(1) General

The Study Team defined two types of interchanges based on their function. A system interchange connects two access controlled highways with each other to maintain high mobility and safety, while a service interchange connects an access controlled highway to an ordinary road where it may allow the stopping of traffic by traffic signals according to volume of traffic. Accordingly, a system interchange is suitable to apply high standards and the construction scale will be larger than a service interchange. The basic types of interchanges for the Study and its salient features are shown in Figure 10.1.5.

(2) Location of Interchange

Figure 10.1.6 and Table 10.1.6 show the location and list of interchanges on SHTRR respectively.

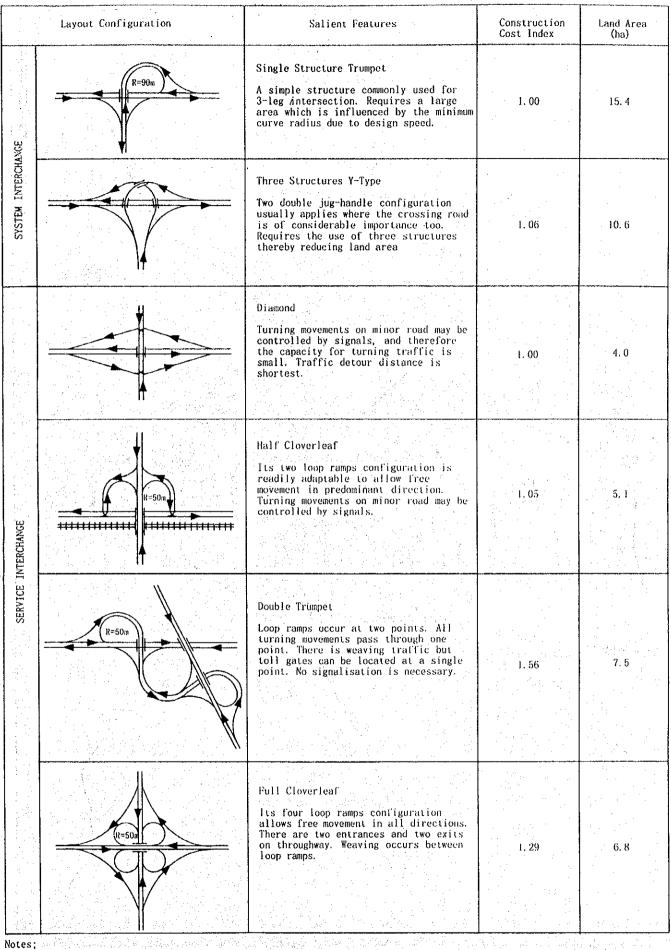
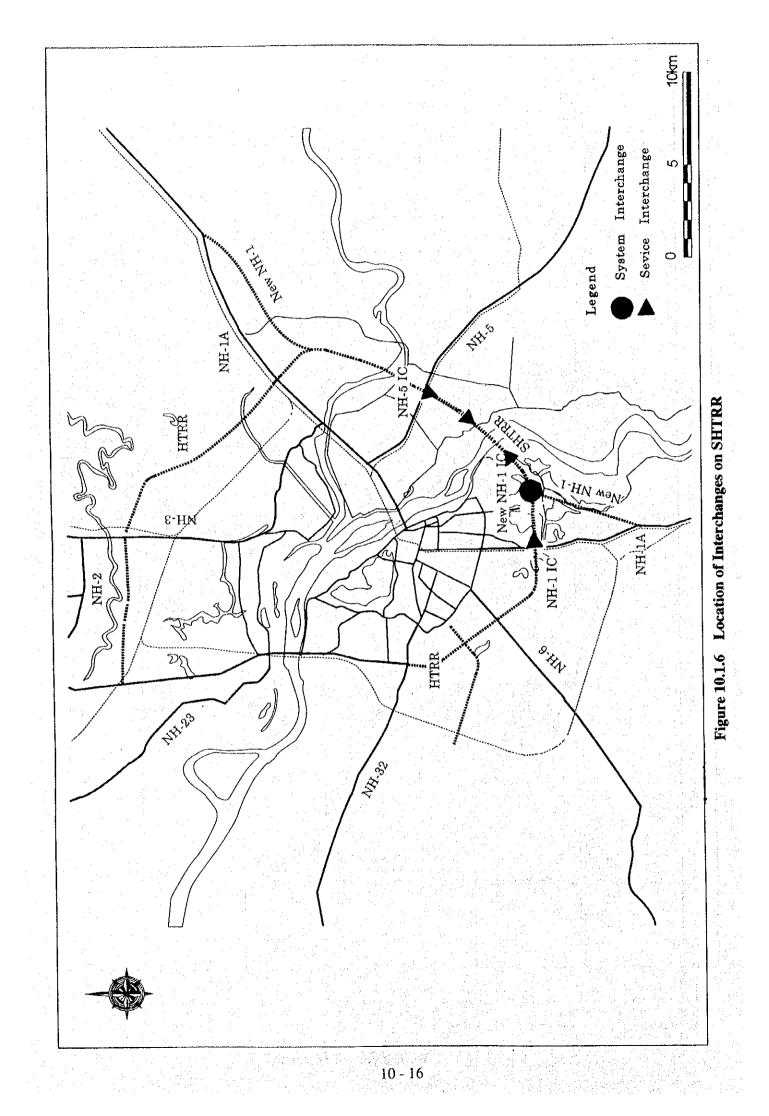
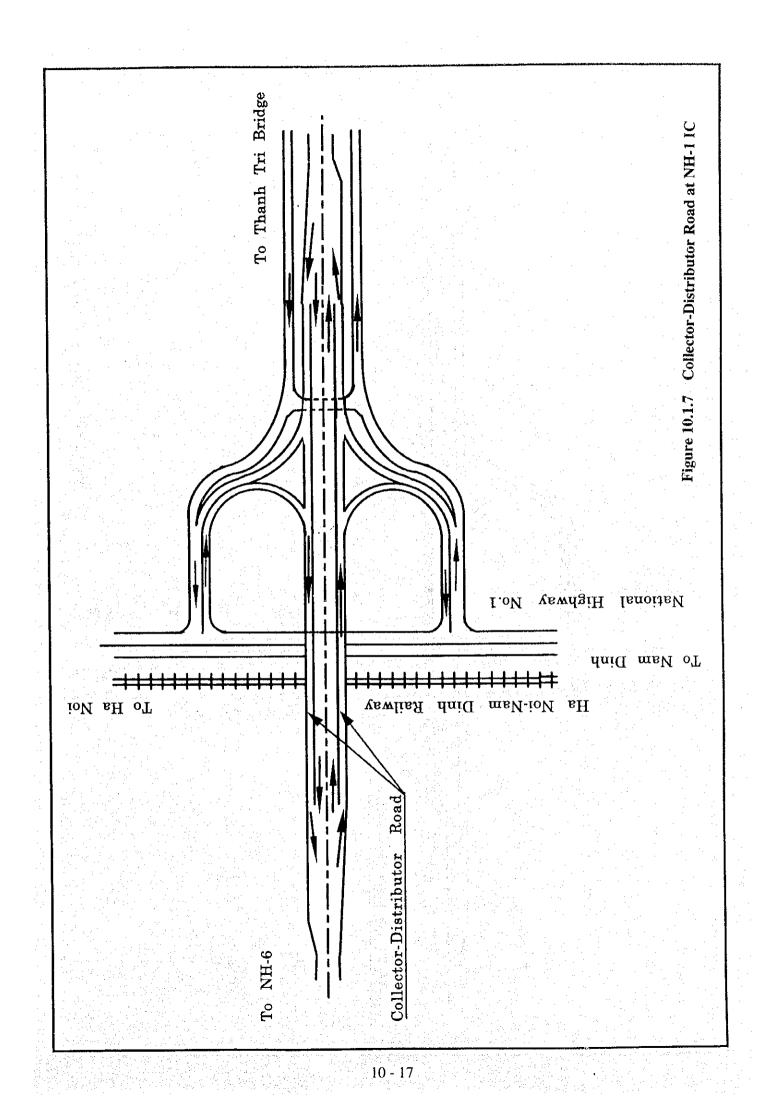
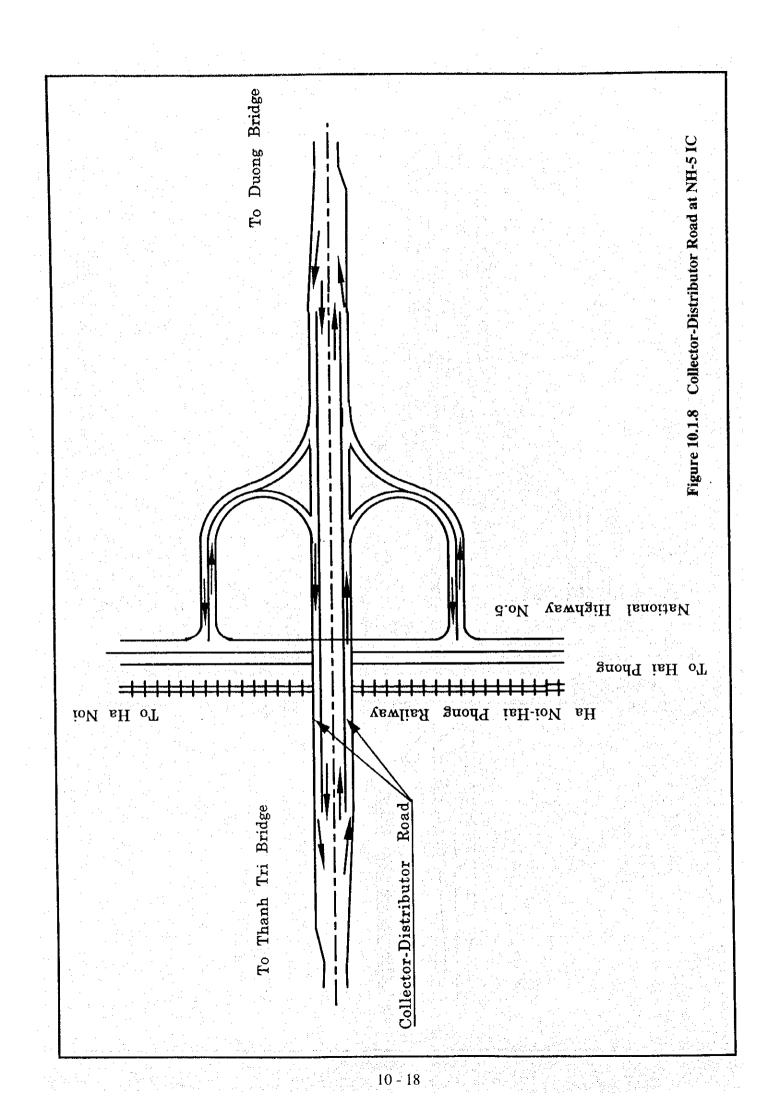

Name of IC	Category of IC	Type of IC	Connecting Road
NH-1 IC	Service IC	Half Cloverleaf	NH-1
New NH-1 IC	System IC	Y-Type	New NH-1
2-Dyke Road IC	Service IC	Half Diamond	Branches of Dyke Roads
NH-5 IC	Service IC	Half Cloverleaf	NH-5

Table 10.1.4 List of Interchanges

Half cloverleaf type NH-1 IC was planned in the vicinity of Linh Dam lake to connect NH-1 with the through travelled way of SHTRR. To develop single-exit design to facilitate access to and egress from SHTRR, a collector-distributor road was planned for full length of the interchange as shown in Figure 10.1.7.


