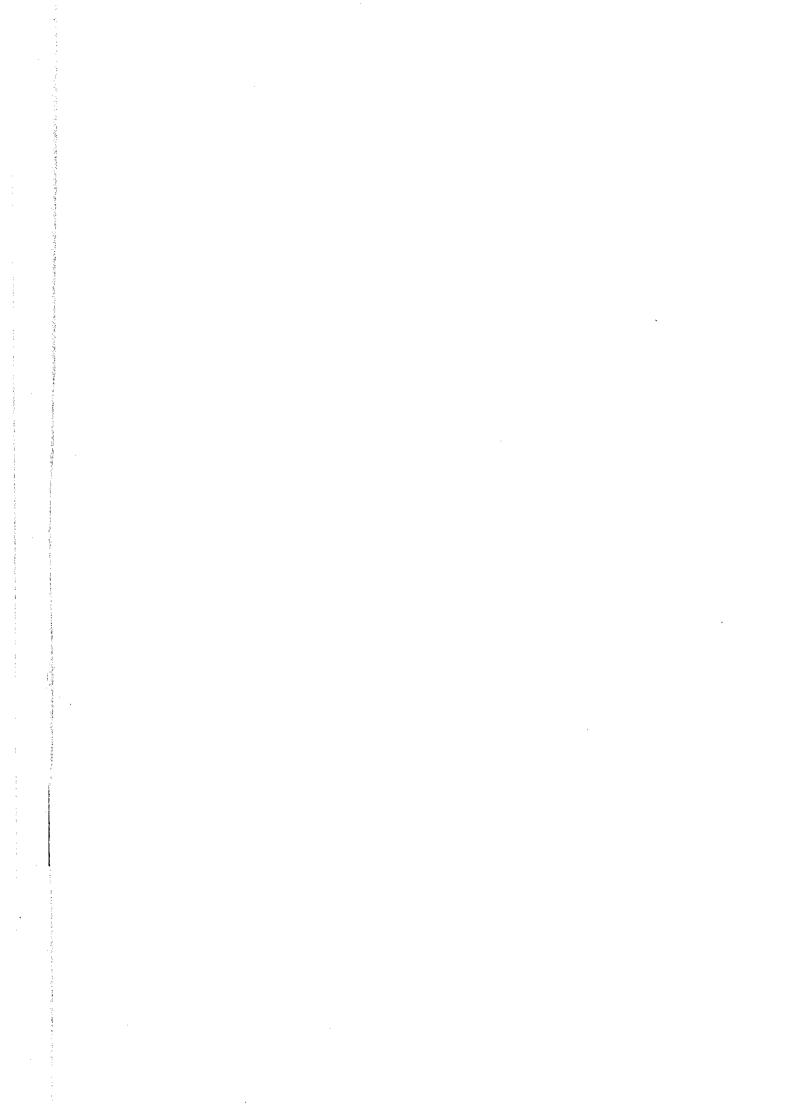
Lineaments, interpreted using JERS-1/SAR and JERS-1/OPS images, are classified into three grades; clear, medium and obscure. Distribution of them is show in figures (Fig. II-4-4 and Fig. II-4-5) and tendency of their direction is shown in rose diagrams (Fig. II-4-6).

Concentration area of lineament is on the center-north, center and southeast, and is corresponding to distribution of Central Granite and Central Paleozoic. Lineament tends to be rare in the area of the Western Paleozoic-Mesozoic, northeast to eastern margin of the image.

Direction of lineament is different between grades of lineament or between east side and west side of the Yuam river. To see all grades of lineament, NS direction is dominant for both sides of the river, NWN-SES and NW-SE to E-W directions for west side, and NE-SW and NW-SE for east side. On the other hand, to see lineament of individual grade, NE-SW direction is dominant for grade "clear"; N-S, NWN-SES and ENE-WSW direction for grade "medium"; and ENE-SWS direction for grade "obscure". Further, to see continuity of lineament, lineaments are very continuous in N-S direction along or west of the river. For east side of the river, lineaments with N-S to NE-SW direction are continuous on the center to north of the image, while direction of continuous lineament is not concentrated in a certain direction on the South of the image.

According to the distribution of continuous lineament, the area might be divided into four blocks; NE block, NW block, SE block and SW block (left of Fig. II-4-7). Lineament pattern of these blocks is assumed to represent fracture system accompanied with a regional stress field. For the lineament pattern of the NE and NW blocks, lineaments with N-S or NE-SW direction are considered as a set of conjugate shear planes or faults that would be caused by a stress field with maximum compression axis in NNE-SSW direction. In this case, N-S lineament would correspond to right-lateral fault, NE-SW lineament to left-lateral




Fig.II-4-6 Rose diagram of lineament

fault, and NNE-SSW lineament to tension fracture.

1

In this way, lineament pattern on the center to north part of the image can be explain by a model; an assumption of a stress field with maximum compression axis in NNE-SSW direction, but lineaments on the south part of the image do not show typical fracture pattern accompanied with a regional stress field. According to the continuity of lineaments, the SW block might be explained by the same model, but lineaments in the SE block might be difficult to be explained by the same model. Thus, it is possible to assume that the central to north part is different to the south part in term of regional stress field or geological structure unit, and that the boundary of them is a tectonic line that is represented by NE-SW lineaments crossing the image at the center.

On the other hand, short or discontinuous lineaments tend to concentrate Dong Noi Mae Kanai area and Mae Sariang river area (right of Fig. II-4-7). Lineament density in both areas elongates parallel to the NE-SW lineaments crossing the image at the center. Further, center of the high lineament density area crosses in right angle and continues from Dong Noi area to Mae Sariang area with NW-SE direction.

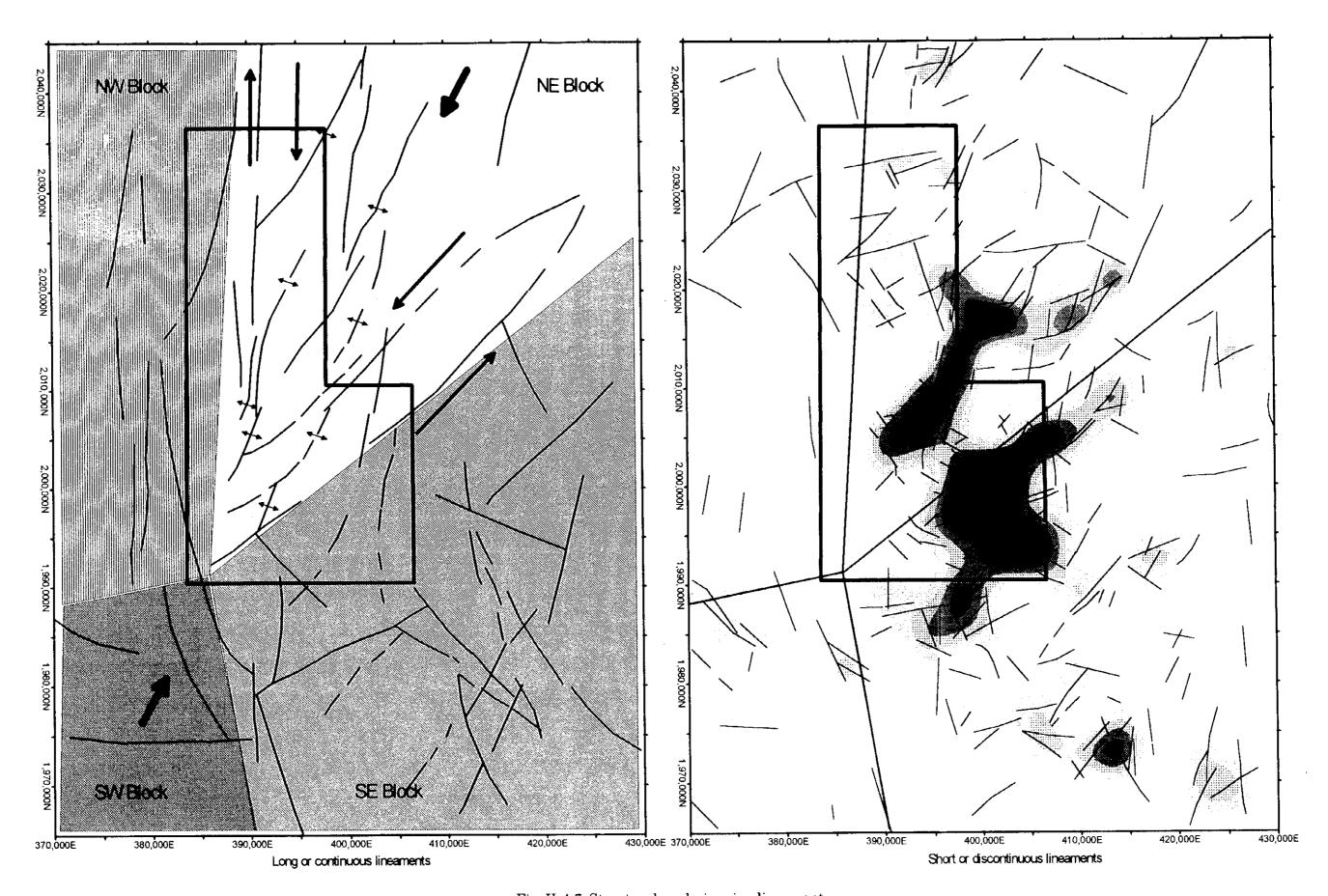


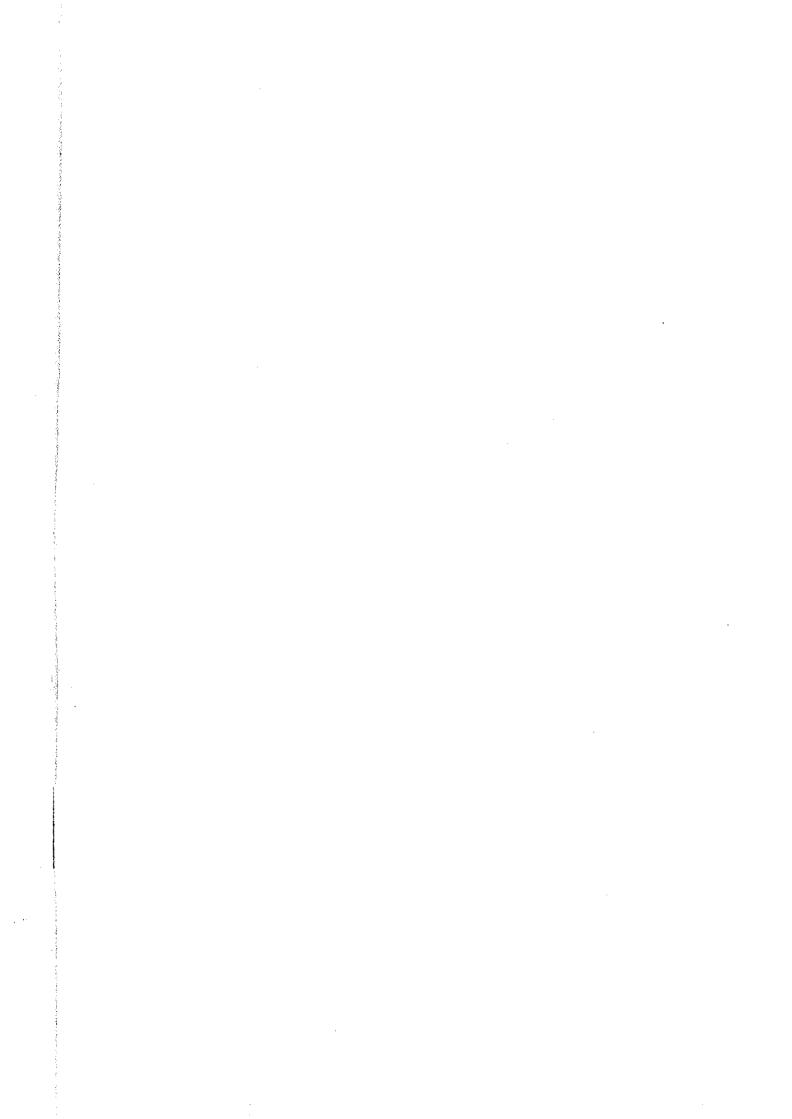
Fig. II-4-7 Structural analysis using lineament

4-3 Result of Satellite Image Analysis

4-3-1 Result of Image Analysis

As a result of photo-geological analysis using satellite image, it was revealed that geology of the study area consists of Paleozoic (partly Mesozoic) and Granite intruding into them, and that there are three limestone bodies in the Paleozoic. According to the arrangement and bedded structure of the interpreted units, it was assumed that the Paleozoic-Mesozoic has NS strike and dips to west. Granite extending in the ground survey area is Central Granite (Gr2) that might be of composite intrusive or of two or more intrusions of different time.

According to the distribution of continuous lineament, the area might be divided into four blocks. Lineament pattern on the center to north part of the image can be explain by a model; an assumption of a stress field with maximum compression axis in NNE-SSW direction. In this case, N-S lineament would correspond to right-lateral fault, NE-SW lineament to left-lateral fault, and NNE-SSW lineament to tension fracture. It is possible to assume that the central to north part is different to the south part in term of regional stress field or geological structure unit, and that the boundary of them is a tectonic line that is represented by NE-SW lineaments crossing the image at the center.


Short or discontinuous lineaments tend to concentrate Dong Noi - Mae Kanai area and Mae Sariang river area, and lineament density of them elongates parallel to the NE-SW lineaments crossing the image at the center, while the center of the high lineament density area continues from Dong Noi area to Mae Sariang area with NW-SE direction.

4-3-2 Relation between Image Analysis and Ore Deposit / Mineral Occurrence

Result of satellite image analysis is shown with distribution of mineral occurrence (Fig. II-4-8). Dong Noi and Mae Kanai mineral occurrences are on the south of the NE-SW lineaments (or tectonic line) crossing the image at the center, while other mineral occurrences are on the north of the lineaments.

Dong Noi and Mae Kanai mineral occurrences are located at the west margin of a Paleozoic Limestone (Ls), on the West of that Granite (Gr2) is extending. Also, these mineral occurrences correspond to high density area of short or discontinuous lineaments. Dong Noi mineral occurrence extends southward from a crossing point of this high density area and NNE-SSW continuous lineament. Mae Kanai mineral occurrence is located at a crossing point of the NE-SW lineaments (or tectonic line) and NNE-SSW continuous lineament on the North of this high density area.

Mae Pan river mineral occurrence is lined up on a NNE-SSW lineament in Paleozoic (P4). Since being held between two NE-SW lineaments, this NNE-SSW lineament is interpreted as a tension fracture based on a regional stress field model mentioned above, and existence of vein type deposits agrees with this interpretation. Also, this mineral occurrence corre-

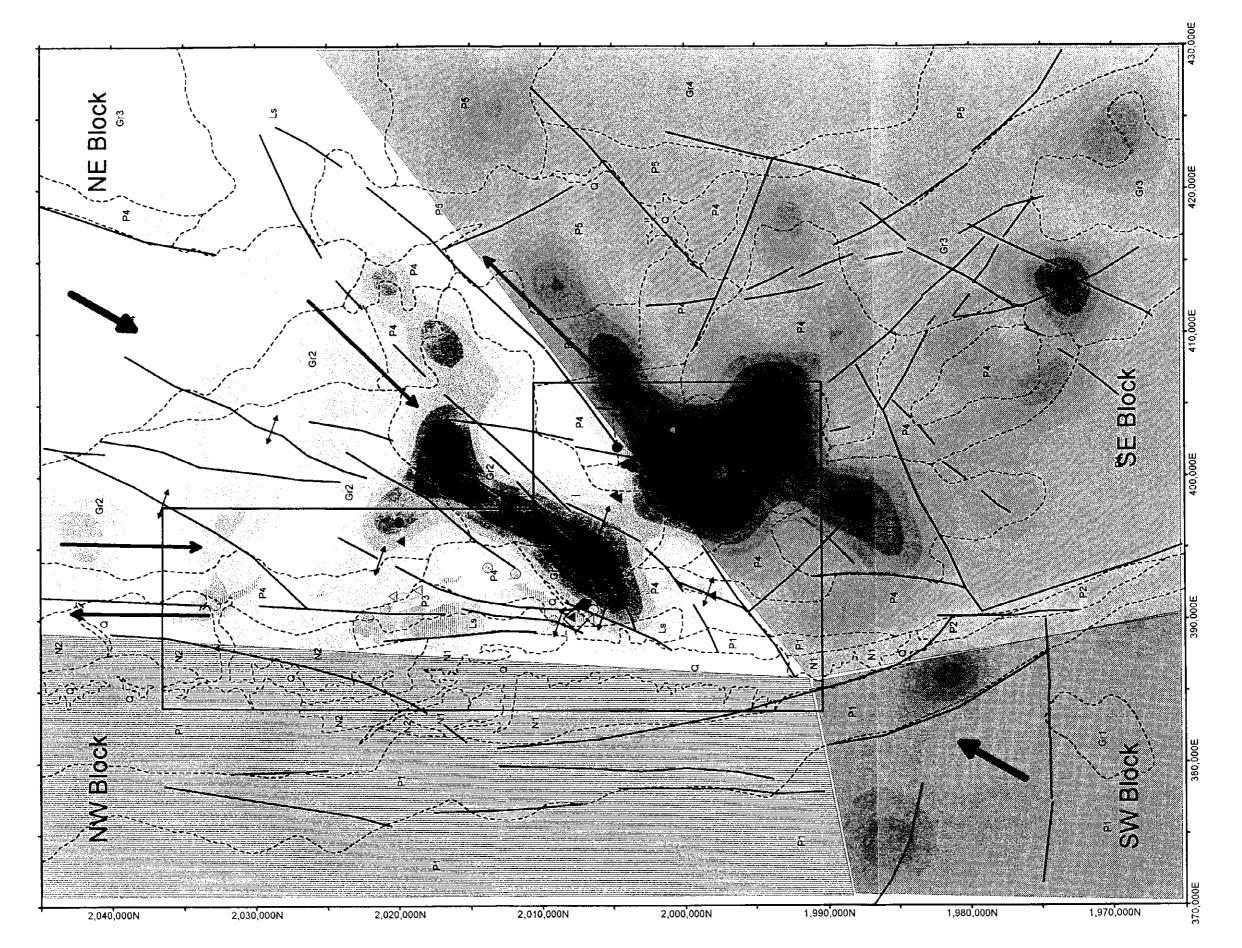


Fig. II-4-8 Result of analysis using JERS-1/SAR and OPS imagery

LEGEND

Satellite image analysis

Geologic unit

Long or continuous lineament

Direction of stress

Tension stress field

Density of short or discountinuous lineament

Block of lineament pattern

Outcrop Floats Mineral

68

As.

