CHAPTER 3 EFFECT OF DIVERSION CHANNEL ON COASTAL AREA

3.1 Sediment Load Analysis

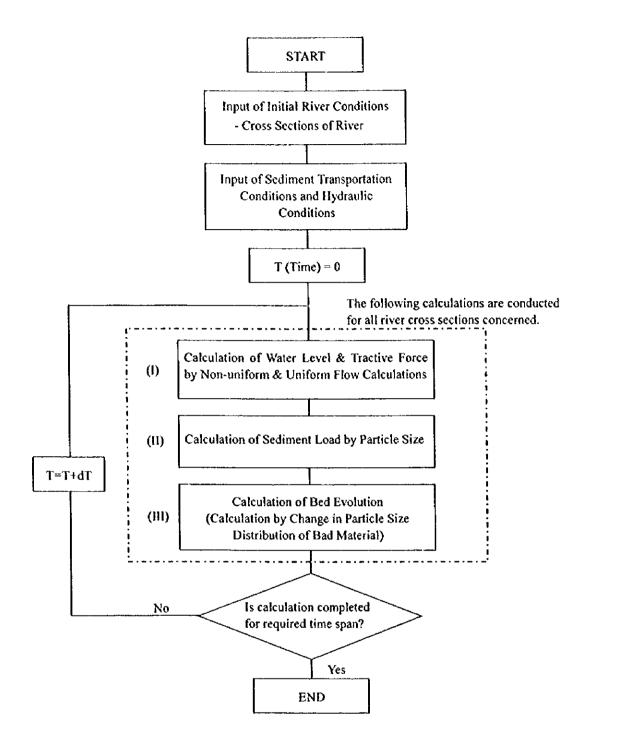
3.1.1 Analysis Method

(1) General

.

Bed evolution simulation is conducted with the following three formulas solved by the finite difference equation.

Dynamic equation of flow	(1)
Equation of sediment load	(11)
Continuity equation of sediment load	(III)


Formula (I) expresses flow in the river channel. Actual flow in the river channel is unsteady flow; however, it is generally calculated as steady flow in the case that long term phenomena, such as sedimentation at river mouth, dam sedimentation and so on, are analyzed. Non-uniform and uniform flow calculations based on Manning roughness coefficient are applied to estimate water level in the river channel with conditions that discharge and cross sections of river are given.

Formula (II) computes sediment passing at a certain point of river based on average velocity of cross section and tractive force calculated by formula (I).

Formula (III) computes incomings and outgoings of sediment at each point concerned of river by continuity equation. Successively, bed elevation at each point is calculated based on the incomings and outgoings of sediment, and new elevations of river channel are determined.

In formula (II) and (III), sediment load, and incomings and outgoings of sediment are estimated by particle size.

Flow of the simulation is shown in Figure-13.1 and calculations are repeated for required time span.

T

Figure-13.1 Flowchart of Bed Evolution Simulation

- (2) Calculation Method of Sediment Load
 - 1) Basic Idea of Sediment Load Calculation

When sedimentation at river mouth is concerned, sediment consists of bed load, suspended load and wash load. Since bed load and suspended load are transported by hydraulic force of flow, sediment of same particle size is transported in either way depending on hydraulic force. Wash load is transported in the form of nearly permanent

suspension from the origin. Therefore, analysis concept for bed load and suspended load is different from that for wash load.

There are several formulas proposed to estimate bed load and suspended load. The following two formulas are generally employed because of their wide applications.

```
Bed LoadSato, Kitsukawa and Ashida formula (Sato et al., 1958)Suspended LoadMichiue formula (Ashida and Michiue, 1965)
```

Wash load (Q_w) is assumed to be transported from the origin by the following relation with discharge (Q) and start sedimentation when slope of water surface is smaller than 1/600 (Ashida et al., 1983)

 $Q_w = a \cdot (Q - c)^b$

È

Sediment load inclusive of wash load starts when tractive force exceeds critical tractive force for average particle size of surface bed material. Modified Egiazaroff formula is employed to estimate critical tractive force for each particle size and sediment load per unit width is estimated for each particle size.

Sediment load (Q_T) is calculated by multiplication of unit sediment load (q_T) and width of river (B').

 $Q_{\rm F} = q_{\rm T} \times B^*$

B' is defined as regime width estimated by the following formula.

B' = $5.0 \cdot Q^{1/2}$

where, B': regime width (m)

Q: discharge (m^3/sec)

2) Formula for Bed Load

 q_{Ri} :

Sato, Kitsukawa and Ashida formula is employed to estimate bed load.

$$\frac{q_{Bi}}{f_0(d_i)} = \frac{u_i^3}{(\sigma / \rho - 1) \cdot g} \cdot \varphi \cdot F(\tau_0 / \tau_{ci})$$

where,

sediment load with particle size of di per unit width

$$f_o(d_i)$$
: share of sediment with particle size of d_i in bed material

$$\sigma$$
: density of sediment (=2.65 t/m³)

- ρ : density of water (=1.0 t/m³)
- g: acceleration of gravity
- u_{\star} : friction velocity $(=\sqrt{\tau_0}/\rho)$

- φ : constant determined by roughness coefficient $n \ge 0.025$: $\varphi = 0.623$ n < 0.025: $\varphi = 0.623$ (40 n)^{-3.5}
- $F(\tau_0 / \tau_c)$: relation between F and τ_0 / τ_c (Figure-I3.2)
- τ_0 : tractive force
- τ_{α} : critical tractive force for particle size of d_i

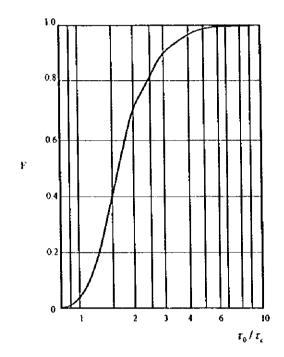


Figure-13.2 Relation between F and τ_0 / τ_c

Critical tractive force for each particle size is estimated by Modified Egiazaroff formula (Ashida et al., 1983)

I

 $d_{i}/d_{m} \leq 0.4 \quad \frac{\tau_{ci}}{\tau_{cm}} = 0.85$ $d_{i}/d_{m} \geq 0.4 \quad \frac{\tau_{ci}}{\tau_{cm}} = \frac{(\log 19)^{2}}{\left\{\log\left(19 \cdot \frac{d_{i}}{d_{m}}\right)\right\}^{2}} \cdot \frac{d_{i}}{d_{m}}$ $\tau_{cm} / (\sigma - \rho) \cdot g \cdot d_{m} = 0.05$

where, d_i : certain particle size

 d_m : average particle size

 $\tau_{ci} \cdot \tau_{cm}$: critical tractive force for particle size of d_i and d_m , respectively

3) Formula for Suspended Load

Ashida and Dojyo formula for suspended load is as follows.

$$\frac{q_{di}}{q \cdot f_o(d_i)} = C_B \cdot \left[\left(1 + \frac{1}{\kappa} \cdot \frac{n \cdot \sqrt{g}}{h^{1/6}} \right) \cdot A_1 + \frac{1}{\kappa} \cdot \frac{n \cdot \sqrt{g}}{h^{1/6}} \cdot A_2 \right]$$

where,

Ţ

sediment load with particle size of di per unit width q_{dt} : qdischarge per unit width $f_{a}(d_{i})$: share of sediment with particle size of d_i in bed material $C_{B} = 0.025 \cdot [g(\xi_{0})/\xi_{0} - G(\xi_{0})]$ $\xi_0 = \omega_0 / (0.75 \cdot u_{*e})$ $g(\xi_0) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{1}{2}{\xi_0}^2\right)$ $G(\xi_0) = \frac{1}{\sqrt{2\pi}} \cdot \int_{\xi_0}^{\infty} \exp\left(-\frac{1}{2}\xi^2\right) \cdot d\xi$ fall velocity ω_0 : Manning roughness coefficient n: water depth h: Karman's constant κ: $A_1 = \left(\frac{a}{h-a}\right) \cdot \int_{a/h}^{b} \left(\frac{1}{n} - 1\right)^2 \cdot d\eta$ A₁:

A₂: A₂ =
$$\left(\frac{a}{h-a}\right) \cdot \int_{\partial h} \ln \eta \cdot \left(\frac{1}{\eta} - 1\right)^2 \cdot d\eta$$

Z:
$$Z = \frac{\omega_0}{1.2 \cdot \kappa \cdot u_x}$$

Fall velocity (ω_0) is calculated by Rubey formula (Kawamura, 1976).

$$\omega_0 = \sqrt{(\sigma/\rho - 1)} \cdot g \cdot d \cdot \left[\sqrt{\frac{2}{3} + \frac{36 \cdot v^2}{s \cdot g \cdot d_i^3}} - \sqrt{\frac{36 \cdot v^2}{s \cdot g \cdot d_i^3}} \right]$$

where,	ν:	Coefficient of kinematic $(v=0.01 \text{ cm}^2/\text{sec})$ when water temperature is 20°)
	s:	$(\sigma/\rho-1)$
	d_i :	representative particle size (cm)

4) Wash Load

For wash load, there is no formula proposed as a function of hydraulic force; however, there is an empirical formula determined by observation of suspended sediment. In general, suspended sediment observed consists mainly of wash load.

T

 $Q_w = a x (Q-c)^b$ where, Q_w : wash load Q: discharge a, b, c: constants

According to Japanese experiences, $a = 5 \times 10^{-7}$, b = 2 and c = 0.

(3) Calculation Method of Bed Evolution

Continuity equation for bed evolution is as follows.

$$\frac{\partial Z}{\partial t} + \frac{1}{(1-\lambda) \cdot \mathbf{B}} \cdot \frac{\partial Q_{\nu}}{\partial x} = 0$$

$$Q_{\nu} = (q_{B} + q_{s}) \cdot \mathbf{B}' + Q_{W}$$

where, z: elevation of river

t: time

B': regime river width

 λ : porosity

Q_v: total sediment load

q_b, q_s: bed load per unit width and suspended load per unit width

Q_w: wash load

The continuity equation is solved by finite difference equation as follows.

$$\frac{A_{z_j}^{n+1}-A_{z_j}^{n}}{\Delta t}+\frac{1}{(1-\lambda)}\cdot\frac{Q_{y_j}^{n}-Q_{y_j(j-k)}}{\Delta x}=0$$

where, $Az_{(j,k)}$: cross section area of sediment deposit with particle size of k Δt : time interval $Q_{v(j,k)}$: sediment load with particle size of k

Δx:	distance

n, n+1: subscript to show time (Δt time passes when time proceeds from n to n+1)

3.1.2 Model for Analysis

T

A section where the sediment load analysis was applied is from diverting point to 2 km offshore from outlet of the diversion channel. Longitudinal profile and cross sections of the channel for the sediment load analysis is same as the hydraulic design for 20 year return period flood.

Based on echo-sounding results, slope of sea was determined as 1/500 and dispersion of flow in the sea was assumed to be 5°.

3.1.3 Conditions of Sediment Transportation

Sediment load to be transported to diverting point was assumed to be bed material of Nadi river in the upstream from the diverting point, transported by increase in flow velocity due to flood. Sediment load was also assumed to be supplied without limitation and is a function of only the hydraulic force.

Bed material in the upstream was obtained from the result of the bed material analysis conducted by the Study Team (Supporting Report Part H). Therefore, particle size distribution of N-1 point was adopted and is shown in Table-I3.1.

Sieve Size	Weight of Remained Material	Remained Ratio		
(mm)	(g)	(%)		
75.0				
53.0				
37.5				
26.5	77.0	1.98		
19.0	97.3	2.51		
13.2	316.9	8.16		
9.5	424.7	10.94		
6.7	578.5	14.90		
4.8	381.9	9.84		
2.4	753.1	19.40		
1.2	531.0	13.68		
0.600	300.2	7.73		
0.425	81.0	2.09		
0.300	92.3	2.38		
0.150	171.5	4.42		
0.075	53.8	1.39		
less than 0.075	23.0	0.59		
Total	3882.2	100.00%		

Table-13.1 Particle Size Distribution of Nadi River (N-1)

Average Particle Size (D₅₀) = 4.59 mm

Applying the cyclone Kina's hypetograph, 5 different floods (1/20, 1/10, 1/5, 1/2 and 1/1.1 probability floods) were calculated at 30 minute interval by the storage function model. The model is described in Supporting Report Part E. Velocities at the point of sediment load supply were calculated for the discharges at 30 minute interval by non-uniform flow calculation.

Based on the velocities above, sediment load in the upstream from diverting point was estimated by comparing flow velocities and critical tractive force of each particle size.

3.1.4 Sediment Load into Diversion Channel

Sediment load into the diversion channel was estimated by sediment transportation calculation from the upstream of Nadi river to the diverting point. Sediment load into the channel depends on velocities at the diverting point.

3.1.5 Channel Bed Evolution

Applying sediment load into the diversion channel, sediment transportation in the channel was calculated at each cross section with change in a time series. As a result, passed and deposited sediment loads were obtained at each cross section and successively bed evolution of the channel was calculated.

1

T.

Channel bed evolution is defined as sediment transportation from initial stage of flood to depression stage of flood. Therefore, it expresses conditions of sedimentation when a flood is over.

To examine the channel bed evolution, sediment transportation in 5 cases from small scale to large scale floods were calculate as shown in Table-I3.2. Discharges in the channel were determined in accordance with the diverting ratio. Velocities were calculated by non-uniform flow computation based on discharges in Table-I3.2. The results are shown in Table-I3.3 \sim Table-I3.7.

 1	- 1			Return	Period of I	lood	
Day	hr.	nsia.	1/20	1/10	1/5	1/2	1/1.1
			Q	Q	Q	Q	Q
			(m³/s)	(m³/s)	(m³/s)	(m ³ /s)	(m ³ /s)
	0	0	28.1	25.3	23.9	22.5	19.7
1	0	- 30	28.1	25.3	23.9	22.5	19.7
1	1	0	28.1	25.3	23.9	22.5	19.7
1	1	30	28.1	25.3	23.9	22.5	19.7
1	2	0	28.1	25.3	23.9	22.5	19.7
1	2	30	28.1	25.3	23.9 23.9	22.5 22.5	19.7 19.7
1	3	0 30	28.1 28.1	25.3 25.3	23.9	22.5	19.7
1	4	•	28.1	25.3	23.9	22.5	19.7
1	4	2		25.3	23.9	22.5	19.7
i	5	0		25.3	23.9	22.5	19.7
i	S	30		25.3	23.9	22.5	19.7
1	6			25.3	23.9	22.5	19.7
1	6	30		25.3	23.9	22.5	19.7
1	7	0		25.3	23.9	22.5	- 19.7
1	7	30	28.1	25.3	23.9	22.5	19.7
1	8			25.3	23.9	22.5	19.7
1	8	1		25.3	23.9	22.5	19.7
1	9			25.3	23.9	22.5	19.7
1	9	1		25.3	23.9	22.5	19.7
1	10			25.3	23.9 23.9	22.5	19.7 19.7
	10	•		25.3 25.3	23.9	22.5	19.7
1	1			25.3 25.3	23.9	22.5	19.7
	1	1		25.3	23.9	22.5	19.7
		i i		25.3	23.9	22.5	19.1
l i	•	- 1 - E		25.3	23.9	22.5	19.1
	1			25.3	23.9	22.5	19.7
1	1			25.3	23.9	22.5	19.1
1	14	1 30	28.1	25.3	23.9	22.5	19.7
1	1 15	5 (28.1	25.3	23.9	22.5	19.7
1	1 15	5 30		25.3	23.9	22.5	19.1
1				25.3	23.9	22.5	19.1
1				25.3	23.9	22.5	19.1 19.1
	1		D 28.1	25.3	23.9 23.9	22.5 22.5	19.
	1			25.3 25.3	23.9		19.
	1 11 1 11			25.3	23.9		19.
		1	0 28.1	25.3	23.9		19.
1	1 19			25.3	23.9		19.
1	1 20		28.1	25.3	23.9		19.
	1 20		0 28.1	25.3	23.9	22.5	19.
	1 2		0 28.1	25.3	23.9	22.5	19.
	1 2	1 3	0 28.1	25.3	23.9		
	1 2		0 28.1	25.3	23.9		
			0 28.1	25.3	23.9		
			0 28.2	25.4	24.0		
			0 28.8	25.9			
			0 30.5	27.5	25.9		
			0 35.7	32.1	30.3 39.		
			0 46.2 0 52.5				
		1 3 2	0 52.5 C 63.9				
	2		6 86.0 86.0				
	2		0 116.1		•		
	2		152.4				
	2	4	0 184.0			42.0	35
	2		212.2			2 45.6	5 37
1	2	-	0 256.2	1	108.0		
	2		30 313.1	225.4			
	2	6	0 366.4	268.9			
	2		30 402,7				
L	2	7	0 421.5	325.2	203.	9 87.1	52

العمادها

Table-13.2 (1/4) Flood Discharge of Diversion Channel

				Bab	Dutadati	1	······
Day	hr	ກາໄດ.	1/20	1/10	Period of F	1/2	1/1.1
			Q	Q	Q	Q	Q
			(m ³ /s)				
2	7	30	432.1	340.6	219.8	96.1	56.8
2	8	0	438.1	351.4	232,9	104.9	60.9
2	8	30	442.6	360.2	244.3	113.5	65.3
2	9		446.1	367.0	253.9	122.0	69.9
2 2	9 10	30 0	453.8 470.2	375.8 390.2	263.9 276.3	130.7 140.3	74.9 80.6
2	10	30	505.6	418.3	296.7	152.9	87.8
2	III	1	548.0	451.8	320.3	166.9	96.0
2	n	30	622.6	507.5	356.4	185.4	106.2
2	12	0	771.6	616.8	424.0	215.7	121.6
2			953.2	749.6	510.4	255.9	142.3
2	13	1		872.3 945.1	597.5 656.3	301.3 340.7	167.2 192.2
2	13	•		943.1	675.0	365.2	212.7
2				991.5	672.2	377.3	227.8
2	15			1,000.0	655.7	380.0	238.1
2				988.0	631.5	376.3	244.5
2				972.4	608.7	369.8	248.5
2	t .		1 1	957.4	586.6	361.0	250.0
2				949.5 939.0	568.4 551.7	351.1 339.6	249.4 246.5
2		1		937.0	537.5	327.3	240.5
2			-	891.5	523.1	313.9	235.6
2				847.4	506.6	299.5	228.1
2		30	935.0	794.4	487.3	284.6	219.7
2		1		735.3	464.2	269.4	210.7
2		1		673.0	437.3	253.8	201.1
2	2		•	611.3	408.3 380.1	238.4 223.8	191.4 182.0
	2 2	1		507.5	353.9	210.4	173.1
2		1		464.0	329.2	197.8	164.5
2	2 2	3 (467.3	424.4	306.0	186.0	156.4
	2 2		1	389.3	284.8	175.2	148.7
	3		1	359.1	266.0	165.4	141.7
		2) 30 1 (249.4	156.4	135.2 129.3
		1 30			220.9	141.0	123.8
		2			208.3	134.2	118.7
1	3	2 30	1		196.8	127.9	113.9
			255.3		186.1	122.1	109.5
		3] 3(176.4	116.8	105.4
	- I	1	225.3		167.6 159.5		101.6
			212.5 201.0			107.4	98.1 94.9
	3	5 3			145.5		
	3	6	0 181.5	170.0	139.3	96.0	89.2
	3	6 3			133.8		
	3	7	0 165.5		128.6		
Į		7 3			123.9		
1		8 8 3	0 152.2 0 146.5		119.6		
			0 141.7				
	3	9 3	0 137.4	129.1	109.0	78.1	74.2
	3 1	0	0 133.6	125.4	106.1	76.3	72.5
		0 3					
			0 126.3 0 122.8				
ļ			0 122.8 0 119.5				
	3 1		0 116.3				
	3] 1		0 113.3			67.2	63.8
1	3] 1	3 3	0 110.6	5 103.6	89.4	66.0	62.7
		4	0 108.0				
L	3	4 3	0 105.5	i 98.9	85.8	63.2	60.5

Table-13.2 (2/4)	Flood Discharge of Diversion Channel

13-10

			r	Petur	n Period of F	lood)
Day	hr.	mio.	1/20	1/10	1/5	1/2]	<u>- 11.1</u>
			Q	Q	Q	Q	Q
			(m ³ /s)	(m³/s)	(m ³ /s)	(m ³ /s)	(m³/s)
3	15	0	103.1	96.6	84.1	62.6	59.5
3	15	30	100.8	94.4	82.3	61.6	58.5
3	16	0	98.5	92.3	80.7	60.6	57.6
3	16	30 0	96.4 94.2	90.3 88,4	79.1 77.5	59.7 58.8	56.7 55.9
3	17	30	92.2	86.5	76.1	57.9	55.0
3	18	0	90.2	84.7	74.7	57.1	54.3
3		30	88.3	83.0	73.3	56.3	53.5
3	19	0	86.5	81.3	72.0	55.5	52.7
3	19	30	84.8	79.7	70.7	54.8	52.1
3	20	0	83.1	78.2	69.5	54.0	51.3
3	20	30	81.5	76.8	68.4	53.4	50.7
3	21	0 30	79,9 78,4	75.3 74.0	67.2 66.1	52.7 52.1	50.1 49.5
3	22			72.7	65.1	51.5	48.9
3	22	30		71.4	64,1	50.9	48.4
3	23	0		70.2	63.2	50.4	47.9
3	23	30	73.2	69.1	62.3	49.8	47.3
4	0			68.0	61.4	49.3	46.8
4	1 1			67.0	60.5	48.8	46.4
4		0		66.0 65.0	59.7 58.9	48.3 47.9	45.9 45.5
4	2	1		64.1	58.2	47.5	45.0
				63.2	57.5	46.9	44.6
4				62.4	56.8	46.5	44.2
4	3	30	65.0	61.6	56.1	46.1	43.8
4	2	1 -		60.8	55.4	45.7	43.4
4	. ·	+		60.0	54.8	45.3	43.0
4				59.2 58.5	54.2 53.6	45.0 44.7	42.8
4		,		57.9	53.1	44.3	42.1
4				57.2	52.5	44.0	41.8
4	7		59.6	56.6	52.0	43.7	41.5
4	1	1 .		56.0	\$1.5	43.4	41.2
4			1	55.4	51.0	43.1 42.8	41.0
4				54.9 54.3	50.6 50.1	42.8	40.7 40.5
				53.8	49.7	42.3	40.2
4				53.3	49.2	42.0	39.9
4	1 10	30		52.8	48.8	41.8	39.7
4				52.3	48.4	41.5	39.4
4				51.9	48.0	41.2	39.1
	1 12 1 12		53.9 53.5	51.4 51.0	47.6	41.0 40.7	39.0 38.7
4			53.0	50.6	47.0	40.5	38.5
4				50.2	46.6	40.3	38.3
4	14	i (52.2	49.8	46.3	40.1	38.1
4				49.4	46.0	39.9	37.9
4			51.4	49.1	45.7	39.7	37.7
4	r .		0 51.0 50.6	48.7 48.4	45.4 45.0	39.5 39.3	37.5 37.3
				48.4	43.0	39.3	37.3
			49.9	47.7		38.9	37.0
	4 I			47.4	44.3	38.7	36.8
	4 Li	8	0 49.2	47.1	44.0	38.6	36.7
	1 1			46.8		38.4	36.5
			0 48.6	46.5		38.3	36.4
	4 1: 4 2:		0 48.3 0 47.9	46.2 46.0		38.2 38.0	36.3 36.1
	4 2			45.7		37.9	36.0
	4 2		0 47.4	45.4			35.9
ļ	4 2	1 3	0 47.1	45.2	42.3	37.6	35.7
	4 2	2	0 46.8	44.9	42.1	37.5	35.6

• 2

Table-I3.2 (3/4) Flood Discharge of Diversion Channel

				Reten	Period of I	lood]
Day	hr.	min	1/20	1/10	1/5	1/2	1/1.1
			Q	Q	Q	Q	Q
	Ì		(m ¹ /s)	(m ³ /s)	(m ³ /s)	(m ³ /s)	(m ³ /s)
4	22	30	46.6	44.6	41.9	37.4	35.5
- 4	23	0	46.3	44.4	41.7	37.2	35.3
4	23	- 30	46.1	44,1	41.5	37.1	35.2
5	0			43.9	41.3	37.0	35.2
5				43.7	41.1	36.8	35.0
5	1			43.5	40.9	36.7	34.9
5	1			43.3	40.7	36.6	34.8
5				43.1	40.5	36.4	34.6
S				42.9	40.3	36.3	34.5 34.4
5				42.7	40.1	36.2 36.0	34.4
		1 30 1 0		42.5 42.3	39.9 39.7	36.0	34.2
				42.3	39.5	35.9	34.1
			1	41.9	39.4	35.8	34.0
		3		41.7	39.3	35.7	33.9
				41.5	39.2	35.6	33.8
		5 30		41.4	39.0	35.5	33.7
		\vec{n}		41.2	38.9	35.5	33.7
		7 30			38.8	35.4	33.6
		8 (38.6	35.3	33.5
		8 3(38.5	35.2	33.4
			0 42.0	40.6	38.4	35.1	33.3
		9 31			J 38.2	35.1	33.3
	5 1		0 41.7		38.1	35.0	33.3
	5 1				38.0	34.9	33.2
	5 1		0 41.4		37.9	34.9	33.2
	5 1				37.7	34.7	33.0
			0 41.1		37.6		33.0
			0 41.0				
			0 40.9				
		1.1	0 40.0 0 40.0				
			0 40.: 0 40.:		37.0	-	
1	5		0 40.				
			40.				
			0 40.				
			40.				
		17	0 39.				
			30 39.				32.2
ł	5	18	0 39.	6 38.3			
I	5		30 39.		36.3		
	5	19	0 39.	3 38.1	36.3	≥ 33.3	7 32.0
	5	19 : 20	30 39.				
	5		0 39.				
1			30 38.				
		21	0 38				
1			30 38		I		
		22	0 38				
		22 23	30 38 0 38				
			30 38				
	6	0	0 38				
┢		Peak	1,500				
<u>ا</u>	<u> </u>					4	