Y-type interchange was proposed at the new NH-1 IC to be located 3 km east of existing NH-1 IC, which becomes the terminus of the southern section of new NH-1 and connects to the through travelled way of SHTRR.


At the intersection of SHTRR with the two dyke roads it is proposed that a half diamond interchange is constructed to allow access to and from each dyke road.



Notes;
In the case of service interchange and system interchange, cost index is the relative cost of other interchange types when compared to diamond type taken as 1.00; in the case of system interchange, the cost of other interchange type is compared to that of single structure trumpet (R=90m) when the latter cost index is taken to 1.00.
2) All interchanges are compared on equal basis with regards to all factors influencing the construction of interchange on flat terrain.

Figure 10.1.5 Basic Types of Interchange

Half cloverleaf type NH-5 IC was planned at the beginning point of the northern section of New NH-1 to connect NH-5 with the through travelled way of SHTRR. To develop single-exit design to facilitate access to and egress from SHTRR, a collector-distributor road was provided for full length of the interchange as shown in Figure 10.1.8.

A railway runs adjacent to both intersection points of SHTRR with NH-1 (Phap Van) and NH-5 (Sai Dong). SHTRR was planned to fly over NH-1 and NH-5 as well as the railway.

10.1.4 Location of Toll Plaza

A barrier type toll plaza was planned on the throughway of SHTRR to levy a toll from stretch users. Location of toll plaza was planned in between Gia Lam dyke road and NH-5 IC. The construction of approximately 200m long toll plaza was planned at about Sta. 11+100.

However, the traffic using the interchanges at the dyke locations may not travel through this toll plaza. Therefore, the Study Team proposes the planning of minor toll plazas on the ramps of interchanges.

10.1.5 Countermeasures against Community Severance

(1) Practical Solution against Community Severance

Full access controlled highway might bring adverse effect to adjacent area, especially disrupting community in urban area, without any countermeasures. Even if frontage roads are provided in both sides of access controlled highway, it is very necessary for local people to cross the highway within appropriate distance. For example, route bus users on one way controlled frontage road need pedestrian access across the highway under/over pass to access the opposite frontage road.

Practical solutions against community severance brought by access controlled highway are as follows;

Provision of open space by grade separation structures such as bridges and flyovers;

Installation of underpass facilities such as box culvert; and

Construction of overpass facilities such as pedestrian overpass.

These facilities are not always planned for preventing the severing of the adjacent community, but minimise disruption of the wider community. Cyclist box culvert and pedestrian overpass are supplementary to other facilities.

(2) Location of Facilities

Table 10.1.5 gives the list of facilities for keeping community access across SHTRR.

			and a second	
No.	Station	Type of Facilities	Remark	District
1	0+830	Flyover	Existing Road	Thanh Tri
2	1+680	Drainage Box Culvert	Water Way	Thanh Tri
3	1+900	Flyover	U-turn Facility	Thanh Tri
4	2+625	River Bridge	Water Way	Thanh Tri
5	3+050	Vehicular Box Culvert	U-turn Facility	Thanh Tri
6	3+350	Pedestrian Box Culvert	Existing Road	Thanh Tri
7	3+770	Vehicular Box Culvert	U-turn Facility	Thanh Tri
8	4+370	Vehicular Box Culvert	U-turn Facility	Thanh Tri
9	4+900	Pedestrian Box Culvert	Existing Road	Thanh Tri
10	5+580	Pedestrian Box Culvert	For Pagoda	Thanh Tri
11	5+815	Vchicular Box Culvert	Existing Road	Thanh Tri
12	5+830	Drainage Box Culvert	Water Way	Thnah Tri
13	6+300	Drainage Box Culvert	Water Way	Thanh Tri
14	6+465	Flyover	Existing Road	Thanh Tri
15	10+300	Drainage Box Culvert	Water Way	Gia Lam
16	10+860	Pedestrian Box Culvert	Existing Road	Gia Lam
17	11+475	Drainage Box Culvert	Water Way	Gia Lam
18	11+490	Vehicular Box Culvert	Existing Road	Gia Lam
19	12+000	Pedestrian Box Culvert	Existing Road	Gia Lam
20	12+285	Flyover	Existing Road	Gia Lam
21	12+750	Drainage Box Culvert	Water Way	Gia Lam
22	12+930	Flyover	Existing Road	Gia Lam

Table 10.1.5 List of Facilities

10.1.6 Consideration to Future Railway Development

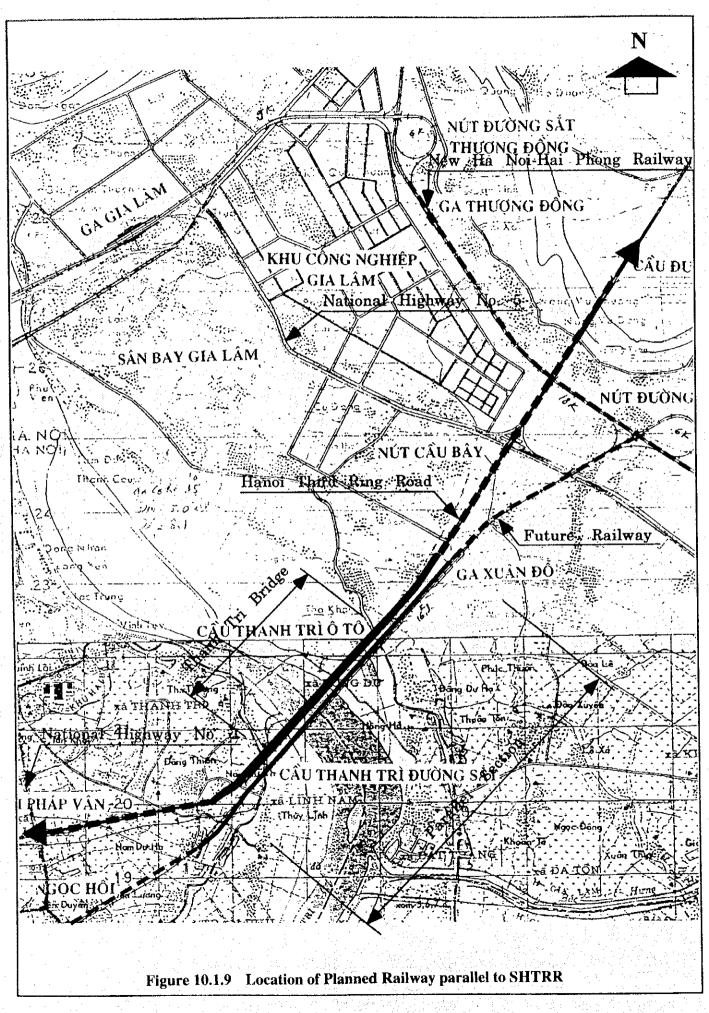
A railway development plan for Hanoi has been drawn up and has been approved by the Government, but neither definitive plans nor an implementation schedule are defined at present.

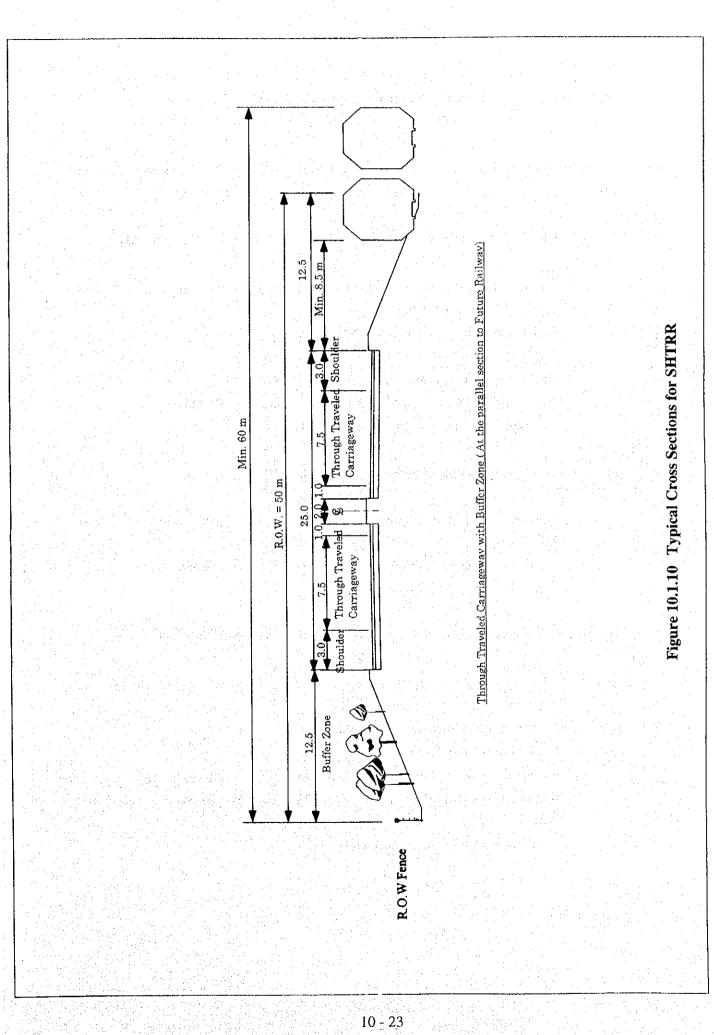
SHTRR will run parallel to a future railway on either side of the Thanh Tri bridge, and existing Hanoi - Hai Phong railway is planned to be relocated to the north-east as shown in Figure 10.1.9.

SHTRR route has been located in Thanh Tri area to keep minimum 60m from primary controlling points such a future railway (Figure 10.1.10).

The plan of new Hanoi - Hai Phong railway may affect the selection of interchange type of NH-5 IC. However, since the forecasted traffic demand warrants stage construction according to increase of traffic, the proposed half-cloverleaf type interchange does remain viable.

10.2 Preliminary Design of SHTRR


10.2.1 Plans and Profiles


Plans and Profiles are prepared along the selected route to the scales of 1:5,000 horizontal and 1:1,000 vertical. The basic data used in controlling the design has been topographic maps, aerial photos and the information obtained from the topographic survey. See Volume IV Drawings for plans and profiles.

10.2.2 Project Limits on SHTRR

SHTRR will be implemented in the near future to coordinate relevant projects. Such relevant projects are as follows:

- The western section of Hanoi Ring Road No.3 by the BOT (Build Operate Transfer) scheme;
- The southern section of New NH-1 by the assistance of World Bank; and
- The northern section of New NH-1 by the assistance of Asian Development Bank.