Galena - Barite

•

Galena

_

Sphalerite

 \blacktriangle

Chalcopyrite, Copper Oxide

 \blacktriangle

Magnetite

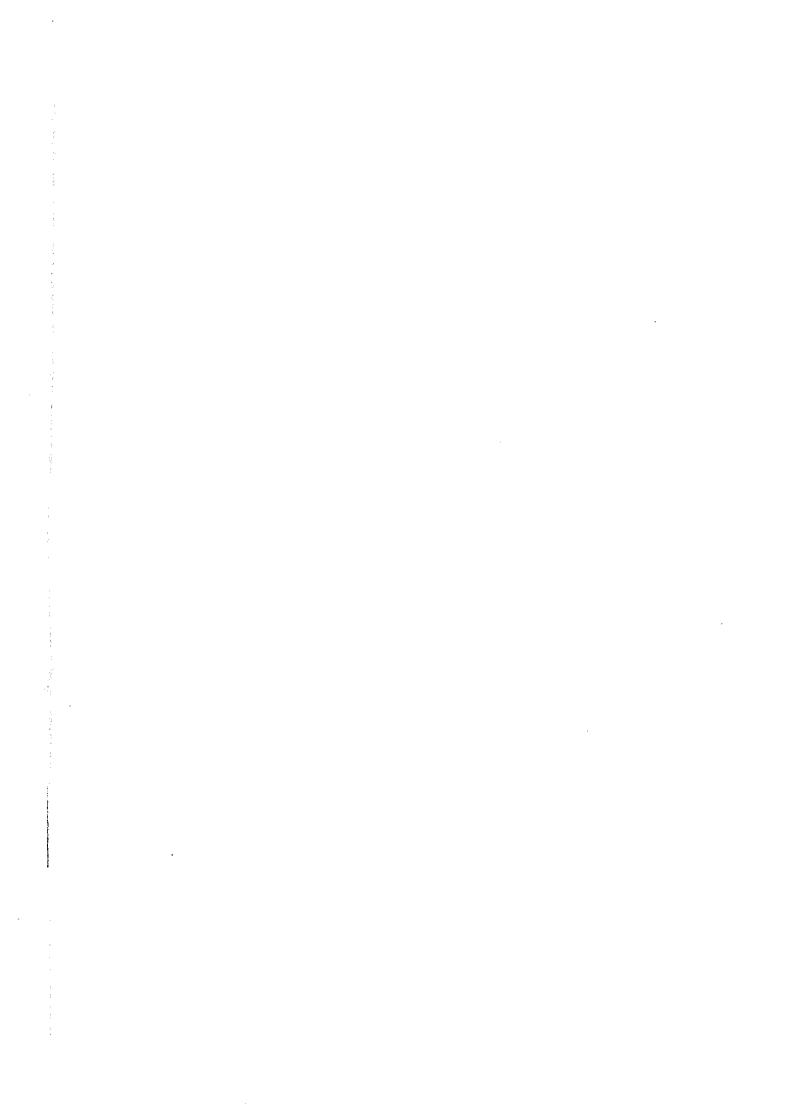
•

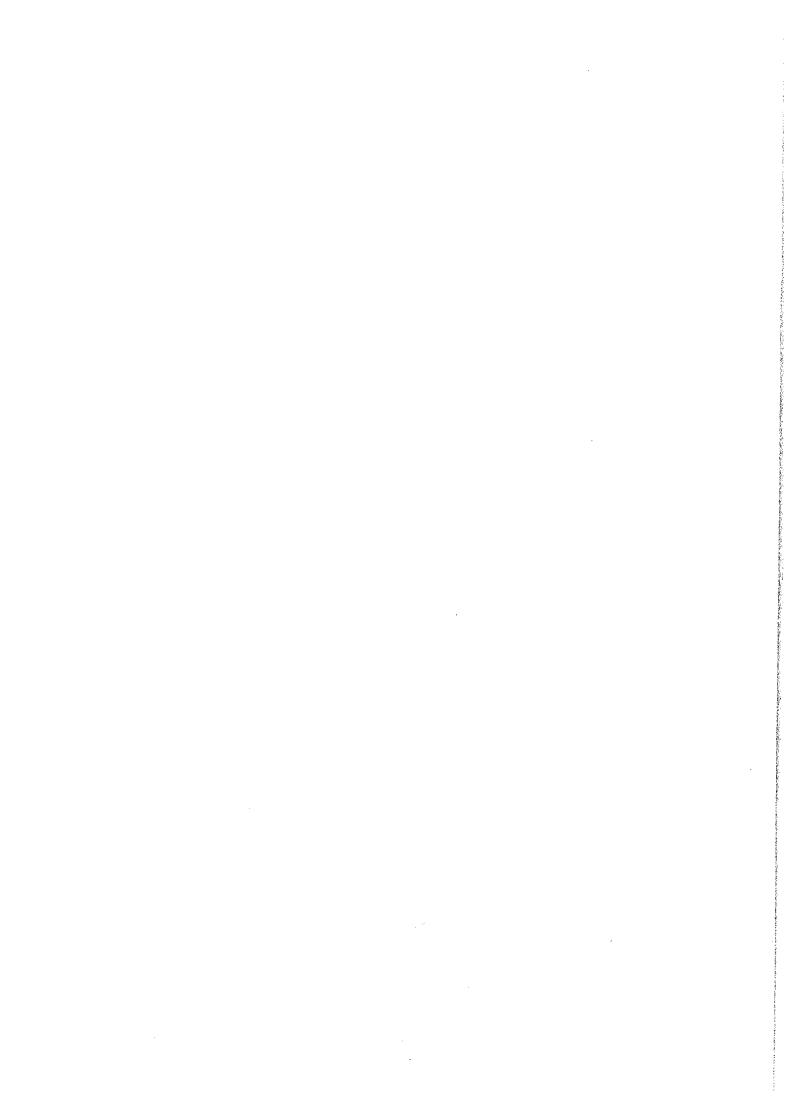
A

Gossan

A

Barite


(6)


Ø.

Fluorite

resolutions English Limestone (Carb.-Devonian)

entareadores Properios Limestone (Ordovician)

sponds to low density area of short or discontinuous lineaments.

I-4 mineral occurrence is located near NNE-SSW lineaments among the boundary of Paleozoic (P4), Paleozoic Limestone (Ls) and Granite (Gr2), and corresponds to the west wing of high density area of short or discontinuous lineaments.

Hat Ta Lan river mineral occurrence is located in Paleozoic (P3 and P4) and is held between two N-S to NNW-SSW lineaments. This occurrence is lined up in NNW-SSE direction and corresponds to medium density area of short or discontinuous lineaments.

4-3-3 Promising Areas of Ore Deposit

In this satellite image analysis, it is suggested that mineral occurrences in Mae Sariang area relate hardly with Granite and Limestone, and with continuous lineaments and density of short or discontinuous lineaments. Therefore, possibility of ore deposit would be high for such area as satisfying the following condition;

- 1) nearby contacts of Limestone (Ls) and Granite (Gr2),
- 2) crossing point of continuous lineaments,
- 3) nearby NNE-SSW lineaments that are considered as tension fracture,
- 4) high density area of short or discontinuous lineaments.

Hereafter, it is necessary that making attention to these points.

Chapter 5 Laboratory test

5-1 Homogenized temperature and salinity of fluid inclusion

The measurement of homogenized temperature and salinity of fluid inclusions had been performed with an object of the formed temperature and the nature of mineralization. The results of those are shown in Appendix 11 and Fig. II-5-1.

The samples came from the Padeang mine, the Tak mine, Dong Noi area, I-4 area and Huai Mae Pan area.

The tested minerals were two, one is sphalerite from the Padeang mine and the Tak mine, and another is quartz from other area.

An easily visualized from the figure, combinations of temperature and salinity are divided into three groups.

The Padeang and Tak mines are the stratiform deposits replacing limestone. The originated fossils are remained in sphalerite ore body of the Tak mine. The effects of contact metamorphism and alteration are not remarkably observed in wall rocks. From these facts, it is may be inferred that the mineralization had been occurred under static condition and low temperature. Homogenized temperature of TAK-1 (Tak mine) and PHL-1 (Hue Lon deposit, Padeang mine) shows low temperature from 100 to 140°C anticipatively. The salinity of Tak-1 is two to three times of it of PHL-1.

Two samples from the Dong Noi area, one came from a outcrop of galena-barite occurrence and another came from top soil layer of Test-pit No.2, are plotting in the different domains of the figure. S-3 from outcrop has high temperature (200 to 280°C) and high salinity (13 to 18 wt%). AR-002, which might be barren quartz vein at the latest stage, varies from 140 to 180°C of homogenized temperature and has extremely low salinity.

For quartz vein and its float from Dong Noi area (BR-022), I-4 area (AR-010), and Huai Mae Pan area (AR-043, BR-025, DR-006), its temperatures vary from 100 to 320°C and its salinity from 1 to 6 wt% and plot on a continuous trend. This trend is similar to its of hydrothermal deposits in Japan. On the other hands, for AR-006, which is chalcopyrite-cuprite-galena-barite-quartz vein in Huai Mae Pan, BR-040, which is galena disseminated siliceous rocks, and AR-007, which is galena-quartz vein float, in I-4 area, these fluid inclusions indicate low temperature and extremely high salinity in spite of coexisting with the former samples.

5-2 Stable isotope measurement

Carbon and oxygen stable isotope analysis was done in regard to the evaluation of efficacy for exploration in this area. The results are given in Appendix 10 and Fig. II-5-2.

Tested samples were limestone of Mae Sod deposit (AR-011) and Hue Lon deposit (AR-013) of Padeang mine, Tak Mine (AR-015), limestone contact with barite vein in Chamrat mine

(AR-009), recrytstaline limestone (AR-033) and marble (BR-032) in Dong Noi area, and marble (BR-047, DR-028) and coarse calcite vein in I-4 area.

Naito et al.(1995) and Nakano et al.(1997) about Kamioka mine, Japan, and Fu et al.(1991) about Dachang mine, Chaina, reported that both isotope become lighter from unaltered marble to ore body.

 δ ¹³C and δ ¹⁸O of Padeang and Tak mine are almost similar to that of unaltered limestone. Limestone from Chamrat mine underwent hydrothermal effect indicates the lowest δ ¹³C and δ ¹⁸O among all of samples. δ ¹³C and δ ¹⁸O of Dong Noi area are slightly lighter than those of Padeang Mine. δ ¹³C of I-4 area is also lighter than that of Padeang mine, but δ ¹⁸O is almost same.



Fig.II-5-1 Variation diagram between homogenized temparature and salinity of fluid inclusion

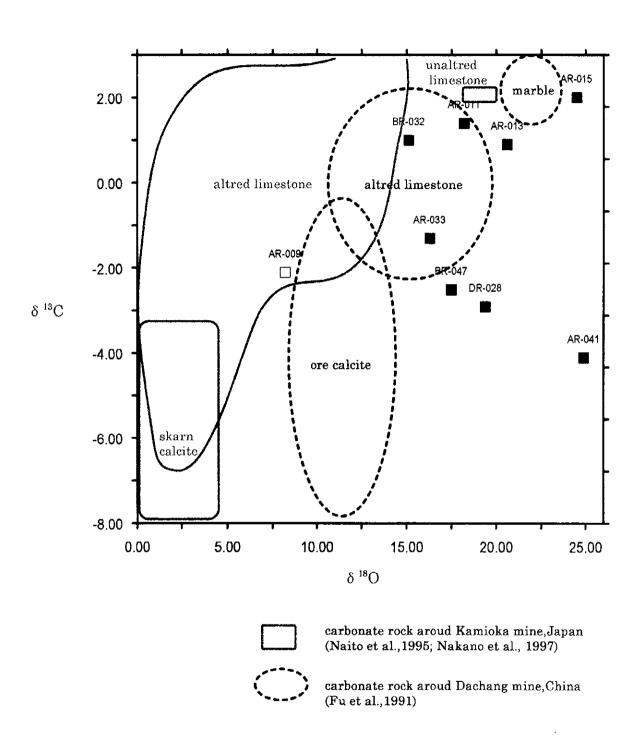
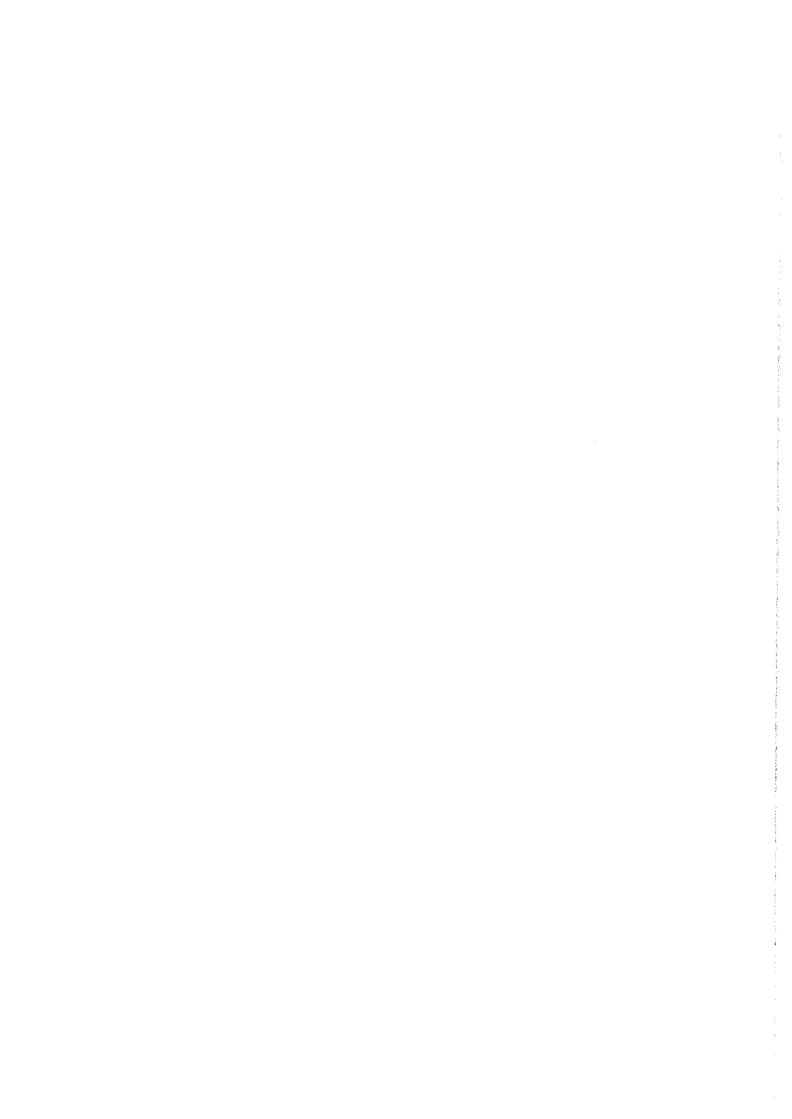



Fig. II-5-2 Plot of δ ^{13}C vs δ ^{18}O values of carbonate rock

1

III Conclusions and Recommendation

III Conclusions and Recommendations

Chapter I Conclusions

1-1 Mae Sariang Area

The distributions of various minaral occurrences and geochemical anomalies in Mae Sariang Area are closely related to the distribution of carbonate rocks such as limestone and limestone lens, alternating beds of shale and limestone in the Ordovician system, from the Devonian to Carboniferous systems, from the Permian to Triassic systems. It is considered that since carbonate rocks play a great role in the formation of ore mineralization.

In judging that, areas where distributions of limestone, mineral showings and geochemical anomalies overlap have high potential in occurrence of mineral deposits. Four districts of Mae Ka Nai, from Huai Pu to Huai Mae Pan, Um Mae Sariang West Bank and from Huai Hat Ta Lan to Huai Ng have been selected as the promising area for next phase. In the areas of Mae Ka Nai and Mae Sariang West Bank, there are possibilities of originating stratiform deposits or skarn type massive sulfide ore deposits through the metasomatism of limestone. In the district extending from Huai Pu to Huai Mae Pan and that from Huai Hat Ta Lan to Huai Ngu, there is a promising potential of vein type sulfide deposits and massive deposits through metasomatism of limestone lenses.

1-2 Don Noi Area

The mineralization in Don Noi area is considered to be as follows:

ore solution which has gone up along the fault of north-south system bordering between Cambrian sandstone and Ordovician has formed a vein type ore body which mainly consists of galena, barite and pyrite. The remained solution has diffused and replaced along some particular horizons of limestone in the surroundings to form zinc mineralization.

Vein type ore bodies certainly distribute at the places which correspond to high electric charging area in the north side of the east and west faults. The center is the middle of traverse lines A and B at the depth of 100 to 150 m.

At present, how the occurrences of zinc through metasomatism of limestone are existing cannot be seen clearly with the naked eye. But their features resemble with those of Mae Sod mineral deposit owned by Padeang Industry Inc. Mineralization seems to have occurred at various horizons in limestone.

1-3 I-4 Area

In the I-4 area, geological situation and mineral showings of one side remarkably differ from those of the other side of the NE-SW fault running through the center of the district.

In the northern side of the area, Ordovician limestone formation distributes and geochemical anomalies of Zn and Pb and F are recognized in the limestone. The distribution of anomalies suggests a high possibility that the distribution is controlled by the N-S fracture system. The anomaly levels are lower than those of Don Noi district by one figure. The

fact that there is no anomaly of Cd is also different from Don Noi district. Judging from the fact that there are the mineralization of zinc at a certain level in this rock, the geochemical anomaly of zinc in the Ordovician limestone which is continuing from the north side of this limestone is showing a possibility of existing zinc ore body.

In the southern side of the area, a mineralization zone in which several stockwork vein zones with sulfide minerals are found in the shale from the Permian to Triassic along the river. Geochemical anomalies and low specific resistivity and high chargeability zones distribute in the northwest direction that is the extension direction of the veins. Judging from this correlation, there is a high possibility of existing of vein type ore bodies under this zone which are more concentrated than the stockwork veins on the surface. From the distribution of geochemical anomalies and that of high chargeability, it is recognized that the center of the ore body is somewhere below the measurement point 700 of the traverse line A.

1-4 Satellite Images Analysis

î

In this satellite image analysis, it is suggested that mineral occurrences in Mae Sariang area relate hardly with Granite and Limestone, and with continuous lineaments and density of short or discontinuous lineaments. Therefore, possibility of ore deposit would be high for such area as satisfying the following condition;

- 1) nearby contacts of Limestone (Ls) and Granite (Gr2),
- 2) crossing point of continuous lineaments,
- 3) nearby NNE-SSW lineaments that are considered as tension fracture,
- 4) high density area of short or discontinuous lineaments

Chapter 2 Recommendations for the Second Year Survey

The most promising area among those selected on the basis of the preliminary survey results of Mae Sarian Area is Mae Ka Nai district. In this district, it is necessary to carry out geological detailed surveys, geochemical detailed surveys and IP prospecting to grasp the distribution of mineralization and geological structures to point out locations of existing of mineral deposits.

In the area from Huai Pu to Huai Mae Pan, it is not considered that there is a large scale stratiform mineral deposit, but since geochemical anomalies of zinc and lead are the highest within this area. It is desirable that geological detailed surveys, soil geochemical survey and trench surveys are to be carried out to clarify the existing forms of mineral occurrences

In the northeastern area of Nam Mae Sariang Town in the west bank of Nam Me Sariang, it is necessary to carry out soil geochemical survey along the stream where geochemical anomalies of zinc are found this year to confirm the possibility of zinc occurrence.

