D. EXISTING INFRASTRUCTURE

APPENDIX D. INFRASTRUCTURE

1.	Introduction of LRAs and Division into the Sub-LRAs	D-1
2.	Natural Condition of LRAs	D-17
	2.1 Topography	D-17
	2.2 Geology	
	2.3 Suitability of Small Reservoir Development	D-25
	2.4 Mechanism of Salinization in Northeastern Region and	
	Farm Pond Construction	D-28
3.	Present Condition and Villagers' Demand on Infrastructures	D-29
	3.1 Introduction	
	3.2 Diffusion Ratio of Commodities	D-29
	3.3 Natural Problems	
	3.4 Public Infrastructure	
	3.4.1 Electrification	
	3.4.2 Public Telephone System	
	3.4.3 Public Transportation	
	3.4.4 Village Waterworks	
	3.4.5 Primary School	
	3.4.6 Health Centers	
	3.4.7 Public Ponds	
	3.5 Priority Infrastructure Development	
	3.6 Sanitary and Health Affairs	
	3.6.1 Sanitary Affairs	
	3.6.2 Health Service Affairs	
A		
4.	Design Standard for Infrastructures Development	
	4.1 Design Standard for Irrigation Facilities	
	4.1.1 Definition of Project Scale.	
	4.1.2 Criteria of Pump Irrigation Project	
	4.1.3 Criteria of Reservoir Project	
	4.1.4 Criteria of Canal and Pipeline	
	4.1.5 Criteria of Intake Installation to the Existing Non-gated Small Reservoir	
	4.2 Design Standard for On-Farm Facilities	
	4.2.1 Criteria of On-Farm Ditch	
	4.2.2 Criteria of Farm Road	
	4.2.3 Criteria of Farm Pond	
	4.2.4 Criteria of Micro Irrigation System	
	4.3 Design Standard for Rural Road Facilities	
	4.4 Water Quality Standard for Rural Water Supply	D-55
5.	Development Plan and Cost of the Infrastructures	
	5.1 Development Plan and Cost of the Agricultural Infrastructures	
	5.1.1 Water Resources Development Plan and Cost.	D-58
	5.1.2 On-farm Development Plan and Cost	D.63

5.2 Develor	oment Plan and Cost of the Rural Infrastructures D-66
5.2.1 Rura	I Road Development Plan and Cost D-66
5.2.2 Rura	l Water Supply Development Plan and Cost
	Infrastructure
o, mivemory or 6 1 Jeriantic	on Development Projects
O.I Higani	ting Irrigation Projects
0.1.1 EXIS	posed Irrigation Projects
7. Back Data o	of Study for the Priority Areas
7.1 Back D	ata for On-Farm and Water Resources Development
7.1.1 Proj	ect Map and Cadastral Blocks of the Priority Areas
7.1.2 List	of Farm Road Development
7.1.3 Bac	k Data of Typical Model of Dredging Project
7.1.4 Bac	k Data of Huai Lak Reservoir
7.1.5 Wat	ter Balance of Huai Bang Sai Pump Irrigation
7.2 Cost E	stimation of the Priority Areas
7.2.1 Pro	oject Cost of On-Farm Development in Khon Kaen Priority Area D-103
7.2.2 Pr	oject Cost of On-Farm Development in Mahasarakham Priority Area D-105
7.2.3 Pr	oject Cost of On-Farm Development in Sakon Nakhon Priority Area D-107
7.2.4 Pr	oject Cost of On-Farm Development in Mukdahan Priority Area D-109
7.2.5 Pr	oject Cost of Dredging Project in Khon Kaen Priority Area
7.2.6 Pr	oject Cost of Huai Lak Reservoir Project in Mukdahan Priority Area D-114
7.2.7 Pr	oject Cost of Huai Bang Sai Pump Irrigation Project in Mukdahan Priority Area D-116
	•
7.2.8 Pr	oject Cost of Kolopokan Pond Rehabilitation Project in Mukdahan Priority Area D-119
700 H	nit Cost of Farm Pond, Farm Road and Irrigation Systems
7.2.9 U	ist of Unit Costs used in the Study
8. Drawings.	D-126
	List of Tables
Table 1-1	Number of the Study Area and Sub-Study Area
Table 1-2	Restructure of the Sub-LRAs
Table 2.1-1	Topographical Characteristics of the Study LRAs
Table 2.1-2	Topographical Characteristics of Sub-LRAs in the Study Area D-19
Table 2.1-3	Topographical Characteristics by Topo-LRAs in Khon Kaen D-20
Table 2.1-4	Topographical Characteristics by Topo-LRAs in Mahasarakham D-20
Table 2.1-5	Topographical Characteristics by Topo-LRAs in Mukudahan D-21
Table 2.1-6	Topographical Characteristics by Topo-LRAs in Sakon Nakhon D-21
Table 2.2-1	Stratigraphy of The Study Areas D-23
Table 2.2-2	Comparison of the Geological Condition in Each Province
Table 2.3-1	Description of Suitability of Small Reservoir Development
Table 2.3-2	Analysis of Suitability of Small Reservoir Development in the
	Study Area D-27
Table 3-1	Diffusion Ratio of the Village Water Supply Works in the Study
	LRAs D-30
Table 3-2	Village Water Works and Diffusion Ratio in Each LRAs D-31

Table 3-3	Diffusion Ratio of Major Commodity, Natural Problems, Public	
	Infrastructure and Development Priority by Interviews	. D-3 5
Table 3-4	Present Condition of Health and Sanitary Affairs by Interview	. D-36
Table 3-5	Questionnaire on Generals and Infrastructures	
Table 3-6	Questionnaire about Medical Care Services	D-41
Table 4.1-1	Scale Definition of Irrigation Project	
Table 4.1-2	Criteria of Pump Irrigation Project	. D-42
Table 4.2-1	Design Dimension of Farm Road	D-47
Table 4.2-2	Design Standard of Different Types of Farm Pond	. D-48
Table 4.2-3	Available Sprinklers and Cost in Thailand	. D-50
Table 4.2-4	Selected Sprinkler System for Vegetables and Fruit Trees	
Table 4.2-5	Comparison of Cost for Engine and Electric Motor for Sprinkler	
	System	D-52
Table 4.2-6	Comparison of the Electric Incoming Systems	D-52
Table 4.3-1	Standard for Rural Road (Office of Prime Minister)	D-53
Table 4.3-2	Design Standard for Rural Road in LRAs	D-53
Table 4.4-1	Main Agencies for Implementing the Rural Water Supply	
Table 4.4-2	Raw Water Quality Standard	
Table 4.4-3	Drinking Water Quality Standard	
Table 4.4-4	Classification for Project Scale of Water Supply Works	
Table 5.1-1	Potential Development of Surface Water Resources	
Table 5.1-2	Water Resources Development Plan in the Study Area	
Table 5.1-3	Unit Costs used for Cost Estimation of Water Resources	
	Development	D-61
Table 5.1-4	Development Cost of Water Resources	
Table 5.1-5	Unit Construction and Operation Cost fo Farm Pond and Well	
Table 5.1-6	Unit Construction and Maintenance Cost of Farm Road	D-63
Table 5.1-7	Summary of On-Farm Development and Cost in the Study LRAs	
Table 5.1-8	Study Results of Farm Road Development in the Priority Areas	
Table 5.1-9	Details of On-Farm Development and Construction Cost in Each	
	LRA	D-65
Table 5.2-1	Rural Road Improvement and Cost in the Study LRAs	D-66
Table 5.2-2	Rural Water Supply Development and Cost in the Study LRAs	
Table 5.2-3	Unit Costs of Rural Water Supply Project	
Table 6.1-1	List of Existing Irrigation Projects in the LRAs	D-69
Table 6.1-2	List of Proposed Irrigation Projects in the LRAs	D-72
Table 7.1-1	List of Farm Road in Khon Kaen Priority Area	D-81
Table 7.1-2	List of Farm Road in Mahasarakham Priority Area	
Table 7,1-3	List of Farm Road in Sakon Nakhon Priority Area	
Table 7.1-4	List of Farm Road in Mukdahan Priority Area	
Table 7.1-5	Project Features of Case Study for Huai Lak Reservoir	
Table 7.1-6	Major Elements of Huai Lak Reservoir (Case 1-2)	
Table 7.1-7	H-A, H-V Curve of Huai Lak Reservoir (Case 1-2)	
Table 7.1-8	Water Balance of Huai Lak Reservoir (Case 1-2)	
Table 7.1-9	Irrigation Demand to the Huai Lak Reservoir (Case 1-2)	
Table 7.1-10	Major Elements of Huai Bang Sai Pump Irrigation	
Table 7.1-11	Water Balance of Huai Bang Sai Pump Irrigation	D-98
Table 7.1-12	Irrigation Demand of the Huai Bang Sai Pump Irrigation	
 .		
	D - iii	

Table 7.2-1	Project Cost of On-Farm Development in Khon Kaen Priority Area.	D-103
Table 7.2-2	Engineering Survey and Design Cost of Khon Kaen Priority Area	D-103
Table 7.2-3	O/M Cost of Khon Kaen Priority Area	D-104
Table 7.2-4	Disbursement Schedule of Khon Kaen Priority Area	
Table 7.2-5	Project Cost of On-Farm Development	
	in Mahasarakham Priority Area	D-105
Table 7.2-6	Engineering Survey and Design Cost	
	of Mahasarakham Priority Area	D-105
Table 7.2-7	O/M Cost of Mahasarakham Priority Area	D-106
Table 7.2-8	Disbursement Schedule of Mahasarakham Priority Area	D-106
Table 7.2-9	Project Cost of On-Farm Development	
	in Sakon Nakhon Priority Area	D-107
Table 7.2-10	Engineering Survey and Design Cost of	
	Sakon Nakhon Priority Area	
Table 7.2-11	O/M Cost of Sakon Nakhon Priority Area	D-108
Table 7.2-12	Disbursement Schedule of Sakon Nakhon Priority Area	D-108
Table 7.2-13	Project Cost of On-Farm Development in Mukdahan Priority Area	D-109
Table 7.2-14	Engineering Survey and Design Cost of Mukdahan Priority Area	
Table 7.2-15	O/M Cost of Mukdahan Priority Area	
Table 7.2-16	Disbursement Schedule of Mukdahan Priority Area	D-110
Table 7.2-17	Project Cost of Huai Khan Dredging at K.K	D-111
Table 7.2-18	O/M Cost of Huai Khan Dredging at K.K	D-111
Table 7.2-19	Project Cost of Huai Sua Thao Noi Dredging at K.K	
Table 7.2-20	O/M Cost of Huai Sua Thao Noi Dredging at K.K	
Table 7.2-21	Project Cost of Huai Sua Thao Yai Dredging at K.K	D-112
Table 7.2-22	O/M Cost of Huai Sua Thao Yai Dredging at K.K	D-112
Table 7.2-23	Project Cost of Huai Lak Dan Dredging at K.K	D-113
Table 7.2-24	O/M Cost of Huai Lak Dan Dredging at K.K	D-113
Table 7.2-25	Project Cost of Huai Lak Reservoir Development at MKD	. D-114
Table 7.2-26	O/M Cost of Huai Lak Reservoir Development at MKD	. D-115
Table 7.2-27	Disbursement Schedule of Huai Lak	
A	Reservoir Development at MKD	
Table 7.2-28	Project Cost of Huai Bang Sai Pump Irrigation at MKD	. D-116
Table 7.2-29	O/M Cost of Huai Bang Sai Pump Irrigation at MKD	. D-117
Table 7.2-30	On-Farm Cost of Huai Bang Sai Pump Irrigation at MKD	
Table 7.2-31	Disbursement Schedule of Huai Bang Sai Pump Irrigation at MKD	
Table 7.2-32	Project Cost of Kolopokan Pond Rehabilitation at MKD	
Table 7.2-33	O/M Cost of Kolopokan Pond Rehabilitation at MKD	
Table 7.2-34		
Table 7.2-35		
Table 7.2-36		
Table 7.2-37		
Table 7.2-38	Construction Cost of Mini Sprinkler System (6,000m³ Farm Pond).	. D-121
Table 7.2-39		
Table 7.2-40	O/M Cost of Mini Sprinkler System (6,000m ³ Farm Pond)	. D-122
Table 7.2-41		
Table 7.2-42		
	List of Unit Costs used in the Study	

List of Figures

Figure 1-1	Sub-LRAs in Khon Kaen (KK 1, KK 2, KK 3, KK 4)	. D-4
Figure 1-2	Sub-LRAs in Khon Kaen (KK 5, KK 6)	. D-5
Figure 1-3	Sub-LRAs in Mahasarakham (MHS 1, MHS 5, MHS 6)	D-6
Figure 1-4	Sub-LRAs in Mahasarakham (MHS 2, MHS 8)	
Figure 1-5	Sub-LRAs in Mahasarakham (MHS 3, MHS 4, MHS 7, MHS 10,	
	MHS 9)	D-8
Figure 1-6	Sub-LRAs in Mukudahan (MKD 1, MKD 5, MKD 6)	
Figure 1-7	Sub-LRAs in Mukudahan (MKD 2, MKD 3, MKD 4)	
Figure 1-8	Sub-LRAs in Mukudahan (MKD 7)	
Figure 1-9	Sub-LRAs in Mukudahan (MKD 8, MKD 12)	
Figure 1-10	Sub-LRAs in Mukudahan (MKD 9, MKD 10, MKD 11)	
Figure 1-11	Sub-LRAs in Sakon Nakhon (SKN 1, SKN 2, SKN 6, SKN 7)	
Figure 1-12	Sub-LRAs in Sakon Nakhon (SKN 3, SKN 4)	D-19
Figure 1-13	Sub-LRAs in Sakon Nakhon (SKN 5)	D-13
Figure 2.1-1	Physiography of the Northeast Thailand	D 17
Figure 2.3-1	Small Reservoir Development Suitability in the Study Area	
Figure 2.4-1	Schematic Model of Salinization	
Figure 3-1	Diffusion Ratio of the Village Water Supply Works	
Figure 3-2	Number of Villages covered by One Health Center	
Figure 3-3	Evaluation of Public Health Service (Kor Chor Chor 2 Khor	. D-32
rigate 3-3		73.22
Figure 4.1-1	Installation Plan of Intake to the Existing None Intake Type	. D-32
11gare 4.1-1	•	D 44
Figure 4.2-1	Small Reservoir	
Figure 4.2-1	Standard Alignment of Farm Roads in the LRAs.	
Figure 4.2-2	Typical Cross Section of Farm Road	
Figure 4.3-1	Typical Alignment of Sprinkler System for Large Farm Pond	
Figure 5.1-1	Typical Cross Section of Rural Road	
-	Procedure of Cost Estimation for Reservoir Development	
Figure 5.1-2	Relation between Farm Road Length and Land Holding Size	
Figure 5.1-3	Relation between Farm Road Cost and Land Holding Size	
	Project Location Map of Khon Kaen Priority Area	
rigute 7.1-1.2	Location Map of Cadastral Blocks and Farming Type	
Figure 7 1 0 1	Classification of Khon Kaen Priority Area	
	Project Location Map of Mahasarakham Priority Area	D-78-1
rigure 7.1-2.2	Location Map of Cadastral Blocks and Farming Type	·
E 7 1 2 1	Classification of Mahasarakham Priority Area	
	Project Location Map of Sakon Nakhon Priority Area	. D-79-1
Figure 7.1-3.2	Location Map of Cadastral Blocks and Farming Type	
TC: (1.1.1	Classification of Sakon Nakhon Priority Area	
	Project Location Map of Mukdahan Priority Area	. D-80-1
Figure 7.1-4.2	Location Map of Cadastral Blocks and Farming Type	
	Classification of Mukdahan Priority Area	
	Typical Model of Dredging Project	
	Proposed Cropping Pattern for Huai Lak Reservoir (Case 1-2)	
	H-A Curve of Huai Lak Reservoir (Case 1-2)	
Figure 7.1-8	H-V Curve of Huai Lak Reservoir (Case 1-2)	
Figure 7.1-9	Location Map of Huai Lak Reservoir	. D-91

List of Drawings

Drawing 1 Typical Design of Farm Pond	D-127
Drawing 2 Typical Cross Section of Farm Road	D-128
Drawing 3 Road Crossing Culvert	D-129
Drawing 4 Typical Design of Bridge	D-130
Drawing 5 General Plan of Huai Lak Reservoir	
Drawing 6 Longitudinal Section along Dam Axis	D-132
Drawing 7 Typical Cross Section of Dam	
Drawing 8 Longitudinal Section of Spillway	
Drawing 9 Details of The Side Channel	
Drawing 10 Details of The Leading Channel and Chute	
Drawing 11 Details of The Stilling Basin and Open Channel	D-137
Drawing 12 Profile of Outlet	
Drawing 13 Longitudinal Section of Huai Lak Left Bank Pipe Line (1/2)	D-139
Drawing 14 Longitudinal Section of Huai Lak Left Bank Pipe Line (2/2)	D-140
Drawing 15 Longitudinal Section of Huai Lak Right Bank Pipe Line	D-141
Drawing 16 Location Map of Huai Bang Sai Pump Project	
Drawing 17 Plane Plan of Diversion Weir	
Drawing 18 Huai Bang Sai Diversion Weir	D-144
Drawing 19 Cross Section of Huai Bang Sai Weir	D-145
Drawing 20 Huai Bang Sai Pump House	D-146
Drawing 21 Longitudinal Section of Huai Bang Sai Pipe Line	D-147
Drawing 22 Longitudinal Section of Huai Khan	
Drawing 23 Cross Section of Huai Khan	D-149
Drawing 24 Longitudinal Section of Huai Sua Thao Noi (1/2)	D-150
Drawing 25 Longitudinal Section of Huai Sua Thao Noi (2/2)	D-151
Drawing 26 Cross Section of Huai Sua Thao Noi (1/2)	D-152
Drawing 27 Cross Section of Huai Sua Thao Noi (2/2)	
Drawing 28 Longitudinal Section of Huai Sua Thao Yai (1/2)	
Drawing 29 Longitudinal Section of Huai Sua Thao Yai (2/2)	
Drawing 30 Cross Section of Huai Sua Thao Yai (1/2)	
Drawing 31 Cross Section of Huai Sua Thao Yai (2/2)	
Drawing 32 Longitudinal Section of Huai Lak Dan	
Drawing 33 Cross Section of Huai Lak Dan	D-159
Drawing 34 Plane plan of Kolopokan Pond Dredging	D-1 60
Drawing 35 Details of Kolopokan Pond Rehabilitation	D-161
Drawing 36 Typical Layout of Sprinkler (1/2)	
Drawing 37 Typical Layout of Sprinkler (2/2)	D-163

CHAPTER 1 INTRODUCTION OF LRAS AND DIVISION INTO THE SUB-LRAS

1) Numbering of LRAs in the Study Area

The study area is composed of 35 land reform areas (LRAs). However, some of those LRAs are large in area size and contain different characteristics. The 35 LRAs have been divided into 116 Topo-LRAs by the topographical and water resources potential aspects. However, the Topo-LRAs are so detail for the study that the areas are grouped into 44 areas with adequate size for the study. Such grouped areas are defined as Sub-LRAs for the study.

Table 1-1 Number of the Study Area and Sub-study Area

					Pro	ince	~				
	Khon Kaen (KK)		λ	lahasarakha (MII)	ım		Mukdahan (MK)		S	khon Nakh (SK)	on
LRA No.	Topo- LRAs	Sub- LRAs	LRA No.	Topo- LRAs	Sub- LRAs	LRA No.	Topo- LRAs	Sub- LRAs	LRA No.	Topo- LRAs	Sub- LRAs
1	10	1	1	1	1	l.	5	1)	1)
2	7	1	22	3	1	2	4	1	2	3	1
3	7	1	3	1	1	3	5	1	3	7	3
4	i	1	4	1	11	4	3	1	4	2	i
5	2	1	5	11	1	5	3	1	5	9	2
6	3		6	1	1	6	2	1	6	5	2
· · · · · · · · · · · · · · · · · · ·			7	11	1	7	4	1	7	1	1
			8	5	1	8	5	4			
			9	1	1	9	6	2			
 -			10	1	1	10	111	2			
			 -			11	2	2			
 	<u></u>					12	2	1			
7	30	6	10	16	10	12	42	17	7	28	11
						35 areas : 44 areas : 116 area	s.				

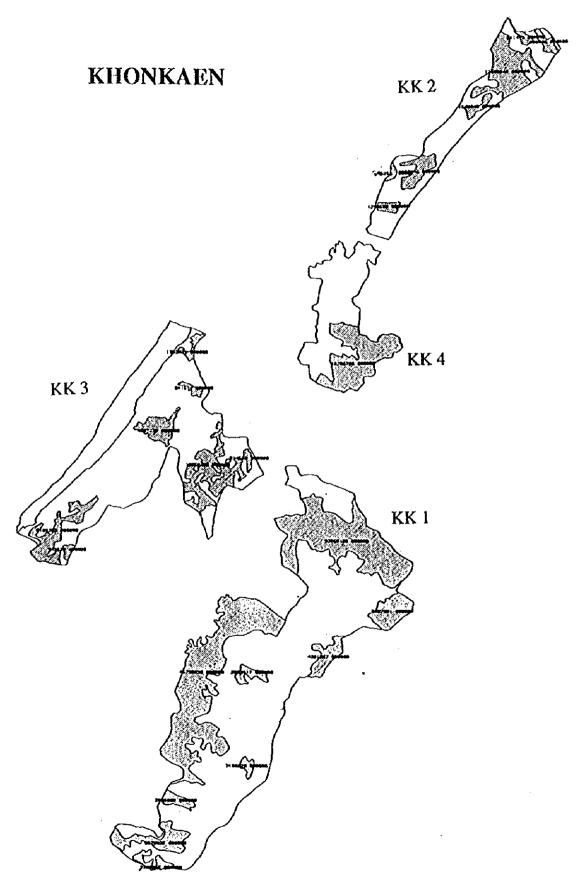
2) Sub-LRAs

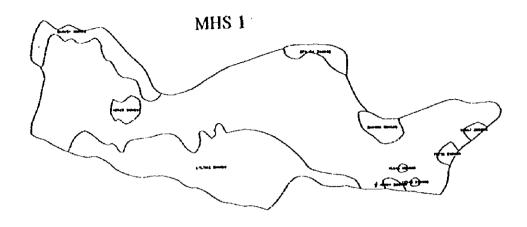
Following table shows the grouping of the Topo-LRAs into the Sub-LRAs taking similarity of topography, land use, accessibility and distance of each topo-LRA as criteria. Table 1-2 shows the restructure of Sub-LRAs. Boundary of each Sub-LRA is shown in Figure 1-11 to Figure 1-11.