Table-13.2 (4/4) Flood Discharge of Diversion Channel

Q: Flood Discharge

Ţ

Name dX Q II VII tools E A B R M n shth C/Y Nabi D 0.00 0 0.00 0.008 1.036-03 3900.000 600.00 6.36 6.50 0.00 1.00 0.38 6.09 Nabi D 500 1.500 0.99 0.091 1.002 2.4176-01 1.01645 31.449 0.03 1.00 1.30 0.21 Nabi D 500 1.500 0.935 0.151 1.106 3.1172 201.01 4.47 0.03 1.00 1.30 0.21 Nabi D 200 50 1.500 0.350 0.120 2.114 4.982.03 2.201 4.21 4.341.03 0.31 0.01 1.00 1.30 0.31 0.021 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	l able-l	13.3 (172)	INOI1.	Unnor											
Nath 150 0 150 0 150 150 0 150 0.03 Nath -1000 500 1500 0.999 0.092 1.020 2.415:61 1.024.53 2.000 5.36 5.50 0.03 1.00 1.30 0.21 Nath -50 50 1.500 0.985 0.121 1.166 3.182.64 973.495 2.22.00 4.22 4.39 0.03 1.00 1.20 2.2 0.31 0.00 0.20 0.21 1.44 0.025 0.21 1.44 0.025 0.21 1.44 0.025 0.12 0.21 0.31 0.01 1.00 2.20 0.31 0.31 0.02 2.21 0.31 0.31 0.01 0.02 2.21 0.31 0.31 0.01 0.02 2.21 0.31 0.31 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 1.00 1.00 1.00 1.00 1.00 1.00	Name		dX	Q	H		total E	1E		B			л	alpha	V	Fr
Nat.D 1.000 1.000 1.999 1.002 1.002 1.001 1.001 1.501 0.031 1.001 1.501 0.031 1.001 1.501 0.031 1.001 1.501 0.031 1.001 1.501 0.031 1.001 1.501 0.031 1.001 1.501 0.211 1.105 3.131:041 0.7120 0.01 1.001 1.001 1.501 0.211 1.105 3.131:041 0.7120:01 0.101 1.001 1.101 0.111 1.105 3.131:041 0.7120:01 1.101 0.011 1.001 1.201 0.011 1.001 1.201 0.011 1.001 1.			(m)	(m⅓s)	(m)	(m)	(m)		(m²)	(ന)	(m)	(m)			(m/s)	
Nat.D 1.000 1.000 1.999 0.021 1.002 1.995.68 1.200 5.30 0.031 1.001 1.30 0.211 1.105 3.135.04 0.7124.85 1.200 4.31 4.40 0.031 1.001 1.30 0.211 1.105 3.135.04 0.7124.99 1.200 4.31 4.40 0.031 1.001 1.30 0.211 1.30 0.7124.99 1.001 1.101 0.113 0.211 1.105 3.135.04 0.712.99 1.001 1.40 1.41 0.200 1.101 0.111 1.111 1.105 0.112.11 0.112 0.011 1.010 1.001 1.0						1.11										
Nat.D 1500 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.291 0.150 0.991 0.211 0.121 0.911 0.121 0.124 0.912 0.911 0.121 0.124 0.911			0	1,500								1				
Nat.D -150 50 1500 0.98 0.121 L106 0.318-04 0.73.499 22.20 4.22 4.39 Col1 L001 L101 Col1 Nsid-D -500 50 1.500 0.951 0.101 L124 4.062.04 678.81 168.00 3.84 4.001 L00 1.22 0.35 Nsid-D -200 50 1.500 0.951 0.201 L124 1.980.01 3.84 4.001 L00 1.22 0.35 Nsid-D -205 50 1.500 0.651 0.701 0.01 L00 2.57 0.42 Nsid-D -03 50 1.500 0.511 1.601 6.661.03 9.813 1.601 3.81 0.51 0.00 1.500 3.51 1.00 Nsid-D 1.00 3.51 1.00 Nsid-D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Nadi-D -1															
Nail, D -100 501 5001 6.971 6.181 1.124 6.082.01 871.72 20.00 4.101 4.27 0.031 1.001 1.72 0.73 0.73 <th0.73< th=""> <th0.73< th=""> <th0.73< th=""></th0.73<></th0.73<></th0.73<>	Nadi-D					-										
Nat. D 353 50 500 5050 1500 1			1													
Nairb 500 500 1500 0.0250 0.231 1.180 7.341:04 676833 168.00 384 403 0.00 1.00 2.20 0.33 Nairb 200 501 1.500 0.816 0.385 0.1500 587.941 500 1.500 1.00 2.07 0.42 Nairb 1.00 510 1.500 0.515 0.737 1.580 3.981.761 1.400 1.200 3.01 1.00 3.51 1.00 3.53 1.00 3.53 1.00 3.53 1.00 3.53 1.00 3.53 1.00 1.00 3.50 1.00 3.53 1.00 1.00 3.50 1.00 3.53 1.00 1.00 3.50 1.00 3.53 1.00 1.00 1.00 1.00 3.00 1.00 3.00 1.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00												1				
Nai-D 200 50 1500 0.388 0.238 1224 10100 359 100 100 2.57 0.44 Nai-D 135 10 1500 0.581 0.791 1397 0.151 0.073 1397 2.706-031 398176 11400 1256 3.64 0.03 1.00 3.51 0.03 3.16 0.651 Nai-D 150 1.500 0.221 1.460 1.681 6.686-32 261.628 3.600 1.00 3.51 1.00 3.71 1.00 3.50 1.00 1.20 1.00 1.00 4.00 </td <td></td>																
Naib 200 501 500 488 980 132 00 131 100 3.06 0.03 0.06 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
Nai-D 100 1500 0.058 0.739 1397 2.70E.03 1991 T6 114 00 126 3.46 0.00 1.00 3.81 0.65 Nai-D 50 1.500 0.211 1.460 1.681 6.68E.03 280.377 6.600 7.57 2.00 1.00 5.80 1.00 5.80 1.00 1.00 5.80 1.00 1.00 5.80 1.00 1.00 5.80 1.00 1.00 5.80 1.00 1.00 5.80 1.00 1.00 5.80 1.00 1.00 5.80 1.00 1.00 1.00 4.81 0.01 1.00 4.81 0.03 1.00 4.81 0.03 1.00 4.81 0.03 1.00 4.81 0.63 1.00 3.81 1.620 3.77 2.1 4.44 8.03 1.00 1.00 1.00 1.00 3.80 6.51 1.00 3.80 6.51 1.00 3.80 6.51 1.00 3.80 6.51 1.0																
Nai:D 160 160 163 668:03 280:37 96.00 2.75 2.92 0.03 1.00 5.73 1.00 Nai:D 0 50 1.500 0.754 1.67 2431 6.58:00 255 560 75.90 3.35 0.31 1.00 5.73 1.00 Nai:D 0 50 1.500 2.122 1.093 3.266 3.016:03 2.866 75.29 3.53 3.43 0.01 1.00 4.51 0.461 Nai:D 1.500 50 1.500 2.842 0.823 3.462 8.123 4.84 4.61 0.01 1.00 4.81 0.463 Nai:D 3.00 1.500 3.014 0.33 3.043 3.045 3.045 8.12 4.84 4.61 0.01 1.00 3.78 0.55 Nai:D 3.05 5.0 1.500 3.250 6.62 4.053 3.16.63 8.12 3.16 4.219 1.03 3.26 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						1				3						
Nailb 100 100 1200 1271 2311 6318-01 2614 02 7800 133 003 100 571 100 Nail-D 0 10 150 1,500 1,202 1271 109 2356 10316-03 1229 135 143 0.03 1.00 4.61 0.73 Nail-D 100 50 1,500 2442 0.962 3.404 2.502-03 1343.58 79.77 4.81 4.33 0.01 1.00 4.01 0.47 Nail-D 200 50 1,500 2.447 0.817 3.522 1.582-03 3.74.769 81.23 4.44 4.61 0.01 1.00 3.70 0.33 Naib-D 50 1,500 3.170 0.33 1.848 4.84 4.71 4.001 1.00 3.70 0.33 Naib-D 50 1,500 3.170 0.33 1.848 4.848 4.061 0.03 1.50 3.20 0.55 </td <td></td> <td></td> <td></td> <td>1,500</td> <td></td>				1,500												
Nail-D 0 50 1,500 122 171 1,000 228,560 75.29 3,31 3,40 0.03 1,00 4,60 0,580 1,00 Nail-D 100 50 1,500 2,172 1,091 3,265 3,012-00 3,165 3,16 4,12 0,31 1,00 4,34 0,67 Nail-D 100 50 1,500 2,442 0,45 3,442 50,45 3,44 60 1,00 4,44 0,01 1,00 4,44 0,01 1,00 4,44 0,01 1,00 3,88 1,656 3,66,45 8,12 4,44 6,01 1,00 3,88 0,57 Naib-D 500 50 1,500 3,147 0,621 3,186 4,32 4,38 4,38 5,06 1,00 3,42 0,53 Naib-D 500 50 1,500 3,437 0,621 4,421 4,338 4,445 5,07 5,10 3,01 0,33 0,54																
Nail-D 50 1.200 1.212 1.091 1.226 1.240.21 78.69 4.01 4.12 0.03 1.00 4.61 0.73 Nail-D 100 50 1.500 2.442 0.962 3.404 2.50E-03 351.535 79.77 4.14 4.33 0.03 1.00 4.31 0.43 0.67 Nail-D 100 50 1.500 2.807 0.817 3.628.01 3.614.84 4.61 0.03 1.00 4.60 0.60 Nail-D 300 50 1.500 3.17 0.697 3.181 1.486.03 4.632.84 4.72 0.00 1.00 3.80 0.55 Nail-D 50 1.500 3.17 0.697 3.284 4.442 81.64 4.81 4.98 0.01 1.00 3.40 4.93 0.31 0.03 1.00 3.40 4.93 0.31 0.03 1.00 3.40 4.93 0.31 0.03 1.00 3.40 4.93																
Nai-D 100 50 1,500 2,442 0,522 3,640 2,500-33 345,338 79,77 4,21 4,38 0,03 1,00 4,18 0,03 1,00 4,18 0,03 1,00 4,18 0,03 1,00 4,18 0,03 1,00 4,18 0,03 1,00 4,18 0,03 1,00 4,18 0,03 1,00 4,18 0,03 1,00 4,88 0,10 0,03 1,00 3,88 0,53 1,746 81,23 4,48 4,61 0,03 1,00 3,88 0,53 1,500 3,787 0,797 1,414 83,16 44,44 84 46 1,00 3,70 0,33 0,55 Nai-D 500 1,500 3,477 0,478 1,416-03 416-03 416-03 416-03 417 418 450 413 410 433 44 407 844 517 510 510 510 510 510 510 510 510																
Nai:D 150 50 1,50 2,641 0.879 3,321 2,18E-03 31,459 0.877 4,35 4,46 0.03 1.00 4,15 0.63 Nadi-D 200 50 1,500 2,979 0,817 3,652 1,55E-03 374,769 81,23 4,48 4,61 0.03 1.00 3,88 0,57 Nadi-D 50 1,500 3,174 0,79 3,181 1,65E-03 374,769 81,23 4,48 4,61 0.03 1.00 3,88 0,57 Nadi-D 50 1,500 3,187 0,677 3,884 1,45E-03 3,151 4,84 4,85 4,85 4,00 3,174 0,621 4,033 1,316 432 4,85 5,06 0,03 1,00 3,49 4,94 1,316 443 5,07 0,03 1,00 3,49 4,94 4,41 4,41 4,41 4,41 4,41 4,41 4,41 4,41 4,41 4,41 4,41				-												
Nai-D 200 50 1,500 2,807 0,817 5,625 0,916,03 1,747,69 81,23 4,48 4,44 4,48 4,44															4.15	
Nai-D 200 50 1,500 2,949 0,769 3,112 1,780-03 366,228 8180 4.58 472 0.03 1.00 3.88 0.57 Nai-D 300 50 1,500 3,074 0,378 0,55 1,500 3,76 0,378 0,55 Nai-D 50 1,500 3,280 0,668 3,595 1,45E-03 414,462 81,164 488 506 0,03 1,00 3,42 0,335 0,644 499 1,372-03 422,311 81,384 485 506 1,00 3,43 0,43 0,44 0,43 0,44 0,43 0,44 0,43 0,44 0,43 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,43 1,44 1,18 43,356 84,24 5,15 0,03 1,00 3,44 0,44 1,118 1,118 0,118 0,11 0,12 1,103 1,100 3,120 1,318 1,438 1,100 1,100 <td></td> <td>4.61</td> <td>0.03</td> <td></td> <td>4.00</td> <td></td>												4.61	0.03		4.00	
Nati-D 300 50 1500 3.074 0.730 3.804 1.65E-03 396.602 82.30 4.67 4.82 0.00 1.00 3.78 0.57 Nadi-D 300 50 1.500 3.187 0.677 3.884 1.54E-03 405.891 82.27 4.75 4.91 0.03 1.00 3.76 0.53 Nadi-D 500 50 1.500 3.385 0.643 4.029 1.37E-03 422.375 83.54 4.89 6.00 1.00 3.49 0.49 Nadi-D 500 50 1.500 3.77 0.531 4.81 1.82-03 436.785 84.2 5.07 5.19 0.01 1.00 3.40 0.49 Nadi-D 500 1.500 3.779 0.558 4.277 1.18E-03 449.671 448.4 5.12 5.10 0.01 1.00 3.34 0.44 Nadi-D 500 1.500 3.779 0.531 4.437 9.81E-04 <											4.58	4.72	0.03		3.88	0.57
Nati-D 350 50 150 3.187 0.697 3.884 1.54E-03 405.891 82.75 4.75 4.91 0.03 1.00 3.62 0.52 Nati-D 50 1.500 3.230 0.668 3.958 1.45E-03 414.462 83.16 4.82 4.98 0.03 1.00 3.55 0.50 Nati-D 50 1.500 3.474 0.621 4.138 1.24E-03 43.86 84.54 5.07 5.10 1.00 3.38 0.47 Nati-D 50 1.500 3.535 0.584 4.219 1.18E-03 443.386 84.54 5.07 5.10 1.00 3.34 0.45 Nati-D 50 1.500 3.817 0.327 4.38 1.09E-03 45.564 5.12 5.10 1.00 3.34 0.45 Nati-D 50 1.500 3.917 0.327 4.38 1.01E-03 466.873 3.554 5.26 5.64 5.00 1.00											4.67	4.82	0.03	1.00	3.78	0.55
Nati-D 400 50 1,500 3,280 0.668 1,958 1,44;623 414;462 831.6 428 980 0.00 1,00 3,62 0,50 Nadi-D 500 50 1,500 3,474 0,621 4,095 1,316:03 422,315 83,34 496 512 0.03 1.00 3,49 0,48 Nadi-D 500 50 1,500 3,477 0,584 4219 1,186:03 434,336 434.5 507 524 0,03 1,00 3,40 0,48 Nadi-D 700 50 1,500 3,779 0,551 4312 109E-03 4556 51.5 517 530 0.03 1.00 3,29 0,45 Nadi-D 700 50 1,500 3,911 0,527 4,438 1,01E-03 466,273 85.64 5,12 5,03 0,03 1,00 3,14 0,43 Nadi-D 500 1,500 4,032 0,501 4,448										82.75	4.75	4.91	0.03	1.00	3,70	0.53
Nati-D 450 500 1,500 3,385 0,443 4,029 1,316-03 422,375 83,54 489 506 0.03 1,00 3,55 0,50 Nadi-D 500 50 1,500 3,557 0,621 4,095 1,306-03 423,811 83,89 496 512 500 1,00 3,49 0,48 Nadi-D 660 50 1,500 3,535 0,584 4217 1,18E-03 443,386 842.5 524 0,03 1,00 3,28 0,47 Nadi-D 700 50 1,500 3,779 0,553 4332 1,09E-03 455,64 535 0,03 1,00 3,22 0,44 Nadi-D 800 50 1,500 3,912 0,514 4,433 9,81E-04 412,144 85.89 5,31 5,35 0,31 1,00 3,18 0,31 0,31 0,43 0,43 0,43 0,434 4,838 9,22E-04 422,144 85.89								1.45E-03	414,462	83.16	4.82	4.98	0.03	1.00	3.62	0.52
Nadi-D 500 500 1,500 3,474 0,622 4,095 1,306-03 429,811 83,89 456 5,12 0.03 1,00 3,49 0,49 Nadi-D 650 50 1,500 3,557 0,602 4,158 1,24E-03 436,785 84,254 5,07 5,24 0,03 1,00 3,38 0,47 Nadi-D 650 50 1,500 3,709 0,558 4227 1,18E-03 449,671 84.84 5,12 5,10 0,03 1,00 3,29 0,45 Nadi-D 750 50 1,500 3,911 0,527 4,438 1,01E-03 465,543 5,545 0,03 1,00 3,18 0,43 Nadi-D 900 50 1,500 4,912 4,438 9,524 472,144 88,13 5,35 5,46 0,03 1,00 3,14 0,33 Nadi-D 900 50 1,500 4,144 4,533 9,524 471,214 8			50	-	3.385	0.643	4.029	1.37E-03	422.375	83.54	4.89	5.06	0.03	1.00	3.55	
Nadi-D 550 500 1,500 3,557 0,602 4,158 1,112-03 433,360 84,25 5,07 5,24 0,03 1,00 3,38 0,47 Nadi-D 660 50 1,500 3,709 0,558 4,217 1,13E-03 443,366 84,54 5,07 5,24 0,03 1,00 3,34 0,47 Nadi-D 700 50 1,500 3,779 0,553 4322 1,09E-03 455,640 85,12 5,17 5,35 0,03 1,00 3,29 0,45 Nadi-D 800 50 1,500 3,911 0,527 4,438 1,01E-03 466,373 85,64 5,45 0,03 1,00 3,14 0,43 Nadi-D 900 50 1,500 4,039 5,04 4,672 8,645 5,43 0,03 1,00 3,14 0,43 Nadi-D 1,000 50 1,500 4,045 4,583 8,525 5,45 0,03 1,00 </td <td></td> <td></td> <td>50</td> <td></td> <td></td> <td>0.621</td> <td>4.095</td> <td>1.30E-03</td> <td>429.811</td> <td>83.89</td> <td>4.96</td> <td></td> <td>0.03</td> <td>1</td> <td>3.49</td> <td></td>			50			0.621	4.095	1.30E-03	429.811	83.89	4.96		0.03	1	3.49	
Nadi-D 600 500 1,500 3,635 0,584 4,219 1,18E-03 443,336 84.54 5.71 5.31 0.01 3.38 0.47 Nadi-D 750 50 1,500 3,779 0,534 432 1.09E-03 456.640 85.12 5.17 5.35 0.03 1.00 3.29 0.45 Nadi-D 750 50 1,500 3.847 0.533 4.381 1.01E-03 45.540 85.12 5.17 5.35 0.03 1.00 3.29 0.45 Nadi-D 8505 50 1,500 3.972 0.515 4.487 9.81E-04 472.144 85.89 5.15 5.00 0.03 1.00 3.18 0.43 Nadi-D 9.00 50 1,500 4.039 4.938 9.92E-04 482.198 86.13 5.35 5.54 0.03 1.00 3.11 0.42 Nadi-D 1,000 50 1,500 4.144 0.483 4.787 <t8< td=""><td></td><td></td><td>50</td><td></td><td>3.557</td><td>0.602</td><td>4,158</td><td>1.24E-03</td><td>436.785</td><td>84.23</td><td>5.02</td><td></td><td></td><td></td><td>4</td><td></td></t8<>			50		3.557	0.602	4,158	1.24E-03	436.785	84.23	5.02				4	
Nadi-D 700 50 1,500 3,737 0,533 4,332 1,09E-03 455,640 85,12 5,17 5,35 0.03 1,00 3,29 0,45 Nadi-D 750 50 1,500 3,847 0,533 4,382 1,09E-03 455,640 85,19 5,26 5,45 0.03 1,00 3,29 0,45 Nadi-D 800 50 1,500 3,847 0,512 0,418 1,01E-04 45,26 5,45 0.03 1,00 3,18 0,43 Nadi-D 900 50 1,500 4,032 0,544 45,26 5,45 6,03 1,00 3,18 0,43 Nadi-D 1,000 50 1,500 4,144 0,484 4,528 8,564 5,45 5,40 1,00 3,08 0,41 Nadi-D 1,000 50 1,500 4,144 0,484 4,528 8,564 5,45 5,45 0,03 1,00 3,02 0,40 Nadi-D 1,000 50 1,500 4,477 8,777 8,26E-04 500,363<	Nadi-D	600	50		3.635	0.584	4.219	1.18E-03	443.386	84.54	1 A A					
Nadi-D 750 50 1,500 3,847 0,539 4,386 1,05E-03 461,373 85.39 5.22 5.40 0,001 1,00 3,25 0,44 Nadi-D 350 50 1,500 3,911 0,527 4,438 1,01E-03 466,873 85.64 5,50 0,001 1,000 3,21 0,44 Nadi-D 900 50 1,500 4,032 0,504 4,516 9,50E-044 472,144 85.89 5,31 5,50 0,001 1,000 3,11 0,42 Nadi-D 900 50 1,500 4,444 483 9,22E-04 482,169 86,35 5,39 5,50 0,001 1,000 3,01 0,43 0,43 Nadi-D 1,000 50 1,500 4,248 0,467 4,715 8,48E-04 490,008 86.79 5,50 7,0<03	Nadi-D	650	50	1,500	3.709	0.568	4.277	1.13E-03								
Nadi-D 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 <t< td=""><td>Nadi-D</td><td>700</td><td>50</td><td>1,500</td><td>3.779</td><td>0.553</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Nadi-D	700	50	1,500	3.779	0.553										
Nadi-D 350 350 1500 3770 0.517 4.487 9.81E-04 472.144 85.89 531 5.50 0.03 1.00 3.18 0.43 Nadi-D 900 50 1,500 4.032 0.504 4.536 9.50E-04 477.239 86.13 5.35 5.54 0.03 1.00 3.14 0.43 Nadi-D 9.50 50 1,500 4.084 0.424 86.28 86.15 5.34 5.62 0.03 1.00 3.08 0.41 Nadi-D 1,500 4.197 0.475 4.628 8.95E-04 485.923 86.58 5.43 5.62 0.03 1.00 3.05 0.41 Nadi-D 1,100 50 1,500 4.477 8.48E-04 496.008 86.99 5.50 5.70 0.03 1.00 3.02 0.40 Nadi-D 1,200 50 1,500 4.347 0.451 4.778 8.260-45 503 5.81 0.03 1.00 2.97 0.30 Nadi-D 1,200 50 1,500 4	Nadi-D	750	50	1,500	3.847		4.386	1.05E-03						L	-	
Nadi-D 900 50 1,500 4.012 0.012 1.010 1.011 1.0	Nadi-D	800	50				1 C	1								
Nadi-D 950 50 1,500 4.029 0.494 4.833 9.22E-04 482.169 86.36 5.39 5.58 0.03 1.00 3.11 0.42 Nadi-D 1,000 50 1,500 4.144 0.484 4.628 8.95E-04 486.923 86.58 5.43 5.50 5.70 0.03 1.00 3.06 0.41 Nadi-D 1,100 50 1,500 4.144 0.484 4.672 8.71E-04 491.517 86.79 5.60 0.03 1.00 3.00 0.40 Nadi-D 1,150 50 1,500 4.298 0.459 4.757 8.26E-04 500.363 87.19 5.51 5.77 0.03 1.00 2.97 0.40 Nadi-D 1,200 50 1,500 4.347 0.451 4.778 8.66E-04 501.587 8.73 5.61 5.81 0.03 1.00 2.97 0.40 Nadi-D 1,200 50 1,500 4.524 4.932 7.3EE-04 516.666 7.79 1.00 1.00 2.90 2.93 <td>Nadi-D</td> <td>850</td> <td></td> <td>· ·</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l I</td>	Nadi-D	850		· ·		•										l I
Nadi-D 1,000 500 1,500 4.144 0.484 4.628 8.95E-04 486.923 86.58 5.43 5.62 0.03 1.00 3.08 0.41 Nadi-D 1,000 50 1,500 4.197 0.475 4.672 8.71E-04 491.517 86.58 5.46 5.66 0.03 1.00 3.02 0.40 Nadi-D 1,100 50 1,500 4.248 0.467 4.715 8.48E-04 496.008 86.99 5.50 5.70 0.03 1.00 3.02 0.40 Nadi-D 1,500 5.00 4.347 0.451 4.798 8.06E-04 504.587 87.39 5.57 5.77 0.03 1.00 2.97 0.40 Nadi-D 1,300 50 1,500 4.440 0.437 4.876 7.6E-04 512.720 87.76 5.63 5.84 0.03 1.00 2.95 0.39 Nadi-D 1,400 50 1,500 4.528 0.424 4.952 7.3E-04 516.646 87.94 5.66 5.88 0.03 1.	Nadi-D															
Nadi-D 1,050 50 1,147 1,047 1,050 1,050 1,00 1,00 3,05 1,147 1,150 1,100 1,100 1,00 2,25 0,39 Nadi-D 1,350 50 1,500 4,440 4,312 7,312-04 512,720 87.75 5.65 5.86 0,31 1,00 2,28 0,32 Nadi-D 1,500 50 1,500 4,570 0,418 4,988 7,212-04 512,72														4		
Nadi-D 1,100 50 1,500 4,248 0,457 4,715 8,48E-04 500,363 87.19 5,50 5,70 0.03 1,00 3,00 0,40 Nadi-D 1,500 50 1,500 4,347 0,451 4,778 8,26E-04 500,363 87.19 5,53 5,77 0,03 1,00 2,97 0,40 Nadi-D 1,250 50 1,500 4,347 0,451 4,778 8,26E-04 500,363 87.39 5,57 5,77 0,03 1,00 2,97 0,40 Nadi-D 1,300 50 1,500 4,440 0,437 4,876 7,69E-04 512,720 87.76 5,63 5,84 0,03 1,00 2,99 0,39 Nadi-D 1,400 50 1,500 4,528 0,424 4,952 7,35E-04 520,473 88.11 5.66 5.88 0,03 1,00 2.88 0,38 Nadi-D 1,400 50 1,500 4.612 0,412 5.024 7,048.28 5.72 5.94 0,03 1,00 2.86 </td <td></td> <td>1</td> <td></td>															1	
Nadi-D 1,150 50 1,200 50 1,200 50 1,200 50 1,500 4,347 0,451 4,798 8,26E-04 500,363 87,19 5,57 5,77 0.03 1,00 2.97 0.40 Nadi-D 1,200 50 1,500 4.347 0.451 4.798 8,06E-04 504,587 87,39 5,57 5,77 0.03 1.00 2.97 0.40 Nadi-D 1,300 50 1,500 4.344 0.437 4.818 7,87E-04 508,691 87,58 5.60 5.81 0.03 1.00 2.97 0.39 Nadi-D 1,300 50 1,500 4.440 0.437 4.876 7,66E-04 512,720 87,76 5.63 5.81 0.03 1.00 2.90 0.38 Nadi-D 1,400 50 1,500 4.570 0.418 4.988 7,20E-04 5224,703 88,11 5.65 5.81 0.03 1.00 2.86 0.38 Nadi-D 1,500 50 1,500 4.652 0.406 5.059							1					•				
Nadi-D 1,200 500 1,347 0.451 4.798 8.06E-04 504.537 87.39 5.57 5.77 0.03 1.00 2.97 0.40 Nadi-D 1,250 50 1,500 4.347 0.451 4.798 8.06E-04 504.537 87.39 5.57 5.77 0.03 1.00 2.97 0.40 Nadi-D 1,300 50 1,500 4.440 0.437 4.876 7.69E-04 512.720 87.76 5.63 5.84 0.03 1.00 2.99 0.39 Nadi-D 1,350 50 1,500 4.484 0.437 4.876 7.69E-04 512.710 87.76 5.65 5.84 0.03 1.00 2.90 0.38 Nadi-D 1,450 50 1,500 4.528 0.424 4.952 7.3E-04 524.204 88.11 5.66 5.88 0.03 1.00 2.86 0.38 Nadi-D 1,650 50 1,500 4.652 0.401 5.097 6.31.452 88.15 5.75 5.97 0.03 1.00 2.80 </td <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- L .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-		1						- L .						
Nadi-D 1,200 500 1,500 4,394 0.444 4,880 7,87E-04 502 500 5.81 0.03 1.00 2.95 0.39 Nadi-D 1,300 50 1,500 4.440 0.437 4.876 7,69E-04 512,720 87.76 5.63 5.84 0.03 1.00 2.93 0.39 Nadi-D 1,300 50 1,500 4.484 0.430 4.914 7.52E-04 512,720 87.76 5.63 5.84 0.03 1.00 2.90 0.38 Nadi-D 1,400 50 1,500 4.528 0.424 4.952 7.35E-04 524,204 88.11 5.69 5.91 0.03 1.00 2.86 0.38 Nadi-D 1,500 50 4.500 4.612 0.412 5.024 7.06E-04 521,857 88.45 5.75 5.97 0.03 1.00 2.84 0.37 Nadi-D 1,500 50 1,500 4.652 0.406 5.059 6.92E-04 531.452 88.61 5.78 6.00 0.33 1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>K .</td> <td></td> <td></td> <td></td>							•						K .			
Nadi-D 1,300 50 1,500 4,440 0.437 4.876 7.69E-04 512.720 87.76 5.63 5.84 0.03 1.00 2.93 0.39 Nadi-D 1,350 50 1,500 4.484 0.430 4.914 7.52E-04 516.646 87.94 5.65 5.88 0.03 1.00 2.90 0.38 Nadi-D 1,400 50 1,500 4.528 0.424 4.952 7.3EE-04 520.473 88.11 5.69 5.91 0.03 1.00 2.88 0.38 Nadi-D 1,500 50 1,500 4.652 0.448 4.928 7.20E-04 522.424 88.28 5.75 5.94 0.03 1.00 2.86 0.38 Nadi-D 1,500 50 1,500 4.652 0.406 5.059 6.92E-04 531.452 88.41 5.75 5.97 0.03 1.00 2.80 0.36 Nadi-D 1,600 50 1,500 4.652 0.406 5.956 6.92E-04 531.452 88.41 5.75 5.97 0.													5			1
Nadi-D 1,500 1,500 4,484 0,300 4,914 7,52E-04 516,645 87.94 5.65 5.88 0.03 1.00 2.90 0,38 Nadi-D 1,400 50 1,500 4.528 0.424 4.952 7,35E-04 520,473 88.11 5.65 5.88 0.03 1.00 2.88 0.38 Nadi-D 1,450 50 1,500 4.570 0.418 4.982 7.20E-04 524.204 88.28 5.72 5.91 0.03 1.00 2.86 0.38 Nadi-D 1,550 50 1,500 4.612 0.412 5.024 7.06E-04 527.357 88.45 5.75 5.97 0.03 1.00 2.84 0.37 Nadi-D 1,500 50 1,500 4.612 0.412 5.093 6.92E-04 531.452 88.61 5.78 6.00 0.00 1.00 2.84 0.37 Nadi-D 1,500 50 1,500 4.768 0.391 5.15 6.54E-04 541.766 89.07 5.86 6.08 0.03 1						5			•						- 1 - C	
Nadi-D 1,500 50 1,500 4,500 4,540 50,424 4,952 7,352,504 524,204 88,11 5.69 5.91 0.03 1.00 2.88 0.38 Nadi-D 1,400 50 1,500 4.570 0.418 4.988 7.20E-04 524.204 88.28 5.72 5.94 0.03 1.00 2.86 0.38 Nadi-D 1,500 50 1,500 4.612 0.412 5.024 7.06E-04 527.857 88.45 5.75 5.97 0.03 1.00 2.84 0.37 Nadi-D 1,500 50 1,500 4.652 0.406 5.059 6.92E-04 531.452 88.61 5.78 6.00 0.03 1.00 2.82 0.37 Nadi-D 1,650 50 1,500 4.730 0.396 5.126 6.66E-04 538.403 88.92 5.83 6.03 0.03 1.00 2.77 0.36 Nadi-D 1,700 50 1,500 4.828 0.382 5.224 6.311-04 548.327 89.37 5.91 <td< td=""><td></td><td></td><td></td><td></td><td>f i</td><td></td><td></td><td></td><td>4</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></td<>					f i				4			1				
Nadi-D 1,400 50 1,500 4,500 0.418 1,988 7,20E-04 524,204 88,28 5,72 5,94 0.03 1.00 2.86 0.38 Nadi-D 1,500 50 1,500 4.612 0.412 5.024 7.06E-04 527.857 88.45 5.75 5.97 0.03 1.00 2.84 0.37 Nadi-D 1,550 50 1,500 4.652 0.406 5.059 6.92E-04 531.452 88.61 5.78 6.00 0.03 1.00 2.82 0.37 Nadi-D 1,600 50 1,500 4.692 0.401 5.093 6.78E-04 534.966 88.77 5.80 6.03 0.03 1.00 2.80 0.36 Nadi-D 1,600 50 1,500 4.730 0.396 5.126 6.66E-04 541.766 89.07 5.86 6.08 0.03 1.00 2.77 0.36 Nadi-D 1,800 50 1,500 4.812 0.382 5.224 6.311:-04 548.327 89.37 591 6.14 0.		-														
Nadi-D 1,50 50 1,50 4,612 0,412 5.024 7.06E-04 527.857 88.45 5.75 5.97 0.03 1.00 2.84 0.37 Nadi-D 1,500 50 1,500 4.652 0.406 5.059 6.92E-04 531.452 88.61 5.78 6.00 0.03 1.00 2.82 0.37 Nadi-D 1,600 50 1,500 4.692 0.401 5.093 6.78E-04 531.452 88.61 5.78 6.00 0.03 1.00 2.82 0.37 Nadi-D 1,600 50 1,500 4.768 0.391 5.159 6.54E-04 531.456 88.92 5.83 6.05 0.03 1.00 2.77 0.36 Nadi-D 1,700 50 1,500 4.842 0.382 5.224 6.31E-04 545.065 89.22 5.88 6.11 0.03 1.00 2.77 0.36 Nadi-D 1,800 50 1,500 4.842 0.382 5.224 6.31E-04 545.065 89.22 5.88 6.11 0.03																
Nadi-D 1,500 50 1,500 4.652 0.406 5.059 6.92E-04 531.452 88.61 5.78 6.00 0.03 1.00 2.82 0.37 Nadi-D 1,600 50 1,500 4.692 0.401 5.093 6.78E-04 534.966 88.77 5.80 6.03 0.03 1.00 2.80 0.36 Nadi-D 1,650 50 1,500 4.730 0.396 5.126 6.66E-04 538.403 88.92 5.83 6.05 0.03 1.00 2.79 0.36 Nadi-D 1,700 50 1,500 4.768 0.391 5.159 6.54E-04 541.766 89.07 5.86 6.08 0.03 1.00 2.77 0.36 Nadi-D 1,800 50 1,500 4.842 0.382 5.224 6.31E-04 548.327 89.37 591 6.14 0.03 1.00 2.77 0.35 Nadi-D 1,850 50 1,500 4.878 0.377 5.255 6.20E-04 551.525 89.51 5.93 6.16 6.0													0.03	1.00	2.84	0.37
Nadi-D 1,600 50 1,500 4.692 0.401 5.093 6.78E-04 534.966 88.77 5.80 6.03 0.03 1.00 2.80 0.36 Nadi-D 1,650 50 1,500 4.730 0.396 5.126 6.66E-04 538.403 88.92 5.83 6.05 0.03 1.00 2.79 0.36 Nadi-D 1,700 50 4,500 4.768 0.391 5.159 6.54E-04 541.766 89.07 5.86 6.08 0.03 1.00 2.77 0.36 Nadi-D 1,700 50 1,500 4.805 0.386 5.192 6.42E-04 545.065 89.22 5.88 6.11 0.03 1.00 2.77 0.36 Nadi-D 1,800 50 1,500 4.878 0.377 5.255 6.20E-04 551.525 89.51 5.93 6.16 0.03 1.00 2.72 0.35 Nadi-D 1,900 50 1,500 4.947 0.369 5.316 6.00E-04 557.740 89.79 5.98 6.21 0.													0.03	1.00	2.82	0.37
Nadi-D 1,650 50 1,500 4.730 0.396 5.126 6.66E-04 538.403 88.92 5.83 6.05 0.03 1.00 2.79 0.36 Nadi-D 1,700 50 1,500 4.768 0.391 5.159 6.54E-04 541.766 89.07 5.86 6.08 0.03 1.00 2.77 0.36 Nadi-D 1,750 50 1,500 4.805 0.386 5.192 6.42E-04 545.065 89.22 5.88 6.11 0.03 1.00 2.75 0.36 Nadi-D 1,800 50 1,500 4.812 0.382 5.224 6.31E-04 548.327 89.37 5.91 6.14 0.03 1.00 2.74 0.35 Nadi-D 1,800 50 1,500 4.878 0.377 5.255 6.20E-04 551.525 89.51 5.93 6.16 0.03 1.00 2.72 0.35 Nadi-D 1,900 50 1,500 4.947 0.369 5.316 6.00E-04 557.740 89.79 5.98 6.21 0.											5.80			1.00	2.80	
Nadi-D 1,700 50 1,500 4.768 0.391 5.159 6.54E-04 541.766 89.07 5.86 6.08 0.03 1.00 2.77 0.36 Nadi-D 1,750 50 1,500 4.805 0.386 5.192 6.42E-04 545.065 89.22 5.88 6.11 0.03 1.00 2.75 0.36 Nadi-D 1,800 50 1,500 4.842 0.382 5.224 6.31E-04 548.327 89.37 5.91 6.14 0.03 1.00 2.74 0.35 Nadi-D 1,850 50 1,500 4.878 0.377 5.255 6.20E-04 551.525 89.51 5.93 6.16 0.03 1.00 2.70 0.35 Nadi-D 1,900 50 1,500 4.947 0.369 5.316 6.00E-04 557.740 89.79 5.98 6.21 0.03 1.00 2.69 0.34 Nadi-D 2,000 50 1,500 4.981 0.365 5.346 5.91E-04 560.762 89.92 6.00 6.24 0.	-	,						6.66E-0-	\$ 538,401	88.92						
Nadi-D 1,750 50 1,500 4.805 0.386 5.192 6.42E-04 545.065 89.22 5.88 6.11 0.03 1.00 2.75 0.36 Nadi-D 1,800 50 1,500 4.842 0.382 5.224 6.31E-04 548.327 89.37 5.91 6.14 0.03 1.00 2.74 0.35 Nadi-D 1,850 50 1,500 4.878 0.377 5.255 6.20E-04 551.525 89.51 5.93 6.16 0.03 1.00 2.72 0.35 Nadi-D 1,900 50 1,500 4.913 0.373 5.286 6.10E-04 554.661 89.65 5.95 6.19 0.03 1.00 2.70 0.35 Nadi-D 1,950 50 1,500 4.947 0.369 5.316 6.00E-04 557.740 89.79 5.98 6.21 0.03 1.00 2.69 0.34 Nadi-D 2,000 50 1,500 5.014 0.361 5.375 5.82E-04 563.743 90.05 6.02 6.26 0.					1		5.159	6.54E-0								
Nadi-D 1,800 50 1,500 4.842 0.382 5.224 6.31E-04 548.327 89.37 5.91 6.14 0.03 1.00 2.74 0.35 Nadi-D 1,850 50 1,500 4.878 0.377 5.255 6.20E-04 551.525 89.51 5.93 6.16 0.03 1.00 2.72 0.35 Nadi-D 1,900 50 1,500 4.913 0.373 5.286 6.10E-04 554.661 89.65 5.95 6.19 0.03 1.00 2.70 0.35 Nadi-D 1,950 50 1,500 4.947 0.369 5.316 6.00E-04 557.740 89.79 5.98 6.21 0.03 1.00 2.69 0.34 Nadi-D 2,000 50 1,500 4.981 0.365 5.346 5.91E-04 560.762 89.92 6.00 6.24 0.03 1.00 2.67 0.34 Nadi-D 2,000 50 1,500 5.014 0.361 5.375 5.82E-04 566.760 90.19 6.04 6.28 0.					4.805		5.192	6.42E-0	4 545.065							
Nadi-D 1,850 50 1,500 4.878 0.377 5.255 6.20E-04 551.525 89.51 5.93 6.16 0.03 1.00 2.72 0.35 Nadi-D 1,900 50 1,500 4.913 0.373 5.286 6.10E-04 551.525 89.51 5.93 6.16 0.03 1.00 2.72 0.35 Nadi-D 1,900 50 1,500 4.947 0.369 5.316 6.00E-04 557.740 89.79 5.98 6.21 0.03 1.00 2.69 0.34 Nadi-D 2,000 50 1,500 4.947 0.365 5.346 591E-04 560.762 89.92 6.00 6.24 0.03 1.00 2.67 0.34 Nadi-D 2,050 50 1,500 5.014 0.361 5.375 5.82E-04 563.743 90.05 6.02 6.26 0.03 1.00 2.66 0.34 Nadi-D 2,100 50 1,500 5.078 0.354 5.432 5.64E-04 569.587 90.31 6.07 6.31 0.0			50								5 .	r				
Nadi-D 1,900 500 1,900 4.113 0.369 5.316 6.00E-04 557.740 89.79 5.98 6.21 0.03 1.00 2.69 0.34 Nadi-D 2,000 50 1,500 4.947 0.365 5.316 6.00E-04 557.740 89.79 5.98 6.21 0.03 1.00 2.69 0.34 Nadi-D 2,000 50 1,500 4.947 0.365 5.346 5.91E-04 560.762 89.92 6.00 6.24 0.03 1.00 2.67 0.34 Nadi-D 2,050 50 1,500 5.014 0.361 5.375 5.82E-04 563.743 90.05 6.02 626 0.03 1.00 2.66 0.34 Nadi-D 2,100 50 1,500 5.046 0.357 5.404 5.73E-04 566.690 90.19 6.04 628 0.03 1.00 2.65 0.34 Nadi-D 2,100 50 1,500 5.078 0.354 5.432 5.64E-04 569.587 90.31 6.07 6.31 0.0	Nadi-D	1,850	50	1,500	4.878					1						
Nadi-D 2,000 50 1,500 4.947 0.365 5.346 5.91E-04 560.762 89.92 6.00 6.24 0.03 1.00 2.67 0.34 Nadi-D 2,000 50 1,500 4.981 0.365 5.346 5.91E-04 560.762 89.92 6.00 6.24 0.03 1.00 2.67 0.34 Nadi-D 2,050 50 1,500 5.014 0.361 5.375 5.82E-04 563.743 90.05 6.02 626 0.03 1.00 2.66 0.34 Nadi-D 2,100 50 1,500 5.046 0.357 5.404 5.73E-04 566.690 90.19 6.04 628 0.03 1.00 2.65 0.34 Nadi-D 2,150 50 1,500 5.078 0.354 5.432 5.64E-04 569.587 90.31 6.07 6.31 0.03 1.00 2.63 0.33 Nadi-D 2,200 50 1,500 5.110 0.350 5.460 5.56E-04 572.338 90.56 6.11 6.35 0.03	Nadi-D	1,900) SC) 1,500	4.913											
Nadi-D 2,000 50 1,500 5,014 0.361 5,375 5,82E-04 563,743 90.05 6.02 6.26 0.03 1.00 2.66 0.34 Nadi-D 2,000 50 1,500 5.014 0.361 5.375 5,82E-04 563,743 90.05 6.02 6.26 0.03 1.00 2.66 0.34 Nadi-D 2,100 50 1,500 5.014 0.357 5.404 5.73E-04 566.690 90.19 6.04 6.28 0.03 1.00 2.65 0.34 Nadi-D 2,150 50 1,500 5.078 0.354 5.432 5.64E-04 569.587 90.31 6.07 6.31 0.03 1.00 2.63 0.33 Nadi-D 2,200 50 1,500 5.141 0.347 5.488 5.48E-04 575.238 90.56 6.11 6.35 0.03 1.00 2.60 0.33 Nadi-D 2,300 50 1,500 5.171 0.344 5.515 5.40E-04 577.937 90.69 6.13 6.37 0.	Nadi-D	1,950														
Nadi-D 2,000 500 5,004 0.357 5,404 5,73E-04 566.690 90.19 6.04 6.28 0.03 1.00 2.65 0.34 Nadi-D 2,100 50 1,500 5.046 0.357 5,404 5,73E-04 566.690 90.19 6.04 6.28 0.03 1.00 2.65 0.34 Nadi-D 2,150 50 1,500 5.046 0.354 5.432 5.64E-04 569.587 90.31 6.07 6.31 0.03 1.00 2.63 0.33 Nadi-D 2,200 50 1,500 5.110 0.350 5.460 5.56E-04 572.436 90.44 6.09 6.33 0.03 1.00 2.62 0.33 Nadi-D 2,200 50 1,500 5.141 0.347 5.488 5.48E-04 575.238 90.56 6.11 6.35 0.03 1.00 2.61 0.33 Nadi-D 2,300 50 1,500 5.171 0.344 5.515 5.40E-04 577.937 90.69 6.13 6.37 0.03 1.	Nadi-D										1					•
Nadi-D 2,100 500 5,000 5,078 0.354 5,432 5,64E-04 569,587 90.31 6.07 6.31 0.03 1.00 2.63 0.33 Nadi-D 2,150 50 1,500 5.078 0.354 5,432 5,64E-04 569,587 90.31 6.07 6.31 0.03 1.00 2.63 0.33 Nadi-D 2,200 50 1,500 5.110 0.350 5.460 5.56E-04 572.436 90.44 6.09 6.33 0.03 1.00 2.62 0.33 Nadi-D 2,250 50 1,500 5.141 0.347 5.488 5.48E-04 575.238 90.56 6.11 6.35 0.03 1.00 2.61 0.33 Nadi-D 2,300 50 1,500 5.171 0.344 5.515 5.40E-04 577.997 90.69 6.13 6.37 0.03 1.00 2.60 0.33 Nadi-D 2,300 50 1,500 5.201 0.340 5.542 5.33E-04 580.713 90.81 6.15 6.40 0						1		-								
Nadi-D 2,200 50 1,500 5.110 0.350 5.460 5.56E-04 572.436 90.44 6.09 6.33 0.03 1.00 2.62 0.33 Nadi-D 2,200 50 1,500 5.110 0.347 5.488 5.48E-04 575.238 90.56 6.11 6.35 0.03 1.00 2.61 0.33 Nadi-D 2,300 50 1,500 5.171 0.344 5.515 5.40E-04 577.997 90.69 6.13 6.37 0.03 1.00 2.60 0.33 Nadi-D 2,350 50 1,500 5.201 0.340 5.542 5.33E-04 580.713 90.81 6.15 6.40 0.03 1.00 2.60 0.33 Nadi-D 2,400 50 1,500 5.231 0.337 5.568 5.26E-04 583.414 90.92 6.17 6.42 0.03 1.00 2.56 0.32 Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.																*
Nadi-D 2,260 50 1,600 5.140 0.347 5.488 5.48E-04 575.238 90.56 6.11 6.35 0.03 1.00 2.61 0.33 Nadi-D 2,250 50 1,500 5.141 0.347 5.488 5.48E-04 575.238 90.56 6.11 6.35 0.03 1.00 2.61 0.33 Nadi-D 2,300 50 1,500 5.171 0.344 5.515 5.40E-04 577.997 90.69 6.13 6.37 0.03 1.00 2.60 0.33 Nadi-D 2,350 50 1,500 5.201 0.340 5.542 5.33E-04 580.713 90.81 6.15 6.40 0.03 1.00 2.58 0.33 Nadi-D 2,400 50 1,500 5.231 0.337 5.568 5.26E-04 583.414 90.92 6.17 6.42 0.03 1.00 2.57 0.32 Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.									-							
Nadi-D 2,290 50 1,500 5.171 0.344 5.515 5.40E-04 577.997 90.69 6.13 6.37 0.03 1.00 2.60 0.33 Nadi-D 2,350 50 1,500 5.201 0.340 5.542 5.33E-04 580.713 90.81 6.15 6.40 0.03 1.00 2.58 0.33 Nadi-D 2,400 50 1,500 5.231 0.337 5.568 5.26E-04 583.414 90.92 6.17 6.42 0.03 1.00 2.57 0.32 Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.03 1.00 2.56 0.32 Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.03 1.00 2.56 0.33																
Nadi-D 2,500 50 1,500 5.201 0.340 5.542 5.33E-04 580.713 90.81 6.15 6.40 0.03 1.00 2.58 0.33 Nadi-D 2,400 50 1,500 5.231 0.337 5.568 5.26E-04 583.414 90.92 6.17 6.42 0.03 1.00 2.57 0.32 Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.03 1.00 2.56 0.32 Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.03 1.00 2.56 0.32																
Nadi-D 2,400 50 1,500 5.231 0.337 5.568 5.26E-04 583.414 90.92 6.17 6.42 0.03 1.00 2.57 0.32 Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.03 1.00 2.56 0.32 Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.03 1.00 2.56 0.32								1								
Nadi-D 2,450 50 1,500 5.260 0.334 5.594 5.19E-04 586.074 91.04 6.19 6.44 0.03 1.00 2.56 0.32					•							1				1
Man.12 4200 20 1200 2402 0221 2020 01 20000 2 2001 00000 1						•										
	Nader	2,30	<u>~ 1 ></u>	<u>, 1, 300</u>	5 5 40		1 2.020			- ,						