In the Don Noi detailed survey area, it is necessary to confirm the scale and the grade of ore body by drilling surveys at the center point of vein type ore body. As for the zone of geo-

chemical anomalies of zinc, it is necessary to clarify existing forms of zinc mineralization and horizons of mineral deposit in limestone by trenching surveys and drilling surveys. It is also necessary to confirm the range of distribution of ore showings by carrying out soil geochemical survey from the southwest side to the west side of the area.

In the I-4 area, it will be useful to carry out a drilling survey at the center of vein type ore body to confirm the occurrence conditions and the grade of ore body. At the same time, it is considered that together with the survey results of the area from Huai Pu to Huai Mae Pan of which geological conditions are similar, clarification of its vein type mineralization will be useful for elucidation of the features of mineralization in Mae Sariang Area.

References

- DMR, 1983: Natural resources of the Mae Hong Son area. 101p.(in Thai)
- Fu, M., Changkakoto, A., Krouse, H.R., Gray, J. and Kwak, T.A.P., 1991: An oxygen, hydrogen, sulfer, and carbon isotope study of carbonate-replacement (skarn) tin deposits of the Dachang tin field, Chaina. Econ. Geol., 86, 1683-1703.
- German Geological Mission in Thailand, 1981: Geological Map of Northern Thailand 1:250,000: Sheet 5 Chiang Mai. Federal Institute for Geosciences and Natural Resources, Hannovar.
- Hahn, L., Koch, K.E. and Wittekindt, H., 1986: Outline of the geology and the mineral potential of Thailand. Geologische Jahrbuch, Volume 59, p.3-49.
- Hahn, L. and Siebenhüner, M., 1982: Explanatory Notes (Paleontology) on the Geological Maps of Northern and Western Thailand 1:250,000, (Sheets Ann, Chiang Rai, Phayao, Chiang Dao, Chiang Mai, Li, Thong Pha Phum). Bundesanstalt für Geowissenschaften und Rohstoff, Hannover, 76p.
- JICA and MMAJ, 1986-88: Report on the cooperative mineral exploration of the Yang Kiang area.
- Jamnongthai, M., 1984: Geochemical prospecting in the topographic map of Chiang Mai sheet. Economic Geology annual report, DMR, p16-46. (in Thai)
- Jamnongthai, M., 1988: Preliminary detailed geochemical prospecting in the Amphoe Mae Sariang, Amphoe Mae La Noi and Amphoe Khun Yuam, Changwat Mae Hong Son. DMR, Economic Geology Report, 7, 43p (in Thai).
- Naito, K., Fukahori, Y., Peiming, H., Sakurai, W., Shimazaki, H. andMatsuhisa, Y., 1995: Oxygen and carbon isotope zonations of wall rocks around the Kamioka Pb-Zn skarn deposits, central Japan: application to prospecting. Jour. Geochem. Exploration, 54, 199-211.
- Nakano, T., Murakami, H., Miyake, K. and Nakayama, K., 1997: Chemical composition of 18O-depleted limestone in the Kamioka Zn-Pb mine as a potential tool for the exploration of skarn deposits. Resource Geol., 47(3), 109-119.
- Sasaki, Y., 1988: Improved two-dimensional resistivity inversion. Buturi-Tansa, 41, p.111-115.

APPENDICES

Appendix 1 Microscopic Observation of Rock Thin Section

()

- }

						PHENOCRYST/GRAIN	RYS	I/GRA	z			Ĕ	CND	GROUNDMASS/MATRI		Fragment		LTER	ATION	ALTERATION · METAMORPHI	TAMC	RPHI	
S S	NO. Sample No. Locality	Locality	Rock Type	Техите	Plagioclase Quartz	Biotite K-feldspar	Hornblende Muscobite	Garnet Fe-mineral	Tremolite Tourmaline	Andalusite Wollastonite Diopside	Cordierite	Quartz Calcite	K-feldspar Plagioclase	Glass Fe-mineral Biotite	Calcite	Granite Sandstone	Quartz Tuff	Sericite Chlorite	Calcite	Fe-oxide Magnesite	Opaque mineral Fe-hydro-oxide	Monazite Sphene	REMARKS
	AR-025		Biotite granite porphyry	Porphyritic, Equigranular	0	4	_	-				0	0	4	_	‡		4		Ė	4	<u> </u>	Intrusive or dyke.
2	AR-039		Metamorphosed quartzose sandstone		0	0	-	◁		<u> </u>							-	0	<u> </u>	Ť	0		
3	BR-015		Saccharoidal limestone		0		 -			ļ	0		<u> </u>			-	ļ	₫			◁	ļ <u>.</u>	Calcite veinlet
4	BR-016		Gamet skam		◁	<u> </u>		0	⊚ ⊲	4	0	_			 	<u> </u>	\vdash	\vdash			F	 	
\$	BR-031		Conglomerate							ļ		0	0	0	0	4	7	0	<u> </u>			 	Recrystalized
9	BR-039		Homfels		0		0	_	0			0	◁	<u> </u>				\vdash		-	-	+-	Basic rock origin
7	BR-055		Homblende bearing biotite dacite	Porphyritie, Vitrie	0	◁	4			-		 		© ⊲ ⊲		_	<u> </u>	0		Ĭ	0	╁	
80	BR-058		Saccharoidal limestone								0				0			-	<u> </u>	4	Ī.,	\vdash	
6	BR-06		Cordierite argillaceous homfels		0	©				_	0	0	7	4	<u> </u>		<u> </u>	◁		<u> </u>	-	4	Mud stone origin
2	DR-002		pyroxene skam		0				0				7	4		 	<u> </u>	4	◁	△	ļ	4	
-	DR-014		Andesite (Java?)		©		<u> </u>					© 4		0		<u> </u>	ō	0		1		 	Unknown carbonate minera
12	DR-025		Cordinite angillaccous homicis		©	© \				◁	0			_				4				4	Mud stone origin.
<u></u>	GR-050		Gamet skam					0	Ó		0				 	-			_		ļ	1	
4	AR-014		Carbonate rock	-	0						_								0			-	Bearing fossils,

Appendix 2 Microscopic Observation of Ore Polished Section

	Remarks												
						0							
	Quartz	0	0	0	0	0	©	0	0	0		0	◁
	Calcite	0	0	◁			0	◁	0		0		
	K-Feldspar	◁										4	◁
	Tremolite				0	0	∇	٠					
	Clay Mineral					•							
	Hematite												
	Goethite												0
	Lepidochrocite												0
L S	Malachyte		•										
MINERALS	Magnetite											0	
E E	Tetrahedrite								•				
=	Arsenopyrite									abla			
	Cuprite		0										
l	Calcosite		abla										
	Sphalerite		•		◁						4		
	Galena	0	0	0	0	•	◁	•					
	Pyrite				0	◁	0	0		0	4		
	Chalcopyrite	-	4		◁						◁		
	HOST ROCK												
	NO. SAMPLE N	AR-001	AR-006	AR-007	AR-010	AR-028	AR-040	BR-043	DR-006	ER-001	ER-029	HR-004	Z-475
	ÖZ	-	2	3	4	5	9	7	∞	6	02	=	12

Legend ◎:Abundant ○:Common △:Minor •:Rare

Appendix 3 Result of X-ray Diffracton

		Remarks				The state of the s				A Marie Carlos						the second secon		garnet:: grossular	Hemimorphite Zn ₄ Si ₂ O ₇ (OH) ₂ ·H ₂ O		
		Plagociase							75]
		sheno		13	80	59	77		52	15	59	20	10	31	8	24	4	2	80		\Box
ore mineral		Goethite						3													
ě		Hematite	4										\Box				-			-	_
Ľ	_	Pyrite	4				3									·					_
밀	-=		4	_	4																_
carbonate	mineral	Magnesite	\bot		7															_	_
ar	Ē	Dolomite	4	_						_											_
Ц		Oalcite	_															30			
ate	ā	Jarosite	4	က						\Box		5				က	2				\Box
sulphate	minera	Gypsum		_																	
್ಷ	ב	Barite	\perp	7								٠.									
Ш		Hemimorphite	\perp															ļ 	5		
		Garnet																6			
		Tremorite		15								15			T	14					
		Potash-feldspar				14			40	15	9	3	12		6	3		٠.			
j-je		Toumaline															9				
mineral		Halloysite											7								
		əfidlA											25								
silicate	9	Kaolinite									(C)						Ü				
<u>S.</u>	clay mineral	Sericite			2	3	2		į	-	3		3	6	1						
	≥	9 Shinold	П											8	1						
	픙	Sericite/Mont.																	ന		
		Chlorite/Mont.																			
		Montmollironite			-					က								7			П
	minerals		Description																		
		sə _l dwes	No. Sample No.	1 AR-010	2 AR-014	3 AR-017	4 AR-028	5 AR-038	6 AR-045	7 AR-046	8 BR-011	9 BR-039	10 -BX-01	11 CR-016	12 DR-002	13 ER-001	14 ER-002	15 GR-050	16 PMS-1	17	18

Appendix 4 Geochemical Data of Stream Sediment

SAMPLE DESCRIP	Au ppb FA+AA	Sn ppm	F ppm	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppb	Mg %	Mn ppm	P ppm	Pb ppm	Sb ppm	W ppm	2n ppm
1 A-001	<5	11	380	<0.2	10	100	13	1,73	<10	0.40	285	460	32	<2	<10	36
2 A-002	<5 - r	5	550	<0.2	22	90 150	11 15	1.93 2.70	<10 <10	0.67 1.02	305 400	560 820	34 50	<2 <2	<10 <10	62 92
3 A-003 4 A-004	<5 <5	3	870 760	<0.2 <0.2	32 20	120	16	2.48	<10	0.78	350	630	36	<2	<10	86
5 A-005	<5	57	470	<0.2	26	60	15	1.49	<10	0.42	265	810	44	<2 -0	10	50
6 A-006	<5 <5	6 5	680 400	<0.2 <0.2	26 26	120 60	20 7	2.77 1.50	<10 <10	0.81 0.46	385 250	1030 560	42 38	<2 2	<10 <10	114 100
7 A-007 8 A-008	45	7	540	<0.2	40	100	12	2.15	<10	0.68	415	1140	72	<2	<10	132
9 A-009	<5	9	660	<0.2	16	100	14	2.63	30	0.04	1485	90	122	6 6	<10 <10	190 60
10 A-010 11 A-011	<5 <5	2 22	300 440	<0.2 <0.2	22 32	320 110	20 23	2.68 3.68	40 70	0.17 0.05	1485 2250	140 150	82 608	8	<10	118
12 A-012	<5	<2	280	<0.2	24	200	19	2.61	10	0.10	1360	110	56	4	<10	62
13 A-013	<5	<2	300	<0.2	28	120	24	2.97	<10	0.19	980	140	20 70	2 <2	<10 <10	46 70
14 A-014 15 A-015	<5 <5	<2 3	270 230	<0.2 <0.2	32 24	230 160	23 17	3,17 2.24	20 <10	0.14 0.15	1440 850	160 170	22	4	<10	30
16 A-016	<5	7	240	<0.2	20	200	17	2.28	<10	0.14	985	180	14	6	<10	28
17 A-017	<5	2	270	<0.2	26	160	22 10	2.68 1.64	10 <10	0.14 0.41	955 270	170 310	40 26	2 <2	<10 <10	58 32
18 A-018 19 A-019	<5 <5	8 3	400 230	<0.2 <0.2	16 10	100 60	5	1.21	<10	0.29	215	230	36	<2	<10	24
20 A-020	<5	2	150	<0.2	8	90	10	1.28	<10	0.17	335	210	36	<2	<10	22
21 A-021	<5 <5	31 105	140 200	<0.2 <0.2	24 18	90 80	4 7	0.81 1.20	<10 <10	0.14 0.15	270 155	150 290	28 58	<2 2	<10 <10	14 24
22 A-022 23 A-023	5 <5	3	180	<0.2	8	100	6	1.14	<10	0.13	135	170	26	<2	<10	20
24 A-024	<5	3	250	<0.2	18	110	7	1.80	<10	0.25	215	270	38 672	2 4	<10 <10	32 26
25 A-025 26 A-026	<5 <5	4 2	240 50	<0.2 <0.2	18 10	110 100	35 5	1.80 0.82	<10 <10	0.28 0.01	250 920	490 50	8	<2	<10	10
27 A-027	<5	<2	310	<0.2	98	240	20	2.94	220	0.04	1280	180	30	10	20	64
28 A-028	<5	<2	480	<0.2	406	380	45	4.64 1.24	220 10	0.04 0.07	1885 1330	380 90	44 26	26 4	30 <10	102 38
29 A-029 30 A-030	<5 <5	<2 <2	180 280	<0.2 <0.2	40 58	280 330	11 23	3.33	10	0.03	1665	140	56	10	<10	70
31 A-031	<5	<2	210	<0.2	56	470	22	2.50	30	0.03	2050	200	42	8	<10	44
32 A-032	<5 <5	<2 <2	200 260	<0.2 <0.2	74 48	490 360	14 25	1.77 3.10	10 30	0.12 0.11	1975 1425	140 150	62 28	6 8	<10 <10	48 62
33 A-033 34 A-034	<5	<2	170	<0.2	46	120	17	2.16	20	0.12	465	110	18	6	<10	46
35 A-035	<5	2	70	<0.2	2	50	4	0.50	10	0.02	165	90 70	30	<2 2	<10 <10	16 12
36 A-036 37 A-037	<5 <5	2 11	50 250	<0.2 <0.2	6 12	220 80	3 7	0.49 1.23	<10 <10	0.01 0.31	230 245	230	14 28	<2	<10	28
38 A-038	<5	2	280	<0.2	10	110	8	1,26	<10	0.29	250	290	56	2	<10	66
39 A-039	<5	3	50	< 0.2	2	80	<1 4	0.26 0.35	<10 <10	0.01 <0.01	105 100	50 60	4 6	<2 <2	<10 <10	8 2
40 A-040 41 A-041	<5 <5	2 3	50 40	<0.2 <0.2	<2 6	70 80	3	0.49	<10	<0.01	250	90	ě	2	<10	2
42 A-042	<5	3	110	<0.2	2	50	1	0.59	<10	0.09	170	120	24	2	<10	14
43 A-043	<5 <5	7 <2	190 280	<0.2 <0.2	4 6	80 80	6 10	0.86 1.35	370 10	0.19 0.26	160 225	300 310	28 138	2 <2	<10 <10	18 30
44 A-044 45 A-045	<5	12	230	<0.2	8	60	6	0.91	<10	0.23	245	300	56	<2	<10	30
46 A-046	<5	<2	150	<0.2	4	80	5	0.83	<10	0.13	610	220 340	72 64	2 2	<10 <10	26 44
47 A-047 48 A-048	<5 <5	12 2	400 260	<0.2 <0.2	18 2	110 70	11 6	1.67 1.17	10 <10	0.40 0,29	465 265	230	32	2	<10	28
49 A-049	<5	<2	160	<0.2	2	60	2	0.63	<10	0.14	165	180	26	<2	<10	18
50 A-050	<5	4	200	<0.2	<2 20	60 80	4 7	0.80 1,46	<10 <10	0.19 0.39	190 365	230 250	30 42	<2 <2	<10 <10	24 72
51 A-051 52 A-052	<5 <5	9 10	420 150	<0.2 <0.2	18	80	5	0.97	<10	0.14	330	150	26	<2	<10	72
53 A-053	<5	7	170	<0.2	24	80	7	1.48	<10	0.12	725	200	50	<2	<10	72 130
54 A-054 55 A-055	<5 <5	<2 6	400 370	<0.2 <0.2	106 22	200 160	39 10	5.22 2.04	40 <10	0.08 0.41	3230 1040	460 280	96 82	4 2	<10 <10	70
56 A-056	<5	<2	280	<0.2	24	100	25	2.28	<10	0.05	1470	260	18	<2	<10	40
57 A-057	<5	7	280	<0.2 <0.2	30 24	140 120	9 8	2.10 1.80	<10 <10	0.27 0.27	790 660	270 240	78 70	2 <2	<10 <10	90 90
58 A-058 59 A-059	<5 <5	4 2	280 230	<0.2 0.4	108	310	28	5.21	70	0.18	4800	300	1215	18	<10	322
60 A-060	<5	3	310	<0.2	66	390	40	4.10	10	0.31	1520	270	86	4	<10	126
61 A-061	<5 <5	2 83	320 480	<0.2 <0.2	70 64	` 780 110	44 16	4.94 2.01	<10 <10	0.36 0.44	1840 650	260 980	116 88	2 <2	<10 <10	136 88
62 A-062 63 A-063	5	5	370	<0.2	74	370	47	4.28	<10	0.75	3540	330	350	2	<10	420
64 A-064	<5	3	390	<0.2	46	300	55	4,65	<10	0.57 0.19	1950 1310	310 280	102 150	<2 2	<10 <10	202 386
65 A-06 5 66 A-066	<5 <5	<2 2	280 350	<0.2 <0.2	44 42	410 290	27 40	2.90 4.26	10 <10	0.18	1960	240	164	<2	<10	370
67 A-067	<5	2	330	<0.2	44	790	34	4.21	<10	0.41	1300	240	220	4	<10	348
68 A-068	<5 45	<2	580	<0.2 <0.2	24 <2	160 60	20 3	3.84 0.61	<10 <10	0.11	890 155	210 60	46 12	2 <2	<10 <10	68 22
69 A-069 70 A-070	<5 5	<2 <2	210 320	<0.2	10	40	16	1.96	<10	0.36	435	260	4	<2	<10	12
71 A-071	<5	<2	200	<0.2	14	40	11	1,54	<10	0.28	290	260	6	<2	<10	12
72 A-072	<5 <5	<2 <2	270 260	<0.2 <0.2	20 22	40 40	14 14	2.11 1.88	<10 <10	0.33 0.32	510 385	280 180	8 6	<2 <2	<10 <10	12 12
73 A-073 74 A-074	<5	<2	260	<0.2	22	40	12	1.67	<10	0.30	335	280	6	<2	<10	14
75 A-075	<5	<2	320	<0.2	10	110	11	2.23	<10	0.34	665	200	12 16	<2 <2	<10 <10	20 34
76 A-076 77 A-077	<5 <5	<2 <2	200 270	<0.2 <0.2	20 16	70 100	18 26	2.06 2.95	<10 <10	0.29 0.41	370 640	240 450	12	<2	<10	24
77 A-077 78 A-078	<5	<2	200	<0.2	8	300	19	2.40	<10	0.28	465	250	14	<2	<10	16
79 A-079	<5	<2	210	<0.2	14	360	21	2.32	<10	0.32	440 175	250	22 28	<2 <2	<10 <10	24 36
80 B-001	<5 <5	49 2	260 50	<0.2 <0.2	14 4	70 50	6 <1	1,09 0.53	<10 <10	0.28 0.01	175 . 90	410 80	28 4	<2 <2	<10	<i>3</i> 6
81 B-002 82 B-003	<5	<2	50	<0.2	10	90	1	0.80	<10	0.02	29 5	80	8	<2	<10	8
83 B-004	<5	14	420	< 0.2	20	90	8	1.41	<10	0.46	250	420	28	<2	<10	56 8
84 B-005	<5 <5	<2 22	60 860	<0.2 <0.2	2 74	40 120	<1 19	0.44 2.57	<10 <10	0.03 0.98	105 440	60 1080	<2 94	<2 2	<10 <10	152
85 B-006 86 B-007	<5 <5	4	180	<0.2	28	80	11	1.47	<10	0.39	260	490	28	<2	<10	34
87 B-008	≺ 5	115	290	<0.2	32	90	20	1.65	<10	0.31	295 275	680	42 32	<2 2	20 <10	30 52
88 B-009 89 B-010	<5 <5	33 220	340 690	<0.2 <0.2	18 18	100 90	9 10	1.72 1.68	<10 <10	0.79 0.80	275 220	140 240	32	<2	<10	52 50
90 B-010	<5	49	380	<0.2	14	60	5	1.08	<10	0.37	170	130	24	<2	<10	46