Although these three road development projects are financed from different funds they will be connected to SHTRR at the final stage by interchanges. At present it is difficult to clearly define the project limits as these projects are individually implemented.

For the purpose of economic evaluation of SHTRR, the following works were included within the project limits in case of NH-1, New NH-1 and NH-5 interchanges.

(1) NH-1 IC to Connect the Western Section of Hanoi Ring Road No.3 and NH-1

Land acquisition and resettlement costs related to loop ramps of halfcloverleaf type interchange;

Grade separation structure over NH-1;

Earthworks of NH-1 IC;

Pavement works on two ramps towards SHTRR;

Vehicular box culvert for U-turn facility at STA. 1+220; and

Frontage roads and signalized at-grade intersections.

(2) New NH-1 IC to Connect the Southern Section of New NH-1

Half costs of land acquisition and resettlement costs related to Y-type interchange;

Two grade separation rampways from the SHTRR to New NH-1; and

Two rampways egress from SHTRR to New NH-1.

(3) NH-5 IC to Connect the Northern Section of New NH-1 and NH-5

All the costs of land acquisition and resettlement costs related to loop ramps of half-cloverleaf type interchange;

Grade separation structure over NH-5;

Earthworks of NH-5 IC;

Pavement works on four ramps towards both SHTRR and New NH-1;

Reconstruction costs of New NH-1 such as structures over irrigation channels; and

Signalized at-grade intersections.

10.3 Preliminary Pavement Design

10.3.1 Design Conditions

The pavement layers and their thickness should be determined based on the following factors governing the design (flexible pavement design):

Traffic; Roadbed soil; Materials of construction; and Environment

In most of the prevailing pavement design guides, traffic is expressed in terms of the cumulative single axle loads of 8,200 kg (18-kip), over the design life of the road. The number of commercial vehicles, in particular, heavy vehicles such as buses and trucks.

The strength of subgrade will govern the thickness design of pavement. Commonly the strength is expressed by California Bearing Ratio (CBR) value determined by laboratory testing. A CBR value of 6.0% is adopted in the computation of pavement thicknesses.

As for the pavement surface, except for the toll plaza area where portland cement concrete pavement will be used, asphalt concrete was employed in the pavement design. There are three types of materials suitable for the base course, i.e., asphalt treated base course, cement treated base course and stabilized aggregate base course. Asphalt treated base course (ATB) and stabilized aggregate base course were applied in this study. Crusher-run aggregate was used as the subbase course material.

Two main environmental factors were considered with regard to pavement performance and pavement structure design; specifically, these are temperature and rainfall.

10.3.2 Design Features

Based on the above discussion, "AASHTO Guide for Design of Pavement Structures" (1972 and 1986) was used to determine the thickness of the pavement layers. The design condition is presented as follows:

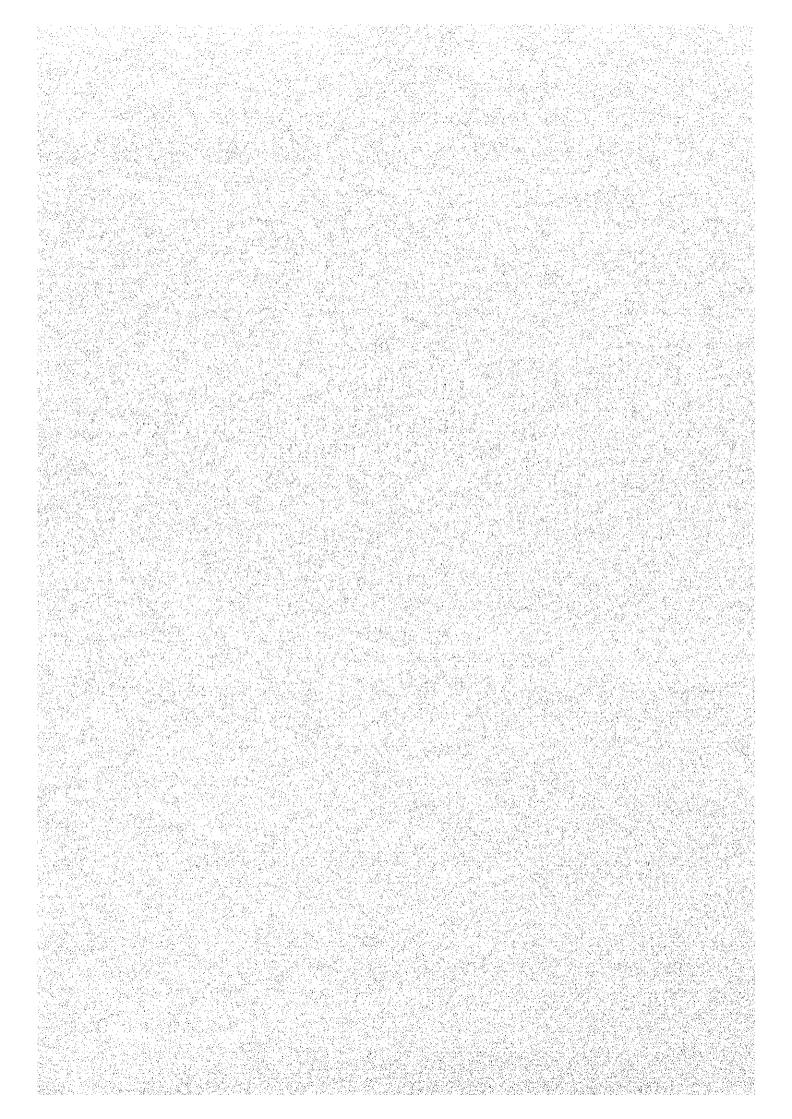
 Pavement type	•	Fle	exible	design
Design life		10	years	
Serviceability loss	•	2.5	5	

(1) Equivalent 18-kip Single Axle Loads (ESAL)

(16,000 + 46,000) vchicle/day x 365 day/year x 10 year = 113.1 million vehicle 2

ESAL = 113.1 million x 0.725 x $\frac{1}{2}$ x 0.8 = 32.8 million

(2) Required Structural Number (SN)


Adopt CBR = 6% and serviceability loss = 2.5 Required SN = 5.4

(3) Adopted Thickness Design

Pavement Component	Thickness in Inches	Structural Layer Coefficient	<u>SN</u>
AC Surface	1.97 (5cm)	0.44	0.87
AC Binder	1.97 (5cm)	0.44	0.87
ATB	3.94 (10cm)	0.34	1.34
Stabilized Aggregate Base	5.91 (15cm)	0.14	0.83
Subbase	13.79 (35cm)	0.11	1.52
Total			5 43

Total

CHAPTER 11 PRELIMINARY ENGINEERING DESIGN OF BRIDGE

CHAPTER 11 PRELIMINARY ENGINEERING DESIGN OF BRIDGE

11.1 Introduction

The preliminary design for the bridge structures has been divided into the following categories;

- (i) river crossing
- (ii) interchange structure
- (iii) flyover
- (iv) drainage and other bridges

In this chapter, the preliminary design regarding the four above-mentioned categories was conducted.

For the river crossing, the preliminary design on the bridge types was carried out which were selected as the recommended alternatives both the Main Bridge and the Approach Bridge in Chapter 9.

For the interchange structure, flyover and other bridges, the preliminary design was conducted referring to the results of the study on the river crossing.

11.2 River Crossing

- 11.2.1 Main Bridge
 - (1) Superstructure
 - Prestressed Concrete Box Girder

The span arrangement of the bridge is $80 + 4 \times 130 + 80$ giving an overall length of 680 metres, which gives sufficient clearance for the navigational requirements. To ease construction the Study Team has separated the cross section to form two individual and unconnected box sections, one for each carriageway. The overall depth at the pier and mid span is 7.0 and 2.8 metres giving a span/depth ratio of 18.5 and 46.4 respectively.

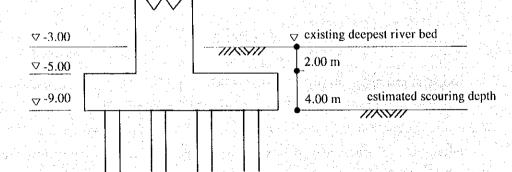
The calculations show that a force of approximately CGS unit of prestress/

carriageway is required at each pier to resist the dead weight cantilever construction and applied live loading. A summary of the stress history at the pier and mid span is shown in Table 11.2.1.

The overall layout and cross section of the bridge is shown in Figure 11.2.1 and 11.2.2.

(2) Substructure/Foundation

1) Pier


The dimensions of the pier were determined from the analysis. The preliminary design was conducted based on the following consideration.

The pier consists of pier head, column and footing with pile foundation.

Column is an elliptical shape and hollow type in order to reduce the concrete volume.

The dimensions are determined according to the pile arrangement. Its vertical position is planned analysing the scour depth which is mentioned in Chapter 5. In the deepest river bed the relationship between structure and the river conditions are shown below.

•	existing deepest river bed;	approximately	-3.00 m
•	height of footing;		4.00 m
•	estimated scouring depth;		6.00 m
. •			

When the scour occurs up to the estimated depth, the pile foundation is still in the soil layer.

Table 11.2.1 Results of Analysis (1)

de 11.2.1	Results of Anal	ysis(1)					
Bridge Type	Balanced Cantilever	÷.			Wt of Concrete =	24 k	N/m^3
Span	130	metres	· · ·				
	Pier Section	н			Mid Span		
	Depth of Section	7.00		•	Depth of Section	2.80	
Web	Width of Web y-web	0.75 3.75		Web	Width of Web y-web	0.3 1.45	
Top Flange	Width	15.8		Top Flange	Width	15.8	
	Depth y	0.3 6.85	e di teri.		Depth y	0,3 2.65	
Btm Flange	Width	8.0		Bim Flange	Width	8.0	
Duit Flange	Depth	0.8		2	Depth	0.4	
	У	0.4			У	0.2	
Area of Sectior y-bar	$1 \qquad \qquad$	20.74 3.4466	Α	rea of Section y-bar		9.95 1.6418	
Inertia		147.096		Inertia	an an an An Air	12.508	
	D1 0 0						
Dead Load	Pier Section	· · ·		· .	Prestressing		1 N N
	Bending Moment (kNm)	=	626032,33			Force (kN)	=
	top fibre stress (N/mm^2)	=	-15.12	9-9- 1	e	ccentricity (n	
	btm fibre stress (N/mm^2)	=	14.67		top fibre stre	s (N/mm^2)	
Superdead		in a suit Airtí			btm fibre stre	ss (N/mm^2)	.= .
	Bending Moment (kNm)		93520.424			stress(c)	. ≠
	top fibre stress (N/mm^2)	=	-2.26				
	btm fibre stress (N/mm^2)		2.19			· · · ·	
Live Loading	đ	IS 20-44)*1	.25				14 J.
Intensi	ty of Lane Loading (kN/m)	=	11.9				÷
	Bending Moment (kNm)		147608.61				
	top fibre stress (N/mm ²)	53	-3.57			•	· ·
	btm fibre stress (N/mm^2)	=	3.46			•	
	Mid Span Section					n an taonn An an	· · ·
Dead Load							т.,
	Bending Moment (kNm)	ni en e De Est	15000			Force (kN),	
	top fibre stress (N/mm^2)	÷ * . * ₩.	1.39			eccentricity (n	=
	btm fibre stress (N/mm^2)	=	-1.97	e green tit. Na se	top fibre stre	ss (N/mm^2)	=
Superdead			신 : 영화 : 11 1912년 - 11일		btm fibre stre	ess (N/mm^2)	=
	Bending Moment (kNm)	=	16326.977			stress(c)	=
	top fibre stress (N/mm^2)	=	1.51				
	btm fibre stress (N/mm^2)		-2.14				
Live Loadin	g						-
	Bending Moment (kNm)		38732.254				
	top fibre stress (N/mm^2)	1993 - 1993 1997 - 1997	3.59				
	btm fibre stress (N/mm^2)		-5.08				
医动力扩展				n di si pe			1.1