أشيعهم

Table-13.3 (1/2) Non-Uniform Flow Calculation of Nadi Diversion Channel (1/20 Probability Flood)

Nan	ne	dX	Q	H	V.H	total E	IE	A	В	R	A/B	n	alpha	Y	Fr
		(m)	(m'/s)	(m)	(m)	(m)		(m²)	(m)	(m)	(m)		t i	(m/s)	
Nadi-D	2,550	50	1,500	5.300	0.347	5.647	5.48E-04	575.131	90.56	6.11	6.35	0.03	1.00	2.61	0.33
Nadi-D	2,600	50	1,500	5.313	0.362	5.675	5.85E-04	562.750	90.01	6.02	6.25	0.03	1.00	2.67	0,34
Nadi-D	2,650	50	1,500	5.325	0.380	5.705	6.27E-04	549.528	89.42	5.92	6.15	0.03	1.00	2.73	0.35
Nadi-D	2,700	50	1,500	5.340	0.397	5.738	6.69E-04	537.508	88.88	5.82	6.05	0.03	1.00	2.79	0.36
Nađi-D	2,750	50	1,500	5.355	0.417	5.772	7.18E-04	524.658	88.30	5.72	5.94	0.03	1.00	2.86	0.37
Nadi-D	2,800	50	1,500	5.372	0.438	5.810	7,72E-04	512.015	87.73	5.63	5.84	0.03	1.00	2.93	0.39
Nadi-D	2,850	50	1,500	5.392	0.458	5.850	8.25E-04	500.616	87.21	5.54	5,74	0.03	1.00	3.00	0.40
Nadi-D	2,900	50	1,500	5.411	0.481	5.892	8.87E-04	488.416	86.64	5.44	5.64	0.03	1.00	3.07	0.41
Nadi-D	2,950	50	1,500	5.433	0.506	5.938	9.55E-04	476.472	86.09	5.34	5.53	0.03	1.00	3.15	0.43
Nadi-D	3,000	50	1,500	5.459	0.529	5.988	1.02E-03	465.836	85.60	5.26	5,44	0.03	1.00	3.22	0.44
Nadi-D	3 050	50	1,500	5.336	0.702	6.038	9.88E-04	404.376	72.23	5.07	5.60	0.03	1.00	3,71	0.50
Nadi-D	3,100	50	1,500	5.353	0.737	6.089	1.06E-03	394.760	71.97	4.97	5.49	0.03	1.00	3.80	0.52
Nadi-D	3,150	50	1,500	5.368	0.777	6.145	1.15E-03	384.337	71.68	4.87	5.36	0.03	1.00	3.90	0.54
Nadi-D	3,200	50	1,500	5.144	1.072	6.216	1.71E-03	327.265	60.00	4.62	5.45	0.03	1.00	4.58	0.63
Nadi-D	3,250	50	1,500	5.190	1.114	6.304	1.81E-03	321.027	60.00	4.54	5.35	0.03	1.00	4.67	0.63
Nadi-D	3,300	50	1,500	5.235	1.164	6.398	1.94E-03	314.072	60 .00	4.46	5.23	0.03	1.00	4.78	0.6

Table-13.3 (2/2)	Non-Uniform Flow Calculation of Nadi Diversion Channel (1/20 Probability Flood)
------------------	---

. •

H: water Level dx: distance Q: discharge IE: energy gradient total E: total energy head V.H: velocity head width of water surface R: hydraulic radius B: discharge area A: roughness coefficient alpha: energy correction coefficient A/B: hydraulic depth n: Fr: Frauds number V: velocity Nadi-D-1,500: point which is 1,500 m off shore from outlet of the channel

Nadi-D 0: outlet of the channel

Nadi-D 1,000: point which is 1,000 m upstream form outlet of the channel

												· · · · ·				
Nam	ie .	dX (m)	Q (m ¹ /s)	н (m)	V.H (m)	total E (m)	IE	A (m²)	8 (m)	R (m)	A/B (m)	n	alpha	V (n\/s)	Fr	
		(11)	((,	()	(in)		(arr.)	(iii)					(10.1)		
Nadi D		0	1,000	1.000	0.003	1 003	5.02E-06	3,900.000	600.00	6.36	6.30	0.03	1.00	0.26	0.03	
Nadi-D		500	1,000	1.000	0.010	1.009	1.80E-05	•	420.00	5.36	5.50	0,03	1.00	0.43	0.06	
Nadi-D	-500	500	1,000	0.997	0.044	1.041	1.09E-04		240.00	4.33	4.50	0.03	1.00	0.93	0.14	
Nadi-D	-450	50	1,000 1,000	0.993 0.988	0.054	1.047	1.38E-04 1.78E-04	975.356		4.23	4.39	0.03	1.00 1.00	1.03 1.14	0.16 0.18	
Nadi-D Nadi-D	-400 -350	50 50	1,000	0.988	0.067 0.084	1.055	2.34E-04	874.830 777.665	186.00	4.12	4.29	0.03	1.00	1.29	0.20	
Nadi-D	-300	50	1,000	0.970	0.109	1.079	3.16E-04	683.756		3.88	4.07	0.03	1.00	1,46	0.23	
Nadi-D	-250	50	1,000	0.953	0.145	1.098	4.39E-04		150.00	3.75	3.95	0.03	1.00	1.69	0.27	
Nadi-D	-200	50	1,000	0.925	0.200	1.125	6.36E-04	504.853		3.62	3.82	0.03	1.00	1.98	0.32	
Nadi-D	-150	50	1.000	0.875	0.291	1.165	9.83E-04	418.900	114.00	3.45	3.67	0.03	1.00	2.39	0.40	
Nadi-D	-100	50	1,000	0.773	0.459	1.232	1.69E-03	333.427	96.00	3.24	3.47	0.03	1.00	3.00	0.51	
Nadi-D	-50	50	1,000	0.493	0.877	1.369	3.80E-03	241.216	78.00	2.87	3.09	0.03	1.00	4.15	0.75	
Nadi-D	0	50	1,000	0.447	1.353	1.800	6.50E-03	194.212	71.79	2.65	2.71	0.03	1.00	5.15 3.98	1.00 0.69	
Nadi-D Nadi-D	50 100	50 50	1,000 1,000	1.229	0.806	2.035 2.167	2.92E-03 2.37E-03	251.544 269.245	74.92	3.28 3.46	3.36 3.55	0.03	1.00	3.76	0.63	
Nadi-D	150	50	1,000	1.639	0.639	2.278	2.04E-03	282.593	76.55	3.60	3.69	0.03	1.00	3.54	0.59	•
Nadi-D	200	50	1,000	1.782	0.592	2.374	1.82E-03		77.13	3.71	3.81	0.03	1.00	3.41	0.56	
Nađi-D	250	50	1,000	1.906	0.555	2.461	1.65E-03	303.186	77.62	3.80	3.91	0.03	1.00	3.30	0.53	
Nadi-D	300	50	1,000	2.015	0.525	2.540	1.52E-03	311.645	78.06	3.89	3.99	0.03	1.00	3.21	0.51	
Nadi-D	350	50	1,000	2.113	0.500	2.613	1.41E-03	319.339	78.45	3.96	4.07	0.03	1.00	3,13	0.50	
Nadi-D	400	50	1,000	2.202	0.479	2.681	1.32E-03		78.81	4.03	4.14	0.03	1.00	3.06	0.48	
Nadi-D	450	50	1,000	2.285	0.460	2.745	1.24E-03		79.14	4.09	4.21	0.03	1.00	3.00	0.47	
Nadi-D	500 550	50	1,000	2.362 2.434	0.444	2.806 2.863	1.18E-03 1.12E-03		79.45	4.15 4.20	4.27 4.32	0.03	1.00	2.95	0.46 0.45	÷.,
Nadi-D Nadi-D	600	50	1,000	2.501	0.416	2.918	1.07E-03		80.01	4.25	4.32	0.03	1.00	2.86	0.44	· ·
Nadi-D	650		1,000	2.566	0.404	2.970	1.02E-03		80.26	4.30	4.43	0.03	1.00	2.81	0.43	
Nadi-D	700		1,000	2.626	0.393	3.020	9.79E-04		80.51	4.34	4.47	0.03	1.00	2.78	0.42	
Nadi-D	750			2.685	0.383	3.068	9.42E-04		80.74	4.39	4.52	0.03	1.00	2.74	0.41	
Nadi-D	800		1 1	2.740	0.374	3.114	9.08E-04		80.96	4.43	4.56	0.03	1.00	2.71	0.40	
Nadi-D	850		1 '	2.793	0.365	3.159	8.77E-04			4.47	4.60	0.03	1.00	2.68	0.40	•
Nadi-D Nadi-D	900 950			2.844	0.357	3.202 3.244	8.48E-04 8.22E-04			4.50 4.54	4.64	0.03	1.00	2.65 2.62	0.39 0.39	
Nadi-D	1,000			2.894	0.330	3.244	1.97E-04				4.72	0.03	1.00	2.59	0.38	
Nadi-D	1,050		1 '	2.987	0.336		7.74E-04	1		4.61	4.75	0.03	1.00	2.57	0.38	
Nadi-D	1,100			3.031	0.330		7.53E-04			4.64	4.79	0.03	1.00	2.54	0.37	
Nadi-D	1,150		1 '	3.074	0.324	3.399	7.33E-04		K	4.67	4.82	0.03	1.00	2.52	0.37	
Nadi-D	1,200			3.116	0.319		7.14E-04				4.85	0.03	1.00	2.50	0.36	
Nadi-D	1,250		1 .	3.157	0.314		6.97E-04				4.88	0.03	1.00	2.48 2.46	0.36	
Nadi-D Nadi-D	1,300 1,350		1 ·	3.196			6.80E-04 6.65E-04				4.91 4.94	0.03		2.40	0.35	۰.
Nadi-D	1,400	•		3.272	0.299		6.50E-04				4.97	0.03		2.42	0.35	
Nadi-D	1,450										5.00				0.34	
Nadi-D			1,000	3.344	•			418.946		4.86	5.02				0.34	
Nadi-D	1,550		I '								5.05	0.03			0.34	
Nadi-D	1,600			3.413							5.08				0.33	
Nadi-D	1,650			3.446				4			5.10				0.33	
Nadi-D Nadi-D			l í								5.13 5.15		1		0.33	
Nadi-D											5.17					
Nadi-D	•							1			5.20				1	
Nadi-D			0 1,000	3.602			L	1			5.22			2.27	0.32	
Nadi-D											5.24					
Nadi-D											5.26					•
Nadi-D											5.29					
Nadi-D							1				5.31 5.33					
Nadi-D Nadi-D	-						1						1			
Nadi-D	-															
Nadi-D														2		
Nadi-D	-		0 1,000	3.850		L L		4 461.66	3 85.40	5.22	5.41		3 1.00		0.30	
Nadi-D			1 1							1	5.42					
Nadi-D			0 1,000													
Nadi-D	2,50	01 <u>.</u> 5	0 1,000	3.92	5 0.23	3 4.158	3 4.47E-0	4 468.08	3 85.70	5.27	5.46	0.0	3 1.00	2.14	0.29	,

I.