Appendix 4 Geochemical Data of Stream Sediment

SAMPLE DESCRIP 91 B-012	Au opb FA+AA <5	Sa ppm 48	F ppm 400	Ag ppm <0.2	As ppm 24	Ba ppm 90	Cu ppm 8	Fe % 1.42	Hg ppb <10	Mg % 0.52	Mn ppm 260	р ррт 360	Pb ppm 34	Sb ppm <2	W ppm <10	Zn ppm 54
92 B-013	<5	350	500	<0.2	34	110	11	1.86	<10	0.78	340	240	46	<2	<10	62
93 B-014	<5	530	470	<0.2	32	100	13	1.74	<10	0.64	310	420	42	<2	<10	64
94 B-015 95 B-016	<5 <5	85 130	160 240	<0.2 <0.2	8 44	70 60	3 6	0.67 1.09	<10 <10	0.23 0.32	150 285	260 260	16 38	<2 <2	<10 <10	18 38
96 B-017	<5	12	280	<0.2	18	90	9	1.36	<10	0.39	285	490	30	<2	<10	50
97 B-018	<5	<2	150	<0.2	6	60	4	0.87	<10	0.13	115	190	22	<2	<10	18
98 B-019	< 5	<2	180	<0.2	12	120	5	1.28	<10 <10	0.18 0.19	250 355	260 230	62 46	<2 2	<10 <10	34 28
99 B-020 100 B-021	<5 <5	3 115	220 240	<0.2 <0.2	8 12	80 80	7 8	1.46 1.32	<10	0.19	355 215	300	40	<2	<10	40
101 B-022	<5	4	160	<0.2	6	60	6	0.88	<10	0.18	130	160	48	<2	<10	22
102 B-023	< 5	52	240	<0.2	16	80	7	1.26	<10	0.31	235	300	52	2	<10	34
103 B-024 104 B-025	<5 <5	16 9	250 180	<0.2 <0.2	14 <2	80 100	10 4	1,36 0.90	10 <10	0.28 0.22	215 180	340 200	56 22	<2 <2	<10 <10	30 20
104 B-025 105 B-026	<5	48	290	<0.2	12	90	14	1.69	<10	0.30	320	420	90	<2	<10	34
106 B-027	<5	15	160	<0.2	8	100	6	1.48	<10	0.30	320	260	20	<2	<10	30
107 B-028	<5	4	290	<0.2	56	390	35	3.25	10	0.28	2230	200	160	14	<10	100
108 B-029 109 B-030	<5 <5	2 2	370 370	0.8 <0.2	66 28	1150 180	70 28	2.58 3.07	40 <10	1,34 0.11	5630 940	190 260	828 18	38 2	<10 <10	196 56
110 B-031	<5	2	270	<0.2	124	420	47	4.39	30	0.07	4300	170	224	18	<10	202
111 B-032	<5	<2	350	<0.2	20	120	40	3,59	30	0.15	1640	240	24	<2	<10	66
112 B-033	<5	2	400	<0.2	30	150	39	3.90	30	0.15	1945	290	38	6 6	<10 <10	88 80
113 B-034 114 B-035	<5 <5	<2 2	300 290	<0.2 <0.2	44 34	180 170	19 23	2.17 2.91	<10 40	0,86 0.01	1205 980	270 200	68 30	2	<10	70
115 B-036	< 5	27	290	<0.2	78	440	17	1.79	10	0.36	1075	200	116	10	<10	68
116 B-037	<5	2	170	<0.2	148	260	27	3,50	30	0.09	2420	260	74	6	<10	102
117 B-038	<5 -5	12	130	<0.2	58	450	10 5	1.12	<10	0.45 0.01	675	150 150	68 14	2 2	<10 <10	44 8
118 B-039 119 B-040	<5 <5	3 <2	120 230	<0.2 <0.2	6 18	320 480	15	0.61 1.19	<10 <10	0.01	415 1305	170	80	2	<10	36
120 B-041	<5	37	110	<0.2	30	140	9	1.26	<10	0.04	515	140	98	2	<10	50
121 B-042	<5	15	100	<0.2	20	140	7	1.00	<10	0.04	505	110	66	2	<10	32
122 8-043	<5 -5	2	100 150	<0.2 <0.2	12	130 260	11 16	0.88 1.19	<10 <10	0,03 0.08	430 850	120 130	116 98	8 8	<10 <10	24 34
123 B-044 124 B-045	<5 <5	2 3	140	<0.2	42 30	280	17	1.15	<10	0.04	720	130	190	6	<10	26
125 8-046	<5	150	270	<0.2	28	150	19	1.78	<10	0.25	920	280	114	2	<10	50
126 B-047	<5	12	330	<0.2	8	50	10	1,14	<10	0.33	175	400	24	<2	<10	22
127 B-048 128 B-049	<5 <5	5 10	470 340	<0.2 <0.2	14 10	70 60	21 9	2.67 1.57	<10 <10	0.47 0.32	405 245	750 300	28 26	2 <2	<10 <10	36 26
129 8-050	<5	12	210	<0.2	6	40	29	0.81	<10	0.18	315	510	16	<2	<10	10
130 B-051	<5	46	160	<0.2	2	30	11	0.70	<10	0.15	205	310	14	4	<10	12
131 B-052	<5	6	700	<0.2	18	100 610	15 28	1.81	10 <10	0.71 0.25	390 310	830 700	30 28	2 <2	<10 <10	42 20
132 B-053 133 B-054	<5 <5	170 4	320 440	<0.2 <0.2	18 10	80	26 21	1.51 1.29	<10	0.23	245	870	50	<2	<10	46
134 B-055	<5	7	280	<0.2	10	60	6	1.09	<10	0.23	230	350	20	<2	<10	28
135 B-056	<5	24	220	<0.2	14	40	4	0.76	<10	0.21	165	220	16	<2	<10	20
136 B-057 137 B-058	<5 <5	4 18	230 270	<0.2 <0.2	<2 <2	20 40	4 4	0,68 0,77	<10 <10	0.21 0.24	80 120	270 300	10 16	<2 <2	<10 <10	18 20
137 B-058 138 B-059	<5	<2	170	<0.2	8	70	6	1.17	<10	0.17	155	200	12	<2	<10	28
139 B-060	<5	6	450	<0,2	6	40	9	1.48	<10	0.42	240	590	26	2	<10	30
140 B-061	<5 -5	<2	190	<0.2	16	100	19	2.85	<10	0.18	650	240	28	4	<10	64 28
141 B-062 142 B-063	<5 <5	2 4	220 450	<0.2 <0.2	6 10	140 50	6 9	1,39 1,40	<10 <10	0.24 0.41	350 230	280 590	12 24	<2 <2	<10 <10	36
143 B-064	< 5	4	250	<0.2	<2	40	9	0.87	<10	0.24	185	460	24	<2	<10	18
144 B-065	<5	8	360	<0.2	12	60	10	1.45	<10	0.34	395	700	18	<2	<10	26
145 B-066 146 B-067	<5 15	7 5	810 430	<0.2 <0.2	8 16	60 50	12 12	1.97 1.62	<10 <10	0.81 0.53	290 255	1330 880	18 32	<2 <2	<10 <10	48 74
147 B-068	<5	2	470	<0.2	.8	60	8	1.67	<10	0.58	245	600	18	<2	<10	42
148 8-069	<5	3	470	<0.2	20	210	14	2.06	<10	0.55	570	620	50	4	<10	62
149 8-070	<5	4	360	<0.2	16	210	12	1.86	<10	0.43 0.73	535 680	560 780	52 64	<2	<10 <10	54
150 B-071 151 B-072	<5 <5	3 <2	620 100	<0.2 <0.2	14 20	200 · 60	17 27	2,45 1.43	<10 <10	0.73	175	140	12	<2 2	<10	84 32
152 B-073	<5	<2	140	<0.2	12	70	22	1.44	<10	0.06	370	150	28	<2	<10	46
153 B-074	<5	<2	90	<0.2	8	60	19	1.06	<10	0.03	160	140	12	2	<10	18
154 8-075 · 155 B-076	<5 <5	<2 <2	100 80	<0.2 <0.2	12 4	540 460	11 5	5.15 2.64	<10 <10	0,08 0.01	1515 80	210 120	10 6	6 <2	<10 <10	12 12
156 B-077	<5	<2	60	<0.2	<2	480	4	2.69	<10	0.02	515	100	2	2	<10	8
157 B-078	<5	<2	50	<0.2	<2	240	3	1,29	<10	<0.01	105	80	2	2	<10	6
158 B⋅079	< <u>5</u>	<2	90	<0.2	32	50	103	4.08	20	0.01	765	260	44 8	6 2	<10 <10	22 2
159 8-080 160 B-081	<5 <5	<2 6	50 250	<0.2 <0.2	10 12	60 200	20 4	1,16 1,15	10 <10	<0.01 0.30	245 530	110 330	18	<2	<10	28
161 B-082	<5	37	190	<0.2	<2	60	3	0.65	<10	0.23	140	320	8	<2	<10	16
162 B-083	<5	5	370	<0.2	12	130	11	1.86	<10	0.39	550	480	30	2	<10	50
163 B-084	<5 <5	8 46	200 300	<0.2 <0.2	74 <2	200 50	21 7	3.98 1.21	<10 <10	0.12 0.29	1505 325	210 370	238 20	2 2	<10 <10	150 22
164 B-085 165 B-086	<5	4	170	<0.2	4	40	5	1.34	<10	0.15	215	220	16	2	<10	18
166 B -087	<5	4	330	<0.2	8	50	9	1.14	<10	0.35	445	250	26	<2	<10	34
167 B-088	<5	36	340	<0.2	4	70	6	1.09	<10	0 29	285	330	22	<2	<10	24
168 B-089	<5 <5	9 <2	430 120	<0.2 <0.2	8 10	90 210	8 9	1.60 3,58	<10 10	0.45 0.03	510 2000	370 260	34 30	<2 4	<10 <10	42 26
169 B-090 170 B-091	<5 <5	<2 <2	190	<0.2	18	150	7	2.60	10	0.03	2480	240	34	<2	<10	30
171 B-092	5	<2	620	<0.2	30	110	10	3.15	50	0.12	1695	350	80	4	<10	112
172 B-093	<5	<2	370	<0.2	32	120	7	2.81	20	0.10	1320	460	68	2	<10	92
173 B-094	<5 <6	3	260 250	<0.2	40 20	240 110	25 10	2.65 1.95	10 10	0.03 0.20	2430 620	230 220	48 54	2	<10 <10	58 58
174 B-095 175 B-096	<5 5	6 3	210	<0.2 <0.2	40	320	36	3,17	20	0.13	1975	420	96	8	<10	60
176 8-097	< 5	3	180	<0.2	32	250	26	2.51	20	0.11	2150	300	146	8	<10	52
177 8-098	<5	2	150	<0.2	14	130	13	1.82	<10	0.09	1825	140	30	6	<10	20
178 B-099 179 B-100	<5 <5	<2 <2	160 150	<0,2 <0.2	30 22	340 220	38 15	2.75 2.46	30 10	0.10 0.07	1850 1935	270 270	78 86	8 6	<10 <10	42 40
180 B-101	<5	5	230	<0.2	20	390	15	1.88	<10	0.07	860	270	100	<2	<10	114

Appendix 4 Geochemical Data of Stream Sediment

(

SAMPLE DESCRIP	Au ppb FA+AA	Sn ppm	F ppm	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppb	Mg %	Mn	P ppm	Pb ppm	Sb ppm	W	Zn ppm
181 B-102 182 B-103	<5 <5	<2 3	230 240	<0.2 <0.2	20 1 8	400 380	16 11	1.91 1.48	<10 <10	0.20 0.18	850 570	300 300	98 78	<2 <2	<10 <10	112 96
183 B-104	<5	3	360	<0.2	36	830	41	4.47	10	0.31	2400	310	268	2	<10	478
184 B-105	<5	5	200	<0.2	14	200	a	1.20	<10	0.15	485	260	60	<2	<10	56
185 B-106 186 B-107	<5 <5	3 140	210 310	<0.2 <0.2	8 26	200 470	5 15	1.00 1.62	<10 <10	0.18 0.28	330 325	340 390	28 272	<2 <2	<10	28
187 B-108	<5	<2	260	<0.2	34	120	19	1.59	<10	0.17	765	380	16	<2	10 <10	132 32
188 B-109	<5	<2	320	< 0.2	60	360	30	3.85	<10	0.24	1315	270	118	2	<10	276
189 8-110	<5 - 5	3	300	<0.2	66	480	35	4.07	<10	0.24	1215	240	200	2	<10	364
190 B-111 191 B-112	<5 <5	6 <2	260 50	<0.2 <0.2	82 78	230 370	21 23	3.19 3.86	<10 <10	0.09 0.17	725 1170	250 210	94 98	2 2	<10 <10	294 570
192 B-113	<5	<2	210	<0.2	22	120	18	2.72	<10	0.06	1875	250	16	<2	<10	40
193 B-114	<5	<2	380	<0.2	60	350	43	5.10	<10	0.39	2430	340	148	2	<10	254
194 B-115 195 B-116	<5 <5	<2 <2	430 180	<0.2 <0.2	54 36	570	53	5.83	<10	0.49	2340	360	150	4	<10	318
196 B-117	<5	<2	210	<0.2	26 58	210 280	14 25	2.38 3.80	10 <10	0.23 0.30	805 2050	170 200	24 62	<2 6	<10 <10	92 156
197 B-118	<5	<2	230	< 0.2	44	260	25	3.38	<10	0.30	1460	230	38	2	<10	130
198 B-119	<5	<2	270	< 0.2	44	360	38	4.06	<10	0.33	1605	260	66	4	<10	166
199 B-120 200 B-121	<5 <5	<2 <2	310 290	<0.2 <0.2	46 40	290 290	43 36	4.49 4.02	<10 <10	0.29 0.35	2340 1490	3 9 0 270	60 62	6 4	<10 <10	256 186
201 B-122	<5	4	290	< 0.2	66	290	43	4.88	<10	0.43	1820	230	90	2	<10	202
202 B-123	<5	7	320	<0.2	86	360	48	5.71	<10	0.45	2430	230	94	4	<10	202
203 B-124 204 B-125	<5 <5	5 7	290 300	< 0.2	86	630	40	5,96	10	0.43	2650	270	140	2	<10	322
205 B-126	<5	10	410	<0.2 <0.2	102 10	270 90	47 6	5.85 1.39	10 <10	0.35 0.42	2720 385	230 470	80 20	2 <2	<10 <10	168 26
206 B-127	<5	2	620	< 0.2	20	80	13	2.11	<10	0.72	495	760	48	<2	<10	86
207 B-128	<5	43	150	<0.2	8	70	3	0.65	<10	0.13	480	190	12	<2	<10	16
208 B-129 209 B-130	<5 <5	5 7	440 530	<0.2 <0.2	14 50	80 110	9 15	1,75 2.34	<10 <10	0.54	350 755	1210	22	<2	<10	28
210 B-131	<5	4	310	<0.2	232	280	55	7.69	<10	0.55 0.09	755 2210	690 400	60 102	<2 8	<10 <10	84 178
211 B-132	<5	120	290	<0.2	184	310	46	4.66	<10	0.18	4190	300	100	2	<10	176
212 B-133	<5 	3	340	<0.2	120	410	59	3.75	<10	0.47	2560	570	164	4	<10	292
213 B-134 214 B-135	<5 <5	8	180 290	<0.2 <0.2	26 32	130 200	15 32	1.95 2.23	<10 <10	0.18 0.79	585 1215	200 230	48 102	<2 2	<10 <10	50 126
215 B-136	<5	4	380	<0.2	36	150	24	2.83	<10	0.88	1000	210	46	2	<10	102
216 B-137	<5	39	170	<0.2	12	150	11	0.92	<10	0.12	320	200	48	<2	<10	34
217 B-138 218 B-139	<5 <5	160 3	180 100	<0.2 <0.2	14 18	170 210	13 11	1.01 1.06	<10 <10	0.12 0.05	375 245	230 190	68	<2	10	36 46
219 B-140	<5	3	260	<0.2	16	120	25	2.24	<10	0.16	980	190	- 14 - 10	<2 <2	<10 <10	16 30
220 C-001	<5	19	270	<0.2	36	80	13	2.04	<10	0.58	355	1080	62	<2	<10	56
221 C-002	<5 -5	330	650	< 0.2	32	90	34	1.99	<10	0.61	285	2090	70	<2	70	62
222 C-003 223 C-004	<5 <5	13 10	400 780	<0.2 <0.2	26 26	80 90	12 16	2.12 2.10	<10 <10	0.61 0.80	280 375	980 1650	48 50	<2 <2	<10 <10	68 7 6
224 C-005	<5	11	750	<0.2	38	90	15	1.79	<10	0.55	335	1630	54	<2	<10	58
225 C-006	<5	33	300	<0.2	24	70	8	1.26	<10	0.23	280	600	30	<2	<10	44
226 C-007 227 C-008	<5 <5	38 175	700 720	<0.2 <0.2	38 104	120 120	8 14	2.04 2.28	<10 <10	0.50 0.57	295 2 9 0	1340 1130	28 60	<2	<10	46 93
228 C-009	<5	4	120	<0.2	20	90	5	1.31	<10	0.37	395	290	12	∢2 2	<10 <10	82 28
229 C-010	<5	140	260	<0.2	14	60	7	1,19	<10	0.24	155	300	22	<2	<10	18
230 C-011	<5 .5	150	280	<0.2	28	110	12	1.74	<10	0.35	265	520	44	<2	<10	30
231 C-012 232 C-013	<5 <5	93 350	220 330	<0.2 <0.2	56 32	130 90	17 18	2.14 1.44	30 10	0.25 0.28	385 245	460 780	132 52	<2 <2	10 20	36 30
233 C-D14	<5	5	840	<0.2	4B	120	19	2.50	<10	0,62	440	1440	64	2	<10	108
234 C-015	<5	26	910	<0.2	50	100	28	2.29	<10	0.73	345	2020	90	<2	<10	146
235 C-016 236 C-017	<5 <5	490 81	410 170	<0.2 <0.2	36 14	80 50	12 7	1,38 0.85	<10 <10	0.39 0.27	270 120	610 580	42 12	<2 <2	<10 10	40 20
237 C-018	<5	170	490	<0.2	28	100	10	1.56	<10	0.52	290	460	38	<2	<10	48
238 C-019	<5	69	50	<0.2	6	70	4	0.73	<10	0.10	165	290	24	<2	<10	14
239 C-020 240 C-021	<5 <5	18 5	80	<0.2 <0.2	6	110	4	0.65	<10	0.07	145	270	12	2	<10	8
240 C-021 241 C-022	<5	5	130 100	<0.2	24 <2	130 70	13 4	1.57 0.68	<10 10	0.07 0.08	585 215	260 220	48 24	2	<10 <10	28 10
242 C-023	<5	4	90	<0.2	<2	60	4	0.56	<10	0.06	95	250	26	<2	<10	8
243 C-024	<5	50	190	< 0.2	10	90	8	1.09	<10	0.18	120	380	82	<2	<10	22
244 C-025 245 C-026	<5 <5	<2 <2	310 110	<0.2 <0.2	2 18	110 340	8 6	1.46 0.94	<10 10	0.47 0.02	160 435	340 130	12 30	2 2	<10 <10	28 16
246 C-027	<5	<2	70	<0.2	16	250	6	0.80	<10	0.01	200	140	26	2	<10	14
247 C-028	<5	<2	110	<02	24	1210	10	0.77	10	0.01	455	130	12	<2	<10	20
248 C-029 249 C-030	<5 <5	18 <2	230 230	<0.2 <0.2	30 24	2720 2520	26 25	2.15 2.14	60 10	0.10 0.11	1265 985	190 200	16	2	<10	32
250 C-031	<5	<2	360	<0.2	90	810	31	2.81	20	0.10	1090	230	24 72	2 4	<10 <10	36 56
251 C-032	<5	11	220	< 0.2	106	690	22	2.67	30	0.04	825	120	44	6	<10	58
252 C-033	<5	20	260	<0.2	12	90	9	1.23	10	0.25	325	270	38	<2	<10	28
253 C-034 254 C-035	<5 <5	<2 49	140 250	<0.2 <0.2	26 78	220 130	10 21	1.21 2.09	<10 <10	0.20 0.16	595 785	140 220	140 48	2 6	<10 <10	38
255 C-036	<5	4	450	< 0.2	104	340	46	4.32	10	0.21	2370	330	162	8	<10	72 216
256 C-037	<5	<2	370	<0.2	26	100	37	271	<10	0.20	1510	320	16	6	<10	38
257 C-038	<5	<2	350	<0.2	14	80	24	1,98	10	0.15	775	250	22	4	<10	60
258 C-039 259 C-040	<5 <5	<2 <2	150 370	0.2 <0.2	6 28	60 140	2 16	0.34 2.7 9	<10 10	0.03 0.05	160 1130	30 110	14 26	8 <2	<10 <10	16 30
260 C-041	<5	2	280	<0.2	12	370	15	1.14	<10	0.31	215	730	36	<2	<10	30 26
261 C-042	<5	<2	600	< 0.2	20	80	36	1.93	<10	0.55	345	1340	52	2	<10	50
262 C-043	<5 <5	220	530	<0.2	18 16	80	24	2.02	<10	0.55	370	1210	32	2	<10	48
263 C-044 264 C-045	<5 <5	11 55	710 370	<0.2 <0.2	16 28	80 200	46 16	1.94 2.43	<10 <10	0.74 0.35	345 405	1240 850	26 38	<2 <2	<10 <10	46 50
265 C-046	<5	190	500	<0.2	32	70	21	1.88	<10	0.52	275	1250	30	<2	<10	40
266 C-047	<5	860	430	<0.2	50	70	20	1.74	<10	0.45	425	1110	36	<2	60	30
267 C-048	<5	330	550 580	< 0.2	64 16	80 60	21	1.96	<10	0.59	335 360	1100	40	<2	<10	50
268 C-049 269 C-050	<5 <5	6 26	580 660	<0.2 <0.2	16 18	60 90	12 9	2.05 2.08	<10 <10	0.63 0.72	260 355	990 340	34 26	<2 <2	<10 <10	42 44
270 C-051	<5	10	500	<0.2	22	60	11	1.77	<10	0.62	470	670	24	<2	<10	52