Table 1-2 Restructure of the Sub-LRAs

1.R/	\s	Consideration of Grouping	Sub-	
No.	Topo- LRAs		Group- ing	Numbe rs
ΚI	10	This area is fragmented into 10 sub-areas, however, those sub-areas are similar in topographical conditions and adjacent to the economic forests. Although some sub-areas are facing to the Chi River, the area is to be considered as one area.	1-10	1
K2	7	This area is fragmented into 7 sub-areas, however, it may considered as one area which is adjacent to the economic forests.	1-7	1
K3 K4	7	As same as above reasons, the area is considered as one area. This area is composed of one single area, and upland crop cultivation is prevailing in high land and paddy cultivation in some low land.	1.7	1
K5	2	This area is divided into 2 sub-areas due to differences of catchment area. Although KK5-2 has a large catchment comparing to the development area, development area is so small that the KK5 is to be considered as one area.	1.2	1
K6	3	Although this area is so large that it has been divided into 3 sub-areas, topographical and land use characteristics are almost same, and economic forests are also uniformly scattered in the area Consequently, it is to be considered as one sub-LRA.	1.3	1
41182 41182	3	The land reform area is scattered in the economic forests, and similar in land use. This area is large in size and formed by three major mounds. The area is composed of only economic zone, but the land is mostly utilized for upland crops and less trees in the fields. The land is almost similar in topography and land use in spite of large area, it is, therefore, to be considered as one area.		1
инѕз	1	This area is composed of only economic zone and a narrow and long stretch in shape on the ridge where upland cultivation is partly conducted among natural trees. This area is considered as one single area where such natural trees are preserved and utilized harmonizing with cultivation.		1
инѕ4	1	This area is composed of one single area on a mound and formed only by economic zone. However trees are few in this area, and upland crop cultivation is prevailing as well as plantation of eucalyptus. This area is also considered as one area for full agricultural use.		1
MHS5	1	This area is also composed of one single area on a mound. However, the area is composed o economic zone and agricultural zone. Upland crop cultivation is prevailing in the agricultural zone while good natural forests are partly remaining in the economic zone. This area shall be considered as one single area where remaining natural forests are to be utilized in a sustainable way.	5	1
MHS6	1	This area is composed of economic and agricultural zones in one single area on a mound as sam condition as MHSS. This area shall be also considered as one single area where remaining natural forests are to be utilized in a sustainable way.	e 3	1
MHS7	1	This area is also composed of economic zone in one single area on a mound, but natural trees are very few in the field. Upland crop cultivation is prevailing at high land and paddy cultivation a gentle sloping land. This area shall be considered as one single area for full agricultural use.	e it	1
MHS8	5	This area is the largest land reform area in Maha Sarakham composed of 5 sub-areas on several larg mounds. The land is formed by gentle mounds and similar in topography through the area. The are is composed mostly of economic zone, but trees are very few in the field and upland crop cultivatio is prevaiting at high land while paddy cultivation in at gently sloping land. Therefore, this area sha be considered as one single area although the area is quite large.	a n	1
MHS9	. 1	This area is very small and composed of one single area on a mound. The land is mostly cultivate with upland crops although the area is classified into economic zone. The area shall be considered a one single area.	đ is	1
MHS1(1	This area is composed of economic zone on mounds. Although classified in economic zone, the lar is mostly utilized for upland cultivation and very scarce in trees. Topography and land use a similar through the area, so that the area shall be considered as one single area.	d re	1
MKD1	5		ıd	1
MKD2	4		at 1 - 4	1
MKD3	5		of	1

LR		Consideration of Grouping	Sub	LRAs
No.	Sub-		, .	Numbe
	Areas		ing	rs
MKO4	3	The area is separated into 3 fragmented lands. However, each land is rather small and similar in	1-3	. 1
ukrs	3	topography. Therefore, it shall be studied as one area.	ļ <u>.</u>	ļ <u>.</u>
MKD5 MKD6	2	to be studied as one single area as same reason as MKD4. to be studied as one single area as same reason as MKD4.	1-3	ļ <u>1</u>
MKD7	4	The area is separately extending at the south-eastern piedmont of the mountainous ranges. Among 4	1.2	<u> </u>
MRD7	1	sub-areas, MKD7-4 locates little far from other sub-areas. However, topographical conditions are similar through the area, so that the area shall be considered as one single area.	1-4	1
MKD8	5	This area is separated into 5 sub-areas from topographical view point. On the other hand, it will be	1 - 2	4
		grouped into 4 areas from the aspects of location and investment on water resources development,	3	'
		- locating at remote from the capital of province, but developed on water resources and land	4]
		improvement. (MKD8-1, 2)	5	
		· locating little close to the capital of province, but less developed on water resources and land		
		improvement. This area shall be divided into 2 areas. (MKD8-3 &5) - locating at same location of MKD8-3, but developed by Huai Rai Reservoir (MSIP) by RID.		
		(MKD8-4)		
MKD9	6	This area is separated into 6 sub-areas. Among 6 sub-areas, three are close to the Rout 212 and other	1-3	2
		three are little far from the main road. Therefore, this area shall be considered as 2 areas.	4-6	-
MKD10	1	to be studied as one single area as same reason as MKD4.		1
MKDII	2	Villages of sub-area MKD11-1 are irrigated by the Huai Chanod reservoir since 1984, while only one	1	2
		village of sub-area MKD11-2 by the pump irrigation since 1996. Although both sub-areas are	2	
		surrounded by the economic forests and similar in land use, but different in irrigation experience. It	1	i
MKD12	2	is, therefore, studied separately.		
MUDIT	-	The area is fragmented into 2 sub-areas, but both areas are well developed on fann road system and similar on land use. Therefore, this land shall be considered as one single area.	1-2	1
SKN1	1	This area is mostly composed of agricultural zone in one single area. Economic zone is locating only		
		at the northern edge of the area. The area is mostly cultivated with rice, sugarcane and plantation of		1
		eucalyptus and rubber trees. Cassava cultivation is not prevailing in the area, but natural trees are		
		scarce. The area is extending on a undulated mound, and not distinguished on differences of land		
		use by the locations. Therefore, this area shall be studied as one single area.		<u> </u>
SKN2	3	Sub-areas are able to be classified into 2 types. One is upland prevailing area (SKN2-1 & 2), and the	1.3	1
		other is paddy prevailing area (SKN2-3). However, both areas are cultivated mostly by same village	1	
		people, so that it is difficult to clarify the differences of the areas by social data. Therefore, this area shall be considered as one area as mixedly cultivated both for upland and paddy.		
SKN3	7	This area has 7 sub-areas in different locations. Those sub-areas can be classified into following 3	1-4	3
		Bronbe:	5	
		- locating at upstream of Nam Un dam and having a certain potential of water resources	6,7	
		development. (SKN3-1,2,3,4)		
		- locating at upstream of Nam Un dam but less potential of water resources unless by pump irrigation		
	1	from Nam Un reservoir, (SKN3-5) locating at downstream of Nam Un dam but not receiving water supply from the dam due to higher	ļ	
		elevation than canal. Some SSIP reservoirs are serving this area. (SKN3-6,7)		
SKN4	2	This area is divided into 2 sub-areas, and both sub-areas are located in upstream of Nam Un dam	1.2	
		Sub-area SKN4-1 has a certain potential of water resources development, while SKN2-2 has a less	, ,	•
		potential. However, there is no clear distinguish between tow areas because no water resources		
······································		development has been conducted so far. Therefore, this area shall be considered as one area.		ļ. .
SKN5	9	This area has 9 sub-areas surrounding the Nam Phung reservoir. Those sub-areas can be classified		2
		into following two groups: - locating and fragmenting in outside of the catchment area of Nam Phung dam, and surrounded by	6-9	
		the conservation forest. (SKN5-1 to 5)		
		- locating at upstream of Nam Phung dam and partly irrigated by the small scale reservoirs. (SKNS-		
		6 to 9)		
SKN6	5	This area has 5 sub-areas in the south-western Phu Phan ranges. Those sub-areas can be classified	1	2
1		into following 2 groups:	2-5	
		- locating at the isolated flat basin bounded by the steep conservation forest ranges, and paddy		
		cultivation is prevailing. (SKN6-1) - locating at the steep to gentle slope along the conservation forest ranges, and upland crop		
		cultivation is prevailing. (SKN6-2 to 5)		
SKN7	1	This area is surrounded by the economic forests, and upland crop cultivation is prevailing in high		1
		land and paddy cultivation in some low land.		1
KK 6	30			6
MHS 10		·		10
MKD12	42			17
SKN 7				11
Total 35	116			44




Figure 1-1 Sub-LRAs in Khon Kaen (KK 1, KK 2, KK 3, KK 4)

KHONKAEN

Figure 1-2 Sub-LRAs in Khon Kaen (KK 5, KK 6)

MAHA SARAKHAM

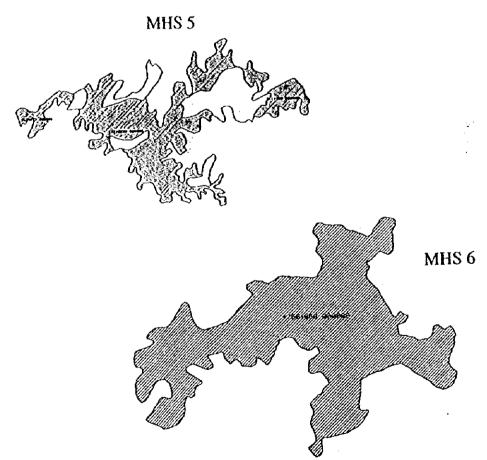


Figure 1-3 Sub-LRAs in Mahasarakham (MHS 1, MHS 5, MHS 6)

MAHA SARAKHAM

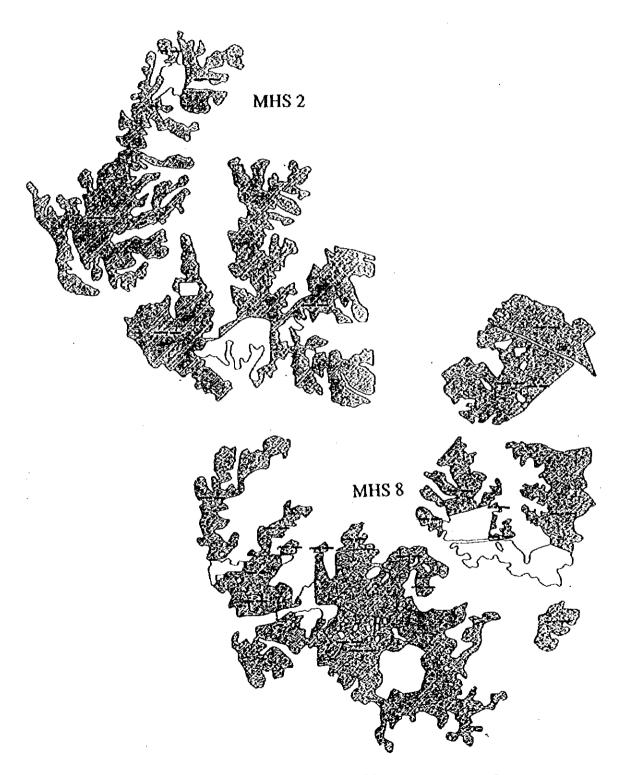


Figure 1-4 Sub-LRAs in Mahasarakham (MHS 2, MHS 8)

MAHA SARAKHAM

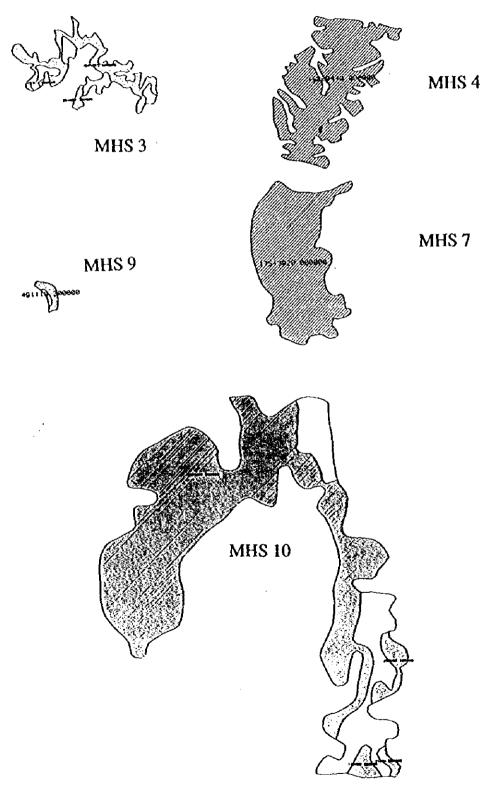
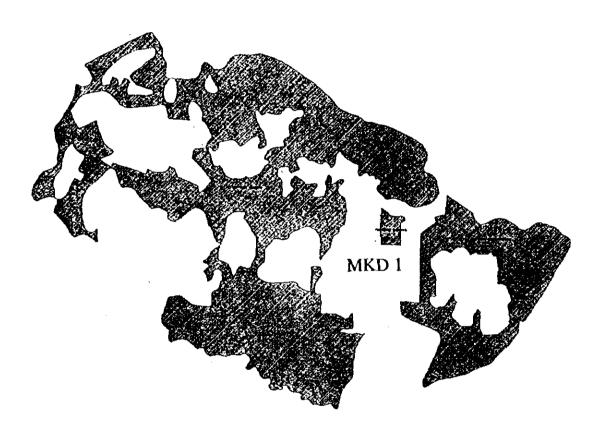



Figure 1-5 Sub-LRAs in Mahasarakham (MHS 3, MHS 4, MHS 7, MHS 10, MHS 9)

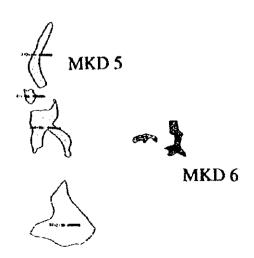


Figure 1-6 Sub-LRAs in Mukudahan (MKD 1, MKD 5, MKD 6)

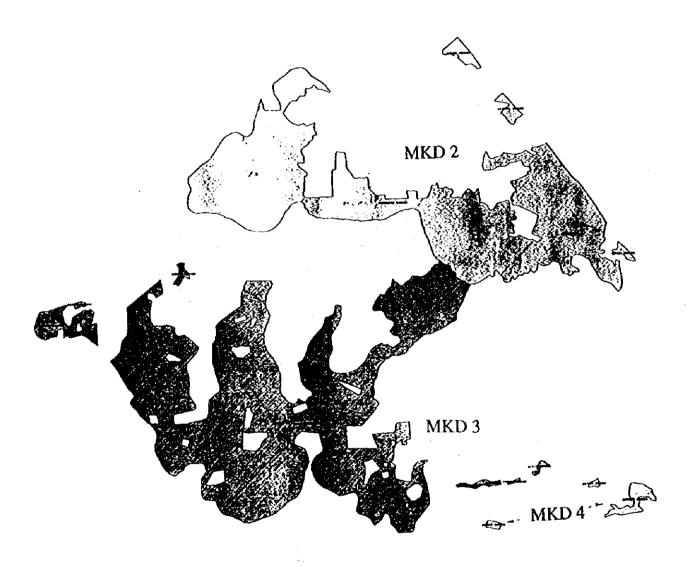


Figure 1-7 Sub-LRAs in Mukudahan (MKD 2, MKD 3, MKD 4)

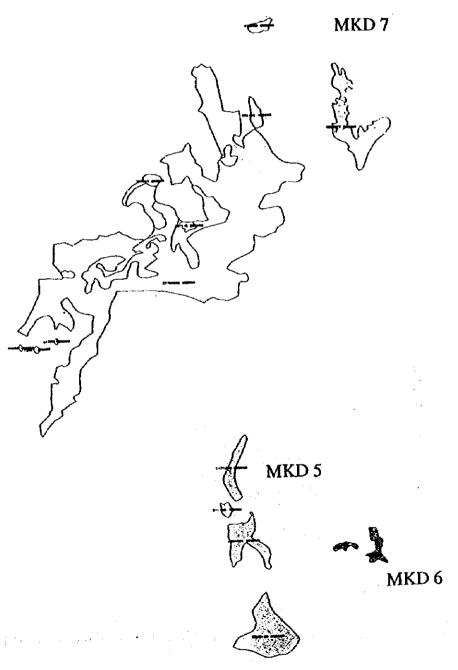
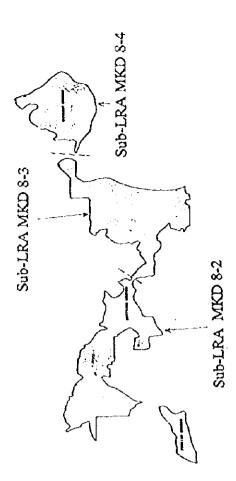
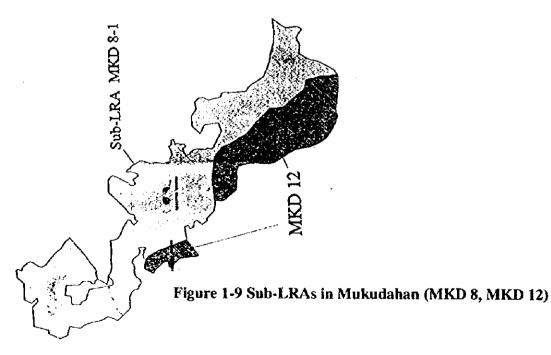




Figure 1-8 Sub-LRAs in Mukudahan (MKD 7)

WKD 8

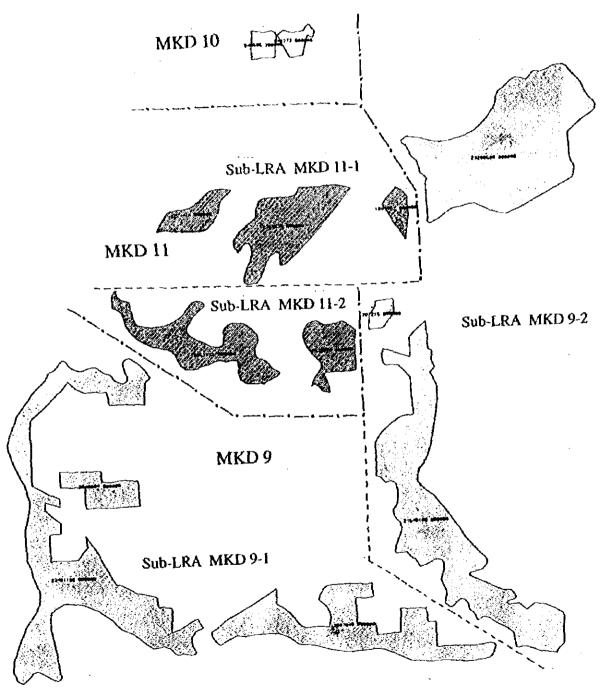


Figure 1-10 Sub-LRAs in Mukudahan (MKD 9, MKD 10, MKD 11)

SAKON NAKHON

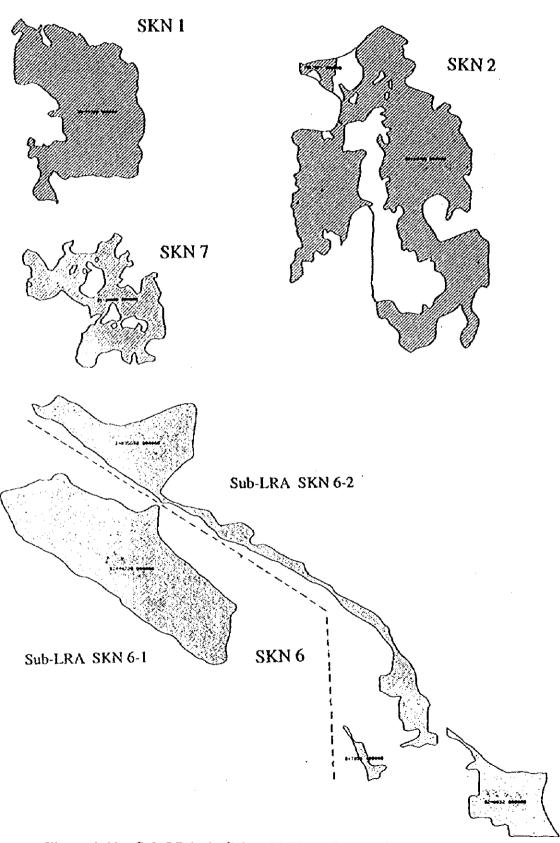


Figure 1-11 Sub-LRAs in Sakon Nakhon (SKN 1, SKN 2, SKN 6, SKN 7)
D-14

SAKON NAKHON

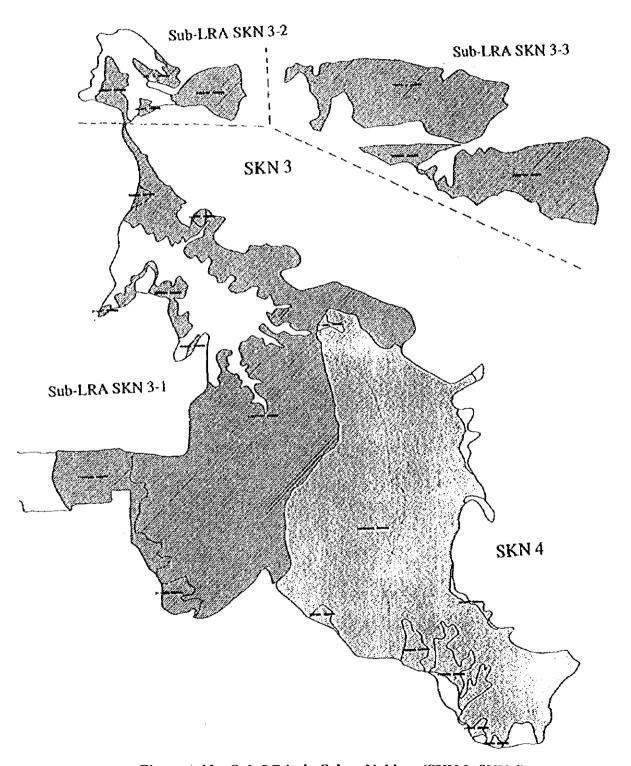
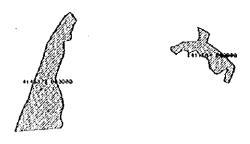