Table-13.4 (1/2) Non-Uniform Flow Calculation of Nadi Diversion Channel (1/10 Probability Flood)

Nan	ne	đΧ	Q	11	V.H	total E	IE	A	В	R	A/B	n	alpha	V	Fr
		(m)	(m¥s)	(m)	(m)	(m)		(m²)	(m)	(m)	(m)		:	(nv/s)	i
Nadi-D	2,550	50	1,000	3.935	0.246	4.181	4.86E-04	455.275	85.10	5.17	5.35	0.03	1.00	2 20	0.30
Vadi-D	2,600	50	1,000	3.947	0.259	4.205	5.25E-04	443.576	84.55	5.07	5.25	0.03	1.00	2.25	0.31
Vadi-D	2,650	50	1,000	3.959	0.275	4 234	5.71E-04	431.121	83.96	4.97	5.13	0.03	1.00	2.32	0.3
Vadi-D	2,700	50	1,000	3.974	0.290	4.264	6.19E-04	419.797	83.42	4.87	5.03	0.03	1.00	2.38	0.34
Vadi-D	2,750	50	1,000	3.989	0.307	4.296	6.75E-04	407.735	82.84	4.77	4.92	0.03	1.00	2.45	0.3
Nadi-D	2,800	50	1,000	4.006	0.326	4.331	7.37E-04	395,901	82.26	4.66	4.81	0.03	1.00	2.53	0.3
Nadi-D	2,850	50	1,000	4.026	0.344	4.370	8.00E-04	385.263	81.74	4.57	4.71	0.03	1.00	2.60	0.3
Nadi-D	2,900	50	1,000	4.047	0.365	4 4 1 2	8.75E-04	373.919	81.19	4,47	4.61	0.03	1.00	2.67	0.4
Vadi-D	2,950	50	1,000	4.070	0.388	4 4 5 7	9.58E-04	362.855	80.64	4.37	4.50	0.03	1.00	2.76	04
Nadi-D	3,000	50	1,000	4.098	0.409	4.507	1.04E-03	353.059	80.15	4.28	4.40	0.03	1.00	2.83	04
Nadi-D	3,050	50	1,000	4.033	0.524	4 558	9.70E-04	311.970	69.63	4.13	4.48	0.03	1.00	3.21	0.4
Nadi-D	3,100	50	1,000	4.052	0.556	4.608	1.06E-03	302.852	69.36	4.03	4.37	0.03	1.00	3.30	0.5
Nadi-D	3,150	50	1,000	4.070	0.594	4.664	1.18E-03	293.027	69.08	3.92	4.24	0.03	1.00	3.41	0.5
Nadi-D	3,200	50	1,000	3.956	0.779	4.735	1.65E-03	255.970	60.00	3.73	4.27	0.03	1.00	3.91	0.6
Nadi-D	3,250	50	1,000	4.003	0.818	4.820	1.78E-03	249.753	60.00	3.66	4.16	0.03	1.00	4.00	0.6
Nadi-D	3,300	50	1,000	4.049	0.864	4.914	1.94E-03	242.948	60.00	3.57	4.05	0.03	1.00	4.12	0.6

Table-13.4 (2/2) Non-Uniform Flow Calculation of Nadi Diversion Channel (1/10 Probability Flood)

discharge water Level dx: distance Q: H: energy gradient total E: total energy head IE: V.H: velocity head B: width of water surface R: hydraulic radius discharge area Λ: roughness coefficient alpha: energy correction coefficient A/B: hydraulic depth n: Frauds number Fr: V: velocity

Ľ

Nadi-D-1,500: point which is 1,500 m off shore from outlet of the channel

Nadi-D 0: outlet of the channel

Nadi-D 1,000: point which is 1,000 m upstream form outlet of the channel

												T			
Nan	ĸ	dX	Q	H	V.H	total E	IE	A (m ^b)	B	R (m)	A/B (m)	n.	alpha	V (m/s)	Fr
		(m)	(m¥s)	(m)	(m)	(m)		(m²)	(m)	100	609		Í	(114.57)	
Nadi-D	-1,500	0	675	1.000	0.002	1.002	2.29E-06	3,900.000	600.00	6.36	6.50	0.03	1.00	0.17	0.02
	-1,000	500	675	1.000	0.004	1.004	8.19E-06			5.36	5,50	0.03	1.00	0.29	0.04
Nadi-D	-500	500	675	0.999	0.020	1,019	4.97E-05	1,079.687		4.34	4.50	0.03	1.00	0.63	0.09
Nadi-D	-450	50	675	0.997	0.024	1.021	6.29E-05	976.147		4.23	4.40	0.03	1.00	0.69	0.11
Nadi-D	-400	50	675	0.995	0.030	1.025	8.08E-05	876.132		4.12	4.29	0.03	1.00	0.77	0.12
Nadi-D	-350	50	675	0.991	0.038	1.030	1.06E-04 1.42E-04	779.613 686.547	186.00 168.00	4.01	4.19 4.09	0.03	1.00	0.87 0.98	0.14 0,16
Nadi-D	-300 -250	50 50	675 675	0.987 0.979	0.049 0.065	1.036	1.42E-04	596.864	150.00	3.78	3.98	0.03	1.00	1.13	0.18
Nadi-D Nadi-D	-200	50	675	0.967	0.089	1.056	2.80E-04	510.445		3.65	3.87	0.03	1.00	1.32	0.21
Nadi-D	-150	50	675	0.946	0.127	1.074	4.21E-04	427.076	114.00	3 52	3.75	0.03	1.00	1.58	0.26
Nadi-D	-100	50	675	0.907	0.191	1.101	6.81E-04	346.314	96.00	3.36	3.61	0.03	1.00	1.95	0.33
Nadi-D	-50	50	675	0.823	0.326	1.149	1.25E-03	267.028	78.00	3.15	3.42	0.03	1.00	2.53	0.44
Nadi-D	0	50	675	0.731	0.504	1.235	2.17E-03	214.730	72.92	2.88	2.94	0.03	1.00	3.14	0.59
Nadi-D	50	50	675	0.879	0.457	1.335	1.86E-03	225.563	73.51	3.00	3.07	0.03	1.00 1.00	2.99 2.88	0.55 0.52
Nadi-D	100	50	675	1.001	0.423 0.396	1,423 1.502	1.65E-03 1.49E-03	234.547 242 387	74.00	3.10 3.18	3.17 3.26	0.03	1.00	2.78	0.32
Nadi-D Nadi-D	150 200	50 50	675	1.106	0.374	1.502	1.49E-03	249.313	74.80	3.26	3.33	0.03	1.00	2.71	0.47
Nadi-D	250	50	675	1.283	0.356	1.639	1.27E-03	255.634	75.13	3.32	3.40	0.03	1.00	2.64	0.46
Nadi-D	300	50	675	1.360	0.340	3.700	1.18E-03	261.402	75.44	3.38	3.47	0.03	1.00	2.58	0.44
Nadi-D	350	50	675	1.431	0.327	1.757	1.HE-03	266.751	75.72	3.44	3.52	0.03	1.00	2.53	0.43
Nadi-D	400	50	675	1.497	0.315	1.811	1.05E-03	271.761	75.99	3.49	3.58	0.03	1.00	2.48	0.42
Nadi-D	450	50	675	1.558	0.304	1.862	9.96E-04	•	76.23	3.54	3.63	0.03	1.00	2.44	0.41
Nadi-D	500	50	675	1.616	0.295	1.911	9.48E-04		76.47	3.58 3.62	3.67 3.72	0.03	1.00 1.00	2.40	0.40
Nadi-D	550 600	50	675	1.671 1.724	0.286	1.957 2.002	9.06E-04 8.68E-04	285.107 289.120	76.69 76.89	3.66	3.76	0.03	1.00	2.33	0.38
Nadi-D Nadi-D	650		675	1.773	0.271	2.002	8.34E-04		77.09	3.70	3.80	0.03	1.00	2.30	0.38
Nadi-D	700		675	1.821	0.264	2.085	8.03E-04	1	77.28	3.74	3.84	0.03	1.00	2.28	0.37
Nadi-D	750		675	1.867	0.258	2.125	7.75E-04			3.11	3.87	0.03	1.00	2.25	0.36
Nadi-D	800		675	1.911	0.252	2.163	7.49E-04	303.557		3.81	3.91	0.03	1.00	2.22	0.36
Nadi-D	850	50	675	1.953	0.247	2.200	7.25E-04			3.84	3.94	0.03	1.00	2.20	0.35
Nadi-D	900			1.993	0.242	2.235	7.02E-04			3.87	3.98	0.03	1.00	2.18	0.35
Nadi-D	950			2.033	0.237	2.270	6.82E-04 6.62E-04			3.90 3.93	4.01	0.03	1.00	2.16	0.34
Nadi-D Nadi-D	1,000			2.071	0.235	2.303	6.44E-04			3.96	4.07	0.03	1.00	2.12	0.34
Nadi-D	1,000		- 1	2.143	0.225	2.368	6.278-04	4		3.98	4.09	0.03	1.00	2.10	0.33
Nadi-D	1,150			2.178	0 221	2.399	6.12E-04			4.01	4.12	0.03	1.00	2.08	0.33
Nadi-D	1,200			2.212	0.217	2.429	5.97E-04	327.121	78.85	4.03	4.15	0.03	1.00	2.06	3
Nadi-D	1,250	50	675	2.245	0.214	2.459	5.82E-04			4.06	4.17	0.03	1.00	2.05	
Nadi-D	1,300			2.277	0.211	2.487	5.69E-04			4.08	4.20	0.03	1.00		
Nadi-D				2.308	0.207	2.516	5.56E-04			4.11	4 22	0.03	1.00		0.31 0.31
Nadi-D				2.339	0.205	2.543	5.45E-04 5.33E-04	1				0.03			
Nadi-D Nadi-D												0.03			
Nadi-D					0.196		• • • • • •					0.03	1.00		
Nadi-D					0.194					•	4.34	0.03			
Nadi-D				2.481	0.191	2.672	4.93E-0-	348.501				0.03			
Nadi-D	1,700				0.189										
Nađi-D	-				0.187							0.03	1.00	ł.	
Nadi-D												0.03			
Nadi-D				5								0.03			
Nadi-D Nadi-D															
Nadi-D														1.86	0.28
Nadi-D										4.38	4.52	0.03			
Nadi-D			0 675	2.704	0.173	2.878	4.23E-0	4 366.46							
Nadi-D															
Nadi-D															
Nadi D															
Nadi-D	-		0 67: 0 67:											•	
Nadi-D Nadi-D			0 67:	2					1						
Nađi-D			0 67		•				9 81.43	3 4.51			3 1.00) 1.7i	8 0.26
Nadi-E			0 67							4.52	4.67	0.03	1.00	5 1.7	7 0.26
·															

 Table-13.5 (1/2)
 Non-Uniform Flow Calculation of Nadi Diversion Channel (1/5 Probability Flood)

Name	:	φX	Q	н	V.H	total E	IE	A	8	R	A/B	n	alpha	V	Fr
		(m)	(m'/s)	(m)	(m)	(m)		(m')	(m)	(m)	(m)	:	:	(m/s)	
Vadi-D 2	2,550	50	675	2.886	0.171	3.057	4.17E-04	368.199	80.90	4.42	4.55	0.03	1.00	1.83	0.27
ladi D - 2	2,600	50	675	2.897	0.182	3.079	4.58E-04	356.988	80.35	4.31	4.44	0.03	1.00	1.89	0.29
Nadi-D 2	2,650	50	675	2.908	0.195	3.103	5.08E-04	345.088	79.75	4.20	4.33	0.03	1.00	1.96	0.30
Vadi-D	2,700	50	675	2.922	0.208	3.130	5.59E-04	334,263	79.21	4.10	4.22	0.03	1.00	2.02	0.3
vadi D	2,750	\$0	675	2.936	0.223	3.160	6.21E-04	322.773	78,63	3.99	4.11	0.03	1.00	2.09	0.32
vadi-D 🛛	2,800	50	675	2.953	0 240	3.192	6.928-04	311.522	78.05	3.88	3.99	0.03	1.00	2.17	0.35
Vadi-D	2,850	50	675	2.973	0.256	3.229	7.65E-04	301.410	77.53	3,79	3.89	0.03	1.00	2.24	0.3
vadi-D	2,900	50	675	2.994	0.275	3.269	8.54E-04	290.683	76.98	3.68	-3.78	0.03	1.00	2.32	0.3
Nadi-D 2	2,950	50	675	3.019	0.296	3.315	9.54E-04	280.288	76.43	3.58	3.67	0.03	1.00	2.41	0.4
Nadi-D	3,000	50	675	3.049	0.316	3.365	1.06E-03	271.152	75.95	3.48	3.57	0.03	1.00	2.49	0.4
Nadi-D	3,050	50	675	3.020	0.396	3.415	9.65E-04	242.433	67.60	3.35	3.59	0.03	1.00	2.78	0.4
Nadi-D	3,100	50	675	3.041	0.425	3.467	1.08E-03	233.749	67.34	3.25	3.47	0.03	1.00	2.89	0.50
Nadi-D	3,150	- 50	675	3.063	0.461	3.524	1.23E-03	224.465	67.07	3.14	3.35	0.03	1.00	3.01	0.5
Nadi-D	3,200	-50	675	3.011	0.585	3.597	1.66E-03	199.272	60.00	2.99	3.32	0.03	1.00	3.39	0.5
Nadi-D	3,250	50	675	3.062	0.622	3.684	1.83E-03	193.327	60.00	2.91	3.22	0.03	1.00	3.49	0.6
Nadi-D	3,300	- 50	675	3.116	0.665	3.781	2.04E-03	186.955	60.00	2.82	3.12	0.03	1.00	3.61	0.6

Table-13.5 (2/2) Non-Uniform Flow Calculation of Nadi Diversion Channel (1/5 Probability Flood)

dx: distance V.H: velocity head

V: velocity

Q:

discharge total E: total energy head width of water surface H: water Level IE:

energy gradient hydraulic radius

A: discharge area A/B: hydraulic depth

n:

B:

Fr:

roughness coefficient

Frauds number

R: alpha: energy correction coefficient

Nadi-D-1,500: point which is 1,500 m off shore from outlet of the channel

Nadi-D 0: outlet of the channel

Nadi-D 1,000: point which is 1,000 m upstream form outlet of the channel

	ne	dX (m)	Q (m'/s)	11 (m)	V.H (m)	total E (m)	1E	A (m²)	B (m)	R (m)	A/B (m)	0	alpha	V (m/s)	Fr
Nadi-D	-1,500	0	380	1.000	0.000	1.000	7.25E-07							;	
		500	380	1.000	0.000	1.000		3,900.000 2,309.972	600.00 420.00	6.36 5.36	6.50 5.50	0.03	1.00 1.00	0.10	0.01 0.02
Nadi-D	-500	500	380	1.000	0.006	1.006	1.58E-05	1,079.901	240.00	4.34	4.50	0.03	1.00	0.10	0.02
Vadi-D	-450	50	380	0.999	0.008	1.007	1.99E-05	976.594	222.00	4.23	4.40	0.03	1.00	0.39	0.06
Nadi-D	-400	50	380	0.998	0.010	1.008	2.56E-05	876.862	204.00	4.12	4.30	0.03	1.00	0.43	0.07
Nadi-D	-350	50	380	0.997	0.012	1.009	3.34E-05	780.700	186.00	4.02	4.20	0.03	1.00	0.49	0.08
Nadi-D	-300	50	380	0.996	0.016	1.011	4.46E-05	688.093	168.00	3.91	4.10	0.03	1.00	0.55	0.09
Nadi-D	-250	50	380	0.993	0.021	1.014	6.13E-05	599.020	150.00	3.79	3.99	0.03	1.00	0.63	0.10
Nadi-D	-200 -150	50 50	380	0.990	0.028	1.018	8.70E-05	513.448	132.00	3.67	3.89	0.03	1.00	0.74	0.12
Nadi-D Nadi-D	-150	50 50	380 380	0.984 0.972	0.040 0.059	1.023 1.031	1.29E-04 2.04E-04	431.319	114.00	3.55	3.78	0.03	1.00	0.88	0.14
Nadi-D	-50	50	380	0.972	0.039	1.031	2.04E-04 3.52E-04	352.525 276.835	96.00 78.00	3.41	3.67 3.55	0.03	1.00	1.08	0.18 0.23
Nadi-D	0	50	380	0.928	0.140	1.068	5.61E-04	229.192	73.71	3.23	3.55	0.03	1.00	1.66	0.23
Nadi-D	50	50	380	0.958	0.138	1.096	5.45E-04	231.425	73.83	3.07	3.13	0.03	1.00	1.64	0.30
Nadi-D	100	50	380	0.988	0.135	1.123	5.29E-04	233.588	73.95	3.09	3.16	0.03	1.00	1.63	0.29
Nadi-D	150	50	380	1.016	0.133	1.149	5.15E-04	235.698	74.06	3.11	3.18	0.03	1.00	1.61	0.29
Nadi-D	200	50	380	1.044	0.130	1.174	5.01E-04	237.758	74.18	3.13	3.21	0.03	1.00	1.60	0.29
Nadi-D	250	50	380	1.071	0.128	1.199	4.88E-04	239.760	74.28	3.16	3.23	0.03	1.00	1.58	0.28
Nadi-D	300	50	380	1.097	0.126	1.223	4.76E-04	241.707	74.39	3.18	3.25	0.03	1.00	1.57	0.28
Nađi-D	350	50	380	1.122	0.124	1.247	4.65E-04	243.604	74,49	3.20	3.27	0.03	1.00	1.56	0.28
Nadi-D	400	50	380	1.147	0.122	1.269	4.54E-04		74.59	3.22	3.29	0.03	1.00	1.55	0.27
Nadi-D Nadi-D	450 500	50 50	380 380	1.171 1.195	0.121 0.119	1.292 1.314	4.44E-04 4.35E-04		74.69	3.24	3.31	0.03	1.00	1.54	0.27
Nadi-D	550	50	380	1.195	0.119	1.335	4.35E-04	249.017	74.78	3.25	3.33	0.03	1.00	1.53	0.27
Nadi-D	600	50	380	1.241	0.116	1.355	4.23E-04	250.753 252,454	74.87	3.27 3.29	3.35 3.37	0.03	1.00	1.52 1.51	0.26 0.26
Nadi-D	650	50	380	1.263	0.114	1.377	4.08E-04	252.454	74.90	3.31	3.39	0.03	1.00	1.51	0.26
Nadi-D	700	50	380	1.285	0.113	1.397	4.01E-04	255,748	75.14	3.32	3.40	0.03	1.00	1.49	0.26
Nadi-D	750	50	380	1.306	0.111	1.417	3.93E-04	257.344	75.22	3.34	3.42	0.03	1.00	1.48	0.26
Vadi-D	800	50	380	1.327	0.110	1.437	3.86E-04	258.908	75.31	3.36	3.44	0.03	1.00	1.47	0.25
Nadi-D	850	50	380	1.347	0.109	1.456	3.79E-04	260,441	75.39	3.37	3.45	0.03	1.00	1.46	0.25
Nadi-D	900	50	380	1.367	0.107	1.474	3.72E-04	261.946	75.47	3.39	3.47	0.03	1.00	1.45	0.25
Nadi-D	950	50	380	1.387	0.106	1.493	3.66E-04	263.423	75.55	3.40	3.49	0.03	1.00	1.44	0.25
Nadi-D	1,000	50	380	1.406	0.105	1.511	3.60E-04	264.879	75.62	3.42	3.50	0.03	1.00	1.43	0.24
Nadi-D	1,050	50	380	1.425	0.104	1.529	3.54E-04	266.320	75.70	3.43	3.52	0.03	1.00	1.43	0.24
Nadi-D Nadi-D	1,100 1,150	50 50	380 380	1.444 1.462	0.103	1.546	3.48E-04	267.736	75.77	3.45	3.53	0.03	1.00	1.42	0.24
Nadi D	1,150	50	380	1.480	0.102	1.564	3.43E-04 3.37E-04	269.128 270.497	75.85	3.46	3.55 3.56	0.03	1.00	1.41	0.24
Nadi-D	1,250	50	380	1.498	0.100	1.597	3.37E-04		75.92	3.48 3.49	3.59	0.03	1.00	1.40 1.40	0.24
Nadi-D	1,300	50	380	1.515	0.099	1.614	3.278-04	273.171	76.06	3.50	3.59	0.03	1.00	1.39	0.23
Nadi-D	1,350	50	380	1.532	0.098	1.630	3.23E-04		76.13	3.52	3.61	0.03	1.00	1.38	0.23
Nadi-D	1,400	50	380	1.549	0.097	1.646	3.18E-04		76.20	3.53	3.62	0.03	1.00	1.38	0.23
Nadi-D		50		1.566	0.096	1.662	3.14E-04		76.26	3.54	3.63	0.03	1.00	1.37	0.23
	1,500			1.582	0.095	1.677				3.56		0.03	1.00	1.37	
			380	1.599	0.094	1.693			76.39	3.57	3.66	0.03			
Nadi-D				1.615	0.093	1.708	3.01E-04			3.58	3.67	0.03		1.35	0.23
Nadi-D				1.630	0.093	1.723			1	3.59	3.68	0.03			
Nađi-D Nađi-D			I Contraction of the second se	1.646	0.092	1.738	2.93E-04 2.90E-04		76.58	3.60	3.70	0.03	1.00	1.34	0.22
Nadi-D				1.676	0.090	1.752	2.90E-04			3.62	3.71 3.72	0.03	1.00 1.00	1.34	0.2
Nadi-D	-			1.691	0.090	1.781	2.83E-04			3.64	3.73	0.03			1 .
Nadi-D	-			1.706	0.089	1.795	2.79E-04			3.65	3.75	0.03	1.00		
Nađi-D				1.721	0.088	1.809	2.76E-04		1 .	3.66	3.76	0.03	1.00	1.32	
	2,000	50	380	1.735	0.088	1.823	2.73E-04		I .		3.77	0.03			
Nadi-D	2,050	50	380	1.749	0.087	1.836	2.70E-04				3.78	0.03			
Nadi-D				1.763	0.086	1.849	2.67E-04		77.05	3.69	3.79	0.03			
	2,150			L	0.086	1.863	2.64E-04			3.71	3.80	0.03	1.00	- E	
	2,200			1.791	0.085	1.876	2.61E-04			3.72	3.81	0.03		•	
	2,250			1.804	0.084	1.889	2.58E-04			3.73	3.82	0.03			
Nadi-D	-			1.818	0.084	1 902	2.55E-04			3.74	3.84	0.03			
Nađi-D Nađi-D				1.831	0.083	1.914	2.53E-04		•	3.75	3.85	0.03			1
192/11-11	2,400	50		1.844	0.083	1.927	2.50E-04		•			0.03			4
Nadi D	2,450	50	380	1.857	0.082	1.939	2.47E-04	299.412	17.43	3.77	3.87	0.03	1.00	1.27	0.2

5

Table-13.6 (1/2) Non-Uniform Flow Calculation of Nadi Diversion Channel (1/2 Probability Flood)

13-19

Nar	ne	dX	Q	H	V.H	total E	IE	Ā	8	R	A/B	n	alpha	V	٦Ŧ
		(m)	(m ¹ /s)	(m)	(m)	(m)		(m²)	(m)	(m)	(m)		;	(nvs)	
adi-D	2,550	50	380	1.876	0.088	1.965	2.77E-04	288 540	76.86	3.66	3.75	0.03	1.00	1.32	0.22
adi-D	2,600	50	380	1.884	0.096	1.979	3.11E-04	277.637	76.30	3.55	3.64	0.03	1.00	1.37	0.2
adi-D	2,650	50	380	1.892	0,104	1.996	3.55E-04	266,100	75.69	3.43	3.52	0.03	1.00	1.43	0.2
ladi-D	2,700	50	380	1.902	0.113	2.015	4.01E-04	255.553	75.13	3.32	3.40	0.03	1.00	1.49	0.2
adi-D	2,750	50	380	1.913	0.123	2.036	4.60E-04	244.404	74.53	3.20	3.28	0.03	1.00	1.55	0.2
adi-D	2,800	50	380	1.926	0.135	2.061	5.30E-04	233,487	73.94	3.09	3.16	0.03	1.00	1.63	0.2
adi-D	2,850	50	380	1.942	0.147	2.090	6.06E-04	223.628	73.41	2.98	3.05	0.03	1.00	1,70	0.3
adi-D	2,900	50	380	1.960	0.162	2.122	7.02E-04	213.238	72.84	2.87	2.93	0.03	1.00	1.78	0.3
adi-D	2,950	50	380	1.982	0.178	2.160	8.15E-04	203.180	72.29	2.76	2.81	0.03	1.00	1.87	0.3
adi-D	3,000	50	380	2.009	0.195	2 204	9.36E-04	194.326	71.80	2.66	2.71	0.03	1.00	1.96	0.3
adi-D	3,050	50	380	2.008	0.240	2.249	8.51E-04	175.072	65.58	2.54	2.67	0.03	1.00	2.17	0.4
adi-D	3,100	50	380	2.030	0.265	2.295	9.95E-04	166.649	65.32	2.43	2.55	0.03	1.00	2.28	0.4
adi-D	3,150	50	380	2.053	0.296	2.349	1.18E-03	157.774	65.05	2.31	2.43	0.03	1.00	2.41	0.4
adi D	3,200	50	380	2.051	0.367	2.418	1.58E-03	141.687	60.00	2.19	2.36	0.03	1.00	2.68	0.
ladi D	3,250	50	380	2 104	0.399	2 503	1.81E-03	135.844	60.00	2.10	2.26	0.03	1.00	2.80	0.5
adi-D	3,300	50	380	2.164	0.437	2.601	2 10E-03	129.848	60.00	2.02	2.16	0.03	1.00	2.93	0.6

Table-13.6 (2/2)	Non-Uniform Flow Calculation of Nadi Diversion Channel (1/2 Probability Flood)
------------------	--

dx: distance

V:

Q: V.H: velocity head

discharge total E: total energy head H: water Level IE: energy gradient

R: hydraulic radius

alpha: energy correction coefficient

A: discharge area A/B: hydraulic depth

velocity

n:

B:

Fr:

roughness coefficient Frauds number

width of water surface

Nadi-D-1,500: point which is 1,500 m off shore from outlet of the channel

Nadi-D 0: outlet of the channel

Nadi-D 1,000: point which is 1,000 m upstream form outlet of the channel

Na	-13.7 (dX		П	VH I	total E	IE	Λ	В	R	A/B	n	alpha	VI	Fr
(N3)	inc	(m)	(m¥s)	(m)	(m)	(m)	16	(m²)	(m)	(m)	(m)	51	aiţina	(ถ√ร)	г
Nadi-D	-1 500	Ő	250	1.000	0.000	1.000	3.14E-07	3,900.000	600.00	6 36	6.50	0.03	1.00	0.06	0.01
Nadi-D		500	250	1.000	0.001	1,001		2,309.988		5.36	5.50	0.03	1.00	0.11	0.01
Nadi-D	-500	500	250	1.000	0.003	1.003	6.82E-06		240.00	4.34	4.50	0.03	1.00	0.23	0.03
Nadi-D	-450	50	250	1.000	0.003	1.003	8.61E-06	976.713		4.23	4,40	0.03	1.00	0.26	0.04
Nadi-D	-400	50	250	0.999	0.004	1.003	1.11E-05	877.056		4.13	4.30	0.03	1.00	0.29	0.04
Nadi-D	-350	50	250	0.999	0.005	1.004	1.44E-05	780.984	186.00	4.02	4.20	0.03	1.00	0.32	0.05
Nadi-D Nadi-D	-300 -250	50 50	250 250	0.998	0.007	1.005	1.93E-05 2.64E-05	688.495 599.578	168.00 150.00	3.91 3.79	4.10 4.00	0.03 0.03	1.00 1.00	0.36	0.06
Nadi-D	-200	50	250	0.996	0.012	1.008	3.75E-05	514.218	132.00	3.68	3.90	0.03	1.00	0.49	0.08
Nadi-D	-150	50	250	0.993	0.017	1.010	5.54E-05	432.393	114.00	3.56	3.79	0.03	1.00	0.58	0.09
Nadi-D	-100	50	250	0.988	0.025	1.014	8.69E-05	354.057	96.00	3.42	3.69	0.03	1.00	0.73	0.12
Nadi-D	-50	50	250	0.978	0.041	1.019	1.48E-04	279.122	78.00	3.28	3.58	0.03	1.00	0.90	0.15
Nadi-D	0	50	250	0.970	0.059	1.029	2.33E-04	232.280	73.88	3.08	3.14	0.03	1.00	1.08	0.19
Nadi-D Nadi-D	50 100	50 50	250 250	0.982 0.994	0.059 0.058	1.041	2.30E-04 2.28E-04	233.166 234.041	73.93 73.98	3.09 3.09	3.15 3.16	0.03	1.00	1.07	0.19 0.19
Nadi-D	150	50	250	1.006	0.058	1.052	2.25E-04	234.910	74.02	3.10	3.17	0.03	1.00	1.06	0.19
Nadi-D	200	50	250	1.017	0.057	1.074	2.23E-04	235.774	74.07	3.11	3.18	0.03	1.00	1.06	0.19
Nadi-D	250	50	250	1.029	0.057	1.086	2 20E-04	236.628	74.11	3.12	3.19	0.03	1.00	1.06	0.19
Nadi-D	300	50	250	1.040	0.057	1.096	2.18E-04	237.472	74.16	3.13	3.20	0.03	1.00	1.05	0.19
Nadi-D	350	50	250	1.051	0.056	1.107	2.15E-04		74.20	3.14	3.21	0.03	1.00	1,05	0.19
Nadi-D	400	50	250	1.062	0.056	1.118	2.13E-04	239.133	74.25	3.15	3.22	0.03	1.00	1.05	0.19
Nadi-D	450	50	250	1.073	0.055	1.129 1.139	2.11E-04 2.09E-04	239.950 240.758	74.29	3.16 3.17	3.23 3.24	0.03	1.00	1.04	0.19 0.18
Nadi-D Nadi-D	500 550	50 50	250 250	1.084 1.095	0.055	1.159	2.09E-04 2.07E-04	240.738	74.34	3.17	3.24	0.03	1.00	1.04	0.18
Nadi-D	600	50	250	1.105	0.054	1.160	2.07E-04	242.348	74.42	3.18	3.26	0.03	1.00	1.03	0.18
Nadi-D	650	50	250	1.116	0.054	1.170	2.03E-04	243.131	74.46	3.19	3.27	0.03	1.00	1.03	0.18
Nadi-D	700	50	250	1.126	0.054	1.180	2.01E-04	243.906	74.51	3,20	3.27	0.03	1.00	1.02	0.18
Nadi-D	750	- 50	250	1.137	0.053	1.190	1.99E-04	1	74.55	3.21	3.28	0.03	1.00	1.02	0.18
Nadi-D	800	50	250	1.147	0.053	1.200	1.97E-04	245.433	74.59	3.22	3.29	0.03	1.00	1.02	0.18
Nadi-D	850 900	50	250	1.157	0.053 0.052	1.210	1.95E-04 1.93E-04	246.186	74.63	3.22	3.30	0.03	1.00	1.02	0.18 0.18
Nadi-D Nadi-D	900	50 50	250 250	1.167 1.177	0.052	1.219	1.93E-04	246.931 247.669	74.67	3.23 3.24	3.31	0.03	1.00	1.01	0.18
Nadi-D	1,000	50	250	1.187	0.052	1.239	1.90E-04	248.400	74.75	3.25	3.32	0.03	1.00	1.01	0.18
Nadi-D	1,050	50		1.197	0.051	1.248	1.88E-04	249.124	74.79	3.26	3.33	0.03	1.00	1.00	0.18
Nadi-D	3,100	50	250	1.206	0.051	1.257	1.86E-04	249.847	74.82	3.26	3.34	0.03	1.00	1.00	0.17
Nadi-D	•	50		1.216	0.051	1.267	1.85E-04		74.86	3.27	3.35	0.03	1.00	1.00	0.17
Nadi-D		50		1.225	0.051	1.276	1.83E-04		74.90	3.28	3.35	0.03	1.00	0.99	0.17
Nadi-D Nadi-D		50		1.235	0.050	1.285	1.81E-04 1.80E-04		74.94	3.28 3.29	3.36	0.03	1.00	0.99	0.17
Nadi-D	•	50		1.253	0.050	1.303	1.78E-04		75.01	3.30	3.38	0.03	1.00	0.99	0.17
Nadi-D		50	1	1.262	0.049	1.312	1.77E-04	254.067	75.05	3.31	3.39	0.03	1.00	0.98	0.17
Nadi-D	1,450	50		1.271	0.049	1.321			75.09	3.31	3.39	0.03	1.00	0.98	0.17
	1,500						1.74E-04								0.17
	1,550			1.289	0.049		1.73E-04				3.41	0.03	1.00	0.98	0.17
Nadi-D	-			1	0.048	1.347	1.718-04				3.41	0.03	1.00		0.17
Nadi-D Nadi-D				1.307	0.048	1.355	1.70E-04 1.69E-04				3.42 3.43	0.03	1.00	0.97	0.17
Nadi-D	-		1	1.324	0.048	1.372	1.67E-04				3.44	0.03	1.00	0.97	0.17
Nadi D				1.333	0.047	1.380	1.66E-04			3.36	3.44	0.03	1.00	0.96	0.17
Nadi-D		50		1.341	0.047	1.389	1.65E-04			4	3.45	0.03	1.00	0.96	0.17
Nadi-D				1.350	0.047	1.397	1.64E-04				3,46	0.03	1.00	0.96	0.16
Nadi-D				1.358	0.047	1.405	1.62E-04			3.38	3.46	0.03	1.00		0.16
Nadi-D			1	1.366	0.046	1,413 1,421	1.61E-04				3.47 3.48	0.03	1.00		0.16
Nadi-D	2,050 2,100			1.373	0.046	1.429	1.59E-04				3.48	0.03	1.00		0.16
Nadi-D	-			1.391	0.046	1.437	1.58E-04				3.49	0.03	1.00		0.16
Nadi-D				1.399	0.046	1	1.57E-04				3.50		1.00		0.16
Nadi-D	2,250	50	250	1.407	0.045		1.56E-04	264.961			3.50		1.00		0.16
	2,300				0.045						3.51	0.03	1.00		0.16
Nadi-D					0.045		1.53E-04				3.52		1.00		0.16
Nadi-D					0.045	1.476					3.52		1.00		0.16
Nadi-E Nadi-E	-													Ł	0.16
	- 2,500		1 230	1 1.440	1 0.011				1.12.13	1	5.54	1.0.03		10.00	1

ľ

Table-13.7 (1/2) Non-Uniform Flow Calculation of Nadi Diversion Channel (1/1.1 Probability Flood)

Nar	nē	dX	Q	H	V.H	total E	IE I	A	В	R	∧⁄B	n	alpha	V	Fr
		(m)	(m'/s)	(m)	(m)	(m)		(m²)	(m)	(m)	(m)			(m/s)	
ladi-D	2,550	50	250	1.450	0.049	1.499	1.72E-04	256.159	75.16	3.33	3.41	0.03	1.00	0.98	0.1
ladi-D	2,600	50	250	1.455	0.053	1.508	1.97E-04	245.292	74.58	3.21	3.29	0.03	1.00	1.02	0.1
lađi-D	2,650	50	250	1.460	0.058	1.519	2.28E-04	233.803	73.96	3,09	3.16	0.03	1.00	1.07	0.1
ladi-D	2,700	50	250	1.467	0.064	1.531	2.64E-04	223.242	73.39	2.98	3.04	0.03	1.00	1.12	0.2
ladi-D	2,750	50	250	1.474	0.071	1.545	3.09E-04	212.091	72.78	2.85	2.91	0.03	1.00	1.18	0.2
ladi-D	2,800	50	250	1.483	0.079	1.562	3.64E-04	201.140	72.17	2.73	2.79	0.03	1.00	1.24	0.2
Vadi-D	2,850	50	250	1.495	0.087	1.582	4.268-04	191.169	71.62	2.62	2.67	0.03	1.00	1.31	0.2
Vadi-D	2,900	50	250	1.508	0.098	1.605	5.09E-04	180.681	71.03	2.50	2 54	0.03	1.00	1.38	0.2
Vadi-D	2,950	50	250	1.523	0.110	1.633	6.10E-04	170.488	70.45	2.38	2.42	0.03	1.00	1.47	0.3
Nađi D	3,000	50	250	1.544	0.122	1.667	7.24E-04	161.406	69.94	2.27	2.31	0.03	1.00	1.55	0.3
Vadi-D	3,050	50	250	1.550	0.151	1.701	6.67E-04	145.247	64.66	2.15	2.25	0.03	1.00	1.72	0.3
Nadi D	3,100	50	250	1.568	0.171	1.738	8.10E-04	136.689	64.40	2.04	2.12	0.03	1.00	1.83	0.4
Nadi-D	3,150	50	250	1.588	0.195	1.784	1.01E-03	127.729	64.12	1.92	1.99	0.03	1.00	1.96	0.4
Vadi-D	3,200	50	250	1.600	0.243	1.843	1.36E-03	114.604	60.00	1.80	1.91	0.03	1.00	2.18	0.3
Vadi-D	3,250	-50	250	1.646	0.271	1.918	1.63E-03	108.378	60.00	1.70	1.81	0.03	1.00	2.31	0.5
Vadi-D	3,300	50	250	1.703	0.306	2.008	1.98E-03	102.159	60.00	1.61	1.70	0.03	1.00	2.45	0.6

Table-13.7 (2/2) Non-Uniform Flow Calculation of Nadi Diversion Channel (1/1.1 Probability Flood)

dx: distance Q: discharge H: water Level V.H: velocity head total E: total energy head energy gradient IE: **A**: discharge area **B**: width of water surface R: hydraulic radius A/B: hydraulic depth n: roughness coefficient alpha: energy correction coefficient ٧: velocity Fr: Frauds number

Nadi-D-1,500: point which is 1,500 m off shore from outlet of the channel

Nadi-D 0: outlet of the channel

Nadi-D 1,000: point which is 1,000 m upstream form outlet of the channel

3.1.6 Results

A.

Sediment loads into the diversion channel are summarized by particle size in Table-13.8. Volume of suspended load inclusive of wash load is shown in Table-13.9.

	Sedi	ment Load into	Diversion Chanr	el by Scale of F	lood
Particle Size	20 year return period (10 ³ m ³)	10 year return period (10 ³ m ³)	5 year return period (10 ³ m ³)	2 year return period (10 ³ m ³)	1.1 year return period (10 ³ m ³)
Less than 0.02	40.0	24.6	10.7	3.4	1.5
0.03	1.1	0.6	0.2	0.1	0
0.0425	0.3	0.2	0	0	0
0.06	0.4	0.1	0	0	0
0.12	0.1	0.1	0	0	0
0.24	0.1	0.1	0	0	0
0.48	0	0	0	0	0
0.67	0.1	0	0	0	0
Total	42.1	25.7	10.9	3.5	1.5

Table-13.8 Sediment Loads into Diversion Channel

	Particle size	Sediment Load	Suspended Load
		(10 [°] m ³)	(10 ³ m ³)
	(cm) Iess than 0.02	40.0	39.9
	0.03	1.1	1.1
	0.0425	0.3	0.3
	0.06	0.4	0.3
	0.12	0.1	0.0
20 year	0.24	0.1	0.0
return	0.48	0.0	0.0
period	0.67	0.1	0.0
flood	0.95	0.0	0.0
	1.32	0,0	00
	1.9	0.0	0.0
	2.65	0.0	0.0
	Total	42.1	41.6
	Mean Particle Size	0.0205	0.0160
	less than 0.02	24.6	24.6
	0.03	0.6	0.6
	0.0425	0 2	02
	0.06	0.1	0.E
	0.12	0.1	0.0
10 year	0.24	0.1	0.0
return	0.48	0.0	0.0
period	0.67	0.0	0.0
flood	0.95	0.0	0.0
	1.32	0.0	0.0
	1.9	0.0	0.0
	2.65	0.0	0.0
	Total	25.7	25.5
·	Mean Particle Size less than 0.02	10.7	0.0157
	0.03	0.2	10.7 0.2
	0.0425	0.0	0.0
	0.06	0.0	0.0
	0.12	0.0	0.0
5 year	0.24	0.0	0.0
return	0.48	0.0	0.0
period	0.67	0.0	0.0
flood	0.95	0.0	0.0
	1.32	0.0	0.0
	1.9	0.0	0.0
	2.65	0.0	0.0
	Total	10.9	10.9
	Mean Particle Size	0.0218	0.0155
	less than 0.02	3.4	3.3
	0.03	0.1	0.1
	0.0425	0.0	0.0
	0.06	0.0	0.0
	0.12	0.0	0.0
2 year	0.24	0.0	0.0
return	0.48 0.67	0.0	0.0
period fload	0.95	0.0 0.0	0.0
flood	1.32	0.0	0.0 0.0
l I	1.9	0.0	0.0
	2 65	0.0	0.0
l	Total	3.5	3.4
i	Mean Particle Size	0.0214	0.0153
	less than 0.02	1.5	1.5
	0.03	0.0	0.0
1	0.0425	0.0	0.0
	0.06	0.0	0.0
	0.12	0.0	0.0
1.1 year	0.24	0.0	0.0
return	0.48	0.0	0.0
period	0.67	0.0	0.0
flood	0.95	0.0	0.0
1	1.32	0.0	0.0
	1.9		0.0
	2.65	0.0	0.0

Table-13.9 Sediment and Suspended Loads into Diversion Channel

Note: Suspended Load includes wash load.

13-24

Ĩ

Annual average sediment load into the diversion channel was roughly estimated. As shown in Table-I3.10, it is approximately $6,300 \text{ m}^3/\text{year}$.

Turn Period	(a) Number of Occurrence in 20 years	(b) Sediment Load per Flood (10 ³ m ³)	(a)×(b) ($10^3 m^3$)
20 years	1	42.1	42.1
10 years	1	25.7	25.7
5 years	2	10.9	21.8
2 years	6	3.5	21.0
1.1 years	10	1.5	15.0
Total	20		125.6*
Annual Average	-		6.3

Table-13.10 Annual Average Sediment Load into Diversion Channel

*: total volume in 20 years

I

Occurrence of 10 year return period flood means occurrence of discharges exceeding 10 year return period flood. Therefore, the occurrence is 20 years is twice; however, since discharge more than 20 year return period flood is already counted, it is one in the table.

Result of channel bed evolution simulation is shown in Table-13.11 \sim Table-13.15 for each flood and the result is also plotted longitudinally in Figure-13.3 \sim 13.7.

				or Diriya	31011 01				VI4111 I V	
same	bed-el	diz	qsb-1	-dm	dep	90-t	b-dm	qst	s-dm	c(%)
	(m)	(m)	(1000m [*])	(cm)	(m)	(1000m')	(£m)	(1000m')	(cm)	
Nadi-D 3K300	0.00	0.00	42.1	0.00	0.00	0.2	0.74	41.9	0.02	0.04
Na3i-D 3K 200	-0.31	0.00	42.1	0.00	0.00	0.3	0.73	41.9	0.02	0.04
Nadi-D 3K100	-0.63	-0.01	42.1	0.00	0.00	0.3	0.71	41.9	0.02	0.04
Nadi-D 3K000	-0.94	-0.01	42.2	0.00	0.00	0.3	0.70	41.9	0.02	0.04
Nadi-D 2K900	-1 25	0.00	42.2	0.00	0.00	0.3	0.69	41.9	0.02	0.04
Nadi-D 2K.800	-1.55	0.00	42.2	0.66	0.00	0.3	0.67	41.9	0.02	0.04
Nadi-D 2K700	-1.85	0.01	42.1	0.72	0.02	0.3	0.61	41.8	0.02	0.04
Nadi-D 2K600	-2.17	0.01	42.1	0.66	0.02	0.2	0.56	41.8	0.02	0.04
Nadi-D 2K500	-2.48	0.02	41.9	0,46	0.02	0.2	0.44	41.8	0.02	0.04
Nadi-D 2K400	-2.49	0.01	41.9	0.44	0.01	0.1	0.38	41.7	0.02	0.04
Nadi-D 2K300	-2.49	0.01	41.8	0.41	0.01	0.1	0.33	41.7	0.02	0.04
Nadi-D 2K200	-2 50	0.00	41.8	0.38	0.00	0.1	0.29	41.7	0,02	0.04
Nadi-D 2K100	-2 50	0.00	41.8	0.36	0.00	0.1	0.26	41.7	0.02	0.04
Nedi-D 2K000	-2 50	0.00	41.8	0.32	0.00	0.1	0.23	41.7	0,02	0.04
Nadi-D 1K900	-2 50	0.00	41.8	0.30	0.00	0,1	0.22	41.7	0.02	0.04
Nadi-D 1K800	-2.50	0.00	41.8	0.27	0.00	0,1	0.20	41.7	0.02	0.04
Nadi-D 1K700	-2 50	0.00	41.8	0.21	0.00	0.1	0.20	41.7	0.02	0.04
Nadi-D 1K600	-2 50	0.00	41.7	0.20	0.00	0.1	0.19	417	0.02	0.04
Nadi-D 1K500	-2 50	0.00	41.7	0.19	0.00	0,0	0.18	41.7	0.02	0.04
Nadi-D 1K400	-2.50	0.00	41.7	0.19	0.00	0.0	0.18	41.7	0.02	0,04
Nadi-D 1K300	-2.50	0.00	41.7	0.19	0.00	0.0	0,17	41.7	0.02	0.04
Nadi-D IK200	-2 50	0.00	41.7	0.19	0.00	0,0	0.17	41.7	0.02	0,04
Nadi-D 1K100	-2 50	0.00	41.7	0.19	0.00	0.0	0.17	41.7	0.02	0.04
Nadi-D 1K000	-2 50	0.00	41.7	0.19	0.00	0,0	0.16	41.7	0.02	0.04
NaJi-D 0K900	-2 50	0.00	41.7	0.18	0.00	0.0	0.16	41.7	0.02	0.04
Nadi-D 0K800	-2 50	0.00	41.7	0.19	0.00	0.0	0.16	41.7	0.02	0.04
Nadi-D 0K700	-2 50	0.00	41.7	0.19	0.00	0.0	0.16	41.7	0.02	0.04
Nadi-D 0K600	-2.50	0.00	41.7	0,19	0.00	0,0	0.15	41.7	0.02	0.04
Nadi-D 0K 500	-2 50	0.00	41.7	0.19	0.00	0.0	0.15	41.7	0.02	0.04
Nadi-D 0K400	-2 50	0.00	41.7	0.18	0.00	0.0	0.15	41.7	0,02	0.04
Nadi-D 0K300	-2 50	0.00	41.7	0.18	0.00	0.0	0.15	41.7	0.92	0.04
Nadi-D 0K 200	-2 50	0.00	41.7	0.18	0.00	0.0	0.15	41.7	0.02	0.04
Nadi D 0K100	-2.50	0.00	41.7	0.18	0.00	0.0	0.15	41.7	0.02	0.04
Nadi-D 0K000	-2 50	0.00	41.7	0.18	0.00	0.0	0.15	41.7	0.02	0.04
Nadi-D-0K100	-2.64	0.06	41.1	0.02	0.06	0.1	0.03	41.0	0.02	0.04
Nadi - D-0K 200	-2.83	0,07	40.0	0.02	0.07	0.1	0.04	39.9	0.02	0.04
Nadi-D-0K300	-3.01	0.09	38.4	0.02	0.09	0.1	0.03	38.3	0.02	0.04
Nadi-D-0K400	-3 21	0.09	36.4	0.02	0.09	0,1	0,02	36.3	0.02	0.03
Nadi-D-0K500	-3,41	0.09	34.0	0.02	0.09	0.1	0.02	33.9	0.02	0.03
Nadi-D-0K600	-3.48	0.22	27.2	0.02	0.22		0.02	27.1	0.02	0.03
Nadi-D-0K 700	-3.53	0 37	14.7	0.02	0.37	0.1	0.02	14.6	0.02	0.01
Nadi-D-0K800	-3.89	0.21		0.02			0.02	6.7	0.02	0.01
Nadi-D-0K900		0.09	2.9	0.02	0.09		0.02	2.8	0.02	0.00
Nadi-D-1K000	-4.46	0.04	LI 1.1	0.02	1		0.02	1.1	0.02	0.00
Nadi-D-1K100		0.01			1		0.02		0.02	0.00
Nadi-D-1K200		0.01					0.02		0.02	0.00
Nadi-D-1K300							0.02		0.02	0.00
Nadi-D-1K400			1				0.02		0.00	0.00
Nadi-D-1K500							0.02		0.00	0.00
Nadi-D-1K600					1		0.02		0.00	0.00
Nadi-D-1K700							0.02		0.00	0.00
Nadi-D-1K800							0.02		0.00	0.00
Nadi-D-1K900							0.02		0.00	0.00
Nad: D-2K000	-6.50	0.00	0.0	0.02	0.00	0,0	0.02	0.0	0.00	0.00

ł

٢.

Table-I3.11 Sedimentation in and out of Diversion Channel due to 20 Year Return Period Flood

-- name --: name of cross section

bed-el: bed elevation after evolution

dlz: difference between original bed elevation and elevation after evolution

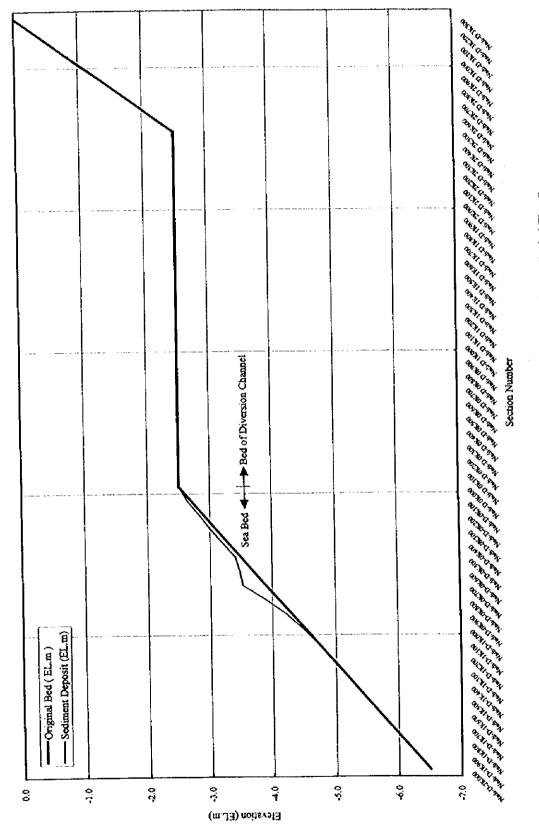
qsb-1: accumulated volume of sediment load passed at each cross section

I-dm: average particle size of surface bed material

dep: depth of sedimentation on original bed

qb-t: accumulated volume of bed load passed at each cross section

b-dm: average particle size of bed load


qs-1: accumulated volume of suspended load passed at each cross section

s-dm: average particle size of suspended load

c: contents of sediment load

Nadi-D 3K300: point which is 3 km + 300 m upstream from outlet

Nadi-D-2K000: point in the sea which is 2 km offshore from outlet

Ĩ

	<u> </u>									
nanie	bod-el	diz	qsb-1	l-dm	dep	qb-t	b-dm	qs-t (1000m'}	s-dm (cm)	c(%)
NaJi-D 3K300	(m) 0.00	(m) 0.00	(1000m') 25.8	(cm) 0.00	(m) 0.00	(1000m*) 0.2	(cm) 0.69	25.6	0.02	0.03
NaJi-D 3K 200	-0.31	0.00	25.8	0.00	0.00	0.2	0.69	25.6	0.02	0.03
Nadi-D 3K100	-0.63	-0.01	25.9	0.00	0.00	0.2	0.67	25.6	0.02	0.03
Nadi-D 3K000	-0.94	-0.01	25.9	0.00	0.00	0.3	0.65	25.6	0.02	0.03
Nadi-D 2K900	·1 25	0.00	25.9	0.00	0.00	0.3	0.64	25.6	0.02	0.03
Nadi-D 2K800	-1.56	0.00	25.9	0.43	0.00	0.3	0.62	25.6	0.02	0.03
Nadi-D 2K700	-1.86	0.01	25.9	0.65	0.01	0.3	0.59	25.6	0.02	0.03
Nadi-D 2K600	-2.18	0.00	25.9	0.64	0.01	0.2	0.58	25.6	0.02	0.03
Nadi-D 2K500	-2.48	0.02	25.8	0,49	0.02	0.2	0.50	25.6	0.02	0.03
Nadi-D 2K400	-2.49	0.01	25.7	0.50	0.01	02	0.47	25.6	0.02	0.03
Nadi-D 2K300	-2.49	0.01	25.7	0.48	0.01	0.1	0.44	25.6	0.02	0.03
Nadi-D 2K200	-2 50	0.00	25.7	0.47	0.00	0.1	0.41	25,5	0.02	0.03
Nadi-D 2K100	-2.50	0.00	25.7	0.45	0.00	0.1	0.40	25.5	0.02	0.03
NaJi-D 2K000	-2 50	0.00	25.6	0.44	0.00	0.1	0.38	25.5	0.02	0.03
NaJi D 1K900	-2.50	0.00	25.6	0.43	0.00	0.1	0.38	25.5	0.02	0.03
Nadi-D 1K800	-2 50	0.00	25.6	0.41	0.00	0.1	0.37	25.5	0.02	0.03
Nadi-D 1K700	-2 50	0.00	25.6	0,40	0.00	0.1	0 37	25.5	0.02	0.03
Nadi-D 1K600	-2.50	0.00	25.6	0.39	0.00	0.1	0.37	25.5	0.02	0.03
Nadi-D 1K500	-2.50	0.00	25.6	0.39	0.00	0.1	0.36	25.5	0,02	0.03
Nadi-D IK400	-2 50	0.00	25,6	0 39	0.00	0.1	0.36	25.5	0.02	0.03
Nadi-D 1K300	-2 50	0.00	25.6	0.39	0.00	0.1	0.36	25.5	0.02	0.03
Nadi-D 1K200	-2 50	0.00	25.6	0.39	0.00	0.1	0.36	25.5	0,02	0.03
Nadi-D 1K100	-2 50	0.00	25.6	0.39	0.00	0.1	0.35	25.5	0.02	0.03
Nadi-D 1K000	-2 50	0.00	25.6	0 39	0.00	0.1	0.35	25.5	0.02	0.03
Nadi-D 0K900	-2 50	0.00	25.6	0.39	0.00	0.1	0.35	25.5 25.5	0.02	0.03
Nadi-D 0K800	-2 50	0.00	25.6	0.39	0.00	0.1	0.35	25.5	0.02	0.03
Nadi-D OK 700	-2 50	0.00	25.6	0.39	0.00	0.1	0.35	25.5	0.02	0.03
Nadi-D 0K600 Nadi-D 0K500	-2 50	0.00	25.6 25.6	0.39	0.00	0.1	0.33	25.5	0.02	0.03
Nadi-D 0K400	-2.50	0.00	25.6	0.39	0.00		0.34	25.5	0.02	0.03
Nadi-D 0K 300	-2 50	0.00	25.6	0.41	0.00	0.1	0.34	25.5	0.02	0.03
Nadi-D 0K 200	-2 50	0.00	25.6	0.42	0.00	0.0	0.34	25.5	0.02	0,03
Nadi-D 0K100	-2 50	0.00		0.43	0.00	1	0.33	25.5	0.02	0.03
Nadi-D 0K000	-2 50	0.00	25.6	0.43	0.00		0.33	25.5	0.02	0.03
Nadi-D-0K100	-2.64	0.06	25.0	0.04	0.06		0.05	24.9	0.02	0.03
Nadi-D-0K200	-2.82	0.08	23.9	0.02	0.08	0.1	0.04	23.8	0.02	0.03
Nadi-D-0K300	-3.02	0.03	22.4	0.02	0.08	0.1	0.02	22.4	0.02	0.03
Nadi-D-0K400	-3 23	0.07	20.9	0.02	0.07	0.1	0.02	20.8	0.02	0.03
Nadi-D-0K500		0.30		0.02	0.30		0.02	13.0	0.02	0.02
NaJi-D-0K600		0 26		0.02	0 26		0,02	5.2	0,02	0.01
Nadi-D-0K700		0.11		0.02	0,11		0.02	1.6	0.02	0.00
Nadi-D-0K800		0.03		0.02	0.03		0.02	0.4	0.02	0.00
Nadi-D-0K900	1	0.01		0.02	0.01		0.02	0.1	0.02	0.00
Nadi-D-1K000		0.00		0.02			0.02	0.0	0.00	0.00
Nadi-D-1K100		0.00		0.02			0.02	0.0	0.00	0.00
Nadi-D-1K200				0.02			0.02		0.00	0.00
Nadi-D-1K300	•			0.02			0.02		0.00 0,00	0.00
Nadi-D-1K400 Nadi-D-1K500	1 .						0.02		0.00	0.00
Nadi-D-1K500									0.00	0.00
Nadi-D-1K000							0.02		0.00	0.00
Nadi-D-1K800		E C		•	•		0.02	4	0.00	0.00
Nadi-D-1K900									0.00	0.00
Nadi-D-2K000							0.00		0.00	0.00
11001-0-21000		1 0.00	0.0	0,02		<u> </u>	0.00		0.00	