221000 3.403 28.83 -6.97 10.66

> 54000 1.442 -1.78 15.65 5.43

11 - 3

note : width of deck allows 4 lanes of traffic

Table 11.2.2 Results of Analysis (2)

Pier Section		Span =	130m	
		• ••		
		ft	fc	fb
		N/mm ²	N/mm ²	N/mm ²
Dead Load	· .	-15.12	-14.48	14.67
Prestress		28.83	28.06	-6.97
		13.70	13.57	7.70
n ann. Tha anns anns anns anns anns anns anns an		(16)		(-1)
Losses	(30%)	-8.65		2.09
		5.05		9.79
Superdead	di sa k	-2.26		2.19
	2000 - 2000	2.80		11.98
Live Loading (Comb 1)		-3.57		3.46
		-0.77		15.44
		(-3.2)		(16)
Live Loading (Comb1A)		-3.57		3.46
		-4.34		18.90
	· · · ·	(-4.8)		(24)

() permissible stress

Mid Span Section

	ft	fc	fb
	N/mm ²	N/mm ²	N/mm ²
Dead Load + Continuity	1.39	-1.73	-1.97
Prestress	-1.78	14.40	15.65
	-0.39	12.67	13.68
	(-1)		(16)
Losses (30%)	0.53 au		-4.69
	0.14		8.98
Superdead	1.51		-2.14
	1.65		6.84
Live Loading (Comb 1)	3.59		-5.08
	5.24		1.76
	(16)		(-3.2)
Live Loading (Comb1A)	3.59	a shini ya shini	-5.08
	8.83		-3.33
	(24)		(-4.8)

() permissible stress

Concrete; $\delta_{28} = 290 \text{ kg/m}^2$

Allowable stress;

	Normal stage	Seismic stage
	(kg/m^2)	(kg/m^2)
• Flexure extreme compressive fiber stres	ss 95	140
• Axial compressive stress	70	105
- Reinforcing Bar (SD 295A)		· · ·
Allowable tensile stress;	1,800	2,700

The dimensions of the pier are shown in Figure 11.2.1 and 11.2.2 including the pile foundation.

2) Pile Foundation

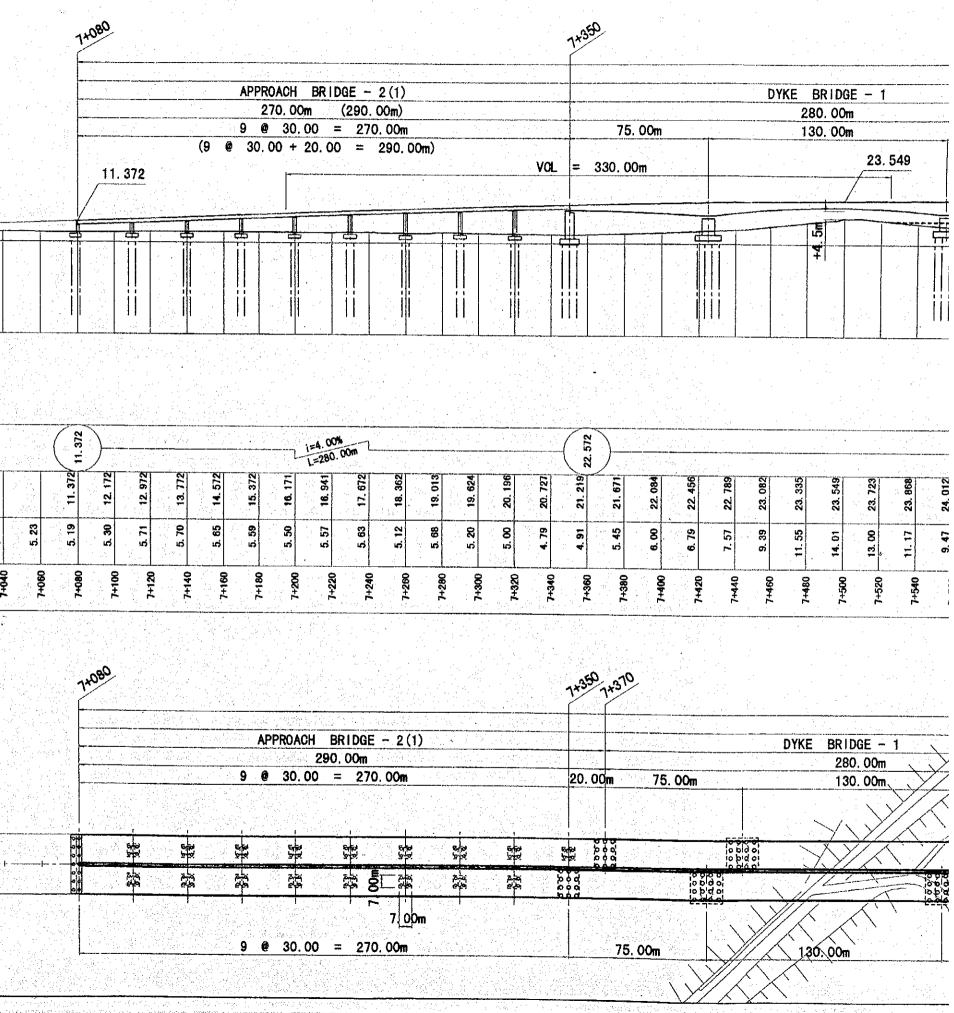
The preliminary design was carried out regarding cast-in-situ concrete pile ø2,000 selected in Chapter 9.

(a) Bearing stratum for foundation

According to the soil investigation of Thanh Tri bridge area, the bearing stratum for foundation (N-value>50) appears on the elevation from -33 m to -43 m.

Pile lengths shall be approximately L = 32 - 35 m for the Main Bridge and L = 35 - 38 m for the Approach Bridge and other bridges which will reach to the bearing stratum (N-value>50).

Maximum allowable vertical loads (Ra) were calculated based on the soil investigation results.

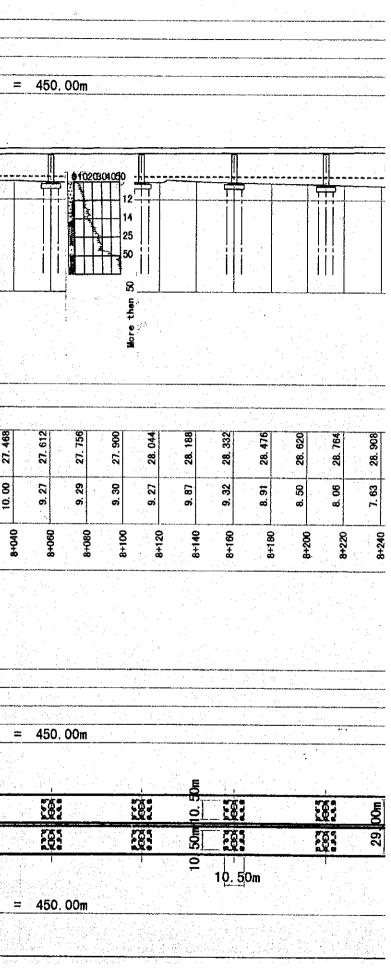

Diameter (mm) Ra (t/pile) ø2,000 1,000

cast-in-situ concrete pile

The results are shown in Figure 11.2.2.

								· .	•				14	080								ан 1 т. т. 1			•		
					- 					· 	• . •			1. 				APP	ROACH	BRID	DGE -	- 2(1)			· · · · · · · · · · · · · · · · · · ·		
	. : '			· · · · ·									-						270, 00)m	(290	. 00m) 70. 00m		· · · · · · · · · · · · · · · · · · ·		<u></u>	-
	40								e Servet e Servet Servet	•		t - Second		· · · ·	na an la		(9		.00 +	20. 00) =	290.	00m)			VOL	• • •
	_20													11.	372												
DATUM E	LEV			[1								<u></u>	L					5	
	-20																										
	<u>-40</u>																										
				1.1.1			· .						e e e l'											Mar di	1		
	GRADE												372	\sum						-4.00							
	GRADE												2 11. 372					N		1=4.00 L=280.							(
	GRADE ELEVATION												11. 372 11. 372	12.112	12.972	13.772	14.572	15. 372	111	18. 941 18. 941	17.672	362		19. 624	20.196	20.127	
		5.55	9 23	8 3	6.52	5 .52	5.47	5.42	5.40	2.3	6 .42	2 33 2 34	- 10-	5.30 12.172	972	112	5.65 14.572	5.59 15.372	17		672	18.362	12.54	ļ	8		
	ELEVATION	5, 55 6+860	5.				5.47	ыл 	ന്	ž		2.23	11.372	2.30	5.71 12.972	5.70 13.772	5. 65	5.59	5.50 16.171	5.57 16.941	5. 63 17. 672	18.362	5. 68	5. 20	5. 8		

n fan de ferste sker

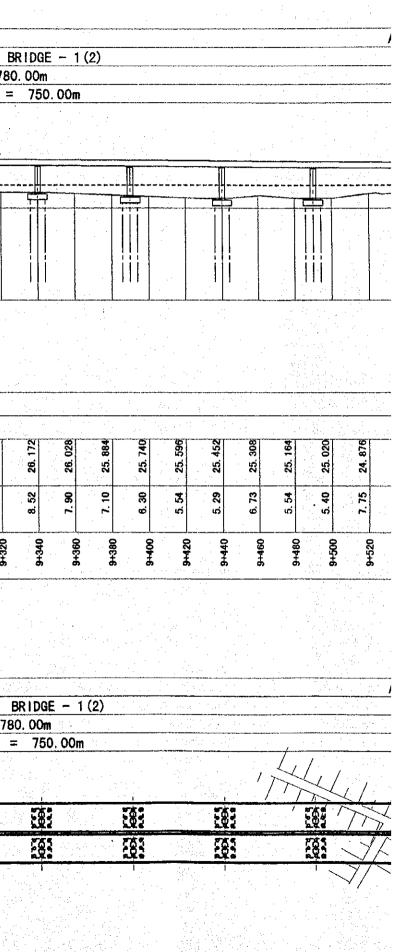

											1	APPRO	ACH	BRI	DGE											· · · · · · · · ·			,	·······		<u> </u>	•••••	
~			D	YKE	BRID	GE - 1			· · · ·				••	а с.,	:		· .		·	••							AP	PROAC	H B	SRIDGE	E - 1	(1)		
			<u> (a</u> .	2	80.00	m	· · · · · · · · · · · · · · · · · · ·	 								1. i	t e la g				a dada		· · · · ·				· · · · · ·). 00m				
5. 00m			·	- 1	30, 00	m .		 <u>.</u>	75.00	m				4	ê	45.00	0 =	= 1	80. OOm		·····					········		.'		1.12	·	9	@	50.00
)Om						23	. 549		•				•	(4	e	40.00	0 =	= 1	60. OOm)											· · ·			
	÷.,									· · · ·			1											<u>e 1 (.</u>				· · · · · ·	- - 7 5		· · ·			
	······	<u> </u>		9 ¹ N		1		 L = = = = = = ,			h		5			10 J. 19						Ì										de la		
	d	╚╬╾┯			5			 ₽		<u> </u>	┍╼╫╢	<u> </u>				1									11		2002 1				5			7
					7+																													