Figure 1-12 Sub-LRAs in Sakon Nakhon (SKN 3, SKN 4)

SAKON NAKHON

Sub-LRA SKN 5-1

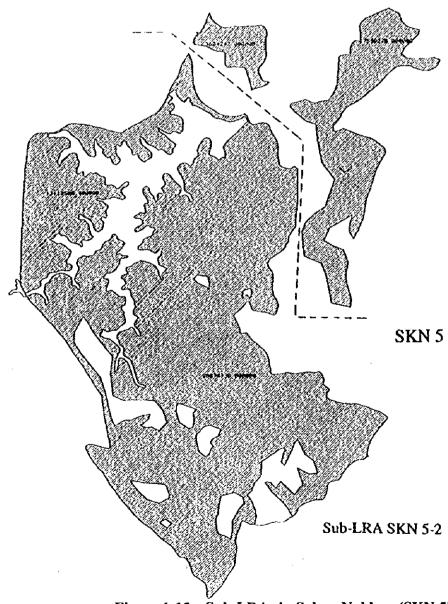


Figure 1-13 Sub-LRAs in Sakon Nakhon (SKN 5)

CHAPTER 2. NATURAL CONDITION OF LRAS

2.1 Topography

The study area is located in the Upper Northeastern Region bounded in the south by Khon Kaen, Maha Sarakham, Kalasin and Mukdahan Provinces. The Upper Northeast region is composed of very gently rolling and flatland with some undulations. Flatland slopes gently to the east. Elevation of flatland ranges from 150 m to 190 m (MSL). Undulating land forms isolated lower hills in Maha Sarakham and in the southern part of Khon Kaen Province. The elevation of these hills is about 200 m to 240 m. In other areas, undulations form steeper and higher ranges such as the Phu Phan Range which runs along southwestern edge of Mukdahan and Sakon Nakhon Provinces. Another high range runs from north to south crossing the western part of Khon Kaen Province. The highest elevation of all the high ranges reaches 695 m. Large dams, such as the Ubolrat Tana, the Nam Un and the Nam Phun Dams, have been constructed in these high ranges.

(Data Source) Salt-affected area in Northeast Thailand Nature, Properties and Management Technical Paper No. 15, 1994 ADRC (JICA)

Figure 2.1-1 Physiography of the Northeast Thailand

The study area, which is composed of 35 LRAs, is located mostly in higher locations in the region, such as on the isolated lower hills in Maha Sarakham; at the foot of high ranges in Khon Kaen; and in the high ranges in Mukdahan and Sakon Nakhon. Consequently, the topography of LRAs in the latter two provinces is steeper than in the others. Taking the above topographical characteristics into consideration, 35 LRAs will be divided into further smaller 44 sub-areas. (described in Section 1.1 in Appendix-D)

Topography and land use have been analysed on 1:50,000 map, and the results are described in Table 2.1-1 to 2.1-6 as below;

		-		T	able	2.1						<u>eristic</u>	of the	Study	LRAs				
budy Ac	٠	Acres	ge	Ek	s ation	<u> </u>	slypy	(3)		by Slore ((4)		M(2)	w Land Use	(0)		- 0	Irywent V	,r:1
No.		Ar (rai)	A (Na)	min.	mat.	ave.	Side shipe	Main deala	0-2%	2-5%	कःश्ट के 28 हा कि	swamp rescreoir rivers	low land book	yldaq	Prestyro Sensity	residence others	(JFW5) CV	Ratio CA/A	თ აა. F (ო)
KK.	ı	67,640	10,834	031	230	194	19	0.8	6,670	3,968	156	145	0	1,785	8,704	190	243	1 29	26
KK,	2	14,130	2,260	190	230	210	2.4	1.0	1,341	919	. 0	Ö	0	270	1,960	30	117	5 16	53
K.	3	18,370	2,940	150	240	208	2.4	0.9	578	2,362	0	5	0	720	2,145	70	96	3.27	6.
K.	.4	11,740	1,879	190	220	205	2.5	1.0	658	1,127	94	0	0	120	1,719	40	25	1.31	2
K.	_5	6,250	1,001	160	200	123	2.5	1.5	26	923	0	2	0	150	539	10	21	7 10	
<u> </u>	6	149,750	23,967	210	210	217	20	0.5	7,563	16,404	0		0	3,500		300	24B	1 00	
485	_11_	2,640	422	130	530	210	4.0	40	21	401	0	0	0	0	422	0	4	1.00	
4HS	_2	59,690	9,549	170	232	196	0	13	600	8,308	641	0	Ð	0	9,549	0	95	1 00	
ous	_}]	3,080		160		176	33	3.3	246	.46	0	0	3	0	492	0	\$	1.00	
ans	-4	9,510	1,521	155	159	172	20	10	608	913	0	0	0	0	1,521	0	15	1.00	
AKS .	-5	13,030	2,085	170		137	3.3		417	1,68	o	0	0	500	1,585	0	21	1.00	
HRS.	-6	29,790	4,766	120		192	33	0.9	2,240	2,383	143	- 6	0	1,300	3,446	50	48	100	
4HS	-31	10,940	1,751	170		187	. 17	1.0	130	439		0	0		508	0	18	1.00	
aks		79,630	12,738	140			2.9	3 2	1,012	10,595	1,131	<u>0</u>	0	1,610			127	1.00	
4HS	ĩo	310	773	170			2.6 3.3	0 8	·		0	<u>0</u>	0		673	0	8	1 - 186	
KKD	10	4,830 103,580	16,572	160			20		309 7,397	7,427	3,748	20	0	100 3,800	12,642	110	246	1.49	
WKO.	-;}	75,840	12,134	140			2.6	0.5	1,711	6,968	455		- 0	1,300	10,684	110	205	1.69	
MXD	-:+	106,490	7,038	150			-67	0.9	14,776		547	19			11,483	210	239	1.40	
MXD		1.860	297	180			7.2	3.0	17.50	188	109	6		42	239	10	15	518	
MKD T	-:}	6,030	963	210				43	· · · · · ·		279	ŏ	×		763	0	36	3.77	
MKD	-(1	700	1 - 1iii	120				10.3	<u> </u>	56	47	ď		1		1		3 53	
MKD.	-7	47.030	7,522	200			1.6	30	1,199			260			3,937	80	255	3.39	
MKD	-8	59,420	9,506					13	1.772	6,909		180		1,120	8,006		456	4.80	
чко Т	9	52,240	8,357	110			2.2	0.7	1,828		791	ā	0			30	127	157	
ÝKĎ Í	10	1,180	138	170	175	177	1 7	17	138		0	0	0	100	8.9	0	- 6	3.45	
MKD	TO	13,430	2 t 49	155	210	193	3.4	0.9	991	948	210	a	0	300	1,845	. 0	45		
MKD	1.	11,480	1,637	280	350	363	120	3.5	0	1.630	207	0	0	0	1,837	0	59		
KN	$\exists 1$	22,810	3,650							1.825	0					20			
XX	_7	43,580	6,972	1 150					6,671	341	I			2,490		30	419		
SICN	_3]	130/130	19,215	140							977	30		4,430	14,525	230	583		
SKN	_4	86,530	17,944	190										3,5)(10,18		369		
SKN	_2	89,240	14,278														352		
9 <u>2N</u>	_6	45,240	7,285									, 	1						
SA.3	_4	13,200	2,312																
KK_	∤	267,920		150								+							
MHS_		213,440	34,146															100	
MKD	_ {	479,270													58,64				
SKN	_	420,750																	
Total Rano		1,381,380	221 (X)	2.40	3 490	20-	3.1	1.4	42 97	50.33		0.47						21	4 (

			Ta	ble 2.1	1-2	To	pogi	raphi	cal C	harac	teristi	cs of S	Sub-L.	RAs i	n the	Study	Area			
Study A	ca		Acres	ge	Ele	vation	(m)		e(%)		a by Stope				jor t and t			Cit	hgrant A	
No.		Sub:	Atr(nai)	A (ha)	prin.	DAX.	ævç.	Side slope	Main drain	0-2%	2 - 5 %	more than 5 %	SY3mn reservoir	low land	paddy	orchard upland	residence others	CA (bn2)	Ratio CA'A	man. EL
KK	1		67,640	10,834	160	230	194	1.9	0.8	6,670	3,968	158	71 <u>7875</u>	DUST (1,785	8,704	190	243		(m) 260
KK	>		14,130	2,260	190	230	210	2.4	1.0	1,341	919	0	143		270	1,960	30	117	2.29 5.16	530
KK	_ 3		18,370	2,910	130	240	208	2.4	0.9	578	2,352	0		0	720	2,145	70	96	3.27	625
KK	4		11,740	1,879	190	220	205	2.5	1.0	658	1,127	94	0		150	1,719	40	25	1.31	266
XX_	_5		6,250	1,001	160	_200	173	2.5	1.5	78	923	0	2	f —	150	839	10	21	2 10	216
<u> </u>	6		149,790	23,967	210	230	217	2.0	0.5	7,563	16,404	0	0		3,500	20,167	300	240	1.00	232
MHS.	_1	1	2,640	422	190	230	210		4.0	21	401	0	. 0	0	0	422	0	4	1.00	230
MHS	_2	ļ	59,690	9,549	120	232	196	4.0	1.3	600	8,308	641	. 0		0	9,549	ρ	95	1.00	233
MHS	_3	L	3,080	492	160	192	176	3.3	3.3	246	246	0	0	0	0	492	0	5	1.00	192
MHS	4		9,510	1,521	185	159	172	2.0	1.0	603	913	0	0	0	0	1,521	0	15	1.00	189
MHS	_5		13,030	2,085	120	204	187	3.3	11	417	1,668	D	0	0	500	1,585	0	21	1.00	204
MH2	_6		29,799	4,766	-170	214	192	3.3	0.9	2,240	2,383	143	0	0	1,300	3,446	20	48	1.00	214
MHS	7		10,940	1,751	7.50	04	197	1.7	1.0	1_3 <u>13</u>	438	0	0	0	1,250	501	٥	18	1.00	204
MHS	8		79,620	12,738	150	240	193	3.9	12	1,012	10,595	1,131	. 0		1,610	11,128	0	127	1.00	246)
MHS.	_9	i—i	310	49	190	200	190	2.0	1.0	0	\$9	0	0	0	0	49	0	0	1 00	200
MHS	10	ш	4,830	773	170	200	195	3.3	0.8	309	464	. 0	0	0	100	673	-0	. 8	1.00	200
MKD.	_).		103,580	15,572	160	550	191	2.0	0.6	1,397	7,427	1,743	20	0	3,800	12,642	110	246	1.48	413
MKD	2		75,840	12,134	140	200	371	2.6	0.5	4,711	6,968	455	10	0	1,300	10,694	140	205	1.69	413
AYD.	_ 3		106,420	17,038	150	210	183	1.6	0.9	14,776	1,715	547	160	0	5,180	11,433	210	239	1.40	494
MKD	4	-	1,860	297	130	280	515	7.2	3.0	0	188	109	6	0	42	239	10	15	518	493
MKD	5	-	6,030	963	210	490	270	3	4.3	0	651	279	0	0	200	763		36	3.77	506
MKO	6	H	700	113	190	240	<u>2</u> 08	31.7	10.3	0		- 27	0		10	103	0		3.61	440
MKD	-7		47,020	7,522	190	360	240	46	3.0	1,199	5,025	1,298	260	0	3,245	3,937	80	255	3.39	53 0
MKD	8	1-3	33,040	5,285	220		308	4.0	2.0	0	4,822	464	150		320	4,736	80	179	3.38	525
MKD	-8	-	10,730	1,716	160	220	190	5.0	2.5	172	1,201	343	0	·	300	1,356	60	194	1131	600
MKD	-8		9,940	1,590	120	200	. 185	2.0	0.7	795	795	0	36		. 0	1,530	30	64	4.04	562
MKD MKD	. 8 9		5,710	914	180	200	190	0.5	0.5	805	91	18	0		500	384	. 30	19	2.03	436
MKD	_ <u>y</u>		28,530	4,564	140	200	168	-31	1.0	3,213	897	454	0		800	3,744	20	54	1.13	200
MKO	10		23,710 1,180	3,793 188	150 170	240 175	202	2.3	0.4	1,615	1,841	337	<u> </u>		520	3,263	10		1.93	197
MND	11	— .	6,880	1,101	165	210	173	7	1.7	353	0	0	0		100			6	3.45	245
MKD	11		6,550	1,048	155	200	188 178	1.7	0.4	991	110	0	0		200	901	0	21	1.92	220
MKD	12		11,480	1,837	230	350	303	110	3.5	o	3,630	210			100	949	0	24	2.32	_22N
SKN	1		22,810	3,650	150	190	170	2.0	0.7),825		207	- 0		0	1,837	0	59	3.20	525
SKN	5		43,580	6,972	150	180	160	1.0	0.8	6,631	1,825 341		<u>20</u>	1	450	7,810	20	37	1.00	190
SKN	ز ا		80,920	12,946	190	220	201	2.2	1.2	10,535	1,925	485	20		2,490	3,982	30	419	6.01	130
SKN	3	2	6,650	1,064	190	205	198	20	0.3	532	426	106	0	_	3,310 20	9,506 1,044	130	480	3.71	667
SKN	3	3	32,540	5,205	150		210	2.0		1,724	3,095	386	30		1,100	3,975	100	11	1.00	_ <u>205</u>
SKN	4	1	86,520	13,344	190	250	2:0	2.0	0.1	7,160	6,684	350		~~~~~	3,500	10,184	160	93 369	1.78	422
SKN	5		15,740	2,679	190	340	257	5.0	1.7	188	1,965	526	0		3,300	2,459	110	- <u>369</u> 71	2.67 2.64	<u>595</u>
SKN	5	2	72,500	11,599	290	443	321	5.0	2.8	1,207	6,731	3,658			100	10,119	1,080	281		_554 558
5KN	6	1	23,400	3,741	215	260	218	10	0.5	2,996	636	112	0		3,130	464	100	61	2.43 1.62	538
SECN	ь	2	21,890	3,501	200	430	321	5.1	3.3	928	1,377	1,196	0	_	410	3,071	20		2.82	695
SKN	. 7		13,200	2,112	150	172	161	_11	0.5	1,478	634	0	0	_	500	1,612	0	21	1.00	172
KK	6	6	267,930	42,871	160	240	201	2.3	1.0	16,988	25,703	280	152	0	6,545	35,534	640	746	1.74	625
MBS	10	10	213,440	34,146	155	240	190	3.0	1.6	6,766	25,465	1,915	- 0		4,760	29,366	20	341	1.00	240
MKD	12	12	479,270	76,676	140	190	209	4.1	2.2	35,862	34,298	5,516	636		16,617	58,643	790	1,694	2 21	600
SKN	7	13	420,750	67,316	350	490	222	2 6	1.1	35,205	25,642	6,469	70	_	15,470	49,226	1.750	1,941	2.88	695
Total	35	44	1,301,380	221,009	140	490	206	0	1.4	94,721	(11,108	15,180	858	800	43,392	172,769	3,190	4,722	2.14	695
Ratio			L	5.023						42.9%	50.3%	6,9%	0.4%		19.6%	78.2%	1.4%		7	

	۸ne	, 1	Anca			vatiku (Typica	sions:		by Skipe		ristics		r Land Use				oni area	Major	Eand use
No.	.RAS.	Sub-Litor	(rai)	(ha)	nia.	mar	ave.	side akspe	mula desin	0-24	2-5%	mure Mass	zwamp reservois & rivers	lew land bush	paddy	orchard upland	village	ÇA (km²)	max.£t (m)	Vegetation of CA	of Downstream of Study Area
K T	1	Ti	1,810	1,250	160	180	120	\$ 0	0.5	1,250	0	0	. 3	0	10	1,215	26	26.8	200	forst, opland	Chiriyer
K		2	15340	2,455	150	180	170	2.5	. 08	2,066	246	123	100	- B	400	1,915	40	47.55	250	E forest	Chigivet
ix.			4,060	650	170		130	20	2.0	650	G	0	6	0	100	550	Ð	7.7		E. firest	paddy
Š.	7	1	28.5%	4,574	160	200	150	17	0.3	1,144	3,430	٥	40	Ô	500	3,574	60	1)5 !4		E funct	orddy
K.	1	,	2,710	436	210		220	3.7	1.0	436	0	0	0	0	60	376	٥	9.96	260	E. forest	paddy
(K	-7	7	1,30	306	190	200	195	2.5	0.6	Đ	208	0	0	0	0	198	10	13.18	2.30	E. forest	E. forest
<u>.</u> .	r'i	",	730	117	210		215	13	0.6	117	0	Ú	0	0	55	52)0	5.17		E. forest	E. forest
Σī.	i"i		1,3:0	210	185	2,00	203	2.9	0.6	63	84	63	o	e	40	150	20	8		E forest	paddy
CK.	<u>-</u> -'	7	8,360	695	130	230	205			598	0	0	- 6	0	220		30	15.38		E. forest	paddy
(K.	۲;	10	1,416	226				20	_	226		6		0	0		7			untand	paddy
ĸ	١;	٠.۲	1,000	160			203	4.0		0	140	0		0	0			5.6		E. forest	paddy
	H	-;	550	188	210				10	0	88			0	0		10			forcal, uplan	
UK.	1;	1	7,930	1,369	200		215	+	0.3	698	571	n	0	ő	150		0			paddy	paddy
ÖK.	H	H	970	155	300			+ 		155	100	Ō			0		1 0	2 25		E forest	paddy
KK.	۱.,	5-1	2,499	399						299	100	Ť			80		20	80.49		eaddy.	paJdy
SAL.	١:	1	410					20		65		-	, · · · ·	<u> </u>	40			065		upland	paddy
ъъ М.	1 2	1	750				215			124		1 0	1 6	,			t;	1 24		upited	E forest
<u>.</u>	Ι-,	†-:4	810	135			235		17	135		t		<u>-</u>			1			E. forest	nedde
77	H	- 5	540	94	•				0.8	0		·			20					F. forest	paddy
KK.	۱,	- 5	3,060	459					0.7			-	+	t	160					E. Forest	paddy
CK.	13	t:	7,840	1.255			7							 -	100					E. forcal	paddy
<u>``</u>	† –	+:	519	*2					0.4	ŏ	82	Ť			20					E. Sweet	positiv
KK.	13	13	5,0%	811			-			476	\$ 15				370					E fieres	Final Sam
· K	╁╌	1-5	3,0 V	74										} 	- 7/2					E forces	มกระกร์ เกรียกรั
(K	H	1-	11,740	1,879	+						3.327	_			120					E. forest	nad-tv
<u></u> (X	1	† :	5,660	906		_						1 7		,	150			1		E. forest	paddy
XX.	13	ť	590 590	95								_		,	1 18					E. forest	upland
KK.	Ė	+	23,310	3,230								+		 	300					rejoung	paddy
<u> </u>	H	† -;	86,730	13,877	***								+		2,100					บคู่เลาต้	oaddy
KK.	۲	1 🚼	39,150		7				_			1		·	1,100					บอเลาส์	paddy
-		۲,	267,930				1		1			_			6,545			7			Treight
<u>⊡a.</u>		1,,	Topograph									Ť⁴ [™]	1	\ '	1 6,343		1-04	max	625	1	
	ics		Acreage of									-	 	ł	·		·	1194	F-7-23		

andy Area		П	Астадо	Acrago		Eksatina (m)		Typical slope (%)		Acresge by Slope (ha)		Major Land Use (ha)					Catchine of age a		Major	Land asc	
No.			(191)	(ha)	min.	max.	ave.	side stupe	ருவிற இசும்ற	9-29	2-5%	more than 5	Swamp sesevoli di sives	low land bush	paddy	orchard upland	village	CA (km²)	mas EL (m)	Vegetation of CA	of Duvestical of Study Arta
MHS	1		2,640	422	190	230	210	1.0	40	21	401	0	G	0	Đ	422		4.22	230	อยู่จกต่	plantation
MHS	2		25,490	4,978	176	232	201	`4D	14	404	3,466	204	0	, o	Đ	4,078		49,78	232	upland	paddy
MHS	[2	2	10,190	1,630	180	210	195	4.0	1.3	0	3,385	245		. 0	. 0	1,630	٥	16.30	210	upland	paddy
V.HS	3	3	24,610	3,841	180	206	193	4.0	1.3	192	3,457	192	0	0	-0	3,841	0	38.41	266	upland	paddy
MHS	12	LI	3,080	492		195	_	3.3	. 3.3	246	248	e	<u>. </u>	0		492	0		192	spland	paddy
MIS	1.1	L	9,510	1,521	155	189	172	20	0	608	213	<u>₽</u>	. 0	<u>0</u>	0	1,521	0	15.21	189	bacigo	paddy
MHS	3		13,036	2,085	170	204	197	3.3		417	1,568	0	0	. 0	500	1.585		20.85	204	epland	paddy
Mass	6	Ц	29,7%	4,266		214	192	ىد	0.9	2,240	2,383	143	0	0	1,300	3,446	. 20		216	upland	paddy
MOIS	Ľ	Ш	10.9 14:	1,751		204	187	_1.7	_10	1,313				0	1,250	301	0	17.51	204	epland	paddy
NH?	8	LI	15,960	2,553		190				_			0	0	250		0		אַנ	upland	paddy
MIN	В	2	12,300	2,142			_							0	70	7,072			209	apland	padity
MHS] 8	13	12,7%	2,045						_	1.738			Đ	0	2,045			230	ngland Smalga	pacty
MHS	1 8	•	35,550	5,685		240		4100	_	_		-		0	1.80	4,483	5		240		paddy
VI IS	8	15	1,940	310	_	207								0	90	220			₹07		paddy
Mi S	9		315	45	+						49		10	0	0				200		paddy
MHS		4	4,830	71										- 0	,,,,,				200	upland	peddy
(st. f	۸٠.	L	Z13,445) Topographic	34,14		2179					25,465	3,915	<u> </u>	0	4,760	29,366	20	341.46	319	<u> </u>	ļ