Appendix 4 Geochemical Data of Stream Sediment

SAMPLE DESCRIP	Au ppb FA+AA	Sn ppm	F ppm	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppb	Mg %	Mn ppm	P ppm	Pb ppm	Sb ppm	W ppm	Zn ppm
271 C-052 272 C-053	<5 <5	4 2	500 500	<0.2 <0.2	22 26	70 150	9 14	1.8 <u>2</u> 2.86	<10 <10	0.56 0.83	380 765	480 1210	30 22	<2 <2	<10 <10	42 42
273 C-054	< 5	7	320	<0.2	30	70	15	2.60	<10	0.37	530	560	26	<2	<10	36
274 C-055 275 C-056	<5 <5	5 5	390 490	<0.2 <0.2	30 22	210 60	18 23	2.62 2.56	<10 <10	0.53 0.57	555 330	690 950	32 30	<2 <2	<10 <10	34 42
276 C-057	<5	390	450	<0.2	34	310	15	2.42	<10	0.64	445	1130	34	<2	<10	38
277 C-058	<5 -5	<2	150 120	<0.2 <0.2	16 36	80 40	38 150	1.71 1.74	<10 <10	0.18 0.15	525 440	140 140	14 22	2	<10 <10	16 24
278 C-059 279 C-060	<5 <5	<2 <2	140	<0.2	10	70	33	1.63	<10	0.18	395	130	14	<2	<10	14
280 C-061	<5	<2	130	<0.2	8	30	45	1.18	<10	0.12	225	150	10	<2	<10	20
281 C-062 282 C-063	<5 <5	<2 <2	160 170	<0.2 <0.2	12 10	100 50	42 19	1.85 1.37	<10 <10	0.22 0.19	550 285	150 120	16 12	<2 <2	<10 <10	14 20
283 C-064	<5	2	120	<0.2	12	40	15	1.00	<10	0.17	250	90	14	<2	<10	16
284 C-065 285 C-066	<5 <5	<2 <2	140 100	<0.2 <0.2	18 10	60 70	17 8	1.32 0.99	<10 <10	0,16 0,13	315 195	110 110	12 10	<2 <2	<10 <10	20 14
286 C-067	10	9	160	<0.2	22	90	. 16	1.93	<10	0.25	495	170	24	<2	<10	24
287 C-068 288 C-069	<5 <5	4 <2	220 100	<0.2 <0.2	12 2	80 50	4 1	0.96 0.39	<10 <10	0.25 0. 0 7	305 230	190 130	19 10	<2 <2	<10 <10	24 6
289 C-070	<5	2	170	<0.2	16	100	3	1.12	<10	0.16	415	180	16	<2	<10	22
290 C-071	<5 <5	5 9	300 120	<0.2 <0.2	16 24	100 80	3 6	1.07 1.23	<10 10	0.30 0.12	295 315	220 120	20 30	<2 <2	<10 <10	18 58
291 C-072 292 C-073	<5 <5	9	130	<0.2	30	130	8	1.54	<10	0.12	385	150	28	<2	<10	88
293 C-074	<5	9	120	< 0.2	100	120	10	1.91	10	0.14	695	140	24 68	<2 <2	<10 <10	62 64
294 C-075 295 C-076	<5 <5	5 <2	150 110	<0.2 <0.2	26 8	120 90	16 4	4.09 1.29	40 <10	0.12 0.10	765 340	1100 130	12	<2	<10	32
296 C-077	<5	<2	310	<0.2	46	420	34	3.22	<10	0.37	1165	330	138	2	<10	244
297 C-078 298 C-079	<5 <5	<2 <2	310 330	<0.2 <0.2	56 60	690 710	39 36	3.89 3.65	<10 10	0.26 0.26	1720 1395	300 300	230 168	2 <2	<10 <10	302 344
299 C-080	<5	<2	260	<0.2	24	50	19	1.39	<10	0.22	300	240	30	<2	<10	80
300 C-081 301 C-082	<5 <5	<2 <2	400 300	<0.2 <0.2	40 38	420 300	52 29	4.42 2.32	<10 <10	0.52 0.39	2600 1460	500 420	214 126	2	<10 <10	432 190
302 C-083	<5	<2	360	<0.2	40	260	39	3,04	<10	0.46	1785	420	120	2	<10	208
303 C-084 304 C-085	<5 <5	<2 <2	350 480	<0.2 <0.2	50 54	260 150	34 58	2.85 5.31	<10 <10	0.40 0.45	2250 1885	240 370	266 88	4 2	<10 <10	258 244
305 C-086	< 5	<2	440	<0.2	60	500	47	4.83	<10	0.43	1880	410	142	2	<10	360
306 C-087 307 C-088	<5 <5	<2 <2	380 570	<0.2 <0.2	50 36	540 190	42 75	3.78 4.45	<10 <10	0.35 0.78	1870 2810	300 360	190 56	2 <2	<10 <10	364 140
308 C-089	<5	<2	500	<0.2	48	190	63	4.67	<10	0.42	2380	330	42	<2	<10	98
309 C-090 310 C-091	5 <5	<2 <2	410 400	<0.2 <0.2	56 64	220 270	61 71	4.40 4.90	<10 <10	0.56 0.61	2060 2470	340 380	90 122	<2 2	<10 <10	204 250
311 C-092	<5	8	340	<0.2	42	1070	33	3.20	<10	0.37	1910	220	174	2	<10	274
312 C-093	<5 <5	<2 <2	320 440	<0.2 <0.2	56 30	340 1000	45 39	4.47 3.43	<10 <10	0,41 0.50	1825 1500	300 230	92 204	6 2	<10 <10	222 326
313 C-094 314 C-095	<5	<2	300	<0.2	18	110	26	2.65	<10	0.25	840	190	40	<2	<10	132
315 C-096	<5	<2	360 280	<0.2 <0.2	30 22	210 90	41 20	3.43 1,80	<10 <10	0.46 0.19	2580 330	190 190	204 10	2 <2	<10 <10	390 12
316 C-097 317 C-098	<5 <5	<2 <2	290	<0.2	10	80	16	1.68	<10	0.13	445	160	12	<2	<10	16
318 C-099	<5	<2	300	<0.2	8 8	40 40	11 5	1.65 1.09	<10 <10	0.17 0.19	500 205	240 270	4 6	<2 <2	<10 <10	10 10
319 C-100 320 C-101	<5 <5	<2 <2	170 210	<0.2 <0.2	18	150	13	1.41	<10	0.13	470	150	14	<2	<10	10
321 C-102	<5	<2	280	<0.2	46	340	31	2.69	<10	0.55 0.52	1080 885	210 280	70 14	<2 <2	<10 <10	34 12
322 C-103 323 C-104	<5 <5	<2 <2	290 230	<0.2 <0.2	10 16	310 570	1 9	2.07 1.61	<10 <10	0.06	375	160	10	<2	<10	20
324 C-105	45	<2	240	0.2	84	810	38 6	6.01 1.28	50 <10	0.35 0.16	3780 390	290 140	556 14	10 <2	<10 <10	174 22
325 C-106 326 C-107	<5 <5	4 7	170 220	<0.2 <0.2	10 4	70 90	5	0.77	<10	0.19	210	280	22	<2	10	18
327 C-108	<5	2	240	<0.2	32	70	10	1.61	<10	0.25	495 880	280	18 36	<2 <2	<10 <10	44 30
328 C-109 329 C-110	<5 <5	3 21	250 430	<0.2 <0.2	36 30	90 110	14 3	1.68 1.45	<10 <10	0.14 0.43	315	220 170	24	<2	<10	26
330 C-111	<5	11	370	<0.2	34	, 90	5	1.71	10	0.30	410	160	44	<2	<10	26
331 D-001 332 D-002	<5 <5	11 5	300 1030	<0.2 <0.2	20 34	80 130	13 16	1,45 2.63	<10 <10	0.33 1.01	265 540	420 700	30 46	<2 <2	10 <10	28 74
333 D-003	<5	3	420	<0.2	8	100	6	1.37	<10	0.48	275	270	22	<2	<10	32
334 D-004 335 D-005	<5 <5	5 6	370 520	<0.2 <0.2	26 20	80 100	11 8	1.46 1.77	<10 <10	0.35 0.68	270 335	440 540	22 18	<2 <2	<10 <10	30 42
336 D-006	<5	8	460	<0.2	24	90	12	1.71	<10	0.46	305	540	30	<2	10	36
337 D-007 338 D-008	<5 <5	9 105	390 940	<0.2 <0.2	18 68	80 110	8 14	1.48 2.63	<10 <10	0.41 0.89	305 535	530 1320	24 76	<2 <2	<10 <10	34 98
339 D-009	<5	6	470	<0.2	20	80	9	1.64	<10	0.46	325	680	30	<2	<10	38
340 D-010 341 D-011	<5 <5	59 53	260 280	<0.2 <0.2	80 28	90 70	24 12	1.82 1.48	<10 <10	0.30 0.36	340 270	670 520	58 32	2 <2	30 <10	30 32
342 D-012	<5	15	800	< 0.2	58	110	14	2.61	<10	1.03	475	1560	92	4	<10	168
343 D-013 344 D-014	<5 <5	15 3	600 950	<0.2 <0.2	64 48	100 110	13 13	2.04 2.45	<10 <10	0.78 0.93	405 510	1070 1410	102 70	<2 <2	<10 <10	136 128
345 D-015	<5	25	430	<0.2	20	50	5	1.36	<10	0.54	315	520	16	<2	<10	42
346 D-016 347 D-017	<5 <5	10 18	310 400	<0.2 <0.2	34 12	80 100	13 9	1.50 1.60	<10 10	0.34 0.44	245 29 0	810 240	32 28	2 <2	<10 <10	30 34
348 D-018	<5	26	520	<0.2	38	150	17	2.37	<10	0.63	400	1030	86	<2	<10	70
349 D-019	<5	11 7	360 410	<0.2	20 14	90 100	11 9	1.51 1.65	<10 <10	0.36 0.44	255 235	280 260	36 26	2 <2	<10 <10	30 34
350 D-020 351 D-021	<5 <5	7 4	410 180	<0.2 <0.2	14	250	7	1.44	10	0.44	600	230	56	<2	<10	20
352 D-022	<5	3	200	<0.2	12	120	8	1.46	<10	0.18	245	240	38	<2	<10	24
353 D-023 354 D-024	<5 <5	<2 <2	150 180	<0.2 <0.2	24 36	420 520	6 19	0.60 1.66	<10 10	0.18 0.12	165 830	270 120	<2 20	<2 <2	<10 <10	18 36
355 D-025	<5	<2	250	<0.2	30	1390	27	2.46	10	0.15	1170	170	20	2	<10	40
356 D-026 357 D-027	<5 <5	<2 <2	250 290	<0.2 <0.2	8 34	210 2340	4 24	1.57 2.11	<10 <10	0.51 0.17	835 1745	160 210	10 20	2 <2	<10 <10	22 36
358 D-028	<5	<2	390	<0.2	24	3180	37	2.46	10	0.08	1260	250	20	<2	<10	42
359 D-029 360 D-030	<5 <5	<2 4	310 140	<0.2 <0.2	16 2	2460 40	30 3	2.95 0.67	20 <10	0.21 0.07	1170 170	100 130	16 22	2 <2	<10 <10	56 16