Table-13.12 Sedimentation in and out of Diversion Channel due to 10 Year Return Period Flood

-- name --: name of cross section

bed-el: bed elevation after evolution

dlz: difference between original bed elevation and elevation after evolution

qsb-t: accumulated volume of sediment load passed at each cross section

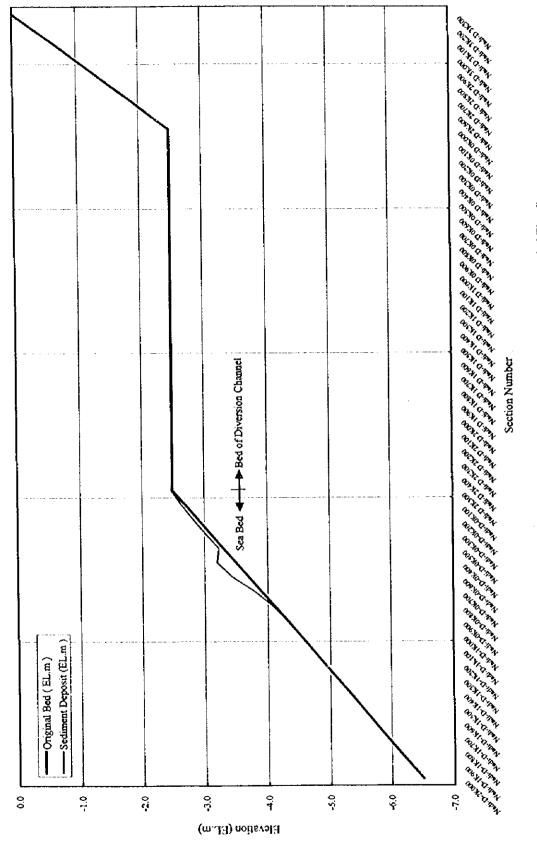
1-dm: average particle size of surface bed material

dep: depth of sedimentation on original bed

qb-1: accumulated volume of bed load passed at each cross section

b-dm: average particle size of bed load

qs-t: accumulated volume of suspended load passed at each cross section


13-28

s-dni: average particle size of suspended load

c: contents of sediment load

Nadi-D 3K300: point which is 3 km + 300 m upstream from outlet

Nadi-D-2K000: point in the sea which is 2 km offshore from outlet

متعطته

				· · · · · · · · · · · · · · · · · · ·		···· • ··· •				(01)
name	bed-el	dlz	Qsb-1	I-dm	dep	qb-t	b-dm	q5-1	s-dm	c(%)
- 17 F 6 17 184	(m)	<u>(m)</u>	(1000m [*])	(cm)	(m)	(1000m')	(cm)	(1000m')	(tm)	····
Nadi D 3K 300	0.00	0.00	11.2	0.00	0.00	0.1	0.60 0.59	1.1	0.02 0.02	0.02
Nadi-D 3K200	-0.31 -0.63	0.00 -0.01	11.2	0.00	0.00	0.1	0.59	- 11.1 - 11.1	0.02	0.02
Nadi-D 3K100 Nadi-D 3K000	-0.94	-0.01	11.2	0.00 0.00	0.00	0.2	0.59	11.1	0.02	0.02
Nadi-D 2K900	-0.94	-0.01	11.3	0.00	0.00	0.2	0.57	11.1	0.02	0.02
Nadi-D 2K800	-1.56	0.00	11.3	0.50	0.00	0.2	0.57	11.1	0.02	0.02
Nadi-D 2K 800	-1.87	0.00	1.3	0.30	0.00	0.2	0.58	11.1	0.02	0.02
Nadi-D 2K600	-2.17	0.00	11.3	0.42	0.00	0.2	0.57	11.1	0.02	0.02
Nadi-D 2K500	-2.48	0.01	11.2	0.53	0.01	0.1	0.46	11.0	0.02	0.02
Nadi-D 2K400	-2.49	0.02	11.2	0.51	0.02	0.1	0.39	11.0	0.02	0.02
Nadi-D 2K300	-2 50	0.00	11.1	0.48	0.00	0.1	0.35	11.0	0.02	0.02
Nadi-D 2K200	-2 50	0.00	11.1	0.47	0.00	0.I	0.33	11.0	0.02	0.02
Nadi-D 2K100	-2.50	0.00	11.1	0.47	0.00	0.1	0.31	11.0	0.02	0.02
Nadi -D 2K000	2.50	0.00	1 11	0.45	0.00	0.1	0.30	11.0	0.02	0,02
Nadi-D 1K900	-2 50	0.00	11.1	0.42	0.00	0.1	0.29	11.0	0.02	0.02
Nadi-D 1K 800	2.50	0.00	l mi	0.40	0.00	0.1	0.28	11.0	0.02	0.02
Nadi D IK700	-2 50	0.00	i iii	0.38	0.00	0.1	0.27	11.0	0.02	0.02
Nadi-D 1K600	-2 50	0.00	11.1	0.38	0.00	0.1	0.27	11.0	0.02	0.02
Nadi-D 1K 500	-2 50	0,00	11.1	0.38	0.00	0.0	0.25	11.0	0.02	0.02
Nadi-D 1K400	-2.50	0.00	1.1	0.37	0.00	0.0	0.25	11.0	0.02	0.02
Nadi-D 1K300	-2.50	0.00	11.1	0.35	0.00	0.0	0.25	11.0	0.02	0.02
Nadi-D 1K200	-2 50	0.00	11.1	0.34	0.00	0.0	0.24	11.0	0.02	0.02
Nadi-D 1K100	-2 50	0.00	- 11.1	0.33	0.00	0.0	0.24	11.0	0.02	0.02
Na3i-D 1K000	-2 50	0.00	11.1	0.32	0.00	. 0.0	0.24	11.0	0,02	0.02
Nadi-D 0K900	-2.50	0.00	11.1	0.32	0.00	0.0	0.23	11.0	0,02	0.02
Nadi-D 0K 800	-2.50	0.00	11.1	0.32	0.00	0.0	0.23	· 11.0	0.02	0.02
Nadi-D 0K 700	-2 50	0.00	I 11.1	0.32	0.00	0.0	0.22	11.0	0.02	0.02
Nadi-D 0K600	-2.50	0.00	[n.i	0.32	0.00	0.0	0.22	11.0	0.02	0.02
Nadi-D 0K 500	-2.50	0.00	[II.I	0.32	0.00	0.0	0.22	11.0	0.02	0.02
Nadi-D 0K400	-2.50	0.00	H.I	0 32	0.00	0.0	0.21	11.0	0,02	0.02
Nadi-D 0K 300	-2.50	0.00	11.1	0.32	0.00	0.0	0.21	11.0	0.02	0.02
Nadi-D 0K 200	-2 50	0.00		0.30	0.00	0.0	0.20	11.0	0.02	0.02
Nadi-D 0K100	-2.50	0.00		0.29	0.00	0.0	0.20	11.0	0.02	0.02
Nadi-D 0K000	-2 50	0.00		0.29	0.00	0.0	0.20	11.0	0.02	0.02
Nadi D-0K100		0.06		0.03	0.06	0.1	0.03	10.3	0.02	0.02
Nadi-D-0K200		0.07	`	0.02	0.07	0.0	0.02	9.5	0.02	0.02
Nadi-D-0K300 Nadi-D-0K400		0.09		0.02	0.09		0.02	7.7	0.02	0.01
Nadi-D-0K500				0.02	0.23	,	0.02		0.02	0.00
Nadi-D-0K600		0.03		0.02	0.08		0.02		0.02	0.00
Nadi-D-0K000	1				0.02		0.02		0.02	0.00
Nadi-D-0K800					0.00		0.02		0.00	0.00
Nadi-D-0K900				0.02			0.02		0.00	0.00
Nadi-D-1K000				6			0.02		0.00	0.00
Nadi-D-1K100									0.00	0.00
Nadi-D-1K200									0.00	0.00
Nadi-D-1K300									0.00	0.00
Nadi-D-1K400						1			0.00	0.00
Nadi-D-IK500	1		1			1				0.00
Nadi-D-1K600									0.00	0.00
Nadi-D-1K700		1	4							0.00
Nadi-D-1K800										0,00
Nadi-D-1K900	-6.30	0.00	0.0		1	0.0	0.00	0.0	0.00	0.00
Nadi-D-2K000	-6.50	0.00	0.0	0.53	0.00	0.0	0.00	0.0	0.00	0.00

Table-13.13 Sedimentation in and out of Diversion Channel due to 5 Year Return Period Flood

-- name --: name of cross section

bed-el: bed elevation after evolution

dlz: difference between original bed elevation and elevation after evolution

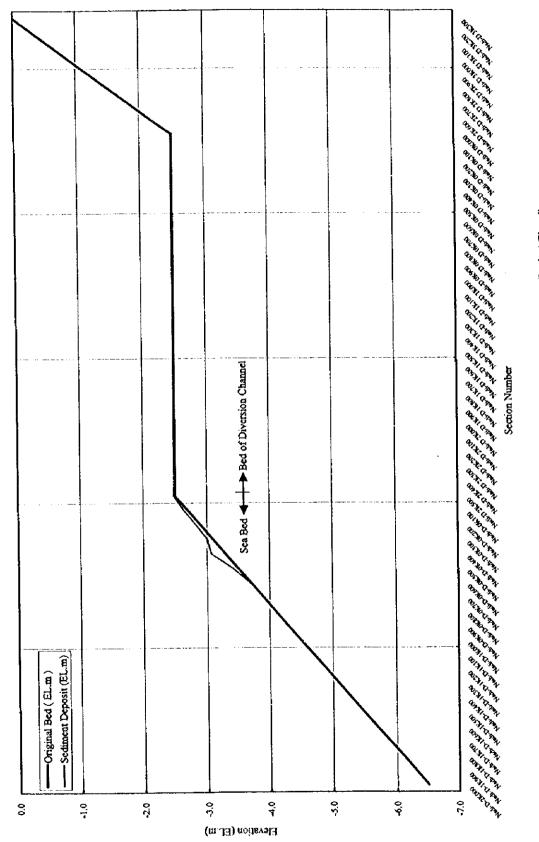
qsb-1: accumulated volume of sediment load passed at each cross section

1-dm: average particle size of surface bed material

dep: depth of sedimentation on original bed

qb-t: accumulated volume of bed load passed at each cross section

b-dm: average particle size of bed load

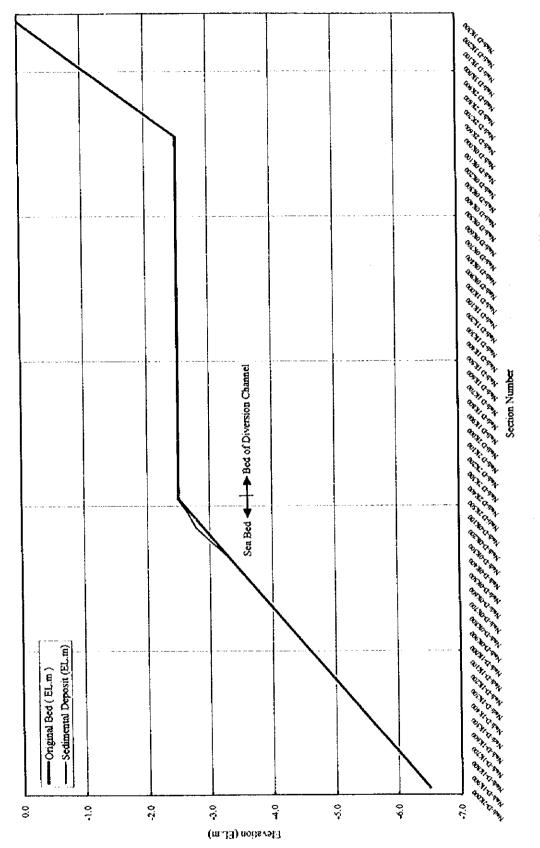

qs-t: accumulated volume of suspended load passed at each cross section

s-dm: average particle size of suspended load

c: contents of sediment load

Nadi-D 3K300: point which is 3 km + 300 m upstream from outlet

Nadi-D-2K000: point in the sea which is 2 km offshore from outlet



	bed-el	dlz	qsb-1	l-dm	dep	qb-t	b-dm	qs-t	s-dm	c(%)
-• name -•	(m)	(m)	(1000m ³)	(cm)	(m)	(1000m')	(cm)	(1000m*)	(cm)	••••
Nadj-D 3K300	- <u>` 0.00</u>	0.00	3.3	0.00	0.00	0.0	0.47	3.4	0.02	0.01
Nadi D 3K 200	-0.31	0.00	3.5	0.00	0.00	0.1	0.49	3.4	0.02	0.01
Nadi-D 3K100	-0.63	-0.01	3.5	0.00	0.00	0.1	0.52	- 3.4	0.02	0.01
Nadi-D 3K000	-0.94	-0.01	3.6	0.00	0.00	0.1	0.54	3.4	0.02	0.01
Nadi-D 2K900	-1.25	0.00	3.6	0.67	0.00	0.1	0.53	3.4	0.02	0.01
Nađi-D 2K 800	-1 56	0.00	3.6	0.42	0.00	0.1	0.53	3.4	0.02	0.01
Nadi-D 2K 700	-1.87	0.00	3.6	0.27	0.00	0.2	0.54	3.4	0.02	0.01
Nadi-D 2K600	-2.19	-0.01	. 3.6	0.42	0.00	0,2	0.55	3,4	0.02	0.01
Nadi-D 2K 500	-2.48	0.02	3.5	0.48	0.02	0.1	0.48	3.4	0.02	0.01
Nadi-D 2K400	-2 50	0.00	3.5	0.55	0.00	0.1	0.47	3,4	0.02	0.01 0.01
Nadi-D 2K300	-2.50	0.00	3.5	0.57	0.00	0.1 0.1	0.46	3.4 3.4	0.02	0.01
Nadi-D 2K200	-2.50	0.00	3.5	0.57 0.56	0.00	0,1	0,43	3,4	0.02	0.01
Nadi D 2K100	-2 50 -2 50	0.00	3.5	0.50	0.00	0,1	0.44	3.4	0.02	0.01
Nadi-D 2K000 Nadi-D 1K900	2.50	0.00	3.5	0.54	0.00	0.1	0.43	3.4	0,02	0.01
Nadi-D 1K800	2 50	0.00	3.5	0.54	0.00	0.1	0.42	3.4	0.02	0.01
Nadi-D IK 700	2 50	0.00	3.5	0.53	0.00	0.1	0,42	3.4	0.02	0.01
Nadi-D 1K600	2.50	0.00	3.5	0.53	0.00	0.1	0.41	3.4	0,02	0.01
Nadi-D 1K 500	-2.50	0.00	3.5	0.52	0.00	0.1	0.41	3.4	0.02	0.01
Nadi-D 1K400	2.50	0.00	3.5	0.52	0.00	0,1	0.40	3.4	0.02	0.01
Nadi-D 1K 300	2 50	0.00	3.5	0.52	0.00	0.1	0.40	3.4	0.02	0.01
Nadi-D 1K200	-2 50	0.00	3.5	0.51	0.00	0.1	0.39	3.4	0.02	0.01
Nadi-D 1K100	-2 50	0.00	3.5	0.51	0.00	0.1	0.39	3.4	0.02	0.01
Nadi-D 1K000	-2 50	0.00	3.5	0.51	0.00	0.1	0.38	3.4	0.02	0.01
Nadi-D 0K900	-2 50	0.00	3.5	0.50	0.00	0.1	0.38	3.4	0.02	0.01
Nadi-D 0K800	-2 50	0.00	3.5	0.50	0.00	0.1	0.37	3.4	0.02	0.01
Nadi-D 0K 700	-2 50	0.00	3.5	0.50	0.00	0.1	0.36	3.4	0.02	0.01
Nadi-D 0K600	-2 50	0.00	3.5	0,49	0.00	= 0.1	0.36	3.4	0.02	0.01
Nadi-D 0K.500	-2.50	0.00	- 35	0.49	0.00		0.35	3.4	0.02	0.01
Nadi-D 0K400	-2 50	0.00		0.48	0.00		0.35	3.4 3.4	0.02	0.01
Nadi-D 0K300	-2 50 -2 50	0.00		0.48	0.00		0.34	3.4	0.02	0.01
Nadi-D 0K200 Nadi-D 0K100	-2 50	0.00		0.48	0.00		0.34		0.02	0.01
Nadi-D 0K000	-2 50	0.00		0.48	0.00		0.33		0.02	0.01
Nadi-D-0K100	-265	0.05		0.04	0.05		0.05	•	0.02	0.01
Nadi-D-0K200	-2.78	0.12	1	0.02	0.12		0.02	-	0.02	0.00
Nadi D-0K300	-3.03	0.07		0.02	0.07				0.02	0.00
Nadi D-0K400	-3.29	0.01		0.02		1			0.00	0.00
Nadi-D-0K500	-3.50	0.00	0.0	0.02	0.00	0.0	0.02	0.0	0.00	0.00
N3Ji-D-0K600	-3.70	0.00	0.0	0.02			0.02		0.00	0.00
Nadi-D-0K700	-3.90	0.00	0.0	0.02					0.00	0.00
Nadi-D-0K800	-4 10	0.00	•						0.00	0.00
Nadi-D-0K900		0,00							0.00	0.00
Nadi-D-1K000		0.00							0.00	0.00
Nadi-D-1K100		0.00							0.00	0.00
Nadi-D-1K200		0.00							0.00	0.00
Nadi-D-1K300		0.00							0.00	0.00
Nadi-D-1K400 Nadi-D-1K500		0.00								0.00
Nadi-D-1K600										0.00
Nadi-D-1K700		E								0.00
Nadi-D-1K800	1							•		
Nadi-D-1K900						1	1		1	1
Nadi-D-2K000		1								
			_		_ 1				-	

Table-13.14 Sedimentation in and out of Diversion Channel due to 2 Year Return Period Flood

name of cross section -- name --: bed elevation after evolution bed-el: difference between original bed elevation and elevation after evolution dlz: qsb-t: accumulated volume of sediment load passed at each cross section average particle size of surface bed material I-dm: dep: depth of sedimentation on original bed accumulated volume of bed load passed at each cross section qb-t: average particle size of bed load b-dm: accumulated volume of suspended load passed at each cross section qs-t: average particle size of suspended load s-dm: contents of sediment load **c**: Nadi-D 3K300: point which is 3 km + 300 m upstream from outlet

Nadi-D-2K000: point in the sea which is 2 km offshore from outlet

I

					01011 011					
5man	bed el	diz	qsb-t	1-dm	dep	q5-t	b-đm	qs-t	s-dm	c(%)
	(m)	(m)	(1000m')	(cm)	(m)	(1000m')	(cm)	(1000m')	(cm)	****
Nadi-D 3K300	0.00	0.00	1.5	0.00	0.00	0.0	0.38	1.5	0.02	0.01
Nadi-D 3K200	-0.31	0.00	1.5	0.00	0.00	0.0	0.46	1.5	0.02	0.01
Nadi-D 3K100	-0.63	-0.01	1.6	0.00	0.00	0.1	0.51	1.5	0.02	0.01
Nadi-D 3K000	-0,94	-0.01	1.6	0.00	0,00	0.1	0.54	1.5	0.02	0.01
Nadi-D 2K900	+1 25	0.00	- 1.6	0.67	0.00	0.1	0.53	1.5	0.02	0.01
Nadi-D 2K800	-1.56	0.00	1.6	0.47	0.00	0.1	0.53	1.5	0.02	0.01
Nadi-D 2K700	-1.86	0.01	1.6	0.60	0.01	0.1	0.42	1.5	0.02	0.01
Nadi-D 2K600	-2 17	0.01	15	0.49	0.01	0.0	033	1.5	0.02	0.01
Nadi-D 2K500	-2.50	0.00	1.5	0.23	0.00	0.0	0.25	1.5	0.02	0.01
Nadi-D 2K400	-2.50	0.00	1.5	0.35	0.00	0.0	0.24	1.5	0.02	0.01
Nadi-D 2K300	-2 50	0,00	1.5	0.37	0.00	0.0	0.22	1.5	0.02	0.01
NaJi-D 2K200	-2 50	0.00	1.5	0.35	0.00	0.0	0.21	1.5	0.02	0.01
Na 3i-D 2K100	-2.50	0.00	1.5	0.30	0.00	0.0	0.20	1.5	0.02	0.01
NaJi-D 2K000	-2.50	0.00	1.5	0 30	0.00	0.0	0.20	1.5	0.02	0.01
Nadi-D 1K900	-2 50	0.00	15	0.30	0.00	0.0	0,19	1.5	0.02	0.01
Nadi-D 1K800	-2 50	0.00	. 1.5	0 26	0.00	0.0	0,18	1.5	0.02	0.01
Nadi-D 1K700	-2 50	0.00	15	0.25	0.00	0.0	0.18	1.5	0.02	0.01
Nadi-D 1K600	-2.50	0.00	1.5	0.25	0.00	0.0	0.17	1.5	0.02	0.01
Nadi-D IK500	-2 50	0.00	1.5	0 2 5	0.00	0.0	0.16	1.5	0.02	0.01
Nadi-D 1K400	-2 50	0.00	1.5	0 2 5	0.00	0.0	0,16	1.5	0.02	0.01
Nadi-D 1K300	-2 50	0.00	··· 1.5	0.23	0.00	0.0	0.15	1.5	0.02	0.01
Nadi-D 1K200	-2 50	0.00	1.5	0.22	0.00	0.0	0.15	1.5	0.02	0.01
Nadi-D IK100	-2 50	0.00	1.5	0.22	0.00	0.0	0.14	1.5	0.02	0.01
Nadi-D 1K000	-2 50	0.00	1.5	0.21	0.00	0.0	0.14	1.5	0.02	0.01
Nadi-D 0K900	-2 50	0.00	1.5	0.19	0.00	0.0	0.14	1.5	0.02	0.01
Nadi-D 0K800	-2 50	0.00		0 20	0.00	0.0	0.13	1.5	0.02	0.01
Nadi-D 0K700	-2 50	0.00		0.21	0.00	0.0	0.13	1.5	0.02	0.01
Nadi-D 0K600	-2.50	0.00	1.5	0.21	0.00	0.0	0.13	1.5	0.02	0.01
Nadi-D 0K500	-2.50	0.00	1.5	0 20	0.00		0.12	1.5	0.02	0.01
Nadi-D 0K400	-2 50	0.00	_	0.19	0.00		0.12	1.5	0.02	0.01
Nadi-D 0K300	-2 50	0.00		Į 0.19	0.00	0.0	0.11	1 1.5	0.02	0.01
Nadi-D 0K200	-2 50	0.00		0.19	0.00		0.11	1.5	0.02	0.01
Nadi-D 0K100	-2 50	0.00		0.18	0.00		0.11	1.5	0.02	0.01
Nadi-D 0K000	-2 50	0.00		0.18	0.00		0.10	3.5	0.02	0.01
Nadi-D-0K100	-2 63	0.07		0.02	0.07		0,02	0.8	0.02	0.00
Nadi- D-0K 200	-2.84	0.05		0.02	0.06		0.02	0.0	0.02	0.00
Nadi-D-0K300	-3.10	0.00		0.02	0.00		0.02	0.0	0.00	0.00
Nadi-D-0K400		0.00		0.02	0.00	6	0.02	0.0	0.00	0.00
Nadi-D-0K 500		0.00			0.00		0.02		0.00	0.00
Nadi-D-0K600		0.00		•			0.02		0.00	0.00
Nadi-D-0K700		0.00					0.00		0.00	0.00
NaJi-D-0K800	-4.10	0.00					0.00		0.00	0.00
Nadi-D-0K900					1		0.00		0.00	0.00
Nadi-D-1K000							0.00		0.00	0.00
Nadi-D-1K100	1			•			0.00		0.00	0.00
Nadi-D-1K 200	1			1					0.00	0.00
Nadi - D-1K300		0.00					0.00		0.00	0.00
Nadi-D-1K400									0.00	0.00
Nadi-D-1K 500									0.00	0.00
Nadi-D-1K600								4	0.00	0.00
Nadi-D-1K700									0.00	0.00
Na3i-D-1K800				1					0.00	0.00
Nadi-D-1K900										0.00
NzJ:-D-2K000	-6 50	0.0	0.0	0.53	0.00	0.0	0.00	0.0	0.00	0.00

 Table-13.15
 Sedimentation in and out of Diversion Channel due to 1.1 Year Return Period Flood

-- name --: name of cross section

bed-el: bed elevation after evolution

diz: difference between original bed elevation and elevation after evolution

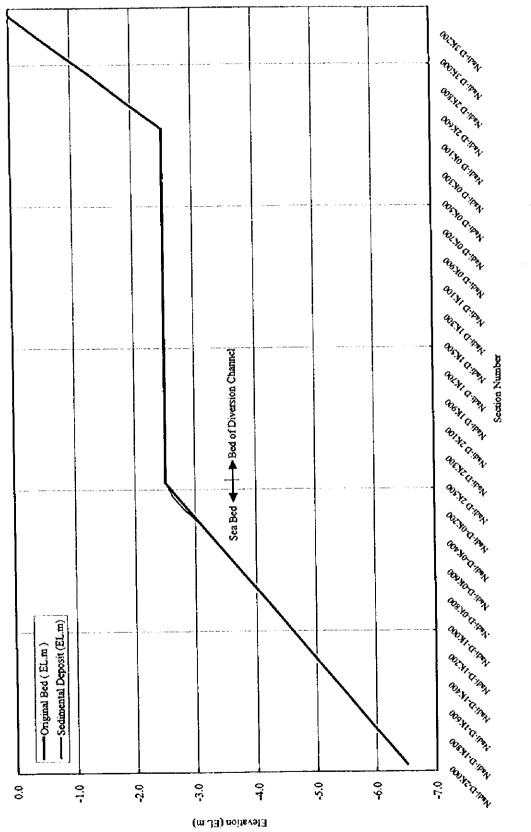
qsb-1: accumulated volume of sediment load passed at each cross section

1-dm: average particle size of surface bed material

dep: depth of sedimentation on original bed

qb-t: accumulated volume of bed load passed at each cross section

b-dm: average particle size of bed load


qs-t: accumulated volume of suspended load passed at each cross section

s-dm: average particle size of suspended load

c: contents of sediment load

Nadi-D 3K300: point which is 3 km + 300 m upstream from outlet

Nadi-D-2K000: point in the sea which is 2 km offshore from outlet

с. С

Condition of sedimentation in the diversion channel and the sea are summarized in Table-I3.16.