		T"						արաչ	d stope			cten	stics t	A rel	0-1.K	As in	Mukd	ahan		r———-	r
tudy A	nes	L	A/rica,	ge	Ek	sation ((m)		13	Acreage	Þy S≯at	(ha)		Majo	e Land Cu	t (ha)		Catchin	en net	Major	Land eve
No.	L.		(nr)	(34)	esia.	mar.	ave.	sije akqe	drain drain	0-24	2.5%	than 5	awanp nisennir Advis	low fand bush	paddy	nickard upland	village	CA (\$ m²)	RATEL (#)	Vegetation of CA	of Description of Study
KD.	1	l 3	5,530	1,045	190	220	200	23	1.0	885	105	52	0	0	306	225	20	17.9	309	paddy	paddy .
IKD	-1	2	32,240	\$,1 58	160	210	185		0.1		774	313	0	£	2,100	3,028	30	72.9	238	upland:	pad.ly
(130	├╶ ┋	13	13,330	2,941	_ 130	220	200	_25	_0.5	147	2,500	294	10	0	400	2.501	30	35.8	413	uniand	MKOL4
ΧΦ	-		25,750	4,120	190	230	120	-30	0.4		1.2 16	851	0	0	300	1,800	20	54.2	(1)	upland.	Hugh Bang
Ų)		+	20,630	3_08	_160	200	130	4.0	0.5	331	2.612	163	10	0	70	2,588	10	45.0	389	forgal	paddy
ND.	~*	-	26,6X	4,267	150	200	175	_33	0.3	0	4,267	0	10	0	660	3.507	50	62.5	320	p sody	Huai Bury
	١:	3	8,140	1.302	_150	180	165	3.0	0.5	326	781	195		0	170	1,072	- 60	46 8	918	paddy	Hual Bang
ΚΦ.	٠.٤	1-	39,150	6.264	140	200		10	0.5	4,385	3,754	125	<u>.</u>	0	330	5,714	30	82.7	390	pately a forest	Kuai Bana
	۲.	+	1,890	203	150	200	175	3.0.	0.5		106	135	0	0	10	291	0	131	418	force	Paddy
ĽĎ.		+		576	120	300	185	2.5	_05	258	2.0	58	<u>1</u>	0	300	254	10	16.0	240	upland, padd	Hugi Khi
KD.		¥-4	16,710	2.674	170	210	120	_10	07	2,674		P	110	0	950	1,574	45		495	فللهج ابيطاله	Hual Kari
ΚD	۲.	1 .	45,000	7,200	160	200	_180	<u> </u>	0.2	6,120	7,0	360	30	0	3,600	1.510	60		494	antend padd	Huri Yal
150 150		1-3	49,440	6,470	150	_200	175	_10	0.4	5,694	647	129	0	0	70	6,060	100	96.3	494	upland	Hugh Plan
KD.	-	-	740	118	180	190	185	2.5			118	₽	10	0	30	<u>78</u>	D		340	forest	entdy
λD	١.	-	2+0	38	200	290	240	15.0	2.0		0	38		0	0	3	0		491	િલ્હા	oaddy
	- 1	j- 1	150		_180	190	185	_25	5.0	. 0	24	<u>-</u> 0	3	0	2>	0	. 0	90	423	forest	ceddy.
KD.	•	4	1,470	235	180	240	210	_4 D	20	0	164	71	4	9	20	201	30	4.8	3.0	ियत्स्र	paddy
	۲.	-	930	149	220	490	3,55	3.8	3.8	O	<u></u>	67	0	0		48	Q.		500	Forest	Paddy
KD	Н		1,820	22)	220	240	230	5.0	5.0	0	131	160	0		0	11	0	10.0	430	Fores	Paddy
IXD IXD	-5	-	3,280	524	710	310	225	40	4.0	0	472	232	0	0	100	433	9	22.8	425	Force	Paddy
	<u>-6</u>		190	ارد	200	240	220	30.0	20.0		0	31	- 0	0	0	31	4	0.5	440	£orest .	Paddy
ΝD.	片,		510	. 87	120	30C	195	3.3	0.5		66	16	0	0		72	0	3.8	440	Forces	Puddy
KO.	٠,	_	37,2%)	5,967	_210	-380	245	ور_	0.4	. 597	4,475	895	160		2,300	3,437		218.7	510	Frac-st	Paddy
KD	١,	-		52	220	360	220	10.0	10.0		0	52		0	25	2;	0			Ewed	Paddy
ND.	۲,	1 "	3,130 6,280	499	190	220	205	3.0	0.9	D	349	150	100	0	160	239	0	110	380	Farest	Huai Mal
KD	<u> </u>	+ •	6,120	1,004	200	240	_220	_2.5	0.6	603	201	30)	0	0	760	234	10		410	Forest	Paddy
NO.	-	+-			220	_20	320	3.0	2.7	6	1.214	- 66	——_9	0	20	1,290	0			Forest	Huai Ban
ΚĐ	-9 8		24,850 (0,730	3,976	210	350	205	5.0	13	9	3,578	128	150	<u>0</u>	300	_3.4%		1,26.9	525	fores	Hual Berry
6	유	1	0.230	1,716	160	220	190	50	2.5	172	1.201	343		0	300	1.3%				Forest	Hyai Bang
χĐ.	- 8	,	5,710	1,590	170	200	185	2.0	0.7	795	795	0		0	0	1,530	30			Eurest	Huai Bun
ND.	¤	1		974	180	200	1.00	0.5	0.5	<u>80:5</u>	. 21	1.3		0	590	384	36	130	436	Fores	Faddy
KD.	ď	1	14,560	2,329 80	140	170	155	2.0	8.9	1.514	466	349	0	6	190	2.219	10	27.9		Paddy	Paddy
KD.	9	-	500 13,470	2.135	180	200	_190	25	1.7	40	O	#0		.—0	. 0	80	0	0.8		L'pland	Opland
ΔL.	- 2	1			140	180	160	17	0.3	1,659	431	65	0	9	700	1,445	10			Upland	Paddy
ND.		1-	14,650	1,260 2,248	150	210 230	180 195	3.3	0.)	378	882	0	<u>-</u>		300	260	0	15.0		L'uland	PadJy
KD.	F,	ŧ	1,780	295	720			10	0.5	1,237	674	337	P		200	2,048	6	49.7	397		Paddy
KD	10	+	1,580			2-10	210	_2.5	0.7	. 0	285	- 0	0	0	20	2.5	10			3225	₽addy .
ΥD V	۲,		6.530	1,301	170	175	173	17	17	138				0	100	88	9	6.5		Forest	₽addy
χD.	۳	1	6,550	1,048		210 200	188	1.7	0.4	991	110	0		اهــــــــــــــــــــــــــــــــــــ	200	901	. 0	3D		Forest	Paddy
ξĐ.	Н.	+-	1,290	207	155 290			- 50	1.4	D	838	210	q	0	100	948	0	24,3		Forest	Hual Bao
SD.	1::	1.	10,190	1.630		300 350	290	20.0	3.0	0	P	202	9	0		207	0	8Z		forest	MKD9-2
Nation A	ىن	15	479.270		260		315	4.0	4.0	0	1,630	0	0	0	0	1,6,10	0	50 6		fores	MXD8-2
Vote		₩	Topographic	76,676	193	236	210	3.9	50	35,662	34,298	5,536	636	0	16.517	58,643	7(0)	1,693.7	395	ļ	
-5.50			Acreage of L				VCC II				:				. 1		1	i .			

			_ Ta	ıble	2.1-0	6 T	pog	rapl	rical C	harac	teris	ies by	Topo	-LRA	s in S	akon 3	Vakho	n		
ludy Area		Acre			valion (Typics	l slope	Acreage !		(hu)			or Land Us			Catchine		Major	Land use
No.		(ca)	(lia)	On the	GLAX.	146	side skipe	esain druis	0-2%	2-5%	more than 5	iwamp reservoir A tivers	kow land bush i	paddy	en part	village	CA(lan')	max EL	Vegetation of CA	of Downstear of Study Ama
KN 1		22,830	3,650	150	190	130			1,825	1,625	Ð	20	350	450	7.810	26	36.50	190	u pland	bush
SKN 2	_4	31,990	4,959	160	180	120	_	0.9	4,711	248	_ 0	0	0	1,200	3,739	20	49.59	180	upland	anki
KN Z	-3	960	156		_150	155	09	0.9	156	- 0	. 0	0	0	0	146	20	62.56	180	paddy	paddy
3K.V 2	_}	11.630	1,857	150	160	152	0.6	0.5	1.764	93	0	20	450	1,290	97	9	306.57	180	pa4dy	Songklean
KN 3	1	19,160	3,065	190		ÃÚ.	_24	2.4	2.146		153	0	0	600	2,405	. 60	109.55	522	paddy, forest	
5KN 3	_2	2.510	4672	190	210	200	2.0	2.0	382	20	0	0	0	. 10	382	10	1.02		upland	Nam Unites
5K.N 3	_2	17.690	2,830	: 190	210	200	2.0	0.1	2.688	142	. 0	0	0	1.000	1,810	2ն	84.80		SKN4.2	Nam Unics
SKN 3	4	41,560	6,649	. 190	_220	205	2.5	0.1	5,320	997	332	0	0	1,700	4.909	40	281.49		C forest	Nam Un res
3 3	5	6,650	1.06	120	2.5	198	2.0	0.3	532	420	106		. 0	20	3,644	0	10.54		upiand	Nam Unites
KN 3	6	15.680	2,508	130	200	190	2.0	0.2	376	1,881	251	30	0	750	1,668	60	47.68		forest	paddy
SKN 3	_7	16,860	2,697	180	260	230	20	0.5	1,348	1,214	135	D	0	350	2,307	40	44.97		forest	paddy
SKN 4	_1	50,710	8.114	190	230	210	2.0	0.1	4,868	3,246	0	0		2,400	5,504	110	312 54		forms paddy	
5X.5 4	_2[35.810	5,730	.190	2.30	210	2.0	0.1	2,297	3,438	o	0	0	1,100	4,580	30	57.30		wpland	SK3-3
5 1/3	٦l	880	141	190	200	195		5.0	63	71		0	0	- 3.000	10		8.4)		fores:	orchard
SKY S	2	2,590	415	300	340	320		0.8	0	311	104		0		395	20	4.15		apland	(MOS)
K 2 5	3	2,310	369	300	3.0	310	5.0	1.4	37	221	111	D.		0	299	70	3.69		RDISUS	
SIZN S	4	5,060	810	200	240	220		0.8	41	607	162	. 0	· -	50	740	20	3610		(orest	[orest
SKN 5	5	5,900	544	200	280	240	50	0.6	41	755	142	o		- 50	88-	D				Yam (Best
SKN 5	6	3,310	510	790	300	295	_	5.0		330	D		<u> </u>	0	380	150	7.37		forest	Naro Phua r
SKN S	7	11,250	1.900	290	320	305	50	5 C		1,710	90	0	F		1,170	630			forms:	Sug Out o
KN 5	8	53,560	8,569	290	443	367	5.0	0.7	857	4 284	3.428	0	<u>"</u>	100	8,269	200	141.00 91.19		(orest	Nurs Pleas
SKN 5	9	4,380	700	250	340	312	3.0	0.4	350	210	340			300					forest	Name Phone
SKN 6	1	23,400	3,744	215	260	238	1.0	0.5	2.996	636	112	0		3.180	300	100	42.09		र्फाट्या	N:00 D pp (
SION 6	2	R.950	1.432	200	240	220	2.5	10	859	573	خلاب	0			461	100	60.54		C. forcal	paddy
KN 6	-3	6,580	1,052	230	360	295			6	526	_			250	1172	10	23 22		C. forest	paddy
SKON 6		5,780	925	220	360	290	7.0	13	—— —	276	526	<u>9</u>	0	100	952	<u> </u>	49.02		C. Sorest	peddy
SKN 6	ij	580	92	490	48c	480	3.0	30	69		647			30	B95	Q	25.55		C. fores	peddy
SKN 2		13.200	2 112	150	172	161	11	0.5	1 479	634	_22		0		52	10	0.02	490		pestly
Cotal Av.	7	420,750	67.316	219	262	241	11	- 23			0	<u>-</u>	Q	500	1.612	9	21.12		spinal	peddy
	7	Copographi							35_205	25,642	6,469		800	15,470	49.236	1.750	2940.56	400		ļ
		Acres es of											—				W#Y	695	L	L

2.2 Geology

The study areas are normally dominated by the Mesozoic sedimentary rocks (Khorat Group) consisting of the Jurassic to the upper Cretaceous excluding the Huai Hin Lat Formation. The Quaternary unconsolidated sediments unconformably overlies the Mesozoic. The stratigraphy in the study area is summarized as below:

(1) Mesozoic Era

Nam Phong Formation

This formation is comprised of reddish-brown, and brown sandstone and conglomerate with pebbles of quartz, quartzite, chert, igneous rocks, red siltstone, red sandstone of up to 10 cm in diameter. The other is brown and reddish-brown shale and siltstone.

Phu Kradung Formation

This formation consists of brown, reddish-brown, and purplish-red, micaceous shale, brown and gray, micaceous, small scale cross-bedded siltstone and sandstone and some lime-noduled conglomerate.

Phra Wihan Formation

This formation is mainly composed of white and pink, orthoquarsitic, pebble layering on the upper bed, massive, cross-bedded sandstone. Perhaps some reddish brown and gray shale and conglomerate are commonly comprised.

Sao Khau Formation

This formation is mainly composed of sandstone, reddish-brown, micaceous siltstone, grayish-brown and reddish-brown; shale, purplish-brown and brick-red, micaceous, and lime-noduled conglomerate.

Phu Phan Formation

This formation is mainly composed of sandstone, white, pale-orange, commonly pebbly with pebbles of quartz, chert, red siltstone, and igneous rocks of up to 5 cm. in diameter, cross-bedded, with shale and conglomerate interbedded.

Khok Kruat Formation

This formation consists of sandstone, siltstone, shale, and lime-noduled conglomerate, reddish-brown gray, grayish-white, and brown, with gypsum at the upper part.

Maha Sarakham Formation

This formation is composed of mudstone, shale, siltstone and fine-grained sandstone, reddish-brown, red, and brick-red, with rock salt and other evaporates at the lower part.

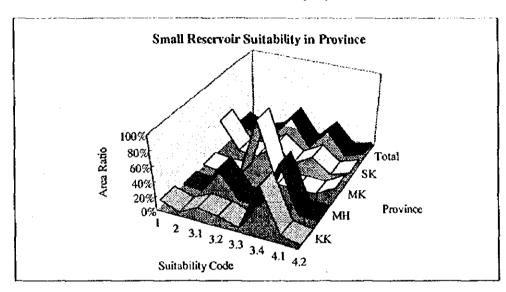
(2) Cenozoic Era

Quaternary Deposit

The alluvial and terrace deposits mainly consist of gravel, sand, silt and clay.

Table 2.2-1 Stratigraphy of The Study Areas

ERA	PERIOD	FORMATION	DESCRIPTION
Cenozoic	Quaternary		Alluvial deposits:
·			gravel, sand, silt, clay and lateritic soil.
Mesozoic	Cretaceous	Maha Sarakham	Sandstone, siltstone & shale with rocksalt, potash,
	1		gypsum and achydrite:
.	<u> </u>	1	brick red to purplish red
		Khok Kruat	Sandstone:
ł	ì		brown to reddish brown, micaceous.
ļ			Shale&Siltstone:
1	ł		pale brown, micaceous, with lime nodule
ļ	<u> </u>		conglomerate.
	1	Phu Phan	Sandstone:
<u> </u>			white to pale orange, commonly pebbly, cross
ļ	 		bedding with some shale and conglomerate.
	Jurassic	Sao Khua	Sandstone:
İ		1	reddish brown to gray, mostly micaceous.
			Siltstone, Shale and Conglomerate:
ļ	 		purplish-red to brick red.
		Phra Wihan	Sandstone:
i	1	1	thick bedded, cross bedded, quarsitic white,
<u> </u>	 	101 72 1	with some reddish brown and gray shale.
İ	Í	Phu Kradung	Shale:
			reddish brown, micaceous, Siltstone and Sandstone;
1	1		1 .
	Triassic	Nam Phong	brownish-gray, small-scale cross-bedded Sandstone:
[massic	Train Thong	reddish-brown.
			Conglomerate:
!			pebble quartz, igneous rocks, siltstone,
}	Ì	j	sandstone.
]			Shale & Siltstone:
<u> </u>		}	brown and reddish brown.


Table 2.2-2 Comparison of the Geological Condition in each province

Province	Formation	Amphoe					
Khon Kaen	Qa	Muang, Chinnabot, Mancha Khiri, Ban Phai, Phon, Nong Song Hong					
	Qı	Chonnabot, Mancha Khiri, Nam Phong					
	Maha Sarakham	Muang, Chonnabot, Mancha Khiri, Nam Phong, Ban Fang, Ban Phai, Phon, Nong Song Hong					
	Khok Kruat	Chonnabot, Mancha Khiri, Nam Phong, Ban Fang, Ban Phai, Phon					
	Phu Phan	Nam Phong, Ban Fang, Phon					
	Sao Khua	Nam Phong, Ban Fang					
}	Phra Wihan	Nam Phong, Ban Fang					
	Phu Kradung	Nam Phong, Ban Fang					
	Nam Phong	Nam Phong					
Maha Sarakham	Qa	General					
	Maha Sarakham	General					
Mukdahan	Khok Kruat	Nikhom Kham Soi, Don Tan, Dong Luang					
	Phu Phan	Muang, Nikhom Kham Soi, Don Tan, Dong Luang					
	Sao Khua	Muang, Nikhom Kham Soi, Khamcha-i, Dong Luang					
	Phra Wihan	Muang, Nikhom Kham Soi, Khamcha-i					
	Phu Kradung	Muang, Khamcha-i					
Sakon Nakhon	Qa	Warich Phum, Kham Ta Kla, Muang, Nikhom Nam Un, Sawang Daen Din					
	Qt	Muang					
	Maha Sarakham	Warich Phum, Ban Muang, Nikhom Nam Un, Sawang Daen Din					
	Khok Kruat	Warich Phum, Kut Bak, Muang, Nikhom Nam Un					
	Phu Phan	Warich Phum, Kut Bak, Muang, Nikhom Nam Un					
	Sao Khua	Nikhom Nam Un					
]	Phra Wihan	Muang, Nikhom Nam Un					
	Phu Kradung	Kut Bak					

2.3 Suitability of Small Reservoir Development

Depending on the land suitability map for small reservoir development, each study is accessed on its suitability. The results are summarized as below:

- Total area of well and moderately suited lands (1 and 2) are generally small as about 14 % of the LRAs in total, while higher as 45 % in Sakhon Nakhon and lower as 2% in Mahasarakham.
- Unsuited lands for small reservoir are not high at about 8% of total LRAs.
- From a viewpoint of constraint of development, Mahasarakham occupies 64% of total slightly salt-affected areas (3.1), Mukdahan 78 % of high seepage lands (3.2), Khon Kaen 46% of well drained and salt-bedrock areas (3.4).