Appendix 4 Geochemical Data of Stream Sediment

								_					04	Ch.	w	Zn
SAMPLE	Au ppb	\$n	F	Ag .	As	8a	Cu	Fe %	Hg ppb	Mg %	Mn ppm	P ppm	Pb ppm	\$b ppm	ρρm	ppm
DESCRIP 361 D-031	FA+AA <5	pp∙m 5	ррт 200	ppm <0.2	ppm 8	ppm 80	ppm 4	0.87	10	0.13	440	280	32	<2	<10	26
362 D-032	<5	25	100	<0.2	2	40	3	0.54	<10	0.05	185	120	22	<2	<10	10
363 D-033	10	6	100	<0.2	4	50	2	0.55	<10	0.06	195	100	26	<2	<10	12
364 D-034	<5	2	110	<0.2	<2	40	7	0.79	<10	0.05	135 165	170 110	26 30	<2 <2	<10 <10	8 14
365 D-035	<5 -5	8	90	<0.2	2 14	50 90	3 8	0.57 1.32	930 <10	0.07 0.26	335	230	44	<2	<10	30
366 D-036 367 D-037	<5 <5	5 34	250 150	<0.2 <0.2	78	270	22	1.65	<10	0.21	590	310	2340	6	<10	152
368 D-038	<5	25	150	<0.2	70	260	28	1 49	<10	0.15	525	290	2260	4	<10	112
369 D-039	<5	10	170	<0.2	60	350	23	1.69	<10	0.17	625	210	832	6	<10	116
370 D-040	<5	3	150	<0.2	22	230	9	1.32	<10	0.26	740	150 120	114 128	<2 <2	<10 <10	42 42
371 D-041	<5	2	140	<0.2	28	300	9 8	1.40 1.32	<10 <10	0.24 0.23	710 670	120	108	2	<10	40
372 D-042	<5 <5	3 3	140 210	<0.2 <0.2	26 10	250 120	5	1.00	<10	0.18	320	310	26	<2	<10	22
373 D-043 374 D-044	5	10	310	< 0.2	12	150	12	1.47	<10	0.30	405	820	56	<2	<10	48
375 D-045	<5	9	540	<0.2	8	120	10	1.50	<10	0.49	275	1030	28	<2	<10	34
376 D-046	<5	30	490	<0.2	10	160	12	1.63	<10	0.48	415	900	44	<2 <2	<10 <10	48 104
377 D-047	<5	4	790	<0.2	14	110	16	2.75 2.33	<10 <10	0.96 0.68	375 330	1650 1420	46 58	<2	<10	58
378 D-048	<5 <5	4 17	700 630	<0.2 <0.2	16 36	150 210	21 13	1.95	<10	0.63	415	1050	58	< <u>2</u>	<10	94
379 D-049 380 D-050	<5	4	610	<0.2	16	90	14	1.90	<10	0.57	210	770	28	<2	<10	42
381 D-051	<5	6	580	<0.2	26	240	21	2.04	<10	0.52	695	2240	128	<2	<10	66
382 D-052	<5	3	750	<0.2	28	90	15	2.19	<10	0.81	375	1120	38	<2	<10 <10	48 96
383 D-053	<5	2	530	< 0.2	10	140	16	1.59	<10 <10	0.49 0.33	365 230	1280 640	52 26	<2 <2	<10	48
384 D-054	<5 -C	8 4	340	<0.2 <0.2	6 8	90 150	7 14	1.24 1.58	<10	0.53	290	830	40	<2	<10	80
385 D-055 386 D-056	<5 <5	3	500 280	<0.2	4	70	6	1.16	<10	0.32	200	370	22	<2	<10	60
387 D-057	<5	<2	370	<0.2	16	150	7	1.85	<10	0.43	450	530	26	<2	<10	34
388 D-058	<5	2	240	<0.2	14	100	4	0.92	<10	0.15	230	280	20	<2	<10	26
389 D-059	<5	5	340	<0.2	24	210	9	1.45	<10	0.28	440 1475	300 130	44 102	<2 <2	<10 <10	62 80
390 D-060	< 5	6	170	<0.2 <0.2	52 20	140 380	12 17	2.55 2.06	<10 <10	0.05 0.11	160	180	14	<2	<10	32
391 D-061 392 D-062	<5 <5	<2 <2	130 160	<0.2	18	70	14	1.35	<10	0.24	450	120	12	<2	<10	20
393 D-063	<5	12	240	<0.2	16	130	15	2.44	<10	0.33	990	220	50	<2	<10	62
394 D-064	<5	<2	100	<0.2	22	80	12	1.30	<10	0.07	385	130	18	<2	<10 <10	20 16
395 D-065	<5	<2	90	<0.2	8	140	6	0.87	<10	0.03 0.60	375 1775	120 360	12 90	<2 2	<10	110
396 D-066	<5	26	540	<0.2 <0.2	44 12	120 60	14 6	2.42 1.31	<10 <10	0.32	245	250	30	<2	<10	26
397 D-067 398 D-068	<5 <5	5 12	300 450	<0.2	24	120	8	1.50	<10	0.45	395	550	38	<2	<10	52
399 D-069	<5	10	360	<0.2	20	110	6	1.27	<10	0.35	550	650	44	<2	<10	68
400 D-070	<5	9	430	<0.2	24	110	8	1.42	<10	0.43	370	540	32	<2	<10 <10	48 146
401 D-071	<5	6	630	<0.2	136	170	32	2.29	10	0.58 0.39	1000 265	1270 330	128 22	8 <2	<10	32
402 D-072	<5	63	430	<02	8 22	100 120	4 8	1.24 1.71	<10 <10	0.56	390	900	24	<2	<10	36
403 D-073 404 D-074	<5 <5	5 4	580 350	<0.2 <0.2	6	110	5	0.90	<10	0.33	475	250	26	<2	<10	18
405 D-075	<5	2	430	<0.2	10	130	5	1.35	<10	0.41	300	230	26	<2	<10	38
406 0-076	<5	<2	250	<02	42	200	35	3.05	<10	0.35	1265	270	48	2	<10 <10	136 28
407 D-077	<5	<2	160	<02	14	190	9	1.48	<10	0.04 0.19	720 1080	130 280	14 22	<2 2	<10	74
408 D-078	<5	<2	250 140	<0.2 <0.2	36 10	110 70	26 9	2.75 1.21	<10 10	0.04	360	130	8	<2	<10	18
409 D-079 410 D-080	<5 <5	<2 <2	340	<0.2	70	250	59	3 94	10	0.59	1945	400	70	2	<10	214
411 D-081	<5	<2	370	<02	80	260	62	4.19	<10	0.63	1955	420	66	2	<10	214
412 0-082	<5	<2	260	< 0.2	50	200	24	2 26	<10	0 04	1690	270	48	2 2	<10 <10	86 198
413 D-083	<5	<2	350	<02	70	240	55 33	3 89 2 86	<10 <10	0.57 0.33	1845 1085	380 280	66 34	<2	<10	118
414 D-084	<5	<2 <2	320 870	<0.2 <0.2	44 34	180 150	33 11	1.73	<10	0.88	445	1100	66	<2	<10	86
415 D-085 416 D-086	√ 5 < 5	<2	600	< 0.2	8	120	9	1 49	<10	0.56	440	1180	54	<2	<10	64
417 D-087	<5	37	830	<0.2	44	180	19	1.92	<10	0.69	805	1710	206	<2	10	140
418 D-088	<5	17	840	< 0.2	46	150	14	1.89	<10	0.86	565	1000 950	94 92	<2 <2	<10 <10	120 102
419 D-089	< 5	44	660	<0.2	58	120 80	16 8	1.85 1.28	<10 <10	0 62 0 32	640 370	530	36	<2	<10	42
420 D-090	<5 <5	38 17	370 240	<0.2 <0.2	26 84	170	26	3.41	<10	0.24	1015	250	58	6	<10	130
421 D-091 422 D-092	<5	45	400	< 0.2	32	110	9	1.38	<10	0.39	460	510	36	<2	<10	48
423 D-093	<5	<2	460	<0.2	36	150	52	4.86	<10	0 46	1985	410	134	2 6	<10 <10	290 356
424 D-094	<5	<2	440	<0.2	58	490	55	5 24	<10	0.50 0.48	2570 2370	450 430	170 148	6	<10	316
425 D-095	< 5 .46	<2 <2	430 380	<02 <02	52 52	510 270	55 47	4.92 4.43	<10 <10	0.38	2030	410	134	<2	<10	242
426 D-096 427 D-097	<5 <5	<2	350	<0.2	38	490	36	3 72	<10	0 34	985	210	108	4	<10	244
428 D-098	<5	<2	340	<02	48	290	35	3 70	<10	0.30	1130	350	118	4	<10	220
429 D-099	<5	<2	300	<0.2	14	120	25	2.95	<10	0.48	1030	280	62	<2	<10	214
430 D-100	₹5	<2	430	<0.2	42	110	65	5 37	<10	0.50 0.33	1535 1250	390 480	72 122	6 8	<10 <10	244 448
431 D-101	<5	<2	430	<0.2	58 84	70 150	62 52	5.70 5.26	<10 10	0.33	1540	400	164	2	<10	464
432 D-102	<5 <5	<2 <2	510 280	<02 <02	18	50	14	1 58	<10	0 33	265	310	10	2	<10	16
433 D-103 434 D-104	<5	-2	310	<0.2	16	50	15	1 68	<10	0.38	295	280	8	<2	<10	18
435 D-105	<5	<2	250	<0.2	16	40	13	1.44	<10	0.29	250	280	10	<2	<10	16
436 D-106	<5	<2	300	<0.2	24	180	23	2 24	<10	0.29	430	250 310	14 10	<2 <2	<10 <10	. 16 14
437 D-107	<5	9	310	<0.2	20	60	15	1 61 0 92	<10 <10	0 31 0 06	315 275	80	12	<2	<10	10
438 D-108	<5	11 10	80 70	<0.2 <0.2	4	90 80	5 5	0 90	<10	0.06	340	90	14	<2	<10	10
439 D-109 440 D-110	<5 <5	10	70 70	<0.2	8	100	6	0 89	<10	0.05	275	80	10	<2	<10	10
441 D-111	<5	12	420	<02	18	140	11	172	<10	0 47	280	550	46	<2	<10	52
442 D-112	<5	9	330	<0.2	18	120	9	1 44	<10	0 34	295	410	34	<2	<10	40 52
443 D-113	<5	<2	280	<0.2	20	210	32	2.87	<10	0.30	1295 1400	270 270	34 34	<2 <2	<10 <10	52 54
444 D-114	45 45	<2	290	<0.2	40 30	250 210	34 49	3 06 4 81	<10 <10	0 34 0 40	1615	410	56	2	<10	74
445 D-115	<5 <5	<2 160	450 100	<02 <02	30 8	40	3	0.66	<10	0.06	45	90	50	<2	<10	8
446 D-116 447 D-117	<5	25	510	<02	20	130	11	2 26	<10	0 55	310	190	70	<2	<10	46
448 D-118	<5	20	340	<02	48	110	5	1.41	<10	0.43	460	200	26	<2	<10	24 20
449 D-119	<5		180	<0.2	28	100	4	1 02	<10	0.19	280 545	170 190	42 18	<2 <2	<10 <10	14
450 D-120	<5	61	210	<0.2	6	140	3	0 95	<10	0 24	545	130	10	~2		• •

Appendix 4 Geochemical Data of Stream Sediment

SAMPLE	Au ppb	Sn	F	Ag	As	Ba	Çu	Fe %	Hg	Mg %	Mn	P	Pb	\$b	W	Zn
DESCRIP 451 D-121	FA+AA <5	ρρm <2	ррт 480	ppm 0.2	ррт 116	ρ ρπ 2070	ppm 48	76 3.87	ppb 160	0.04	ppm 7290	ppm 350	ppm 238	ppm 10	ppm <10	ppm 172
452 D-122	<5	<2	300	0.2	160	1090	62	4.75	40	0.28	2220	210	146	6	<10	186
453 D-123	<5	<2	570	<0.2	18	60	9	1.80	30	0.07	535	340	40	2	<10	102
454 D-124 455 D-125	<5 <5	<2 <2	910 600	<0.2 <0.2	20 10	100 40	12 8	2.19 1.70	110 <10	0.05 0.03	895 305	160 230	78 20	2 <2	<10 <10	188 48
456 D-126	<5	<2	670	<0.2	8	60	11	2.12	30	0.05	700	250	22	<2	<10	48
457 D-127	<5	<2	680	<0.2	10	40	10	2,33	30	0.05	740	170	34	<2	<10	70
458 E-001	<5	2	350	<0.2	32	270 210	28 32	2.72 3.86	<10 <10	0.08 0.12	2150 1135	360 490	20 42	<2 2	<10 <10	38 64
459 E-002 460 E-003	<5 <5	2 42	410 410	<0.2 <0.2	204 444	260	32 38	4.42	<10	0.12	1945	450	112	4	<10	126
461 E-004	<5	17	100	<0.2	40	110	9	1.65	<10	0.43	330	590	52	2	<10	40
462 E-005	<5	33	420	<0.2	28	110	4	0.63	<10	0.04	280	90	42	<2	<10	10
463 E-006	<5 -5	34	350 420	<0.2 <0.2	44 48	100 130	10 12	1.47 1.83	<10 <10	0.33 0.50	320 390	650 530	96 58	<2 <2	<10 <10	36 48
464 E-007 465 E-008	<5 <5	12 4	150	<0.2	20	120	6	0.69	<10	0.12	200	180	62	<2	<10	24
466 E-009	<5	3	100	<0.2	24	250	8	0.72	<10	0.03	225	190	46	<2	<10	12
467 E-010	<5	3	90	<0.2	16	100	5	0.58	<10	0.02	125	140	16 36	<2 <2	<10 <10	40 50
468 E-011 469 E-012	<5 <5	13 46	550 400	<0.2 <0.2	32 28	120 70	8 5	1.63 1.30	<10 <10	0,49 0,48	340 285	210 620	26	<2	<10	34
470 E-013	<5	10	430	<0.2	26	120	8	1.59	<10	0.46	330	280	34	2	<10	50
471 E-014	<5	47	300	<0.2	16	110	9	1,15	<10	0.31	345	590	30	<2	<10	46
472 E-015	<5 -c	55 23	460 320	<0.2 <0.2	20 20	80 60	8 53	1.58 1,10	<10 <10	0.46 0.29	230 420	630 540	24 40	<2 8	<10 <10	62 36
473 E-016 474 E-017	<5 <5	18	450	<0.2	30	140	14	1.68	<10	0.49	425	440	44	2	<10	60
475 E-018	<5	27	380	<0.2	30	100	11	1.55	<10	0.38	265	740	38	2	<10	38
476 E-019	<5	18	250	<0.2	18	100	11	1.51	<10	0.26	285	460	36	2	<10	32
477 E-020 478 E-021	<5 <5	20 59	260 280	<0.2 <0.2	20 36	120 100	8 13	1.24 1.95	<10 30	0.27 0.22	240 335	380 600	34 70	<2 4	<10 <10	36 40
479 E-022	<5	90	360	<0.2	36	140	14	1.94	<10	0.40	350	690	50	2	<10	42
480 E-023	<5	4	200	<0.2	20	120	9	1.53	<10	0.21	210	370	44	<2	<10	34
481 E-024	<5	11	240	<0.2	24	120	8	1.57	<10 <10	0.24 0.32	330 270	470 580	52 46	<2 <2	<10 <10	48 38
482 E-025 483 E-026	<5 <5	29 9	300 260	<0.2 <0.2	32 16	100 70	10 8	1.54 1.19	<10	0.32	235	530	36	<2	<10	30
484 E-027	<5	53	160	<0.2	80	400	19	2.67	<10	0.11	1775	240	80	22	<10	70
485 E-028	<5	150	200	<0.2	96	260	13	1.52	<10	0.10	895	170	88	16	<10	40
486 E-029 487 E-030	<5 <5	150 27	230 410	<0.2 1	1140 242	230 2800	13 63	2.05 3.16	<10 70	0.17 0.12	930 6800	110 170	180 566	30 46	<10 <10	42 100
488 E-031	<5	5	430	<0,2	60	210	29	3,45	40	0.03	1475	330	28	8	<10	46
489 E-032	<5	31	260	<0.2	56	520	19	1.74	40	0.27	1240	180	190	12	<10	62
490 E-033	<5	81 -2	260	0.2	102	1880	27 25	2.04 2.45	20 <10	0.13 0.14	2500 985	160 200	220 14	14 <2	<10 <10	66 44
491 E-034 492 E-035	<5 <5	<2 <2	270 280	<0.2 <0.2	24 24	140 220	37	2.26	<10	0.13	1555	210	14	<2	<10	42
493 E-036	<Š	<2	350	<0.2	20	110	27	3.09	<10	0.08	1640	180	22	<2	<10	40
494 E-037	<5	<2	360	<0.2	30	160	27	2.66	10	0.09	1110	200	22	<2	<10	60
495 E-038 496 E-039	<5 <5	<2 <2	440 560	<0.2 <0.2	22 44	120 70	19 17	2.24 3.32	30 50	0.02 0.03	935 1210	170 140	16 62	2 2	<10 <10	34 76
497 E-040	<5	<2	190	<0.2	14	50	9	1.52	<10	0.01	585	170	8	<2	<10	16
498 E-041	<5	<2	590	<0.2	70	100	22	3.60	60	0.04	1040	70	32	6	<10	50
499 E-042	<5 .c	<2	550	<0.2	14 8	100 80	8 6	2.00 1.20	20 <10	0.04 0.04	770 4 9 0	130 100	64 40	<2 <2	<10 <10	138 110
500 E-043 501 E-044	<5 <5	<2 <2	440 540	<0.2 <0.2	52	90	7	4.13	10	0.05	910	120	44	6	<10	56
502 E-045	<5	<2	350	< 0.2	12	60	5	1.20	<10	0.03	380	110	36	<2	<10	74
503 E-046	<5	<2	540	< 0.2	44	80	5	3.47	<10	0.06	815	70 250	40	4	<10 <10	32
504 E-047 505 E-048	<5 <5	<2 <2	250 530	<0.2 <0.2	26 50	140 330	19 25	2.74 4.41	20 30	0.03 0.06	1060 2000	250 320	14 36	2 4	<10	42 58
506 E-049	<5	<2	580	<0.2	78	430	37	5.09	30	0.05	4690	100	120	6	<10	62
507 E-050	<5	<2	610	<0.2	30	250	20	3.39	30	0.05	1710	220	70	2	<10	30
508 E-051 509 E-052	<5 <5	<2 <2	370 380	<0.2 <0.2	50 98	90 140	9 29	3.62 4.09	10 <10	0.05 1.18	730 2130	90 190	32 150	2 18	<10 <10	40 396
510 E-053	<5	<2	430	<0.2	38	110	56	4.45	<10	0.24	1705	310	100	4	<10	142
511 E-054	<5	5	340	<0.2	122	160	6	1.22	<10	0.21	520	100	104	2	<10	140
512 E-055	<5 -5	<2	370	<02	14	80 1080	25 16	2.31 1.80	<10 80	0.20 0.13	1005 535	250 240	14 1300	<2 4	<10 <10	52 228
513 E-056 514 E-057	<5 <5	<2 <2	250 400	0.2 <0.2	108 22	1080 240	16 29	2,50	<10	0.13	1385	250	28	<2	<10	34
515 E-058	<5	<2	250	<02	14	200	20	2.49	<10	0 20	540	450	24	<2	<10	30
516 E-059	<5	14	340	<0.2	22	200	20	2.02	<10	0.30	545	580	32	<2	<10	40
517 E-060 518 E-061	<5 <5	<2 8	390 520	<0.2 <0.2	48 26	690 370	24 14	8.76 2.63	10 <10	0.47 0.55	3190 860	870 880	288 60	6 <2	<10 <10	222 68
519 E-062	<5	3	170	<02	26	250	19	2 42	<10	0.25	755	260	94	2	<10	58
520 E-063	<5	7	140	<0.2	28	1010	30	2.47	<10	0.26	955	190	92	<2	<10	96
521 E-064	<5 -6	5	300	<0.2	14 10	110 70	10	1.64 2.86	<10 <10	0 38 0 05	370 925	540 160	44 20	<2 <2	<10 <10	60 28
522 E-065 523 E-066	<5 <5	<2 <2	110 50	<02 <02	8	60	25 1	0.81	<10	<0.01	60	40	6	<2	<10	20
524 E-067	<5	<2	100	<0.2	8	60	9	1 62	<10	0.04	345	100	10	<2	<10	14
525 E-068	<5	<2	100	<02	6	30	4	0.82	<10	0.01	70	100	8	<2	<10	8
526 E-069	<5 <5	<2 <2	90 110	<0.2 <0.2	16 42	50 720	37 118	1.86 8.33	<10 <10	0.02 0.16	390 3430	80 110	54 140	2 14	<10 <10	16 50
527 E-070 528 E-071	<5 <5	<2 <2	110	<0.2	20	140	35	2 67	<10	0.08	575	120	38	4	<10	46
529 E-072	<5	<2	90	<02	10	480	18	1.96	<10	0 04	440	90	42	<2	<10	40
530 E-073	<5	<2	80	<0.2	20	850	34	2.37	<10	0.03	410	80	64	2	<10	26
531 E-074	<5 <5	<2 4	70 110	<0.2 <0.2	28 4	100 50	39 2	1.83 0.65	<10 <10	0.01 0.11	260 135	70 180	26 16	<2 <2	<10 <10	12 24
532 E-075 533 E-076	<5 <5	2	200	<02	4 <2	50 50	3	0.65	10	0 25	105	140	20	<2	<10	42
534 E-077	< 5	4	120	<02	8	50	2	0.60	10	0.06	135	110	14	<2	< 10	12
535 E-078	<5	150	600	<0.2	62	160	11	2 58	10	0 62	380	170	52	<2	<10	48
536 E-079 537 E-081	<5 <5	53 120	150 210	<0.2 <0.2	2 10	70 100	3	0.69 0.94	<10 10	0 12 0 19	245 290	150 160	14 22	<2 <2	<10 <10	12 22
537 E-081 538 E-082	<5 <5	10	160	<0.2	14	120	5	1.03	<10	0 21	3 6 5	230	54	<2	<10	40
539 E-083	<5	5	160	<02	8	70	3	0.82	<10	0 12	440	170	46	<2	<10	36
540 E-084	<5	29	200	<02	18	70	5	1.18	<10	0 17	285	230	100	<2	<10	80