		· · · · · · · · · · · · · · · · · · ·																														
<u> </u>								یند ۱۹۹۹ - ۲۰ ۱۹۹۹ - ۲۰ ۱۹۹۹ - ۲۰	a a A	<u> </u>	· · · · · ·	····		·····															1=0.72	0.00m		
22 OR4		. 2	22. 789	10 22E		23. 723			4.15	24. 300	24. 444	24, 588	24. 733	24.876	25. 020	25. 164	25. 308	25. 452	25. 596	25.740	25.884	26. 028	26. 172	26, 316	26 AGO	26 604		892	036	27.180	27.324	27.468
8 9	6. 79		7.57	; · -	8 5	13,00		9.47	7.73	6. 00	5. 79	5.49	5.14	5.37	5.30	5. 35	5.27	5.60	6. 05	6.00	5.70	5.40	5. 29	5. 25	1	• F	- 1		8.94	10 00	10.00	10.00
1 - 200	00	H 20	1440	190	1480	+200	+520 				2	000	999	UBS	20	061	Q 0	760		8	820		5			8	920	640		8 8]

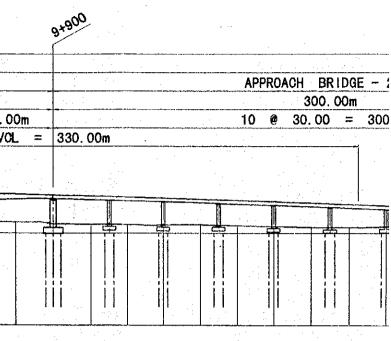
10

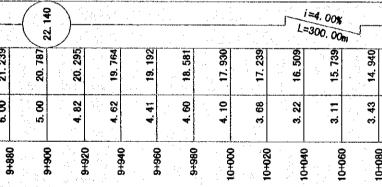
7+630 7+650

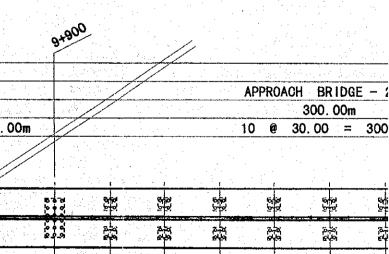
·	and a second second Second second		and the second	<u> </u>	a she ƙwar ta sa	<u> </u>		이 아파 나라는					
······	1989 - E		televen har alfigation		APPROACH	BRIDGE							
		DYKE BRIDGE - 1			s and the factor	ele el centre de la composición de la c		The Sector		APPROA	CH BRIDGE	- 1(1)	1
	laan ka Mariya M	280. 00m									610. 00m		-
75.00	m e e e e e e e e e e e e e e e e e e e	130.00m	$\Sigma / \Sigma $	75. OQm	4	e 40.00	= 160.00m			na ang kaking tet		9 @ 50, 0	10
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		io bid oi io bid oi		20.0		103	203	203	203	203)`@;	
				200	202 -	503			••••••••••••••••••••••••••••••••••••••				
5. 00m		130.00m	75.00	m	4 @	45.00 =	180. OOm					9 /8 50.0)0



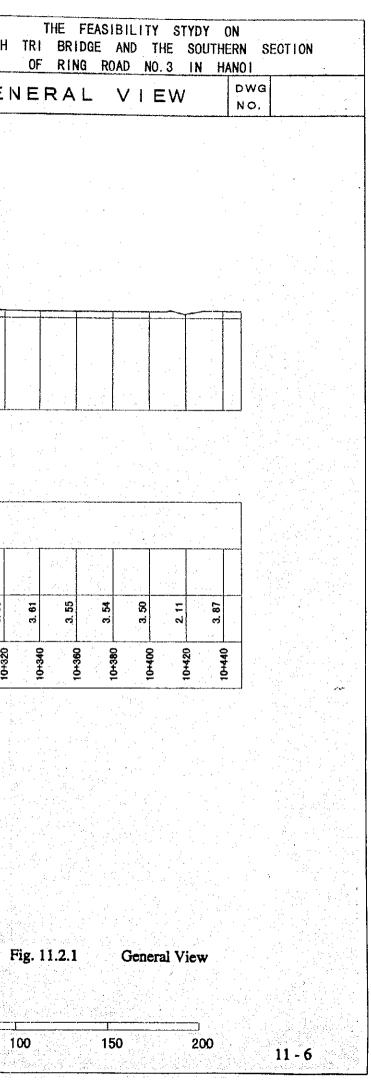
GENERAL VIEW

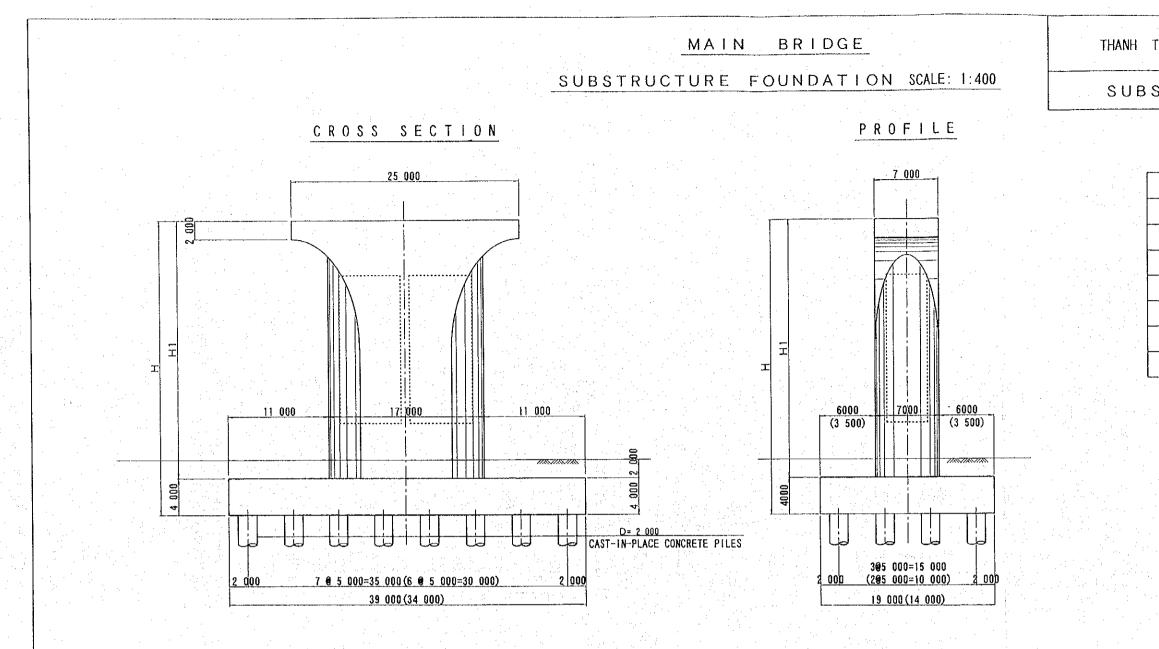

	<u>60</u> LEN	IGTH = 3 120.00m MAIN BRIDGE
30 = 450.00 m	<u>80. 00m</u> 130. 00m 130. 00m	<u>680.00m</u> 130.00m
	9. 052 29. 560 30. 097	
	Image: Second	80.00m 01020301050 -4.900 -35.900 -39.9000 -39.90000 -39.90000 -39.90000 -39.90000 -39.900000 -39.90000 -39.900000000000000000000000000000000000
		PROFILE SCALE: 1:2000
27. 468 27. 468 27. 756 27. 900 28. 332 28. 476 28. 476 28. 476 28. 476 28. 476 28. 908 28. 764 28. 908	29. 192 29. 192 29. 192 29. 146 29. 560 29. 560 29. 560 29. 560 30. 068 30. 068 30. 124 30. 259 30. 259 30. 208	30. 272 30. 272 30. 259 30. 203
10.00 9.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23 <t< td=""><td>6. 74 </td><td></td></t<>	6. 74	
8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 8 8 8 8 8 9 9 9 9 9 9 9 9 9 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td>84 <</td> <td>8+580 8+600 8+660 8+600 8+0000 8+0000 8+0000 8+0000 8+0000 8+0000 8+00000 8+0000 8+00000 8+0000000 8+00000000</td>	84 <	8+580 8+600 8+660 8+600 8+0000 8+0000 8+0000 8+0000 8+0000 8+0000 8+00000 8+0000 8+00000 8+0000000 8+00000000
	2 89	NGTH = 3 120.00m MAIN BRIDGE
00 = 450.00m	80.00m 130.00m 130.00m	680.00m 130.00m
2 10.50m 14 00 = 450.00m	医杀虫 医卡尔氏结束 化试验 医牙外外的 经保证 网络拉克 医子宫 法法律法律 法法律 化试验法 网络拉拉拉拉拉拉 机偏分子	PLAN SCALE: 1:2000