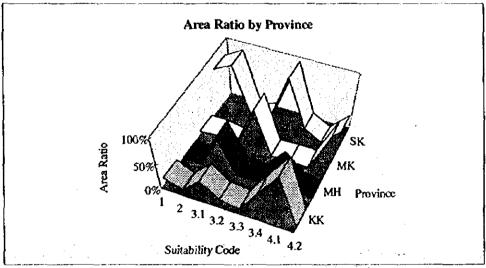
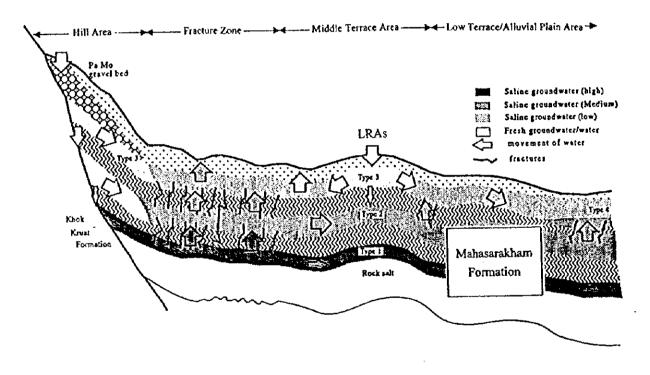


Figure 2.3-1 Small Reservoir Development Suitability in the Study Area

Table 2.3-1 Description of Suitability of Small Reservoir Development

Land Suitability
Descriptions
Land well suited for small reservoir development : Flat low land with somewhat poorly to poorly drained, clayey or loamy texture and good water storage capacity soil. Good water is yielded.
Land moderately suited for small reservoir development : Gently undulating upland with the soil of well drained, but clayey soil or clayey texture in subsoil and good water storage capacity. Good quality water is yielded.
Land poorly suited for small reservoir development : Flat low land with the soil of somewhat poorly or poorly drained, clayey or loamy texture and good water storage capacity. But it is the slightly or potential salt-affected area. Construction of small reservoir is risky since salt water will be yielded. To avoid this, the area should be surveyed and studied before construction of reservoir, and after construction special measures to prevent saline-water intrusion are needed.
Land poorly suited for small reservoir development : Gently undulating to undulating upland with well to moderately well drained, loamy texture and poor water storage capacity soil. To construct the reservoir special measures to increase water storage capacity of soil such as plastic lining, clay lining are needed.
Land poorly suited for small reservoir development : Gently undulating to undulating upland with well drained, clay texture and water storage capacity soil. But the underlying bedrock is the salt bearing rock. Construction of reservoir is risky since saline water will be yielded. To find out the appropriate location, the area should be surveyed and studied before construction of reservoir and special measures to prevent saline-water intrusion are necessary.
Land poorly suited for small reservoir development : Gently undulating to undulating upland with well drained, and sandy texture and poor water storage capacity soil. The underlying bedrock is the salt bearing rock. Construction of reservoir is risky since saline water will be yielded and the water quality will not be sufficient. To find out the appropriate location, the area should be surveyed and studied before construction of reservoir and special measures to prevent saline water intrusion as well as to increase water storage capacity of soil are needed.
Land unsuited for small reservoir Development: Low land with poorly drained soil in the strongly salt-affected area. Construction is very risky since, in most cases, the saline water is yielded. Any kind of measures applying to prevent saline water intrusion is expected to be unworthy.
Land unsuited for small reservoir Development: Hilly and mountainous area with steep slope and thin covering soil material. Land is poor water storage capacity. Any kind of measure applying to increase the water storage capacity of land is expected to be unworthy.

(Data Source) Land Suitability Map for Small Reservoir Development in Northeast Region of Thailand, DLD and Mekong Secretariat, 1994


Table 2.3-2 Analysis of Suitability of Small Reservoir Development in the Study Area

Study	,	Area			Λο	reage by Sui	tability that			
Area		(ha)	Well	Moderately	P	porly Suited	mainly due	to	Unsuite	d due to
		``'	suited	suited	salt-	high	sajt	sandy and	strongly	steep slop
		1 1]	affected	scepage	bearing	sandy and	salt-	steep stop and thin
				ŀ	soil	~~****	bedrock		affected	
]]	1	İ	o-√13		reatock	bearing bedrock		soil
		}	1	2	3,1	3.2	1.2		soil	
KK		11,350	······································				3.3	3.4	4.1	4.2
	1			9	2,618	2,992	0		0	
KK	2	2,375	1,535	0	605	0			Û	
KK	3	3,280	2,222	0	1,058	0	0		0	
KK	4	1,790	358	0	537	895	0		0	
KK	5	1,005	38	0	967	0	0		0	
KK_	6	23,760	0	. 0	0	0	. 0	21,384	2,376	
MH	1	260	0	0	156	0	0	104	0	
MH	2	10,340	0	0	1,928	0	0	8,413	0	
MH	3	710	0	0	213	0	0	497	0	
MH	4	1,530	612	0	918	0	0	0	0	
MR	5	1,930	0	0	1,834	0	0	97	0	
MH	6	3,210	0	0	1,605	0	0		0	
MH	7	1,790	0	0	1,790	0	0		0	
ΜН	8	14,150	0	0	3,145	0	ō		ō	
HIM	9	130	0	0	80	ŏ	ŏ		0	
ΜН	10	990	0	0	792	ŏ	0		198	
MK	<u> </u>	17,449	1,745	0	0	9,597	0		0	6,1
MK	2	9,007	0	ō	ŏ	8,557	ő		0	4
MK	3	16,633	ŏ	ő	ŏ	15,801	0		0	8
мK	4	222	ŏ	ŏ	ő	222	0		0	٥
MK	5	1,032	ŏ	0	0	0	0		0	1.0
MK	6	112	o	0	0	112	0			1,0
MK	7	7,544	Ŏ	0	0	7,167	0		0	
MK	8	10,368	0	0	0	8,294			0	3
MK	9	6,965	209	139	0	6,269	0		. 0	2,0
MK	10	205	0	0	0	205	0		0	3
MK	11	1,823	0	0	0	1,732	0		0	
MK	12	1,958	0	0	0	-	0	-	0	
SK			0	0		1,860	0		0	
	1	3,720	=		0	. 0	0	-,	0	
SK	2	6,610	10.426	0	704	0	1,762	-	0	
SK	3	11,480	10,426	0	0	0	•		0	1,0
SK	4	13,050	13,050	0	0	0	_		0	
SK.	5	12,780	0	2,340	100	9,410	0		0	9
ŝK	6	7,300	0	0	441	3,680	0		0	3,1
<u>SK</u> _		2,200	0_	0	0	0	0		0	
KK		43,560	4,153	0	5,785	3,887	0		2,376	
MH		35,040	612	0	12,461	0		•	198	
MK		73,318	1,954	139	0	59,816	0		0	11,4
<u>sk</u>		57,140	23,476	2,340	1,245	13,090	1,762	10,064	0	5,1
[otal	<u> </u>	209,058	30,195	2,479	19,491	76,793	1,762	59,195	2,574	16,5
Ratio	of Sui	tability in Pro	vince				-			
		KK	10%	0%	13%	9%	0%	63%	5%	
		MH	2%	0%	36%	0%	0%		1%	à
		MK	3%	0%	0%	82%	0%	0%	0%	16
		SK	41%	4%	2%	23%	3%		0%	9
		Total	14%	1%	9%	37%	1%	28%	1%	
Ratio	of Sui	tability by Pro	vince							
		KK	14%	0%	30%	5%	0%	46%	92%	(
		MH	2%	0%	64%	0%	0%		8%	G
		MK	6%	6%	0%	78%	0%	0%	0%	
		SK	78%	94%	6%	17%				69
		Tótal		27/4	- 5/6	1 10	100%	17%	0%	31

(Note) Analysis has been made tentatively based on Land Suitability Map for Small Reservoir Development in Northeastern Region of Thailand by DLD and Mekong Secretariat.

2.4 Mechanism of Salinization in the Northeastern Region and Farm Pond Construction

Northeastern Region is well known as the salt-affected area. The salt-affected areas extent in the lowlands of Korat Basin and Sakon Nakhon Basin of which locations are shown in Figure 2.1-1 in Appendix D. It is considered that salt injuries are caused by salt which is transported to the ground surface from saline groundwater by capillary water. Groundwater is salinized by rock salt strata thickly deposited in Mahasarakham Formation as shown in Figure 2.4-1. As a result, salt-affected areas are concentrated in the lowland, and LRAs are saved from salt problems due to high elevation. However, since LRAs are connecting to the salt-affected lowland areas through groundwater, it is necessary to avoid the developments which are likely to raise groundwater table in the salt-affected lowland.

(Data Source) Data from ADRC, Khon Kaen

Figure 2.4-1 Schematic Model of Salinization

Farm ponds are not lined in most cases for preventing seepage from the bottom of the ponds. Seepage is considered to be one of the causes of salinity of the flat lowland as mentioned above. According to information of RID Provincial Office in Mahasarakham, seepage will gradually decrease due to sediment closure on the bottom. It is difficult to find cheap materials or measures for seepage prevention so the only choice may be to wait for natural closure by sediment. This matter is described in detail based on observation in Chapter 3 in Appendix B. Moreover, if farm ponds are connected with contour ditches for catching runoff effectively, farm ponds will work not only for trapping sediments but also for accelerating closure of seepage.

CHAPTER 3. PRESENT CONDITION AND VILLAGERS' DEMAND ON INFRASTRUCTURE

3.1 Introduction

This chapter grasps the present condition of infrastructure and villagers demand on it. Present condition is grasped mainly based on Kor Chor Chor 2 Khor 2537, and villagers demand based on sample survey in the study area. Sample interview survey regarding to infrastructure was carried out in the selected 44 villages in the study LRAs in June 1997 in order to know present development condition of infrastructure and villagers' mind on it. The interview was carried out to the village leaders in the selected villages. The detail results are presented in Table 3-3 to 3-4. Questionnaire form is presented in Table 3-5 and 3-6.

3.2 Diffusion Ratio of Commodities

Diffusion ratio of major commodities were surveyed, and results are shown in Table 3-3. The results are as follows;

- 1) Television: Diffusion is estimated at 85% in the areas.
- 2) Refrigerator: Diffusion is estimated at 43% in the areas.
- 3) Air conditioner: Almost no air conditioners are diffused yet.
- 4) Bike: Diffusion is estimated at 72% in the areas.
- 5) Pickup truck: Diffusion is estimated at 6% in the areas.
- 6) Sedan: Diffusion is estimated only at 0.2% in the areas.
- 7) Tiller: Diffusion is estimated at 49% in the areas. It means that almost half households have a tiller.
- 8) Gas: 15% of households are using gas for cooking. Utilization is high in Khon Kaen at 28% and low in Mukudahan only at 7%.

3.3 Natural Problems

Most villages, 93%, are suffering from drought in the areas. Soil erosion follows drought, and it occurs at about 30% of villages. Soil erosion is especially high in Khon Kaen and Mahasarakham at about 50% of villages. Salinity problems are not so high at about 12% of villages but little high in Khon Kaen and Mahasarakham. Floods and storms are not so severe but little severe in Sakon Nakhon and Mukudahan. (see Table 3-3)

3.4 Public Infrastructure

3.4.1 Electrification

All selected villages were already electrified. Out of 44 selected villages, three villages were reported as not electrified in 1994 by Kor Chor Chor 2 khor 2537. Those villages were however already electrified by the recent electrification program. On the other hand, coverage ratio of electrification is 93% of total households. (see Table 3-3.)

3.4.2 Public Telephone System

Although public telephone system is now rapidly expanding in the study areas, present diffusion is 30% of selected villages. It reaches 67% in Sakon Nakhon and 38% in Mukudahan, while 10% in Mahasarakham and 18% in Khon Kaen. (see Table 3-3.)

3.4.3 Public Transportation

Most villages have a public transportation to nearby towns and villages. It is generally operated privately by pickup trucks which are remodeled for passengers. It is usually operated under regular time schedule and utilized for commute to school and works. (see Table 3-3.)

3.4.4 Village Waterworks

1) Present Condition and Diffusion Ratio of Village Waterworks

The rural water supply works, especially viltage water supply works, are now rapidly carried out in the study LRAs. According to the information of Kor Chor Chor 2 Khor 2537, diffusion ratio of the village water supply works in the study LRAs has reached 79% that is higher than the target of 8th National Development Plan of 70%. The diffusion ratio in Khon Kaen and Mukudahan is already extremely high over 90%, while it is little less than 70% in Mahasarakham and Sakon Nakhon.

Table 3.1 Diffusion Ratio of the Village Water Supply Works in the Study LRAs

Province	Total Number of Villages	Villages not diffused	Diffusion Ratio
Khon Kaen	123	5	96%
Mahasarakham	163	58	64%
Mukudahan	108	6	94%
Sakon Nakhon	92	33	64%
Total	486	102	79%

(Note) Detail diffusion ratio of each LRA is presented in Table 3-2.

However, village water supply works are mostly utilized only for domestic purposes due to unfavorable water quality especially on taste. Villagers prefer to drink rainwater stocked in a rainjar than supply water of waterworks so that rainwater will be remained and utilized for drinking purpose even after equipped with a village water supply system. Scrious hygienic problems are not reported on rainwater in the interview conducted in the study LRAs.

Main water source of the village water supply works is groundwater or pond water. Water is treated and pumped up to the elevated tank for distribution to each household through the distribution pipes. According to the sample survey in 44 villages, subscription ratio of village water supply works was about 70% in average. Some households, such as far from village or having own shallow well, have not membership of the water works in some cases.

Table 3-2	Village W	ater Wor	ks and Diffe	usion Ratio in	Each LRA
Study Area	Total Village	Provided	Not Provided	Propagation(%)	Average(%)
K K · I	37	33	4	89,189	
K K - 2	11	11	0	100.000	1 1
KK-3	21	21		100.000	1
KK-4	8	8	0	100.000	
K K - 3	9	9	0	100.000	i l
KK-6	37	36	1	97,297	
KK-Total	123	118	5		95.9
MHS-I	3	3	0	100,000	
MHS-2	19	18	3	84.211	
MHS-3	-9	6	3	36,367	
MIIS	9	9		100.000	1 1
MHS-3	13	9	4	69.231	
M118-6	18	13	3	72.222	
MHS-7	8	3	3	62,300	1
MHS-8	64	26	38	40.623	j j
MHS-9	3	2	T	68.667	j l
MHS-10	17	16	i	94.118	
M HS-Total	163	105	38		64.4
MKD-I	19	19	0	100.000	
MKD-2	- ii - l	11	- ŏ	100.000	i i
MKD-3	9	9	ŏ	100.000	
MKD-1	2	2	ò	100.000	
MKD-3	10	9		90.000	
MKD-6	0	0	-		
MKD-7	- 8	7	<u> </u>	87.300	i 1
MKD-8-1	7	7	0	100,000	i 1
MKD-8-2	3	5	0	100.000	
MKD-8-3	4	3	1	75.000	
MKD-8-4	3	3	0	100.000	1 1
MKD-9-1	2	2	0	100,000	
MKD-9-2	9	9	0	100,000)]
MKD-10	2	2	0	100,000	1
MKD-II	14	17	3	78.571	1 1
MKD-17	3	3	0	100,000	l l
M K D - I ofal	- 108	102	6		94.4
SKN-I	. 2	2	. 0	100,000	
SKN-2	12	7	3	58,333) j
SKN-3-1	22	16	6	72.727	
SKN-3-2		1	0	100.000	1 1
SKN-3-3	6	4	2	66.667	l l
SKN-4	17	à	8	52.941	
SKN-3-1	2			30.000	į į
SKN-3-2	22	14	8	63.636	!
SKN-6-1	5	3	0	100,000	1
· SKN-6-2		0		0.000	1
SKN-7	2	0	2	0.000] <u>[</u>
SKN-Tolat	92	39	33		64.1
Grand Lotal	486	384	102		79.0

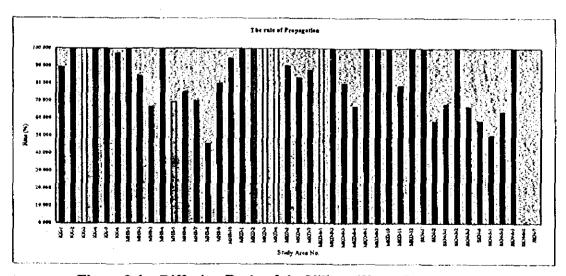


Figure 3-1 Diffusion Ratio of the Village Water Supply Works

2) Result of Sample Survey on Village Waterworks

Village waterworks cover 91% of selected villages while coverage ratio remains at 78%. Coverage ratio is quite high in Khon Kaen and Mahasarakham as 89% and 98% respectively, but low in Mukudahan and Sakon Nakhon as 66% and 57%. (see Table 3-3.)

3.4.5 Primary School

Almost villages, about 80%, have a primary school in the village in 44 sample villages. Even no primary school in the village, it exists in nearby village. Average distance to the school is only 250 m in the areas. Maximum distance is observed in Mahasarakham to be 1.5 km that is still walking distance for a student. (see Table 3-3.)

3.4.6 Health Centers

1) Present Condition of Health Center by Kor Chor Chor 2 Khor 2537

Figure 3-2 shows the number of villages covered by one health center by the information of DOH. On the other hand, Figure 3-3 shows the Kor Chor Chor 2 Khor's evaluation of the public health services. From both figures, evaluation of the Kor Chor Chor is closely related to the number of villages which is covered by one health center.

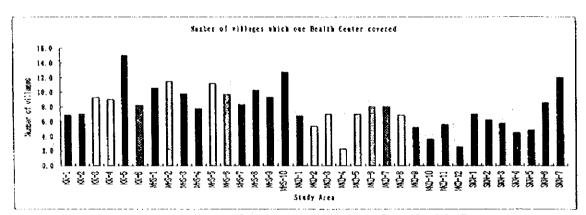


Figure 3-2 Number of Villages covered by One Health Center

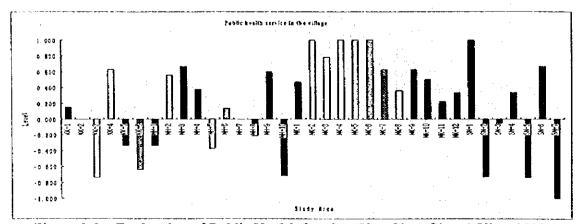


Figure 3-3 Evaluation of Public Health Service (Kor Chor Chor 2 Khor 2537)

From above figures, following five LRAs have been selected as the area where high

high quality of services are available on health care. In the selected areas, average number of villages cared by one health center was about 6 villages.

Selected LRAs where high quality services are available	Average Number of Villages cared by one health center
MKD-2	5.3
MKD-4	2.3
MKD-5	7.0
MKD-6	8.0
SKN-I	7.0
Average	5.92

On the other hand, the number of villages per one health center was 12 villages in SKN-7, where health service was evaluated as the lowest level.

2) Results of Sample Survey on Health Center

It is observed that only 30% of villages have a health center in the village. There is no health centers in selected villages in Mahasarakham. Average distance to the health center is 2.7 km in the areas, while it is far in Khon Kaen and Mahasarakham as to be 3.8 km and 3.5 km respectively.

3.4.7 Public Ponds

Many villages, 63%, have own public ponds in the village. However well operated ponds are only 54% mainly due to lack of water in the ponds.

3.5 Priority Infrastructure Development

Priority development regarding to infrastructure has been asked to the village leaders. Most leaders, 84%, put a priority on agricultural water development. It is followed by developments of on-farm roads, village link roads and link roads to the main road, that are 58%, 49% and 47% respectively.

Health center development is requested by 37% of village leaders in the areas. This request is especially high in Khon Kaen and Mahasarakham as to be 55% and 50% respectively. It is considered that it relates to the scarce existence of health centers in said two provinces.

Soil improvement and conservation are also high as 23% and 14%. Soil improvement is especially high as 55% in Khon Kaen.

Priority of village water works is very high only in none facilitated villages. On the other hand, improvement of electricity is also high as 19%. It means that reliability of electricity is not satisfied in many villages.

3.6 Sanitary and Health Affairs

3.6.1 Sanitary Affairs

Most households, 97%, have own toilets in their houses. Those toilets are emptied by evacuation service truck with a charge of 170 Baht per one service in average.

3.6.2 Health Service Affairs

1) Distance to the Nearest Health Centers

As mentioned above, average distance to the nearest health center and hospital is 3.8 km in the areas. However, it is little longer as 4.1 km for the villages which are not facilitated with a health center. From this fact, mast villages are accessible to the health centers or hospitals within 4 km from their villages.

2) Service Quality of Health Centers

(1)Preventive Hygiene

Preventive hygiene is satisfactorily carried out in the areas except few villages in Khon Kaen.

(2) Health Care Check

Health care check is also satisfactorily carried out but little lower than preventive hygiene.

(3) Medicine in Health Centers

Medicine is not enough in many centers about 44% of centers. More doctors and medicine are requested in Sakon Nakhon and Mukudahan.

(4) Medicine in the Villages and Households

Preparation of medicine is low in the villages and households. It is prepared only in 35% of villages and 19% of households.