Appendix 4 Geochemical Data of Stream Sediment

SAMP DESC			\$n pm	F	Ag ppm	As	Ba	Cu ppm	Fe %	Hg ppb	Mg %	Mn	P ppm	Pb ppm	Sb ppm	W ppm	Žn ppm
541 E-085		~~ и ≺5	6	ppm 100	×0.2	ρρm 6	ρρπ 40	1	0.47	γρο <10	0.07	ppm 120	150	12	- γ ₂	<10	16
542 E-086	i	<5	25	160	<0.2	20	50	4	0.98	<10	0.08	130	140	28	≺2	<10	28
543 E-087		< 5	99	160	<0.2	16	70	4	0.87	<10	0.22	280	230	20	<2	<10	22
544 E-088 545 E-089		<5 <5	23 3	150 280	<0.2 <0.2	14 36	70 180	4 17	1.10 2.22	10 <10	0.12 0.08	310 820	210 190	92 66	<2 6	<10 <10	58 156
546 E-090		<5	3	290	<0.2	24	160	15	2.39	<10	0.05	680	180	20	<2	<10	48
547 E-091		<5	3	250	< 0.2	24	350	18	1.92	<10	0.17	945	290	106	2	<10	116
548 E-092		<5	3	300	<0.2	58	240	33	2.95	<10	0.23	1490	340	88	<2	<10	144
549 E-093		<5	<2	280	<0.2	32	220	35	4.50	<10	0.23	1805	340	58	4	<10	208
550 E-094 551 E-095		<5 <5	7 6	280 240	<0.2 <0.2	68 18	250 80	29 10	2.58 1.42	<10 <10	0.21 0.14	1590 420	350 340	126 36	<2 <2	<10 <10	152 46
552 E-096		<5	<2	260	<0.2	34	280	26	3.47	<10	0.13	1560	270	90	<2	≺10	228
553 E-097		<5	<2	230	< 0.2	18	120	23	2.38	<10	0.21	740	210	26	<2	<10	78
554 E-098		<5	<2	270	<0.2	20	110	28	2.44	<10	0.18	990	230	16	2	<10	44
555 E-099		<5	<2 <2	240 320	<0.2	20 30	170 220	26 55	2.59 4.56	<10 <10	0.24 0.57	985 1790	240 390	34 98	2	<10 <10	96 240
556 E-100 557 E-101		<5 <5	<2	320 410	<0.2 <0.2	40	300	64	3.42	<10	0.57	3240	180	94	<2 <2	<10	232
558 E-102		<5	<2	330	<0.2	46	160	39	3.45	<10	0.28	1475	310	50	<2	<10	156
559 E-103		<5	<2	210	<02	24	150	20	2.33	<10	0.25	690	180	30	<2	<10	76
560 E-104		<5	<2	300	<0.2	14	110	18	2.20	<10	0.33	875	180	40	4	<10	106
561 E-105		<5 <5	<2 4	320 130	<0.2 <0.2	46 58	160 50	60 13	3.86 2.07	<10 <10	0.28 0.03	2190 635	420 140	48 32	2 <2	<10 <10	186 32
563 E-107		<5	<2	180	<0.2	22	40	15	1.51	<10	0.04	515	90	32	<2	<10	38
564 E-108		<5	<2	80	<0.2	2	<10	1	0.13	<10	<0.01	45	20	18	<2	<10	8
565 E-109		<5	<2	190	<0.2	10	80	17	2.18	<10	0.29	825	190	22	<2	<10	66
566 E-110		<5 -5	<2	190	<0.2	22	100 240	15	1.92	<10 <10	0.20	545	150	18 24	<2	<10	34 84
567 E-111 568 E-112		<5 <5	<2 <2	220 200	<0.2 <0.2	30 18	140	19 16	2.22 2.12	<10	0.26 0.23	680 620	210 160	16	<2 2	<10 <10	50
569 E-113		<5	<2	200	<0.2	18	130	18	2.12	<10	0.24	645	170	24	<2	<10	62
570 E-114		<5	<2	390	<0.2	30	310	44	4.10	<10	0.50	1895	290	78	2	<10	298
571 E-115		<5	2	260	<0.2	14	130	11	1.75	<10	0.23	610	220	64	<2	<10	62
572 E-116		<5 <5	<2 2	300 260	<0.2 <0.2	4 16	190 140	7 10	1.75 1.62	10 <10	0.08 0.20	1545 645	120 210	18 50	<2 <2	<10 <10	10 54
573 E-117 574 E-118		<5	<2	170	<0.2	24	110	4	0.74	<10	0.20	160	150	10	<2	<10	6
575 E-119		<5	<2	170	<0.2	20	250	2 5	1.67	<10	0.13	815	170	28	<2	<10	36
576 E-120		<5	<2	130	<0.2	<2	30	2	0.63	<10	0.06	345	120	6	<2	<10	8
577 E-12		<5 -c	<2	80 120	<0.2 <0.2	4 10	10 40	<1 5	0.67 0.71	<10 <10	0.01 0.04	310 205	70 110	2 4	<2 <2	<10 <10	2 6
578 E-123		<5 <5	<2 <2	530	<0.2	18	70	18	1.86	<10	0.57	380	1120	44	2	<10	40
580 E-12		<5	<2	170	<0.2	14	140	19	1.77	<10	0.21	585	220	34	<2	<10	46
581 E-129		<5	<2	210	< 0.2	12	200	94	1.83	<10	0.35	420	250	30	<2	<10	26
582 E-126		<5	<2	350 310	0.8	68 40	580 190	24 18	5.21	10 <10	0.74 0.14	2290 750	300 210	556 60	8 4	<10 <10	306 42
583 F-00° 584 F-00°		<5 <5	6 5	320	<0.2 <0.2	50	280	21	1.74 2.11	<10	0.14	950	220	104	6	<10	48
585 F-00		<5	3	340	<0.2	42	360	24	2.32	10	0.12	1610	170	42	. 4	<10	42
586 F-004	4	<5	3	340	< 0.2	42	320	20	2.37	10	0.12	1170	220	70	6	<10	58
587 F-005		<5	3	380	<0.2	44	230	32	2.91	20	0.05	1405	290	30	2	<10	54
588 F-006 589 F-00		<5 <5	<2 <2	300 300	<0,2 <0.2	36 30	230 170	17 16	1.74 1.78	10 <10	0.12 0,10	940 750	180 190	42 38	2 2	<10 <10	42 38
590 F-00		<5	14	300	<0.2	22	130	9	1.29	<10	0.27	310	550	38	<2	<10	30
591 F-00	9	<5	10	280	<0.2	28	270	31	2.81	<10	0.30	1345	280	34	2	<10	46
592 F-010		<5	5	330	<0.2	22	190	14	1.70	<10	0.30	530	510	32	2	<10	40
593 F-01 594 F-01		<5 <5	38 14	340 300	<0.2 <0.2	26 24	220 190	30 18	2.19 1.88	<10 <10	0.70 0.31	1200 600	250 460	112 34	4 4	<10 <10	110 42
595 F-01:		5	<2	500	<0.2	12	360	38	4.32	<10	0.40	1750	470	14	2	<10	52
596 F-01		<5	6	280	<0.2	26	920	30	1,94	<10	0.24	1420	320	42	<2	<10	40
597 F-01		<5	3	280	<0.2	110	260	31	2.87	<10	0.09	1420	230	50	10	<10	102
598 F-01 599 F-01		<5 <5	6 2	260 290	0.2 <0.2	48 62	210 230	12 11	1,00 1.05	<10 <10	0,15 0,16	490 515	240 230	198 154	<2 6	<10 <10	48 48
600 F-01		<5	<2	480	<0.2	34	170	40	4.22	<10	0.24	1310	380	22	2	<10	42
601 F-01		<5	<2	380	< 0.2	50	140	27	3.50	<10	0.12	1000	280	22	<2	<10	30
602 F-02		<5	<2	270	<0.2	62	200	17	1.87	<10	0.16	760	220	156	6	<10	52
603 F-02 604 F-02		<5 <5	<2 <2	250 220	<0.2 <0.2	32 32	250 240	34 28	2.89 2.50	<10 <10	0.19 0.16	1555 1795	220 180	30 34	6 6	<10 <10	30 30
605 F-02		<5	<2	360	<0.2	106	300	46	4.59	<10	0.43	1815	270	184	8	<10	258
606 F-02	14	<5	7	400	<0.2	102	310	47	4.64	<10	0,44	1700	290	178	6	<10	268
607 F-02		<5	<2	450	<0.2	32	440	36	3,67	<10	0.31	1630	300	32	2	<10	82
608 F-02 609 F-02		<5 <5	<2 <2	400 410	<0.2 <0.2	54 64	530 400	28 45	3.00 4.07	<10 <10	0.23 0.30	1430 1520	220 350	84 104	2 4	<10 <10	84 178
610 F-02		<5	<2	400	<0.2	84	180	25	4.15	<10	0.10	1550	340	64	6	10	102
611 F-02		<5	13	430	<0.2	42	140	10	2.06	10	0.52	300	280	36	<2	<10	40
612 F-03		<5	46	310	<02	42	120	6	2.14	<10	0.34	225	350	38	<2	<10	26
613 F-03		<5	10	400	<0.2	18 70	130 130	9 12	1.92	10 <10	0.44 0.51	290 605	280 550	36 46	<2 <2	<10 <10	36 56
614 F-03 615 F-03		10 <5	4 19	480 400	<0.2 <0.2	16	110	8	2.14 1.60	<10	0.47	295	520	30	<2	<10	42
616 G-00		<5	2	390	<0.2	34	320	38	2.64	<10	0.21	1940	220	24	2	<10	46
617 G-00	02	<5	4	270	<0.2	50	340	14	1.78	<10	0.42	1785	310	32	6	<10	60
618 G-00		<5	2	110	< 0.2	40	150	11	1.68	<10	0.05	830	110	24	2	<10	26 26
619 G-00 620 G-00		<5 <5	2 3	320 200	<0.2 <0.2	32 34	150 70	44 4	4.01 1.04	40 <10	0,39 0.39	1435 390	260 130	28 14	8 4	<10 <10	36 24
621 G-00		<5 <5	3 15	190	<0.2	22	140	20	1.92	<10	0.19	875	180	16	6	<10	32
622 G-00		<5	7	200	<0.2	22	130	5	1.14	<10	0.07	1145	80	14	2	<10	22
623 G-06	08	<5	37	250	<0.2	40	100	19	2.25	<10	0.07	980	190	24	6	<10	34
624 G-00		<5 -6	180	190	<0.2	34 26	100 220	12	2.04 2.92	<10 <10	0.05 0.14	665 1290	150 210	18 24	4 6	<10 <10	20 42
625 G-0 626 G-0		<5 <5	9 19	290 420	<0.2 <0.2	26 130	200	23 18	2.82	<10	0.14	870	760	202	8	<10	50
627 G-0		<5	5	150	<0.2	30	70	4	0.94	<10	0.10	340	230	26	2	<10	12
628 G-0	13	<5	3	260	<0.2	20	240	10	0.92	<10	0.22	185	480	620	16	<10	26
629 G-0		<5	5	500	<0.2	26	100	10	1.58	<10	0.34	425	860	50	2	<10	36
630 G-0	113	<5	8	410	<0.2	230	360	69	1.89	80	0.26	2330	310	4160	30	<10	108

Appendix 4 Geochemical Data of Stream Sediment

 $\left\{ \cdot \right\}$

	SAMPLE	Ац ррф	Sn	F	Ag	As	Ва	Cu	Fe	Hg	Mg	Mn	P	Pb	Sb	w	Zn
631	DESCRIP G-016	FA+AA <5	ppm 3	ppm 480	ppm <0.2	ppm 42	ppm 130	ppm 17	% 1.65	ррb <10	% 0.33	ррт 560	ppm 650	ppm 402	ppm 6	ppm <10	ррт 44
	G-017	<5	23	440	<0.2	34	100	9	1.55	<10	0.41	300	550	48	<2	<10	38
	G-018	<5	4	250	<0.2	16	210	12	0.96	10	0.22	175	430	586	16	<10	28
634 635	G-019 G-020	<5 <5	24 4	180 180	<0.2 <0.2	10 4	100 120	5 7	1.12 0.87	10 <10	0.21 0.24	115 210	370 370	20 34	2 <2	<10 <10	20 24
636	G-021	< 5	5	220	<0.2	10	130	10	1.43	<10	0.32	365	450	40	<2	<10	40
637	G-022	<5	4	240	<02	8	90	7	1,12	610	0.22	360	370	30	<2	<10	22
638 639	G-023 G-024	<5 <5	2 <2	50 150	<0.2 <0.2	<2 8	40 130	3 7	0.53 0.93	10 <10	0.05 0.08	150 220	130 290	26 66	<2 <2	<10 <10	. 10 16
640	G-025	<5	√ 2	230	<0.2	6	110	6	1.08	10	0.20	195	250	20	<2	<10	18
641	G-026	<5	<2	470	<0.2	22	210	69	3.47	20	0.25	1575	510	14	2	<10	66
642	G-027	<5 - E	<2	390	<0.2	60	280 280	46 25	4.14 3.39	100 1010	0.04 0.04	2470 1475	320 280	60 26	16 8	<10 <10	112 48
643 644	G-028 G-029	<5 <5	5 86	340 190	<0.2 <0.2	44 80	3060	23	1.82	60	0.13	1610	130	200	18	<10	58
645	G-030	<5	4	420	<0.2	46	260	23	3.46	30	0.04	1360	300	22	6	<10	48
646	G-031	<5	2	510	<0.2	30	260	11	2.88	60	0.06	1330	90 120	54 92	<2 <2	<10 <10	90 248
647 648	G-032 G-033	<5 <5	<2 <2	700 580	<0.2 <0.2	32 120	330 470	14 30	2.34 4.73	730 3200	0.06 0.05	1165 3490	200	138	14	<10	168
649	G-034	<5	<2	>10000	<0.2	216	80	8	1.49	140	0.31	365	190	74	44	<10	142
650	G-035	<5	<2	880	<0.2	92	40	6	1.99	<10	0.12	360	120	30	36	<10	100
651 652	G-036 G-037	<5 <5	<2 <2	2650 250	<0.2 <0.2	40 12	90 90	7 11	1.08 0.98	<10 10	0.15 0.14	240 360	140 310	14 12	6 <2	<10 <10	40 28
653	G-038	5	<2	470	<0.2	70	180	48	3.61	<10	0.21	2430	360	32	4	<10	58
654	G-039	<5	<2	590	<0.2	54	250	57	3,35	<10	0.59	1870	340	36	4	<10	120
655 656	G-040 G-041	<5 <5	<2 <2	520 470	<0.2 <0.2	94 46	790 800	61 43	3.54 3.39	<10 <10	0.25 0.25	2200 1680	450 350	48 30	6 2	<10 <10	100 96
657	G-042	<5	<2	460	<0.2	50	240	56	3.54	<10	0.26	2200	450	20	2	<10	46
658	G-043	< 5	3	450	<0.2	54	70	43	3.39	10	0.20	1565	250	14	2	<10	28
659 660	G-044 G-045	<5 <5	8 64	220 330	<0.2 <0.2	10 2	90 100	6 8	1.50 1.01	10 <10	0.19 0.14	195 125	270 270	48 144	<2 <2	<10 <10	24 18
661		<5	3	250	<0.2	12	110	7	1.28	<10	0.23	180	270	88	<2	<10	24
662		<5	12	180	<0.2	10	70	5	1.11	<10	0.10	190	220	64	<2	<10	16
663 664	G-048 G-049	<5 <5	7 7	260 410	<0.2 <0.2	8 6	70 70	6 8	1.25 1.08	<10 <10	0.19 0.30	130 170	180 390	62 60	<2 <2	<10 <10	22 34
665	G-050	< 5	3	220	<0.2	6	60	7	1.45	<10	0.25	320	340	44	<2	<10	30
666		<5	16	220	<0.2	8	100	5	1.07	<10	0.21	150	280	54	<2	10	22
667 668		<5 <5	12 6	490 500	<0.2 <0.2	14 12	60 150	14 9	2.05 1.59	<10 <10	0.57 0.43	400 285	900 960	46 30	<2 <2	<10 <10	56 34
669	G-054	<5	5	440	<0.2	24	280	12	2.18	<10	0.42	380	610	86	<2	<10	44
	G-055	<5	3	670	<0.2	16	80	15	1.89	<10	0.43	325	1160	46	<2	<10	56
671 672		<5 <5	4	430 790	<0.2 <0.2	22 16	220 90	11 9	1.90 2.27	<10 10	0.35 0.67	375 350	470 1810	74 46	<2 <2	<10 <10	36 40
673		-5 <5	4	700	<0.2	16	80	15	1.88	<10	0.51	335	1760	28	<2	<10	32
674		<5	2	800	<0.2	10	80	15	1.64	<10	0.57	210	2050	22	<2	20	28
675 676		< 5 <5	29 5	330 170	<0.2 <0.2	30 10	60 40	10 5	1,53 1,28	<10 10	0.37 0.08	265 295	630 250	26 20	<2 <2	<10 <10	28 12
677		<5	3	240	<0.2	12	70	5	1.46	<10	0.26	390	470	18	<2	<10	28
	G-063	<5	10	230	<0.2	12	50	6	1.14	<10	0.24	290	580	18	<2	<10	22
679 680	G-064 G-065	<5 <5	4 6	100 270	<0.2 <0.2	6 10	30 50	3 8	0.58 1.18	<10 <10	0.06 0.24	175 340	230 710	40 20	<2 <2	<10 <10	14 20
681		<5	9	320	<0.2	8	70	13	1.64	<10	0.30	370	970	24	<2	<10	26
682		<5	29	520	< 0.2	56	110	14	2.23	<10	0.52	480	700	56	<2	<10	50
683 684	G-068 G-069	<5 <5	28 14	200 500	<0.2 <0.2	14 72	40 150	10 16	1.76 2.62	<10 <10	0.23 0.52	325 620	380 770	18 64	<2 2	<10 <10	22 66
685		< 5	6	460	<0.2	36	310	16	3.05	<10	0.54	855	880	72	<2	<10	60
686		<5	14	410	<0.2	66	180	14	2.50	<10	0.40	860	390	62 68	<2 <2	<10 <10	56 64
	G-072 G-073	<5 <5	19 <2	200 310	<0.2 <0.2	44 20	390 80	11 14	3.98 1.73	10 10	0.20 0.06	1310 1245	220 180	190	2	<10	40
	G-074	<5	<2	150	<0.2	8	120	4	1.45	10	0.05	750	110	20	<2	<10	8
	G-075	<5	<2	130 140	<0.2 <0.2	8 8	190	4 4	1.19 1.17	<10 10	0.11 0.12	545 365	150 140	38 40	<2 <2	<10 <10	16 16
	G-076 G-077	120 <5	<2 <2	150	<0.2	28	450	29	2.31	10	0.12	710	180	52	<2	<10	44
693	G-078	<5	<2	220	<0.2	48	110	17	2.86	80	0.57	1610	200	208	6	<10	236
	G-079	<5 <5	<2 <2	150 230	<0.2 <0.2	24 22	270 80	34 17	1.96 2.07	<10 10	0.14 0.15	585 1450	160 200	40 52	<2 <2	<10 <10	36 46
	G-080 G-081	<5	<2	220	<0.2	104	970	45	3.43	10	0.14	1515	210	114	2	<10	132
697	G-082	<5	<2	160	<0.2	38	320	14	2.52	10	0.22	2480	310	564	8	<10	142
	G-083	<5 <5	7 <2	230 220	<0.2 <0.2	50 14	90 100	5 7	1.22 1.21	<10 <10	0.22 0.22	420 780	400 220	30 56	<2 <2	<10 <10	64 62
	G-084 G-085	<5	9	200	<0.2	28	200	14	2.27	<10	0.16	2950	410	118	<2	<10	216
701	G-086	<5	19	220	<0.2	14	80	7	1.10	<10	0.22	470	270	176	<2	<10	52
	G-087	<5 <5	32 8	120 180	<0.2 <0.2	8 10	70 80	3 6	0.73 1.04	<10 10	0.12 0.20	240 345	220 320	16 14	<2 <2	<10 <10	16 22
	G-086 G-089	<5	2	120	<0.2	14	90	6	1.12	<10	0.14	390	110	16	<2	<10	20
705	5 G-090	<5	<2	90	<0.2	8	60	6	1.09	<10	0.11	330	120	14	<2	<10	26
	G-091	<5	<2	480	<0.2	138 70	820 810	67 53	5.66 5.26	<10 <10	0.14 0.24	6180 41 9 0	570 480	246 168	4 2	<10 <10	260 240
	7 G-092 3 G-093	<5 <5	<2 <2	420 250	<0.2 <0.2	36	120	23	2.83	<10	0.20	1130	250	108	2	<10	158
709	G-094	<5	<2	330	<0.2	50	430	40	4.18	<10	0.25	2310	380	108	4	<10	176
	G-095	<5 -5	<2	310	< 0.2	130	750	43	4.13	<10	0,25	2700	280	150	4	<10	204
	1 G-096 2 G-097	<5 <5	<2 <2	310 330	<0.2 <0.2	44 50	190 130	29 30	3.59 3.02	<10 <10	0.29 0.22	1290 1090	350 260	62 54	2 2	<10 <10	132 118
	G-098	<5	<2	280	<0.2	36	360	29	3.35	<10	0.07	2930	270	42	4	<10	56
71	4 G-099	<5	<2	160	<0.2	14	60	7	1,14	<10	0.05	410	150	6	<2	<10	14
	5 G-100 6 G-101	<5 <5	<2 <2	230 200	<0.2 <0.2	16 22	130 140	12 20	1.96 1.73	<10 <10	0.05 0.19	1065 515	220 180	10 32	<2 <2	<10 <10	28 100
	7 G-102	<5	<2	350	<0.2	38	130	47	2.92	<10	0.22	1780	330	28	2	<10	80
718	B G-103	<5	<2	170	<0.2	18	40	18	1.96	<10	0.12	715	100	10	<2	<10	34
	9 G-104 0 G-105	<5 <5	<2 <2	220 190	<0.2 <0.2	30 12	330 210	23 7	2.21 1.33	<10 <10	0.24 0.05	800 355	200 120	68 4	2 <2	<10 <10	190 16
12		-3	~2	190	-U.Z	12	٠,١٠	•	, 55	.10	0.00	500	,20	7			