•																			
	÷.,																		
								-		÷									
m	<u> </u>			···						130	0.00)m						· · · · ·	·
	••••••					······				100		2411				1	1		
-			•			30.	091	7		'	:•							29.	. 5
	Ę				{									·····			Y		
	0			12	5	WAT	ER	LE	VEL	(20) Y	EAR	RE	TUF	RN	PER	ŢŌ	D)	
ņ			_	- 				•.										<u> </u>	
 12				F	-t÷ r-nh											L_	\parallel	۲	
27									•						-				
33																			
50						1	-							· .				1	
ß		,	2		••					·					•				
More than 50	1					•				•	÷.,		1						
ore								н т - н	• •										
a . (g				• • • •			۰.	47		•			. *	÷.,	•		•		
			· . ·				1.	•									····		
						· .	•			· · ·					· ·			· · ·	
30.208		30, 170		30. 124		30.068	Ļ	200 .US	29. 933) - ₁ -	852		764		80	20 56D	3	-	29, 446
ŝ		30.		30.		30.	ę	, N	29.		29.		29.	ę	Ś	200	Š		59
20		20		31		68	 L	3	85		34	• •	2		5	1	2	· ·	4. 25
Ŷ		ကို		Ŷ		Ŷ	•	8	-1.85		-1.34		-0, 84	•	ŕ	: 	-	• • •	*
14BRD	3	002+1	3	9+720		8+740		- 09L+6		08/+8	8+800		3+820		+840	····,	- 09		1 USA+8
1		ŧ		.		æ	i. Kiji sta	*	4	*	8+8		. ₩	la L	¥8		8+860		, sta
·		Ì						•			. '			:		н. у. "1		• • •	
													e T						-
	n e.				1.				•••	•					·. ·	•	•	54	
				•••		1		• • •		1	•		•	На на Постана Постана					-
								- 12								n. Le fi	7. 		
· · ·		. :				•				- <u></u> :	··· .				•				
 					. '					1992 - 1993 1997 - 1995 1997 - 1995		· · · ·		· 	:				
)111			-						 	13	0. 0	Om					- -	·	-
										· .	1]		-
•			ere Ngjar	بر ا								÷.		•	÷.,		. 		-
					0 0	000	÷.	•						 	- <u>-</u> -	5 5		0	-
			1.1									;		1 1 1		- 10 - 10		9.9	ہے۔ ۲
	1. 	1				0 0			. 1	- 14 			14 - 1 	а. ² 14 а. 4				o]	7
: 	çŵ.						2.2							÷.,				÷	مبر. سمب
		(en ji Ke da				 					: •
					:														
																			is e Lit
														_			_		

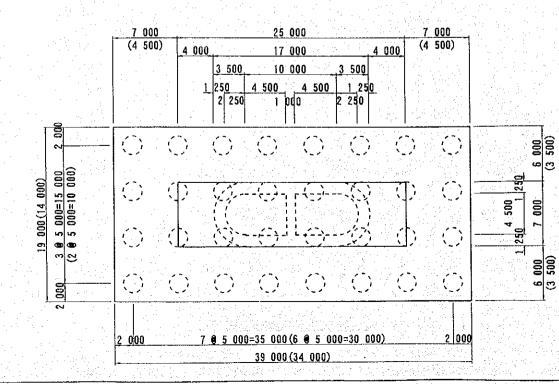

ΞW									•						•			. ·						· · · · ·			· ·									· .
		•		:							- - 				8+94	o I				- 					÷			· ·					· ·		· · ·	
		**************************************		· · · ·		· · · · · · ·							· · · · · · · · · · · · · · · · · · ·					······································									······								AF	PPROACH
Om			· · · ·		1;	30, 00	λπι				80). 00)m												-				· · · · · · · · · · · · · · · · · · ·					15		50.00
			30.	097						29	560				29	. 052	2 2						· · · · ·								· · ·		-			
	5	12.	5 WATE		/EL (20 YE	EAR R	ETURN	PE																					<u> </u>						
0m 1		•								┝┾┼╍╍ ╧╤╋╼╤				 	皆			╶╺╢╸╍ ╦╤╤┛╎									·				610208 E 3					╬ <mark>┢╸╸╸</mark> ╈╤┙ ┙╺╴┥╴╴╴╴╸╸
12 27 33 50																																23 28 50				
More than 50															•																	Nore than 5				
										- 																						/	=0. 72	00m		2007 1997 - 1997 2007 - 1997 2007 - 1997
208	30. 170	124	30. 068	30.005	933	29. 852	29. 764	29.666			446	29. 323	192	30 DE3	3	28.908	28.764	28.620		416	28. 332	188	28.044	S	No. 17	27.756	27.612	468	27. 324	1 1 80	27. 036	. 892	072		20 . 604	26. 460 26. 316
56 30.		30.			29.				:	_			29	·						- 58 		1 28.	** **		_			0 27.				14 S			<u> </u>	
-3.5	-3.20	-3. 31	-2.89	-2.35	-1.85	-1.34	9 8	, See		92 -	4. 25	6.80	7.65	60 0	0	6	9.12	6		8.79	8.63	8.71	8. 79	Ğ	8	8.49	8.38	8.30	8. 33	8.40	8.63	8. 86		3	SC B	8 8 2 2
8+680	8+700	8+720	8+740	8+760	8+780	8+800		8+820	8+840	8+860	8+680	006+8	UC DT-8	NZELO	8+940	096+8	086+8			9+020	9+040	090+6	Coorte		9+100	9+120	9+140	9+160 9		8	007+6	N 746	9+240	9+260	9+280	9+300
															8+9	40																				
															-																					en de la composition de la composition Reference de la composition de la composit
			· · ·															<u></u>						n en se a sector												PPROACH
<u>00m</u>						30. 0	Um				8	0.0	Um		Y1	<u> </u>																		18	j ()	50.00
												· · · · · ·				S		:8:			:87	10. 50m	_				ţ		an di seb An sebu Ban sebu	:82			<u>.</u>		2	
	-												1	in da si Si si		29		103			.8			-9			-			83			<u>8</u> .			
	der og som en som e														<u>1.00</u> 1	1.11					10.5															

					• •		n an	9 	+720		· ·
			<u>an an a</u>		APPROACH	BRIDGE	n an				
APPROA		2)		· · · · · · · · · · · · · · · · · · ·					in the second	OYKE BRIDGE - 2	
45 0 50 4	780.00m			·	· · · · · · · · · · · · · · · · · · ·					180.00m	
15 @ 50.(00 = 750.00m							30. OOm	50.00m	80, 00m	50.00
									I	22. 509	VOL
										22.009	
						<u></u>					
	╴╴╴╴╴╞╢╴╸┙╸╸╸╸ ╷╴╴┍╶┼╤╿╴╴╴╷╴╴						╶╍╍╌╍╸╫┨╸╍╍╍ ───┬──┞╤┲╶─┐	·∦			
										+	
More											
1=0.72% L=1 300.00m											
892 748 604 460	26. 316 26. 172 26. 028	25.884 25.740 25.596	25.452 25.308	25. 164 25. 020 24. 876	588	4 8	868 012 156 868 012	436	303 11 291	357 650	239 252
26. 26. 26. 26. 26. 26. 26. 26. 26. 26.	26. 26. 26. 26. 26. 26. 26. 26. 26. 26. 27.	25. 25. 25.	25. 25.	25. 25.	24. 732 24. 588	24 24	24. 156 24. 012 23. 868	33 23 23	8 8 8	2 2 2	21. 652 21. 239
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8. 53 8. 52 8. 52 7. 90	7.10 6.30 5.54	5. 29 6. 73	5.54 5.40 7.75	8. 41 6. 32	6. 60	7.55 8.30 8.49	8.70 8.29 8.29	7. 75	9.59 11.28 7.51	6. 31. 6. 31. 6. 31.
9+220 - 9+240 - 9+260 - 9+280 - 9+300 -	9+320 9+360 9+360	9+380 9+400	9+4+0 9+4+0 9+450	08 00	9+520 9+540 9+560 9+560 9+560	000 01280 01280 01280	9+6220 9+640 849	9+0 9+120 9+720	41 46 66 74 74 74 74 74 74 74 74 74 74 74 74 74	4, 4, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	098+6
									÷120		
	CH BRIDGE - 1	(2)			APPROACH	BRIDGE					. ka seta se
	780, 00m	(4)	en en antener en antener en			<u>na strana sa sa</u>				DYKE BRIDGE - 2 180.00m	
15 @ 50.	00 = 750.00m					an produktiva		30. 00m	50. 00m	80. 00m	50.0
andra an ann an Airtean Airtean Airtean an Airtean an Airtean an Airtean			1	441						J.F.	
						383	561				- 6666
	161 161								z		a a





								· .							•			THANH T
94	720			9+900						· · · · · · · · · · · · · · · · · · ·				0+200				GEN
		E BRIDGE - 2						001005	0 (0)									
		180.00m	•			in the second	APPROACH 3	00.00m	- 2(2)									
30.00m	50.00m	80.00m	50.00m	* * * · · · · · · · · · · · · · · · · ·		1	0 @ 30.		300. 00m					· · · · · ·	-	· · ·		
		22. 509	VOL =	330.00m										10.	140		· · · · · · · · · · · · · · · · · · ·	
																· · · · · · · · · · · · · · · · · · ·		
7		5						n angere							·····			
		*																
				53. 140				i=4.00%					140					
23.580 23.436	23.291 23.117 23.117 22.903	22.650 22.357 22.024	21. 652	20. 295	19. 764 19. 192	18.581 17.930	17.239 16.509		14. 940 14. 140	13, 340	12.540	11. 740 10. 940						
8. 29	7. 60 6. 57 7. 75	9. 59 11. 28 7. 51	بر کر 20 00 01 20 02	4.82	4.62	4 4 60	3. 22 3. 23 3. 23	3.11	3. 43 4. 00	4.84	4 4	4. 12 3. 89 3. 89		3.70	3. 7	3.79	3.66 3.70	3 80 8 6
9+720	9+740	9+800 9+820 9+840		9+900 9+920	9+940 9+960 9+960	000+01 0000+01	10+020	10+00	10+080	10+100 10+120 10+120	10+140	10+160	10+200	10+220	10+240	10+260	10+280	10+300
<u></u>		<u> </u>				.	2		¥ :	9 (2) 9	2	2 .	2	₽ 	2		<u>\$</u>	<u>5 5</u>
	,720			900										-~				
				9+900		<u> </u>							\^ 	0+200				
	DYH	E BRIDGE 2			/		APPROACH		- 2(2)									
30. 00m	50.00m	180.00m/	50, 00m					00,00m 00 =	300. 00m									
							<u>v e o</u> u	<u>w</u> -	<u>300. UUM</u>									
EC Second	<u> </u>	TIE S				Contraction of the second s	572 572			540 540				i i farait Galia Galia Talia tea				
53 N	5000 J		24 24				ē.					24	000					Fig
10 <u>. 5</u>	0m 1 <u>4.25</u> m																	


50 0 50

SCALE

PLAN

물건물 동네를 알려야 한 것을 받을 것 같아요. 가슴 물건을 다.