	· · · · · · · · · · · · · · · · · · ·		Alministic te Leculo			100.0	T	ible 3	3 Dia	Musion	Ratio	of M	lajor (`om m	odity,	Natur	al Pro	blems, I	Public	c Infra				elopni	ient P	riority																
			Venninguras respin			1997 June			Kor (Ohor Cher	2 Khor 2	1537 	· I - ·	<u></u>		Diffusion	a Rugo ((%)	-	1 1	} <u>N</u>	Tail 130	blems]	1 1	7	ļ, ī	1 1	blic lafra	tructura }	{ Par	is -	N. see			[of istracti				· · · · · · · · · · · · · · · · · · ·		;
T. C. X. X. X. X. X. X. X. X. X. X. X. X. X.	10 C 47 N 54 N 71 B 83 N	Tion nated Vi ang Man Cha Kin Pan Fang Viam Pong Nam Pong	Non Phayona Non Phayona Non Phayona Sawada No Ngam Pa Manoo Ban Kham Ban Kham	ON SECOND	1	80 840 % 957 73 -	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(3) Transportation	(3) Wood field sources	blow yeld (10) anddy weld	(11) Upland crup yield	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	2012-2014-2014-2014-2014-2014-2014-2014-	0 O O O O O O O O O O O O O O O O O O O	0 30 30 30 30 30 30 30 30 30 30 30 30 30	50 65 0 50 0 15 0 15 0 80 0 80	20 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	spoot _d	work Year	Tire from forest	A A A A Spline soil	Sendy soil		100 100 100 100 100 100	Z Z Z Z Z Z Z Public Telephone A A A A A A Public Transportation	00 001 000 000	O O O O O Drimary School (km)	Post of the second of the seco	A A A Well working (Yes or No.)	Manage water	Vallage waterworks	Segul vi nese (be of	Sem roads	Conservation	Strings school	La la la la la la la la la la la la la la	Culture conter	Flood protection	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
KK 6 KK 6 KK 6 KM 6 KM 6 KM 6 KM 7 KM 8 KM 8 KM 8 KM 8 KM 8 KM 8 KM 8 KM 8	89 B 95 B 101 C 11 K 20 A 31 A 41 B 50 A 76 B 139 K	Bac Phai Ban Phai Cheen nabhi Chieng Yun Kosam Phisu Maang Maang	Ban Han Pa Por Par Dueng Lao Dordana Wong Yao Nong Ping Nong Ping Ta Song Khon Non Davag Nong Ping Han Toob Chierg Yun Na Sass	B Nong Nam k 2 Pa Por 5 Marp Ta Kla Marp Ta Kla Marp Ta Kla Marp Ta Kla Marp Ta Kla Marp Ta Kla Jan Khaen Na S Nong Sgua S Susta S Nong Ngua S Sula S Khot Lam 6 Dong Keng 10 Sun Rong 12 Non Han Hoe I Na Sak	Jun N 3	69 1,082 50 819 100 411 135 360 155 360 156 560 157 560 158 560 159 560 159 159 159 159	2 1 1 3 2 2 2 2 3 3 1 1 2 2	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	-1 -1 -1 -1 -1 -1 -1	1 -1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0	0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1	40 10 100 90 100 80 100 30 100 30 100 40 100 10 95 40 100 30 50 60 100 5 80 30	0 10 5 0 8 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	5 18 0 10 0 10 0 27 0 23 0 57 0 57 0 43 0 29 0 92 0 7 0 1	0 30 0 20 0 7 70 0 60 0 100 0 40 0 11 2 1 10 0 40 9 26 0 70 0 70 0 30	20 Y 30 Y 80 Y 5 Y 40 Y 0 Y 5 Y 10 Y 20 Y 20 Y 20 Y 20 Y 20 Y 20 Y		- · · · · · · · · · · · · · · · · · · ·		Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Y	100 80 95 100 100 100 100 100 100 100 10	N - N Y Y Y N Y Y N Y Y	100 100 100 100 100 100 100 100 100 100	0 0 0 0 0 15 15 15 0 1 0	0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y Y Y Y Y N Y N Y N N Y N	1 · · · · · · · · · · · · · · · · · · ·	7	1	3 2 2	3 3 1	- - - - - - - - - - - - - - - - - - -	- 1 - 3 - 3 3 3 1 - 1 - 2		- 3 		, , , , , , , , , , , , , , , , , , , ,
SOCIO 2 SOCIO 2 SOCIO 2 SOCIO 3 SOCI	25 D 29 A 35 A 46 A 48 A 58 A 64 C 72 C	Mang Dortan Khom Khum Soi Ni Khom Khum Soi Don Tan Nong Soong Nong Soong Nong Soong Oong Luang Dong Luang Dong Luang	Dong Yer Lao Mi Na (Gora Na (Gora Na (Gora Na (Gora Nong Scong Tui Nong Scong Tui Nong Scong Tui Nong Scong Tui Nong Scong Tui Nong Scong Tui Nong Scong Tui Nong Can Phang Daeng Khek Teom Khek Teom Khek Teom Khem Fa Lai	5 Khok Ta Rar 5 Na Yo 5 Khura Lao 10 Na Chavora 3 Ban Nong M 1 Ban Leop Pa 3 Ban Warg 5 Khun Phok 3 Phon Hai 3 Tru 7 Khong Nang 9 Park Chong 7 Ran Pa Wai	18 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$60 900 \$77 500 \$1,000 1,000 \$1,000 1,000	3	1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1		1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -		0 -4	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 70 80 50 80 70 95 40 95 40 90 60 90 60 90 80 80 30 20 17 99 50 50 23 20 17 20 20 51 20 51 20	0 8 0 9 0 5 0 3 0 0 10 0 10 0 10 0 10 0 10 0 10		0 8 80 0 60 0 30 0 8 70 0 60 0 70 0 23 0 0 30 0 30 0 30 0 30 0 30 0	29 Y 17 Y 15 Y 5 Y 15 Y 10 Y 20 Y 10 Y 0 Y 0 Y 0 Y	Y	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	¥ 1	Y	190 100 100 70 98 98 100 100 100 100 30 100	Y Y Y Y N Y N Y N Y N Y N Y N Y N Y N Y	0 C 70 80 0 100 98 100 20 100 20 50 50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b 1	N Y Y Y N N N N	- · · · · · · · · · · · · · · · · · · ·		1 1 3 3 3 3 3 2 2 2 2 2 2 2	1 3 3 - 2 2 2 1 1 2 3 2			- 3 - 1 - 4 		. 2 . 4 		
MXD 10 MXD 111 SNN 2 SNN 31 SNN 4 SNN 61 SNN 61 SKN 7 KNoa Xara Mahasurahban	92 U 2 E 10 (15) 55 U 86 V 92 3	Charoon Sdp Kut Bak Kut Bak	Cha Neid Noi Nong Bus Dong Mo Thong Tsi Nong Farg Kut Bak Na Mong Kham Bo Pan	J Ban Cha Nong B 6 Dong Mo Th 3 Khun Chare 1 Kut Bal. 5 Phon Ngam 3 Ban Pha Wo 6 Ban Fang	ua i i i i i i i i i i i i i i i i i i i	20 213 38 7,447	1 2 2 2	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1 -1 -1 -1 -1 -1	1 0 1 0 -1 0 0 0 -1 0	7 -	-1 -1 0 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	0 0 0 0	1	70 50 80 50 100 50 50 10 100 30 100 20 30 60 100 20	0 0 7 0 9 0 10 0 0 1 0 0 9 0 0 9	- 1 1	0 60 0 60 0 80 0 30 0 6 80 0 25 0 2 40 0 13	\$ Y 10 Y 30 Y 15 Y 40 Y 5 - 5 - 0 Y		Y Y Y	Y lages whi	Y -	oroblems	3 0	100 100 100 85 100 70 100	N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N umber of	80 30 100 60 40 70	0 0.7 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 2 1 5 4 2 1 2 0 0 1 2 4 3	Y Y Y N N N N	4 · · · · · · · · · · · · · · · · · · ·		5 3	3		es>l	2 6		2 -		
Muhudahan Si-es Nithen Ined Ratio Khon Kaen Muhadahan Si-es Nithon Foal Khon Kaen Mahasarakhan Mahasarakhan Mahasarakhan Mahasarakhan Muhudahan Si-es Nithon		16. 6	interview to the vidage		2.6 1.2 7.0	13 34,024 04 8,690 45 36,929	1 1	0.6 0.5 1.0 0.3 1.9 0.3 1.9 0.2 1.9 0.4	03 08 09 06 CO2 02	0.7 0.6 0.6 0.8 0.9 0.3 14 0.0 0.6 0.5	0.8 0. -1.0 0. -1.0 0. -1.0 0. -1.0 0.	7 -0.2 8 -0.0 9 -0.3 8 -0.6 8 -0.2	0.2 0. 0.2 0. 0.5 0. 0.2 0. 0.2 0.	5 0.5 2 0.6 8 0.7 4 1.0 5 0.7	86 57 96 33 75 44 88 32 85 43	Diffusk 0 7 0 7 0 7 0 7 0 7 0 7	m Rape 0 8.7 5 6.4 0 5.5 5 4.3 72 6.3	(%) 01 50 02 43 02 53 01 45 02 49	28 100 11 100 7.4 96 16 67 15 93	10 0 115 3 4 3 40 6 Ra 78 0% 78 0% 18 19% 18 50%	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 (13 (24 have p 5% 279 0% 309 6% 09 7% 09 0% 169	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 3 1 0 0 8 7 7% 0% 0% 0% 0% 0% 0% 0%	100% 100% 100% 100%	1	91% 91% 100% 88% 83% 91%	100% 34 40% (94% 3 67% \$0 79% 3	18 64% 0% 60% 1% 63% 0% 83% 0% 65%	114 504 594 405 1	9 C 12 3 6 36 4 82% Og 90% O9 75% 19% O0% 17% 13 1.6 1.5 1.1 1.0 2.0 1.4 1.8	9% 40 10% 50 13% 50 50% 1	5% 45% 50% 50% 6% 63% 7% 17%	45% 5 40% 3 88% 3 33% (1 1 1 3 1 1 0 2 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9% 1 10% 6% 0%	0 5 0 4 0 1 2 16 8% 55% 50% 50% 50% 55% 37% an Prioriz 20 20 35	0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0% 279 0% 109 0% 259 7% 09 2% 199	7 23 0 3	2.0

South LRA		Adjment springly Localion	ation	2	total des		5					TOTAL VIEW	1			
		- J		POPULACION.	2000	1	+	Horizonia and Homen Casho	CHARLE CARRIER	ļ			*		i design	
A3L	ON SERVICE	so ĝus .	ok melek Refi	diction	coimings	क्ष्मित्र ३० ज्याना सन्त्रकाट (<i>हर्</i>	(Med) sodanosvá	Medical Const.		(m.l.) 2008(2)) Smig-fil svines-self	الرعائة ترعد لركمية	Medicine in Contra	agada√ ni anixin/v	Modernosi in minimizati	(manusia)	genby
=	Chon-regio	Non Phayom	Nongram	911	576	801		Non Player		۲ 0	>	-	Z	2	j.	
	0 Chommahor	Non Planton	6 Non Phryom	981	0#6	9)1	7	٨		>	>		>	z	40 More Badye	ad ba
-	47 Murne	Savethi	14 Cad Ne Pang	204	255	QU.7		2		۸ 0	>	-	Z	۲		
-	St. Man Cha Kin	7. X.	10 Jane Tub Ma	£	•	ş	·	A Nogar	֭֭֭֭֭֡֟֝֟֝֟	٠,	>	>	,	2	Į.	
•	71 Ban Fadil	Po Manac	+ Hu Klong	138	*	901		z		٨ ٥	>	*	Z	z	35	
	- Ken Par	Sun Khan	F Lac Yn	103	ŧ	ļ	H			Z	z	*	2	2	30 Good Doorlo	SOCIO.
-	83 New Pong	Den Klein	11 Sem Rong	2	1000	100	S.	۸.		>	>	×	2	À	FOO Elecuph Equipme	Confessor
ē.	S Nam Food	Barn Kiluma	13 Lao Yau	-	3,	1	•		*	7	Z	>	2	2	30 Cood D	cotor
9	KS Ban Phu	Ban Han	W. Nong Ners Xaum Nue		1,042	П	-	Z Ben Yea	4	B.0	1		•	•	-	
,	15 Blen Phile	Pa Por	7 Pa Por		61#		•	۲.		^	7	>	2	z	20	
٦	01 Channelog	Per Demig	Marp Ta Xia	130	Ę	ŝ		Z Por Deery		٨	>	,	2	2	Cheed D	Photov
-	1 Cheng Yun	Luo Dodomes	N. KINE NO.	25	98	L	-	N Krebenk	-	S-0.0	>	۲.	2	2	100 / More by	18 Onte
2	13 Kogam Phiese	Wang Yeo	3 Hur Hoe	000	00%	100		z	֓֞֞֟֞֟֟֝֟֓֓֟֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟	٨ (0.0	٨	7.	Z	2	10 Dozen not anough	not donugh
CHS 3, 3	O Muse g	Nong Pring	3 Nong Kon	123	1,700			7		2.0 Y	>	-	٨	٠,	96	
-	31 Murre	Nong Pring	8 Similar	*	8	\$	Z	7	֓֟֞֜֟֟֟֝֟֟֝֟֟֝֟֟֝֟֟ ֓֞֓֓֞֓֞֓֓֞֓֞֓֓֞֓֓֞֞֞֓֓֓֞֞֞֓֓֓֞֞֓֓֞֓֓֞֡֓֓	2.6 V	>	`	,	Å	06	
•	32 Muning	Te Song Khon	A Nong Nigas No.	ŧ	300	001		2	-	¥ 0.4	>	2	2	z	30	
6	4. Bornhu	Non Demy	S. Sala	74	9	100	-	,	-	2.0 7	*	Z	*	٨	0	
9	10 2 S	Nong Rus	9 Xhok Lem	76	38	9		2	•	401 Y	>	2	٨	2	10	
2	76 Borney	Bo Yau	6 Dyng Keng	26	9	99		N Ben Pat	[۸	>	۲	Z	z	0.	
80	9 K.A. Kur Rang	Huer Toes	10 Saru Roag	: (0)	4	- 20	-	Z		۶. ۷	*	۲,	>	٨	100 (Doggr.	& Equipmen
0	.57 Chang Yun	Cheeng Yun	12 Non Hus Hae	201	505	Ş		N Chang Yes	•	Y 0.0	٨	٨	z	2	30 × ×	
-	3 Musmg		705 PZ	#11	1,225	90		1		-	>	2	7	>	8	
7	7) Mumbe		5 Xbok Ta Bang	021 1	ŝ		۔ ع	2 × 20 ×		٠ و	}	2	>	٠	Nedica	e & Equip
2	2 23 Donum		۶. ×۰	67	90,	901	ř	V Les Mi	1	۰.0. د	>	2	Z	z	20	
7	S KNOW KNOW NO	Na Central	A Khum Leu	8	8	8	-	N New Many Van	1	> ?	>	> [z	2	d c	
7	12 X COM 10 MM 25		10 Z O 27 D	=	3	2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	> -	>	1	7	7	ğ	
	4) Den Tarr	Para	3 Sam Jenny Mek	2	Ē	ŝ	1	·		*	-	z (;	Z	z	Z Mora O	2
-		NONE SOOM THE	1 Sen Loop Ping	8	Š	ĝ	-	z		>	z	z	2	z	Machan	
		Nong Joong Tex	3 Ban Wang	2	ŝ	ŝ	Ł	2	1	>	2	2	4	2	Medicure	
		Non York	SIXAM Phot	2	Ê	<u>s</u>	۱			<u>-</u>	1	-[1	-	
2	ł	S S S S S S S S S S S S S S S S S S S	3 Phon Has	£	Š	2		N Ben Nong Can	7	- و	>	۱-	,	۱,	\$	
, ,	:	Phane Dame	31 TW	*	210	₹	-	N Phane Deeng	°	2	>	ا^	2	z	š	ļ
-	1	Cook Toom	7 Xeeing Name	ž	8	2	+		1	1	>	-	2	2	^	
=	1	Khek Toen	9 Park Chong		\$ 	_ſ	+	- Z		•	>	2	-	2	2	
	Washing .	K.Weff Pa Las	Ban Pa wa	8	À	8			1	> - -	- :		-	1	2	
	90 Dong Lump	Che Nod No.	DESCRIPTION NO. NO.	9	Š	- 1	ŀ	•	,	}	<u>- </u>	1	1	-		
	V. Dong Laung	Nong Has	No. Veng Pare	*	2	4	_	-		-	<u>-</u>	4	-	2	ZO DOGGE & MACHEN	
	San Muang	LYCHIG MO THOME THE	Done Mo Thorn	538	3	3		Wilder Constitution		ı	-	1	1	۱	ğ	
	Charles Mile	No.	Kharm Chaffean	2	3	8	- 1	2		<u>-</u> :		- :			-	
	1. Au Ber	KW Dex	. XVI Dec		2,031	8	·ľ	·	1	,	- '	1	}	2	No.	, and
		Tra mong		S.	3	3	\cdot	. 7			• • -	1	2	2 /2	AN TANGENT OF INVOICEMENT	2
•	District Library		State of the Control of						1	1	· ;	1	-			
+	22 VAND 122	ran	O Dem Fadil		1			THE PARTY NAMED IN	+				1	7		
1					:::	- 15	\{\frac{1}{2}}			į	Ł	į				l
Land Vision				1 286		3	1		5	_1_	- 1	5	É	É	ė.	
The second second					è	 	ľ		•			TOTAL COLL SOLE COLL	ξį.	,		
LOS Nakhon	er e			1	ç	į	+	30	3 5			,	. 5	i d		
-				5		•	+			л.	ı			\$		
						5	į	•					2			

Tale 3-5 Questionnaire on Generals and Infrastructures

Name of Village				1361	17.	han
Vil.no Province	Amphoe		ambon	Mo-no	MIC	oban
I. Population and	Households					
c, ropulation and		2438 (1995	5		Leader (June 19	97)
Households						
Population						
			-			
2. Generals						
, <u>, , , , , , , , , , , , , , , , , , </u>	K-C-C 2438			Leade	r (June 1997)	
	(1995)					
General	(2):					% of households)
Infrastructures					ivate: yes, nopl	
	(3):				car to Amphoe tow	vn.
]			n (Bus): yes,		
				Baht	times/day	hours
		ļ <u>ļ</u>	Amphoe			
		-				<u> </u>
		L		L		
	(24):	- Piped wat	er supply s	ystem: yes, n	O	arabadha X
	1					olished by)
	(10)					iter, well,)
	(19):				ring toilet. (B/d	he nearestkm)
	(32):				lage, or k	
					km from v	
	Dry S. farm	- Irripation	Facilities ((not individua	al farm pond): yes, r	10
	(16):	if ves	rai ir	rigated for ri	ce and dry season c	<u>rop</u> ()by
	Agri. water	MS	IP: name:			
	(27):	SSI	P: name:		_ (reservoir, weir, p	pump by)
				y used?; yes, i		• •
	1				city, poor maintena	nce, no outlet,
					heavy sediment, or	
	Individual				s are there in the vill	
	Farm Pond				f which % f	or integrated farming.
	Į		ms on farm			·
	1			7		heavy seepage (%)
					small for integrated	
]	1				too much labor for	
	+,					nt benefit Ono marke
Income level	(8):			/household/y		
				/household/y /household/y		
					ear None agricultural inc	come (%)
	1	Percentage	at ulcume t e more thar	. B30 000/ba	usehold/year (9	%)
Works in nearby					the near towns or c	
major towns or	1					
cities (Daily work)		Approxim	ate necessa	ary time to rea	ach to the work town	n: hours by
Chics (Dany Work)					go when roads are	
Migrant works	 				cities? (approximat	
1316	1		•	(Khon Kaen		,Bangkok)
L					·	