Discont	· · · · · · · · · · · · · · · · · · ·	Scale of Flood									
Place of Sedimentation	Item	1/20 Probability	1/10 Probability	1/5 Probability	1/2 Probability	1/1.1 Probability					
In Diversion	Location of Sedimentation	2.7 ~ 2.3 km	2.7 ~ 2.3 km	2.6 ~ 2.4 km	2.6 ~ 2.5 km	2.7 ~ 2.6 km					
	Length of Sedimentation	400 m	400 m	200 m	100 m	100 m					
	Width of Sedimentation	60 m	60 m	60 m	60 m	60 m					
	Maximum Thickness of Sedimentation	0.0 2 m	0.02 m	0 .02 m	0.02 m	0.01 m					
	Volume of Sedimentation	400 m ³	300 m ³	200 m ³	100 m³	100 m					
	Particle Size	0.06 ~ 0.67 cm	0.06 ~ 0.24 cm	0.03 cm	0.03 cm	less than 0.02 cm					
	Location of Sedimentation	-0.1 ~ -1.2 km	-0.1 ~ -0.9km	-0.1 ~ -0.6 km	-0.1 ~ -0.4 km	-0.1 ~ -0.2 km					
	Length of Sedimentation	1,100 m	800 m	500 m	300 m	200 n					
	Width of Sedimentation	270 m	220 m	150 m	130 m	100 n					
In the Sea	Maximum Thickness of Sedimentation	0.37 m	0.30 m	0.23 m	0.12 m	0.07 n					
	Volume of Sedimentation	41, 700 m ³	25,400 m ³		3,400 m ³						
	Particle Size	0.02 ~ 0.06 cm	0.02 ~ 0.0425 cm	less than 0.02 cm	less than 0.02 cm	less than 0.02 cm					

Table-13.16 Conditions of Sedimentation after Floods

location for the channel: distance in the upstream from outlet

location for the sea: distance offshore from outlet

Sedimentation in the diversion channel occurs between 2.7 km and 2.3 km (upstream from outlet) where bed slope is bent, after 20 year return period flood. Particle sizes of sedimentation are quite large at range between 0.06 cm and 0.67 cm and the maximum depth is about 2 cm. Sedimentation in the diversion channel is less than 1 % of the total sediment load into the channel. Therefore, it is considerably small amount.

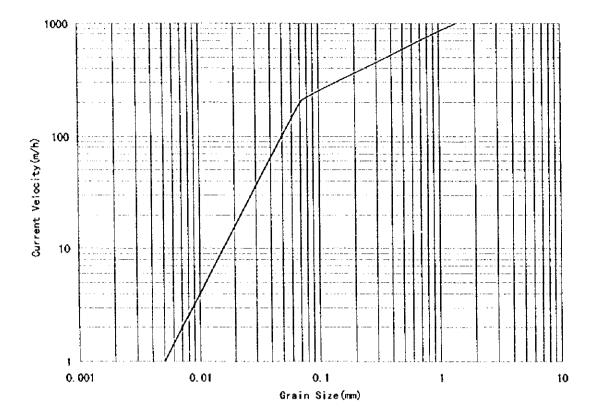
Place of sedimentation in the channel does not vary with scale of floods and it is around 2.5 km point from outlet. However, as smaller a flood is, particle size is finer and volume of sedimentation is smaller.

Sedimentation in the channel is flushed by the next flood and successively another sedimentation occurs after the flood. However, sedimentation is not accumulated by floods.

Sedimentation into the channel is mostly drained to the sea, about 99 %. In the case of 20 year return period flood, sedimentation in the sea occurs between outlet and 1.2 km offshore. The maximum depth is expected at 0.7 km offshore and it is approximately 37 cm. 99 % of sedimentation in the sea consists of particles less than 0.03 cm which is almost equivalent to particle size of sea bed material.

3.2 Examination of Effect

As a result of sediment load analysis, most of sediment load in the diversion channel is drained into the sea and deposited on the sea bed where the sea depth is approximately 4 m or shallower, regardless of discharge. Sediment deposited mostly consists of particles smaller than 0.2 mm. It is noted that sea depth datum is Lowest Astronomical Tide, while elevation datum is Mean Sea Level at standard port (Suva harbour).


Relation between velocity which induces suspended sediment, and its particle size is shown in Table-I3.17 and Figure-I3.7. According to the tidal current survey, the average velocity of tidal current where the sea depth is 5 m is approximately 200 m/hr, causing suspended sediment whose grain size is smaller than 0.06 mm. On the other hand, the maximum velocity at the same sea depth is about 540 m/hr, causing suspended sediment whose grain size is less than 0.4 mm. Therefore, most of sediment drained through the diversion channel is carried off by the maximum velocity but not by the average velocity.

Since the sea bed shallower than 4 m is disturbed and stirred by high waves due to strong wind, such as cyclones, sediment load from the diversion channel is considered to be dispersed and carried off by the high waves. Therefore, even if there were sediment deposits, the sea bed would recover to the original after certain period.

Considering the small velocity and random directions of tidal current, and high waves, neither considerable erosion nor sedimentation is expected in the Nadi bay due to the diversion channel. However, it is recommendable to conduct the further study on sedimentation in the Nadi bay by the hydraulic model experiment at the detail design stage if the proposed project is realized.

Grain Size (mm)	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.4
Current Veloc (m/hr)	ity 110	270	370	460	550	600	650	700	770	800	850	1,000

Table-13.17 Relation between Velocity and Grain Size of Suspended Sediment

T

Figure-I3.8 Velocity and Grain Size of Suspended Sediment

Literature Cited

Ashida K. and Michiue M. (1965). "Research on suspended sediment (1) - concentration at bed." Kyoto University, 13-B. Japan.

Ashida, K., Takahashi Y. and Michiue M. (1983). "Natural disasters in rivers and countermeasures - river bed evolution.", Disaster Management 5. Morikita Corporation, Japan.

Kawamura, S. (1976). "Hydraulics for sedimentation." Morikita Corporation, Japan.

Sato S. Yoshikawa H. and Ashida K. (1958). "Study on sediment transportation by bed load.", Periodical of Public Works Research Institute, 98. Tokyo, Japan.

SUPPORTING REPORT

ţ

PART J

ENVIRONMENT

. .

THE STUDY ON WATERSHED MANAGEMENT AND FLOOD CONTROL FOR THE FOUR MAJOR VITI LEVU RIVERS IN THE REPUBLIC OF FIJI ISLANDS

SUPPORTING REPORT PART J, ENVIRONMENT

TABLE OF CONTENTS

Table of Conte	ntsJ-i
List of Tables	J-iii
List of Figures	J-iv
List of Abbrev	ationJ-v

CHAPTER 1	PRESENT SITUATION OF ENVIRONMENT IN FIJI	Jl-1
1.1 Environ	mental Management in Fiji	J1-1
1.1.1	Environmental Legislation	J1-1
1.1.2	Environmental Impact Assessment (EIA)	J1-2
	mental Settings	
1.2.1	Environmental Sanitation	J1-2
1.2.2	Sites of Historical and National Significance	J1-4
1.2.3	Natural Environment	J1-4
1.2.4	Environment Hazards	J1-5
1.2.5	Consideration on Environmental Impact Assessment	J1-6
CHAPTER 2	INITIAL ENVIRONMENTAL EXAMINATION	J2-1
2.1 Objecti	ves	J2-1
2.2 Guideli	ines and Methodologies	
2.3 Impact	s Examination	J2-3
2.3.1	Social Environment	J2-3
2.3.2	Natural Environment	J2-6
2.3.3	Environmental Hazards	J2-8
2.3.4	Other Environmental Items	J2-9
2.3.5	Environmental Impact Assessment for the Priority Project	J2-9
CHAPTER 3	SITE SURVEY FOR SOCIAL AND NATURAL ENVIRONM	
3.1 Introdu	action	J3-1
3.2 Intervi	ew Survey for Social Environment	J3-1
3.2.1	Survey Area	J3-1
3.2.2	Interview Items	J3-1
3.3 Survey	on Traffic Volume at Queens Road	J3-2
331	Survey Location and Method	J3-2
3.3.1	Survey Results	J3-2
5.512		

3.4 Survey	on Groundwater Utilization	J3-2
3.4.1	Survey Area	J3-2
3.4.2	Survey Results	J3-4
3.5 Survey	on Coastal Environment	J3-4
CHAPTER 4	ENVIRONMENTAL IMPACT ASSESSMENT	
4.1 Introdu	ction	J4-1
4.1.1	Objectives	J4-1
4.1.2	Environmental Guidelines	J4-1
	Scope of Work	
4.2 Enviro	nmental Settings	J4-2
4.2.1	Social Environment	
	Natural Environment	
4.2.3	Environmental Hazard	J4-4
	Analysis	
	Nadi Diversion Channel	
	Nadi Shortcut Channel	
4.4 Enviro	nmental Management and Monitoring Plans	J4-16
4.4.1	Environmental Management Plan	J4-16
4.4.2	Environmental Monitoring	J4-17
	eration on Environmental Mediation	

LIST OF TABLES

CHAPTER 1	
Table-J1.1	Progress State of the Major Projects Proposed in the NESJ1-1
Table-J1.2	Water Supply, Sewerage and Solid Waste Dumps in Viti LevuJ1-3
Table-J1.3	Contents of the Comprehensive EIA ReportJ1-6
Table-J1.4	Environmental Elements to be Examined
CHAPTER 2	
Table-J2.1	Environmental Examination Matrix
Table-J2.2	Condition Related to Resettlement etc. at Project Sites
Table-J2.3	Sites of Archaeology, Culture and National Significance in the Project AreaJ2-4
Table-J2.4	Estimate of Change in River Water Quality ^(a) J2-8
CHAPTER 3	
Table-J3.1	Existing Wells in the Project Area
Table-J3.2	EC-Measurement of Borehole Water
CHAPTER 14	
Table-J4.1	Dimensions of Diversion Channel and Shortcut Channel
Table-J4.2	Environmental Elements for the EIA
Table-J4.3	General Condition of the Households to be Possibly Involved in the Resettlement Program
Table-J4.4	EC-Measurement of Borehole Water

' . 3

LIST OF FIGURES

CHAPTER 1	
Figure-J1.1	Schematic Representation of Proposed EIA ProcedureJ1-7
CHAPTER 2	
Figure-J2.1	Sites of Archaeology, Culture and National Significance in the Project AreaJ2-5
Figure-J2.2	Mangrove Communities at the Site of Diversion Channel for Rewa River
CHAPTER 3	
Figure-J3, l	Interview Survey AreaJ3-1
Figure-J3.2	Location of Traffic Survey PointsJ3-3
Figure-J3.3	Location of Existing Wells and Boreholes Drilled During This Study J3-3
CHAPTER 4	
Figure-J4.1	Land Acquisition Area for the Diversion ChannelJ4-6
Figure-J4.2	Hourly Traffic Volume DistributionJ4-9
Figure-J4.3	Customary Fishing Right in the Project Area

LIST OF ABBREVIATION

D/C	. Danafit Coat Datia
B/C	: Benefit Cost Ratio
BOD	: Biological Oxygen Demand
COD	: Chemical Oxygen Demand
D&I	: Drainage and Irrigation Division, MAFF
DO	: Dissolved Oxygen
DOE	: Department of Environment, MUDHE
DOF	: Department of Forest, MAFF
EIA	: Environmental Impact Assessment
EIRR	: Economic Internal Rate of Return
FAO	: Food and Agriculture Organization of the United Nations
FEA	: Fiji Electricity Authority
FMS	: Fiji Meteorological Service, MTCA
FSC	: Fiji Sugar Corporation
GDP	: Gross Domestic Product
GIS	: Geographical Information System
IEE	: Initial Environmental Examination
INR	: Institute of Natural Resources
JICA	: Japan International Cooperation Agency
MAFFA	: Ministry of Agriculture, Fisheries, Forests and ALTA
MAFF	: Ministry of Agriculture, Fisheries, and Forests
MPWIT	: Ministry of Public Works, Infrastructure and Transport
MRD	: Mineral Resources Department
MTCA	: Ministry of Tourism and Civil Aviation
MUDHE	: Ministry of Urban Development, Housing and Environment
NLTB	: Native Land Trust Board
NPV	: Net Present Value
PWD	: Public Works Department, MPWIT
SOPAC	: South Pacific Applied Geoscience Commission
SPC	: South Pacific Commission
SS	: Suspended Solids
TH	: Total Hardness
TN	: Total Nitrogen
TOR	: Terms of Reference
ТР	: Total Phosphorus
UNDP	: United Nation Development Programme
USP	: University of the South Pacific
WHO	: World Health Organization

.

CHAPTER 1 PRESENT SITUATION OF ENVIRONMENT IN FIJI

1.1 Environmental Management in Fiji

1.1.1 Environmental Legislation

Since 1971, Fiji has presented some environmental policies and objectives, but there have been no national environmental policies which have formed the basis of practical application. In 1990, the Asian Development Bank provided a technical assistance grant for the National Environment Management Project (NEMP) which was commenced in August 1990 and completed in October 1992. The most important output of the NEMP is "The National Environment Strategy, Fiji" (Watling D. & Chape S. 1993) which has set a strategy framework for sustainable development and put forward action plans for environmental legislation, natural and cultural heritage protection and land use. Projects have also been proposed for implementing the National Environment Strategy (NES). Table-J1.1 shows the progress state of the major projects proposed in the NES.

Project Name	Planned Duration and Target	State of Progress
Institutional Strengthening of the Department of Environment	5 years from the end of 1993	1 Director, 1 Principal Officer, 1 Senior Officer, 2 Environment Officers, 1 Technical Officers, 1 Secretary, 1 Clerical Officer
National Waste Management - Pollution Control Strategy	Completion by the end of 1993	Workshop held in 1994. Following up waste feasibility study of Suva landfill
Environmental Impact Assessment Legislation	EfA Legislation to be drafted by the end of 1993 and enacted by mid 1994	Draft legislation by Dec. 1, 1996
National Land Use Plan	3 years from mid 1994 (TOR by mid 1993)	Working with MAFFA, Land Use Section and D&I to carry this out. Project proposal to be submitted to the European Union.
Introduction of Soil Conservation Practices	8 years minimum from early 1994	as above
Examination of the Feasibility of a Comprehensive Resource Management Act for Fiji	6 months from early 1994	to be included in the environmental legislation drafted by Dec. 1, 1996

Table-J1.1	Progress State of the	Major Projects Pro	posed in the NES
10010 2111	11051000 01010 01 010		

Source: JICA Study Team based on information provided by Nawadra S., DOE Reference: DOE 1996.12; MAFFA, DOE & NLTB 1996.7; Nawadra S. 1994

The Department of Environment (DOE) was established in 1993 for environmental management at the national level. With a staff as shown in Table-J1.1, DOE is engaged in environment awareness, legislation and database. These include: a directed public awareness campaign, upgrading environmental education, environmental impact assessment legislation, examination of the feasibility of a comprehensive resource management act, and development of a national environment database.

In addition, DOE is also engaged in meeting the obligations ratified in treaties and conventions signed by the government. In view of that, DOE looks after the following projects: ozone depleting substance, bio-diversity and Pacific Island Climate Change Assistance Program (PICCAP). DOE works in partnership with WWF on conservation and development. DOE is also involved with SPREP (South Pacific Regional Environmental Program) initiated projects such as Capacity Building in Environmental Management Project (CBEMP), Persistent Organic Pollutants (POP) and international waters project. DOE is also engaged in promoting waste minimization activities through its Pollution and Waste Minimization Unit.

The environmental legislation was drafted at the end of 1996 under the title of "Fiji's Draft Sustainable Development Bill" (Ministry of Urban Development, Housing and Environment 1996. 11), which included 19 parts covering all fields of the environment. It will be cited as the "Sustainable Development Act" after approval by the Parliament.

1.1.2 Environmental Impact Assessment (EIA)

In the draft environmental legislation mentioned above, EIA procedures were proposed for all developments in Fiji (see 1.2.5 for details). An Environmental Assessment Unit shall be established within DOE for environmental assessment administration.

For river improvement projects, the Food & Agriculture Organization (FAO) of the United Nations proposed the "Environmental Guidelines for Dredging and River Improvement in Fiji" (Tortell P. et al, 1992) which explained the environmental policy, basic environment items and fundamental methods of assessment such as checklists and matrices.

I

The Drainage and Irrigation Division (D & I) conducted EIA for a dredging project for Ba River (D & I, 1995a, 1995b, 1996) basically following the FAO environmental guidelines. For other river improvement project, such as the Rewa River dredging project (Hine P. et al, 1992), environmental study was conducted to certain extent on some individual items but not a complete EIA.

An environmental study was conducted by CEE Pty Ltd for Kinoya Treatment Plant and Lauthala Bay (Wallis I et al, 1995) regarding effluent discharge from the sewage treatment plant to Lauthala Bay adjacent to Suva City. Some physical and biological characteristics of Lauthala Bay were studied and a water quality monitoring program was proposed.

Few EIA reports for projects of other fields were collected during this study period. It is expected that EIA will be integrated into the planning process of all the envisaged projects after the enactment of the EIA legislation.

1.2 Environmental Settings

1.2.1 Environmental Sanitation

To understand the present situation of environmental sanitation in the Study Area, the Study Team collected information on water supply, sewage treatment and solid waste management and visited water treatment plants, sewage treatment plants in Suva, Lautoka and Nadi. The general condition is summarized in Table-J1.2 based on the data of 1994 (PWD 1994, Nawadra S. 1994). Master Plans have been prepared for water supply and sewerage for the large cities and towns in the Study Area such as Suva, Nausori, Ba, Nadi and Sigatoka.

For drinking water supply, WHO Guidelines for Drinking-water Quality (WHO 1993) are applied. For domestic and industrial effluent discharge, there have been no regulations. But it is reported that effluent from all the public sewerage systems achieves a BOD below 30 ppm and SS below 20 - 40 ppm (PWD 1994). However, Water Quality Management Criteria and Guidelines have been proposed in the newly drafted environmental legislation which classify waters in accordance with their uses and set water quality objectives (DOE 1996. 5).

(1) Water Su						1 0					
	enter		Consu			Ca	pacity (m ³		Popul	auc	on Served
Suva (Tamav			Urban/Ru					45,454			271,495
Suva (Waila)		Urban/Ru				<u>45,454</u>		(Suva total)		
Korovou			Urban/Ru	rai		-		340			2,010
R.K.S.			School					650			980
Q.V.S			School					550			520
Colo I Suva			Rural/For					75	_ 		730
Naboro			Rural/Pris			<u>_</u>		1,636			735
Deuba			Rural/Tou					2,7.17	·		14,406
Navua			Urban/Ru	ital				909			1,050
Lautoka			Urban					13,090			121,810
Nadi			Urban/Ru			_		43,000			78,380
Sigatoka			Urban/Ru	iral				5,160			22,890
Ba (including Koronubu an	g Varavu, Nav d Veisaru)	roli,	Urban/Ru					11,210			42,755
Tavua/Vatuk	oula		Urban/Ru					5,500			15,825
Rakiraki			Urban/Ru					1,090			8,650
Korotogo			Urban/To					454		<u>d t</u>	o Sigatoka)
Keiyasi			Rural/Go	vernme	ent			440			155_
(2) Sewerag	e Systems										
Center	Consumers		apacity				Effluent		No. of		Population
Center	Consumers		quiv. No.	BOD		SS	F. Co		Connectio	ns	Served
		of	Persons)	(ppm		(ppm)	<u>(No./10</u>				
Kinoya	Urban	l	80,000	30		20		3x10 ⁴	11,00	_	60,000
Raiwaqa	Urban		15,000	30		20		3x10 ⁴	2,13	_	15,000
Nadi	Urban		10,000	30		20		3x10 ²	1,80	_	10,000
Lautoka	Urban		25,000	30		40		2×10^2	4,30		29,500
Sigatoka	Urban	_	4,000	30		40		2×10^2	10		700
Nausori	Urban		6,000	30	_	40		4x10 ²	16		1,000
Ba	Urban		6,500	30	0	40		2×10^2	(Under	Cor	nstruction)
Pacific Harbour	Urban		10,000	3(0	20		3x10 ²	33	4	2,000
(3) Solid W	aste Dumps i	n Ope	ration								
D		arwad	Dopulation		Г	humping	A.=		Surface /	\re	a (ha)
Dump) S	ervea	Population		L	Dumping	Alea	1	Fotal		In Use
Lami (Suva)			145,00	00		Mangr	ove		5		5
Navua			25,0			Mangr	ove		1		0.2
Sigatoka			2,70	00		Sand D			1		0.2
Lautoka (Lautoka/Na	adi)		106,0			Mangr	ove		15		3
Ba			8,0	00		Fore	st		5		I
Tavua			33,0			Near I			2		1
Vaileka			5,0			Mangr		<u>├</u>	2		0.2
Korovou				21	.	Fore		f			
Nausori		<u></u>	5,0			River E			1		l
	1001 4 000			~~ 1		and the		L	1	L	!

Table-11.2 Water Supply, Sewerage and Solid Waste Dumps in Viti Levu

Source: PWD 1994 Annual Report

ļ

Nawadra S. (DOE) Proposed Waste Minimization and Management Strategy for the Republic of Fiji (1994)

1.2.2 Sites of Historical and National Significance

The Study Team visited Fiji Museum and government agencies concerned and collected information on the sites of historical and national significance in the Study Area.

(1) Historical and Archaeological Sites

In Fiji Museum, archaeologists including some international cooperation volunteers from Japan, Australia, etc. are engaged in sorting data and information on historical and archaeological sites and building a computer data base. However, due to lack of systematic investigation in the past and short of financial and manpower source, their work has not yet been at a stage to provide information on the distribution of these sites in the Study Area except some data for Rewa Delta and Sigatoka Valley area where certain archaeological sites have been identified by air-photo interpretation (Parry J. T. 1977 & 1987). Ring-ditch fortifications of various settlement sizes dating back to the 16th century are found to be distributed in the Rewa Delta area. Similar ring-ditch and also hill & ridge fortifications are discovered along two sides of the downstream of Sigatoka River.

One of the most important archaeological sites in the Pacific is located in Sigatoka Sand Dune where a burial ground of more than 100 people dating back nearly 2000 years has been found (Chape S. and Watling D. 1992). Many pottery vessels and discs have been excavated there (Birks L. 1973). Ť

(2) Sites of National Significance

Registration of sites of national significance is one of the projects proposed in the NES (Watling D. and Chape S. 1993). It is in progress under the participation of the Native Land Trust Board (NLTB), Department of Forestry (DOF), DOE and Fiji Museum. A preliminary register of these sites has been compiled in the NES with a list of 140 sites selected on the basis of their biological, ecological, geological, geomorphological, landscape or other natural values, of which 47 are located in Viti Levu including Sigatoka Sand Dunes, Fiji's first National Park.

1.2.3 Natural Environment

(1) Flora and Fauna

Regarding flora and fauna, the present condition is well described in the "Country Report for UNCED - Fiji" (Chape S. and Watling D. 1992) and "Environment: Fiji - the National State of the Environment Report" (Watling D. and Chape S. 1992). 476 indigenous Fijian plants genera have been identified, of which 10 % are endemic. A book published by DOF has illustrated major species of indigenous Fijian trees as a result of the Fiji German Forestry Project (GTZ) (DOF 1996). As for wildlife, there exist several species of bat, birds, reptile etc.

Vuleito palm and barred-wing rail are reported to be endangered plant and wildlife, respectively, in Fiji.

(2) Mangroves

The Study Team visited DOF, Lands Department, South Pacific Commission (SPC), University of the South Pacific (USP) and Fisheries Department and collected information about mangroves in the Study Area.

In Viti Levu, the largest mangrove forests are found in deltaic formations at the mouths of Ba, Rewa and Nadi Rivers. A "Mangrove Management Plan for Fiji" (Watling D. 1987, 1988) estimated the area of mangrove resource in the 3 Deltas to be 3714, 5130 and 3614 ha, respectively. Mangrove forests are very important ecosystem which supply valuable sources of wood, yield large amount of finfish and shellfish, stabilize coastline and act as filter for sediments and nutrients. There are also studies on using mangrove swamps for the removal of nutrients from sewage treatment plant effluent (Banner S. E. T. et al 1996).

(3) Coral Reefs

There are few data available on coral reefs in the marine area related to this Study except certain studies done by USP, South Pacific Applied Geoscience Commission (SOPAC) and some local consultants dealing with coral reefs in other areas.

Generally speaking, coral reefs are only formed in warm salt water where the light can penetrate sufficiently (Knox M. 1990, Squires D. F. 1962). Therefore, estuaries of large rivers are not suitable for coral reefs to grow because of the inflow of less saline river water with possible runoff of sediment resulting in reduction of light penetration. In the Study Area, existing coral reef systems which may be affected by river flow are thought to be Yarawa and Cakau na Sasi Reefs outside Ba River and Ucuisila and Wainita Reefs outside Rewa River. A study on coral reef ecosystem of Yarawa and Cakau na Sasi was conducted by the Fisheries Department for the Ba River Dredging Project (D & I 1996).

The "International Coral Reef Initiative (ICRI) Pacific Region Strategy" stresses the effects of freshwater runoff on coral reefs and calls for actions to develop and implement appropriate watershed management and drainage plans (South Pacific Regional Environment Programme 1996).

1.2.4 Environment Hazards

di materi

There are few data available to show the present condition of environmental pollution related to air, soil, noise and vibration. Regarding water quality, data were collected from the National Water Quality Laboratory PWD (Deb S. C. 1995), USP (Anderson E. P. et al 1995, Sulu R. J. 1994, Reddy V. et al 1995) on drinking water, sewage, river water in Ba and Rewa.

The existing data have shown that water pollution is not severe for these rivers except that a low value of dissolved oxygen (DO) has been detected at a section of Ba River where industrial pollution is suspicious.

The Study Team also conducted water quality survey during this Study for the four major Viti Levu Rivers. The results are described in Supporting Report Part F (Surface Water Quality).

1.2.5 Consideration on Environmental Impact Assessment

(1) Procedures of Environmental Impact Assessment in Fiji

In November 1996, "Fiji's Draft Sustainable Development Bill" (hereafter referred to as the Bill) was published by the Ministry of Urban Development, Housing and Environment. After public review, this document will be finally enacted by the Parliament and cited as the "Sustainable Development Act, 1997". The Bill has established the basic governmental policy on environmental management, especially on administration, environmental impact assessment (EIA), waste management and pollution control, resource management and conservation. It is specified that all proposed developments which are likely to have significant environmental, human health or social impacts, or which have caused, or are likely to cause public concern, shall be subject to the EIA process. The EIA procedure proposed in the Bill can be described schematically in Figure-J1.1. This includes mainly the following processes:

- Screening by the relevant ministry, department or statutory body to determine whether an EIA may be required;

Ĩ

- Registering the matter and publishing a notice for public awareness;
- Comprehensive EIA study;
- Environmental mediation process;
- -- Review and approval of the EIA and mediation reports.

Table-J1.3 shows the required items as the contents of the comprehensive EIA report. The environmental mediation is a process for mediating among affected parties regarding the environmental impacts caused by the development. A mediator shall be appointed by the Environmental Assessment Administrator in consultation with the proponent for undertaking duties and responsibilities for the mediation process. The mediation report shall also be submitted for review and approval.

1	Introduction of the proposal
2	Description of the purpose and scope of the proposed activity or undertaking
3	Description of the proposed action and any alternatives
4	Description of the environmental setting
5	Description of the social and environmental impacts
6	Description of adverse environmental and social impacts that cannot be avoided
7	Environment management plan
8	Environment monitoring and surveillance program
9	List of individuals and organizations consulted
10	Recommendations on the selected project alternative, mitigation measures etc.
11	Other matters specified by Regulation

Table-J1.3 Contents of the Comprehensive EIA Report

Source: Fiji's Draft Sustainable Development Bill, 1996. 11.

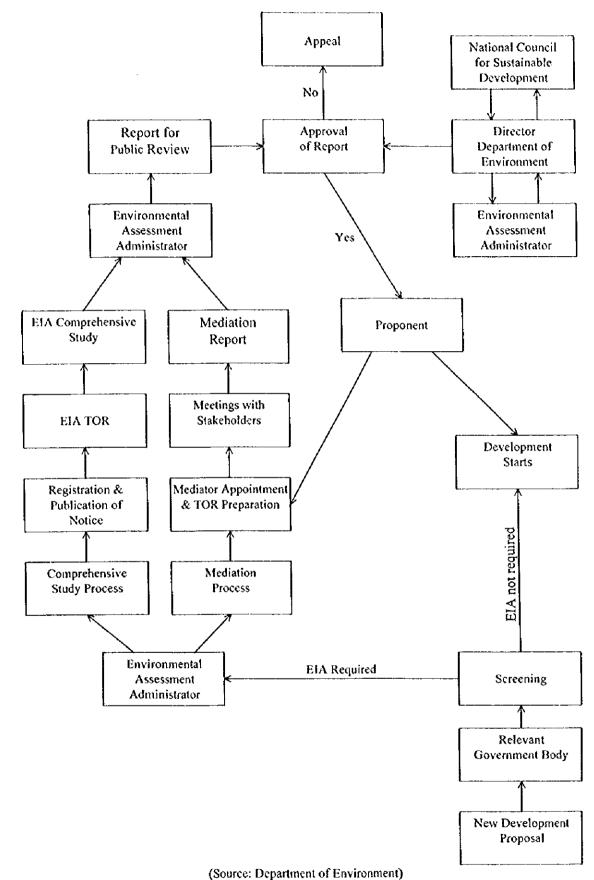


Figure-J1.1 Schematic Representation of Proposed EIA Procedure

(2) EIA Methodologies for This Study

The EIA for this Study shall basically follow the EIA procedures specified in the Bill. At the same time, JICA Environmental Guidelines (JICA, 1992) and other international organizations' environmental guidelines such as that of FAO for dredging and river improvement in Fiji (Tortell, 1992) will be referred.