() P1 AND P7

THE FEASIBILITY STYDY ON THANH TRI BRIDGE AND THE SOUTHERN SECTION OF RING ROAD NO. 3 IN HANOI SUBSTRUCTURE FOUNDATION

		All and the second
	Н	H 1
P 1	24, 100	20, 100
P 2	25, 000	21, 000
Р3	28, 200	24, 200
P 4	30, 500	26, 500
P 5	30, 500	26, 500
P 6	25, 200	21, 200
Р7	23, 000	19, 000

Figure 11.2.2 Substructure / Foundation

이는 사람들은 사람들은 사람들은 사람들은 것은 것이 가장 같은 것을 수 있을 수 있는 것이 같은 것을 것을 것이 것이 가지 않는 것이 있는 것이 있는 것이 가지 않는 것이 가지 않는 것이 있는 것이 가 나 있는

11.2.2 Approach Bridge

The structural types of the Approach Bridge were selected in Chapter 9 as follows.

Approach Bridge (1)
Approach Bridge (2)
Dyke Bridge
PC Continuous Box Girder Bridge with 30 m span length
PC Continuous Box Girder Bridge
Hanoi side; 75 m + 130 m + 75 m
Gia Lam side; 50 m + 80 m + 50 m

(1) Superstructure

1) Approach Bridge (1)

There are many technical data on the PC box girder bridge based on previous experience. Based on past experience, the dimensions of the superstructure were determined indicated in Figure 11.2.1.

2) Approach Bridge (2)

The bridge type was determined as same procedure as Approach Bridge (1), and referring to the execution in Vietnam.

3) Dyke Bridge

The bridge types were determined as same procedure as Approach Bridge (1).

(2) Substructure/Foundation

1) Pier

Approach Bridge (1) gains access to the Main Bridge, therefore, it is better to adopt the same shape of pier type considering the continuity and the hydrological conditions of the site. The pier is separated in both Hanoi and Gia Lam direction.

The piers were located inside of the flood area, however, were not located in the normal water course of the River. In dry season, the footings of the pier are

situated above the water level even though these are in the water in rainy season.

2) Abutment

Adversed T-shape is adopted as shown in Figure 11.2.5.

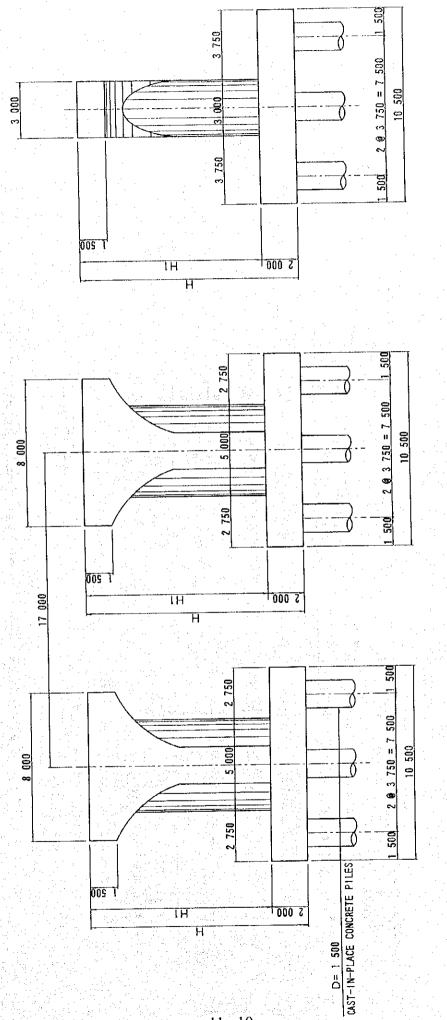
3) Foundation

Cast-in-situ concrete pile ø1,500 is adopted as shown in Figures 11.2.3, 11.2.4.

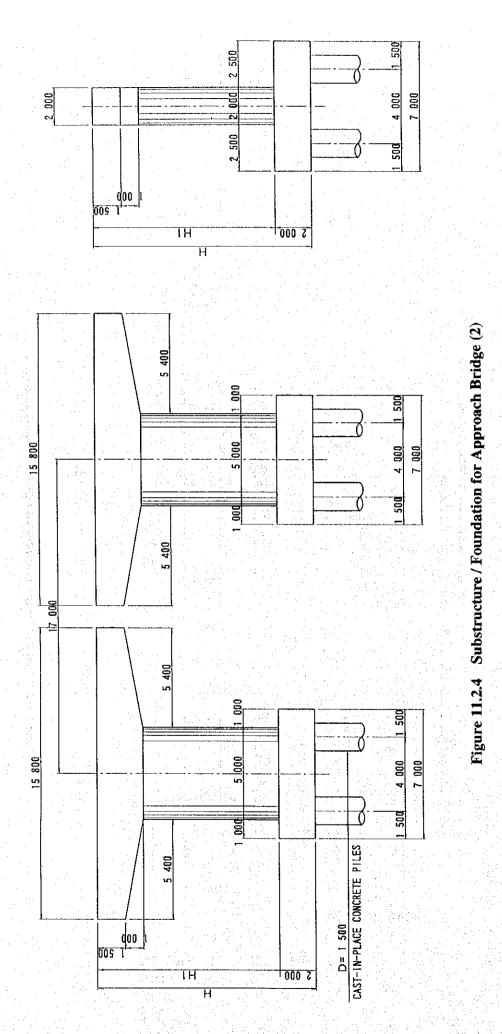
11.3 Interchange Structure

11.3.1 Superstructure

Three interchanges were proposed over the length of the project which require bridge structure;

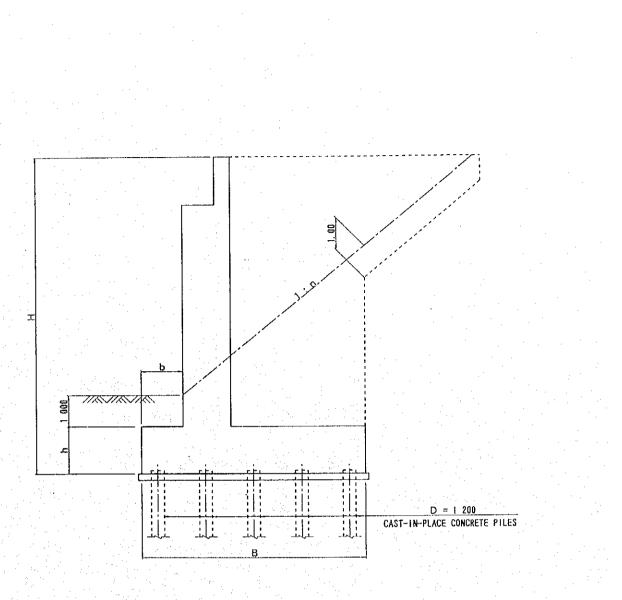
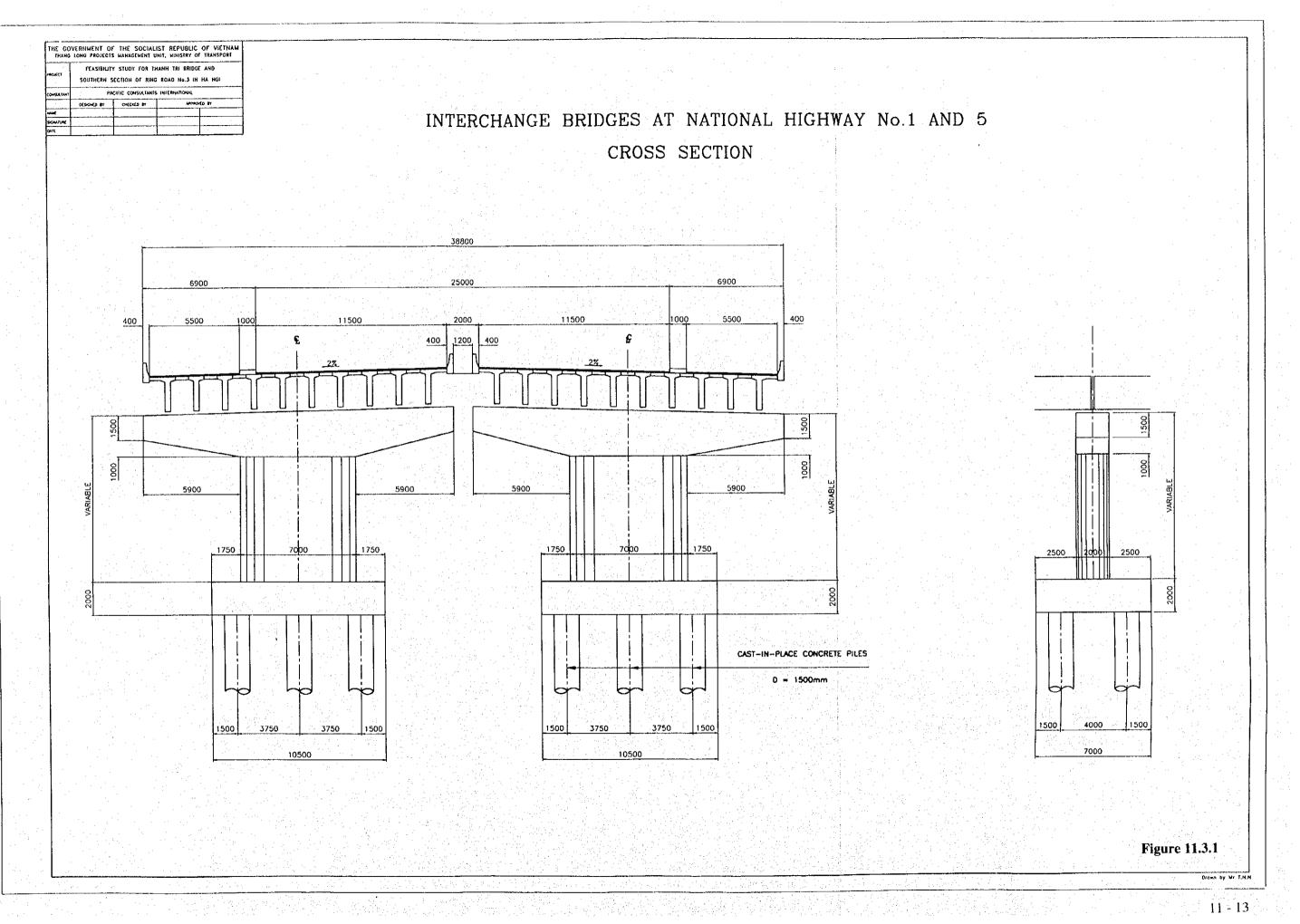

- (i) interchange with the existing National Highway No. 1
- (ii) interchange with the new National Highway No. 1
- (iii) interchange with National Highway No. 5

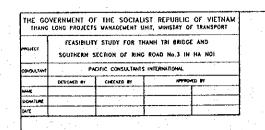
1) National Highway No. 1 and No. 5


The Study Team proposes that the deck structures are formed from precast beam of spans 30 to 40 metres, cross sections are shown in Figures 11.3.1 and 11.3.2. The width of the deck in 18.8 metres to allow for acceleration and deceleration lanes and the overall length between abutments are 340 metres for NH-1 and 450 metres for NH-5, respectively.