the village Other household industry than silk weaving (Major Industries	İ	D particularly none
Commitment Com	other than crops in	ł	O silk weaving
Diffusion ratio Crop Vield rice(10): Lagro-forestry (rai, mushrooms, herbs, fuel wood, charcoal,)	the village		other household industry than silk weaving ()
Gisheries Gago-product processing (milling, pickles, agro-forestry (rai, mushrooms, herbs, fuel wood, charcoal,) others ({	
agro-product processing (milling, pickles, agro-foresty (_rai, mushrooms, herbs, fuel wood, charcoal,) agro-foresty (_rai, mushrooms, herbs, fuel wood, charcoal,) others (j	
Dagot-foresty (rai, mushrooms, herbs, fuel wood, charcoal,)		1	1 ' ' =
Energy (5): - existence of Community Forest: yes, no (if yes		ì	agro-product processing (milling, pickles,)
Energy (5): - existence of Community Forest: yes, no (if yes	Ì		agro-forestry (rai, mushrooms, herbs, fuel wood, charcoal,)
Energy (5):			
Puel wood:	Energy	(5):	- existence of Community Forest: yes, no (if yesrai)
Agriculture Crop Yield rice(10): upland(11):		Į	
Agriculture Crop Yield		ĺ	Fuel wood:% (B / kg)
Agriculture Crop Yield rice(10):		}	
rice(10): upland(11):		<u> </u>	
upland(11): sagro-forestry (eucalyptus,	Agriculture		
		, ,	:rice, [_]:cassava, [_]:sugarcane, [_]:vegetables,
If rice is not a major cash crop, it is due to: mainly for home consumption, or		upland(11):	:agro-forestry (eucalyptus,),
		l	——————————————————————————————————————
		1	
Community pond: Community		{	
Diffusion ratio TV:%, Refrigerator%, Air conditioner%, Bike%, Pickup truck%, Sedan%, Tiller:%, Gas% Natural Disaster Are there any natural disasters in the village? (put order by 1, 2, 3,) Droughts Saline soil Soil fertility Floods Soil erosion Hail Others (Future Development What is the priority of importance for future development for this village from an aspect of infrastructures? (by 1, 2, 3,, duplicable like 1, 1, 2, 2,) agricultural water. drinking water. froad improvement to the nearest main road. froad improvement to the adjacent villages. flood protection from erosion flood protection flood protection flood protection flood protection flood protection flood protection form erosion flood protection flood prote	1	ļ	
Pickup truck	Diffusion ratio	 	
Are there any natural disasters in the village? (put order by 1, 2, 3,) Proughts	טוומו תסוצשווען	i	
Droughts Saline soil Soil fertility Floods Soil erosion Soil fertility Floods Soil erosion Soil fertility Others (Natural Disastan	ļ	rickup tuck%, Sedan%, Tiller:%, Gas%
Saline soil Soil fertility Soil fe	ivatorai Disaster		
Soil fertility Soil fertility Floods Soil erosion Hail Others ({	
Future Development Floods Soil erosion Hail Others (What is the priority of importance for future development for this village from an aspect of infrastructures? (by 1, 2, 3,, duplicable like 1, 1, 2, 2,) agricultural water. drinking water. road improvement to the nearest main road. road improvement to the adjacent villages. farm road for cultivation. soil improvement on fertility soil protection from erosion flood protection electricity. gas. community forest for fuel preservation. primary school in the village. clinic nearby the village. clinic nearby the village. cothers (Do you think able to conduct the land consolidation for future development? yes		l	
Future Development Future Development What is the priority of importance for future development for this village from an aspect of infrastructures? (by 1, 2, 3,, duplicable like 1, 1, 2, 2,) agricultural water. drinking water. road improvement to the nearest main road. road improvement to the adjacent villages. farm road for cultivation. soil improvement on fertility soil protection from erosion flood protection electricity. gas. community forest for fuel preservation. primary school in the village. clinic nearby the village. others () 3. Future Development Plan (Preliminary)> Do you think able to conduct the land consolidation for future development? yes	[1	
Future Development What is the priority of importance for future development for this village from an aspect of infrastructures? (by 1, 2, 3,, duplicable like 1, 1, 2, 2,) agricultural water. drinking water. road improvement to the nearest main road. road improvement to the adjacent villages. farm road for cultivation. soil protection from erosion flood protection electricity. gas. community forest for fuel preservation. primary school in the village. clinic nearby the village. clinic nearby the village. others (Do you think able to conduct the land consolidation for future development? yes	ì	1	
Future Development What is the priority of importance for future development for this village from an aspect of infrastructures? (by 1, 2, 3,, duplicable like 1, 1, 2, 2,) agricultural water. agricultural water. adriking water. road improvement to the nearest main road. road improvement to the adjacent villages. farm road for cultivation. soil improvement on fertility soil protection from erosion flood protection electricity. gas. community forest for fuel preservation. primary school in the village. clinic nearby the villag		1	
What is the priority of importance for future development for this village from an aspect of infrastructures? (by 1, 2, 3,, duplicable like 1, 1, 2, 2,) agricultural water. agricultural water. agricultural water. and improvement to the nearest main road. aroad improvement to the adjacent villages. farm road for cultivation. soil improvement on fertility soil protection from erosion flood protection electricity. gas. community forest for fuel preservation. primary school in the village. clinic nearby the village. clinic nearby the village. clinic nearby the village. conduct the land consolidation for future development? yes	1	l	<u> </u>
from an aspect of infrastructures? (by 1, 2, 3,, duplicable like 1, 1, 2, 2,) agricultural water. drinking water. road improvement to the nearest main road. road improvement to the adjacent villages. farm road for cultivation. soil improvement on fertility soil protection from erosion flood protection electricity. gas. community forest for fuel preservation. primary school in the village. clinic nearby the village. clinic nearby the village. cothers others othe	Future Development	 	
agricultural water. drinking water. drinking water. road improvement to the nearest main road. road improvement to the adjacent villages. farm road for cultivation. soil improvement on fertility soil protection from erosion flood protection electricity. gas. community forest for fuel preservation. primary school in the village. clinic nearby the village. clinic nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village. chief nearby the village nearby the village. chief nearby the village nearby the vill	atuse Development		
chinking water. road improvement to the nearest main road. road improvement to the adjacent villages. farm road for cultivation. soil improvement on fertility soil protection from erosion flood protection electricity. gas. community forest for fuel preservation. primary school in the village. clinic nearby the village. clinic nearby the village. others (Ì	i	
: road improvement to the nearest main road. : road improvement to the adjacent villages. : farm road for cultivation. : soil improvement on fertility : soil protection from erosion : flood protection : electricity. : gas. : community forest for fuel preservation. : primary school in the village. : clinic nearby the village. : clinic nearby the village. : others (ļ	
coad improvement to the adjacent villages. farm road for cultivation. soil improvement on fertility soil protection from erosion flood protection gas. community forest for fuel preservation. primary school in the village. clinic nearby the village. others () Do you think able to conduct the land consolidation for future development? yes			
: farm road for cultivation. : soil improvement on fertility : soil protection from erosion : flood protection from erosion : electricity. : gas. : community forest for fuel preservation. : primary school in the village. : clinic nearby the village. : clinic nearby the village. : others (-	1	
: soil improvement on fertility : soil protection from erosion : flood protection : electricity. : gas. : community forest for fuel preservation. : primary school in the village. : clinic nearby the village. : others (
: soil protection from erosion : flood protection : electricity. : gas. : community forest for fuel preservation. : primary school in the village. : clinic nearby the village. : others (ĺ	1	I F=3
: flood protection : electricity. : gas. : community forest for fuel preservation. : primary school in the village. : clinic nearby the village. : others (ļ	ļ	
: electricity. : gas. : community forest for fuel preservation. : primary school in the village. : clinic nearby the village. : others (Do you think able to conduct the land consolidation for future development? : yes no Do you think able to bare the land by land acquisition in your village for Mother pond: yes no Community pond: yes no Provision of new farm road: yes no]	
community forest for fuel preservation. primary school in the village. clinic nearby the village. others (ł		
: community forest for fuel preservation. : primary school in the village. : clinic nearby the village. : others (Do you think able to conduct the land consolidation for future development? : yes no Do you think able to bare the land by land acquisition in your village for Mother pond: yes no Community pond: yes no Provision of new farm road: yes no	j]	·
: primary school in the village. : clinic nearby the village. : others (1	1 1 7
: clinic nearby the village; others (1	
3. Future Development Plan (Preliminary)> Do you think able to conduct the land consolidation for future development? :			: clinic nearby the village.
Do you think able to conduct the land consolidation for future development? : yes no Do you think able to bare the land by land acquisition in your village for Mother pond: yes no Community pond: yes no Provision of new farm road: yes no	[<u> </u>	: others ()
Do you think able to conduct the land consolidation for future development? : yes no Do you think able to bare the land by land acquisition in your village for Mother pond: yes no Community pond: yes no Provision of new farm road: yes no	3. Future Develop	ment Plan (P	reliminary>
: yes no Do you think able to bare the land by land acquisition in your village for Mother pond: yes no Community pond: yes no Provision of new farm road: yes no		[
Do you think able to bare the land by land acquisition in your village for Mother pond:			
Mother pond: ☐yes ☐no Community pond: ☐yes ☐no Provision of new farm road: ☐yes ☐ no			
Community pond: yes no Provision of new farm road: yes no	ļ ·	1	
Provision of new farm road: yes no			
		ſ	Provision of new farm road: yes no
		<u></u>	

4. Social Infrastructures	Questionnaire
	If no piped water system;
system	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	Rainjars (% of households)
	Public wells (%)
	Private wells (%)
	Other sources (
	<piped requested?="" system="" was="" water=""></piped>
	☐ yes, ☐ no - if no, why?
	- if yes, when? to what agency?
IE winned wester	1) Water source: (well, spring, pond/reservoir, river, creek, others: name:
	2) Delivery system:
system is available	to each private house, to community hydrants (numbers: in the village
	3) Water charge (B/m³), Do you think reasonable? (D high, D acceptable, D cheap)
	4) Purpose of water
	drinking, washing, shower, bath tub water, toilet,
	livestock water others: (specify)
	5) Capacity of supply: enough, not enough
•	if he can answer (Present: lit/capita/day, Desired: lit./capita/day)
	6) Adequate through the year?: yes, no
	if no, How often in shortage: months or days/year
	How often stopped days/year
	mainly when; (
	Reason: (
	7) Water Quality: good, acceptable, not good (taste, salty, colour)
	8) Maintenance of facilities
	Who is responsible on operation: (community, agency,)
	Who is responsible for maintenance: (community, agency,
	Is the system maintained and operated well? yes, no
	If no, what problems? System Problem
,	System Problem Water source water shortage, weeds, pollution, others:
	Pump deterioration, mechanics, electricity, other:
j	Treatment system deterioration, mechanics, chemical shortage, other:
	Tank deterioration, leakage, others:
	Pipe deterioration, leakage, others:
1	How solved:
ļ	Pressure: enough, cacceptable, low, too low
,	9) Any request to agency?
4.2	1) How many community ponds are there in the village? ponds by (
Community Pond	If no, due to (water pollution, distraction of dike, seepage, sediment, weeds,
	3) How the village ponds are utilized in the village?
	(irrigation, livestock water, drinking water, domestic water, fisheries, swimming,
1	environmental, others)
	4) How is the collectable capacity of runoff?
	good due to enough (catchment, collecting canal, rainfall, others:
	poor due to not enough (catchment, collecting canal, rainfall, others:
	5) How is the capability of water keeping?
[good due to (blanket pavement, good maintenance of dike, others
	poor due to (high seepage, high evaporation, leakage through dike, others

If no communit	y 6) if no community pond, do you need pond in the village? [] yes, [] no										
pond in village	If need, for irrigation, livestock water, drinking water, domestic water, fisheries,										
	swimming, environmental, others										
	If no need, why										
}	7) Are there any problems for construction of community pond?										
	yes (no land, land acquisition, no budget,), no										
4.3 Well	1) How many wells are there in the village?										
	Publicwells by										
	Privatewells										
	2) What is the main purpose of wells in this village?										
	drinking domestic livestock garden water irrigation others										
	3) What is the quality of well water?										
	good fair poor saline polluted other										
	4) Operation condition of wells (% or wells)										
JF	Condition Public wells Private wells										
1	well working										
	broken										
1	drying										
	polluted										
j	saline										
	5) Are Public wells periodically checked about quantity and quality of water, and										
ĺ	equipment? yes, no										
	If yes How often? 1/ yrs, 1/ months										
Ì	6) Do you need to construct wells? yes, no										
	If yeswells,										
	Requested yes, What agency:when will be provided										
	□no										
4.3 Rural Road	1) Do you need to improve rural road? yes, no										
	If yes, from to new road pavement widening Req. Agency										
	yes, no yes, no yes, no yes, no										
1											
(
4.4 Farm Road	1) Do you need to improve farm road? yes, no										
	If yes, from to new road payement widening Req. Agency										
	yes, no yes, no yes, no yes, no										
1											
L											

Table 3-6 Questionnaire about Medical Care Services

1. Are there some medical care centers or hospitals in the village? yes no
<u>If yes</u>
1) Is there enough kinds and quantity of medicine? \(\begin{align*} \text{yes} & \lefta no \end{align*}
2) Are there some activities about preventive hygiene? yes no
3) Is periodical health care checkup held?
4) Do the villagers utilize often? yes no
5) Do you have some requests to the center or hospital?
<u>lf no</u>
1) Distance to the nearest center or hospital ?km
2) Are there some stores where sell medicines and bandages in this village? yes no
3) Do you need a center or hospital in this village?
If no, reason?
4) Is there enough kinds and quantity of medicine? Uyes Uno
5) Are there some activities about preventive hygiene? yes no
6) Is periodical health care checkup held? Lyes Ino
7) Do the villagers utilize often? Dyes Ono
8) Do you have some requests to the center or hospital?
2. Do you have some insurance systems ? \(\sqrt{yes} \) no
If yes, How many percentage of villagers are join ?%
If no, Do you need such systems? I yes no
If no, Why the reason?
3. Do almost villagers have some medicines in his home?
If no, How to get the medicines if needed?

CHAPTER 4. DESIGN STANDARD FOR INFRASTRUCTURES DEVELOPMENT

4.1 Design Standard for Irrigation Facilities

4.1.1 Definition of Project Scale

The scale of irrigation project which is categorized by RID is shown in Table 4.1-1.

Table 4.1-1 Scale Definition of Irrigation Project

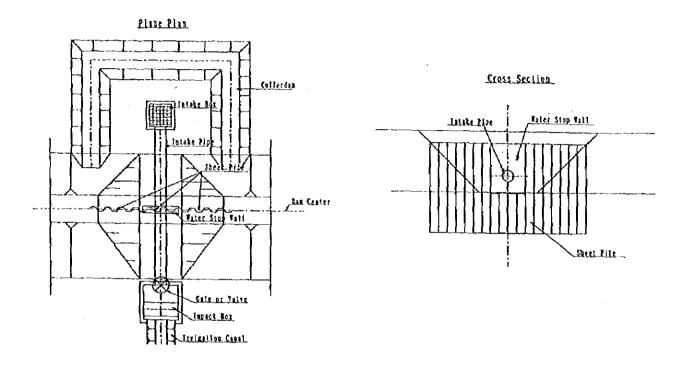
	Large scale	Medium scale	Small scale
Construction cost (million baht)	more than 200	more than 4 less than 200	less than 4
Storage volume (mem)	more than 100	10 to 100	=
Water surface area (km²)	nicre than 15		-
Irrigation area (rai)	more than 80,000		-
Construction period (year)	more than 5 years	1 to 5 years	less than 1 year

4.1.2 Criteria of Pump Irrigation Project

Criteria of pump irrigation project are as shown in Table 4.1-2.

·	Table 4.1-2 Criteria of Pump Irrigation Project
Items	Description Description
Agency Responsible	DEDP
2. Project Size and	1) Project area normally to be 500 to 3,000 rai.
Location	2) Irrigation area not more than 1 km from the water source.
	3) Pipeline not more than 800 m in length from the pump station to the delivery tank,
	4) Electric wiring not mote than 5 km in length.
- 	5) Pump lift not more than 20 m in height from the water surface of the source.
Water Source	1) to be sufficient throughout the year.
	2) not affecting people downstream regarding water usage through project implementation.
4. Irrigation	1) Rainy season: irrigation when necessary.
1	2) Dry season: Irrigation to start at the same time in each project to keep steady rotational irrigation.
*	3) Irrigation fee: B1.17/kwh (Water Users' Association: B0.60, DEDP: B0.57)
	4) Diversion requirement: 0.24 lit/scc/rai (1.5 lit/sec/ha) as standard
5. DEDP	1) to construct the project facilities (pump station, pipeline to the project area, delivery tank, main
Responsibilities	concrete lining canal of more than 50 lit/sec capacity)
	2) to operate pump in accordance with irrigation requirement of the project.
	3) to maintain and repair facilities up to main canal.
<u> </u>	4) to collect electric fees from farmers for PEA.
6. Farmers'	i) to request the project to DEDP, and organize "water users' association" for rationalized water
Responsibilities	utilization and collection of water charges.
	2) to intend to cultivate throughout the year.
	3) to contribute land for canalization.
	4) to dig ditches of less than 50 lit/sec capacity to lead water to the farm lots.
	5) to pay electric fee as a water charge depending on consumption of electricity for pumping.
	6) to participate in receiving advice in agricultural technology.
	7) to clear grass along canals and dredge canals before the beginning of the irrigation season.
7. Dimensions of	8) to operate pumps after DEDP training.
Project Facilities	Type of Pump Station
Project racingles	Fixed type or Floating pontoon type (Fixed type has become scarce in recent years, but
	main type for the LRAs because rivers are rather small and unsteady for the floating pontoon type in the LRAs.) (*)
	Pump, Motor and Pipeline (Actual head = 25m)
	Irrigation Pump Motor Pipeline
	Area Capacity (Suction Delivery) (Asbest Pipe)
	500 rai 100 lit/sec x 1 set (14' x 400 mm x 1) 75 kw x 1 set 400 mm x 1
	1,500 rai 300 lit/sec x 1 set (14' x 500 mm x 1) 110 kw x 1 set 500 mm x 1
	3,000 rai 300 lit/sec x 2sets (14" x 600mm x 1) 110 kw x 2sets 600mm x 1
	- Diversion Weir
	Diversion weir is not provided in normal case in the large rivers, but it may be necessary in the
	LRAs because low water flow is not sufficient for intake. (*)

4.1.3 Criteria of Reservoir Project


Design criteria of reservoirs follow basically the standard of United States Bureau of Reclamation (U.S.B.R).

4.1.4 Criteria of Canal and Pipeline

```
- Type of canal:
                          Trapezoid canal with concrete lining
- Side slope of canal:
                             1:1.5
                                     V=1/n R^{2/3} I^{1/2} (Manning's formula)
- Velocity calculation of Canal:
                                         V: Velocity (m/s)
                                         n: Coefficient of roughness
                                         R: Hydraulic radious (m)
                                         I: Hydraulic gradient
- Coefficient of roughness " n "
    Earth canal in good condition
                                            0.0225
    Earth canal in general condition
                                            0.025
    With concrete lining Q < 40 \text{ m}^3/\text{s}
                                            0.014
                          40 \le Q \le 630.015
                          63 \leq Q
                                            0.016
                                            0.013
    Concrete pipe
- Allowable velocity
    Concrete lining canal
                                 Max. V \leq 2.0 \text{ m/s}
                                 Min. V \ge 0.8 \text{ m/s}
                                  Max. V \leq 1.0 \text{ m/s}
    Unlined canal
                                 Max. V \leq 3.0 \text{ m/s}
    Pipe
- Head loss formula of pipe
    dh = 10.67 \times C^{1.85} \times D^{-4.87} \times Q^{1.85} \times L \times 1.1
           dh: Head loss (m)
           C: Coefficient (100 for Steel pipe, 130 for R.C pipe, 150 for P.V.C pipe)
           D: Diameter of pipe (m)
           Q: Discharge (m³/s)
           L: Pipe Length (m)
            1.1: Miscellaneous loss
- Free board of Canal
    Fb = 0.2 + 0.2 \times D \text{ (m)}
            Fb: Free board (m)
            D: Water depth (m)
```

4.1.5 Criteria of Intake Installation to the Existing Non-gated Small Reservoir

Figure 4.1-1 shows the plan of intake installation to the existing non-gated small reservoirs in the area.

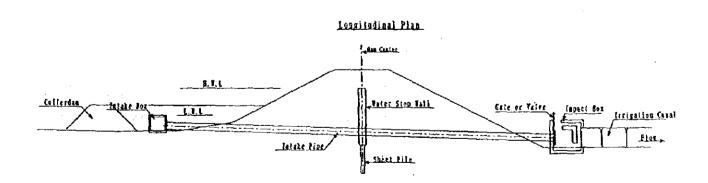


Figure 4.1-1 Installation Plan of Intake to the Existing None Intake Type Small Reservoir

4.2 Design Standard for On-Farm Facilities

4.2.1 Criteria of On-Farm Ditch

Design standard of on - farm ditch is basically following the U.S.B.R

- Flow formula Manning's open channel formula
- Coefficient of roughness
 - n = 0.018 for farm ditch with concrete lining
 - n = 0.030 for farm ditch without concrete lining
- Allowable maximum velocity
 - 1.0 1.5 m/s for farm ditch with concrete lining
 - 0.7m/s for farm ditch without concrete lining
- Inside and outside canal slope
 - 1:1 for cut section and fill section
- Bottom width of canal
 - W = 0.30 m (Min.)
- Free board
 - Fb = 0.20m (Min.)
- Berm width

Minimum 0.5m

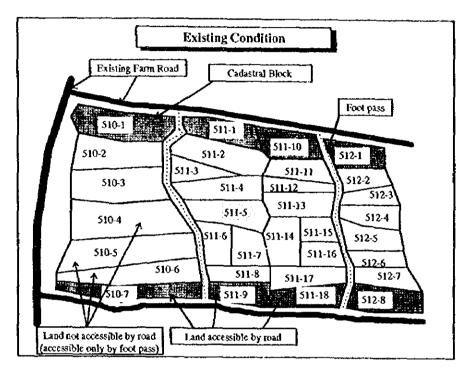
4.2.2 Criteria of Farm Road

1) Alignment of Farm Roads

Figure 4.2-1 show the standard alignment of farm roads in the LRAs. For ennobling to conduct integrated farming for many farmers as possible, accessibility has to be raised in the area.

i) Alignment of Main and Lateral Farm Roads

Main and lateral farm roads will be aligned utilizing existing farm roads as much as possible, because major access road systems are already established in most areas except in paddy dominant area. Improvement work as widening and laterite pavement will be major subjects for main and lateral farm roads.


Alignment of On-farm Roads.

On-farm roads are not well developed yet in LRAs except where upland cash crops are dominant. In such areas, on-farm roads are already developed, and accessibility has reached some 60%. In those areas, improvement of on-farm roads is main subject, and additional new on-farm roads will be planned in accordance with the following criteria.

<Alignment Criteria of On-Farm Road>

- -On-farm roads are to be aligned for farmers to able to conduct the integrated farming in many farm fields as possible.
- Many farm lands as possible are to be linked by a shorter road to minimize cost and land loss.
- On-farm roads are to be provided along the shorter side of fand holdings to realize minimization of cost and fand loss.
- When on-farm road is obliged to run along the longer side of land holdings, it should run along the boundary of larger holders.

- Existing footpaths are to be utilized as much as possible and widened as on-farm road.
- On-farm roads are to be aligned to link both ends to the lateral farm road to minimize the blind on-farm roads.
- In the area subject to flood, on-farm roads are to be paved with asphalt to protect from crosion.
- In such areas, generally paddy dominant area where land holdings are especially small and boundaries are complicatedly irregular, on-farm road development will be subject to delay until able to introduce land consolidation in the area.

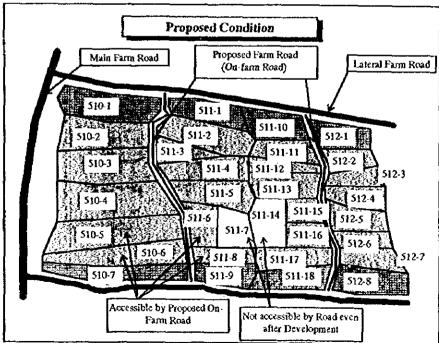


Figure 4.2-1 Standard Alignment of Farm Roads in the LRAs

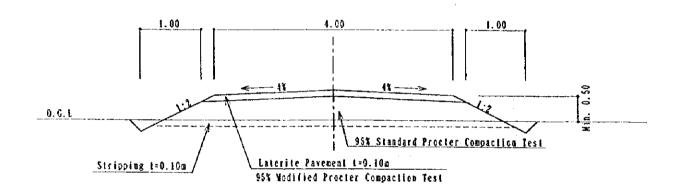

2) Dimensions of Farm Roads

Table 4.2-1 Design Dimension of Farm Road

Category	Road Width (m)	Pavement	Max. longitudinal gradient (%)
Main Road	4.00	Laterite	12
Lateral Road	4.00	Laterite	12
On-Farm Road	2.00	Laterite	15

(Note) Asphalt pavement shall be provided at the places where subject to flooding.