Environmental assessment for this Study includes an initial environmental examination (IEE) for the Master Plan and an EIA for the priority project. Table-J1.4 shows the environmental elements to be considered in the IEE and EIA.

(1) Social Environment	(2) Natural Environment	(3) Environment Hazards
- Resettlement	- Topography & Geography	- Air Pollution
- Economic Activity	- Soil Erosion	- Water Pollution
- Traffic & Public Facilities	- Groundwater	- Soil Pollution
- Community Separation	- Lake & Rivers	- Noise & Vibration
- Archaeological & Cultural	- Coastal Area	- Ground Subsidence
Properties	• Flora & Fauna	- Offensive Odor
- Water Right /	- Metcorology	- Hazardous Substances*
Right of Common	- Landscape	
- Public Health & Sanitation		
- Solid Wastes		
- Risk of Disaster		

Table-J1.4 Environmental Elements to be Examined

Source: JICA (1992) Environmental Guidelines V. for River and Sabo Engineering.

* Item suggested by Department of Environment.

The IEE to be conducted in Phase I of the Study for the Master Plan shall use an environmental matrix to examine the possible impacts of each of the project activities envisaged in the Master Plan on each of the environmental elements. Items on which adverse impacts are anticipated will be identified, and the Master Plan will be examined from an environmental viewpoint.

The EIA to be conducted in Phase II of the Study for the priority project shall be conducted on the basis of the IEE results. The environmental items identified by the IEE shall become the objectives of the EIA study. Qualitative and semi-quantitative analysis methods such as hazard identification, vulnerability analysis, risk analysis and benefit analysis will be applied. The EIA will also include recommendation of countermeasures to erase or relieve any of the adverse impacts and environment protection and environmental monitoring plan as has been required in the Bill.

The Study Team have discussed with the Department of Environment and reached consensus that at the feasibility study stage, the EIA process shall mainly follow JICA's environmental guidelines with considerations of the procedures shown in Figure-J1.1. The EIA results shall be compiled into the Final Report of this Study and referred in the future when the proposed project is to be implemented.

CHAPTER 2 INITIAL ENVIRONMENTAL EXAMINATION

2.1 Objectives

i, L The objectives of Initial Environmental Examination (IEE) are to examine the possible impacts of each of the project activities proposed in the Flood Control Master Plan on the environment, to identify the environmental items on which significant adverse impacts are anticipated and to evaluate the Master Plan from an environmental viewpoint.

The IEE results shall also provide basis for the Environmental Impact Assessment (EIA) to be conducted in the next phase of this study for the priority project.

2.2 Guidelines and Methodologies

For the IEE, the following environmental guidelines were applied and/or referred:

- 1) Fiji's Sustainable Development Bill, Part III-Environmental Impact Assessment (Ministry of Urban Development, Housing and Environment, 1996);
- 2) Environmental Guidelines V. for River and Sabo Engineering (JICA, 1992);
- 3) Environmental Guidelines for Dredging and River Improvement in Fiji (FAO, 1992).

The first document will become the Sustainable Development Act - the first legislation of this kind in Fiji after Parliament approval, and the principles given in this document shall govern all the activities or undertakings that are subject to environmental examination. The second document establishes the basic policy of environmental consideration for JICA technical cooperation projects and specifies the environmental elements on which impacts may be caused by the projects. The third document is currently applied in Fiji for carrying out environmental impact assessment for dredging and river improvement projects, and some of the methods proposed were referred in this study.

The IEE was conducted mainly by using an environmental examination matrix which enables a screening of all the impacts on each of the environmental items from each of the project activities proposed in the Master Plan, for an identification of the significant environmental impacts. As shown in Table-J2.1, the environmental examination matrix has vertical axis consisting of rows for project activities, and horizontal axis consisting of columns of environmental elements grouped in 3 categories: social environment, natural environment and environment pollution. The project activities include all those proposed in the Master Plan for Rewa, Sigatoka, Nadi and Ba Rivers. For each of the project activities, both the construction phase and operation phase are considered. The environmental elements include 23 items specified in the JICA Environmental Guidelines and 1 additional item - Hazardous Substances suggested by the Dept. of Environment. Three kinds of symbols are used to identify the extent of the impact according to an examination of the environmental condition at the proposed project sites and a prediction of the environmental quality in the future. Since environmental impacts identification is the main objective of the IEE, qualitative and semi-quantitative examination by analogical method and professional judgment are the main methodologies used at this stage.

	Proje	Project Activities			Ň	ocial E	Social Environment	ument					Nat	ural E	Natural Environment	ument				Envir	onmer	Environmental Pollution	llutio	-
Project Phase	River Basin	Project Item	Resettlement	yivitsA simonos3	raffic & Living Facilities	Community Separation	Archaeological & Cultural Properties	Water Right / Right of Common	Public Health & Sanitation	Solid Waste	Risk of Disssier Topography & Geography	Soil Erosion	Groundwater	Lake and Rivers	Coastal Area	Flora & Fauna	Meteorology	edvospuer	Air Pollution	Water Pollution	Soil Pollution Noise & Vibration	Ground Subsidence	Oround Substactice	Hazardous Substances
		Diversion channel	×	⊲	×			<u>⊴ 80</u> ⊲	企	×					×	\triangleleft		Þ		4	7	ک		
	Rewa	Dike construction	×	⊲	4		146 - 30 - 30		<u>ک</u> ایند (<u>⊗∧</u> ⊲										 ▼	7	♦		
	Sigatoka	Dredging					4			×										\triangleleft	7	▼	्र इ.स.	
່າວມາ		Diversion channel	×	⊲	×					<u> </u>	ব জল				×			\triangleleft		 ▼	7	<u>⊳</u> ⊽	international Second	
	Nadi	Short cut channel		⊲					7	<u>⊜</u> ⊲										⊂ ∏	3. S. S.	Δ		
	Ba	Dike construction	٩	4	4				7	 										\bigtriangledown	7 2000 2000 2000 2000 2000	 ⊽		
†'		Diversion channel						<u>*</u> **					ک		¢	\bigtriangledown								
	Kewa	Dike construction																						
	Sigatoka	Dredging													a New Sol									1813 1931 1937
oilsi		Diversion channel					$(0,0)_{i=1}^{n}$	∇					Þ		Þ					×				23) 201
	Nadi	Short cut channel																						
	Ba	Dike construction											1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				1997 1997 1997 1997 1997 1997 1997 1997							
1	×: Signifi	X: Significant Adverse Impact		∆: P	ossible	e Adve	Δ : Possible Adverse Impact	pact		Shade	: No A	dvers	Shade: No Adverse Impact	ç										

Table-J2.1 Environmental Examination Matrix

∆: Possible Adverse Impact

J2-2

2.3 Impacts Examination

As a result of screening through the environmental examination matrix shown in Table-J2.1, significant adverse impact was identified on 4 environmental elements, and possible adverse impact was envisaged on 13 environmental elements from some project activities. The following paragraphs give the rationale.

2.3.1 Social Environment

(1) Resettlement, Economic Activities and Traffic & Living Facilities

Table-J2.2 summarizes the general condition at the project sites related to resettlement and land acquisition, economic activity, traffic & living facilities. For the diversion channels, with their broad width, e.g. 368 m for the Rewa and 352 m for the Nadi, acquisition of larger areas of land will be required, and within these areas certain number of residential houses will be involved in a resettlement program although the routes have been carefully chosen in order to reduce the resettlement scale as far as possible. For the dike construction in Rewa river, land acquisition area will be much smaller but since the left bank of the river near Nausori Town is densely populated, the number of houses for resettlement will be larger. As for public facilities, I elementary school at Vunimono will be affected by the dike construction for Rewa river, and I nursery at Saunaka will have to be relocated for the Nadi diversion channel. Land acquisition and resettlement often cause significant social impacts and therefore have to be carefully coped with.

	Land Ac	quisition A	rea (ha)	Number of	Public	Traffic Facility
Project Sites	Free hold	Native	State	Houses	Facility	
(1) Rewa River					•	
Diversion channel	0	179.6	101.7	40	None	Cross Kings Road, Vuci Road, Vusuya Road and Mara Road
Dike construction	0	7.5	6.1	53	l elementary school	May affect Kings Road and Wainibokasi Road
(4) Sigatoka Rive	r				· · · · · · · · · · · · · · · · · · ·	- T
Dredging		None		None	None	None
(3) Nadi River					- -	
Diversion channel	29.3	0	42.8	35	l nursery	Cross Queens Road, Wailoaloa Road and a tram line
Short cut channel	0	3.3	0	None	None	Cross a small access road
(4) Ba River						
Dike construction	12.6	12	0	4	None	May affect some small access road

Table-J2.2 Condition Related to Resettlement etc. at Project Sites

Possible impacts on economic activity are envisaged, since farmers with their land lost may have to seek other ways of production and villagers separated apart from their farms or workplaces by the project construction may have to take longer time for commuting. The commercial activities of shops and restaurants near the project sites may also be affected during the construction. Therefore, countermeasures have to be taken regarding such kind of impacts. During project construction, a large number of vehicles will be employed. This may affect the traffic condition of all the roads in and leading to the project area in addition to the direct hindrance of traffic from the project at several locations such as the places where the diversion channels cross Kings Road at Nausori and Queens Road at Nadi. Preparation of temporary bypass roads and traffic regulation may have to be considered.

(2) Archaeological & Cultural Properties

Talbe-J2.3 shows the sites of archaeological and cultural properties, national reserves and protected areas in the project area. Their approximate locations are shown in Figure-J2.1. These sites have been cited in the National Environment Strategy (Watling D. and Chape S. 1993) as preliminary register of sites of national significance. Although all the proposed project locations are not in the vicinities of these sites, it is still recommendable that consideration should be given on their protection during project implementation, especially in the Rewa and Sigatoka river basins where numbers of unidentified ruins of ancient fortifications are said to be scattered along the valleys.

Site	Site Name	Significance
Number		
Rewa River	ŕ	
i	Wailotua Limestone	Limestone ecosystem and cave
2	Waidawara	Geological site-river process
3	Wabu Creek	Intact Fiji dakua montane rainforest
4	Wainsabulevu Falls	Water fall
5	Monasabu	Dam, hydro catchment protection, rainforest
6	Monasabu Swamp	Rare montane swamp community
7	Wainibudi R.	Geological site-rock type
8	Naqali	Neovetchia storckii palm habitat
9	Sovi Basin	Rainforest, wilderness area, high scenic value
10	Sovi Gorge	River gorge of high scenic value
31	Korobasabasaga Range	High scenic value
Sigatoka R	liver	
12	Sautabu Cave	Limestone cave
13	Nagalimare Limestone	Limestone ecosystem
14	Tatuba Cave	Limestone cave system
15	Rairaimatuku Plateau	Mountain rainforest
16	Korokune	Veitchia johannis palm forest
17	Yadua Quarry	Geological site-rock type
18	Makasiko	Geological site-rock type
Nadi River	ſ	
19	Nausori Highlands	Dry zone mountain rainforest
20	Vaturu Dam Catchment	Catchment protection; dry zone rainforest
Ba River		
21	Nadarivatu Nat. Res	Dakua dominated rainforest

	Table-J2.3	Sites of Archaeology,	Culture and National	Significance in the Project Area
--	------------	-----------------------	----------------------	----------------------------------

Source: Watling D. and Chape S. (1993). "The national environment strategy: Fiji". Government of Fiji and IUCN - The World Conservation Union

I

I

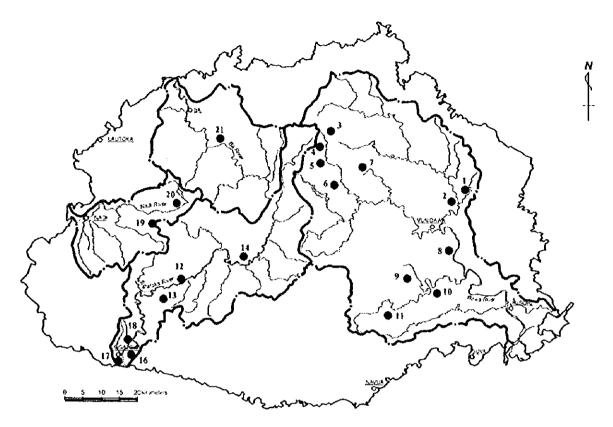


Figure-J2.1 Sites of Archaeology, Culture and National Significance in the Project Area

(3) Water Right / Right of Common

The implementation of the flood control projects may not involve the problem of water right. However, since rivers are very important for fishery in Fiji and many residents live on fishing from the river or mangrove forest in the estuary area, the impact on the Customary Fishing Rights should be taken into consideration.

The diversion channel planned for Rewa river will finally go through the mangrove forest area toward the sea. In this case, certain area of the mangroves may have to be cleared for the construction, and diverged flood flow may result in a change of the biological condition in the mangrove forests (refer to 2.3.2 under natural environment). This will more or less affect fishing in the related area.

There have been cases of compensation for Customary Fishing Rights loss related to developments in mangrove area in Viti Levu.

(4) Solid Waste

The construction of the diversion channels and work for river dredging will need a large scale excavation and result in generating large quantity of earth and river sediments. Although most of the earth and sediments will be used at the site for dike construction, transport and disposal of certain amount of construction wastes will still be required.

Therefore, solid waste disposal has to be well planned. Similar problem may also be encountered during the construction of other facilities.

2.3.2 Natural Environment

(1) Topography/Geography and Soil Erosion

Among the proposed flood control projects, the constructions of the diversion channels are of great scale and may more or less cause a change in the topography at the project sites. Consideration should be given on this impact.

As described in Supporting Report Part H (Forest and Soil Erosion), soil crosion is a serious problem in the four river basins and a total soil loss of about 30 million ton per year has been estimated. During project construction, prevention of soil erosion should be stressed.

(2) Groundwater

Regarding groundwater, possible impacts may be caused by the diversion channels in the operation phase.

Ţ

Since the diversion channels head to the sea, backward tidal flow through the channels will be unavoidable. For example, Nadi river often experiences a tidal flow backward up to the bridge in Nadi Town. In such a case, sea water may probably intrude into the diversion channel up to more than half of its length. If the bottom of the channel is not well sheeted, sea water may infiltrate into groundwater aquifer and result in groundwater pollution.

The extent of the above mentioned impacts depends on the condition of groundwater utilization in the related area. Further identification of the impacts is necessary at the feasibility study stage.

(3) Coastal Area

For the diversion channel in the Rewa, its outlet will be in the mangrove forest area. Clearance of some mangrove trees for channel construction is one reason for the impacts and intrusion of the diverged flood water into the mangrove forest is another. Figure-J2.2 shows the mangrove communities at the Rewa diversion channel site where there are mainly the Dogo Forest Alliance (dominant species: Dogo) and Mixed Alliance (dominant species: Dogo and Selala). According to the Mangrove Management Plan for Fiji (Watling, 1987; 1988), the mangroves at the Rewa have been designated as the Traditional Use Zone - mangrove areas which are subject to continual use and are required for the sustainable subsistence needs of rural communities. The traditional use zone is thought to be of secondary importance in mangrove management and conservation in comparison with the Resource Reserve Zone which is the mangrove area identified as being of primary importance specifically in the sustenance of the capture fisheries.

When the diversion channel introduces flood water into the mangrove area, possible impacts may mainly caused by two factors: 1) accumulation of sediments and 2) reduction of salinity. The former may alter the structure of the substrate where mangroves lay their roots in, and the later may affect the nutrient balance necessary for mangroves to grow.

However, environment studies have pointed out the problem of drought (lack of fresh water) which makes mangroves stunted in some mangrove forests in Fiji (Raj, U and Seeto, J, 1986). Such a condition is observed in the Rewa Delta area. From this viewpoint, positive impacts are envisaged when the diversion channel brings more fresh water to the mangrove forest, but possible adverse impacts may be caused by sediments accumulation.

For the Rewa diversion channel, because Bau Island lies at the offshore not far from the Namata river mouth and several coral communities are scattered around the island, sediments carried to this area may increase sea water turbidity and affect its scenery. Further study on this impact shall be required before project implementation.

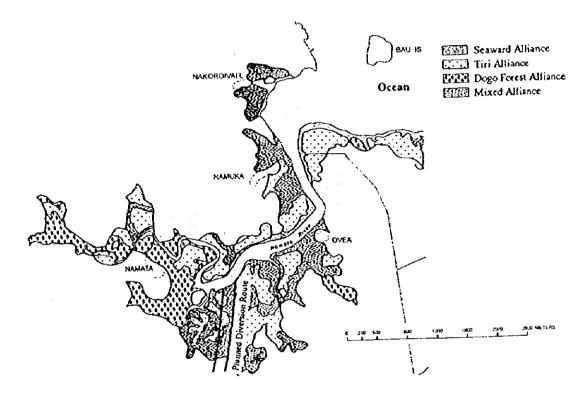


Figure-J2.2 Mangrove Communities at the Site of Diversion Channel for Rewa River

As for the Nadi diversion channel, the impacts anticipated are coastal erosion and sediment accumulation since the channel's outlet will be at the sand beach area with shallow water depth and naturally shaped coastal line. This problem shall be investigated at the feasibility study stage. There exist no coral reefs in the vicinity area.

(4) Flora & Fauna

Ť.

Generally speaking, all the proposed projects will not pose impacts on flora and fauna except the Rewa diversion channel with its outlet at the mangrove area. The impacts on the mangroves have already been discussed above.

(5) Landscape

The proposed projects at the downstream areas of Rewa and Nadi Rivers may change the landscape, because the diversion channels are large river engineering constructions.

However, the impacts may become positive if aesthetic factors are taken into consideration in the engineering design.

2.3.3 Environmental Hazards

(1) Water Pollution

For the Nadi diversion channel, water quality in the main river course downstream of the diversion point has to be well considered regarding the distribution of flow to the river course and channel course during the non-flooding period. Although the total population of Nadi Town is not big, most of the residents and commercial activities are concentrated in the town area which lies in between the diversion point and the confluence of the Nawaka creek to the Nadi river. With a comparatively high pollutant load (including that from a sewage treatment plant outlet and many septie tanks and sewers) discharged into this section of stream but no additional flow from any tributary to contribute to pollutant dilution, river water pollution progresses up to the confluence point where the Nawaka creek carries an amount of flow from a large catchment area into the Nadi river. Based on the results of water quality survey conducted by the Study Team (JICA, 1997. 3), COD is estimated to have increased for about 20 % as river flows through this section. The National Water Quality Laboratory, PWD has even noticed nuisance condition in Nadi River at extremely dry period (no recorded data).

1

If part of the flow is diverged through the diversion channel, water quality in the main river will be more or less deteriorated. Table-J2.4 is a rough estimate of the change in river water quality corresponding to flow distribution ratio.

Case	Flow Distribution Ratio River : Channel	COD Increase ^(b)
1	2:1	about 9.5 %
2	1:1	about 19 %
3	1:2	about 38 %

Table-J2.4 Estimate of Change in River Water Quality (*)

Note : (a) Estimate based on water quality survey results; (b) Perulte can only be given as parent because of lack of flows

(b) Results can only be given as percent because of lack of flow rate data.

From a viewpoint of river water quality conservation, it is recommendable that for Nadi river, diversion channel construction should not worsen the sanitary condition of the main stream, and diversion of a large amount of flow during the non-flooding period should be avoided.

For the Rewa diversion channel, because the flow in the main stream is much larger and river water quality is better at present, the above mentioned problem is less serious. However, during project construction, deterioration of river water may also happen, such as an increase in suspended solids from the work site. This is a common problem for all the proposed projects. Therefore, suitable countermeasures have to be taken.

(2) Noise & Vibration

Noise and vibration from construction machinery and vehicles may more or less affect the life of residents near a work site and/or transportation road for the project constructions in

the populated area. Restriction and regulation of working hour etc. should be considered for mitigating the possible impacts.

2.3.4 Other Environmental Items

Regarding the other environmental elements, no adverse impacts are anticipated from any of the project activities for the following reasons:

- -- <u>Community Separation</u>: The implementation of any of the proposed projects may not result in this problem.
- Public Health & Sanitation: All the projects may not cause any adverse impact on this item. On the contrary, flood damage mitigation can improve the residents' living condition and benefit public health.
- <u>Risk of Disaster</u>: Flooding is the most serious natural disaster in Fiji, and all the flood control projects can mitigate the risk.
- Lake and Rivers: Impact is positive since the projects are for river improvement.
- <u>Meteorology</u>: The projects are not liable to cause any change in the weather.
- -- <u>Air Pollution</u>: There may not be any source to cause air pollution from the projects.
- <u>Soil Pollution</u>: No pollution source is anticipated.
- Ground Subsidence: Impossible to be induced by the projects.
- <u>Offensive Odor</u>: No source to emit offensive odor.

1. AN

 <u>Hazardous Substances</u>: Although hazardous substances management is important from a view point of water resource conservation, the implementation of the projects may not impose adverse impact on this item.

2.3.5 Environmental Impact Assessment for the Priority Project

The IEE is a preliminary examination of all the environmental elements related to the projects proposed in the Flood Control Master Plan. Its output shall provide 1) the basis for the environmental impact assessment (EIA) to be conducted in the next phase of the study for the priority project, and 2) a reference for the EIA for the other projects when they are implemented in the future as is suggested in the Master Plan.

For the priority project, the environmental elements on which significant or possible adverse impacts have been identified by the IEE shall be further studied in accordance with the detailed plan of the project at that stage. The EIA study shall mainly include 1) description of the environmental setting, 2) assessment of environmental impacts, 3) recommendation of mitigation measures, 4) environmental management and monitoring plan and 5) consideration on environmental mediation.

CHAPTER 3 SITE SURVEY FOR SOCIAL AND NATURAL ENVIRONMENT

3.1 Introduction

In order to understand the present condition of social and natural environment at the sites for the priority project, i.e. the Nadi diversion channel and shortcut channel, the Study Team conducted site investigations through the subcontract with a local consultant. The investigations related to the EIA study include interview survey, traffic survey and groundwater survey.

3.2 Interview Survey for Social Environment

3.2.1 Survey Area

The survey area covers the area where land acquisition and resettlement may probably happen with project implementation. It includes the planned sites for the Nadi diversion channel and shortcut channel (Figure-J3.1).

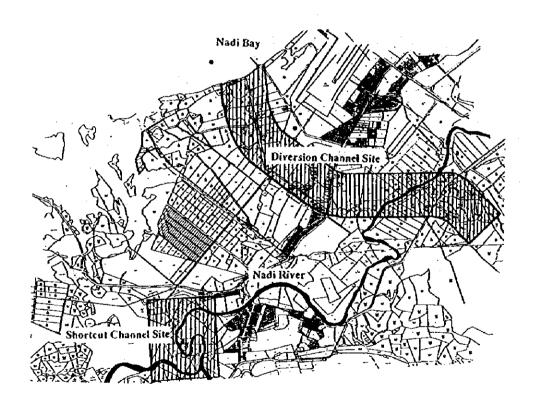


Figure-J3.1 Interview Survey Area

3.2.2 Interview Items

I

The interview survey was conducted by visiting the households living in the survey area by a subcontractor. The interview items are as below:

- Composition of the household (name, age, sex, education, etc.)
- Living in the present house since (when) and came from (where)
- Reasons for choosing the location for the present house
- Race and religion
- Occupation and work place location
- School learning and its location
- Location of medical care
- Monthly or annual income of the household
- Area and condition (building, garden, parking etc.) of land
- House condition (building area, floor area, structure, quality, year built, maintenance condition)
- -- Land ownership and status
- Size of farmland owned/occupied, land status, average income of farming
- Values of house, land and property owned/occupied
- Effect of resettlement
- Utilities (road, water supply, sewerage, electricity, telephone, etc.)
- Other social aspects

Public and private facilities other than residential houses were also visited regarding the above items.

Ŧ

1

134 households were visited during the interview survey from Dec. 1997 to Feb. 1998. The results were inputted into a data base in Microsoft Access format.

3.3 Survey on Traffic Volume at Queens Road

3.3.1 Survey Location and Method

Figure-J3.2 shows the location of the traffic survey points. Three representative sections were selected at the crossing of Queens Road and Enamanu Road near McDonald's -- two at Queens Road (upper and down the crossing) and one at Enamanu Road. The survey points are at the two sides of each section for counting the traffic volume of each lane. The survey was conducted on a weekday (Jan. 28, 1998) from 6:00 a.m. to 8:00 p.m. by the subcontractor. Vehicle number was counted by vehicle type as heavy truck, small truck, large bus, microbus/minivan, passenger car passing the survey point. Numbers were noted at 30-minute interval.

3.3.2 Survey Results

The survey results were inputted into a data base in Microsoft Excel format. Detailed analysis was explained in Chapter 4 below.

3.4 Survey on Groundwater Utilization

3.4.1 Survey Area

The survey area covers the diversion channel site and its vicinity with a total area of 6 km^2 (Figure-J3.3).

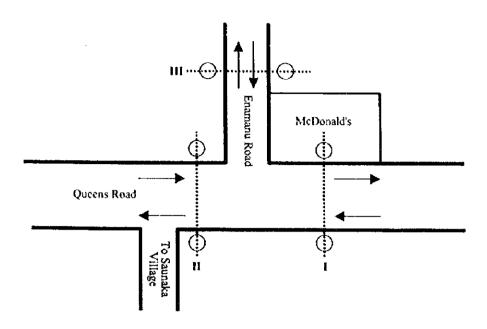


Figure-J3.2 Location of Traffic Survey Points

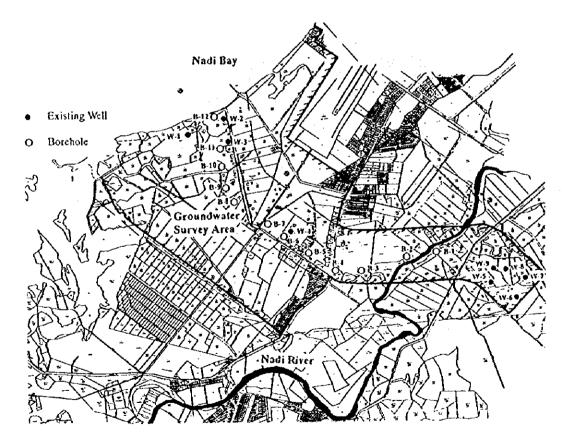


Figure-J3.3 Location of Existing Wells and Boreholes Drilled During This Study

3.4.2 Survey Results

In the whole survey area, 9 existing wells were identified (refer to Figure-J3.3 for well locations) -4 at the right bank (coastal side) and 5 at the left bank (inland side) of Nadi River. Table-J3.1 shows the depth, electric conductivity (EC) and utilization condition of these wells. The EC measurement was carried out by using a potable EC meter.

For better understanding of groundwater quality in the project area, EC measurement was also conducted for the 12 boreholes drilled during the geological survey for this study. Their locations are also shown in Figure-J3.3 and measurement results in Table-J3.2.

Well No.	Depth (m)	EC (µS/cm)	Description
W-1	-	-	Dry well, no longer using.
W-2	-	-	Dry well, no longer using.
W-3	15	251	Drinking in emergency, but not often. Ever waste gasoline was dumped to the well.
W-4	-	-	Dry well, no longer use.
W-5	6	460	Washing, emergency drinking.
W-6	5	610	Washing, emergency drinking.
W-7	5	368	Washing, emergency drinking.
W-8	6	171	Washing, emergency drinking.
W-9	7	311	Washing, emergency drinking.

Table-J3.1 Existing Wells in the Project Area

Table-J3.2	EC-Measurement of Bo	rehole	Water

Borehole No	Depth (m)	EC (µS/cm)	Description
B-1	5.0	1080	Nadi River side
B-2	6.0	411	
B-3	7.0	115	-
B-4	4.5	120	•
B-5	5.0	161	·
B-6	5.0	205	-
B-7	3.0	580	-
B-8	2.0	1000	-
B-9	1.5	2700	*
B-10	1.5	5600	Near a drainage channel
B-11	2.0	10000	Near a drainage channel
B-12	1.0	4000	Sea side

3.5 Survey on Coastal Environment

Regarding the present condition of coastal environment, tidal current survey was conducted by a subcontractor during third work period in Fiji, November '97 ~ March '97 (refer to Supporting Report Part I). In addition, the Study Team and MAFF counterparts carried out site investigation of the coastal area, and the condition of several drainage channels and flood gates near the project area (Wailoaloa and Nasoso). This includes EC measurement of water along the channels and observation of biological conditions. The results shall be used for the analysis of environmental impacts.