Appendix 4 Geochemical Data of Stream Sediment

SAMPLE DESCRIP	Au ppb FA+AA	Sn ppm	F opm	Ag ppns	As ppm	Ba ppm	Сu ppm	Fe %	Hg ppb	Mg %	`Mn ppm	P ppm	Pb ppm	Sb ppm	W ppm	Zn ppm
721 G-106	<5	<2	190	<0.2	12	60	8	1,26	<10	0.08	275 305	170 90	6 22	<2 <2	<10 <10	24 30
722 G-107 723 G-108	<5 <5	<2 <2	180 400	<0.2 <0.2	20 48	60 120	8 11	0.89 3.02	<10 10	0.04	1025	170	40	8	<10	52
724 G-109	<5	13	560	<0.2	50	230	15	4.01	10	0.06	1030	250	38	6	<10	66
725 G-110	<5	<2	250	<0.2	20	120	9	1.31	10 <10	0.04 0.03	450 325	130 190	24 16	2 <2	<10 <10	34 30
726 G-111 727 G-112	<5 <5	<2 <2	170 130	<0.2 <0.2	14 8	80 90	12 6	1.35 0.71	10	0.03	180	110	14	<2	<10	14
728 G-113	<5	<2	160	<0.2	14	90	6	1,30	<10	0.04	345	120	12	<2	<10	22
729 G-114	<5	<2	130	<0.2	8	70	5	0.85	<10	0.03	365	90	6 4	<2 <2	<10 <10	14 12
730 G-115 731 G-116	<5 <5	<2 <2	230 260	<0.2 <0.2	<2 6	40 50	5 6	1.00 3.26	<10 <10	0.18 0.11	265 305	140 300	8	2	<10	10
731 G-110 732 G-117	<5	<2	230	<0.2	8	40	7	1.14	<10	0.07	375	170	8	<2	<10	8
733 G-118	<5	<2	180	<0.2	8	40	5	0.92	<10	0.24	130	320	6	<2 2	<10 <10	10 12
734 G-119 735 G-120	<5 <5	<2 <2	260 210	<0.2 <0.2	16 6	310 40	3 2	1.36 4.67	30 <10	0.09 0.03	380 210	420 240	20 2	<2	<10	10
735 G-120 736 G-121	<5	<2	330	<0.2	4	140	4	1.01	10	0.27	615	220	16	<2	<10	14
737 G-122	<5	<2	250	<0.2	20	140	10	1.58	<10	0.18	645	240	52 94	<2 4	<10 <10	52 200
738 G-123 739 G-124	<5 <5	<2 <2	400 310	<0.2 <0.2	146 62	240 140	69 48	5.75 3.68	<10 <10	0.57 0.48	1885 1745	350 320	64	<2	<10	148
740 G-125	<5	<2	180	<0.2	28	80	18	1.26	<10	0.17	880	250	30	2	<10	48
741 G-126	<5	33	250	<0.2	40	80	20	1.45	<10	0.25	905	370	44 16	<2 <2	<10 <10	36 14
742 G-127 743 G-128	<5 <5	29 <2	210 330	<0.2 <0.2	2 14	100 240	3 31	0.66 2.62	<10 <10	0.15 0.18	205 1715	230 260	12	<2	<10	32
743 G-128 744 G-129	<5	<2	410	<0.2	36	350	43	3.64	10	0.15	2970	270	72	2	<10	80
745 G-130	<5	<2	150	<0.2	10	70	15	1.30	10	0.10	580	80	14 82	<2 2	<10 <10	14 90
746 G-131 747 G-132	<5 <5	<2 <2	360 360	<0.2 <0.2	36 24	410 130	45 69	3.75 4.55	10 <10	0.16 0.80	3060 1305	280 320	18	<2	<10	50
748 G-133	<5	×2	380	<0.2	48	580	45	3.85	10	0.23	3030	290	114	6	<10	122
749 G-134	<5	42	340	<0.2	26	70	10	1.27	<10	0.29	245	660	48 54	<2 <2	<10 <10	30 128
750 G-135 751 G-136	<5 <5	<2 <2	590 500	<0.2 <0.2	12 8	50 110	8 7	1,81 1,69	40 30	0.05 0.05	690 755	70 350	32	<2	<10	94
752 G-137	<5	<2	370	<0.2	12	50	5	1.03	<10	0.04	525	150	28	4	<10	52
753 G-138	<5	<2	780	<0.2	16	100	9	2.20	30	0.07	1020 1035	160 140	82 54	2 6	<10 <10	130 92
754 G-139 755 G-140	<5 <5	<2 <2	600 200	<0.2 <0.2	44 14	70 50	7 2	3.81 1.00	20 <10	0.09 <0.01	315	70	20	<2	<10	12
756 H-001	<5	11	480	<0.2	34	80	18	1.56	<10	0,41	260	630	34	2	<10	40
757 H-002	<5	3	70	<0.2	16	80	1	0.61	<10 <10	0.01 0.40	380 315	90 510	4 78	<2 2	<10 <10	6 38
758 H-003 759 H-004	<5 <5	18 19	430 470	<0.2 <0.2	46 44	100 110	11 10	1.58 1.68	<10	0.48	335	520	64	2	<10	44
760 H-005	<5	64	370	< 0.2	40	80	22	1.60	<10	0.30	255	740	62	<2	<10	30
761 H-006	<5	25	500	< 0.2	18	110 70	7 7	1.30 1.29	<10 10	0.46 0.40	245 300	520 440	26 22	<2 <2	<10 <10	40 44
762 H-007 763 H-008	<5 <5	5 32	380 880	<0.2 <0.2	14 34	110	20	2.09	<10	0.77	405	1440	52	2	<10	84
764 H-009	<5	19	970	<0.2	94	110	18	2.50	<10	0.83	475	1810	90	2	<10	130 60
765 H-010	<5 <5	16 28	360 300	<0.2 <0.2	30 26	110 90	9 10	1.60 1.20	<10 <10	0.48 0.33	345 270	520 430	40 38	2 4	<10 <10	44
766 H-011 767 H-012	<5	3	420	<0.2	12	70	9	1.47	10	0.03	570	140	22	2	<10	26
768 H-013	<5	<2	380	<0.2	40	180	20	2.39	10	0.12	875 075	200 220	24 30	2 6	<10 <10	38 36
769 H-014 770 H-015	<5 <5	<2 <2	470 750	<0.2 <0.2	38 32	190 130	21 9	2.51 2.47	10 60	0,11 0.03	975 1370	70	112	6	<10	130
771 H-016	<5	<2	280	<0.2	78	760	13	1.89	70	0.05	890	120	38	6	<10	44
772 H-017	<5	<2	210	<0.2	220	100 310	12 15	2.58 2.63	10 60	0.02 0.04	480 1670	110 100	22 96	10 8	<10 <10	40 182
773 H-018 774 H-019	<5 <5	<2 5	400 220	<0.2 <0.2	116 60	240	16	2.31	10	0.21	640	180	24	2	<10	44
775 H-020	<5	3	100	<0.2	14	330	11	0.91	30	0.03	585	260	40	2	<10	18
776 H-021	<5	12 <2	110 70	<0.2 <0.2	32 32	1310 220	14 8	2,26 0,67	30 50	0.01 0.04	1040 520	200 240	138 24	10 2	<10 <10	28 18
777 H-022 778 H-023	<5 <5	~2 <2	90	<0.2	18	200	8	0.69	630	0.03	415	220	32	4	<10	16
779 H-024	<5	7	110	<0.2	20	510	10	1.17	440	0.01	630	100	36	2 <2	<10 <10	12 14
780 H-025	<5 <5	6 3	90 100	<0.2 <0.2	20 22	350 240	8 13	0.99 1.08	130 40	0.01 0.01	505 370	100 170	44 22	2	<10	14
781 H-026 782 H-027	<5	2	120	<0.2	16	250	2	1.57	150	0.05	710	300	354	<2	<10	26
783 H-028	<\$	4	110	<0.2	6	60	5	0.84	<10	0.10 0.09	245 175	210 170	32 34	<2 <2	<10 <10	22 18
784 H-029 785 H-030	<5 <5	6 2	110 150	<0.2 <0.2	6 4	50 90	3 3	0.74 1.03	<10 <10	0.08	260	240	72	<2	<10	28
786 H-031	<5	12	100	<0.2	4	60	1	0.58	<10	0.06	185	130	26	<2	<10	14
787 H-032	<5	6	100	<0.2 <0.2	4 2	60 50	2	0.55 0.50	<10 <10	0.06 0.06	265 185	140 140	26 38	<2 <2	<10 <10	14 14
788 H-033 789 H-034	<5 <5	3 5	80 670	<0.2	24	70	20	2 37	<10	0.61	365	1460	84	<2	<10	48
790 H-035	<5	<2	670	<0.2	18	70	13	2.21	<10	0.70	405	1030	54	<2	<10	78
791 H-036	<5 -5	<2	850 670	<0.2 <0.2	20 18	70 70	19 13	2.57 2.17	<10 <10	0.85 0.71	450 375	1420 980	44 50	<2 <2	<10 <10	100 80
792 H-037 793 H-038	<5 <5	<2 2	670 640	<0.2	18	60	12	2.20	<10	0.57	320	1040	40	<2	<10	50
794 H-039	<5	2	2800	<02	36	90	17	2.63	<10	0.94	315	1460	32	<2	<10	92
795 H-040	<5 45	4	1400 690	<0.2 <0.2	26 28	70 70	16 15	2.26 2.17	<10 <10	0.78 0.63	360 375	1450 1330	50 50	<2 <2	<10 <10	70 , 60
796 H-041 797 H-042	<5 <5	8	680	<0.2	28	130	18	2.52	<10	0.71	480	1420	86	<2	<10	98
798 H-043	<5	4	610	< 0.2	22	120	14	2.06	< 10	0.62	345	1250	64	<2	<10	72 50
799 H-044	<5 .5	6	820 500	<0.2 <0.2	26 16	300 80	14 11	2.18 1.64	<10 <10	0.49 0.49	340 295	1400 1440	58 30	<2 <2	<10 <10	36
800 H-045 801 H-046	<5 <5	49 2	500 520	<0.2	14	190	13	1.92	<10	0.55	315	1620	44	<2	<10	40
802 H-047	<5	5	350	<0.2	10	290	10	1.42	<10	0.35	280	1210	84	<2	<10	44
803 H-048	<5 ~5	22	460 310	<0.2 <0.2	10 10	120 90	10 4	1.50 1.39	<10 <10	0.42 0.31	305 375	1180 650	42 24	<2 <2	<10 <10	36 46
804 H-049 805 H-050	<5 <5	4 12	500	<0.2	12	100	9	1.53	<10	0.45	245	1070	36	<2	<10	38
806 H-051	<5	9	450	<0.2	16	120	9	1.50	<10	0.43	250 730	1270	34	<2	<10	40 104
807 H-052 808 H-053	<5 <5	11 4	190 190	<0.2 <0.2	60 8	80 60	20 5	2.55 0.93	<10 <10	0.24 0.27	720 185	170 440	48 14	<2 <2	<10 <10	104 34
808 H-053 809 H-054	<5	4	210	<0.2	14	50	4	0.93	<10	0.25	190	380	14	<2	<10	26
810 H-055	<5	7	260	<0.2	10	60	6	1.10	<10	0.30	180	460	28	<2	<10	26

Appendix 4 Geochemical Data of Stream Sediment

	SAMPI.E	Au ppb	Sn	F	Ag	Aş	Ba	Çu	Fe	Hg	Mg	Mn	ρ	Pb	Sb	W	Zn
	DESCRIP	FA+AA	ppm	ррт	ppm	ppm	ppm	ppm	%	ppb	%	ppm	ppm	ррт	ppm	ppm	ppm
811	H-056	<5	23	180	< 0.2	10	50	3	0.72	<10	Q.18	160	370	16	<2	<10	28
812	H-057	<5	160	230	<0.2	24	50	7	0.99	<10	0.23	225	680	20	<2	<10	28
813	H-058	<5	12	260	<0.2	16	50	8	1.29	<10	0.33	190	470	20	<2	<10	30
814	H-059	<5	34	220	< 0.2	12	40	7	1.07	<10	0.26	150	400	20	<2	<10	22
815	H-060	<5	20	270	<0.2	10	50	8	1.44	<10	0.30	190	380	28	<2	<10	30
816	H-061	<5	29	220	< 0.2	16	60	6	1.08	<10	0.29	210	440	24	<2	<10	30
817	H-062	<5	7	530	<0.2	12	60	12	2.24	<10	0.82	305	1170	28	<2	<10	520
818	H-063	<5	16	220	< 0.2	12	40	6	1.22	<10	0.23	210	460	18	<2	<10	50
819	H-064	<5	42	60	< 0.2	12	100	7	1.38	<10	0.05	605	140	20	<2	<10	12
820	H-065	<5	<2	40	< 0.2	6	20	1	1.10	<10	0.03	175	60	8	<2	<10	2
821	H-066	<5	32	40	< 0.2	6	50	4	0.86	20	0.03	355	60	10	<2	<10	10
822	H-067	<5	<2	70	<0.2	<2	50	1	0.71	<10	0.09	235	40	8	<2	<10	6
823	H-068	<5	14	50	< 0.2	6	60	4	1.01	<10	0.03	540	40	8	<2	<10	6
824	H-069	<5	<2	60	< 0.2	28	90	5	1.34	<10	0.05	420	210	8	<2	<10	10
825	H-070	<5	<2	40	< 0.2	12	100	3	1.66	<10	0.04	670	90	10	<2	<10	8
826	H-071	<5	<2	80	< 0.2	10	70	10	1.53	<10	0.08	350	100	8	<2	<10	6
827	H-072	<5	<2	100	< 0.2	12	110	12	1.61	<10	0.15	760	190	20	<2	<10	20
828	H-073	<5	<2	180	< 0.2	22	470	10	2.31	10	0.10	1150	170	16	2	<10	16
829	H-074	<5	<2	170	< 0.2	30	410	37	2.43	170	0.14	980	170	48	<2	<10	46
830	H-075	<5	<2	120	<0.2	18	70	6	2.06	<10	0.01	760	90	16	2	<10	8
831	H-076	<5	<2	380	< 0.2	56	110	26	2.92	<10	0.09	1170	260	32	2	<10	78
832	H-077	<5	<2	250	< 0.2	50	120	23	2.58	10	0.06	1165	200	28	2	<10	62
833	H-078	<5	<2	280	<0.2	76	140	28	3,15	20	0.04	1090	2 9 0	36	2	<10	58
834	H-079	205	<2	240	<0.2	52	120	33	3.04	<10	0.06	1225	230	28	2	<10	62
835	H-080	<5	<2	120	< 0.2	40	650	35	3.07	<10	0.10	915	170	48	2	<10	58
836	H-081	<5	<2	200	< 0.2	46	70	13	1.44	<10	0.14	550	160	30	<2	<10	38
837	H-082	<5	<2	210	< 0.2	50	90	22	2.13	<10	0.19	490	140	58	2	<10	94
838	H-083	<5	<2	340	<0.2	24	110	20	2.02	<10	0.18	895	190	20	<2	<10	54
839	H-084	<5	<2	570	<0.2	50	100	69	5.11	<10	0.23	2350	440	98	<2	<10	320
840	H-085	<5	21	420	<0.2	36	730	36	2.90	<10	0.28	1095	310	236	4	<10	498
841	H-086	<5	<2	480	<0.2	54	5 9 0	55	4.23	10	0.26	2090	400	242	4	<10	406
842	H-087	<5	<2	440	< 0.2	54	500	36	3.19	<10	0.31	1690	290	82	2	<10	152
843	H-088	≺ 5	<2	340	<0.2	32	540	26	2.86	<10	0.30	1020	280	98	<2	<10	136
844	H-089	<5	<2	480	< 0.2	38	420	42	4.38	<10	0.22	1915	440	46	2	<10	108
845		<5	<2	210	< 0.2	10	40	12	1.75	<10	0.11	395	150	10	<2	<10	32
846		<5	<2	610	<0.2	26	380	14	4.59	10	0.18	1100	260	42	4	<10	70
847		<5	<2	790	< 0.2	24	570	11	3.32	30	80.0	1165	230	56	8	<10	70
	H-093	<5	<2	450	<0.2	18	100	7	2.32	30	0.05	735	210	34	2	<10	62
849	H-094	<5	<2	610	< 0.2	56	190	17	3.94	30	0,06	1395	120	42	2	30	72

1_)