Main and Lateral Farm Road

On- Farm Road

Figure 4.2-2 Typical Cross Section of Farm Road

4.2.3 Criteria of Farm Pond

Three cases of farm ponds, ordinary type 1,200 m³, medium type 3,500 m³ and large type 6,000m³, have been investigated for development. Major elements of each case are summarized in Table 4.2-2.

Design Standard of Different Types of Farm Pond Table 4.2-2 Farm Ponds Elements Khon Kaen Mukdahan Mahasarakham Sakon Nakhon Ordinary Farm Pond 1,200m³ Major Dimensions Area Size = 40mx43ra = 1,720m² (1.1rai) Depth $\approx 3m$, Side slope $\approx 1:2$ 40 m x 43 m Min. Req. C. Area 3 rai Inigated Crops l rai (vegetables) l rai (vegetables) Irrigation System **Bucket Irrigation** 4 m **Bucket Irrigation** 28 m x 31 m Construction Cost Pond B37,500 B37.500 Irrigation System [1 m B37,500 Total B37,500 1 3 m Demarcation Government B37,500 B37,500 2 m Farmer 8 m 12 m x 15 m Min. Req. Labor 2 members B71,000/year Net Agri. Income Medium Farm Pond 3,500m Major Dimensions Area Size = $53mx55m = 2,915m^2 (1.8rai)$ Depth = 3.5m, Side slope = 1:2Min. Req. C.Area 53 m x 55 m 16.5 rai 8.25 rai Irrigated Crops 1.0 rai (vegetables) 1.0 rai (vegetables) 1.5 rai (Rice+D.S.crop) 1.5 rai (Fruit tree) 4 m 41 m x 43 m 2.5 raî 2.5 rai Irrigation System Hose Irrigation by Tiller Micro-sprinkler attached Pump by Electric Pump 1 m Construction Cost 3.5 m Pond B98,900 B98,900 Imigation System B10,500 B50,500 2 m Total B109,400 B149,400 23 m x 25 m Demarcation Government B37,500 B37,500 Farmer B71,900 B111,900 Min. Req. Labor 2 members B98,500/year Net Agri. Income Large Farm Pond 6,000m Area Size = 60mx63m = 3789m 2 (2.4rai) Major Dimensions Depth = 4m, Side slope = 1:2Min. Req. C. Area 30 rai 15 rai 60 m x 63 m Irrigated Crops 1 rai (vegetables) l rai (vegetables) 3 rai (W.S.Rice+D.S.crop) 3 rai (Fruit tree) 48 m x 51 m Irrigation System Hose Irrigation by Tiller Micro-sprinkler attached Pump by Electric Pump Construction Cost 4 m Pond B160,250 B160,250 Inigation System 10,500 68,000 $2 \, \mathrm{m}$ B170,750 Total B228,250 Demarcation 10 m 28 m x 31 m 10 m Government B37,500 B37.500 Farmer B133,250 B190,750 Min. Req. Labor 3 members Net Agri. Income B126,000/year

(Note) Net agricultural income is composed of incomes both by rainfed and integrated agriculture of a standard farmer who has an average size of land of 20 rai.

An ordinary farm pond is provided to individual farmers for free by the government. It is a minimum size of farm pond which is able to irrigate 1 rai of vegetables year round. On the other hand, a large farm pond is an optional one which is to be prepared by farmers

themselves paying a cost of enlargement of pond and necessary irrigation facilities. It is a maximum size of farm pond which aims to conduct marketable farming. This size of farm pond is able to support 4 rai irrigated crops year round, that may be a maximum scale of integrated farming by family labors. Demarcation of farmers for a large farm pond is about B133,250 in case of hose irrigation, and about B190,750 in case of micro-sprinkler irrigation. A farmer can gain about B126,000 of net agricultural income by a large farm pond in a year, but only about B71,000 by a ordinary farm pond. A medium farm pond is positioned between an ordinary and a large farm pond. Farmer selects an appropriate farm pond based on elements of three cases of farm ponds in Table 4.2-2 taking his intention on farming, family labor size, farmland size and available catchment area etc. into consideration.

Detail drawing of farm pond is presented in Drawing No.1 in Chapter 8 in this Appendix D.

4.2.4 Criteria of Micro Irrigation System

1) Mini-sprinkler System

Micro irrigation system means the system which is composed of mini sprinkler or drip pipes. This irrigation system is suited especially for irrigating vegetables and fruit trees in the area. Drip irrigation is suitable in case using groundwater as a source, while sprinkler irrigation in case of surface water. Surface water generally contains sand and silt, and deteriorates in quality during storage in farm pond. In case drip irrigation system using surface water, small holes are easily closed by sediment and algae. It is, therefore, necessary to install a filter system for drip irrigation in case for surface water. When groundwater is available, drip irrigation system can be installed for irrigation but equipment is not common in the area. Mini-sprinkler system can be used both for surface water and groundwater, and it is commonly available in market and easier in operation and maintenance. Most of sediment and algae can be removed by a simple filter, and sediment and algae can be removed easily from a sprinkler head. Consequently, mini-sprinkler system has been studied for the irrigation system in the area.

2) Application of Mini-sprinkler System

It is recommended to introduce sprinkler irrigation system for fruit tree and vegetable farming with a large farm pond in Mukdahan and Sakon Nakhon. On the other hand, in Khon Kaen and Mahasarakham, hose irrigation by a tiller attached pump is recommended for a large farm pond system, because major irrigation is for wet season paddy.

Hose irrigation has been commonly conducted and experienced by farmers in the area, but sprinkler irrigation is relatively new and introduced only by very limited farmers in the area. It is, therefore, necessary to prepare a preliminary plan for clarifying reliability of sprinkler irrigation.

Proposed acreage of this system is 4 rai in total composed of 1 rai vegetables and 3 rai fruit tree. Water resource of the system is farm pond or well, and necessary water

capacity of farm pond for this system is 6,000m³. Recommendable number of sprinkler heads are 25 heads for vegetables, 70 heads for fruit tree; and necessary power of pump unit is 2 inch and 1.5 kwh motor pump for farm pond; and 1 inch 0.37kwh motor pump for well. Necessary pressure head of sprinkler is 1.8 kg/cm² - 2.1 kg/cm² (25 - 30 lb/inch²).

Required irrigation system by a large farm pond is summarized as below:

Crops and Acreage = Vegetables (1 rai) + Fruit Trees (3 rai) = 4 rai

Annual Irrigation Water in Average Year = 6,814 m³/year (Table B-22 in Appendix B)

Typical design of 6,000m³ farm pond is shown in Drawing No.1, and sprinkler layout is in Drawing No.36 and No.37 in this Appendix D.

3) Selection of the Sprinkler Head and Pump

Typical sprinkler heads available in Thailand and application for one rai vegetable irrigation are as shown in Table 4.2-3;

Table 4.2-3 Available Sprinklers and Cost in Thailand

	S	pecification	of Sprinkle	t (per head)			Sprink	ler System p	er Rai		
Case	Discharge	Pressure	Water Range	Made in	Price	Necessary Sprinkler Heads	Discharge	Pump Price	Sprinkler Price	Valve Price	Pipe Price	Total Cost
	(lit/min)	(kg/cm²)	(m)		(B/head)	(nos.)	(lit/mim)	(B)	(B)	(8)	(B)	(B)
1	1.5	1	3	Thai	7	324	486	12,000	2,268	12,960	38,880	66,108
2	8.0	1.8	5	Thai	15	121	968	12,000	1,815	4,840	23,112	41,767
3	10.0	2.1	10	Thai	25	25	250	12,000	625	1,000	11,448	25,073
4	15.0	2.5	15	Israel	150	16	240	12,000	2,400	640	9,504	24,544

According to the above table, the cheapest system is Case 4. Sprinkler head of Case 4, however, is not so suited to the area, because spare parts are expensive and difficult to maintain comparing to others. Therefore, sprinkler head shall be selected in Case 3 for vegetable farm.

On the other hand, sprinkler head for fruit tree should be selected not only by cost but water spread range. Wide range sprinkler head is not suited to fruit tree, because water is interrupted by leaves and branches. Therefore, most suitable system for fruit tree should be Case 2, which is able to irrigate only root range of tree.

4) Alignment of Sprinkler System

Based on above study, recommendable sprinkler system is summarized as shown in Table 4.2-4, and plan will be as shown in Figure 4.2-3. (Detail Drawings are described in Drawing No.36 and No.37 in this Appendix-D)

Table 4.2-4 Selected Sprinkler System for Vegetables and Fruit Trees

	Vegetables	Fruit Trees	Total
Area	1 rai	3 rai	4 rai
Specification of Sprinkler			
Discharge	10.0 liVmin/head	8.0 lit/min/head	
Water Spread Range (diameter)	10 m	5 m	
Necessary number of Sprinkler Heads	25 heads	70 heads	95 heads
Total Discharge (lit/min)	250 lithain.	560 lit/min.	Operation Range
			250 - 560 liVmin.
Necessary Pressure	2.1 kg/cm ²	1.8 kg/cm ²	2.1 kg/cm ²

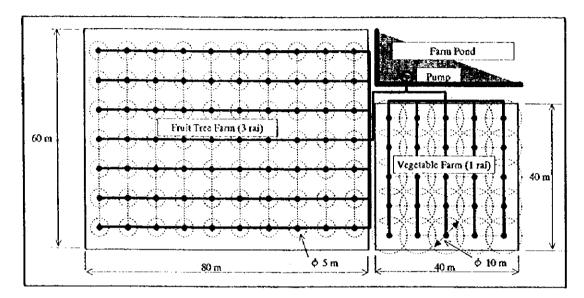


Figure 4.2-3 Typical Alignment of Sprinkler System for Large Farm Pond

5) Selection of Prime Mover of Pump

Irrigation system depending on farm pond is generally small to introduce an economically suitable engine, because available minimum engine in market is little larger than the required capacity in this irrigation system. On the other hand, small electric motor suited to the required capacity is available in market, but it is necessary to install an electric power line to the farm field.

To evaluate engine and motor, following cases have been investigated form an economic viewpoint.

Prime Mover	Pump	Discharge (lit/min)	Output Power	Remarks
Engine	Ф 50 mm	200 - 650	3.8 HP	Minimum reliable engine in Market
Motor	φ 50 mm	180 - 600	1.5 kW	

Table 4.2-5 shows the result of cost comparison of engine and motor in 10 years life time. As shown in Table, total cost of electric motor is 107,168 Baht that is cheaper by about 30,000 Baht than that of engine. Consequently, electric motor is recommendable for sprinkler system in the area.

Table 4.2-5 Comparison of Cost for Engine and Electric Motor for Sprinkler System

Prime	Output	Necessary	Energy	Operation	Price of	Sprinkler	Power	Operation	Maintena	Total
Mover		Irrigation	Consumption	Cost	Pump &	System	Line Cost	Cost	BCe Cost	
i		Hour			Prime]		(10yrs)	(10yrs)	
					Mover					
		(ht/yr)		(Baht'yt)	(Babt)	(Baht)	(Baht)	(Baht/life)	(Baht/life)	(BahUlife)
Engine	3.8 112	229	348 lit/yr	4,872	8,500	65,109	-	48,724	14,617	136,950
Motor	1.5 kW_	229	28.6 kWh/month	1,312	8,000	65,109	17,000	13,122	3,937	107,168

(Notes) 1) Necessary Irrigation Water = 6,814 m³/yr

- 2) Price of Gasoline = B14/lit. (Fuel consumption = 1.52 lit/hr for 3.8 HP Engine)
- 3) Assumed Total Pump Head = 21m, Discharge = 496 lit/min
- 4) Basic Electricity Charge = B109.35/month when consumption less than 100 kWh/month
- 5) Maintenance Cost = 30% of Operation Cost
- 6) Power line cost = 1,700m * B10/m = B17,000 [Aaverage distance from village to field in Sakon Nakon and Mukdahan (1.1km)×1.5 = Distance along farm road (1.7 km)]

6) Grouping of Electric Incoming System

It is found that electricity is to be selected as energy for sprinkler irrigation in the area. In this case, it is necessary to study incoming system of electricity to the field individually or in group.

Monthly consumption of electricity is found less than 100 kWh in individual farm. In this case, 109.35 Baht is charged as a basic electricity charge in each month. On the other hand, in case grouping incoming system, it is possible to reduce electricity charge less than individual incoming system. However, electricity charge should be shared in the group in this case.

Based on above consideration, individual and group incoming systems have been evaluated as shown in Table 4.2-6. It is found that the cheapest case is 4 members group at B31.48 for each member. It is, therefore, recommended to provide a group incoming system by 4 to 6 members.

Table 4.2-6 Comparison of the Electric Incoming Systems

Grouping	Energy Consumption	Electricity Charge (B/month)		
	(kWh/month)	Group	Índivídual	
1	28.6	109.35	109.35	
2	57.2	109.35	54.68	
3	85.8	109.35	36.45	
4	114.4	125.91	31.48	
5	143.0	158.80	31.76	
6	171.6	191.69	31.95	
7	200.2	224.58	32.08	
8	228.8	257.47	32.18	

(Note) 1) Individual Consumption = 28.6 kWh/month (Table 4.2-5)

2) Electricity Charge

B109.35/month for less than 100 kWh/month

B1.15/kWh beyond 100 kWh/month

4.3 Design Standard for Rural Road Facilities

Design criteria for the rural road is usually little modified by agencies based on the standard of Office of Prime Minister. Design criteria is as shown in Table 4.3-1.

Table 4.3-1 Standard for Rural Road (Office of Prime Minister)

	Average of traf	fic(vehicles'day)
Classification	100~300	less than 100
Velocity (km.h)		
Plane area	ļ 60	60
Slope area	45	45
Hill area	30	30
Minimum scope (m)		1
Plane area	144	144
Slope area	81	81
Hill area	36	36
Maximum slope (%)		1
Plane area	5	5
Stope area	9	9
Hill area	12	12
Width of road (m)		1
Plane area	6.00	3.50
Slope area	6.00	3.50
Hill area	6.00	3.50
Type of road surface	Laterite	Laterite

In this study, design standard of rural road is modified based on the above standard. Applied design standard for this study is as shown in Table 4.3-2.

Table 4.3-2 Design Standard for Rural Road in LRAs

	Average of traffi	e(vehicles/day)
Classification	100∼300 Main Road	less than 100 Secondary Road
Velocity (km h)		
Plane area	60	60
Stope area	45	45
Hill area	30	30
Minimum scope (m)		
Plane area	144	144
Slope area	81	81
Hill area	36	36
Maximum slope (%)	1	
Plane area	5	5
Slope area	9	9
Hill area	12	12
Width of road (m)		
Plane area	6.00	4.00
Slope area	6,00	4.00
Hill area	6.00	4.00
Type of road surface	Laterite	Laterite
	Asphalt	Asphalt

The typical cross section of the main and the secondary roads are shown in Figure 4.3-1. This figure is following the ALRO design standard.

Main Road Culting Section Min. 0.5 Min. 1.00 Min. 1.00 6.00 0.<u>6.L</u> Banking Section Min. 1.50 Min. 1.50 6.00 0. G. L Secondary Road SLOPE 1:n Cutting Section HIGHT SOIL ROCK IARD. F (m) BANK. CUT. BANK. | CUT. CUT. 0.30 - 1.00 3:12:1 1.5:10.5:1 3:1 1.00 - 3.00 2:1 2:1 1.5:1 1:1 0.25 1.00 OVER 3.00 1.5:11.5:10.75:10.75:10.25: Thickness of Pavement _0.6.L Laterite Asphall Surface 0.05 0.20 Main 8ase 0.20 Surface 0.03 Secondary 0.10 Base 0.10 Banking Section Surface : Asphalt Concrete ; Crusher Run SLOPE 1:n Min 1.00 4.00 Min. 1.00 Bł n 82 SOIL 1:2 Min. 1.0 Mia. 2. 0 ROCK Min. 0. \$ 1:1 min1.0 0. G. L

D - 54

Figure 4.3-1 Typical Cross Section of Rural Road

4.4 Water Quality Standard for Rural Water Supply

1) Main Agencies for Implementing the Rural Water Supply

The main agencies for the implementing the rural water supply is shown in Table 4.4-1.

Table 4.4-1 Main Agencies for Implementing the Rural Water Supply

Wells	Ponds	Piped Water Supply
0	0	0
	0	
	0	
	0	
0	0	0
0	0	0
0		0
		0
0	0	
0		
0		0
0		0
	Wells O O O O O O O O O	Wetis Ponds O O O O O O O O O O O O O O O O O O O O O O O O O O O O

(Note) MASU: Mobile Agricultural Service Unit

2) The Water Quality Standard for Rural Water Supply

Water quality standard for the rural water supply is authorized by Thai government. So all concerned agencies have to follow this standard.

Standard quality for raw water is shown in Table 4.4-2, and standard for drinking water is shown in Table 4.4-3. These standards are authorized by DOH.

Table 4.4-2 Raw Water Quality Standard

Parameter	Statistic Value	Unit	Categories of Water Resources *1			*1	
			1	2	3	4	5
Physical and Biological Qualification							[
1. Temperature	-	Degree Celsius	a	а	a	8	-
2. pH	-		a	5-9	5-9	5-9	-
3. DO	20% ite	mg / 1	a	6	4	2	
4. BOD	80 % ite	mg/1	a	1.5	2.0	4.0	-
5. Coliform Bacteria	80 % ite	MPN / 100	a	1			
Total Coliform				5,000	20,000	-	-
Fecal Coliform				1,000	4,000	-	-

(continued)

,			
(con	111	111	e١
1.001	411	uv	~ .

Parameter	Unit	Maximum value for Water Resources Categories 2,3, and 4 2*
Organic Compounds		
6. NO ₃ -N	mg/1	5.0
7.NH ₃ -N	mg/l	0.5
Toxic Substances		
8. Phenol	mg/l	0.0005
9. As	mg / 1	0.01
10. Siyanide	mg / 1	0,005
Heavy Metal		
11. Cu	mg / 1	0.1
12, Ni	mg / 1	0.1
13. Mn	mg/l	1
14. Zn	mg/l	1
IS. Hg	mg/1	0.002
16, Cd	mg / 1	0.005 * 0.05 *
17. Cr	mg/1	0.05
18. Pb	mg/1	0.05
Radiation		
19. Total Radiation	Beccerrel / 1	0.1
Chemicals for prevent and eliminate weed	mg/l	0.05
20. DDT	micro g / l	1
21. BHC	micro g / l	0.02
22. Dieldrin	micro g / 1	0.1
23. Aldrin	micro g / 1	0.1
24. Heptachlor & Heptachlor Epoxide	micro g / 1	0.2
25. Pndrin = E	micro g/1	Must no be found

a = Naturally

- * = Hardness is not over 100mg/1
- ** = Hardness is over 100mg/1
- Not specified

% - ile = Percentile value from all sample which collected to check continuously

(Amount and period for collections according to specification of National Natural Board Office)

Classification of Water Resources into 5 Categories

Category 1: is natural water resource which without dirty water from every activities and can be utilized for

- Consumption after pasteurization
- Naturally expanding of basic life
- Conservation of water resource ecology system

Category 2: is water resource with dirty water from some activities and can be utilized for

- Consumption after pasteurization and generally water quality improvement processing
- Aquatic animals conservation
- Fishery
- Swimming and water sports

Category 3: is water resource with dirty water from some activities and can be utilized for

- Consumption after pasteurization and generally water quality improvement processing
- Agriculture

Category 4: is water resource with dirty water from some activities and can be utilized for

- Consumption after pasteurization and specially water quality improvement processing

Category 5: is water resource with dirty water from some activities and can be utilized for

-Transportation

^{*2 =} Specification of Standard of Water Resources for category 2-4, for Water Resource category 1 is according to naturally, and for category 5 is not specified.

Table 4.4-3 Drinking Water Quality Standard

Parameter	Unit	Standard drinking water	
pH		6.5-8.5	
Color	Pt.Cob	15	
Turbid	UTV	5	
TDN	mg/l	1.000	
Hardness	mg/l	500	
Fe	nig/}	0,3	
Mn	mg/l	0.1	
Cu	mg/i	1.0	
Zn	mg/l	5.0	
Pb	mg/l	0.05	
Cr	mg/l	0.05	
Cd	mg/i	0.005	
As	mg/l	0.05	
Hg	μg/l	1.0	
So ₁	mg/l	400	
CI.	mg/l	250	
No ₃	mg/l	10	
F F	mg/l	1.5	
Residual Free Chlorine	mg/l	•	
Total coliform	NPN/100m1	0	
Fecal coliform	NPN/100m	0	

If the target of project is the water supply for the drinking water, it is necessary to satisfy both category 1 of Table 4.4-2 and all of Table 4.4-3.

3) The Project Scale Classification

The project scale classification is a little different at each agencies, but basically following the classification of Rural Development Committee.

So the project scale is classified this classification on this study.

The project scale classification which is authorized by Rural Development Committee is shown in Table 4.4-4.

Table 4.4-4 Classification for Project Scale of Water Supply Works

Scale	Capacity (m³/hr)	Target Household
Small	no less than 2.0	Jess than 50
Medium	no less than 5.0	50-120
Large	no less than 10.0	more than 120

4) The Percapita Demand of Water Consumption

The percapita demand of water consumption which is authorized by Rural Development Committee is 50 lit / person / day. (Drinking 5 lit, Others 45 lit)

This value is used at DOH, NESDB and ARD also. So this value is used on this study.