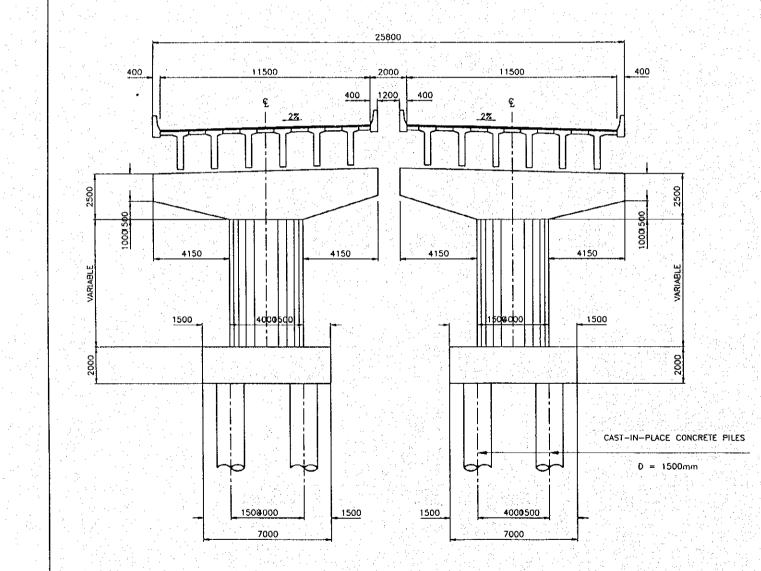
2) New National Highway No. 1

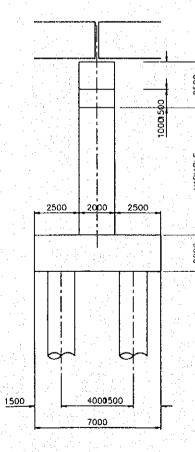
The main carriageway traverses the site at grade. Ramp A and B shown in Volume IV; Drawings require elevated flyover to allow a grade separated junction. The lengths of the flyover between abutments are: Ramp A-405 metres; Ramp B-180 metres.

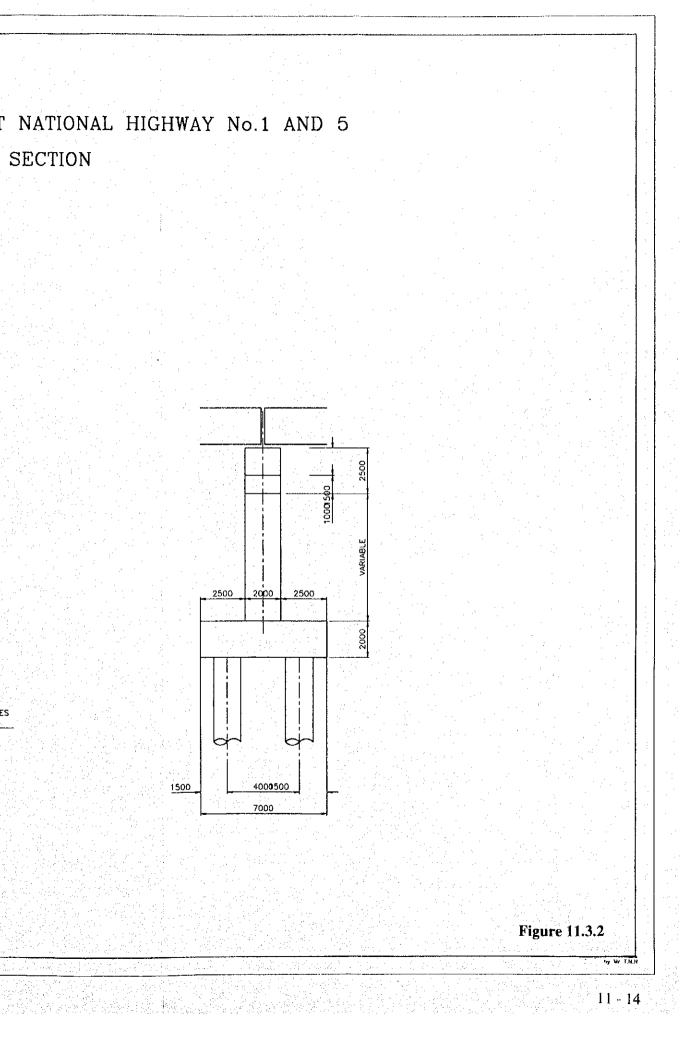



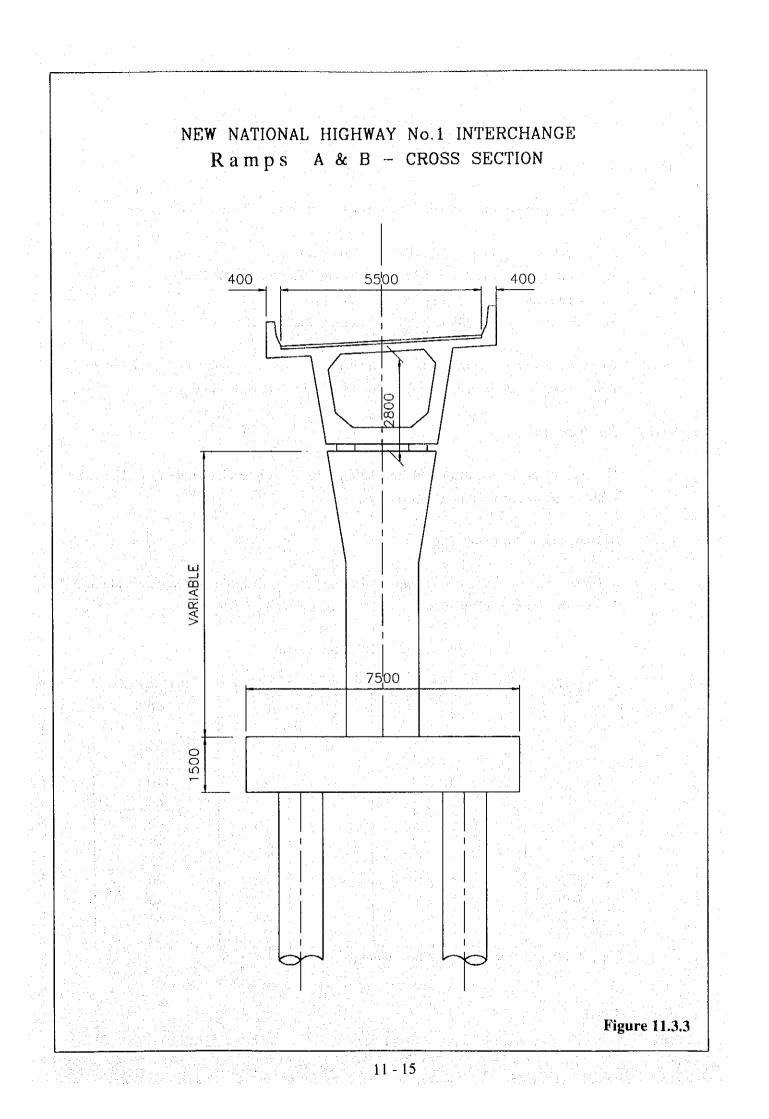

Figure 11.2.5 Abutment

The plan curvature of the ramps requires a cross section to be able to resist both flexion and torsional moments. The optimum cross section will be either a steel or concrete box girder. However, the decision for the material choice will depend on the time of construction. A concrete solution would be the most economical, should the ramps be constructed at the same time as SHTRR, where as a steel solution would result in less disruption should be ramp be built in a later period. A cross section of the ramp by concrete solution is shown in Figure 11.3.3.


11.3.2 Substructure


The type of piers, abutments and foundation refer to Approach Bridge (2). The cross sections are shown in Volume IV; Drawings.





INTERCHANGE BRIDGES AT NATIONAL HIGHWAY No.1 AND 5 CROSS SECTION

11.4 Flyover

11.4.1 Superstructure

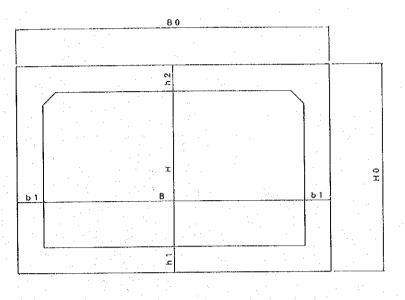
The Study Team has identified four locations where bridge flyovers are required:

i)	chainage	1+900 - 2+140;	length 240 metres
ii)	chainage	2+625 - 2+685;	length 60 metres (River Bridge)
iii)	chainage	6+465 - 6+645;	length 180 metres
iv)	chainage	12+285 - 12+585;	length 300 metres

The cross section of the main carriageway bridge is shown in Figure 11.3.2 and the Study Team has used precast beams to allow for future widening if required.

11.4.2 Substructure

The type of piers, abutment and foundation refer to Approach Bridge (2). The cross section is shown in Volume IV; Drawings.


11.5 Drainage and Other Bridges

In Table 11.5.1 gives the assessment for drainage bridges based on the site inspections of the existing drainage channels and the proposed alignment.

		[36] A. M. Sandara and A. M. Sandara and A. M. Sandara and A. Sanda And A. Sandara and A. San	and a set were to set and and and
Chainage	Type of Box Culvert *	Diameter of Pipe (m)	🔅 Length (m)
1+680	C Aller C		70
2+410		0.8	75
5+830	Α		85
6+300	D		160
10+300	С		110
10+460		1.0	65
10+840	· · · · · · · · · · · · · · · · · · ·	0.8	65
11+220	-	1.0	10
11+475	D		65
11+675		1.5	70
11+870		1.5	75
11+935	-	1.5	65
12+750	\mathbf{D} .		60

 Table 11.5.1
 Drainage Facility

* see Table 11.5.2 for details of box culvert.

		1997 <u>- 1975</u>	et al constant de la				
	н	В	h1	h 2	⁵ b1	нo	80
TYPE-A	5 0 0 0	7 0 0 0	900	800	800	6700	8 6 0 0
ΤΥΡΕ-Β	3 0 0 0	2 0 0 0	450	350	350	3800	2700
TYPE-C	3 0 0 0	3 0 0 0	500	400	400	3 9 0 0	3 800
TYPE-D	5 0 0 0	5 0 0 0	700	600	600	6 3 0 0	6200

DIME	NSION	LIST

Table 11.5.2Box Culvert Details

The Study Team proposes that the box culvert solution is also used for the following locations for vehicular and pedestrian traffic as given in Table 11.5.3.

		Table 11.5.3	Type of Box Culvert	
 	Chainage	Type of Box Culvert *	Length (m)	Purpose
	3+050	A	70	Vehicular
с. С.	3+350	В	70	Pedestrian
	3+770	Α	70	Vehicular
	4+370	Α	70	Vehicular
	4+900	B	85	Pedestrian
	5+580	B	85	Pedestrian
	5+815	Α	85	Vehicular
	10+860	В	65	Pedestrian
,	11+490	A	65	Vehicular
	12+000	B	60	Pedestrian

2+000 B B see Table 5.4 for details of box culvert.

*

.